WorldWideScience

Sample records for hydrocarbon potential thermal

  1. Time of uplift and thermal history of the Papuan Fold-belt -implications for hydrocarbon potential

    International Nuclear Information System (INIS)

    Hill, K.C.

    1987-01-01

    Apatite fission track analysis of 35 Mesozoic sandstone and basement samples from outcrop, core and cuttings from the Papuan Fold-Belt(PFB) has demonstrated that the rocks throughout the fold-belt were uplifted close to 4.0±0.5 Ma. With increasing temperature, fission tracks in apatite crystals are progressively annealed, becoming shorter and less abundant, therefore giving a reduced apparent age. At temperatures of 100 deg.C. - 130 deg.C. the track damage is repaired (complete annealing). A typical partial annealing zone is illustrated. By comparing the annealing curves of the various stratigraphic sections with the idealized partial annealing zone curve, it is possible to determine the thermal maturity of each section, shown by the relative depths of burial of the Toro sandstone, the main hydrocarbon reservoir. Determining depth of burial assumes a consistent temperature gradient throughout the PFB, but increased thermal maturity could also be caused by higher local heat flow. From this analysis it is inferred that in the western PFB the rocks were more deeply buried, so would have generated gas-condensate, whilst shallower burial to the east allowed oil generation. This concurs with the gas-condensate at Juha, in the west, and oil at Iagifu, in the east. 4 refs

  2. Organic maturation levels, thermal history and hydrocarbon source rock potential of the Namurian rocks of the Clare Basin, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Goodhue, Robbie; Clayton, Geoffrey [Trinity Coll., Dept. of Geology, Dublin (Ireland)

    1999-11-01

    Vitrinite reflectance data from two inland cored boreholes confirm high maturation levels throughout the onshore part of the Irish Clare Basin and suggest erosion of 2 to 4 km of late Carboniferous cover and elevated palaeogeothermal gradients in the Carboniferous section. The observed maturation gradients are fully consistent with the published hypothesis of a late Carboniferous/Permian 'superplume' beneath Pangaea but local vertical reversals in gradients also suggest a complex thermal regime probably involving advective heating. The uppermost Visean--lower Namurian Clare Shale is laterally extensive and up to 300 m thick. Although this unit is post-mature, TOC values of up to 15% suggest that it could have considerable hydrocarbon source rock potential in any less mature offshore parts of the basin. (Author)

  3. Evaluation of hydrocarbon potential

    International Nuclear Information System (INIS)

    Cashman, P.H.; Trexler, J.H. Jr.

    1992-01-01

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the open-quotes Eleana Formationclose quotes are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock

  4. Hydrocarbon potential of Ordovician and Silurian rocks. Siljan Region (Sweden)

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Lehnert, O. [Erlangen-Nuernberg Univ., Erlangen (Germany); Meinhold, G. [Goettingen Univ. (Germany)

    2013-08-01

    Hydrocarbon exploration in the vicinity of Europe's largest impact structure (Siljan, Central Sweden) focused for years on abiogenic concepts and largely neglected state of the art knowledge on hydrocarbon generation via thermal decomposition of organic matter. In our study we use sedimentary rocks obtained from three drill sites (Mora001, Stumsnaes 1 and Solberga 1) within the ring structure around the central uplift to investigate the hydrocarbon potential of Ordovician and Silurian strata of the region and also for comparison with the shale oil and gas potential of age equivalent rocks of the Baltic Sea. Elemental analyses provided information on concentrations of carbonate and organic carbon, total sulfur as well as on the composition of major and minor elements of the sediments. The data has been used to evaluate the depositional environment and possible diagenetic alterations of the organic matter. RockEval pyrolysis and solvent hydrocarbon extraction gave insight into the hydrocarbon generation potential and the type and thermal maturity of the sediments. From the geochemistry data of the studied wells it is obvious that changes of depositional environments (lacustrine - marine) have occurred during Ordovician and Silurian times. Although, the quality of the organic matter has been influenced in marine and brackish environments through sulfate reduction, we observe for a number of marine and lacustrine sediments a good to excellent preservation of the biological precursors which qualify the sediments as hydrocarbon source rocks (Type II kerogens). Lacustrine source rocks show a higher remaining hydrocarbon potential (up to {proportional_to}550 mg HC per g C{sub org}) than those of marine or brackish environments. Our investigations indicate that the thermal maturity of organic matter of the drill sites has reached the initial stage of oil generation. However, at Mora001 some of the sediments were stained with oil indicating that hydrocarbons have

  5. Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons ...

    African Journals Online (AJOL)

    Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Heavy Metal in Crude Oil from Gokana Area, Rivers State, Nigeria. ... Considerable caution should be applied in exploration, exposure and distribution of the crude oil through protected and well maintained pipelines to avoid the possible ...

  6. Task 8: Evaluation of hydrocarbon potential

    International Nuclear Information System (INIS)

    Cashman, P.H.; Trexler, J.H. Jr.

    1994-01-01

    Our studies focus on the stratigraphy of Late Devonian to early Pennsylvanian rocks at the NTS, because these are the best potential hydrocarbon source rocks in the vicinity of Yucca Mountain. In the last year, our stratigraphic studies have broadened to include the regional context for both the Chainman and the Eleana formations. New age data based on biostratigraphy constrain the age ranges of both Chainman and Eleana; accurate and reliable ages are essential for regional correlation and for regional paleogeographic reconstructions. Source rock analyses throughout the Chainman establish whether these rocks contained adequate organic material to generate hydrocarbons. Maturation analyses of samples from the Chainman determine whether the temperature history has been suitable for the generation of liquid hydrocarbons. Structural studies are aimed at defining the deformation histories and present position of the different packages of Devonian - Pennsylvanian rocks. This report summarizes new results of our structural, stratigraphic and hydrocarbon source rock potential studies at the Nevada Test Site and vicinity. Stratigraphy is considered first, with the Chainman Shale and Eleana Formation discussed separately. New biostratigraphic results are included in this section. New results from our structural studies are summarized next, followed by source rock and maturation analyses of the Chainman Shale. Directions for future work are included where appropriate

  7. Isoprenoid hydrocarbons produced by thermal alteration of Nostoc muscorum and Rhodopseudomonas spheroides

    Science.gov (United States)

    Philp, R. P.; Brown, S.; Calvin, M.

    1978-01-01

    The potential of algae and photosynthetic bacteria to serve as precursors of kerogen was studied to determine what factors affect the relative rates of formation of precursor hydrocarbons. Cells of Nostoc muscorum and Rhodopseudomonas spheroides were subjected to thermal alteration (by heating samples in glass tubes sealed under nitrogen) for two, four, and twelve weeks. Both unextracted and extracted cells in the absence and presence of montmorillonite were investigated, and the isoprenoid hydrocarbons produced in these experiments were determined. Phytane and five isomeric phytenes were the main hydrocarbons observed; their relative rates of formation in the different experimental conditions are described. No phytadienes, pristane, or pristenes were detected.

  8. Distribution of hydrocarbon-utilizing microorganisms and hydrocarbon biodegradation potentials in Alaskan continental shelf areas

    International Nuclear Information System (INIS)

    Roubal, G.; Atlas, R.M.

    1978-01-01

    Hydrocarbon-utilizing microogranisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14 C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14 C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene >> pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population

  9. Thermal Adsorption Processing Of Hydrocarbon Residues

    Directory of Open Access Journals (Sweden)

    Sudad H. Al.

    2017-04-01

    Full Text Available The raw materials of secondary catalytic processes must be pre-refined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption or thermo-contact adsorption variety. In oil processing four main processes of thermo-adsorption refining of hydrocarbon residues are used ART Asphalt Residual Treating - residues deasphaltizing 3D Discriminatory Destructive Distillation developed in the US ACT Adsorption-Contact Treatment and ETCC Express Thermo-Contact Cracking developed in Russia. ART and ACT are processes with absorbers of lift type reactor while 3D and ETCC processes are with an adsorbing reactor having ultra-short contact time of the raw material with the adsorbent. In all these processes refining of hydrocarbon residues is achieved by partial Thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed on the surface of the adsorbents resins asphaltene and carboids as well as metal- sulphur - and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes catalytic and hydrogenation cracking etc. since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.

  10. Thermally promoted addition of undecylenic acid on thermally hydrocarbonized porous silicon optical reflectors

    OpenAIRE

    Jalkanen, Tero; Mäkilä, Ermei; Sakka, Tetsuo; Salonen, Jarno; Ogata, Yukio H

    2012-01-01

    Thermally promoted addition of undecylenic acid is studied as a method for modifying porous silicon optical reflectors that have been pre-treated with thermal hydrocarbonization. Successful derivatization of undecylenic acid is demonstrated and confirmed with Fourier transform infrared and X-ray photoelectron spectroscopies. The results indicate that the hydrocarbonization pre-treatment considerably improves stability against oxidation and chemical dissolution in basic environments. The two-s...

  11. Method for thermal recovery of hydrocarbons from an underground formation

    Energy Technology Data Exchange (ETDEWEB)

    1962-11-13

    In a thermal recovery procedure for hydrocarbons from an underground formation, an oxygen-containing gas is injected through at least one input well into the formation. A part of the hydrocarbons in the formation is then ignited and an oxidation front is created. This front moves under the influence of the injected gas to at least one production well in the formation. The temperature in the burning front is higher than approximately 200/sup 0/C but lower than approximately 350/sup 0/C. (4 claims)

  12. Evaluation of hydrocarbon potential, Task 8

    International Nuclear Information System (INIS)

    Cashman, P.H.; Trexler, J.H. Jr.

    1993-01-01

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vicinity. Our main focus is source rock stratigraphy in the Nevada Test Site (NTS) area in southern Nevada. In order to reconstruct the Paleozoic stratigraphy, we are also studying the geometry and kinematics of deformation at NTS. A thorough understanding of the structure will also be essential to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the open-quotes Eleana Formationclose quotes are in fact parts of two different Mississippian units. We are now provisionally limiting the name open-quotes Eleana Formationclose quotes to the rocks that make up the Eleana Range - i.e., the rocks that we have been calling open-quotes western Eleanaclose quotes. The mudstone section (which we have until now called open-quotes eastern Eleanaclose quotes) we are provisionally calling the open-quotes Chainman Shaleclose quotes, in keeping with regional lithostratigraphic nomenclature. We continue to work out the internal stratigraphies and basin histories of both units; XRD (r-ray diffraction) determinations of clay mineralogy are an addition to our understanding of the Chainman. The basin histories place important constraints on regional paleogeographic and tectonic reconstructions. This year we have hired a consulting petroleum geologist for two jobs: (1) to review drillhole data from southern Nevada on file at NBMG and make recommendations about more detailed study of any interesting drillholes; and (2) to log the UE17e core (in the Chainman) and evaluate source rock potential. The results of these studies have been incorporated into this report, and the consultant's reports

  13. Potential hydrocarbon producing species of Western Ghats, Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Augustus, G.D.P.S.; Jayabalan, M.; Rajarathinam, K. [Research Centre in Bombay, V.H.N.S.N. College, Virudhunagar (India); Ray, A.K. [Sardar Patel Univ., Anand (India). Dept. of Chemistry; Seiler, G.J. [USDA, ARS, Northern Crop Science Lab., Fargo, ND (United States)

    2002-09-01

    The decline in the world supplies of hydrocarbons has led to the search for alternate sources of fuel and chemicals. Plant species are potential sources of hydrocarbons. Large-scale screening of plants growing in the Western Ghats, Tamil Nadu, India was conducted to assess the hydrocarbon production and the type of isoprene compound(s) present. Three species contained more than 3% hydrocarbon. Sarcostemma brevistigma had the highest concentration of hydrocarbon with 3.6%. Seven species contained more than 2% of hydrocarbons among the plant species screened. The hydrocarbon fraction of Ficus elastica (leaf) had a gross heat value of 9834 cal/g (41.17 MJ/kg), which is close to the caloric value of fuel oil. Six hydrocarbon fractions contained gross heat values of more than 9000 cal/g (37.68 MJ/kg). Of the 13 species hydrocarbon fraction analysed, seven species contained cis-polyisoprene compounds, while two species contained trans-polyisoprenes. Cis and trans polyisoprenes are potential alternative energy sources for fuel and/or as industrial raw materials. (author)

  14. Occurrence and growth potentials of hydrocarbon degrading ...

    African Journals Online (AJOL)

    The surface of leaf samples from ten tropical plants, Anthocleista, Sarcophrynium, Canna, Colocassia, Musa, Cola, Citrus, Mangifera, Terminalia and Annona were cultured for the estimation of total heterotrophic and hydrocarbon utilizing bacteria. The total heterotrophic bacteria ranged from 0.75 x 107 to 0.98 x 107 ...

  15. Hydrocarbon potential of the Trinidad area - 1977

    Energy Technology Data Exchange (ETDEWEB)

    Persad, K.M.

    1978-06-01

    It is recognized that deltaic and associated sands, together with porous marine limestones, form the vast majority of the reservoirs in the major accumulations of hydrocarbons throughout the world. The source of the hydrocarbons is now thought to be kerogen which is generated from the organic content of principally marine shales which are formed in or near the continental shelves. The Trinidad area contains several sedimentary subbasins, most of which consist largely of deltaic and associated sediments. These sediments, like most of the ancient deltas of the world, contain major reserves of oil and gas. Other less important reserves should occur in sporadic (time-wise) porous limestones. The total proven and probable reserves of the Trinidad area are around 5 billion bbl of oil, of which 1.6 billion bbl already have been produced, and over 47 TCF of gas.

  16. Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation

    Directory of Open Access Journals (Sweden)

    Julia E. Vidonish

    2016-12-01

    Full Text Available Thermal treatment technologies hold an important niche in the remediation of hydrocarbon-contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainability of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.

  17. Hydrocarbon degradation potentials of bacteria isolated from spent ...

    African Journals Online (AJOL)

    Hydrocarbon degradation potentials of bacteria isolated from spent lubricating oil contaminated soil. ... This study has shown that resident bacteria strains in lubricating oil contaminated soils have potential application in the bioremediation of oil polluted sites and enhance the possibility of developing models and strategies ...

  18. Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis

    Science.gov (United States)

    2016-07-31

    distribution unlimited Hydrocarbon Fuel Thermal Performance Modeling based on Systematic Measurement and Comprehensive Chromatographic Analysis Matthew...vital importance for hydrocarbon -fueled propulsion systems: fuel thermal performance as indicated by physical and chemical effects of cooling passage... analysis . The selection and acquisition of a set of chemically diverse fuels is pivotal for a successful outcome since test method validation and

  19. Distribution of electric potential in hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Shcherbakov, N.D.; Plitsyn, V.T.

    1978-01-01

    A study was made of the distribution of electrical potential and temperatures in laminar methane and propane--butane flames when the excess air coefficient in the mixture is changed from 0 to 1.2. 7 references, 3 figures.

  20. Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons ...

    African Journals Online (AJOL)

    DR. GODSON

    the levels of PAHs and cPAHs in crude oil samples from Gokana area and using the data to determine the ... Exploration and production activities of petroleum in ... discharges of crude oil to the environment which ... equivalent concentration of cPAHs in the soil around ... in the crude oil and establish its potential toxicity risk.

  1. Potential Use of Polyacrylamide Encapsulation for Treatment of Petroleum Drilling Cuttings and Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Randy H. Adams

    2011-07-01

    Full Text Available Mineral soil of alluvial origin, contaminated with diesel+lubricating oil (1:2, was treated with a commercial polyacrylamide product at 100 % of the distributer recommended dosage, producing a reduction in hydrocarbon concentration (EPA 9074 of 76 % that remained stable during the study period (38 days and even after thermal treatment (60 ºC, 18 hrs.. Increasing the dosage to 150 % did not improve the treatment results, but repeating the treatment (at 100 % resulted in a slight additional reduction (4 %. Similar results were obtained with oil-based drilling cuttings (~60 % reduction at both 100 % and 150 %. Pre-drying of the drilling cuttings prior to treatment did not improve the hydrocarbon reduction, but it did produce smaller, potentially more stable aggregates (0.5 – 1-0 mm in diameter. The treatment of organic soil resulted in a similar reduction in hydrocarbon concentration (65 % and a reduction of acute toxicity (Microtox to below background levels, however this effect was not stable. An additional application (including mixing of the polyacrylamide product resulted in partial disintegration of the organic fibres and release of the stabilized hydrocarbons, measuring an overall increase in hydrocarbon concentration of 19 %.

  2. Experimental study of the thermal stability of hydrocarbon fuels

    Science.gov (United States)

    Marteney, P. J.; Colket, M. B.; Vranos, A.

    1982-01-01

    The thermal stability of two hydrocarbon fuels (premium diesel and regular diesel) was determined in a flow reactor under conditions representing operation of an aircraft gas turbine engine. Temperature was varied from 300 to 750 F (422 to 672 K) for fuel flows of 2.84 to 56.8 liters/hr (corresponding to 6.84 x 0.00010 to 1.63 x 0.010 kg/sec for regular diesel fuel and 6.55 x 0.00010 to 1.37 x 0.010 kg/sec for premium diesel fuel); test times varied between 1 and 8 hr. The rate of deposition was obtained through measurement of weight gained by metal discs fixed along the channel wall. The rate of deposit formation is best correlated by an Arrhenius expression. The sample discs in the flow reactor were varied among stainless steel, aluminum and brass; fuels were doped with quinoline, indole, and benzoyl perioxide to yield nitrogen or oxygen concentrations of approximately 1000 ppm. The most substantial change in rate was an increase in deposits for brass discs; other disc materials or the additives caused only small perturbations. Tests were also conducted in a static reactor at temperatures of 300 to 800 F for times of 30 min to 2 1/2 hr. Much smaller deposition was found, indicating the importance of fluid transport in the mechanism.

  3. Screening of hydrocarbons as supercritical ORCs working fluids by thermal stability

    International Nuclear Information System (INIS)

    Dai, Xiaoye; Shi, Lin; An, Qingsong; Qian, Weizhong

    2016-01-01

    Highlights: • A rapid evaluation method for thermal stability of hydrocarbons for ORCs. • Methane and hydrogen are confirmed to be decomposition indicators. • The decomposition temperatures for some hydrocarbons using the rapid method. • Long carbon chain hydrocarbons are not suitable for supercritical ORCs. - Abstract: Organic Rankine Cycle (ORC) systems are widely used for industrial waste heat recovery and renewable energy utilization. The supercritical ORC is currently one of the main development directions due to its low exergy loss, high thermal efficiency and high work output. The thermal stability is the major limitation of organic working fluid selection with high temperature heat sources. This paper presents a rapid experimental method for assessing the thermal stability of hydrocarbons for ORCs. The fluids were tested in a high temperature reactor with methane and hydrogen theoretically and experimentally confirmed to be the indicators of thermal decomposition. The thermal decomposition temperatures were obtained for n-hexane, n-pentane, isopentane, cyclopentane, n-butane and isobutane using the rapid experimental method. The results show that cycloalkanes are not the good choices by thermal stability and long carbon chain hydrocarbons (longer than C6) are not suitable for supercritical ORCs due to the thermal stability limitation.

  4. Method of thermal reprocessing of hydrocarbon raw material

    Energy Technology Data Exchange (ETDEWEB)

    Feygin, Ye.A.; Bakhshiyan, Ts.A.; Barashkov, R.Ya.; Kazhdan, A.Z.; Raud, E.A.; Umanchik, N.P.

    1979-09-30

    In the method of thermal reprocessing of hydrocarbon raw material, to raise the efficiency of the process the heat exchange is done using a heat carrier in the form of a melt of metals or their salts, circulating in a closed system with a forced heating source in sequence through the pyrolysis zone, cooling zone, and heating zone. For example, the benzine fraction with initial boiling temperatures of 80-186 degrees C, together with steam, in the amount of 20% at 20 degrees C and pressure of 2 atmospheres, goes to the heating zone. Liquid Li goes there from the cooling zone through a closed circuit at 749 degrees C. The benzine, evaporated and heated to 300 degrees C, together with the melt, go to the pyrolysis zone, where the benzine is heated through the wall by the liquid Li coming from the heat carrier heating zone at 1000 degrees C. From the pyrolysis zone, the products, containing 41% C/sub 2/H/sub 4/, 15% C/sub 3/H/sub 6/ and 21% heavy fractions, go with the melt at 900 degrees C to the cooling zone, where they are cooled through the wall to 400 degrees C by the circulating liquid Li. The Li temperature at the entry into the cooling zone is 350 degrees C. The degree of raw material conversion is over 98%; the melt/raw material weight ratio is 0.2. Using this method enables a reduction in the pyrolysis zone from 80 to 8 m and the cooling zone area from 13 to 0.6 m/sup 2/ compared with the existing one, and transition from a multiple-tube cooling zone design to a tube one. The volume of the furnace unit is reduced from 500 to 10 m/sup 3/; the C/sub 2/H/sub 4/ yield is increased from 26-28 to 40-42%.

  5. The seismic expression and hydrocarbon potential of subsurface impact craters

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R.; Westbroek, H.H.; Lawton, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The seismic characteristics of meteorite impact craters and their potential as oil and gas reservoirs were discussed. Seismic data from James River, Alberta, in the Western Canada Sedimentary Basin show subsurface anomalies to be meteorite impact structures. The White Valley structure in Saskatchewan has similar features and seismic anomalies indicate that it too could be a meteorite impact structure, although other possibilities have been proposed. Other impact structures in western Canada such as the Steen River structure and the Viewfield crater have or are producing hydrocarbons. 5 refs., 2 figs.

  6. Hydrocarbon potential of Altiplano and northern Subandean, Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    Edman, J.D.; Kirkpatrick, J.R.; Lindsey, D.D.; Lowell, J.D.; Cirbian, M.; Lopez, M.

    1989-03-01

    Seismic, stratigraphic, structural, and geochemical data from the Altiplano, northern Subandean, and northern plains of Bolivia were interpreted in order to evaluate the exploration potential of each province. Identification of three possible source rock intervals, primarily the Devonian and secondarily the Permian and Cretaceous, was used as the basis for recognizing active hydrocarbon systems. For those areas containing source intervals, their analysis revealed that possible reservoir and seal units range in age from Paleozoic to Tertiary; the majority of structures, however, are Eocene or younger. With these general concepts in mind, traps were identified in all three sedimentary provinces. In the northern Altiplano, the most prospective area is along the eastern margin near a southwest and west-vergent thrust belt where hanging-wall anticlines and a warped Eocene-Oligocene(.) unconformity surface form the most likely potential traps. In the central and southern Altiplano, both thrust-related and wrench-related structures present possible exploration targets. In the northern Subandean and Beni plains north of the Isiboro-Chapare area, traps can be classified into two broad groups. First, there are a wide variety of structural traps within the northern Subandean thrust belt, the most attractive of which are footwall structures that have been shielded from surface flushing by hanging-wall strata. Second, in the plains just northeast of the thrust belt, hydrocarbons sourced from the remnant Paleozoic basin may have migrated onto the Isarsama and Madidi highs.

  7. Thermal maturity history and implications for hydrocarbon exploration in the Catatumbo basin, Colombia

    International Nuclear Information System (INIS)

    Rangel, Antonio; Hernandez, Roberto

    2007-01-01

    A thermal model integrated with oil and gas geochemical study has been constructed for the Catatumbo basin, Colombia for provides petroleum system data for hydrocarbon exploration. The calibration of the thermal model with maturity data took into account a changing heat flow scheme which included a thermal increase towards the end of the Jurassic and another one in the early Eocene, associated with rifting events. Locally, active/generating source rocks are within the synclines axes. The hydrocarbon expulsion time for Cretaceous source rocks (Capacho and La Luna formations) started in the upper Paleocene-Eocene, while for the los Cuervos Formation the generation and expulsion started of 1 0 my. The petroleum expelled during the Paleocene-Miocene, were likely accumulated in structures formed since the end of the cretaceous, while the younger structures that resulted from the Andean orogen were charged by remigration from the older structures and additionally with the youngest lately generated hydrocarbons. The accumulations of hydrocarbons are mainly the result of generation and migration locally within the basin. The Catatumbo Basin contains thermogenic wet gases with different degrees of thermal maturity which varies from around 1,0 for 2,5 equivalent Ro. The highest degree of thermal evolution according to maturity indicators and thermal modeling is in the southern area, which is prospective for wet gas. The central and northern area appears more prospective for oil with minor amounts of gas

  8. Predicting hydrocarbon potential of an earth formation underlying water

    International Nuclear Information System (INIS)

    Damaison, G.J.; Kaplan, I.R.

    1981-01-01

    A method for the on-site collection and examination of small concentrations of a carbonaceous gas, e.g. methane, dissolved in a body of water overlying an earth formation to predict hydrocarbon potential of the earth formation under the body of water, the formation being a source of carbonaceous gas, comprises at a known geographic location sampling the water at a selected flow rate and at a selected depth; continuously vacuum separating the water into liquid and gas phases; separating a selected carbonaceous gas from interfering gas species in the presence of an air carrier vented to atmosphere at a known flow rate; and quantitatively oxidizing the selected gas and then cryogenically trapping an oxidant thereof in the presence of said air carrier to provide for an accurate isotopic examination. (author)

  9. Hydrocarbon potential of a new Jurassic play, central Tunisia

    International Nuclear Information System (INIS)

    Beall, A.O.; Law, C.W.

    1996-01-01

    A largely unrecognized Jurassic Sag Basin has been identified in central Tunisia, proximal to the Permo-Carboniferous flexure delineating the northern boundary of the Saharan platform of north Africa. The northwestern margin of the Sag is delineated by an extensive region of salt-cored anticlines and localized salt diapirs extending north and west. Due to lack of deep drilling, delineation of the Sag is largely based on regional gravity data. Subsidence of the Jurassic Sag Basin is characterized by rapid expansion of Jurassic sediments from 400 m. of tidal flat and shelf carbonate at the western outcrop to over 2000 meters of tidal flat and basinal carbonate and shale within the basin center, a five-fold expansion. Rapid loading of the basin continued into Lower Cretaceous time, marked by lateral flowage of Triassic salt into pronounced structural trends. Published source rock data and interpreted subsurface well data provided the basis for GENEX 1-D hydrocarbon generation and expulsion modeling of the Sag. Middle Jurassic black source shales typically contain Type II and Type III kerogens with T.O.C.'s ranging up to 4 percent. Modeling results indicate that middle Jurassic shales are presently mature for liquid generation within portions of the Sag, with maximum generation taking place during the Tertiary. Potential hydrocarbon generation yields, based on 60 meters of mature source shale, are 20,000 BOE/acre for gas and 75,000 BOE/acre for liquids. Prospects within the region could contain an estimated potential reserve of several T.C.F. or over 1 billion barrels of oil

  10. Biological indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture-contaminated soil.

    Science.gov (United States)

    Wang, Jiangang; Zhan, Xinhua; Zhou, Lixiang; Lin, Yusuo

    2010-08-01

    In China, there are many special sites for recycling and washing the used drums, which release a variety of C5-C40 hydrocarbon mixture into the soil around the site. The remediation of these contaminated sites by thermal treatment is adopted ubiquitously and needs to be assessed. Here we report the feasibility of biological indicators applied to assess thermal treatment efficiency in such contaminated soil. A series of biological indicators, including seed germination index (SGI), root elongation index (REI), plant growth height, biomass, carbon dioxide evolved (CDE), soil respiration inhibition (SRI) and soil enzymatic activities, were employed to monitor or assess hydrocarbon mixture removal in thermal treated soil. The results showed that residual hydrocarbon mixture content correlated strongly negatively with SGI for sesamum (Sesamum indicum L.), plant height, and biomass for ryegrass (Lolium perenne L.) in the concentration ranges of 0-3990, 0-3170 and 0-2910 mg kg(-1), respectively. In contrast, REI for sesamum was positively correlated with residual hydrocarbon mixture content from 0 to 1860 mg kg(-1). In addition, both CDE and SRI demonstrated that 600 mg kg(-1) of residual hydrocarbon mixture content caused the highest amount of soil carbon dioxide emission and inhabitation of soil respiration. The results of soil enzymes indicated that 1000 mg kg(-1) of residual hydrocarbon mixture content was the threshold value of stimulating or inhibiting the activities of phosphatase and catalase, or completely destroying the activities of dehydrogenase, invertase, and urease. In conclusion, these biological indicators can be used as a meaningful complementation for traditional chemical content measurement in evaluating the environmental risk of the contaminated sites before and after thermal treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  12. Potential for biodegradation of polycyclic aromatic hydrocarbons by ...

    African Journals Online (AJOL)

    WiTT

    2012-05-08

    May 8, 2012 ... Full Length Research Paper. Biodegradation of ... organic compounds, including some organometallic ... is a major source of toxic PAHs that contributes signi- ficantly to ... microorganisms for bioremediation of hydrocarbon-.

  13. Hydrocarbon Degradation Potentials of Bacteria Isolated from Spent ...

    African Journals Online (AJOL)

    ADOWIE PERE

    chemical nature of the compounds within the petroleum mixture and ... are toxic, mutagenic, and carcinogenic (Clemente et al., 2001). ... Hydrocarbon utilizing bacteria in the soil sample ... paper (Whatman No.1) saturated with sterile spent oil.

  14. Enhanced thermal conduction -- An alternative solution for removing a broad range of hydrocarbons from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bova, J.C.

    1999-07-01

    This paper presents an overview of Enhanced Thermal Conduction (ETC), an ex-situ soil remediation process. A review of a practical demonstration of this process which was conducted by Woodward-Clyde Consultants to determine the capability of the technology for remediating soils from gasworks sites that have been contaminated with petroleum hydrocarbons, polynuclear hydrocarbons (PAHs) and cyanide is also presented in this paper. Projections for using this process to treat soils contaminated with other hazardous materials such as TCE PCE and PCB's are discussed as well.

  15. Measurement error potential and control when quantifying volatile hydrocarbon concentrations in soils

    International Nuclear Information System (INIS)

    Siegrist, R.L.

    1991-01-01

    Due to their widespread use throughout commerce and industry, volatile hydrocarbons such as toluene, trichloroethene, and 1, 1,1-trichloroethane routinely appears as principal pollutants in contamination of soil system hydrocarbons is necessary to confirm the presence of contamination and its nature and extent; to assess site risks and the need for cleanup; to evaluate remedial technologies; and to verify the performance of a selected alternative. Decisions regarding these issues have far-reaching impacts and, ideally, should be based on accurate measurements of soil hydrocarbon concentrations. Unfortunately, quantification of volatile hydrocarbons in soils is extremely difficult and there is normally little understanding of the accuracy and precision of these measurements. Rather, the assumptions often implicitly made that the hydrocarbon data are sufficiently accurate for the intended purpose. This appear presents a discussion of measurement error potential when quantifying volatile hydrocarbons in soils, and outlines some methods for understanding the managing these errors

  16. Specificity Switching Pathways in Thermal and Mass Evaporation of Multicomponent Hydrocarbon Droplets: A Mesoscopic Observation.

    Science.gov (United States)

    Nasiri, Rasoul; Luo, Kai H

    2017-07-10

    For well over one century, the Hertz-Knudsen equation has established the relationship between thermal - mass transfer coefficients through a liquid - vapour interface and evaporation rate. These coefficients, however, have been often separately estimated for one-component equilibrium systems and their simultaneous influences on evaporation rate of fuel droplets in multicomponent systems have yet to be investigated at the atomic level. Here we first apply atomistic simulation techniques and quantum/statistical mechanics methods to understand how thermal and mass evaporation effects are controlled kinetically/thermodynamically. We then present a new development of a hybrid method of quantum transition state theory/improved kinetic gas theory, for multicomponent hydrocarbon systems to investigate how concerted-distinct conformational changes of hydrocarbons at the interface affect the evaporation rate. The results of this work provide an important physical concept in fundamental understanding of atomistic pathways in topological interface transitions of chain molecules, resolving an open problem in kinetics of fuel droplets evaporation.

  17. Solar production of catalytic filamentous carbon by thermal decomposition of hydrocarbons and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V A; Kuvshinov, G G; Mogilnykh, Yu I [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Reller, A [University of Hamburg (Germany); Steinfeld, A; Weidenkaff, A; Meier, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Concentrated solar radiation was used as the clean source of process heat for the production of Catalytic Filamentous Carbon (CFC) by thermal decomposition of gaseous hydrocarbons and by CO disproportionation in the presence of small metal catalyst particles. Depending on the catalyst, two different types of CFC, namely nano tubes and nano fibers, were obtained in solar experiments at the PSI solar furnace. (author) 2 figs., 1 tab., 7 refs.

  18. Thermal soil desorption for total petroleum hydrocarbon testing on gas chromatographs

    International Nuclear Information System (INIS)

    Mott, J.

    1995-01-01

    Testing for total petroleum hydrocarbons (TPH) is one of the most common analytical tests today. A recent development in chromatography incorporates Thermal Soil Desorption technology to enable analyses of unprepared soil samples for volatiles such as BTEX components and semi-volatiles such as diesel, PCBs, PAHs and pesticides in the same chromatogram, while in the field. A gas chromatograph is the preferred method for determining TPH because the column in a GC separates the individual hydrocarbons compounds such as benzene and toluene from each other and measures each individually. A GC analysis will determine not only the total amount of hydrocarbon, but also whether it is gasoline, diesel or another compound. TPH analysis with a GC is typically conducted with a Flame Ionization Detector (FID). Extensive field and laboratory testing has shown that incorporation of a Thermal Soil Desorber offers many benefits over traditional analytical testing methods such as Headspace, Solvent Extraction, and Purge and Trap. This paper presents the process of implementing Thermal Soil Desorption in gas chromatography, including procedures for, and advantages of faster testing and analysis times, concurrent volatile and semi-volatile analysis, minimized sample manipulation, single gas (H 2 ) operation, and detection to the part-per billion levels

  19. Potential energy savings and thermal comfort

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Rudbeck, Claus Christian; Schultz, Jørgen Munthe

    1996-01-01

    The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed.......The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed....

  20. ) Geochemistry and Hydrocarbon Potential of Cretaceous Shales in the Chad Basin

    International Nuclear Information System (INIS)

    Alalade, B.; Ogunyemi, A. T.; Abimbola, A.F.; Olugbemiro, R. O.

    2003-01-01

    The Chad Basin is the largest intracratonic basin in Africa and is filled with more than 400m of Cretaceous to Recent sediments. Geochemical and petrographic studies of Cretaceous shales form the Bima, Gongola and Fika Formations were carried out to establish their hydrocarbon potential and thermal maturity. Ditch cuttings of the shales were collected from the Wa di and Karen's exploration wells located in the Nigerian sector of the Chad Basin.The geochemical analysis of the shales indicate that, except for Si02 and K20, all other oxides (Mg O, Fe2O3, AL2O3, CaO) are more abundant in the Fika shale than the Gongola shale. This suggests a more marine condition for the Fika shale compared to the Gongola shale. The Fika and Gongola shales were further classified into Iron shale and shale respectively. Organic carbon contents of the Bima, Gongola and exceed the minimum (0.5wt%) usually required for siliciclastic petroleum source rock. However, the soluble organic matter (SOM) and saturated hydrocarbon (SHC) contents of the shales, which ranges from 108pm to 743ppm and 23ppm to 100ppm respectively, are generally low and are therefore, organically lean. The organic matter of the shales is predominantly terrestrially derived, vitrinite rich, Type III kerogen and are therefore, gas prone. Thermal maturity assessed from SOM/TOC, SHC/TOC ratios and spore color index (SCI) indicate that the Fika shale is immature while the Gongola and Bima shales are within the oil window

  1. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production

    Czech Academy of Sciences Publication Activity Database

    Kamarainen, J.; Knoop, H.; Stanford, N.; Guerrero, F.; Akhtar, M. K.; Aro, E. M.; Steuer, Ralf; Jones, P. R.

    2012-01-01

    Roč. 162, č. 1 (2012), s. 67-74 ISSN 0168-1656 Institutional support: RVO:67179843 Keywords : Cyanobacteria * Hydrocarbon * Fuel * Toxicity * Stoichiometric potential Subject RIV: EH - Ecology, Behaviour Impact factor: 3.183, year: 2012

  2. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The microbial nitrogen cycling potential in marine sediments is impacted by polyaromatic hydrocarbon pollution

    Directory of Open Access Journals (Sweden)

    Nicole M Scott

    2014-03-01

    Full Text Available During petroleum hydrocarbon exposure the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential, if the sediments are aerobic, within the surface layer of marine sediments resulting in anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.

  4. Emission of Polycyclic Aromatic Hydrocarbons from the Exhalation Zones of Thermally Active Mine Waste Dumps

    Directory of Open Access Journals (Sweden)

    Patrycja Kuna-Gwoździewicz

    2013-01-01

    Full Text Available The article presents results of research carried out on the occurrence of polycyclic aromatic hydrocarbons (PAH in gases of exhalation zones, created on the surface of a thermally active coal mine waste dump. The oxidation and self-heating of mine waste are accompanied with the intensive emission of flue gases, including PAH group compounds. Taking into consideration the fact the hydrocarbons show strong genotoxic, mutagenic and carcinogenic properties, research was conducted to establish their content in the examined gases. The research object was a gangue dump located in Rybnik. The research was performed in 2012. In total, 24 samples of gas were collected with PUF (polyurethane foam sampling cartridges with a quartz fibre filter and an aspirator. The collected samples were analysed with the use of high performance liquid chromatography (HPLC and a fluorescence detector (FLD to evaluate the amount of PAH present.

  5. Use of residual hydrocarbons treated by Thermal Plasma (recovery of energy by-products)

    International Nuclear Information System (INIS)

    Carreno B, J.A.; Pacheco S, J.O.; Ramos F, F.; Cruz A, A.; Duran G, M.

    2001-01-01

    The emergence of new technologies is getting greater importance for the control of pollution. One of them is the destruction of hazardous wastes treated by thermal plasma, which is of special interest for the efficient treatment of the hazardous wastes since the heat generated by thermal plasma is able to destroy the molecular bonds generating solids and gaseous products which do not represent danger for the human being and the environment. The thermal plasma is the suitable technology for treating a wide range of hazardous wastes, including the residual hydrocarbons from the refinement process of petroleum, plasma exceeds the barrier of 3000 Centigrade. The efficiency of the degradation of residues is greater than 99.99%. Toxic emissions are not generated to environment as SO 2 , NO x and CO 2 neither dioxins and furans by being a pyrolysis process. The use of hydrogen as fuel does not generate pollution to environment. (Author)

  6. Potential use of hydrocarbons for aging Lucilia sericata blowfly larvae to establish the postmortem interval.

    Science.gov (United States)

    Moore, Hannah E; Adam, Craig D; Drijfhout, Falko P

    2013-03-01

    Previous studies on Diptera have shown the potential for the use of cuticular hydrocarbons' analysis in the determination of larval age and hence the postmortem interval (PMI) for an associated cadaver. In this work, hydrocarbon compounds, extracted daily until pupation from the cuticle of the blowfly Lucilia sericata (Diptera: Calliphoridae), have been analyzed using gas chromatography-mass spectrometry (GC-MS). The results show distinguishing features within the hydrocarbon profile over the period of the larvae life cycle, with significant chemical changes occurring from the younger larvae to the postfeeding larvae. Further interpretation of the chromatograms using principal component analysis revealed a strong correlation between the magnitudes of particular principal components and time. This outcome suggests that, under the conditions of this study, the cuticular hydrocarbons evolve in a systematic fashion with time, thus supporting the potential for GC-MS analysis as a tool for establishing PMI where such a species is present. © 2012 American Academy of Forensic Sciences.

  7. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  8. Characterization of Bacterial Hydrocarbon Degradation Potential in the Red Sea Through Metagenomic and Cultivation Methods

    KAUST Repository

    Bianchi, Patrick

    2018-02-01

    Prokaryotes are the main actors in biogeochemical cycles that are fundamental in global nutrient cycling. The characterization of microbial communities and isolates can enhance the comprehension of such cycles. Potentially novel biochemical processes can be discovered in particular environments with unique characteristics. The Red Sea can be considered as a unique natural laboratory due to its peculiar hydrology and physical features including temperature, salinity and water circulation. Moreover the Red Sea is subjected to hydrocarbon pollution by both anthropogenic and natural sources that select hydrocarbon degrading prokaryotes. Due to its unique features the Red Sea has the potential to host uncharacterized novel microorganisms with hydrocarbondegrading pathways. The focus of this thesis is on the characterization at the metagenomic level of the water column of the Red Sea and on the isolation and characterization of novel hydrocarbon-degrading species and genomes adapted to the unique environmental characteristics of the basin. The presence of metabolic genes responsible of both linear and aromatic hydrocarbon degradation has been evaluated from a metagenomic survey and a meta-analysis of already available datasets. In parallel, water column-based microcosms have been established with crude oil as the sole carbon source, with aim to isolate potential novel bacterial species and provide new genome-based insights on the hydrocarbon degradation potential available in the Red Sea.

  9. Potential Development of Hydrocarbon in Basement Reservoirs In Indonesia

    Directory of Open Access Journals (Sweden)

    D. Sunarjanto

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.165Basement rocks, in particular igneous and metamorphic rocks are known to have porosity and permeability which should not be ignored. Primary porosity of basement rocks occurs as the result of rock formation. The porosity increases by the presence of cracks occurring as the result of tectonic processes (secondary porosity. Various efforts have been carried out to explore hydrocarbon in basement rocks. Some oil and gas fields proved that the basement rocks are as reservoirs which so far have provided oil and gas in significant amount. A review using previous research data, new data, and observation of igneous rocks in some fields has been done to see the development of exploration and basement reservoirs in Indonesia. A review on terminology of basement rock up till the identification of oil and gas exploration in basement rocks need to be based on the latest technology. An environmental approach is suggested to be applied as an alternative in analyzing the policy on oil and gas exploration development, especially in basement reservoirs.

  10. Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age.

    Science.gov (United States)

    Zhu, G H; Ye, G Y; Hu, C; Xu, X H; Li, K

    2006-12-01

    Age determination is the basis of determining the postmortem interval using necrophagous fly larvae. To explore the potential of using cuticular hydrocarbons for determining the ages of fly larvae, changes of cuticular hydrocarbons in developing larvae of Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) were investigated using gas chromatography with flame-ionization detection and gas chromatography-mass spectrometry. This study showed that the larvae produced cuticular hydrocarbons typical of insects. Most of the hydrocarbons identified were alkanes with the carbon chain length of 21-31, plus six kinds of alkenes. The hydrocarbon composition of the larvae correlated with age. The statistical results showed that simple peak ratios of n-C29 divided by another eight selected peaks increased significantly with age; their relationships with age could be modelled using exponential or power functions with R(2) close to or > 0.80. These results suggest that cuticular hydrocarbon composition is a useful indicator for determining the age of larval C. rufifacies, especially for post-feeding larvae, which are difficult to differentiate by morphology.

  11. Evolution and hydrocarbon potential of offshore Pinar Del Rio area, Southern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tenreyro-Perez, R.; Lopez-Rivera, J.G.; Fernandez-Carmona, J.; Lopez-Quintero, J.O.

    1996-09-01

    The evolution of Southeast Gulf of Mexico comprises three main periods: pre-orogenic, syn-orogenic and post-orogenic. During pre-orogenic time, from Lower Jurassic to Campanian, the stages are the rift of Pangaea and the thermal subsidence (or drift). In drift stage two domains interacted in the space; the carbonate platforms (Bahamas, Yucatan, Organos and others), and the deepwater basins. These fluctuations were dictated by the differential subsidence and horizontal displacements of basement blocks as well as by the eustatic movements of the ocean. The Organos platform, for example, was entirely drowned since Upper Jurassic and the sedimentation continued in deepwater environment. The collision between Great Antilles Volcanic Arc and the continental margins since Upper Cretaceous modeled the Cuban orogen. Here, the southern facies thrusted over the northern section with simultaneous strike-slip movements. The interaction suddenly ceased in Eocene. The source rock levels are considerably more frequent in the deepwater domain than in the platforms. The Lower and Upper Jurassic as well as Lower and Middle Cretaceous horizons contain very high levels of organic matter. The offshore seismic shows the transition from the thrusted belt to the foreland basin with a typical triangle zone configuration. Reservoirs are expected in the Cretaceous section covered by seals conformed by early foreland basin sediments of Upper Cretaceous-Paleocene age. Foothill structures has a great potential for hydrocarbon exploration.

  12. Low permeability Neogene lithofacies in Northern Croatia as potential unconventional hydrocarbon reservoirs

    Science.gov (United States)

    Malvić, Tomislav; Sučić, Antonija; Cvetković, Marko; Resanović, Filip; Velić, Josipa

    2014-06-01

    We present two examples of describing low permeability Neogene clastic lithofacies to outline unconventional hydrocarbon lithofacies. Both examples were selected from the Drava Depression, the largest macrostructure of the Pannonian Basin System located in Croatia. The first example is the Beničanci Field, the largest Croatian hydrocarbon reservoir discovered in Badenian coarse-grained clastics that consists mostly of breccia. The definition of low permeability lithofacies is related to the margins of the existing reservoir, where the reservoir lithology changed into a transitional one, which is mainly depicted by the marlitic sandstones. However, calculation of the POS (probability of success of new hydrocarbons) shows critical geological categories where probabilities are lower than those in the viable reservoir with proven reserves. Potential new hydrocarbon volumes are located in the structural margins, along the oil-water contact, with a POS of 9.375%. These potential reserves in those areas can be classified as probable. A second example was the Cremušina Structure, where a hydrocarbon reservoir was not proven, but where the entire structure has been transferred onto regional migration pathways. The Lower Pontian lithology is described from well logs as fine-grained sandstones with large sections of silty or marly clastics. As a result, the average porosity is low for conventional reservoir classification (10.57%). However, it is still an interesting case for consideration as a potentially unconventional reservoir, such as the "tight" sandstones.

  13. Petrophysics and hydrocarbon potential of Paleozoic rocks in Kuwait

    Science.gov (United States)

    Abdullah, Fowzia; Shaaban, Fouad; Khalaf, Fikry; Bahaman, Fatma; Akbar, Bibi; Al-Khamiss, Awatif

    2017-10-01

    Well logs from nine deep exploratory and development wells in Kuwaiti oil fields have been used to study petrophysical characteristics and their effect on the reservoir quality of the subsurface Paleozoic Khuff and Unayzah formations. Petrophysical log data have been calibrated with core analysis available at some intervals. The study indicates a complex lithological facies of the Khuff Formation that is composed mainly of dolomite and anhydrite interbeds with dispersed argillaceous materials and few limestone intercalations. This facies greatly lowered the formation matrix porosity and permeability index. The porosity is fully saturated with water, which is reflected by the low resistivity logs responses, except at some intervals where few hydrocarbon shows are recorded. The impermeable anhydrites, massive (low-permeability) carbonate rock and shale at the lower part of the formation combine to form intraformational seals for the clastic reservoirs of the underlying Unayzah Formation. By contrast, the log interpretation revealed clastic lithological nature of the Unayzah Formation with cycles of conglomerate, sandstone, siltstone, mudstone and shales. The recorded argillaceous materials are mainly of disseminated habit, which control, for some extent, the matrix porosity, that ranges from 2% to 15% with water saturation ranges from 65% to 100%. Cementation, dissolution, compaction and clay mineral authigenesis are the most significant diagenetic processes affecting the reservoir quality. Calibration with the available core analysis at some intervals of the formation indicates that the siliciclastic sequence is a fluvial with more than one climatic cycle changes from humid, semi-arid to arid condition and displays the impact of both physical and chemical diagenesis. In general, the study revealed that the Unyazah Formation has a better reservoir quality than the Khuff Formation and possible gas bearing zones.

  14. Characterization of Bacterial Hydrocarbon Degradation Potential in the Red Sea Through Metagenomic and Cultivation Methods

    KAUST Repository

    Bianchi, Patrick

    2018-01-01

    The focus of this thesis is on the characterization at the metagenomic level of the water column of the Red Sea and on the isolation and characterization of novel hydrocarbon-degrading species and genomes adapted to the unique environmental characteristics of the basin. The presence of metabolic genes responsible of both linear and aromatic hydrocarbon degradation has been evaluated from a metagenomic survey and a meta-analysis of already available datasets. In parallel, water column-based microcosms have been established with crude oil as the sole carbon source, with aim to isolate potential novel bacterial species and provide new genome-based insights on the hydrocarbon degradation potential available in the Red Sea.

  15. The hydrocarbon potential of the West Bengal basin of Eastern India and Western Bangladesh

    International Nuclear Information System (INIS)

    Moore, L.V.; Lenengerger, T.L.

    1994-01-01

    Within the Bengal Basin is an extensively developed Eocene shelf system with fair to good potential for stratigraphic oil accumulations. The best quality data available to evaluate this play are from the Bogra Shelf area of Bangladesh. Within this general area Stanvac participated in the drilling of 13 wells in the late 1950's, including critical wells on the Bogra Shelf. This well data, combined with modern excellent quality seismic data, has allowed definition of a geological and geophysical constrained hydrocarbon system model. Potential source, reservoir and seal units can be identified or postulated from both well and seismic data within the Eocene depositional systems tracts. The most promising potential source rock unit identified on the Bogra Shelf to date are Upper Jalangi (Early Ecocene) shales containing oil-prone kerogens that average 4.7% TOC. Four wells, structurally up-dip of the defined play area, have good oil shows in thermally immature Jalangi sands indicating possible up dip migration. Reservoir strata have not been penetrated on the Bogra Shelf. Based basin modelling and seismic data, however, a foraminiferal grain stone facies within the Middle Eocene Sylthet Limestone carbonate buildups could provide a suitable reservoir. The tight micritic facies within the Sylhet Limestone and the overlying late Eocene Kopilli Shale form the updip, lateral and top seals for these stratigraphic traps. Exploration risks associated with this play include the following: (1) Limited drainage areas for the identified leads; (2) Carbonate build-ups may be perched on impermeable strata, precluding vertical charging; (3) presence, and up-dip limit of reservoir is speculative. (author)

  16. Thermal Harvesting Potential of the Human Body

    Science.gov (United States)

    Thielen, Moritz; Kara, Gökhan; Unkovic, Ivana; Majoe, Dennis; Hierold, Christofer

    2018-02-01

    Thermoelectric energy harvesting of human body heat might supplement or even replace conventional energy storage in wearable devices for healthcare and the Internet of Humans. Although a number of thermal harvesters are presented in the literature, no conclusive data can be found on the amount of available thermal energy provided by different individuals and activities. We here present the results of an observational study with 56 test subjects of different ages (children, adults and elderly) and gender, performing predefined activities (sitting, walking) in varying environments (indoor, outdoor). Our study showed a statistical difference of thermal potential and skin properties between age groups, but not between genders. On average, stationary elderly test subjects produced ˜ 32% less heat flux compared to minors (mean: children = 13.9 mW/cm2, adults = 11.4 mW/cm2, elderly = 9.4 mW/cm2). This potentially correlates with an increase in thermal skin resistance with age (children = 494 cm2 K/W, adults = 549 cm2 K/W, elderly = 835 cm2 K/W). The mean harvested power varied from 12.2 μW/cm2 (elderly) to 26.2 μW/cm2 (children) for stationary, and from 20.2 μW/cm2 (elderly) to 69.5 μW/cm2 (children) for active subjects inside of a building. The findings of this study can be used to better anticipate the available energy for different usage scenarios of thermal harvesters and optimize wearable systems accordingly.

  17. Thermal Harvesting Potential of the Human Body

    Science.gov (United States)

    Thielen, Moritz; Kara, Gökhan; Unkovic, Ivana; Majoe, Dennis; Hierold, Christofer

    2018-06-01

    Thermoelectric energy harvesting of human body heat might supplement or even replace conventional energy storage in wearable devices for healthcare and the Internet of Humans. Although a number of thermal harvesters are presented in the literature, no conclusive data can be found on the amount of available thermal energy provided by different individuals and activities. We here present the results of an observational study with 56 test subjects of different ages (children, adults and elderly) and gender, performing predefined activities (sitting, walking) in varying environments (indoor, outdoor). Our study showed a statistical difference of thermal potential and skin properties between age groups, but not between genders. On average, stationary elderly test subjects produced ˜ 32% less heat flux compared to minors (mean: children = 13.9 mW/cm2, adults = 11.4 mW/cm2, elderly = 9.4 mW/cm2). This potentially correlates with an increase in thermal skin resistance with age (children = 494 cm2 K/W, adults = 549 cm2 K/W, elderly = 835 cm2 K/W). The mean harvested power varied from 12.2 μW/cm2 (elderly) to 26.2 μW/cm2 (children) for stationary, and from 20.2 μW/cm2 (elderly) to 69.5 μW/cm2 (children) for active subjects inside of a building. The findings of this study can be used to better anticipate the available energy for different usage scenarios of thermal harvesters and optimize wearable systems accordingly.

  18. Thermal capacitator design rationale. Part 1: Thermal and mechanical property data for selected materials potentially useful in thermal capacitor design and construction

    Science.gov (United States)

    Bailey, J. A.; Liao, C. K.

    1975-01-01

    The thermal properties of paraffin hydrocarbons and hydrocarbon mixtures which may be used as the phase change material (PCM) in thermal capacitors are discussed. The paraffin hydrocarbons selected for consideration are those in the range from C11H24 (n-Undecane) to C20H42 (n-Eicosane). A limited amount of data is included concerning other properties of paraffin hydrocarbons and the thermal and mechanical properties of several aluminum alloys which may find application as constructional materials. Data concerning the melting temperature, transition temperature, latent heat of fusion, heat of transition, specific heat, and thermal conductivity of pure and commercial grades of paraffin hydrocarbons are given. An index of companies capable of producing paraffin hydrocarbons and information concerning the availability of various grades (purity levels) is provided.

  19. Hydrocarbon resource potential of the Bornu basin northeastern ...

    African Journals Online (AJOL)

    Global Journal of Geological Sciences ... In the Bornu Basin which belongs to the West African Rift Subsystem (WARS) two potential petroleum systems are suggested. “Lower ... “Upper Cretaceous Petroleum System” – is the phase II rift sediments in the Bornu Basin which comprise mainly shallow marine to paralic shales,

  20. Hydrocarbon source rock potential evaluation of the Late Paleocene ...

    Indian Academy of Sciences (India)

    63

    research is available on its source rock potential evaluation at Nammal Gorge Section in the Salt. Range, Potwar Basin .... methods of Tucker (2003) and Assaad (2008) have been followed. A total of fifteen ..... Business Media. Baker D M, Lillie ...

  1. RP-2 Thermal Stability and Heat Transfer Investigation for Hydrocarbon Boost Engines

    Science.gov (United States)

    VanNoord, J. L.; Stiegemeier, B. R.

    2010-01-01

    A series of electrically heated tube tests were performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the use of RP-2 as a fuel for next generation regeneratively cooled hydrocarbon boost engines. The effect that test duration, operating condition and test piece material have on the overall thermal stability and materials compatibility characteristics of RP-2 were evaluated using copper and 304 stainless steel test sections. The copper tests were run at 1000 psia, heat flux up to 6.0 Btu/in.2-sec, and wall temperatures up to 1180 F. Preliminary results, using measured wall temperature as an indirect indicator of the carbon deposition process, show that in copper test pieces above approximately 850 F, RP-2 begins to undergo thermal decomposition resulting in local carbon deposits. Wall temperature traces show significant local temperature increases followed by near instantaneous drops which have been attributed to the carbon deposition/shedding process in previous investigations. Data reduction is currently underway for the stainless steel test sections and carbon deposition measurements will be performed in the future for all test sections used in this investigation. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-2.

  2. Self-potential and Complex Conductivity Monitoring of In Situ Hydrocarbon Remediation in Microbial Fuel Cell

    Science.gov (United States)

    Zhang, C.; Revil, A.; Ren, Z.; Karaoulis, M.; Mendonca, C. A.

    2013-12-01

    Petroleum hydrocarbon contamination of soil and groundwater in both non-aqueous phase liquid and dissolved forms generated from spills and leaks is a wide spread environmental issue. Traditional cleanup of hydrocarbon contamination in soils and ground water using physical, chemical, and biological remedial techniques is often expensive and ineffective. Recent studies show that the microbial fuel cell (MFC) can simultaneously enhance biodegradation of hydrocarbons in soil and groundwater and yield electricity. Non-invasive geophysical techniques such as self-potential (SP) and complex conductivity (induced polarization) have shown the potential to detect and characterize the nature of electron transport mechanism of in situ bioremediation of organic contamination plumes. In this study, we deployed both SP and complex conductivity in lab scale MFCs to monitor time-laps geophysical response of degradation of hydrocarbons by MFC. Two different sizes of MFC reactors were used in this study (DI=15 cm cylinder reactor and 94.5cm x 43.5 cm rectangle reactor), and the initial hydrocarbon concentration is 15 g diesel/kg soil. SP and complex conductivity measurements were measured using non-polarizing Ag/AgCl electrodes. Sensitivity study was also performed using COMSOL Multiphysics to test different electrode configurations. The SP measurements showed stronger anomalies adjacent to the MFC than locations afar, and both real and imaginary parts of complex conductivity are greater in areas close to MFC than areas further away and control samples without MFC. The joint use of SP and complex conductivity could in situ evaluate the dynamic changes of electrochemical parameters during this bioremediation process at spatiotemporal scales unachievable with traditional sampling methods. The joint inversion of these two methods to evaluate the efficiency of MFC enhanced hydrocarbon remediation in the subsurface.

  3. Thermal stability of hydrocarbons in nature: Limits, evidence, characteristics, and possible controls

    Science.gov (United States)

    Price, L.C.

    1993-01-01

    Numerous petroleum-geochemical analyses of deeply buried, high-rank, fine-grained rocks from ultra-deep wellbores by different investigators demonstrate that C15+ hydrocarbons (HCs) persist in moderate to high concentrations at vitrinite reflectance (R0) values of 2.0-5.0% and persist in measurable concentrations up to R0 = 7.0-8.0%, at which point the thermal deadline for C15+ HC's is finally approached. Qualitative analyses have been carried out on 1. (1) high-rank gas condensates which have been exposed to the HC-thermal-destructive phase, 2. (2) bitumens from high-temperature aqueous-pyrolysis experiments in the HC-thermal-destructive phase, and 3. (3) bitumens from high-rank, fine-grained rocks near the HC-thermal-destructive phase. These analyses clearly demonstrate that well-defined compositional suites are established in the saturated, aromatic, and sulfur-bearing aromatic HCs in and near the HC-thermal-destructive phase. On the other hand, accepted petroleum-geochemical paradigms place rigid limits on HC thermal stability: C15+ HCs begin thermal cracking at R0 values of 0.9% and are completely thermally destroyed by R0 = 1.35%; C2-C4 HC gases are thermally destroyed by R0 = 2.0% and methane is thermally destroyed by R0 = 4.0%. Furthermore, published data and observations in many HC basins worldwide support these models; for example, 1. (1) sharp basinal zonations of gas and oil deposits vs. maturation rank in HC basins and 2. (2) decreasing C15+ HC concentrations in some fine-grained rocks at ranks of R0 ??? 0.9%. The fact that observed data (C15+ HCs thermally stable to R0 = 7.0-8.0%) is so far removed from predicted behavior (C15+) HCs expected to be thermally destroyed by R0 = 1.35%) may be due to 1. (1) a lack of recognition of some important possible controlling parameters of organic matter (OM) metamorphism and too much importance given to other assumed controlling parameters; and 2. (2) assigning HC distribution patterns in petroleum basins to HC

  4. The Anthropogenic Effects of Hydrocarbon Inputs to Coastal Seas: Are There Potential Biogeochemical Impacts?

    Science.gov (United States)

    Anderson, M. R.; Rivkin, R. B.

    2016-02-01

    Petroleum hydrocarbon discharges related to fossil fuel exploitation have the potential to alter microbial processes in the upper ocean. While the ecotoxicological effects of such inputs are commonly evaluated, the potential for eutrophication from the constituent organic and inorganic nutrients has been largely ignored. Hydrocarbons from natural seeps and anthropogenic sources represent a measurable source of organic carbon for surface waters. The most recent (1989-1997) estimate of average world-wide input of hydrocarbons to the sea is 1.250 x 1012 g/yr ≈ 1.0 x 1012g C/year. Produced water from offshore platforms is the largest waste stream from oil and gas exploitation and contributes significant quantities of inorganic nutrients such as N, P and Fe. In coastal areas where such inputs are a significant source of these nutrients, model studies show the potential to shift production toward smaller cells and net heterotrophy. The consequences of these nutrient sources for coastal systems and semi enclosed seas are complex and difficult to predict, because (1) there is a lack of comprehensive data on inputs and in situ concentrations and (2) the is no conceptual or quantitative framework to consider their effects on ocean biogeochemical processes. Here we use examples from the North Sea (produced water discharges 1% total riverine input and NH4 3% of the annual riverine nitrogen load), the South China Sea (total petroleum hydrocarbons = 10-1750 μg/l in offshore waters), and the Gulf of Mexico (seeps = 76-106 x 109 gC/yr, Macondo blowout 545 x 109 gC) to demonstrate how hydrocarbon and produced water inputs can influence basin scale biogeochemical and ecosystem processes and to propose a framework to consider these effects on larger scales.

  5. A reactive empirical bond order (REBO) potential for hydrocarbon-oxygen interactions

    International Nuclear Information System (INIS)

    Ni, Boris; Lee, Ki-Ho; Sinnott, Susan B

    2004-01-01

    The expansion of the second-generation reactive empirical bond order (REBO) potential for hydrocarbons, as parametrized by Brenner and co-workers, to include oxygen is presented. This involves the explicit inclusion of C-O, H-O, and O-O interactions to the existing C-C, C-H, and H-H interactions in the REBO potential. The details of the expansion, including all parameters, are given. The new, expanded potential is then applied to the study of the structure and chemical stability of several molecules and polymer chains, and to modelling chemical reactions among a series of molecules, within classical molecular dynamics simulations

  6. Oil characterisation: assessment of composition, risks, degradation and remediation potential of total petroleum hydrocarbons in soil

    International Nuclear Information System (INIS)

    Lookman, R.; Vanermen, G.; Van De Weghe, H.; Gemoets, J.; Van der Sterren, G.; Alphenaar, A.

    2005-01-01

    Several methods are available for the characterization of petroleum hydrocarbons. The TPHCWG (Total Petroleum Hydrocarbon Criteria Working Group) developed a method based on a silica column separation of aromatics and aliphatics and a GC-FID subdivision into equivalent-carbon fractions (EC) ('TPH-method'). This method was mainly developed for assessing human risks of oil compounds. Within NOBIS (Dutch Research program Biological In-situ Remediation), another method was developed based upon an equilibrium-experiment of the oil-polluted soil with water (column recirculation), which was further developed by TTE ('TTE-method'). This method uses measured water solubilities of individual oil components and GC-retention times yielding a subdivision of the hydrocarbons into compound classes that are relevant for assessing the remediation potential of the specific oil pollution. In this paper we present results of a research project in which we developed a new method, the 'OK-method' that combines these two procedures and allows a complete characterisation of the oil in terms of composition, (human) risks, volatility, solubility, plume behaviour (migration velocities of the soluble components) and aerobic degradation potential. (authors)

  7. Oil characterisation: assessment of composition, risks, degradation and remediation potential of total petroleum hydrocarbons in soil

    Energy Technology Data Exchange (ETDEWEB)

    Lookman, R.; Vanermen, G.; Van De Weghe, H.; Gemoets, J. [Vito, Mol (Belgium); Van der Sterren, G.; Alphenaar, A. [TTE, Deventer (Netherlands)

    2005-07-01

    Several methods are available for the characterization of petroleum hydrocarbons. The TPHCWG (Total Petroleum Hydrocarbon Criteria Working Group) developed a method based on a silica column separation of aromatics and aliphatics and a GC-FID subdivision into equivalent-carbon fractions (EC) ('TPH-method'). This method was mainly developed for assessing human risks of oil compounds. Within NOBIS (Dutch Research program Biological In-situ Remediation), another method was developed based upon an equilibrium-experiment of the oil-polluted soil with water (column recirculation), which was further developed by TTE ('TTE-method'). This method uses measured water solubilities of individual oil components and GC-retention times yielding a subdivision of the hydrocarbons into compound classes that are relevant for assessing the remediation potential of the specific oil pollution. In this paper we present results of a research project in which we developed a new method, the 'OK-method' that combines these two procedures and allows a complete characterisation of the oil in terms of composition, (human) risks, volatility, solubility, plume behaviour (migration velocities of the soluble components) and aerobic degradation potential. (authors)

  8. Reduction of polycyclic aromatic hydrocarbons (PAHs) from petroleum-contaminated soil using thermal desorption technology

    International Nuclear Information System (INIS)

    Silkebakken, D.M.; Davis, H.A.; Ghosh, S.B.; Beardsley, G.P.

    1995-01-01

    The remediation of petroleum-contaminated soil typically requires the selection of a treatment option that addresses the removal of both volatile and semi-volatile organic compounds. Volatile organic compounds (VOCs), primarily BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds, can be readily removed from the soil by a variety of well-established technologies. The semivolatile organic compounds, especially the polycyclic aromatic hydrocarbons (PAHS) that are characteristic of petroleum-contaminated soil, are not as amenable to conventional treatment. Low temperature thermal volatilization (LTTV) can be a viable treatment technology depending on the initial contaminant concentrations present and applicable cleanup objectives that must be attained. A-two-phase treatability study was conducted at 14 former underground storage tank (UST) sites to evaluate the applicability and effectiveness of LTTV for remediation of approximately 31,000 tons of PAH-contaminated soil. The PAHs of primary concern included benzo(a)anthracene, chrysene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, dibenz(a,h) anthracene, and indeno(1,2,3-cd)pyrene. During Phase 1, LTTV operational parameters were varied by trial-and-error and changes in soil treatment effectiveness were monitored. Phase B of the treatability study incorporated the appropriate treatment regime established during Phase 1 to efficiently remediate the remaining contaminated soil

  9. IMPLICATIONS OF MICROBIAL ADHESION TO HYDROCARBONS FOR EVALUATING CELL-SURFACE HYDROPHOBICITY .1. ZETA-POTENTIALS OF HYDROCARBON DROPLETS

    NARCIS (Netherlands)

    BUSSCHER, HJ; VANDEBELTGRITTER, B; VANDERMEI, HC

    1995-01-01

    Microbial adhesion to hydrocarbons (MATH) is generally considered to be a measure of the organisms cell surface hydrophobicity. As microbial adhesion is a complicated interplay of long-range van der Waals and electrostatic forces and various short-range interactions, the above statement only holds

  10. Hydrocarbon potential assessment of Ngimbang formation, Rihen field of Northeast Java Basin

    Science.gov (United States)

    Pandito, R. H.; Haris, A.; Zainal, R. M.; Riyanto, A.

    2017-07-01

    The assessment of Ngimbang formation at Rihen field of Northeast Java Basin has been conducted to identify the hydrocarbon potential by analyzing the response of passive seismic on the proven reservoir zone and proposing a tectonic evolution model. In the case of petroleum exploration in Northeast Java basin, the Ngimbang formation cannot be simply overemphasized. East Java Basin has been well known as one of the mature basins producing hydrocarbons in Indonesia. This basin was stratigraphically composed of several formations from the old to the young i.e., the basement, Ngimbang, Kujung, Tuban, Ngerayong, Wonocolo, Kawengan and Lidah formation. All of these formations have proven to become hydrocarbon producer. The Ngrayong formation, which is geologically dominated by channels, has become a production formation. The Kujung formation that has been known with the reef build up has produced more than 102 million barrel of oil. The Ngimbang formation so far has not been comprehensively assessed in term its role as a source rock and a reservoir. In 2013, one exploratory well has been drilled at Ngimbang formation and shown a gas discovery, which is indicated on Drill Stem Test (DST) reading for more than 22 MMSCFD of gas. This discovery opens new prospect in exploring the Ngimbang formation.

  11. Predicting hydrocarbon potential of an earth formation underlying a body of water

    International Nuclear Information System (INIS)

    Kaplan, I.R.; Demaison, G.J.

    1983-01-01

    A method for the on-site collection and examination of small concentrations of methane dissolved in water so as to predict hydrocarbon potential of an earth formation underlying a body of water, said formation being a source of said methane, comprises: (i) sampling the water; (ii) continuously vacuum separating said water into liquid and gas phases; (iii) quantitatively separating interfering gas species from methane; (iv) quantitatively oxidising said methane; (v) cryogenically trapping the resulting gaseous carbon dioxide and water vapor at a trapping station, and (vi) isotopically examining said trapped carbon dioxide and water vapour for carbon and deuterium distribution. (author)

  12. Exposure to potentially toxic hydrocarbons and halocarbons released from the dialyzer and tubing set during hemodialysis.

    Science.gov (United States)

    Lee, Hyun Ji Julie; Meinardi, Simone; Pahl, Madeleine V; Vaziri, Nostratola D; Blake, Donald R

    2012-10-01

    Although much is known about the effect of chronic kidney failure and dialysis on the composition of solutes in plasma, little is known about their impact on the composition of gaseous compounds in exhaled breath. This study was designed to explore the effect of uremia and the hemodialysis (HD) procedure on the composition of exhaled breath. Breath samples were collected from 10 dialysis patients immediately before, during, and after a dialysis session. To determine the potential introduction of gaseous compounds from dialysis components, gasses emitted from dialyzers, tubing set, dialysate, and water supplies were collected. Prospective cohort study. 10 HD patients and 10 age-matched healthy individuals. Predictors include the dialyzers, tubing set, dialysate, and water supplies before, during, and after dialysis. Changes in the composition of exhaled breath. A 5-column/detector gas chromatography system was used to measure hydrocarbon, halocarbon, oxygenate, and alkyl nitrate compounds. Concentrations of 14 hydrocarbons and halocarbons in patients' breath rapidly increased after the onset of the HD treatment. All 14 compounds and 5 others not found in patients' breath were emitted from the dialyzers and tubing sets. Contrary to earlier reports, exhaled breath ethane concentrations in our dialysis patients were virtually unchanged during the HD treatment. Single-center study with a small sample size may limit the generalizability of the findings. The study documented the release of several potentially toxic hydrocarbons and halocarbons to patients from the dialyzer and tubing sets during the HD procedure. Because long-term exposure to these compounds may contribute to the morbidity and mortality in dialysis population, this issue should be considered in the manufacturing of the new generation of dialyzers and dialysis tubing sets. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  13. The potentiality of hydrocarbon generation of the Jurassic source rocks in Salam-3x well,

    Directory of Open Access Journals (Sweden)

    Mohamed M. El Nady

    2016-03-01

    Full Text Available The present work deals with the identification of the potential and generating capability of oil generation in the Jurassic source rocks in the Salam-3x well. This depending on the organo-geochemical analyses of cutting samples representative of Masajid, Khatatba and Ras Qattara formations, as well as, representative extract samples of the Khatatba and Ras Qattara formations. The geochemical analysis suggested the potential source intervals within the encountered rock units as follows: Masajid Formation bears mature source rocks and have poor to fair generating capability for generating gas (type III kerogen. Khatatba Formation bears mature source rock, and has poor to good generating capability for both oil and gas. Ras Qattara Formation constituting mature source rock has good to very good generating capability for both oil and gas. The burial history modeling shows that the Masajid Formation lies within oil and gas windows; Khatatba and Ras Qattara formations lie within the gas window. From the biomarker characteristics of source rocks it appears that the extract is genetically related as the majority of them were derived from marine organic matters sources (mainly algae deposited under reducing environment and take the direction of increasing maturity and far away from the direction of biodegradation. Therefore, Masajid Formation is considered as effective source rocks for generating hydrocarbons, while Khatatba and Ras Qattara formations are the main source rocks for hydrocarbon accumulations in the Salam-3x well.

  14. Market potential of solar thermal system in Malaysia

    International Nuclear Information System (INIS)

    Othman, M.Y.H.; Sopian, K.; Dalimin, M.N.

    1992-01-01

    This paper reviews the market potential for solar thermal systems in Malaysia. Our study indicates that solar thermal systems such as solar drying, solar water heating and process heating have a good potential for commercialization. The primary obstacle facing the utilization of these technologies is the financial aspects. (author)

  15. Executive summary: Radar imagery interpretation to assess the hydrocarbon potential of four sites in the Phillipines

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-17

    The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nationwide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential petroleum and geothermal prospects within the areas imaged. Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 9 refs., 9 figs., 3 tabs.

  16. THERMAL CONDUCTIVITY OF THE POTENTIAL REPOSITORY HORIZON

    Energy Technology Data Exchange (ETDEWEB)

    J.E. BEAN

    2004-09-27

    The primary purpose of this report is to assess the spatial variability and uncertainty of bulk thermal conductivity in the host horizon for the repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). Design plans indicate that approximately 81 percent of the repository will be excavated in the Tptpll, approximately 12 percent in the Tptpmn, and the remainder in the Tptul and Tptpln (BSC 2004 [DIRS 168370]). This report provides three-dimensional geostatistical estimates of the bulk thermal conductivity for the four stratigraphic layers of the repository horizon. The three-dimensional geostatistical estimates of matrix and lithophysal porosity, dry bulk density, and matrix thermal conductivity are also provided. This report provides input to various models and calculations that simulate heat transport through the rock mass. These models include the ''Drift Degradation Analysis, Multiscale Thermohydrologic Model, Ventilation Model and Analysis Report, Igneous Intrusion Impacts on Waste Packages and Waste Forms, Drift-Scale Coupled Processes (DST and TH Seepage) Models'', and ''Drift Scale THM Model''. These models directly or indirectly provide input to the total system performance assessment (TSPA). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large-scale (centimeters-meters) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity.

  17. Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil.

    Science.gov (United States)

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Potential microbial activities are commonly used to assess soil toxicity of petroleum hydrocarbons (PHC) and are assumed to be a surrogate for microbial activity within the soil ecosystem. However, this assumption needs to be evaluated for frozen soil, in which microbial activity is limited by liquid water (θ(liquid)). Influence of θ(liquid) on in situ toxicity was evaluated and compared to the toxicity endpoints of potential microbial activities using soil from an aged diesel fuel spill at Casey Station, East Antarctica. To determine in situ toxicity, gross mineralization and nitrification rates were determined by the stable isotope dilution technique. Petroleum hydrocarbon-contaminated soil (0-8,000 mg kg(-1)), packed at bulk densities of 1.4, 1.7, and 2.0 g cm(-3) to manipulate liquid water content, was incubated at -5°C for one, two, and three months. Although θ(liquid) did not have a significant effect on gross mineralization or nitrification, gross nitrification was sensitive to PHC contamination, with toxicity decreasing over time. In contrast, gross mineralization was not sensitive to PHC contamination. Toxic response of gross nitrification was comparable to potential nitrification activity (PNA) with similar EC25 (effective concentration causing a 25% effect in the test population) values determined by both measurement endpoints (400 mg kg(-1) for gross nitrification compared to 200 mg kg(-1) for PNA), indicating that potential microbial activity assays are good surrogates for in situ toxicity of PHC contamination in polar regions. Copyright © 2011 SETAC.

  18. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring

    Science.gov (United States)

    Scafutto, Rebecca DeĺPapa Moreira; de Souza Filho, Carlos Roberto; Riley, Dean N.; de Oliveira, Wilson Jose

    2018-02-01

    Methane (CH4) is the main constituent of natural gas. Fugitive CH4 emissions partially stem from geological reservoirs (seepages) and leaks in pipelines and petroleum production plants. Airborne hyperspectral sensors with enough spectral and spatial resolution and high signal-to-noise ratio can potentially detect these emissions. Here, a field experiment performed with controlled release CH4 sources was conducted in the Rocky Mountain Oilfield Testing Center (RMOTC), Casper, WY (USA). These sources were configured to deliver diverse emission types (surface and subsurface) and rates (20-1450 scf/hr), simulating natural (seepages) and anthropogenic (pipeline) CH4 leaks. The Aerospace Corporation's SEBASS (Spatially-Enhanced Broadband Array Spectrograph System) sensor acquired hyperspectral thermal infrared data over the experimental site with 128 bands spanning the 7.6 μm-13.5 μm range. The data was acquired with a spatial resolution of 0.5 m at 1500 ft and 0.84 m at 2500 ft above ground level. Radiance images were pre-processed with an adaptation of the In-Scene Atmospheric Compensation algorithm and converted to emissivity through the Emissivity Normalization algorithm. The data was processed with a Matched Filter. Results allowed the separation between endmembers related to the spectral signature of CH4 from the background. Pixels containing CH4 signatures (absorption bands at 7.69 μm and 7.88 μm) were highlighted and the gas plumes mapped with high definition in the imagery. The dispersion of the mapped plumes is consistent with the wind direction measured independently during the experiment. Variations in the dimension of mapped gas plumes were proportional to the emission rate of each CH4 source. Spectral analysis of the signatures within the plumes shows that CH4 spectral absorption features are sharper and deeper in pixels located near the emitting source, revealing regions with higher gas density and assisting in locating CH4 sources in the field

  19. Reaction kinetics and reaction heat on thermal decomposition of solvent containing unstable reactive hydrocarbons with nitric acid at Tomsk-7 reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji; Watanabe, Kouji; Koike, Tadao; Miyato, Teijiro.

    1996-12-01

    For analyzing a cause of the Tomsk-7 accident at Russian reprocessing plant, it is necessary to determine reaction-rate constant and reaction heat for a thermal decomposition of TBP/kerosine containing unstable reactive hydrocarbons with nitric acid. In JAERI, the rate constant and reaction heat were obtained from data measured with a differential thermal analyzer (DTA) for unstable hydrocarbons such as n-butanol, n-butyl nitrate, aromatic hydrocarbons, and cyclic compounds. The safety evaluation of Tomsk tank ruptured by the reaction was carried out by heat balance calculations between heat generation and heat loss in the tank using these rate constants and reaction heats. Consequently, it is clear that the cause of the tank rupture would be due to an exothermic reaction of aromatic hydrocarbons in kerosine made by petroleum with the concentrated nitric acid of 14.2N. (author)

  20. Arbuscular mycorrhizal fungi (AMF on a sandbank plant formation: ecology and potential for hydrocarbon oil mycorrhizoremediation

    Directory of Open Access Journals (Sweden)

    Ocimar Ferreira de Andrade

    2016-04-01

    Full Text Available The sources of contamination related to the exploration, production, storage, transport, distribution and disposal of petroleum, and its products, carry risks that threaten fragile coastal environments, little studied and, thus, in need of attention from the scientific community. On the other hand, symbiont mechanisms essential for the very existence of many plant species, and their relation to contaminated soils, remain unknown. Despite the identification of several species of AMF halophytes soil communities in sandbanks, one can infer their bioremediation potential from studies in other types of soil, which, however, report the same genera of fungi as participants in mycorrhizoremediation processes of polluted soil. This study focuses on the application of biotechnology using Arbuscular Mycorrhizal Fungi (AMF in soils impacted by petroleum hydrocarbons.

  1. Apparatus for use in predicting hydrocarbon potential of an earth formation underlying a body of water

    International Nuclear Information System (INIS)

    Demaison, G.J.; Kaplan, I.R.

    1984-01-01

    In a relatively quick, convenient and highly accurate technique for the determination of a carbonaceous gas, normally methane, contained in water samples collected at depth from a body of water overlying an earth formation to predict the hydrocarbon-containing potential of the earth formation, carbonaceous gaseous constituents liberated from the water are carried via an air stream to flow into and through an isotope trapping network where collection in microlitre amounts occurs. The isotope capture apparatus comprises a box-like structure formed from a series of panel members, front panel member intersecting the bottom panel member near the centre of the latter and carrying interconnected gas trapping and stripping sections, the structure also comprising a detachable lid connectable by means, for protection of sections. (author)

  2. Regional assessments of the hydrocarbon generation potential of selected North American proterozoic rock sequences. Progress report, September 1989--April 1990

    Energy Technology Data Exchange (ETDEWEB)

    Engel, M.H.; Elmore, R.D.

    1990-04-01

    Our primary research objectives for the first year of this grant are nearing completion. This includes comprehensive sedimentologic/organic geochemical studies of two depositionally distinct, unmetamorphosed units, the Nonesuch Formation ({approximately}1.1 Ga lacustrine rift deposit) and the Dripping Spring Quartzite ({approximately}1.3 Ga marine shelf deposit). As discussed in this progress report, an attempt has been made to (1) identify source rocks by quantification and characterization of constituent organic matter, (2) recognize depositional/diagenetic/catagenetic factors that may have influenced source rock quality and (3) evaluate the possibility of previous or current hydrocarbon generation and migration. Organic petrology and geochemical analyses suggest important differences between kerogens in the Michigan (MI) and Wisconsin (WI) Nonesuch Formation study areas. When considered within a geographic/stratigraphic framework, the Nonesuch Formation in the MI study area exhibits superior source rock potential. It is suggested that sedimentary organic matter in the WI area was subject to more extensive microbial alteration during early diagenesis. It is also possible that thermal maturity levels were slightly to moderately higher in WI than MI. Petrologic evidence for migrated bitumens and the stable isotope composition of late vein carbonates suggest, furthermore, that oil generation and migration may have actually been more extensive in the WI study area.

  3. Determination of the isotope distribution in 14C-labelled hydrocarbons by thermal fragmentation

    International Nuclear Information System (INIS)

    Kopinke, F.D.; Dermietzel, J.; Jockisch, W.; Raeuber, G.

    1986-01-01

    The gas chromatographic analysis of pyrolysis products of properly labelled hydrocarbons allows a definite and quantitative determination of the 14 C-distribution in those compounds. For this purpose a simple, fast, and versatilely applicable method has been developed and described

  4. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production.

    Science.gov (United States)

    Kämäräinen, Jari; Knoop, Henning; Stanford, Natalie J; Guerrero, Fernando; Akhtar, M Kalim; Aro, Eva-Mari; Steuer, Ralf; Jones, Patrik R

    2012-11-30

    Cyanobacteria are capable of directly converting sunlight, carbon dioxide and water into hydrocarbon fuel or precursors thereof. Many biological and non-biological factors will influence the ability of such a production system to become economically sustainable. We evaluated two factors in engineerable cyanobacteria which could potentially limit economic sustainability: (i) tolerance of the host to the intended end-product, and (ii) stoichiometric potential for production. Alcohols, when externally added, inhibited growth the most, followed by aldehydes and acids, whilst alkanes were the least inhibitory. The growth inhibition became progressively greater with increasing chain-length for alcohols, whilst the intermediate C6 alkane caused more inhibition than both C3 and C11 alkane. Synechocystis sp. PCC 6803 was more tolerant to some of the tested chemicals than Synechococcus elongatus PCC 7942, particularly ethanol and undecane. Stoichiometric evaluation of the potential yields suggested that there is no difference in the potential productivity of harvestable energy between any of the studied fuels, with the exception of ethylene, for which maximal stoichiometric yield is considerably lower. In summary, it was concluded that alkanes would constitute the best choice metabolic end-product for fuel production using cyanobacteria if high-yielding strains can be developed. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil

    International Nuclear Information System (INIS)

    Chaineau, C.H.; Dupont, J.; Bury, E.; Oudot, J.; Morel, J.

    1999-01-01

    Strains of hydrocarbon-degrading microorganisms (bacteria and fungi) were isolated from an agricultural soil in France. In a field, a portion was treated with oily cuttings resulting from the drilling of an onshore well. The cuttings which were spread at the rate of 600 g HC m -2 contained 10% of fuel oil hydrocarbons (HC). Another part of the field was left untreated. Three months after HC spreading, HC adapted bacteria and fungi were isolated at different soil depths in the two plots and identified. The biodegradation potential of the isolated strains was monitored by measuring the degradation rate of total HC, saturated hydrocarbons, aromatic hydrocarbons and resins of the fuel. Bacteria of the genera Pseudomonas, Brevundimonas, Sphingomonas, Acinetobacter, Rhodococcus, Arthrobacter, Corynebacterium and fungi belonging to Aspergillus, Penicillium, Beauveria, Acremonium, Cladosporium, Fusarium, and Trichoderma were identified. The most active strains in the assimilation of saturates and aromatics were Arthrobacter sp., Sphingomonas spiritivorum, Acinetobacter baumanii, Beauveria alba and Penicillum simplicissimum. The biodegradation potential of the hydrocarbon utilizing microorganisms isolated from polluted or unpolluted soils were similar. In laboratory pure cultures, saturated HC were more degraded than aromatic HC, whereas resins were resistant to microbial attack. On an average, individual bacterial strains were more active than fungi in HC biodegradation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Hydrocarbon Potential in Sandstone Reservoir Isolated inside Low Permeability Shale Rock (Case Study: Beruk Field, Central Sumatra Basin)

    Science.gov (United States)

    Diria, Shidqi A.; Musu, Junita T.; Hasan, Meutia F.; Permono, Widyo; Anwari, Jakson; Purba, Humbang; Rahmi, Shafa; Sadjati, Ory; Sopandi, Iyep; Ruzi, Fadli

    2018-03-01

    Upper Red Bed, Menggala Formation, Bangko Formation, Bekasap Formation and Duri Formationare considered as the major reservoirs in Central Sumatra Basin (CSB). However, Telisa Formation which is well-known as seal within CSB also has potential as reservoir rock. Field study discovered that lenses and layers which has low to high permeability sandstone enclosed inside low permeability shale of Telisa Formation. This matter is very distinctive and giving a new perspective and information related to the invention of hydrocarbon potential in reservoir sandstone that isolated inside low permeability shale. This study has been conducted by integrating seismic data, well logs, and petrophysical data throughly. Facies and static model are constructed to estimate hydrocarbon potential resource. Facies model shows that Telisa Formation was deposited in deltaic system while the potential reservoir was deposited in distributary mouth bar sandstone but would be discontinued bedding among shale mud-flat. Besides, well log data shows crossover between RHOB and NPHI, indicated that distributary mouth bar sandstone is potentially saturated by hydrocarbon. Target area has permeability ranging from 0.01-1000 mD, whereas porosity varies from 1-30% and water saturation varies from 30-70%. The hydrocarbon resource calculation approximates 36.723 MSTB.

  7. Assessing the polycyclic aromatic hydrocarbon anisotropic potential with application to the exfoliation energy of graphite.

    Science.gov (United States)

    Totton, Tim S; Misquitta, Alston J; Kraft, Markus

    2011-11-24

    In this work we assess a recently published anisotropic potential for polycyclic aromatic hydrocarbon (PAH) molecules (J. Chem. Theory Comput. 2010, 6, 683-695). Comparison to recent high-level symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) results for coronene (C(24)H(12)) demonstrate the transferability of the potential while highlighting some limitations with simple point charge descriptions of the electrostatic interaction. The potential is also shown to reproduce second virial coefficients of benzene (C(6)H(6)) with high accuracy, and this is enhanced by using a distributed multipole model for the electrostatic interaction. The graphene dimer interaction energy and the exfoliation energy of graphite have been estimated by extrapolation of PAH interaction energies. The contribution of nonlocal fluctuations in the π electron density in graphite have also been estimated which increases the exfoliation energy by 3.0 meV atom(-1) to 47.6 meV atom(-1), which compares well to recent theoretical and experimental results.

  8. Hydrocarbon Source Rock Potential of the Sinamar Formation, Muara Bungo, Jambi

    Directory of Open Access Journals (Sweden)

    Moh. Heri Hermiyanto Zajuli

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v1i1.175The Oligocene Sinamar Formation consists of shale, claystone, mudstone, sandstone, conglomeratic sandstone, and intercalation of coal seams. The objective of study was to identify the hydrocarbon source rock potential of the Sinamar Formation based on geochemichal characteristics. The analyses were focused on fine sediments of the Sinamar Formation comprising shale, claystone, and mudstone. Primary data collected from the Sinamar Formation well and outcrops were analyzed according to TOC, pyrolisis analysis, and gas chromatography - mass spectometry of normal alkanes that include isoprenoids and sterane. The TOC value indicates a very well category. Based on TOC versus Pyrolysis Yields (PY diagram, the shales of Sinamar Formation are included into oil prone source rock potential with good to excellent categories. Fine sediments of the Sinamar Formation tend to produce oil and gas originated from kerogen types I and III. The shales tend to generate oil than claystone and mudstone and therefore they are included into a potential source rock. 

  9. Endophytic Bacteria Associated with Hieracium piloselloides: Their Potential for Hydrocarbon-Utilizing and Plant Growth-Promotion.

    Science.gov (United States)

    Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2015-01-01

    The aim of this study was to assess the potential of 18 crude-oil-degrading endophytic bacteria for removal of hydrocarbons and promotion of plant growth. Strains were isolated from Hieracium piloselloides (tall hawkweed), which grows in soil heavily polluted with petroleum hydrocarbons. Bacteria from the genus Pseudomonas were abundant among the isolates. The potential for hydrocarbon degradation was evaluated by polymerase chain reaction (PCR) analyses of the genes alkB, alkH, C23O, P450, and pah. It was found that 88.89% of the endophytic bacteria contained gene-encoding polycyclic aromatic hydrocarbon (PAH) initial dioxygenase, 61% possessed the 2,3-catechol dioxygenase gene, and 39% of strains that were tested had the cytochrome P-450 hydroxylase gene. All isolates were capable of producing indole-3-acetic acid (1.8-76.4 μg/ml). Only 17% of them were able to produce siderophores, excrete cellulase, and solubilize phosphate. Hydrogen cyanide synthesis occurred in 33% of endophytic bacteria. The 1-aminocyclopropane-1-carboxylate deaminase activity in isolates that were screened was in the range of 2.6 to 74.1 μmol α-ketobutyrate/mg/h. This feature of the bacteria indicated that isolates may enhance the phytoremediation process. Data suggest that crude-oil-degrading endophytic bacteria possess potential to be promising candidates for enhancement of phytoremediation of hydrocarbon-contaminated soil. Further evaluation of these bacteria is needed in order to assess the role played in the degradation of petroleum hydrocarbons.

  10. Enhancing effects of picocyanobacteria on growth and hydrocarbon consumption potential of the associated oil-utilizing bacteria

    International Nuclear Information System (INIS)

    Radwan, S.S.; Al-Hasan, R.H.; Salamah, S.

    2004-01-01

    Marine surface waters around the world are rich in unicellular cyanobacteria or picocyanobacteria. This paper presents the results of a study which focused on the interaction of microorganisms in naturally occurring marine consortium active in hydrocarbon attenuation. Picocyanobacteria are minute phototrophs which accumulate hydrocarbons from water without any potential for oxidizing these compounds. This study demonstrates that the picocyanobacteria are part of a microbial consortia floating on the water surface of the Arabian Gulf. The consortia are include a rich population of oil-utilizing true bacteria whose growth and activities are improved in the presence of cyanobacterial partners. Each gram of picocyanobacterial biomass was associated with 10 8 - 10 12 cells of oil-utilizing bacteria. Studies have shown that oil-utilizing bacteria grow better in the presence of their partner picocyanobacteria. In addition, the oil-utilizing bacteria resulted in more powerful hydrocarbon attenuation in the presence of picocyanobacteria. Picocyanobacterial cells accumulate hydrocarbon from water without biodegrading it. The oil-utilizing bacteria grew on hydrocarbons for a source of carbon and energy. It was concluded that the oil-polluted environment of the Arabian Gulf can be cleaned effectively by the cooperative activities of this oil consuming group of bacteria composed of symbiotic microorganisms floating in the Gulf waters. 17 refs., 1 tab., 6 figs

  11. Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed

    Energy Technology Data Exchange (ETDEWEB)

    Stelmachowski, M. [Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Technical University of Lodz, 90-924 Lodz, Wolczanska 213 (Poland)

    2010-10-15

    Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like organic wastes, plastic wastes, scrap tires, etc. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of a tubular reactor with the molten metal bed is proposed for conversion of waste plastics to fuel-like mixture of hydrocarbons. The results of the thermal degradation of polyolefins in the laboratory scale set-up based on this reactor are presented in the paper. The melting and cracking processes were carried out in a single apparatus at the temperature 390-420 C. The problems with: disintegration of wastes, heat transfer from the wall to the particles of polymers, cooking at the walls of reactor, and mixing of the molten volume of wastes were significantly reduced. The final product consisted of gaseous stream (8-16 wt% of the input) and liquid (84-92 wt%) stream. No solid products were produced. The light, ''gasoline'' fraction of the liquid hydrocarbons mixture (C{sub 4}-C{sub 10}) made over 50% of the liquid product. It may by used for fuel production or electricity generation. (author)

  12. Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed

    International Nuclear Information System (INIS)

    Stelmachowski, M.

    2010-01-01

    Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like organic wastes, plastic wastes, scrap tires, etc. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of a tubular reactor with the molten metal bed is proposed for conversion of waste plastics to fuel like mixture of hydrocarbons. The results of the thermal degradation of polyolefins in the laboratory scale set-up based on this reactor are presented in the paper. The melting and cracking processes were carried out in a single apparatus at the temperature 390-420 deg. C. The problems with: disintegration of wastes, heat transfer from the wall to the particles of polymers, cooking at the walls of reactor, and mixing of the molten volume of wastes were significantly reduced. The final product consisted of gaseous stream (8-16 wt% of the input) and liquid (84-92 wt%) stream. No solid products were produced. The light, 'gasoline' fraction of the liquid hydrocarbons mixture (C 4 -C 10 ) made over 50% of the liquid product. It may by used for fuel production or electricity generation.

  13. Thermal Coefficient of Redox Potential of Alkali Metals

    Science.gov (United States)

    Fukuzumi, Yuya; Hinuma, Yoyo; Moritomo, Yutaka

    2018-05-01

    The thermal coefficient (α) of redox potential (V) is a significant physical quantity that converts the thermal energy into electric energy. In this short note, we carefully determined α of alkali metals (A = Li and Na) against electrolyte solution. The obtained α is much larger than that expected from the specific heat (CpA) of solid A and depends on electrolyte solution. These observations indicate that the solvent has significant effect on α.

  14. Thermal cracking of recycled hydrocarbon gas-mixtures for re-pyrolysis: Operational analysis of some industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Gal, T. [MOL PETCHEM Division, Tisza Chemical Works Co. Ltd. (TVK), P.O. Box 20, H-3581 Tiszaujvaros (Hungary); Lakatos, B.G. [Department of Process Engineering, University of Pannonia, P.O. Box 158, H-8200 Veszprem (Hungary)

    2008-02-15

    Thermal decomposition process of recycled hydrocarbon gas-mixtures in industrial furnaces is analyzed by computer simulation. The detailed kinetic and mathematical model developed was validated by using the process control laboratory cracked gas analysis of an industrially operated furnace. The effects of feed compositions and operational conditions are examined to select the favorable operating parameters and to achieve the possibly highest online operation period of the furnace. The effect of deposited coke on the lifetime of radiant coils is examined by a heat-transfer model. The simulation study confirmed that temporal variations of the feedstock composition could be harmonized well with the operating parameters of furnaces with the purpose of achieving maximum effectiveness. (author)

  15. Determination of the ionisation potential of certain hydrocarbons in the liquid phase

    International Nuclear Information System (INIS)

    Casanovas, J.; Grob, R.; Brunet, G.; Sabattier, R.; Guelfucci, J.P.; Blanc, D.

    1978-01-01

    The first results obtained are presented on the determination of the ionisation potential of four alkanes (n-hexane, n-pentane, cyclopentane and trimethyl-2,2,4 pentane) in the liquid phase. In the gaseous phase, the ionisation potential values of these hydrocarbons are respectively 10.18 eV for n-hexane, 10.35 eV for n-pentane, 10.53 eV for cyclopentane and 9.86 eV for trimethyl-2,2,4 pentane. Consequently rare gas resonance lamps (krypton and Xenon) were made, sealed and excited by an ultra-high frequency wave, which emit photons in the energy field concerned, i.e. from 8.5 eV to 11eV. The energy of the photons emitted by these lamps is respectively 8.44 eV (100%) and 9.57 eV (2%) for xenon and 10.03 eV (100%) and 10.64 eV (5%) for krypton. From the extent of the induced ionisation currents and particularly the value of the ratio of the currents induced by the photons of the krypton and xenon lamps, a minimum value of the ionisation potential drop can be deduced compared with the gas phase of 0.61 eV for n-hexane, 0.78 eV for n-pentane, 0.96 eV for cyclopentane and a maximum value of 1.42 eV for trimethyl-2,2,4 pentane [fr

  16. Liquid hydrocarbon generation potential from Tertiary Nyalau Formation coals in the onshore Sarawak, Eastern Malaysia

    Science.gov (United States)

    Hakimi, Mohammed Hail; Abdullah, Wan Hasiah

    2013-01-01

    Tertiary coals exposed in the north-central part of onshore Sarawak are evaluated, and their depositional environments are interpreted. Total organic carbon contents (TOC) of the coals range from 58.1 to 80.9 wt. % and yield hydrogen index values ranging from 282 to 510 mg HC/g TOC with low oxygen index values, consistent with Type II and mixed Type II-III kerogens. The coal samples have vitrinite reflectance values in the range of 0.47-0.67 Ro %, indicating immature to early mature (initial oil window). T max values range from 428 to 436 °C, which are good in agreement with vitrinite reflectance data. The Tertiary coals are humic and generally dominated by vitrinite, with significant amounts of liptinite and low amounts of inertinite macerals. Good liquid hydrocarbons generation potential can be expected from the coals with rich liptinitic content (>35 %). This is supported by their high hydrogen index of up to 300 mg HC/g TOC and Py-GC ( S 2) pyrograms with n-alkane/alkene doublets extending beyond C30. The Tertiary coals are characterised by dominant odd carbon numbered n-alkanes ( n-C23 to n-C33), high Pr/Ph ratio (6-8), high T m / T s ratio (8-16), and predominant regular sterane C29. All biomarkers parameters clearly indicate that the organic matter was derived from terrestrial inputs and the deposited under oxic condition.

  17. Organic geochemical characterization of potential hydrocarbon source rocks in the upper Benue Trough

    International Nuclear Information System (INIS)

    Obaje, N. G.; Pearson, M. J.; Suh, C. E.; Dada, S. S.

    1999-01-01

    The Upper Benue Trough of Nigeria is the northeastern most portion of the Benue rift structure that extends from the northern limit of the Niger Delta in the south to the southern limit of the Chad basin int he northeast. this portion of the trough is made up of two arms: the Gongola Arm and the Yola Arm. Stratigraphic sequence in the Gongola Arm comprises the continental Albian Bima Sandstone, the transitional Cenomanian Yolde Formation and the marine Turonian - Santonian Gongila, Pindiga, and Fika Formations. Overlying these are the continental Campane - Maastrichtian Gombe Sandstone and the Tertiary Kerri - Kerri Formation. In the Yola Arm, the Turonian - Santonian sequence is replaced by the equally marine Dukul, Jessu, Sekuliye Formations, Numanha Shale, and the Lamja Sandstone. Organic geochemical studies have been carried on outcrop sample form the Gongila, Pindiga, Dukul Formations, the Fika shale and the shaly units of the Gombe Sandstone, with the aim of assessing their source rock potential. Gas Chromatography (GC), Gas Chromatography - Mass Spectrometry (C - MS), and Rock Eval Pyrolysis were the major organic geochemical tools employed. Biomaker hydrocarbon signatures obtained from the GC - MS and the Rock Eval Pyrolysis results indicate that all he formations studied, except the Dukul formation, are immature and are all lean in organic matter

  18. New extractive technologies for unconventional hydrocarbon exploitation and potential environmental hazards to the Guarani aquifer

    International Nuclear Information System (INIS)

    Meroni, E.; Pineiro, G.

    2014-01-01

    This investigation presents a scientific approach about the impact of hydraulic fracturing (f racking) in North America. We focus on the impacts to groundwater, to ascertain whether this technology would produce a similar impact if applied to Norte Basin of Uruguay and a possible impact on the Guarani aquifer. The non- conventional methodologies for hydrocarbon exploitation are described and analysed, taking into account in particular, the characteristics and the profitability of the geological formations that might be potential sources in the Norte Basin of Uruguay. By several in-depth interviews to academic, technic and politic personalities we explored the amount and quality of information that Uruguayan people have about the presence of shale oil and gas resources in the country, as well as on the current normative for their eventual exploitation, and on the contracts that the Uruguayan government has already signed with international oil companies pending the studies required by the current pertinent environmental regulation. The risks for the Guarani Aquifer System if applying hydraulic fracture in rocks directly related to those containing the aquifer, is also analysed

  19. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites

    Directory of Open Access Journals (Sweden)

    Kaustuvmani Patowary

    2016-07-01

    Full Text Available The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia towards total petroleum hydrocarbons (TPH with special emphasis to poly aromatic hydrocarbons (PAHs were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples 5 isolates, namely KS2, PG1, PG5, R1 and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1 and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and Bacillus cereus R2 (identified by 16s rRNA sequencing has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of total petroleum hydrocarbon (TPH after five weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared and GCMS (Gas chromatography-mass spectrometer analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  20. Assessing breeding potential of peregrine falcons based on chlorinated hydrocarbon concentrations in prey

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.E. [Canadian Wildlife Service, Pacific Wildlife Research Centre, 5421 Robertson Rd., RR no. 1, Delta, British Columbia, V4K 3N2 (Canada)]. E-mail: john.elliott@ec.gc.ca; Miller, M.J. [Iolaire Ecological Consulting, 7899 Thrasher St., Mission, British Columbia, V2V 5H3 (Canada); Wilson, L.K. [Canadian Wildlife Service, Pacific Wildlife Research Centre, 5421 Robertson Rd., RR no. 1, Delta, British Columbia, V4K 3N2 (Canada)

    2005-03-01

    Peregrine falcons (Falco peregrinus) now breed successfully in most areas of North America from which they were previously extirpated. The loss during the mid-part of the last century of many of the world's peregrine populations was largely a consequence of impaired reproduction caused by the effects of DDE on eggshell quality and embryo hatchability. Population recovery has been attributed to re-introduction efforts, coupled with regulatory restrictions on the use of organochlorine pesticides. Peregrines have not returned to breed in some areas, such as the Okanagan Valley of British Columbia. That region has been extensively planted in fruit orchards which were treated annually with DDT during the early 1950s to the 1970s. Ongoing contamination of avian species, including potential peregrine prey, inhabiting orchards has been documented. In response to an initiative to release peregrines around the city of Kelowna in the Okanagan Valley, we collected potential peregrine prey species and analyzed whole bodies for chlorinated hydrocarbon residues. We used a simple bioaccumulation model to predict concentrations of DDE in peregrine eggs using concentrations in prey and estimates of dietary makeup as input. Peregrines would be expected to breed successfully only if they fed on a diet primarily of doves. Feeding on as little as 10% of other species such as starlings, robins, gulls and magpies would produce DDE concentrations in peregrine eggs greater than the threshold of 15 mg/kg. We also estimated the critical concentration of DDE in total prey to be about 0.5 mg/kg, one half of the previous most conservative criterion for peregrine prey. Concentrations of dieldrin and PCBs in peregrine prey are less than suggested critical levels. - Based on the level of DDE contamination of prey items, it seems unlikely that peregrine falcons could breed successfully throughout most of the Okanagan Valley of British Columbia.

  1. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  2. Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya.

    Science.gov (United States)

    Mansur, Abdulatif A; Adetutu, Eric M; Kadali, Krishna K; Morrison, Paul D; Nurulita, Yuana; Ball, Andrew S

    2014-09-01

    The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of

  3. Burial history, thermal history and hydrocarbon generation modelling of the Jurassic source rocks in the basement of the Polish Carpathian Foredeep and Outer Carpathians (SE Poland)

    Science.gov (United States)

    Kosakowski, Paweł; Wróbel, Magdalena

    2012-08-01

    Burial history, thermal maturity, and timing of hydrocarbon generation were modelled for the Jurassic source rocks in the basement of the Carpathian Foredeep and marginal part of the Outer Carpathians. The area of investigation was bounded to the west by Kraków, to the east by Rzeszów. The modelling was carried out in profiles of wells: Będzienica 2, Dębica 10K, Góra Ropczycka 1K, Goleszów 5, Nawsie 1, Pławowice E1 and Pilzno 40. The organic matter, containing gas-prone Type III kerogen with an admixture of Type II kerogen, is immature or at most, early mature to 0.7 % in the vitrinite reflectance scale. The highest thermal maturity is recorded in the south-eastern part of the study area, where the Jurassic strata are buried deeper. The thermal modelling showed that the obtained organic matter maturity in the initial phase of the "oil window" is connected with the stage of the Carpathian overthrusting. The numerical modelling indicated that the onset of hydrocarbon generation from the Middle Jurassic source rocks was also connected with the Carpathian thrust belt. The peak of hydrocarbon generation took place in the orogenic stage of the overthrusting. The amount of generated hydrocarbons is generally small, which is a consequence of the low maturity and low transformation degree of kerogen. The generated hydrocarbons were not expelled from their source rock. An analysis of maturity distribution and transformation degree of the Jurassic organic matter shows that the best conditions for hydrocarbon generation occurred most probably in areas deeply buried under the Outer Carpathians. It is most probable that the "generation kitchen" should be searched for there.

  4. Hydrocarbon degradation potential in reference soils and soils contaminated with jet fuel

    International Nuclear Information System (INIS)

    Lee, R.F.; Hoeppel, R.

    1991-01-01

    Petroleum degradation in surface and subsurface soils is affected by such factors as moisture content, pH, soil type, soil organics, temperature, and oxygen concentrations. In this paper, the authors determine the degradation rates of 14 C-labeled hydrocarbons added to soils collected from a contaminated surface site, contaminated subsurface sites, and a clean reference site. The radiolabeled hydrocarbons used include benzene, toluene, naphthalene, 1-methynaphthalene, phenanthrene, fluorene, anthracene, chrysene, and hexadecane. Microbial degradation rates were based on determination of mineralization rates (production of 14 CO 2 ) of hydrocarbons that were added to soil samples. Since water was added and oxygen was not limiting, the hydrocarbon rates determined are likely to be higher than those occurring in situ. Using radiolabeled hydrocarbons, information can be provided on differences in the degradation rates of various petroleum compounds in different types of soils at a site, on possible production of petroleum metabolites in the soil, and on the importance of anaerobic petroleum degradation and the effects of nutrient, water, and surfactant addition on biodegradation rates

  5. Design tool for the thermal energy potential of asphalt pavements

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Oversloot, H.P.; Bondt, A. de; Jansen, R.; Rij, H. van

    2003-01-01

    This paper describes the development of a design tool for the calculation of the thermal energy potential of a so-called asphalt collector. Two types of numerical models have been developed and validated against experimental results from a full-scale test-site. The validation showed to be a tedious

  6. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar

    International Nuclear Information System (INIS)

    Freddo, Alessia; Cai Chao; Reid, Brian J.

    2012-01-01

    Nine dissimilar biochars, produced from varying feedstock at different pyrolysis temperatures, are appraised with respect to concentrations of potentially toxic elements, specifically, metals, metalloids and polycyclic aromatic hydrocarbons (PAHs). Concentrations of the metals and metalloids varied with the following ranges (mg kg −1 ): 0.02–0.94, Cd; 0.12–6.48, Cr; 0.04–13.2, Cu; 0.1–1.37, Ni; 0.06–3.87, Pb; 0.94–207, Zn and 0.03–0.27, As. Σ 16 PAH concentrations (16 Environmental Protection Agency (EPA) PAHs) range between 0.08 mg kg −1 to 8.7 mg kg −1 . Subsequent comparison with background soil concentrations, concentration applied to the regulation of composted materials (Publicly Available Specification (PAS 100)) and European Union (EU) regulations relating to the application of sewage sludge to agricultural land suggest low risk associated with the concentrations of PTEs observed in biochar. Collectively, results suggest that environmental impacts attributable to metals, metalloids and PAHs associated with biochar following its application to soil are likely to be minimal. - Highlights: ► Concentrations of PTEs varied with feedstock and temperature of production. ► Of the PTEs Zn (0.94–207 mg kg −1 ) was of most priority. ► PTE levels did not infringe guidance values for compost or sewage sludge. ► Biochar ( −1 ) is unlikely to make any real difference to PTE concentrations in soil. - Environmental impacts attributable to metals, metalloids and PAHs associated with biochar following its application to soil are likely to be minimal.

  7. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Wang, Shunyao; Ye, Jianhuai; Soong, Ronald; Wu, Bing; Yu, Legeng; Simpson, André J.; Chan, Arthur W. H.

    2018-03-01

    Owing to the complex nature and dynamic behaviors of secondary organic aerosol (SOA), its ability to cause oxidative stress (known as oxidative potential, or OP) and adverse health outcomes remains poorly understood. In this work, we probed the linkages between the chemical composition of SOA and its OP, and investigated impacts from various SOA evolution pathways, including atmospheric oligomerization, heterogeneous oxidation, and mixing with metal. SOA formed from photooxidation of the two most common polycyclic aromatic hydrocarbons (naphthalene and phenanthrene) were studied as model systems. OP was evaluated using the dithiothreitol (DTT) assay. The oligomer-rich fraction separated by liquid chromatography dominates DTT activity in both SOA systems (52 ± 10 % for naphthalene SOA (NSOA), and 56 ± 5 % for phenanthrene SOA (PSOA)). Heterogeneous ozonolysis of NSOA was found to enhance its OP, which is consistent with the trend observed in selected individual oxidation products. DTT activities from redox-active organic compounds and metals were found to be not additive. When mixing with highly redox-active metal (Cu), OP of the mixture decreased significantly for 1,2-naphthoquinone (42 ± 7 %), 2,3-dihydroxynaphthalene (35 ± 1 %), NSOA (50 ± 6 %), and PSOA (43 ± 4 %). Evidence from proton nuclear magnetic resonance (1H NMR) spectroscopy illustrates that such OP reduction upon mixing can be ascribed to metal-organic binding interactions. Our results highlight the role of aerosol chemical composition under atmospheric aging processes in determining the OP of SOA, which is needed for more accurate and explicit prediction of the toxicological impacts from particulate matter.

  8. Ranking harbours in the Maritime provinces of Canada for potential to contaminate American lobster (Homarus americanus) with polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Prouse, N.J. [Department of Fisheries and Oceans, Halifax, NS (Canada). Biological Sciences Branch

    1997-05-01

    The sources of polycyclic aromatic hydrocarbon (PAH) contamination within selected harbors in the Maritime provinces of Canada were evaluated by assessing point sources, population, industrial and commercial activity, international and domestic ship traffic, and the number of commercial fishing vessels. Results showed that Sydney ranked as the highest potential for PAH contamination. Ranking of the other Maritime harbors was also presented. The lobster contamination with PAHs was reviewed.

  9. Temperature-modulated direct thermoelectric gas sensors: thermal modeling and results for fast hydrocarbon sensors

    International Nuclear Information System (INIS)

    Rettig, Frank; Moos, Ralf

    2009-01-01

    Direct thermoelectric gas sensors are a promising alternative to conductometric gas sensors. For accurate results, a temperature modulation technique in combination with a regression analysis is advantageous. However, the thermal time constant of screen-printed sensors is quite large. As a result, up to now the temperature modulation frequency (20 mHz) has been too low and the corresponding principle-related response time (50 s) has been too high for many applications. With a special design, respecting the physical properties of thermal waves and the use of signal processing similar to a lock-in-amplifier, it is possible to achieve response times of about 1 s. As a result, direct thermoelectric gas sensors with SnO 2 as a gas-sensitive material respond fast and are reproducible to the propane concentration in the ambient atmosphere. Due to the path-independent behavior of the thermovoltage and the temperature, the measured thermopower of two sensors is almost identical

  10. Thermal Management and Analysis for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dr. A. Van Luik

    2004-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced waste (mostly from spent nuclear fuel) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. Table 1 provides an overview of design constraints related to thermal management after repository closure. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and

  11. Hydrocarbon Pollution and Potential Ecological Risk of Heavy Metals in the Sediments of the Oturuba Creek, Niger Delta, Nigeria

    Directory of Open Access Journals (Sweden)

    Ezekwe Clinton Ifeanyichukwu

    2017-04-01

    Full Text Available This study aimed at examining the impact of oil pollution from artisanal oil refineries on the Oturuba river ecosystem using active river bottom sediment. Specific objectives included to determine the level of hydrocarbons and trace metals (Pb, Cd, Zn, Cu, Ni, V and Mg in the sediments and to relate this with general ecosystem health. The study found elevated concentrations of both hydrocarbons and heavy metals in the range above most sediment quality guidelines exceeding the respective Threshold Effects Level and Probable Effects. Level guideline values and occurring at levels where impairment to biological communities is certain an d where toxicity levels can lead to negative impacts on benthic animals or infaunal communities. Heavy metal geochemical accumulation index and potential ecological risk analysis also returned anomalously high concentrations in the range of very highly polluted sediment environments with very high ecological risk indices, thereby ranking the Oturuba Creek as one of the most polluted coastal river systems in the world.

  12. Surface-Enhanced Separation of Water from Hydrocarbons: Potential Dewatering Membranes for the Catalytic Fast Pyrolysis of Pine Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Engtrakul, Chaiwat; Hu, Michael Z.; Bischoff, Brian L.; Jang, Gyoung G.

    2016-10-20

    The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach used high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over one-ring upgraded biomass pyrolysis hydrocarbons was observed as a result of a surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations, suggesting that water can be selectively removed from the CFP product vapors.

  13. Thermal management and analysis for a potential yucca mountain repository

    International Nuclear Information System (INIS)

    Van Luik, A.

    2005-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced. waste (mostly from spent nuclear fuel.) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and. the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and includes a summary of the technical basis that supports these evaluations. The majority of the material

  14. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    Science.gov (United States)

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  15. Thermalization with chemical potentials, and higher spin black holes

    International Nuclear Information System (INIS)

    Mandal, Gautam; Sinha, Ritam; Sorokhaibam, Nilakash

    2015-01-01

    We study the long time behaviour of local observables following a quantum quench in 1+1 dimensional conformal field theories possessing additional conserved charges besides the energy. We show that the expectation value of an arbitrary string of local observables supported on a finite interval exponentially approaches an equilibrium value. The equilibrium is characterized by a temperature and chemical potentials defined in terms of the quenched state. For an infinite number of commuting conserved charges, the equilibrium ensemble is a generalized Gibbs ensemble (GGE). We compute the thermalization rate in a systematic perturbation in the chemical potentials, using a new technique to sum over an infinite number of Feynman diagrams. The above technique also allows us to compute relaxation times for thermal Green’s functions in the presence of an arbitrary number of chemical potentials. In the context of a higher spin (hs[λ]) holography, the partition function of the final equilibrium GGE is known to agree with that of a higher spin black hole. The thermalization rate from the CFT computed in our paper agrees with the quasinormal frequency of a scalar field in this black hole.

  16. Petroleum geology and hydrocarbon potential of the Black and Caspian region. Extended abstracts book

    International Nuclear Information System (INIS)

    2002-09-01

    Full text : The scientists from following countries took part at the international conference : Azerbaijan, Turkey, Georgia, Kazakhstan, Russia, Ukraine, Austria, USA, Great Britain, Czech Republic. The activity was conducted in eight sections. Section 1 was devoted to the exploration operations in the Caspian and Black sea region. Section 2 was devoted to regional geology and tectonics. Section 3 was devoted to hydrocarbon systems of the south Caspian basin. Section 4 was devoted to exploration operations results and their prospects in the south Caspian Sea and contiguous on-shore areas. Section 5 was devoted to neotectonics and its effect on the process of hydrocarbon resources development. Section 6 was devoted to paleogeography of sedimentation basin. Section 7 was devoted to geological aspects of the exploration geophysics data interpretation. Section 8 was devoted to ecology problems in oil and gas exploration and production

  17. Investigations on potential bacteria for the bioremediation treatment of environments contaminated with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, I.; Voicu, A.; Dobrota, S.; Stefanescu, M. [Institute of Biology of Romanian Academy, Bucharest (Romania)] [and others

    1995-12-31

    In Romania after more than 135 years of oil production and processing, some severe environmental pollution problems have accumulated. In this context a joint research group from Institute of Biology Bucharest and S.C. Petrostar S.A. Ploiesti became involved in a research project on bioremediation of an environment contaminated with hydrocarbon waste. In the first stage of this project, investigations on microbial communities occurring in environments contaminated with oil were carried out. In the second stage, the hundreds of bacterial strains and populations isolated from soils, slops, and water sites contaminated with waste oil and water waste oil mix were submitted to a screening program, to select a naturally occurring mixed culture with a high ability to degrade hydrocarbons.

  18. Cuticular hydrocarbons as potential kin recognition cues in a subsocial spider

    DEFF Research Database (Denmark)

    Grinsted, Lena; Bilde, Trine; D'Ettorre, Patrizia

    2011-01-01

    of recognition cues in subsocial species can provide insights into evolutionary pathways leading to permanent sociality and kin-selected benefits of cooperation. In subsocial spiders, empirical evidence suggests the existence of both kin recognition and benefits of cooperating with kin, whereas the cues for kin...... recognition have yet to be identified. However, cuticular hydrocarbons have been proposed to be involved in regulation of tolerance and interattraction in spider sociality. Here, we show that subsocial Stegodyphus lineatus spiderlings have cuticular hydrocarbon profiles that are sibling-group specific, making...... be branched alkanes that are influenced very little by rearing conditions and may be genetically determined. This indicates that a specific group of cuticular chemicals, namely branched alkanes, could have evolved to act as social recognition cues in both insects and spiders....

  19. Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: An Overview

    OpenAIRE

    Norzila Othman; Mohd Irwan Juki; Norhana Hussain; Suhaimi Abdul Talib

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of priority pollutants which are present at high concentration in soils of many industrially contaminated sites. Standards and criteria for the remediation of soils contaminated with PAHs vary widely between countries. Bioremediation has gained preference as a technology for remediation contaminated sites as it is less expensive and more environmental friendly. Bioremediation utilizes microorganisms to degrade PAHs to less toxic compou...

  20. Microbial activity in an acid resin deposit: Biodegradation potential and ecotoxicology in an extremely acidic hydrocarbon contamination

    International Nuclear Information System (INIS)

    Kloos, Karin; Schloter, Michael; Meyer, Ortwin

    2006-01-01

    Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1. - Acidity is the major toxic factor of the extremely hydrophobic and acidic mixed contamination found in an acid resin deposit

  1. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    Science.gov (United States)

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments.

  2. Experimental and theoretical investigation of Fe-catalysis phenomenon in hydrogen thermal desorption form hydrocarbon plasma-discharge films from T-10 tokamak

    International Nuclear Information System (INIS)

    Stankevich, V.G.; Svechnikov, N.Y.; Lebedev, A.M.; Menshikov, K.A.; Kolbasov, B.N.; Sukhanov, L.P.

    2017-01-01

    A comprehensive study of hydrocarbon films obtained in the plasma discharge of large fusion facilities will allow the minimization of parasitic capture. The investigation of the effect of Fe impurities on D 2 thermal desorption (TD) from homogeneous CD x films (x ∼ 0.5) formed in the D-plasma discharge of the T-10 tokamak were carried out. The experimental TD spectra of the films showed 2 groups of peaks at 650-850 K and 900-1000 K for 2 adsorption states. The main result of the iron catalysis effect consists in the shift of the high-temperature peak by -24 K and in the increase in the fraction of the weakly bonded adsorption states. To describe the effect of iron impurities on TD of hydrogen isotopes, a structural cluster model based on the interaction of the Fe + ion with the 1,3-C 6 H 8 molecule was proposed. The potential energy surfaces of chemical reactions with the H 2 elimination were calculated using ab initio methods of quantum chemistry. It was established that the activation barrier of hydrogen TD is reduced by about 1 eV due to the interaction of the Fe + ion with the π-subsystem of the 1,3-C 6 H 8 molecule leading to a redistribution of the double bonds along the carbon system

  3. Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Bonduelle, Colin; Rytkönen, Jussi; Raula, Janne; Almeida, Sérgio; Närvänen, Ale; Salonen, Jarno J; Lecommandoux, Sebastien; Hirvonen, Jouni T; Santos, Hélder A

    2015-01-28

    Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.

  4. Potential sources of hydrocarbons and their microbial degradation in sediments from the deep geothermal Lusi site, Indonesia

    Science.gov (United States)

    Krueger, Martin; Mazzini, Adriano; Scheeder, Georg; Blumenberg, Martin

    2017-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems, which started in 2006 following an earthquake on Java Island. Since then it has been continuously producing hot and hydrocarbon rich mud from a central crater with peaks reaching 180.000 m3 per day. Numerous investigations focused on the study of microbial communities which thrive at offshore methane and oil seeps and mud volcanoes, however very little has been done on onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 as well as of liquid hydrocarbons originating from one or more km below the surface. While the source of the methane at Lusi is unambiuous, the origin of the seeping oil is still discussed. Both, source and maturity estimates from biomarkers, are in favor of a type II/III organic matter source. Likely the oils were formed from the studied black shales (deeper Ngimbang Fm.) which contained a Type III component in the Type II predominated organic matter. In all samples large numbers of active microorganisms were present. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade different hydrocarbons. The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Ongoing microbial activity in crater sediment samples under high temperatures (80-95C) indicate a deep origin of the involved microorganisms. First results of molecular analyses of the microbial community compositions confirm the above findings. This study represents an initial step to better understand onshore seepage systems and provides an ideal analogue for comparison with the better investigated offshore structures.

  5. Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed

    Directory of Open Access Journals (Sweden)

    Olek Malgorzata

    2013-01-01

    Full Text Available Abstract Background The process of thermal decomposition of dichloromethane (DCM and chlorobenzene (MCB during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature. Results The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor. Conclusions Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%.

  6. An accurate evaluation of the potential hazardous impact of Polycyclic Aromatic Hydrocarbons in biochars

    Science.gov (United States)

    María De la Rosa, José; Sánchez-Martín, Águeda; Villaverde-Capellán, Jaime; Madrid, Fernando; Paneque, Marina; Knicker, Heike

    2017-04-01

    Biochar may act as a soil conditioner, enhancing plant growth by supplying and retaining nutrients and by providing other services such as improving soil physical, chemical and biological properties. Feedstock properties and production conditions drive the nature of produced biochars [1]. Special attention have to be paid to their content of polycyclic aromatic hydrocarbons (PAHs), which are persistent organic pollutants formed during biochar production due to incomplete combustion (pyrolysis step) [2]. These PAHs may enter the environment when the biochar is applied as soil conditioner. Therefore, the intention of this study was to test a potential hazardous impact of biochar amendment due to the presence of PAHs. In order to find a relationship between pyrolysis conditions, feedstock and abundance of PAHs, four biochars produced from different feedstock were analyzed. Three biochars were produced by technical pyrolysis (500-600 °C; 20 min) from wood, paper sludge and sewage sludge respectively (samples B1, B2 and B3). The fourth biochar sample derived from old grapevine wood by using the traditional carbonization method in kilns (kiln-stack wood biochar; B4). A detailed characterization of physical and chemical properties of these samples can be found in De la Rosa et al, [3]. Two different PAHs extraction techniques were applied to evaluate the total and available PAHs content of the biochars. They consisted in an extraction with toluene using a Soxhlet extractor and a non-exhaustive extraction with Cyclodextrins (CDs). Chromatographic and mass spectrometric conditions applied are described in [1]. Total PAHs yielded between 3 ppm (B3) and 7 (B4) ppm. The production of biochar by using traditional kilns instead of controlled pyrolysis, increased significantly the total PAHs levels. No direct relationship was found between the total PAHs and the PAHs extracted by CDs, which can be considered as the bioavailable fraction. This parameter should replace the total

  7. Geology and hydrocarbon potential of the Dead Sea Rift Basins of Israel and Jordan

    Science.gov (United States)

    Coleman, James; ten Brink, Uri S.

    2016-01-01

    Following its middle Miocene inception, numerous basins of varying lengths and depths developed along the Dead Sea fault zone, a large continental transform plate boundary. The modern day left-lateral fault zone has an accumulated left-lateral offset of 105 to 110 km (65 to 68 mi). The deepest basin along the fault zone, the Lake Lisan or Dead Sea basin, reaches depths of 7.5 to 8.5 km (24,500 ft to 28,000 ft), and shows evidence of hydrocarbons. The basins are compartmentalized by normal faulting associated with rapid basin subsidence and, where present, domal uplift accompanying synrift salt withdrawal.

  8. Characterization of coal-derived hydrocarbons and source-rock potential of coal beds, San Juan Basin, New Mexico and Colorado, U.S.A.

    Science.gov (United States)

    Rice, D.D.; Clayton, J.L.; Pawlewicz, M.J.

    1989-01-01

    .5 ppt), are chemically wetter (C1/C1-5 values range from 0.85 to 0.95), and contain less CO2 (< 2%). These gases are interpreted to have been derived from type III kerogen dispersed in marine shales of the underlying Lewis Shale and nonmarine shales of the Fruitland Formation. In the underlying Upper Cretaceous Dakota Sandstone and Tocito Sandstone Lentil of the Mancos Shale, another gas type is produced. This gas is associated with oil at intermediate stages of thermal maturity and is isotopically lighter and chemically wetter at the intermediate stage of thermal maturity as compared with gases derived from dispersed type III kerogen and coal; this gas type is interpreted to have been generated from type II kerogen. Organic matter contained in coal beds and carbonaceous shales of the Fruitland Formation has hydrogen indexes from Rock-Eval pyrolysis between 100 and 350, and atomic H:C ratios between 0.8 and 1.2. Oxygen indexes and atomic O:C values are less than 24 and 0.3, respectively. Extractable hydrocarbon yields are as high as 7,000 ppm. These values indicate that the coal beds and carbonaceous shales have good potential for the generation of liquid hydrocarbons. Voids in the coal filled with a fluorescent material that is probably bitumen is evidence that liquid hydrocarbon generation has taken place. Preliminary oil-source rock correlations based on gas chromatography and stable carbon isotope ratios of C15+ hydrocarbons indicate that the coals and (or) carbonaceous shales in the Fruitland Formation may be the source of minor amounts of condensate produced from the coal beds at relatively low levelsof thermal maturity (Rm=0.7). ?? 1989.

  9. Bioremediation Potential of Native Hydrocarbons Degrading Bacteria in Crude Oil Polluted Soil

    Directory of Open Access Journals (Sweden)

    Mariana MARINESCU

    2017-05-01

    Full Text Available Bioremediation of crude oil contaminated soil is an effective process to clean petroleum pollutants from the environment. Crude oil bioremediation of soils is limited by the bacteria activity in degrading the spills hydrocarbons. Native crude oil degrading bacteria were isolated from different crude oil polluted soils. The isolated bacteria belong to the genera Pseudomonas, Mycobacterium, Arthrobacter and Bacillus. A natural biodegradable product and bacterial inoculum were used for total petroleum hydrocarbon (TPH removal from an artificial polluted soil. For soil polluted with 5% crude oil, the bacterial top, including those placed in the soil by inoculation was 30 days after impact, respectively 7 days after inoculum application, while in soil polluted with 10% crude oil,  multiplication top of bacteria was observed in the determination made at 45 days after impact and 21 days after inoculum application, showing once again how necessary is for microorganisms habituation and adaptation to environment being a function of pollutant concentration. The microorganisms inoculated showed a slight adaptability in soil polluted with 5% crude oil, but complete inhibition in the first 30 days of experiment at 10% crude oil.

  10. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment.

    Science.gov (United States)

    Andrade, Luiza L; Leite, Deborah C A; Ferreira, Edir M; Ferreira, Lívia Q; Paula, Geraldo R; Maguire, Michael J; Hubert, Casey R J; Peixoto, Raquel S; Domingues, Regina M C P; Rosado, Alexandre S

    2012-08-30

    Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Mangrove sediment was sampled from 0-5, 15-20 and 35-40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0-5 cm) being greater than in both deeper sediment layers (15-20 and 35-40 cm), which were similar to each other.

  11. Modeling potential migration of petroleum hydrocarbons from a mixed-waste disposal site in the vadose zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Walton, J.C.; Baca, R.G.

    1989-01-01

    Environmental monitoring of a mixed-waste disposal site at the Idaho National Engineering Laboratory has confirmed release and migration into the vadose zone of: (1) chlorinated hydrocarbons in the vapor phase and (2) trace levels of certain transuranic elements. The finding has prompted an evaluation of the potential role of waste petroleum hydrocarbons in mediating or influencing contaminant migration from the disposal site. Disposal records indicate that a large volume of machine oil contaminated with transuranic isotopes was disposed at the site along with the chlorinated solvents and other radioactive wastes. A multiphase flow model was used to assess the possible extent of oil and vapor movement through the 177 m thick vadose zone. One dimensional simulations were performed to estimate the vertical distribution of the vapor phase, the aqueous phase, and immiscible free liquid as a function of time. The simulations indicate that the oil may migrate slowly through the vadose zone, to potentially significant depths. Calculated transport rates support the following ranking with regard to relative mobility: vapor phase > aqueous phase > free liquid. 21 refs., 7 figs., 2 tabs

  12. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Poulsen, Tjalfe; Mortensen, Lars

    2010-01-01

    for biodegradation was highly variable, which from autoregressive state-space modeling was partly explained by changes in soil air-filled porosity and gravimetric water content. The results suggest considering biological heterogeneity when evaluating the fate of contaminants in the subsurface.......Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused...... on the shallow unsaturated zone. Based on a data set comprising analysis of about 100 soil samples taken in a 16-m-deep unsaturated zone polluted with volatile petroleum compounds, we statistically and geostatistically analyzed values of essential soil properties. The subsurface of the site was highly layered...

  13. Ephemeral-fluvial sediments as potential hydrocarbon reservoirs. Vol. 1: Sedimentology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, K.S.

    1994-12-31

    Although reservoirs formed from ephemeral-fluvial sandstones have previously been considered relatively simple, unresolved problems of sandbody correlation and production anomalies demonstrate the need for improved understanding of their internal complexity. Outcropping ephemeral-fluvial systems have been studied in order to determine the main features and processes occurring in sand-rich ephemeral systems and to identify which features will be of importance in a hydrocarbon reservoir. The Lower Jurassic Upper Moenave and Kayenta Formations of south-eastern Utah and northern Arizona comprise series of stacked, sand-dominated sheet-like palaeochannels suggestive of low sinuosity, braided systems. Low subsidence rates and rapid lateral migration rates enabled channels to significantly modify their widths during high discharge. (author)

  14. The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico coastal microbial communities after the Deepwater Horizon oil spill

    Directory of Open Access Journals (Sweden)

    Anthony D. Kappell

    2014-05-01

    Full Text Available The Deepwater Horizon (DWH blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bacterial community composition, and PAH degradation capacity of a heavily oiled and non-oiled beach following the oil exposure. With a non-expression functional gene microarray targeting 539 gene families, we detected 28,748 coding sequences. Of these sequences, 10% were uniquely associated with the severely oil-contaminated beach and 6.0% with the non-oiled beach. There was little variation in the functional genes detected between the two beaches; however the relative abundance of functional genes involved in oil degradation pathways, including PAHs, were greater in the oiled beach. The microbial PAH degradation potentials of both beaches, were tested in mesocosms. Mesocosms were constructed in glass columns using sands with native microbial communities, circulated with artificial sea water and challenged with a mixture of PAHs. The low-molecular weight PAHs, fluorene and naphthalene, showed rapid depletion in all mesocosms while the high-molecular weight benzo[α]pyrene was not degraded by either microbial community. Both the heavily oiled and the non-impacted coastal communities showed little variation in their biodegradation ability for low molecular weight PAHs. Massively-parallel sequencing of 16S rRNA genes from mesocosm DNA showed that known PAH degraders and genera frequently associated with oil hydrocarbon degradation represented a major portion of the bacterial community. The observed similar response by microbial communities from beaches with a different recent history of oil exposure suggests that Gulf Coast beach communities are primed for PAH

  15. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment

    Directory of Open Access Journals (Sweden)

    Andrade Luiza L

    2012-08-01

    Full Text Available Abstract Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil, which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm being greater than in both deeper sediment layers (15–20 and 35–40 cm, which were similar to each other.

  16. Hydrocarbon potential, palynology and palynofacies of four sedimentary basins in the Benue Trough, northern Cameroon

    Science.gov (United States)

    Bessong, Moïse; Hell, Joseph Victor; Samankassou, Elias; Feist-Burkhardt, Susanne; Eyong, John Takem; Ngos, Simon, III; Nolla, Junior Désiré; Mbesse, Cecile Olive; Adatte, Thierry; Mfoumbeng, Marie Paule; Dissombo, Edimo André Noel; Ntsama, Atangana Jacqueline; Mouloud, Bennami; Ndjeng, Emmanuel

    2018-03-01

    Organic geochemical, palynological and palynofacies analyses were carried out on 79 selected samples from four sedimentary basins (Mayo-Rey, Mayo-Oulo-Lere, Hamakoussou and Benue) in northern Cameroon. Rock-Eval pyrolysis and Total Organic Carbon results indicate that most of the samples of the studied basins are thermally immature to mature. The organic matter consists of terrestrial components (peat, lignite, bituminous coal, and anthracite) associated with organic matter of marine origin. Based on the appraisal of multiple parameters: Total Organic Carbon (TOC), maximum Temperature (T-max), Hydrogen Index (HI), Oxygen Index (OI) and Production Index (PI), some samples are organically rich both in oil and/or gas-prone kerogen Type-II, II/III and III. The source rock quality ranges from poor to very good. The source material is composed of both algae and higher plants. Samples from these basins yielded palynological residue composed of translucent and opaque phytoclasts, Amorphous Organic Matter (AOM), fungal remains, algal cysts pollen and pteridophyte spores. Abundance and diversity of the palynomorphs overall low and include Monoporopollenites annulatus (= Monoporites annulatus), indeterminate periporate pollen, indeterminate tetracolporate pollen, indeterminate tricolporate pollen, indeterminate triporate pollen, indeterminate trilete spores, Polypodiaceoisporites spp., Biporipsilonites sp., Rhizophagites sp., Striadiporites sp., Botryococcus sp. (colonial, freshwater green algae), and Chomotriletes minor (cyst of zygnematalean freshwater green algae). Age assigned confidently for all these basins the palynological data except for one sample of Hamakoussou that can be dated as Early to Mid-Cretaceous in age. Callialasporites dampieri, Classopollis spp., Eucommiidites spp. and Araucariacites australis indicate, an Aptian to Cenomanian age. The other pollen and spores recovered may indicate a Tertiary or younger age (especially Monoporopollenites annulatus), or

  17. A new hydrocarbon empirical potential in angle bending calculation for the molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tan Ai; Hoe, Yeak Su [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor Darul Takzim (Malaysia)

    2014-07-10

    Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.

  18. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Ying eHe

    2013-06-01

    Full Text Available Deep-sea hydrothermal vent chimneys contain a high diversity of microorganisms, yet the metabolic activity and the ecological functions of the microbial communities remain largely unexplored. In this study, a metagenomic approach was applied to characterize the metabolic potential in a Guaymas hydrothermal vent chimney and to conduct comparative genomic analysis among a variety of environments with sequenced metagenomes. Complete clustering of functional gene categories with a comparative metagenomic approach showed that this Guaymas chimney metagenome was clustered most closely with a chimney metagenome from Juan de Fuca. All chimney samples were enriched with genes involved in recombination and repair, chemotaxis and flagellar assembly, highlighting their roles in coping with the fluctuating extreme deep-sea environments. A high proportion of transposases was observed in all the metagenomes from deep-sea chimneys, supporting the previous hypothesis that horizontal gene transfer may be common in the deep-sea vent chimney biosphere. In the Guaymas chimney metagenome, thermophilic sulfate reducing microorganisms including bacteria and archaea were found predominant, and genes coding for the degradation of refractory organic compounds such as cellulose, lipid, pullullan, as well as a few hydrocarbons including toluene, ethylbenzene and o-xylene were identified. Therefore, this oil-immersed chimney supported a thermophilic microbial community capable of oxidizing a range of hydrocarbons that served as electron donors for sulphate reduction under anaerobic conditions.

  19. Depositional environment, organic matter characterization and hydrocarbon potential of Middle Miocene sediments from northeastern Bulgaria (Varna-Balchik Depression

    Directory of Open Access Journals (Sweden)

    Zdravkov Alexander

    2015-10-01

    Full Text Available The depositional environments and hydrocarbon potential of the siliciclastic, clayey and carbonate sediments from the Middle Miocene succession in the Varna-Balchik Depression, located in the south-eastern parts of the Moesian Platform, were studied using core and outcrop samples. Based on the lithology and resistivity log the succession is subdivided from base to top into five units. Siliciclastic sedimentation prevailed in the lower parts of units I and II, whereas their upper parts are dominated by carbonate rocks. Unit III is represented by laminated clays and biodetritic limestone. Units IV and V are represented by aragonitic sediments and biomicritic limestones, correlated with the Upper Miocene Topola and Karvuna Formations, respectively. Biogenic silica in the form of diatom frustules and sponge spicules correlates subunit IIa and unit III to the lower and upper parts of the Middle Miocene Euxinograd Formation. Both (subunits contain organic carbon contents in the order of 1 to 2 wt. % (median: 0.8 for subunit IIa; 1.3 for unit III, locally up to 4 wt. %. Based on Hydrogen Index values (HI and alkane distribution pattern, the kerogen is mainly type II in subunit IIa (average HI= 324 mg HC/g TOC and type III in unit III (average HI ~200 mg HC/g TOC. TOC and Rock Eval data show that subunit IIa holds a fair (to good hydrocarbon generative potential for oil, whereas the upper 5 m of unit III holds a good (to fair potential with the possibility to generate gas and minor oil. The rocks of both units are immature in the study area. Generally low sulphur contents are probably due to deposition in environments with reduced salinity. Normal marine conditions are suggested for unit III. Biomarker composition is typical for mixed marine and terrestrial organic matter and suggests deposition in dysoxic to anoxic environments.

  20. Aliphatic and polycyclic aromatic hydrocarbons in Gulf of Trieste sediments (northern Adriatic): potential impacts of maritime traffic.

    Science.gov (United States)

    Bajt, Oliver

    2014-09-01

    The Gulf of Trieste (northern Adriatic) is one of the most urbanized and industrialized areas in the northern Adriatic, with intense maritime traffic experienced at multiple ports. The impact of maritime traffic on contamination by hydrocarbons in this area was assessed. Concentrations of hydrocarbons were higher near the expected contamination sources and still elevated in the adjacent offshore areas. Aliphatic hydrocarbons were mainly of petrogenic origin, with some contribution of biogenic origin. A continuous contamination by aliphatic hydrocarbons and degradation processes were hypothesized. Concentrations of total polycyclic aromatic hydrocarbons (PAH) were generally greater near the contamination sources. Compared to the prevailing pyrolytic origin, the petrogenic PAH origin seemed to be less important, but not negligible. Results revealed that intensive maritime traffic is a probable source of contamination by hydrocarbons in the investigated area, which is largely limited to areas near the contamination sources.

  1. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials

    International Nuclear Information System (INIS)

    Yang, Y.; Zhang, N.; Xue, M.; Lu, S.T.; Tao, S.

    2011-01-01

    The microbial activity in soils was a critical factor governing the degradation of organic micro-pollutants. The present study was conducted to analyze the effects of soil organic matter on the development of degradation potentials for polycyclic aromatic hydrocarbons (PAHs). Most of the degradation kinetics for PAHs by the indigenous microorganisms developed in soils can be fitted with the Logistic growth models. The microbial activities were relatively lower in the soils with the lowest and highest organic matter content, which were likely due to the nutrition limit and PAH sequestration. The microbial activities developed in humic acid (HA) were much higher than those developed in humin, which was demonstrated to be able to sequester organic pollutants stronger. The results suggested that the nutrition support and sequestration were the two major mechanisms, that soil organic matter influenced the development of microbial PAHs degradation potentials. - Research highlights: → PAH degradation kinetics obey Logistic model. → Degradation potentials depend on soil organic carbon content. → Humin inhibits the development of PAH degradation activity. → Nutrition support and sequestration regulate microbial degradation capacity. - Soil organic matter regulated PAH degradation potentials through nutrition support and sequestration.

  2. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P gas chromatography-mass spectrometer (GC-MS) analysis. The concentration of Benzo[a]Pyrene, BaP (EU and National limit value: 1 ng m-3 in PM10), varied from 0.065 ng m-3 during autumn time to 0.872 ng m-3 in spring time (NA01) and from 0.120 ng m-3 during autumn time to 1.48 ng m-3 of winter time (NA02) with four overshoots. In NA02 the trend of Σ12 PAHs was comparable to NA01 but were observed higher values than NA01. In fact, the mean concentration of Σ12 PAHs, in urban-traffic site was generally 2 times greater than in urban-background site in all the campaigns. PAHs with 5 and 6 ring, many of which are suspected carcinogens or genotoxic agents, (i.e Benzo[a]Pyrene, Indeno[1,2,3-cd]Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene and Benzo[g,h,i]Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ

  3. An integrated geophysical study on the Mesozoic strata distribution and hydrocarbon potential in the South China Sea

    Science.gov (United States)

    Hu, Weijian; Hao, Tianyao; Jiang, Weiwei; Xu, Ya; Zhao, Baimin; Jiang, Didi

    2015-11-01

    A series of drilling, dredge, and seismic investigations indicate that Mesozoic sediments exist in the South China Sea (SCS) which shows a bright prospect for oil and gas exploration. In order to study the distribution of Mesozoic strata and their residual thicknesses in the SCS, we carried out an integrated geophysical study based mainly on gravity data, gravity basement depth and distribution of residual Mesozoic thickness in the SCS were obtained using gravity inversion constrained with high-precision drilling and seismic data. In addition, the fine deep crustal structures and distribution characteristics of Mesozoic thicknesses of three typical profiles were obtained by gravity fitting inversion. Mesozoic strata in the SCS are mainly distributed in the south and north continental margins, and have been reformed by the later tectonic activities. They extend in NE-trending stripes are macro-controlled by the deep and large NE-trending faults, and cut by the NW-trending faults which were active in later times. The offset in NW direction of Mesozoic strata in Nansha area of the southern margin are more obvious as compared to the north margin. In the Pearl River Mouth Basin and Southwest Taiwan Basin of the north continental margin the Mesozoic sediments are continuously distributed with a relatively large thickness. In the Nansha area of the south margin the Mesozoic strata are discontinuous and their thicknesses vary considerably. According to the characteristics of Mesozoic thickness distribution and hydrocarbon potential analyses from drilling and other data, Dongsha Uplift-Chaoshan Depression, Southwest Taiwan Basin-Peikang Uplift and Liyue Bank have large thickness of the Mesozoic residual strata, have good hydrocarbon genesis capability and complete source-reservoir-cap combinations, show a bright prospect of Mesozoic oil/gas resources.

  4. STRATIGRAPHIC EVOLUTION, PALEOENVIRONMENTS AND HYDROCARBON POTENTIALS OF THE BENUE/DAHOMEY BASINS, NIGERIAN AND POTIGUAR/CEARA BASINS, NE BRAZIL

    International Nuclear Information System (INIS)

    Akande, S.O; Adekeye, O.A.; Oj, O.J; Erdtmann, B.D.; Koutsokous, E.I.

    2004-01-01

    The stratigraphy, facies relationship and paleoenvironment of selected West African and the Brazillian rift basins permit the recognition of at least two major petroleum systems apart from the prolific Niger Delta petroleum system. The Lower Cretaceous fluivio-lacustrine petroleum system and Upper Cretaceous to Lower Tertiary, marine dominated petroleum system. Our combined studies of the stratigraphic, structural framework, paleoenvironment and time-space relationships of the petroleum systems in the Benue/Dahomey and the Potiguar/Ceara basins indicated that rifting and subsequent drifting during the opening of the South Atlantic controlled subsidence, sediment deposition and facies associations in individual basins. Whereas in the Potiguar/Ceara basins, the best developed source rocks are within the Neomacin-Aptian fluvio- lacustrine sequence of the Pendencia and Alagamar Formations which generated reserved hydrocarbon in the Acu Formation, empirical evidence for this petroleum system in the contiguous Benue/Dahomey basins are only based on the geochemical characteristics of the lower parts of the Bima Formation and the Abeokuta Group. In contrast, the Upper Cretaceous-Lower Tertiary marine petroleum system, which is constrained by poor development of reservoirs in the Potiguar/Ceara basin is productive in the Benue/Dahomey basins where source rocks, reservoir and sealing facies occur at this interval. Considering the recent hydrocarbon discoveries of the East Niger basin, the Doba (southern Chad), the Muglad basin (southern Sudan) sourced from the fluvio-lacustrine rift sequences, we suggest that this petroleum system needs more detailed exploration and has some potentials in the Benue/Dahomey frontier basins

  5. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  6. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan.

    Science.gov (United States)

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight

    Science.gov (United States)

    Jiang, Huanhuan; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E.

    2016-04-01

    The oxidative potential of various secondary organic aerosols (SOA) was measured using dithiothreitol (DTT) assay to understand how organic aerosols react with cellular materials. SOA was produced via the photooxidation of four different hydrocarbons (toluene, 1,3,5-trimethylbenzene, isoprene and α-pinene) in the presence of NOx using a large outdoor photochemical smog chamber. The DTT consumption rate was normalized by the aerosol mass, which is expressed as DTTmass. Toluene SOA and isoprene SOA yielded higher DTTmass than 1,3,5-trimethylbenzene SOA or α-pinene SOA. In order to discover the correlation between the molecular structure and oxidative potential, the DTT responses of selected model compounds were also measured. Among them, conjugated aldehydes, quinones, and H2O2 showed considerable DTT response. To investigate the correlation between DTT response and cell responses in vitro, the expression of biological markers, i.e. IL-6, IL-8, and HMOX-1 were studied using small airway epithelial cells. Higher cellular expression of IL-8 was observed with toluene SOA exposure compared to 1,3,5-trimethylbenzene SOA exposure, which aligned with the results from DTT assay. Our study also suggests that within the urban atmosphere, the contribution of toluene SOA and isoprene SOA to the oxidative potential of ambient SOA will be more significant than that of α-pinene SOA.

  8. Source apportionment of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH) associated to airborne PM10 by a PMF model.

    Science.gov (United States)

    Callén, M S; Iturmendi, A; López, J M; Mastral, A M

    2014-02-01

    In order to perform a study of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH), benzo(a)pyrene equivalent (BaP-eq) concentration was calculated and modelled by a receptor model based on positive matrix factorization (PMF). Nineteen PAH associated to airborne PM10 of Zaragoza, Spain, were quantified during the sampling period 2001-2009 and used as potential variables by the PMF model. Afterwards, multiple linear regression analysis was used to quantify the potential sources of BaP-eq. Five sources were obtained as the optimal solution and vehicular emission was identified as the main carcinogenic source (35 %) followed by heavy-duty vehicles (28 %), light-oil combustion (18 %), natural gas (10 %) and coal combustion (9 %). Two of the most prevailing directions contributing to this carcinogenic character were the NE and N directions associated with a highway, industrial parks and a paper factory. The lifetime lung cancer risk exceeded the unit risk of 8.7 x 10(-5) per ng/m(3) BaP in both winter and autumn seasons and the most contributing source was the vehicular emission factor becoming an important issue in control strategies.

  9. Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Rob; Wang, Zhenwei; Jankovic, Jasna; Yick, Sing; Maric, Radenka; Ghosh, Dave [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Kesler, Olivera [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada); Rose, Lars [National Research Council Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada); Department of Materials Engineering, University of British Columbia, 309-6350 Stores Road, Vancouver, BC V6T 1Z4 (Canada)

    2007-07-10

    In this article, the applications, potential advantages, and challenges of thermal plasma spray (PS) processing for nanopowder production and cell fabrication of solid oxide fuel cells (SOFCs) are reviewed. PS processing creates sufficiently high temperatures to melt all materials fed into the plasma. The heated material can either be quenched into oxide powders or deposited as coatings. This technique has been applied to directly deposit functional layers as well as nanopowder for SOFCs application. In particularly, low melting point and highly active electrodes can be directly fabricated on zirconia-based electrolytes. This is a simple processing technique that does not require the use of organic solvents, offering the opportunity for flexible adjustment of process parameters, and significant time saving in production of the cell and cost reduction compared with tape casting, screen printing and sintering processing steps. Most importantly, PS processing shows strong potential to enable the deposition of metal-supported SOFCs through the integrated fabrication of membrane-electrode assemblies (MEA) on porous metallic substrates with consecutive deposition steps. On the other hand, the application of PS processing to produce SOFCs faces some challenges, such as insufficient porosity of the electrodes, the difficulty of obtaining a thin (<10 {mu}m) and dense electrolyte layer. Fed with H{sub 2} as the fuel gas and oxygen as the oxidant gas, the plasma sprayed cell reached high power densities of 770 mW cm{sup -2} at 900 C and 430 mW cm{sup -2} at 800 C at a cell voltage of 0.7 V. (author)

  10. Influence of Parameters of a Reactive Interatomic Potential on the Properties of Saturated Hydrocarbons

    Science.gov (United States)

    2017-01-01

    illustrate a summary of the information obtained. Again, recall that the facto- rial design in Table 2 describes the values for all the MEAM parameters...Phys Rev B. 2001;64(18):184102. 9. Lee BJ, Shim JH, Baskes MI. Semiempirical atomic potentials for the fcc metals Cu , Ag, Au, Ni, Pd, Pt, Al, and Pb...Wagner GJ, Moitra A, Baskes MI. Modified embedded atom method potential for Al, Si, Mg, Cu , and Fe alloys. Phys Rev B. 2012;85(24):245102. 17. Kim HK

  11. Ranking harbours in the maritime provinces of Canada for potential to contaminate American lobster (Homarus americanus) with polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Prouse, N.J.

    1994-01-01

    Polycyclic aromatic hydrocarbons (PAHs) comprise a suite of contaminants that enter the marine environment through a variety of natural and anthropogenic sources. PAHs, including carcinogenic compounds, bioaccumulate in the tissues of exposed American lobsters (Homarus americanus). High PAH concentrations in lobster tissues necessitated the closure of the lobster fishery in the South Arm of Sydney Harbour, Nova Scotia, in 1982. A study was conducted to assess harbors in Nova Scotia, New Brunswick, and Prince Edward Island to determine if there might be a reason for concern about PAH contamination of lobsters. Adjacent commercial and industrial activity, harbor uses, the surrounding population, and PAH point sources were evaluated for each harbor selected for study. Areas of lobster fishing and the number of permanent lobster holding facilities within each harbor were also determined. Harbors were then ranked according to their potential for PAH contamination. Point sources for PAHs within these harbors included petroleum and coal products plants, oil refineries, chemical plants, coal-fired generating stations, and fuel combustion in land vehicles and ships. After Sydney, the harbors with the highest potential for PAH contamination were determined to be Halifax, Saint John, Pictou, and Port Hawkesbury Ship Harbour. 60 refs., 15 figs., 7 tabs.

  12. Albedo and land surface temperature shift in hydrocarbon seepage potential area, case study in Miri Sarawak Malaysia

    Science.gov (United States)

    Suherman, A.; Rahman, M. Z. A.; Busu, I.

    2014-02-01

    The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area.

  13. Albedo and land surface temperature shift in hydrocarbon seepage potential area, case study in Miri Sarawak Malaysia

    International Nuclear Information System (INIS)

    Suherman, A; Rahman, M Z A; Busu, I

    2014-01-01

    The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area

  14. Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site.

    Science.gov (United States)

    Pawlik, Małgorzata; Cania, Barbara; Thijs, Sofie; Vangronsveld, Jaco; Piotrowska-Seget, Zofia

    2017-08-01

    Many endophytic bacteria exert beneficial effects on their host, but still little is known about the bacteria associated with plants growing in areas heavily polluted by hydrocarbons. The aim of the study was characterization of culturable hydrocarbon-degrading endophytic bacteria associated with Lotus corniculatus L. and Oenothera biennis L. collected in long-term petroleum hydrocarbon-polluted site using culture-dependent and molecular approaches. A total of 26 hydrocarbon-degrading endophytes from these plants were isolated. Phylogenetic analyses classified the isolates into the phyla Proteobacteria and Actinobacteria. The majority of strains belonged to the genera Rhizobium, Pseudomonas, Stenotrophomonas, and Rhodococcus. More than 90% of the isolates could grow on medium with diesel oil, approximately 20% could use n-hexadecane as a sole carbon and energy source. PCR analysis revealed that 40% of the isolates possessed the P450 gene encoding for cytochrome P450-type alkane hydroxylase (CYP153). In in vitro tests, all endophytic strains demonstrated a wide range of plant growth-promoting traits such as production of indole-3-acetic acid, hydrogen cyanide, siderophores, and phosphate solubilization. More than 40% of the bacteria carried the gene encoding for the 1-aminocyclopropane-1-carboxylic acid deaminase (acdS). Our study shows that the diversity of endophytic bacterial communities in tested plants was different. The results revealed also that the investigated plants were colonized by endophytic bacteria possessing plant growth-promoting features and a clear potential to degrade hydrocarbons. The properties of isolated endophytes indicate that they have the high potential to improve phytoremediation of petroleum hydrocarbon-polluted soils.

  15. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Bacosa, Hernando Pactao, E-mail: hernando.bacosa@utexas.edu [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373 (United States); Inoue, Chihiro [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-02-11

    Highlights: • Most bacterial consortia from tsunami sediment degraded PAH mixture and pyrene. • The consortia were dominated by known and unknown PAHs-degrading bacteria. • Dokdonella clone is a potential new species and PAH degrader from tsunami sediment. • PAH-RHDα is better than nidA gene for estimating pyrene-degraders in the consortia. • First report on the PAH degradation and PAH-degrading bacteria from tsunami sediment. - Abstract: The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.

  16. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan

    International Nuclear Information System (INIS)

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    Highlights: • Most bacterial consortia from tsunami sediment degraded PAH mixture and pyrene. • The consortia were dominated by known and unknown PAHs-degrading bacteria. • Dokdonella clone is a potential new species and PAH degrader from tsunami sediment. • PAH-RHDα is better than nidA gene for estimating pyrene-degraders in the consortia. • First report on the PAH degradation and PAH-degrading bacteria from tsunami sediment. - Abstract: The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils

  17. Phonon transmission and thermal conductance in one-dimensional system with on-site potential disorder

    International Nuclear Information System (INIS)

    Ma Songshan; Xu Hui; Deng Honggui; Yang Bingchu

    2011-01-01

    The role of on-site potential disorder on phonon transmission and thermal conductance of one-dimensional system is investigated. We found that the on-site potential disorder can lead to the localization of phonons, and has great effect on the phonon transmission and thermal conductance of the system. As on-site potential disorder W increases, the transmission coefficients decrease, and approach zero at the band edges. Corresponding, the thermal conductance decreases drastically, and the curves for thermal conductance exhibit a series of steps and plateaus. Meanwhile, when the on-site potential disorder W is strong enough, the thermal conductance decreases dramatically with the increase of system size N. We also found that the efficiency of reducing thermal conductance by increasing the on-site potential disorder strength is much better than that by increasing the on-site potential's amplitude. - Highlights: → We studied the effect of on-site potential disorder on thermal transport. → Increasing disorder will decrease thermal transport. → Increasing system size will also decrease its thermal conductance. → Increasing disorder is more efficient than other in reducing thermal conductance.

  18. Sedimentary environments and hydrocarbon potential of cretaceous rocks of indus basin, Pakistan

    International Nuclear Information System (INIS)

    Sheikh, S.A.; Naseem, S.

    1999-01-01

    Cretaceous rocks of Indus Basin of Pakistan are dominated by clastics with subordinate limestone towards the top. These rocks represent shelf facies and were deposited in deltaic to reducing marine conditions at variable depths. Indications of a silled basin with restricted circulation are also present. Cretaceous fine clastics/carbonates have good source and reservoir qualities. Variable geothermal gradients in different parts of basin have placed these rocks at different maturity levels; i.e. from oil to condensate and to gas. The potential of these rocks has been proved by several oil and gas discoveries particularly in the Central and Southern provinces of Indus Basin. (author)

  19. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  20. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  1. Potential markets for thermal coal in Canada 1978-2000

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This paper evaluates thermal coal demand by industrial consumers such as cement plants and pulp and paper plants and, on a provincial basis, by thermal electric generating plants. Transportation costs to the identified market locations from four representative coal supply areas in Canada are estimated and used to calculate net-back figures attainable at coal mine sites. Transportation methods considered are rail, ship, truck, intermodal terminals, coal slurry pipeline, and electric transmission from mine-mouth.

  2. Structural and thermal development of the Atlantic margin offshore Essaouira (Morocco) - evidence of salt extrusion and implications for hydrocarbon exploration

    Science.gov (United States)

    Neumaier, Martin; Littke, Raf; Kleine, Adrian; Schnabel, Michael; Reichert, Christian

    2013-04-01

    Along the east-west regional seismic line BGR11-202 (MIRROR campaign, 2011), several distinct salt diapirs and related structures can be identified close to the present day coast line. The subsalt structure is only very poorly imaged. Further offshore, rotated fault blocks are overlain by Mesozoic and Cenozoic sediments. Towards the west, the evidence for past volcanic activity is increasing (necks, dykes, and sills). The magnetic anomaly S1 is roughly situated west of the most western identifiable salt structure. The aim of our study is to describe and verify possible salt tectonic and related thermal models and the evolution of the petroleum systems. One salt structure in particular shows clear evidence of salt extrusion in the past. We explain the potential scenario of the salt diapir development and extrusion in a series of structurally restored sections: After deposition, probably within the syn-rift Liassic half grabens (not imaged), the salt quickly became instable due to differential loading, assisted by growing density contrast with the overburden. It forced its way up using weak zones—which could have been the active normal faults—while the overburden collapsed into the previously occupied space (salt withdrawal). Even though the salt was constantly rising, it did not reach the surface due to constant burial. Only once the sedimentation rate decreased—during the late Cretaceous and early Paleogene—the salt extruded and crept down the continental slope onto the hiatus unconformity. With the extrusion, the salt partly dissolved in contact with the ocean water, and a cap rock formed. The related paleorelief was buried by the detritical sediments provided by the Atlas orogenesis. At present day, these paleoreliefs still have a bathymetric expression, as they are providing an unstable underground and trigger normal faulting and local resedimentation. Also remobilization of the salt, even though strengthened by the cap rock, might be possible locally

  3. Environmental characterization to assess potential impacts of thermal discharge to the Columbia River

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Dauble, D.D.; Page, T.L.; Greager, E.M.

    1990-01-01

    Laboratory and field studies were conducted to assess the potential impact of the N-Reactor thermal plume on fish from the Hanford Reach of the Columbia River. Discharge water temperatures were measured over a range of river flows and reactor operating conditions. Data were mathematically modeled to define spatial and thermal characteristics of the plume. Four species of Columbia River fish were exposed to thermal conditions expected in the plume. Exposed fish were subjected to predators and disease organisms to test for secondary effects from thermal stress. Spatial and temporal distribution of anadromous fish in the river near N-Reactor were also evaluated to define location relative to the plume. Potential thermal exposures were insufficient to kill or injure fish during operation of N-Reactor. These studies demonstrate that characterization of hydrological conditions and thermal tolerance can adequately assess potential impacts of a thermal discharge to fish

  4. Discussion on the application potential of thermal infrared remote sensing technology in uranium deposits exploration

    International Nuclear Information System (INIS)

    Wang Junhu; Zhang Jielin; Liu Dechang

    2011-01-01

    With the continual development of new thermal infrared sensors and thermal radiation theory, the technology of thermal infrared remote sensing has shown great potential for applications in resources exploration, especially in the field of uranium exploration. The paper makes a systemic summary of the theoretical basis and research status of the thermal infrared remote sensing applications in resources exploration from the surface temperature, thermal inertia and thermal infrared spectrum. What's more, the research objective and the research content of thermal infrared remote sensing in the uranium deposits exploration applications are discussed in detail. Besides, based on the thermal infrared ASTER data, the paper applies this technology to the granite-type uranium deposits in South China and achieves good result. Above all, the practice proves that the thermal infrared remote sensing technology has a good application prospects and particular value in the field of uranium prospecting and will play an important role in the prospecting target of the uranium deposits. (authors)

  5. Integration of potential field and seismic data for hydrocarbon exploration in the Miguasha area, Appalachian Gaspe belt, Quebec

    Energy Technology Data Exchange (ETDEWEB)

    St-Laurent, C.; Adam, E. [Hydro-Quebec, Ste-Foy, PQ (Canada). Petrole et Gaz

    2005-07-01

    In 2003, Hydro-Quebec acquired about 100 km of seismic data and 2,300 km{sup 2} of aeromagnetic data to begin exploration for oil and gas in the Miguasha area of the southwestern part of the Gaspe Peninsula. A discrepancy exists within the prospective area between the observed orientation of formational contacts in outcrop and moderately-dipping reflectors observed on seismic surveys. According to magnetic data, there is only 1 weakly-magnetic zone that is composed of felsic to intermediate volcanic rocks. A 3-D inversion of the total magnetic field was undertaken to obtain the subsurface distribution of magnetic rocks before drilling 2 exploratory wells in 2004. The inversion results were validated by performing 2.5-D modelling along selected traverses and through correlation with depth-converted seismic sections. The 3-D magnetic inversion is a cost-effective method of obtaining a 3-D subsurface image of this weakly-magnetic volcanic zone. Valuable information regarding the depth of the magnetic zone was obtained by combining magnetic inversion results with the seismic data. This study revealed the effectiveness of this approach in discriminating sediments with potential hydrocarbon reservoirs from non-prospective, magnetic volcanic rocks.

  6. The potential accumulation of polycyclic aromatic hydrocarbons in phytoplankton and bivalves in Can Gio coastal wetland, Vietnam.

    Science.gov (United States)

    Thuy, Hoang Thi Thanh; Loan, Tu Thi Cam; Phuong, Trinh Hong

    2018-05-12

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most important classes of anthropogenic persistent organic contaminants in the marine environment. This review discusses a whole range of findings that address various aspects of the bioaccumulation of PAHs in two common marine biota (phytoplankton and bivalves) globally and especially for Can Gio coastal wetland, Vietnam. The published information and collected data on the bioconcentration and accumulation mechanisms of PAHs as well as implications for Can Gio coastal wetland are compiled for phytoplankton and bivalves. PAHs are still released to Can Gio coastal environments from various sources and then transported to coastal environments through various physical processes; they may enter marine food chains and be highly accumulated in phytoplankton and bivalves. Thus, PAHs' bioaccumulation should be considered as one important criterion to assess the water's quality, directly linked to human health due to seafood consumption. Ecologically, Can Gio coastal wetland plays an important role to the South Vietnam key economic zone. However, it is also an area of potential PAHs inputs. With the abundant phytoplankton and bivalves in Can Gio coastal wetland, the PAHs bioaccumulation in these biota is inevitably detected. Thus, further study on the bioavailability of these contaminants is urgently needed in order to mitigate their negative effects and protect the ecosystems.

  7. Distribution, origin and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan

    International Nuclear Information System (INIS)

    Chen, C.F.; Kao, C.M.; Dong, C.D.; Chen, C.W.

    2009-01-01

    The European Union and the United States Environmental Protection Agency have placed polycyclic aromatic hydrocarbons (PAHs) on a priority pollutant list because they represent the largest group of compounds that are mutagenic, carcinogenic and teratogenic and could pose potential threat to the ecological environment. There are both natural and anthropogenic sources of PAHs, and their effects can be both widespread and permanent. This study investigated the distribution of PAHs in sediments collected at the river outfalls, fishing ports, shipyards and industrial docks of Kaohsiung Harbour in Taiwan. Sediment samples from 12 locations were collected in 2006 and characterized for 17 different PAHs, organic matter and grain size. The study revealed that the contaminant sources for the PAH found at the steel industrial docks were different from the other zones of the Kaohsiung Harbour. Molecular indices suggest that coal combustion may be the possible source of PAHs in the industrial dock, while petroleum combustion may be the source in the other zones. In comparison with the sediment quality guidelines of the United States, the levels of PAHs at the industrial docs of Kaohsiung Harbour exceeded the effects range low (ERL), and could therefore cause acute biological damage. However, the lower levels of PAHs at the other zones would not cause adverse biological effects. The study suggests that industrial activities played important roles in the leaching of PAHs into the environment, and the results could help develop strategies for sediment remediation. 38 refs., 3 tabs., 4 figs

  8. Lithofacies Architecturing and Hydrocarbon Reservoir Potential of Lumshiwal Formation: Surghar Range, Trans-Indus Ranges, North Pakistan

    Directory of Open Access Journals (Sweden)

    Iftikhar Alam

    2015-12-01

    directed Paleo-current system prevailed during deposition of Lumshiwal Formation. Diagenetic and tectonically induced fractures make the formation exceedingly porous and permeable as suitable reservoir horizon for the accumulation of hydrocarbon in the Trans-Indus ranges. The same formation has already been proven as potential reservoir horizon for hydrocarbon in the Kohat Plateau of northwest Pakistan. Secondly, the formation is dominantly comprised of silica/quartz sandstone (quartzarenite which can be used as silica sand, one of the essential raw materials for glass industries. The formation is also comprised of local coal seams which can be mined for production of coal in the region.

  9. Geology and hydrocarbon potential of the Hartford-Deerfield Basin, Connecticut and Massachusetts

    Science.gov (United States)

    Coleman, James

    2016-01-01

    The Hartford-Deerfield basin, a Late Triassic to Early Jurassic rift basin located in central Connecticut and Massachusetts, is the northernmost basin of the onshore Mesozoic rift basins in the eastern United States. The presence of asphaltic petroleum in outcrops indicates that at least one active petroleum system has existed within the basin. However, to-date oil and gas wells have not been drilled in the basin to test any type of petroleum trap. There are good to excellent quality source rocks (up to 3.8% present day total organic carbon) within the Jurassic East Berlin and Portland formations. While these source rock intervals are fairly extensive and at peak oil to peak gas stages of maturity, individual source rock beds are relatively thin (typically less than 1 m) based solely on outcrop observations. Potential reservoir rocks within the Hartford-Deerfield basin are arkosic conglomerates, pebbly sandstones, and finer grained sandstones, shales, siltstones, and fractured igneous rocks of the Triassic New Haven and Jurassic East Berlin and Portland formations (and possibly other units). Sandstone porosity data from 75 samples range from less than 1% to 21%, with a mean of 5%. Permeability is equally low, except around joints, fractures, and faults. Seals are likely to be unfractured intra-formational shales and tight igneous bodies. Maturation, generation, and expulsion likely occurred during the late synrift period (Early Jurassic) accentuated by an increase in local geothermal gradient, igneous intrusions, and hydrothermal fluid circulation. Migration pathways were likely along syn- and postrift faults and fracture zones. Petroleum resources, if present, are probably unconventional (continuous) accumulations as conventionally accumulated petroleum is likely not present in significant volumes.

  10. Thermal single-gluon exchange potential for heavy quarkonium in the static limit

    International Nuclear Information System (INIS)

    Zhu, Jia-Qing; Ma, Zhi-Lei; Shi, Chao-Yi; Li, Yun-De

    2015-01-01

    The calculations of thermal single-gluon exchange potential for heavy quarkonium in Feynman and Coulomb gauges are presented, and the comparisons between them and the hard thermal loop approximation ones which were first calculated by Laine et al. are illustrated. The numerical results show that the hard thermal loop thermal single-gluon exchange potential (especially its imaginary part) which used in many researches make some errors in the practical calculations at the temperature range accessible in the present experiment, and the problem of gauge dependent cannot be avoided when the complete self energy is used in the derivation of potential

  11. Hydrocarbons thermal maturation: Leopatin method applied to the Parana basin; Maturacao termica de hidrocarbonetos: aplicacao do metodo de Lopatin a Bacia do Parana

    Energy Technology Data Exchange (ETDEWEB)

    Eston, Sergio Medici de; Jardim, Niza S

    1987-12-31

    One of the requirements for the existent of economic deposits of hydrocarbons is that the organic matter has undergone adequate thermal maturation. Several techniques have been proposed in order to quantity the catagenetic state of kerogen, and the Lopatin-Waples methodology permits quantification at any past time and does not require laboratory tests on samples of the material. For this reason it is an useful techniques for predicting mature zones using as basic information the thermal and subsidence histories of each stratum. Lopatin`s technique was applied to the Parana basin, with McKenzie`s crustal stretching model fitted to the data of 18 wells, and the areas predicted as mature for oil and/or gas were in good agreement with the field results. The technique predicted oil phone areas at the east border of the basin for the Ponta Grossa and Irati formation, and also that most of the thermal maturation occurred after the basalt flows of the Cretaceous period. (author) 41 refs., 6 figs., 6 tabs.

  12. Hydrocarbons thermal maturation: Leopatin method applied to the Parana basin; Maturacao termica de hidrocarbonetos: aplicacao do metodo de Lopatin a Bacia do Parana

    Energy Technology Data Exchange (ETDEWEB)

    Eston, Sergio Medici de; Jardim, Niza S.

    1986-12-31

    One of the requirements for the existent of economic deposits of hydrocarbons is that the organic matter has undergone adequate thermal maturation. Several techniques have been proposed in order to quantity the catagenetic state of kerogen, and the Lopatin-Waples methodology permits quantification at any past time and does not require laboratory tests on samples of the material. For this reason it is an useful techniques for predicting mature zones using as basic information the thermal and subsidence histories of each stratum. Lopatin`s technique was applied to the Parana basin, with McKenzie`s crustal stretching model fitted to the data of 18 wells, and the areas predicted as mature for oil and/or gas were in good agreement with the field results. The technique predicted oil phone areas at the east border of the basin for the Ponta Grossa and Irati formation, and also that most of the thermal maturation occurred after the basalt flows of the Cretaceous period. (author) 41 refs., 6 figs., 6 tabs.

  13. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements

    International Nuclear Information System (INIS)

    Gomez-Eyles, Jose L.; Sizmur, Tom; Collins, Chris D.; Hodson, Mark E.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg -1 ) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg -1 ) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg -1 ), Cu (60.0 to 120.1 mg kg -1 ) and Ni (31.7 to 83.0 mg kg -1 ) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg -1 ). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed. - Research highlights: → Biochar reduced total and bioavailable PAH concentrations. → Biochar was less effective at immobilising PTEs, due to its low cation exchange capacity. → E. fetida increased PAH bioavailability and PTE mobility. → When used in combination biochar reduced the concentration of PTEs mobilised by E. fetida. → Biochar had a negative effect on E. fetida in terms of weight loss. - Biochar decreased PAH biovailability but was less effective at reducing PTE mobility, whilst E. fetida increased both PAH and PTE bioavailability.

  14. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.u [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Sizmur, Tom; Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-02-15

    Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306 mg kg{sup -1}) and bioavailable (cyclodextrin extractable) (276 to 182 mg kg{sup -1}) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2 mg kg{sup -1}), Cu (60.0 to 120.1 mg kg{sup -1}) and Ni (31.7 to 83.0 mg kg{sup -1}) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37 mg kg{sup -1}). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed. - Research highlights: Biochar reduced total and bioavailable PAH concentrations. Biochar was less effective at immobilising PTEs, due to its low cation exchange capacity. E. fetida increased PAH bioavailability and PTE mobility. When used in combination biochar reduced the concentration of PTEs mobilised by E. fetida. Biochar had a negative effect on E. fetida in terms of weight loss. - Biochar decreased PAH biovailability but was less effective at reducing PTE mobility, whilst E. fetida increased both PAH and PTE bioavailability.

  15. Potential solver for sloshing-ion thermal barriers

    International Nuclear Information System (INIS)

    Boghosian, B.M.; Campbell, R.B.; Gilmore, J.M.

    1981-01-01

    The quasineutrality equations at points (a) and (b) in a sloshing-ion thermal barrier are derived and an algorithm for their solution is given. The solution technique is sufficiently reliable and efficient to be used in a fluid code where it must be invoked at each time step. Circumstances under which the equations admit multiple solutions are noted and discussed

  16. Thermal maturity and organic composition of Pennsylvanian coals and carbonaceous shales, north-central Texas: Implications for coalbed gas potential

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Paul C. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Guevara, Edgar H.; Hentz, Tucker F. [Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78713 (United States); Hook, Robert W. [1301 Constant Springs Drive, Austin, TX 78746 (United States)

    2009-01-31

    Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600 m; 2000 ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (R{sub o}) values between about 0.4 and 0.8%. This range of R{sub o} values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100 m; 300 ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar R{sub o} values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from {proportional_to} 1650 m; 5400 ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher R{sub o} values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1 m; 3.3 ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank. (author)

  17. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.

    Science.gov (United States)

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna Anna; Poliwoda, Anna; Piotrowska-Seget, Zofia

    2014-01-01

    The Pseudomonas sp. P-1 strain, isolated from heavily petroleum hydrocarbon-contaminated soil, was investigated for its capability to degrade hydrocarbons and produce a biosurfactant. The strain degraded crude oil, fractions A5 and P3 of crude oil, and hexadecane (27, 39, 27 and 13% of hydrocarbons added to culture medium were degraded, respectively) but had no ability to degrade phenanthrene. Additionally, the presence of gene-encoding enzymes responsible for the degradation of alkanes and naphthalene in the genome of the P-1 strain was reported. Positive results of blood agar and methylene blue agar tests, as well as the presence of gene rhl, involved in the biosynthesis of rhamnolipid, confirmed the ability of P-1 for synthesis of glycolipid biosurfactant. 1H and 13C nuclear magnetic resonance, Fourier transform infrared spectrum and mass spectrum analyses indicated that the extracted biosurfactant was affiliated with rhamnolipid. The results of this study indicate that the P-1 and/or biosurfactant produced by this strain have the potential to be used in bioremediation of hydrocarbon-contaminated soils.

  18. Potential of thermally conductive polymers for the cooling of mechatronic parts

    Science.gov (United States)

    Heinle, C.; Drummer, D.

    Adding thermally conductive fillers to polymers the thermal conductivity can be raised significantly. Thermal conductive polymers (TC-plastics) open up a vast range of options to set up novel concepts of polymer technological system solutions in the area of mechatronics. Heating experiment of cooling ribs show the potential in thermal management of mechatronic parts with TC-polymers in comparison with widely used reference materials copper and aluminum. The results demonstrate that especially for certain thermal boundary conditions comparable performance between these two material grades can be measured.

  19. Thermal Conductivity of the Potential Repository Horizon Model Report

    International Nuclear Information System (INIS)

    Ramsey, J.

    2002-01-01

    The purpose of this report is to assess the spatial variability and uncertainty of thermal conductivity in the host horizon for the proposed repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). The Tptpul is the layer directly above the repository host layers, which consist of the Tptpmn, Tptpll, and the Tptpln. Current design plans indicate that the largest portion of the repository will be excavated in the Tptpll (Board et al. 2002 [157756]). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large scale (cm-m) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity and perhaps repository system performance as well. To assess the spatial variability and uncertainty of thermal conductivity, a model is proposed that is functionally dependent on the volume fraction of lithophysae and the thermal conductivity of the matrix portion of the rock. In this model, void space characterized as lithophysae is assumed to be air-saturated under all conditions, while void space characterized as matrix may be either water- or air-saturated. Lithophysae are assumed to be air-saturated under all conditions since the units being studied are all located above the water table in the region of interest, and the relatively strong capillary forces of the matrix will, under most conditions, preferentially retain any moisture present in the rock

  20. Evaluation of thermal-hydraulic performance of hydrocarbon refrigerants during flow boiling in a microchannels array heat sink

    International Nuclear Information System (INIS)

    Chávez, Cristian A.; Leão, Hugo L.S.L.; Ribatski, Gherhardt

    2017-01-01

    Highlights: • Evaluation of refrigerants R600a, R290 and R1270 during flow boiling in a microchannels array. • Comparison of data for hydrocarbons with previous data for R134a. • Parametric analysis of heat transfer coefficient, pressure drop, ONB and exergy behaviors. • Comparison of the experimental data and prediction methods from literature. • In general, refrigerant R290 presents the best performance. - Abstract: The present study concerns an experimental evaluation of the performance of hydrocarbon refrigerants during flow boiling in a microchannels array heat sink. The heat sink is composed of fifty channels with cross sectional areas of 123 × 494 μm"2 and length of 15 mm manufactured in a copper block. Heat transfer coefficient and pressure drop data were obtained for refrigerants R600a, R290 and R1270, mass velocities from 165 to 823 kg/m"2 s, heat fluxes up to 400 kW/m"2, liquid subcooling at the inlet of the test section of 5, 10 and 15 °C and saturation temperature of 25 °C. The data were compared with experimental results obtained in a previous study for R134a and predictions by methods from literature. In general, R290 presented the best performance, providing the highest average heat transfer coefficient and a pressure drop only slightly higher than R1270 that was the fluid presenting the lowest pressure drop. An exergy analysis also revealed the refrigerant R290 as the one presenting the best performance. However, R290 needed the highest excess of superheating to trigger the boiling process (ONB). The methods from literature evaluated in the present study poorly predicted the experimental data for two-phase pressure drop. On the other hand, the method of Kanizawa et al. (2016) was quite accurate in predicting the heat transfer results.

  1. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    International Nuclear Information System (INIS)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2011-01-01

    Research highlights: → In conventional buildings thermal mass is a permanent building characteristic. → Permanent thermal mass concepts are not optimal in all operational conditions. → We propose a concept that combines the benefits of low and high thermal mass. → Building simulation shows the concept is able to reduce the energy demand with 35%. → Furthermore, the concept increases the performance robustness of the building. -- Abstract: In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass by applying hybrid adaptable thermal storage (HATS) systems and materials to a lightweight building. The HATS concept increases building performance and the robustness to changing user behavior, seasonal variations and future climate changes. Building performance simulation is used to investigate the potential of the novel concept for reducing heating energy demand and increasing thermal comfort. Simulation results of a case study in the Netherlands show that the optimal quantity of the thermal mass is sensitive to the change of seasons. This implies that the building performance will benefit from implementing HATS. Furthermore, the potential of HATS is quantified using a simplified HATS model. Calculations show heating energy demand reductions of up to 35% and increased thermal comfort compared to conventional thermal mass concepts.

  2. An accurate method for the determination of unlike potential parameters from thermal diffusion data

    International Nuclear Information System (INIS)

    El-Geubeily, S.

    1997-01-01

    A new method is introduced by means of which the unlike intermolecular potential parameters can be determined from the experimental measurements of the thermal diffusion factor as a function of temperature. The method proved to be easy, accurate, and applicable two-, three-, and four-parameter potential functions whose collision integrals are available. The potential parameters computed by this method are found to provide a faith full representation of the thermal diffusion data under consideration. 3 figs., 4 tabs

  3. Potential impact of thermal effluents from Chongqing Fuling nuclear power plant to the Three Gorges Reservoir

    International Nuclear Information System (INIS)

    Han Baohua; Li Jianguo; Ma Binghui; Zhang Yue; Sun Qunli; Hu Yuping

    2012-01-01

    This study is based on the hydrological data near Chongqing Fuling Nuclear Power Plant along the Yangtze River, the present situation of the ecological environment of the Three Gorges Reservoir and the predicted results of thermal effluents from Chongqing Fuling Nuclear Power Plant. The standards of cooling water and the thermal tolerances indexes of aquatic organisms were investigated. The effects of thermal effluents on aquatic organisms were analyzed. The potential impact of Chongqing Fuling nuclear power plant to the Three Gorges Reservoir was explained. The results show that in the most adverse working conditions, the surface temperature near the outfall area is not more than 1℃, the temperature of thermal effluents do not exceed the suitable thermal range of fish breeding, growth and other thermal tolerances indexes. Thermal effluents from nuclear power plant have no influence about fish, plankton and benthic organisms in the Three Gorges Reservoir. (authors)

  4. Selection of materials with potential in sensible thermal energy storage

    International Nuclear Information System (INIS)

    Fernandez, A.I.; Martinez, M.; Segarra, M.; Martorell, I.; Cabeza, L.F.

    2010-01-01

    Thermal energy storage is a technology under investigation since the early 1970s. Since then, numerous new applications have been found and much work has been done to bring this technology to the market. Nevertheless, the materials used either for latent or for sensible storage were mostly investigated 30 years ago, and the research has lead to improvement in their performance under different conditions of applications. In those years a significant number of new materials were developed in many fields other than storage and energy, but a great effort to characterize and classify these materials was done. Taking into account the fact that thousands of materials are known and a large number of new materials are developed every year, the authors use the methodology for materials selection developed by Prof. Ashby to give an overview of other materials suitable to be used in thermal energy storage. Sensible heat storage at temperatures between 150 and 200 C is defined as a case study and two different scenarios were considered: long term sensible heat storage and short term sensible heat storage. (author)

  5. Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Thermal Properties of Organic Hydrocarbons

    Science.gov (United States)

    D'Amelia, Ronald; Franks, Thomas; Nirode, William F.

    2007-01-01

    In first-year general chemistry undergraduate courses, thermodynamics and thermal properties such as melting points and changes in enthalpy ([Delta]H) and entropy ([Delta]S) of phase changes are frequently discussed. Typically, classical calorimetric methods of analysis are used to determine [Delta]H of reactions. Differential scanning calorimetry…

  6. Ultra-low thermal conductivities of hot-pressed attapulgite and its potential as thermal insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan; Ren, Zhifeng, E-mail: bohr123@163.com, E-mail: zren@uh.edu [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States); Wang, Xiuzhang [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States); Hubei Key Laboratory of Pollutant Analysis and Reuse Technology and School of Physics and Electronic Science, Hubei Normal University, Huangshi, Hubei 435002 (China); Wang, Yumei [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Tang, Zhongjia; Makarenko, Tatyana; Guloy, Arnold [Department of Chemistry, University of Houston, Houston, Texas 77204 (United States); Zhang, Qinyong, E-mail: bohr123@163.com, E-mail: zren@uh.edu [Center for Advanced Materials and Energy, Xihua University, Chengdu, Sichuan 610039 (China)

    2016-03-07

    In the past, there have been very few reports on thermal properties of attapulgite which is a widely used clay mineral. In this work, we report on extremely low thermal conductivities in attapulgite samples synthesized by hot-pressing. Attapulgite powder was hot-pressed at different temperatures into bulk samples, and a systematic study was conducted on the microstructures and thermal properties. Differential scanning calorimetry analysis shows that hot-pressing induces a rapid dehydration of the attapulgite powders. X-ray diffraction data and scanning/transmission electron microscopy reveal that the hot-pressed attapulgite features high porosity and complex microstructures, including an amorphous phase. As a result, the hot-pressed attapulgite exhibits thermal conductivity less than 2.5 W m{sup −1} K{sup −1} up to 600 °C. For one sample with porosity of 45.7%, the thermal conductivity is as low as 0.34 W m{sup −1} K{sup −1} at 50 °C. This suggests the potential of hot-pressed attapulgite as a candidate for thermal barrier materials.

  7. Bench scale studies: Ozonation as a potential treatment for waters contaminated with hydrocarbons or dioxins and furans

    International Nuclear Information System (INIS)

    Schaal, W.

    1995-01-01

    The objective of the bench scale studies was to examine the destruction efficiency and efficacy of ozone on chemicals of concern (COC's) commonly found in contaminated ground water and rhenoformer wash water. The ground water used in these tests contained aromatic petroleum hydrocarbons, chlorinated hydrocarbons, and mineral spirits. The rhenoformer wash water used in these tests contained a variety of dioxins (including 2,3,7,8-tetrachlorodibenzo-p-dioxin) and furans. Summaries are presented of the bench scale studies by describing the COCs, methodologies, test reactors, observations, and results. The summaries also detail which applications hold promise with respect to ozonation and which ones do not. Bench test results for the experiments in which aromatic petroleum hydrocarbons, chlorinated hydrocarbons, and mineral spirits where the COCs were relatively successful. Concentrations for the COCs ranging from 300 to 3,400 micrograms per liter (microg/L) were brought below levels specified for storm sewer discharge per the National Priority Discharge Elimination Systems (NPDES) permit requirements. Bench test results for the experiments in which dioxins and furans were the COCs were less promising and revealed that additional processes would have to be used in conjunction with ozonation to bring the concentration of COCs within the targeted ranges. It was realized, however, that the effectiveness and efficacy of ozonation were diminished by the presence of particulates, to which some of the dioxin and furan compounds adhered

  8. Unlocking the hydrocarbon potential of the eastern Black Sea basin. Prospectivity of middle Miocene submarine fan reservoirs by seismic sequence stratigraphy

    International Nuclear Information System (INIS)

    Gundogan, Coskun; Galip, Ozbek; Ali, Demirer

    2002-01-01

    Full text : The objective of this paper is to present present depositional characteristics and hydrocarbon prospectivity of the middle Miocene submarine basin floor fan deposits from the exploration stand point of view by using seismic data available in the offshore eastern Black Sea basin. This basin is a Tertiary trough formed as a continuation of the Mesozoic oceanic basin. The hydrocarbon potential of the basin is believed to be high in the Tertiary section because of the existence of the elements necessary for generation, migration and entrapment of hydrocarbon. A sequence stratigraphic study has been carried out by using 2-d seismic data in the Turkish portion of the eastern Black Sea basin. The objective of the study was to determine periods of major clastic sediment influxes which might lead to identify good reservoir intervals and their spatial distribution in this basin. All basic seismic sequence stratigraphic interpretation techniques and seismic facies analysis were used to identify times of these sand rich deposition periods. Sequence stratigraphy and seismic facies analysis indicate that the basinal areas of the middle Miocene sequences were dominated mainly by submarine fan complexes introduced in the lowstand stages and pelagic sediments deposited during the transgressive and highstand stages. It was proposed that Turkish portion of this basin which is one of the best frontier exploration area with its high potential left in the world, is glimpsing to those looking for good future exploration opportunities.

  9. Bioelectric action potentials of Procambarus acutus acutus (Girrard) in serially diluted solutions of selected C/sub 6/ hydrocarbons in water

    Energy Technology Data Exchange (ETDEWEB)

    Idoniboye-Obu, B.

    1977-09-01

    The principle of recording the complex action potentials from both neurogenic and myogenic sources by remote electrodes in water is explored in a bioassay assessing the external concentrations of selected water-soluble petroleum hydrocarbons. These petroleum hydrocarbons could bring about the ultimate cessation of impulse generation and propagation in short term exposures. Long before the harsh threshold of the ''death response'' itself is reached, a progressive diminution or irregularity of the biopotentials can indicate proximity to the ''point of no return''. This is particularly so in the locomotor system, which begins to function less and less effectively in decapod Crustacea, commonly known as very active animals. It is suggested that lethal thresholds of water pollution can be established in a systematic manner using selected test organisms, especially those of commercial importance, by such electrophysiological methods.

  10. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    Science.gov (United States)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  11. Thermal efficiencies and OTEC potentials at some offshore sites along the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Sathe, P.V.; Varadachari, V.V.R.

    The annual variation of thermal efficiency of closed OTEC power cycle at some selected offshore sites along the Indian coast is presented. OTEC potentials at these sites have been evaluated in order to identify promising locations for exploration...

  12. Development potential for thermal reactors and their fuel cycles

    International Nuclear Information System (INIS)

    Rogers, J.T.; Dodds, H.L. Jr.; Florido, P.C.; Gat, U.; Kondo, S.; Spinks, N.S.

    1997-01-01

    Water-cooled reactors represent the only types which have reached widespread commercial use up to the present day. Given the plentiful supply of uranium in the world today, this situation might be expected to continue for some time into the future. Nevertheless, for different reasons several countries consider that either new reactor types should be developed or that existing types should be improved substantially. The predominant reason in the short term is to improve the competitive position of nuclear energy supply versus fossil energy. In the longer term, regional and national fuel supply independence may become the dominant driving forces. This paper outlines several possible means for responding to these driving forces. It is not meant to include an exhaustive list of all possibilities, but only to illustrate some alternative routes. These routes range from enhancement of existing reactor concepts to combination of nuclear with fossil systems, and finally to the introduction of radically new thermal reactor concepts. Each of these has its obvious advantages and disadvantages and will come forward or will recede depending on technical feasibility, economics, long-term sustainability, and national policy. (author)

  13. Transverse gluon contributions to the thermal static potential of heavy quarkonium

    International Nuclear Information System (INIS)

    Zhu, Jia-Qing; Li, Yun-De

    2015-01-01

    The transverse gluon contributions to the thermal static potentials of heavy quarkonia in isotropic medium are studied. Using the resummation of the damping rates method developed by Hou and Li, the infrared divergence that appeared in the effective potential calculations of transverse gluon is avoided. The comparisons between the transverse and the longitudinal contributions for heavy quarkonia are discussed. The results show that the dissociation scales of quarkonia in thermal medium are decreased by the transverse gluon contributions

  14. The optical potential for thermal neutrons in second approximation

    International Nuclear Information System (INIS)

    Nowak, E.

    1980-01-01

    After the construction of an expansion of the transfer operator for neutron scattering in terms of the scattering length the optical potential for coherent scattering is derived whereby the corrections due to the dynamic properties of the scattering system are discussed. (HSI) [de

  15. Hydrocarbon migration and accumulation in the Upper Cretaceous Qingshankou Formation, Changling Sag, southern Songliao Basin: Insights from integrated analyses of fluid inclusion, oil source correlation and basin modelling

    Science.gov (United States)

    Dong, Tian; He, Sheng; Wang, Dexi; Hou, Yuguang

    2014-08-01

    The Upper Cretaceous Qingshankou Formation acts as both the source and reservoir sequence in the Changling Sag, situated in the southern end of the Songliao Basin, northeast China. An integrated approach involving determination of hydrocarbon charging history, oil source correlation and hydrocarbon generation dynamic modeling was used to investigate hydrocarbon migration processes and further predict the favorable targets of hydrocarbon accumulations in the Qingshankou Formation. The hydrocarbon generation and charge history was investigated using fluid inclusion analysis, in combination with stratigraphic burial and thermal modeling. The source rocks began to generate hydrocarbons at around 82 Ma and the hydrocarbon charge event occurred from approximately 78 Ma to the end of Cretaceous (65.5 Ma) when a large tectonic uplift took place. Correlation of stable carbon isotopes of oils and extracts of source rocks indicates that oil was generated mainly from the first member of Qingshankou Formation (K2qn1), suggesting that hydrocarbon may have migrated vertically. Three dimensional (3D) petroleum system modeling was used to evaluate the processes of secondary hydrocarbon migration in the Qingshankou Formation since the latest Cretaceous. During the Late Cretaceous, hydrocarbon, mainly originated from the Qianan depression, migrated laterally to adjacent structural highs. Subsequent tectonic inversion, defined as the late Yanshan Orogeny, significantly changed hydrocarbon migration patterns, probably causing redistribution of primary hydrocarbon reservoirs. In the Tertiary, the Heidimiao depression was buried much deeper than the Qianan depression and became the main source kitchen. Hydrocarbon migration was primarily controlled by fluid potential and generally migrated from relatively high potential areas to low potential areas. Structural highs and lithologic transitions are potential traps for current oil and gas exploration. Finally, several preferred hydrocarbon

  16. The potential use of cuticular hydrocarbons and multivariate analysis to age empty puparial cases of Calliphora vicina and Lucilia sericata

    OpenAIRE

    Moore, HE; Pechal, JL; Benbow, ME; Drijfhout, FP

    2017-01-01

    Creative Commons Attribution 4.0 International License Cuticular hydrocarbons (CHC) have been successfully used in the field of forensic entomology for identifying and ageing forensically important blowfly species, primarily in the larval stages. However in older scenes where all other entomological evidence is no longer present, Calliphoridae puparial cases can often be all that remains and therefore being able to establish the age could give an indication of the PMI. This paper examined ...

  17. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    Science.gov (United States)

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Unconventional Hydrocarbon Development Hazards Within the Central United States. Report 1: Overview and Potential Risk to Infrastructure

    Science.gov (United States)

    2015-08-01

    Zou 2013; NRC 2013). The ideal shale for gas production should have low clay content, less than 30%, and high brittle mineral content, greater...high clay content has higher ductility, thus increasing the energy loss within the rock; i.e., requiring more imparted energy to generate fractures...used to increase the permeability of the geologic formation containing recoverable hydrocarbons and utilizes highly pressurized, low- viscosity fluid

  19. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  20. The thermal evolution and timing of hydrocarbon generation in the Maritimes Basin of eastern Canada: evidence from apatite fission track data

    International Nuclear Information System (INIS)

    Grist, A.M.; Zentilli, M.

    1995-01-01

    Sandstone drill core and/or cuttings from six wells in the Gulf of St. Lawrence and cabot Strait have been analyzed using the apatite fission track (AFT) method. Measured AFT ages for the late Paleozoic sandstones range from 26 ±7 to 184 ±28 Ma (2-σ errors). The AFT data indicate that most Maritimes Basin strata were heated to temperatures in excess of 100-150 o C very soon after their deposition. The strata also attained significant vitrinite reflectance (R 0 ) levels (i.e., reaching the oil window) early in the burial history. These findings imply the generation of hydrocarbons and coalbed methane in the early basin history (pre-250 Ma). In the Maritimes Basin AFT and R 0 data provide complementary information about the integrated thermal history, including maximum burial temperatures (from R 0 data), and information on the subsequent cooling history from AFT analysis. The present study also supports the proposal made previously by others that substantial erosion of the Eastern Canadian margin (up to 4 km) has occurred since the Permian and extends the AFT evidence for this erosional event to include the southern Gulf of St. Lawrence area. Thermal models of the AFT data demonstrate that they are consistent with a history of exhumation of basin strata since late Permian time. The model-predicted AFT age and track length histograms closely correspond to the measured AFT parameters. AFT analysis also indicates present-day geothermal gradients of less than 40 o C/km. (author). 42 refs.,3 tabs., 7 figs

  1. Effect of a two-dimensional potential on the rate of thermally induced escape over the potential barrier

    International Nuclear Information System (INIS)

    Han, S.; Lapointe, J.; Lukens, J.E.

    1992-01-01

    The thermally induced escape rate of a particle trapped in a two-dimensional (2D) potential well has been investigated through experiment and numerical simulations. The measurements were performed on a special type of superconducting quantum interference device (SQUID) which has 2 degrees of freedom. The energies associated with the motion perpendicular to (transverse) and along (longitudinal) the escape direction are quite different: the ratio between the transverse and longitudinal small oscillation frequencies is ω t /ω l ∼7. The SQUID's parameters, which were used to determine the potential shape and energy scales were all independently determined. All data were obtained under conditions for which the 2D thermal activation (TA) model is expected to be valid. The results were found in good agreement with the theoretical prediction. The measured thermal activation energy is found to be the same as the barrier height calculated from the independently determined potential parameters. No evidence of apparent potential barrier enhancement recently reported in a similar system was found. In addition, the results of our numerical simulations suggest that the region in which the 2D thermal activation model is applicable may be extended to barriers as low as ΔU∼k BT

  2. Thermal phase transition with full 2-loop effective potential

    Science.gov (United States)

    Laine, M.; Meyer, M.; Nardini, G.

    2017-07-01

    Theories with extended Higgs sectors constructed in view of cosmological ramifications (gravitational wave signal, baryogenesis, dark matter) are often faced with conflicting requirements for their couplings; in particular those influencing the strength of a phase transition may be large. Large couplings compromise perturbative studies, as well as the high-temperature expansion that is invoked in dimensionally reduced lattice investigations. With the example of the inert doublet extension of the Standard Model (IDM), we show how a resummed 2-loop effective potential can be computed without a high-T expansion, and use the result to scrutinize its accuracy. With the exception of Tc, which is sensitive to contributions from heavy modes, the high-T expansion is found to perform well. 2-loop corrections weaken the transition in IDM, but they are moderate, whereby a strong transition remains an option.

  3. The Potential Link between Thermal Resistance and Virulence in Salmonella: A Review

    Directory of Open Access Journals (Sweden)

    Turki M. Dawoud

    2017-06-01

    Full Text Available In some animals, the typical body temperature can be higher than humans, for example, 42°C in poultry and 40°C in rabbits which can be a potential thermal stress challenge for pathogens. Even in animals with lower body temperatures, when infection occurs, the immune system may increase body temperature to reduce the chance of survival for pathogens. However, some pathogens can still easily overcome higher body temperatures and/or rise in body temperatures through expression of stress response mechanisms. Salmonella is the causative agent of one of the most prevalent foodborne illnesses, salmonellosis, and can readily survive over a wide range of temperatures due to the efficient expression of the heat (thermal stress response. Therefore, thermal resistance mechanisms can provide cross protection against other stresses including the non-specific host defenses found within the human body thus increasing pathogenic potential. Understanding the molecular mechanisms associated with thermal responses in Salmonella is crucial in designing and developing more effective or new treatments for reducing and eliminating infection caused by Salmonella that have survived heat stress. In this review, Salmonella thermal resistance is assessed followed by an overview of the thermal stress responses with a focus on gene regulation by sigma factors, heat shock proteins, along with the corresponding thermosensors and their association with virulence expression including a focus on a potential link between heat resistance and potential for infection.

  4. Evaluation of the condensation potential of hydrocarbon fluids in the national gas pipeline system; establishing of adequate operational schemes

    International Nuclear Information System (INIS)

    Pineda Gomez, Cesar Augusto; Arenas Mantilla, Oscar Armando; Santos Santos, Nicolas

    2007-01-01

    For transporting industry of natural gas by pipeline systems, it's vital to guarantee the integrity of their lines, in order to decrease operational costs and prevent accidents that may damaging against people's safety, the environment or the infrastructure itself. in this paper it's presented the principal compounds from o technical study about principal net and its distribution branches to municipalities of the National System Transport of Natural Gas pointed by the Colombian Natural Gas Company - ECOGAS, (specifically the Cusiana - Porvenir - La Belleza, La Belleza - Cogua, La Belleza - Vasconia, Vasconia - Neiva and Vasconia - Cali gas lines, (see Figure 1). The principal objective is evaluate the possible condensation of hydrocarbons fluids inside gas lines, due to compositional characteristics of the gas, the different topographical conditions along the gas line route and the actual and future operational conditions to be implemented in the system. The evaluation performed over this gas streams, generates transcendental information in the creation of safe operational limits that minimizing the existence of obstacle problems and damages over pipeline systems and process equipment, due to the presence of liquid hydrocarbons inside these flow lines. This article has been prepared in four sections in order to guarantee easy access to each one of the steps involved in the study. Section one presents the compositional and thermodynamic analysis of feeding gas streams; in section two, its presented the required information for modeling gas lines with definition of the gas pipeline numerical simulation model in stable state; section three presents the sensitivity analysis for gas variation upon loading gas composition at the inlet point of the system, variation of the operational conditions (flow, pressure and gas temperature) and environment temperatures for the different inlet points (branches) with verification of compliance of the Unique Transport Regulation

  5. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  6. The potential use of cuticular hydrocarbons and multivariate analysis to age empty puparial cases of Calliphora vicina and Lucilia sericata.

    Science.gov (United States)

    Moore, Hannah E; Pechal, Jennifer L; Benbow, M Eric; Drijfhout, Falko P

    2017-05-16

    Cuticular hydrocarbons (CHC) have been successfully used in the field of forensic entomology for identifying and ageing forensically important blowfly species, primarily in the larval stages. However in older scenes where all other entomological evidence is no longer present, Calliphoridae puparial cases can often be all that remains and therefore being able to establish the age could give an indication of the PMI. This paper examined the CHCs present in the lipid wax layer of insects, to determine the age of the cases over a period of nine months. The two forensically important species examined were Calliphora vicina and Lucilia sericata. The hydrocarbons were chemically extracted and analysed using Gas Chromatography - Mass Spectrometry. Statistical analysis was then applied in the form of non-metric multidimensional scaling analysis (NMDS), permutational multivariate analysis of variance (PERMANOVA) and random forest models. This study was successful in determining age differences within the empty cases, which to date, has not been establish by any other technique.

  7. Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil.

    Science.gov (United States)

    Covino, Stefano; D'Annibale, Alessandro; Stazi, Silvia Rita; Cajthaml, Tomas; Čvančarová, Monika; Stella, Tatiana; Petruccioli, Maurizio

    2015-02-01

    The present work was aimed at isolating and identifying the main members of the mycobiota of a clay soil historically contaminated by mid- and long-chain aliphatic hydrocarbons (AH) and to subsequently assess their hydrocarbon-degrading ability. All the isolates were Ascomycetes and, among them, the most interesting was Pseudoallescheria sp. 18A, which displayed both the ability to use AH as the sole carbon source and to profusely colonize a wheat straw:poplar wood chip (70:30, w/w) lignocellulosic mixture (LM) selected as the amendment for subsequent soil remediation microcosms. After a 60 d mycoaugmentation with Pseudoallescheria sp. of the aforementioned soil, mixed with the sterile LM (5:1 mass ratio), a 79.7% AH reduction and a significant detoxification, inferred by a drop in mortality of Folsomia candida from 90 to 24%, were observed. However, similar degradation and detoxification outcomes were found in the non-inoculated incubation control soil that had been amended with the sterile LM. This was due to the biostimulation exerted by the amendment on the resident microbiota, fungi in particular, the activity and density of which were low, instead, in the non-amended incubation control soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The potential estimation and factor analysis of China′s energy conservation on thermal power industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Yang, Lisha

    2013-01-01

    At present, researches about energy conservation are focused on prediction. But there are few researches focused on the estimation of effective input and energy conservation potential, and there has been even no research on energy conservation of thermal power industry of China. This paper will try to fill in such a blank. Panel data on Chinese thermal power industry over 2005–2010 are established, and we adopt the stochastic frontier analysis approach to estimate the energy saving potential of thermal power industry. The results are as follows: (1) the average efficiency of energy inputs in China′s thermal power industry over 2005–2010 was about 0.85, and cumulative energy saving potential equals to 551.04 (Mtce); (2) by improving the non-efficiency factors, the relatively backward inland cities could achieve higher energy saving in thermal power industry; (3) the energy input efficiency of Eastern China Grid is shown to be the highest; (4) in order to realize the energy-saving goal of thermal power industry, one important policy method the government should adopt is to conduct a market-oriented reform in power industry and break the state-owned monopoly to provide incentives for private and foreign direct investment in thermal power sector. -- Highlights: •We adopt SFA model to estimate the coal input efficiency of power sector in China. •We calculate the cumulative energy saving potential equals to 551.04 Mtce. •East China power grid has the highest energy input efficiency. •Some backward inland cities may be the main force for future energy conservation. •Encourage private and foreign direct investment in power sector might be effective

  9. Seismic data interpretation for hydrocarbon potential, for Safwa/Sabbar field, East Ghazalat onshore area, Abu Gharadig basin, Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Naser A. Hameed El Redini

    2017-12-01

    Full Text Available Safwa/Sabbar oil field located in the East Ghazalat Concession in the proven and prolific Abu Gharadig basin, Western Desert, Egypt, and about 250 km to the southwest of Cairo, it’s located in the vicinity of several producing oil fields ranging from small to large size hydrocarbon accumulation, adjacent to the NW-SE trending major Abu Gharadig fault which is throwing to the Southwest.All the geological, “structure and stratigraphic” elements, have been identified after interpreting the recent high quality 3D seismic survey for prospect generation, evaluation and their relation to the hydrocarbon exploration.Synthetic seismograms have been carried out for all available wells to tie horizons to seismic data and to define the lateral variation characters of the beds.The analysis has been done using the suitable seismic attributes to understand the characteristics of different types of the reservoir formations, type of trap system, identify channels and faults, and delineating the stratigraphic plays of good reservoirs such as Eocene Apollonia Limestone, AR “F”, AR “G” members, Upper Bahariya, Jurassic Khatatba Sandstone, upper Safa and Lower Safa Sandstone.The top Cenomanian Bahariya level is the main oil reservoir in the Study area, which consist of Sandstone, Siltstone and Shale, the thickness is varying from 1 to 50 ft along the study area.In addition to Upper-Bahariya there are a good accessibility of hydrocarbon potential within the Jurassic Khatatba Sandstone and the Eocene Apollonia Limestone. More exploring of these reservoirs are important to increase productivity of Oil and/or Gas in the study area.

  10. Quantum size effects on the thermal and potential conductivities of ideal gases

    International Nuclear Information System (INIS)

    Ozturk, Z F; Sisman, A

    2009-01-01

    Thermal and potential conductivities of ideal Maxwellian, Fermi and Bose gases are derived by considering the small corrections due to the wave character of gas particles. Potential conductivity is regarded as conductivity due to any potential gradient like electrical, gravitational or chemical ones. A long rectangular channel is considered as a transport domain. The size of the domain in the transport direction is much longer than the mean free path of particles l while the sizes in transverse directions are shorter than l. On the other hand, all sizes of the domain are assumed to be larger than the thermal de Broglie wavelength of particles. Therefore, quantum size effects (QSE) are weak enough to be considered as small corrections on conventional terms. Corrections on thermal and potential conductivities are examined. It is seen that the size and shape of the transport domain become additional control parameters on both conductivities. Since the size dependencies of thermal and electrical conductivities are different, the Lorenz number becomes size and shape dependent and deviations from the Wiedemann-Franz law may be expected in nanoscale due to QSE. Variations of the corrections with chemical potential are analysed.

  11. Equilibrium Molecular Dynamics (MD Simulation Study of Thermal Conductivity of Graphene Nanoribbon: A Comparative Study on MD Potentials

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2015-12-01

    Full Text Available The thermal conductivity of graphene nanoribbons (GNRs has been investigated using equilibrium molecular dynamics (EMD simulation based on Green-Kubo (GK method to compare two interatomic potentials namely optimized Tersoff and 2nd generation Reactive Empirical Bond Order (REBO. Our comparative study includes the estimation of thermal conductivity as a function of temperature, length and width of GNR for both the potentials. The thermal conductivity of graphene nanoribbon decreases with the increase of temperature. Quantum correction has been introduced for thermal conductivity as a function of temperature to include quantum effect below Debye temperature. Our results show that for temperatures up to Debye temperature, thermal conductivity increases, attains its peak and then falls off monotonically. Thermal conductivity is found to decrease with the increasing length for optimized Tersoff potential. However, thermal conductivity has been reported to increase with length using 2nd generation REBO potential for the GNRs of same size. Thermal conductivity, for the specified range of width, demonstrates an increasing trend with the increase of width for both the concerned potentials. In comparison with 2nd generation REBO potential, optimized Tersoff potential demonstrates a better modeling of thermal conductivity as well as provides a more appropriate description of phonon thermal transport in graphene nanoribbon. Such comparative study would provide a good insight for the optimization of the thermal conductivity of graphene nanoribbons under diverse conditions.

  12. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  13. Analysis of Energy Saving Potential and Optimization of Thermally Broken Fiberglass Window Frames

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2011-01-01

    This paper elaborates on the energy saving potential and development process of fiberglass window frames, with intention for application in cold climates. A method is presented, where different means of improving thermal performance of a window frame are evaluated. Firstly, very simple geometries...

  14. Market potential and market hindrances for thermal solar energy; Marktpotentiale und Markthindernisse fuer die thermische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    Gerheuser, F. W.

    2002-10-15

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) discusses the market potential and market hindrances for thermal solar energy systems. The author notes that solar systems for heating domestic hot water have a considerable market potential, especially for single-family homes. Such installations are discussed in detail, whereby not only technicalities but also market image and the latent potential for such systems are discussed. The results of surveys made are presented and discussed. The lower potential for installations on apartment blocks is also mentioned.

  15. Study of interatomic potential and thermal structural properties of β-Zn4Sb3

    International Nuclear Information System (INIS)

    Li, Guodong; Li, Yao; Liu, Lisheng; Zhang, Qingjie; Zhai, Pengcheng

    2012-01-01

    Highlights: ► The multi-body interatomic potentials of various models of β-Zn 4 Sb 3 have been developed to describe atomic interactions. ► The radial distribution function shows that the 10% vacancy of Zn site leads to the disorder of β-Zn 4 Sb 3 . ► The 10% vacancy of Zn site is the main cause of the exceptional low thermal conductivity. -- Abstract: Previous experimental research shows that the disordered Zn atoms in β-Zn 4 Sb 3 may have an important influence on its exceptionally low thermal conductivity and easily occurred phase transition. So the present work aims to study the influence of disordered Zn atoms on thermodynamics properties of β-Zn 4 Sb 3 by using molecular dynamics (MD) method. Firstly, based on first principles calculation and experimental results, the interatomic potentials of β-Zn 4 Sb 3 and MD analysis method are established, and the feasibility is verified. Then, the influence of disordered Zn atoms on thermal conductivity of β-Zn 4 Sb 3 is studied in detail. The simulation results indicate that the 10% vacant Zn atoms is the main reason for the exceptionally low thermal conductivity of β-Zn 4 Sb 3 , and it seems that the interstitial Zn atoms have little effect on its thermal conductivity.

  16. A critical evaluation of magnetic activated carbon's potential for the remediation of sediment impacted by polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Han, Zhantao; Sani, Badruddeen; Akkanen, Jarkko; Abel, Sebastian; Nybom, Inna; Karapanagioti, Hrissi K; Werner, David

    2015-04-09

    Addition of activated carbon (AC) or biochar (BC) to sediment to reduce the chemical and biological availability of organic contaminants is a promising in-situ remediation technology. But concerns about leaving the adsorbed pollutants in place motivate research into sorbent recovery methods. This study explores the use of magnetic sorbents. A coal-based magnetic activated carbon (MAC) was identified as the strongest of four AC and BC derived magnetic sorbents for polycyclic aromatic hydrocarbons (PAHs) remediation. An 8.1% MAC amendment (w/w, equal to 5% AC content) was found to be as effective as 5% (w/w) pristine AC in reducing aqueous PAHs within three months by 98%. MAC recovery from sediment after three months was 77%, and incomplete MAC recovery had both, positive and negative effects. A slight rebound of aqueous PAH concentrations was observed following the MAC recovery, but aqueous PAH concentrations then dropped again after six months, likely due to the presence of the 23% unrecovered MAC. On the other hand, the 77% recovery of the 8.1% MAC dose was insufficient to reduce ecotoxic effects of fine grained AC or MAC amendment on the egestion rate, growth and reproduction of the AC sensitive species Lumbriculus variegatus. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation.

    Science.gov (United States)

    Eddouaouda, Kamel; Mnif, Sami; Badis, Abdelmalek; Younes, Sonia Ben; Cherif, Slim; Ferhat, Samira; Mhiri, Najla; Chamkha, Mohamed; Sayadi, Sami

    2012-08-01

    A biosurfactant-producing bacterium (Staphylococcus sp. strain 1E) was isolated from an Algerian crude oil contaminated soil. Biosurfactant production was tested with different carbon sources using the surface tension measurement and the oil displacement test. Olive oil produced the highest reduction in surface tension (25.9 dynes cm(-1)). Crude oil presented the best substrate for 1E biosurfactant emulsification activity. The biosurfactant produced by strain 1E reduced the growth medium surface tension below 30 dynes cm(-1). This reduction was also obtained in cell-free filtrates. Biosurfactant produced by strain 1E showed stability in a wide range of pH (from 2 to 12), temperature (from 4 to 55 °C) and salinity (from 0 to 300 g l(-1)) variations. The biosurfactant produced by strain 1E belonged to lipopeptide group and also constituted an antibacterial activity againt the pathogenic bacteria such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis. Phenanthrene solubility in water was enhanced by biosurfactant addition. Our results suggest that the 1E biosurfactant has interesting properties for its application in bioremediation of hydrocarbons contaminated sites. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

    1999-04-27

    The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

  19. Polycyclic aromatic hydrocarbons (PAHs in indoor dusts of Guizhou, southwest of China: status, sources and potential human health risk.

    Directory of Open Access Journals (Sweden)

    Qin Yang

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs were analyzed for 136 indoor dust samples collected from Guizhou province, southwest of China. The ∑18PAHs concentrations ranged from 2.18 μg•g-1 to 14.20 μg•g-1 with the mean value of 6.78 μg•g-1. The highest Σ18PAHs concentration was found in dust samples from orefields, followed by city, town and village. Moreover, the mean concentration of Σ18PAHs in indoor dust was at least 10% higher than that of outdoors. The 4-6 rings PAHs, contributing more than 70% of ∑18PAHs, were the dominant species. PAHs ratios, principal component analysis with multiple linear regression (PCA-MLR and hierarchical clustering analysis (HCA were applied to evaluate the possible sources. Two major origins of PAHs in indoor dust were identified as vehicle emissions and coal combustion. The mean incremental lifetime cancer risk (ILCR due to human exposure to indoor dust PAHs in city, town, village and orefield of Guizhou province, China was 6.14×10-6, 5.00×10-6, 3.08×10-6, 6.02×10-6 for children and 5.92×10-6, 4.83×10-6, 2.97×10-6, 5.81×10-6 for adults, respectively.

  20. Geopressured aquifers - utilization of the energy potential of the Endorf thermal water deposit

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S; Hantelmann, G v

    1984-01-01

    The Endorf thermal water deposit (Rupel, 4229 to 4264 m) belongs to the type of ''geopressured aquifers''. The overall aim of the project is to exploit the energy stored in the deposit in the form of thermal brine (temperature: 115/sup 0/C) and natural gas (96% methane). In this first report on the project state, an overview on prehistory is followed by a description of the currently implemented test programme and its subsequent evaluation which aim at obtaining more exact knowledge concerning the present deposit conditions and, while doing so, indications of the energy content of the deposit in order to determine the energy potential theoretically exploitable at the well head.

  1. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  2. The Eocene Rusayl Formation, Oman, carbonaceous rocks in calcareous shelf sediments: Environment of deposition, alteration and hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H.G.; Wehner, H.; Kus, J. [Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover (Germany); Botz, R. [University Kiel, Geological-Paleontological Department, Olshausenstrasse 40-60, D-24118 Kiel (Germany); Berner, Z.; Stueben, D. [Technical University Karlsruhe, Institute for Mineralogy and Geochemistry, Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Al-Sayigh, A. [Sultan Qaboos University, Geological Dept. PO Box 36, Al-Khod (Oman)

    2007-10-01

    incursions make up a greater deal of the sedimentary record than mangrove swamps. Terra rossa paleosols mark the end of accumulation of organic material (OM) and herald supratidal conditions at the passage of Rusayl Formation into the overlying Seeb Formation. In the subtidal-supratidal cycles of lithofacies unit VIII the terra rossa horizons are thining upwards and become gradually substituted for by deep-water middle ramp sediments of lithofacies unit IX. Framboidal pyrite, (ferroan) dolomite with very little siderite are indicative of an early diagenetic alteration stage I under rather moderate temperatures of formation. During a subsequent stage II, an increase in the temperature of alteration was partly induced by burial and a high heat flow from the underlying Semail Ophiolite. Type-III kerogen originating from higher plants and, in addition, some marine biota gave rise to the generation of small amounts of soluble organic matter during this stage of diagenesis. The average reflectance of humic particles marks the beginning of the oil window and the production index reveals the existence of free hydrocarbons. Further uplift of the Eocene strata and oxidation during stage IIII caused veins of satin spar to form from organic sulfur and pyrite in the carbonaceous material. Lowering of the pH value of the pore fluid led to the precipitation of jarosite and a set of hydrated aluminum sulfates dependant upon the cations present in the wall rocks. AMD minerals (= acid mine drainage) are not very widespread in this carbonaceous series intercalated among calcareous rocks owing to the buffering effect of carbonate minerals. These carbonate-hosted carbonaceous rocks are below an economic level as far as the mining of coal is concerned, but deserves particular attention as source rocks for hydrocarbons in the Middle East, provided a higher stage of maturity is reached. (author)

  3. Concentrations of polycyclic aromatic hydrocarbons in New York City community garden soils: Potential sources and influential factors.

    Science.gov (United States)

    Marquez-Bravo, Lydia G; Briggs, Dean; Shayler, Hannah; McBride, Murray; Lopp, Donna; Stone, Edie; Ferenz, Gretchen; Bogdan, Kenneth G; Mitchell, Rebecca G; Spliethoff, Henry M

    2016-02-01

    A total of 69 soil samples from 20 community gardens in New York City (New York, USA) were collected and analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) and black carbon. For each garden, samples were collected from nongrowing areas (non-bed) and from vegetable-growing beds, including beds with and without visible sources of PAHs. The sum of the US Environmental Protection Agency's 16 priority PAHs ranged up to 150 mg/kg, and the median (5.4 mg/kg) and mean (14.2 mg/kg) were similar to those previously reported for urban areas in the northeast United States. Isomer ratios indicated that the main sources of PAHs were petroleum, coal, and wood combustion. The PAH concentrations were significantly and positively associated with black carbon and with modeled air PAH concentrations, suggesting a consistent relationship between historical deposition of atmospheric carbon-adsorbed PAHs and current PAH soil concentrations. Median PAH soil concentration from non-bed areas was higher (7.4 mg/kg) than median concentration from beds in the same garden (4.0 mg/kg), and significantly higher than the median from beds without visible sources of PAHs (3.5 mg/kg). Median PAH concentration in beds from gardens with records of soil amendments was 58% lower compared with beds from gardens without those records. These results suggest that gardening practices in garden beds without visible sources of PAHs contribute to reduce PAH soil concentrations. © 2015 SETAC.

  4. More than 2500 years of oil exposure shape sediment microbiomes with the potential for syntrophic degradation of hydrocarbons linked to methanogenesis.

    Science.gov (United States)

    Michas, Antonios; Vestergaard, Gisle; Trautwein, Kathleen; Avramidis, Pavlos; Hatzinikolaou, Dimitris G; Vorgias, Constantinos E; Wilkes, Heinz; Rabus, Ralf; Schloter, Michael; Schöler, Anne

    2017-09-11

    Natural oil seeps offer the opportunity to study the adaptation of ecosystems and the associated microbiota to long-term oil exposure. In the current study, we investigated a land-to-sea transition ecosystem called "Keri Lake" in Zakynthos Island, Greece. This ecosystem is unique due to asphalt oil springs found at several sites, a phenomenon already reported 2500 years ago. Sediment microbiomes at Keri Lake were studied, and their structure and functional potential were compared to other ecosystems with oil exposure histories of various time periods. Replicate sediment cores (up to 3-m depth) were retrieved from one site exposed to oil as well as a non-exposed control site. Samples from three different depths were subjected to chemical analysis and metagenomic shotgun sequencing. At the oil-exposed site, we observed high amounts of asphalt oil compounds and a depletion of sulfate compared to the non-exposed control site. The numbers of reads assigned to genes involved in the anaerobic degradation of hydrocarbons were similar between the two sites. The numbers of denitrifiers and sulfate reducers were clearly lower in the samples from the oil-exposed site, while a higher abundance of methanogens was detected compared to the non-exposed site. Higher abundances of the genes of methanogenesis were also observed in the metagenomes from other ecosystems with a long history of oil exposure, compared to short-term exposed environments. The analysis of Keri Lake metagenomes revealed that microbiomes in the oil-exposed sediment have a higher potential for methanogenesis over denitrification/sulfate reduction, compared to those in the non-exposed site. Comparison with metagenomes from various oil-impacted environments suggests that syntrophic interactions of hydrocarbon degraders with methanogens are favored in the ecosystems with a long-term presence of oil.

  5. Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kutch Basin, western India: Implications to depositional environment and hydrocarbon source potential

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mathews, Runcie P.; Saraswati, Pratul K.; Banerjee, Santanu [Department of Earth Sciences, Indian Institute of Technology Bombay (India); Singh, Bhagwan D.; Tripathi, Suryakant M.; Singh, Alpana [Birbal Sahni Institute of Palaeobotany, Lucknow (India); Mann, Ulrich [Forschungszentrum Juelich (Germany). Institut fuer chemie und Dynamik der Geosphaere

    2011-01-01

    Petrological, palynological and organic-geochemical investigations were undertaken to determine the source vegetation, depositional conditions and hydrocarbon source potential of Eocene Matanomadh lignites from Kutch Basin, western India. The maceral study reveals that studied lignites are rich in huminite (av. 63%) with sub-ordinate amount of liptinite (av. 19%) and low inertinite (av. 3%), along with low to moderately high associated mineral matters (av. 15%). The overall petrographic composition points to a lagoonal condition for the formation of these lignites. The mean huminite reflectance values (R{sub r}: 0.28-0.34%, av. 0.31%) as well as low Rock-Eval T{sub max} (av. 417 C) values for the seams, suggest brown coal or lignitic stage/rank for the studied lignites. The palynological assemblages, dominated by tropical angiospermic pollen, suggest prevalence of warm humid tropical climate during the deposition of these lignites. The total organic carbon (TOC) content of lignites ranges between 26 and 58 wt.%, whereas the TOC content of the associated carbonaceous shales is around 4 wt.%. The Hydrogen Index (HI) ranging from 23 to 452 mg HC/g TOC indicates that the lignite sequence has the potential to produce mixed oil and gaseous hydrocarbons on maturation. The major pyrolysis products of lignites, derived from Curie point pyrolysis-GC-MS, are straight chain aliphatics, phenols and cadalene-based C{sub 15} bicyclic sesquiterpenoids. The exclusive occurrence of C{sub 15} bicyclic sesquiterpenoids suggests that these compounds are derived from dammar resin of angiosperm plants, belonging to family Dipterocarpaceae. (author)

  6. Identification and Characterisation of Major Hydrocarbons in ...

    African Journals Online (AJOL)

    Identification and Characterisation of Major Hydrocarbons in Thermally Degraded Low Density Polyethylene Films. ... There were alkanes, alkenes, halogenated alkanes, and very few aromatics in the liquid product and, the hydrocarbons were observed to range between C10 - C27. The FTIR and GC-MS results show the ...

  7. Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region

    Science.gov (United States)

    De La Torre-Roche, Roberto J.; Lee, Wen-Yee; Campos-Díaz, Sandra I.

    2009-01-01

    Ultrasonic extraction followed by Stir Bar Sorptive Extraction (SBSE) and thermal desorption inline coupled with Gas Chromatography and Mass Spectrometry (TD/GC/MS)was used to perform a comprehensive determination of soil-borne polycyclic aromatic hydrocarbons (PAHs) in El Paso, Texas. The method provided good sensitivity and faster processing time for the analysis. The total PAHs in El Paso soil ranged from 0.1 to 2225.5 µg kg−1. Although the majority of PAH concentrations did not exceed the soil screening levels regulated by the United States Environmental Protection Agency, the existence of PAHs in this ecosystem is ubiquitous. Naphthalene were found in 100% of the soil samples; while the heavy PAHs (five- and six-ring) were not often detected and mostly remained in closer proximity to industrial areas and major traffic points. The results ruled out the possibility of petroleum refining as the significant source of local soil-borne PAH contamination, but they suggested that the PAHs found in El Paso soil were closely linked to human activities and possible other industrial processes. PMID:18768257

  8. CFG-7-P3 : potential of aggregate-associated biodegradation of high-molecular-weight hydrocarbon fractions in crude-oil contaminated soils from a northern Canadian site

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.; Snelgrove, J.; Akbari, A.; Ghoshal, S. [McGill Univ., Montreal, PQ (Canada). Dept. of Civil Engineering and Applied Mechanics

    2010-07-01

    Soil aggregation can limit aerobic hydrocarbon biodegradation rates due to the slower intra-pore diffusion of nutrients, oxygen and hydrocarbons. This study investigated the influence of soil aggregation at a pilot-scale biopile of crude oil-contaminated soil shipped from a site in the Northwest Territories. Attempts were made to stimulate indigenous microbial activity of the hydrocarbon-degrading bacteria through soil aeration and nutrient amendments in a tank maintained at 15 degrees C. Results showed that nutrient amendment significantly enhanced aggregation. After 60 days, approximately 50 per cent of the initial total hydrocarbon productivity (TPH) was reduced in both the treated and untreated biopile. However, a TPH analysis of soil aggregate levels showed that the biodegradation of high weight hydrocarbon fractions in macroaggregates was more significantly reduced in the nutrient-amended soils. Results suggested that the soil particles in the macroaggregates were more loosely clustered, and may have supported enhanced hydrocarbon biodegradation.

  9. Transient thermal driven bubble's surface and its potential ultrasound-induced damage

    Science.gov (United States)

    Movahed, Pooya; Freund, Jonathan B.

    2017-11-01

    Ultrasound-induced bubble activity in soft tissues is well-known to be a potential injury mechanism in therapeutic ultrasound treatments. We consider damage by transient thermal effects, including a hypothetical mechanism based on transient thermal phenomena, including viscous dissipation. A spherically symmetric compressible Navier-Stokes discretization is developed to solve the full governing equations, both inside and outside of the bubble, without the usual simplifications in the Rayleigh-Plesset bubble dynamics approach. Equations are solved in the Lagrangian framework, which provides a sharp and accurate representation of the interface as well as the viscous dissipation and thermal transport effects, which preclude reduction to the usual Rayleigh-Plesset ordinary differential equation. This method is used to study transient thermal effects at different frequencies and pressure amplitudes relevant to therapeutic ultrasound treatments. High temperatures achieved in the surrounding medium during the violent bubble collapse phase due to the viscous dissipation in the surrounding medium and thermal conduction from the bubble are expected to cause damage. This work was supported by NIH NIDDK Grant P01-DK043881.

  10. Mitigating impact of thermal and rectified radio-frequency sheath potentials on edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Gui, B. [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Lawerence Livermore National Lab, Livermore, California 94550 (United States); Xu, X. Q. [Lawerence Livermore National Lab, Livermore, California 94550 (United States); Myra, J. R.; D' Ippolito, D. A. [Lodestar Research Corporation, Boulder, Colorado 80301 (United States)

    2014-11-15

    The mitigating impact of thermal and rectified radio frequency (RF) sheath potentials on the peeling-ballooning modes is studied non-linearly by employing a two-fluid three-field simulation model based on the BOUT++ framework. Additional shear flow and the Kelvin-Helmholtz effect due to the thermal and rectified RF sheath potential are induced. It is found that the shear flow increases the growth rate while the K-H effect decreases the growth rate slightly when there is a density gradient, but the energy loss of these cases is suppressed in the nonlinear phase. The stronger external electrostatic field due to the sheaths has a more significant effect on the energy loss suppression. From this study, it is found the growth rate in the linear phase mainly determines the onset of edge-localized modes, while the mode spectrum width in the nonlinear phase has an important impact on the turbulent transport. The wider mode spectrum leads to weaker turbulent transport and results in a smaller energy loss. Due to the thermal sheath and rectified RF sheath potential in the scrape-off-layer, the modified shear flow tears apart the peeling-ballooning filament and makes the mode spectrum wider, resulting in less energy loss. The perturbed electric potential and the parallel current near the sheath region is also suppressed locally due to the sheath boundary condition.

  11. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming

    Science.gov (United States)

    Gunderson, Alex R.; Stillman, Jonathon H.

    2015-01-01

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures. PMID:25994676

  12. Bacterial diversity exploration in hydrocarbon polluted soil: metabolic potential and degrader community evolution revealed by isotope labeling

    International Nuclear Information System (INIS)

    Martin, F.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds produced by incomplete combustion of organic matter. They are a source of environmental pollution, especially associated to oil product exploitation, and represent a threat for living organisms including human beings because of their toxicity. Many bacteria capable of degrading PAHs have been isolated and studied. However, since less than 5% of soil bacteria can be cultivated in the laboratory, bacterial species able to degrade PAHs in situ have been poorly studied. The first goal of this study was to identify bacteria that degrade PAHs in soil using culture-independent molecular methods. To this end, a strategy known a stable isotope probing has been implemented based on the use of phenanthrene, a three rings PAH, in which the natural isotope of carbon was replaced by 13 C. This molecule has been introduced as a tracer in microcosms containing soil from a constructed wetlands collecting contaminated water from highway runoff. Bacteria having incorporated the 13 C were then identified by 16 S rRNA gene sequence analysis after PCR amplification from labeled genomic DNA extracted from soil. The results show that so far little studied Betaproteobacteria, belonging to the genera Acidovorax, Rhodoferax, Hydrogenophaga and Thiobacillus, as well as Rhodocyclaceae, were the key players in phenanthrene degradation. Predominance of Betaproteobacteries was established thanks to quantitative PCR measurements. A dynamic analysis of bacterial diversity also showed that the community structure of degraders depended on phenanthrene bioavailability. In addition, the phylogenetic diversity of ring-hydroxylating di-oxygenases, enzymes involved in the first step of PAH degradation, has been explored. We detected new sequences, mostly related to di-oxygenases from Sphingomonadales and Burkholderiales. For the first time, we were able to associate a catalytic activity for oxidation of PAHs to partial gene sequences

  13. Thermal conductance of suspended nanoribbons: interplay between strain and interatomic potential nonlinearity

    Science.gov (United States)

    Barreto, Roberto; Florencia Carusela, M.; Monastra, Alejandro G.

    2017-10-01

    We investigate the role that nonlinearity in the interatomic potential has on the thermal conductance of a suspended nanoribbon when it is subjected to a longitudinal strain. To focus on the first cubic and quartic nonlinear terms of a general potential, we propose an atomic system based on an α-β Fermi-Pasta-Ulam nearest neighbor interaction. We perform classical molecular dynamics simulations to investigate the contribution of longitudinal, transversal and flexural modes to the thermal conductance as a function of the α-β parameters and the applied strain. We compare the cases where atoms are allowed to vibrate only in plane (2D) with the case of vibrations in and out of plane (3D). We find that the dependence of conductance on α and β relies on a crossover phenomenon between linear/nonlinear delocalized/localized flexural and transversal modes, driven by an on/off switch of the strain.

  14. Environmental assessment of the potential effects of aquifer thermal energy storage systems on microorganisms in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.J.; Stewart, D.L.

    1988-03-01

    The primary objective of this study was to evaluate the potential environmental effects (both adverse and beneficials) of aquifer thermal energy storage (ATES) technology pertaining to microbial communities indigenous to subsurface environments (i.e., aquifers) and the propagation, movement, and potential release of pathogenic microorganisms (specifically, Legionella) within ATES systems. Seasonal storage of thermal energy in aquifers shows great promise to reduce peak demand; reduce electric utility load problems; contribute to establishing favorable economics for district heating and cooling systems; and reduce pollution from extraction, refining, and combustion of fossil fuels. However, concerns that the widespread implementation of this technology may have adverse effects on biological systems indigeneous to aquifers, as well as help to propagate and release pathogenic organisms that enter thee environments need to be resolved. 101 refs., 2 tabs.

  15. Ozonation and Thermal Pre-Treatment of Municipal Sewage Sludge-Implications for Toxicity and Methane Potential

    DEFF Research Database (Denmark)

    Davidsson, A.; Eriksson, Eva; Fick, J.

    2013-01-01

    The aim of this study was to determine effects on methane potential and overall sludge quality from two different sludge pre-treatment technologies (ozonation high/low dosage and thermal treatment 55/70 degrees C). In general both treatments produced increased methane potential. Thermal treatment...... by ozone treatment and digestion. No statistical significant reduction in concentrations of included pharmaceuticals could be observed....

  16. Biogeographical distribution analysis of hydrocarbon degrading and biosurfactant producing genes suggests that near-equatorial biomes have higher abundance of genes with potential for bioremediation.

    Science.gov (United States)

    Oliveira, Jorge S; Araújo, Wydemberg J; Figueiredo, Ricardo M; Silva-Portela, Rita C B; de Brito Guerra, Alaine; da Silva Araújo, Sinara Carla; Minnicelli, Carolina; Carlos, Aline Cardoso; de Vasconcelos, Ana Tereza Ribeiro; Freitas, Ana Teresa; Agnez-Lima, Lucymara F

    2017-07-27

    Bacterial and Archaeal communities have a complex, symbiotic role in crude oil bioremediation. Their biosurfactants and degradation enzymes have been in the spotlight, mainly due to the awareness of ecosystem pollution caused by crude oil accidents and their use. Initially, the scientific community studied the role of individual microbial species by characterizing and optimizing their biosurfactant and oil degradation genes, studying their individual distribution. However, with the advances in genomics, in particular with the use of New-Generation-Sequencing and Metagenomics, it is now possible to have a macro view of the complex pathways related to the symbiotic degradation of hydrocarbons and surfactant production. It is now possible, although more challenging, to obtain the DNA information of an entire microbial community before automatically characterizing it. By characterizing and understanding the interconnected role of microorganisms and the role of degradation and biosurfactant genes in an ecosystem, it becomes possible to develop new biotechnological approaches for bioremediation use. This paper analyzes 46 different metagenome samples, spanning 20 biomes from different geographies obtained from different research projects. A metagenomics bioinformatics pipeline, focused on the biodegradation and biosurfactant-production pathways, genes and organisms, was applied. Our main results show that: (1) surfactation and degradation are correlated events, and therefore should be studied together; (2) terrestrial biomes present more degradation genes, especially cyclic compounds, and less surfactation genes, when compared to water biomes; and (3) latitude has a significant influence on the diversity of genes involved in biodegradation and biosurfactant production. This suggests that microbiomes found near the equator are richer in genes that have a role in these processes and thus have a higher biotechnological potential. In this work we have focused on the

  17. On the thermal phase structure of QCD at vanishing chemical potentials

    CERN Document Server

    Kabana, S

    2011-01-01

    The hypothesis is investigated, that the thermal structure of QCD phases at and near zero chemical potentials is determined by long range coherence, inducing the gauge boson pair condensate. The latter reflects the dynamical nature of gauge boson Bogoliubov transformations at the origin of localization of all color fields inside hadrons at low temperature in contrast to loss of such localization above a unique critical temperature.

  18. An overview of the potential of the CANDU reactor as a thermal breeder

    International Nuclear Information System (INIS)

    Slater, J.B.

    1977-02-01

    This paper is concerned with the use of thorium as a fuel in the existing CANDU concept. The neutron balance of the reactor core is analyzed and an assessment is made of the potential for development of a thermal 'breeder' reactor system. It is concluded that while the SSET cycle (i.e. self-sufficient equilibrium thorium cycle) appears feasible, there is little potential for developing a significant 'breeding' fuel cycle if current reactor operating capability and capital costs are to be maintained. (author)

  19. Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components

    Science.gov (United States)

    Ma, X.; Ruggiero, P.

    2018-04-01

    Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.

  20. GIS methodology and case study regarding assessment of the solar potential at territorial level: PV or thermal?

    Directory of Open Access Journals (Sweden)

    Loïc Quiquerez

    2015-06-01

    Full Text Available This paper presents a GIS-based methodology for assessing solar photovoltaic (PV and solar thermal potentials in urban environment. The consideration of spatial and temporal dimensions of energy resource and demand allows, for two different territories of the Geneva region, to determine the suitable building roof areas for solar installations, the solar irradiance on these areas and, finally, the electrical and/or thermal energy potentials related to the demand. Results show that the choice of combining PV and solar thermal for domestic hot water (DHW is relevant in both territories. Actually, the installation of properly sized solar thermal collectors doesn’t decrease much the solar PV potential, while allowing significant thermal production. However, solar collectors for combined DHW and space heating (SH require a much larger surface and, therefore, have a more important influence on the PV potential.

  1. Systems comparison and potential of Solar Thermal installations in the mediterranean area

    International Nuclear Information System (INIS)

    Klaib, M.; Staib, F.; Winter, C.J.

    1993-01-01

    This study is an attempt to investigate, from a variety of starting points, the market potential for solar thermal power plants. The terms of reference chosen for the central systems parabolic trough and tower plants (30-200 MW e ) seem to be workable. For the decentral dish/Stirling systems (10 kW e -10 MW e ) a first estimation could be worked out. In addition to collecting data on a large number of parameters relevant to the energy economy, the study also concentrated on: evaluating Meteosat data in order to determine the insolation conditions for each 50 x 50 km square of land in the entire Mediterranean area; making a rough cartographic sketch showing the most significant surface-area related criteria for each country; deriving typical annual, weekly and daily load curves for central and decentral grids from a multitude of country-specific data, and comparing the electricity generating costs of solar thermal and conventional power plants. From this basic data, various potentials (theoretical, available, technical, economic and anticipated) were determined for solar thermal power plants

  2. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  3. Potential for cladding thermal failure in LWRs during high temperature transients

    International Nuclear Information System (INIS)

    El Genk, M.S.

    1979-01-01

    The temperature increase in the fuel and the cladding during a PCM accident produces film boiling at the cladding surface which may induce zircaloy cladding failure, due to embrittlement, and fuel melting at the centerline of the fuel pellets. Molten fuel may extrude through radial cracks in the fuel and relocate in the fuel-cladding gap. Contact of extruded molten fuel with the cladding, which is at high temperature during film boiling, may induce cladding thermal failure due to melting. An assessment of central fuel melting and molten fuel extrusion into the fuel-cladding gap during a PCM accident is presented. The potential for thermal failure of the zircaloy cladding upon being contacted by molten fuel during such an accident is also analyzed and compared with the applicable experimental evidence

  4. Some aspects of thermal inflation: The finite temperature potential and topological defects

    International Nuclear Information System (INIS)

    Barreiro, T.; Copeland, E.J.; Lyth, D.H.; Prokopec, T.

    1996-01-01

    Currently favored extensions of the standard model typically contain open-quote open-quote flaton fields close-quote close-quote defined as fields with large vacuum expectation values (VEV close-quote s) and almost flat potentials. If a flaton field is trapped at the origin in the early Universe, one expects open-quote open-quote thermal inflation close-quote close-quote to take place before it rolls away to the true vacuum, because the finite-temperature correction to the potential will hold it at the origin until the temperature falls below 1 TeV or so. In the first part of the paper, that expectation is confirmed by an estimate of the finite-temperature corrections and of the tunneling rate to the true vacuum, paying careful attention to the validity of the approximations that are used. The second part of the paper considers topological defects which may be produced at the end of an era of thermal inflation. If the flaton fields associated with the era are grand unified theory (GUT) Higgs fields, then its end corresponds to the GUT phase transition. In that case monopoles (as well as GUT Higgs particles) will have to be diluted by a second era of thermal inflation. Such an era will not affect the cosmology of GUT strings, for which the crucial parameter is the string mass per unit length. Because of the flat Higgs potential, the GUT symmetry-breaking scale required for the strings to be a candidate for the origin of large scale structure and the CMB anisotropy is about three times bigger than usual, but given the uncertainties it is still compatible with the one required by the unification of the standard model gauge couplings. The cosmology of textures and of global monopoles is unaffected by the flatness of the potential. copyright 1996 The American Physical Society

  5. Cracking hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1921-10-07

    In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.

  6. Distilling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bataafsche, N V; de Brey, J H.C.

    1918-10-30

    Hydrocarbons containing a very volatile constituent and less volatile constituents, such as casing-head gases, still gases from the distillation of crude petroleum and bituminous shale are separated into their constituents by rectification under pressure; a pressure of 20 atmospheres and limiting temperatures of 150/sup 0/C and 40/sup 0/C are mentioned as suitable. The mixture may be subjected to a preliminary treatment consisting in heating to a temperature below the maximum rectification temperature at a pressure greater than that proposed to be used in the rectification.

  7. Thermal Stability of Nanocrystalline Copper for Potential Use in Printed Wiring Board Applications

    Science.gov (United States)

    Woo, Patrick Kai Fai

    Copper is a widely used conductor in the manufacture of printed wiring boards (PWB). The trends in miniaturization of electronic devices create increasing challenges to all electronic industries. In particular PWB manufacturers face great challenges because the increasing demands in greater performance and device miniaturization pose enormous difficulties in manufacturing and product reliability. Nanocrystalline and ultra-fine grain copper can potentially offer increased reliability and functionality of the PWB due to the increases in strength and achievable wiring density by reduction in grain size. The first part of this thesis is concerned with the synthesis and characterization of nanocrystalline and ultra-fine grain-sized copper for potential applications in the PWB industry. Nanocrystalline copper with different amounts of sulfur impurities (25-230ppm) and grain sizes (31-49nm) were produced and their hardness, electrical resistivity and etchability were determined. To study the thermal stability of nanocrystalline copper, differential scanning calorimetry and isothermal heat treatments combined with electron microscopy techniques for microstructural analysis were used. Differential scanning calorimetry was chosen to continuously monitor the grain growth process in the temperature range from 40?C to 400?C. During isothermal annealing experiments samples were annealed at 23?C, 100?C and 300?C to study various potential thermal issues for these materials in PWB applications such as the long-term room temperature thermal stability as well as for temperature excursions above the operation temperature and peak temperature exposure during the PWB manufacturing process. From all annealing experiments the various grain growth events and the overall stability of these materials were analyzed in terms of driving and dragging forces. Experimental evidence is presented which shows that the overall thermal stability, grain boundary character and texture evolution of

  8. Inventory of the solar thermal and photovoltaic energy potential in the Ardennes district

    International Nuclear Information System (INIS)

    Gal, Henri-Louis

    2010-03-01

    Based on the use of cartographic tool, the objective of this study was to assess the potential production of solar thermal and solar photovoltaic systems, social-economic data, regulatory data, and environmental, heritage-related, and urban constraints, and natural risks. For each type of installation, the possible reachable potential has been assessed while taking these constraints, building typology (housing, industrial, heritage, and so on), building orientation, project construction dynamics into account. The report analyses solar resource, housing characteristics, building typology, regulatory constraints related to the protection of the built environment, exploitation constraints (shade), building orientation constraints. It presents an assessment of net resources for both sectors, an assessment of plausible production potentials by 2030. It also presents and discusses environmental (avoided emissions) and financial indicators related to both solar sectors

  9. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  10. Legionella Persistence in Manufactured Water Systems: Pasteurization Potentially Selecting for Thermal Tolerance

    Directory of Open Access Journals (Sweden)

    Harriet Whiley

    2017-07-01

    Full Text Available Legionella is an opportunistic waterborne pathogen of increasing public health significance. Pasteurization, otherwise known as super-heat and flush (increasing water temperature to above 70°C and flushing all outlets, has been identified as an important mechanism for the disinfection of Legionella in manufactured water systems. However, several studies have reported that this procedure was ineffective at remediating water distribution systems as Legionella was able to maintain long term persistent contamination. Up to 25% of L. pneumophila cells survived heat treatment of 70°C, but all of these were in a viable but non-culturable state. This demonstrates the limitations of the culture method of Legionella detection currently used to evaluate disinfection protocols. In addition, it has been demonstrated that pasteurization and nutrient starvation can select for thermal tolerant strains, where L. pneumophila was consistently identified as having greater thermal tolerance compared to other Legionella species. This review demonstrates that further research is needed to investigate the effectiveness of pasteurization as a disinfection method. In particular, it focuses on the potential for pasteurization to select for thermal tolerant L. pneumophila strains which, as the primary causative agent of Legionnaires disease, have greater public health significance compared to other Legionella species.

  11. The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain

    Science.gov (United States)

    Siegesmund, S.; Mosch, S.; Scheffzük, Ch.; Nikolayev, D. I.

    2008-10-01

    The bowing of natural stone panels is especially known for marble slabs. The bowing of granite is mainly known from tombstones in subtropical humid climate. Field inspections in combination with laboratory investigations with respect to the thermal expansion and the bowing potential was performed on two different granitoids (Cezlak granodiorite and Flossenbürg granite) which differ in the composition and rock fabrics. In addition, to describe and explain the effect of bowing of granitoid facade panels, neutron time-of-flight diffraction was applied to determine residual macro- and microstrain. The measurements were combined with investigations of the crystallographic preferred orientation of quartz and biotite. Both samples show a significant bowing as a function of panel thickness and destination temperature. In comparison to marbles the effect of bowing is more pronounced in granitoids at temperatures of 120°C. The bowing as well as the thermal expansion of the Cezlak sample is also anisotropic with respect to the rock fabrics. A quantitative estimate was performed based on the observed textures. The effect of the locked-in stresses may also have a control on the bowing together with the thermal stresses related to the different volume expansion of the rock-forming minerals.

  12. On energetics of hydrocarbon chemical reactions by ionizing irradiation

    International Nuclear Information System (INIS)

    Zaykin, Yu.A.; Zaykina, R.F.; Mirkin, G.

    2002-01-01

    Complete text of publication follows. The present global energy crisis requires the industry to look for technologies that are more effective and, particularly, less energy consuming. The hydrocarbon processing technology based on the electron radiation-induced thermal chemical conversion has a great potential. Comparing the presently predominant thermocatalytic processing, it is much more energy efficient, because chemical conversions go at a minimal processing temperature and pressure. To compare energy consumption by electron irradiation with thermal and thermocatalytic technologies of hydrocarbon processing one must see major differences between them. While traditional thermocatalytic processes are equilibrium and their energetics can be evaluated based on principles of classic thermodynamics, HEET processing is non-equilibrium and this evaluation approach is not valid for it. However, a theoretical description of radiation-chemical conversion using reaction rate constants determined in thermally equilibrium systems is approximately adequate to radiation processes by substituting equilibrium concentrations of reacting particles as their non-equilibrium concentrations under irradiation. In particular, description of radical reactions initiated by radiation requires substitution of thermally equilibrium radical concentration by much higher concentration defined by the dynamic equilibrium of radical radiation generation and their recombination. The paper presents the comparative analysis of energy consumption in different stages of hydrocarbon processing using classic thermal cracking by heating versus radiation induced cracking. It is shown that in the most energy-consuming stage of processing - the chain reaction initiation necessary for concentration of active radicals, irradiation processing has the great advantage compared to thermal cracking by heating and allows cutting down the total energy consumption by approximately 40%

  13. Geological and thermal exploration for an evaluation of the geothermal potential of Luxembourg

    Science.gov (United States)

    Schintgen, Tom; Förster, Andrea

    2013-04-01

    In 2010, work has commenced on the evaluation of the geothermal potential of Luxembourg. The concept of this evaluation comprises several steps. Given the limited amount of geological data and the lack of petrothermal data as well as on crustal heat flow, in-depth studies are needed that allow a comprehensive insight into the shallow as well as deep thermal subsurface structure and thus to make temperature prognoses for the use of geothermal energy. Here we report the geological structure of the Mesozoic Trier-Luxembourg Basin (TLB) with its various lithological units as well as the geology of the underlying basement units. The thickness of the Mesozoic section increases from 400-500 m in the northeastern part of the basin to a maximum of 1100 m in the southern part of Luxembourg. New data on thermal parameters, such as the thermal conductivity (TC), radiogenic heat production (RHP) and porosity are presented for the major lithotypes of the TLB as well as of the underlying Paleozoic basement. These data originated from core samples (Mesozoic formations) and from sampling of outcrops of Luxembourg's surroundings (Paleozoic formations). Thus data are now available for an up to 13-km-thick succession of the upper crust, comprising the Lower Cambrian to the Middle Ordovician, the relatively thick Lower Devonian and the Triassic to Liassic of the TLB. For the remainder of the crust down to the Moho thermal properties are determined by translating seismic velocities into rock types and using average values for TC and RHP for these metamorphic and igneous rocks. Based on the new values of TC and a temperature log measured under thermal equilibrium in a 300-m deep borehole, surface heat flow was determined. These data form the basis for modeling the subsurface temperatures along two regional crustal cross sections, which cover most of the Rhenohercynian Zone of the Variscan orogenic belt. They extend from the Lower Paleozoic Stavelot Massif in the Belgian Ardennes in the

  14. Human thermal comfort antithesis in the context of the Mediterranean tourism potential

    Science.gov (United States)

    Nastos, Panagiotis T.; Zerefos, Christos S.; Kapsomenakis, Ioannis N.; Eleftheratos, Kostas; Polychroni, Iliana

    2016-04-01

    Weather and climate information are determinative factors in the decision of a touristic destination. The evaluation of the thermal, aesthetical and physical components of the climate is considered an issue of high importance in order to assess the climatic tourism potential. Mediterranean is an endowed region with respect to its temperate climate and impressive landscapes over the coastal environment and numerous islands. However, the harmony of the natural beauty is interrupted by extreme weather phenomena, such as heat and cold waves, heavy rains and stormy conditions. Thus, it is very important to know the seasonal behavior of the climate for touristic activities and recreation. Towards this objective we evaluated the antithesis in the human thermal perception as well as the sultriness, stormy, foggy, sunny and rainy days recorded in specific Greek touristic destinations against respective competitive Mediterranean resorts. Daily meteorological parameters, such as air temperature, relative humidity, wind speed, cloudiness and precipitation, were acquired from the most well-known touristic sites over the Mediterranean for the period 1970 to present. These variables were used on one hand to estimate the human thermal burden, by means of the thermal index of Physiologically Equivalent temperature (PET) and on the other hand to interpret the physical and aesthetic components of the tourism potential, by utilizing specific thresholds of the initial and derived variables in order to quantify in a simple and friendly way the environmental footprint on desired touristic destinations. The findings of this research shed light on the climate information for tourism in Greece against Mediterranean destinations. Greek resorts, especially in the Aegean Islands appear to be more ideal with respect to thermal comfort against resorts at the western and central Mediterranean, where the heat stress within the summer season seems to be an intolerable pressure on humans. This could

  15. Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea.

    Science.gov (United States)

    Tkachenko, Konstantin S; Soong, Keryea

    2017-06-01

    Dongsha Atoll (also known as the Pratas Islands), the northernmost atoll in the South China Sea, experiences two contrasting physical phenomena: repetitive anomalies of the sea surface temperature exceeding the coral bleaching threshold and regular effects of the world's strongest internal waves resulting in the rhythmic upwelling of cold deep waters at the outer reef slopes of the atoll. This unique combination may result in significant differences in coral species composition and structure between the lagoon and forereef. Surveys conducted in August-September 2016 at 12 study sites in the 2-15 m depth range at Dongsha Atoll revealed a clear spatial separation between 'thermally-susceptible' stony coral genera, including Acropora, Pocillopora and Montipora, which mainly inhabited the forereef, and 'thermally-resistant' genera, including massive Porites, foliaceous Echinopora, Pavona and Turbinaria, which mainly resided in the lagoon. The mean coral cover and species richness on the forereef were respectively 1.8 and 1.4 times higher than those in the lagoon (61.3% and 98 species on the forereef vs. 34.2% and 69 species in the lagoon). Coral mortality rates, expressed as the ratio of dead to live stony corals, showed the same pattern (0.4 in the lagoon vs. 0.009 on the forereef). Furthermore, in a laboratory experiment, 'thermally-susceptible' taxa from the lagoon, (e.g. Pocillopora verrucosa and P. damicornis), exhibited higher resistance to bleaching than did their counterparts from the forereef. The present findings indicate that Dongsha Atoll is a potential thermal refuge for reef-building corals in the northern South China Sea and reveal the development of resilience and resistance to bleaching in coral communities of the lagoon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Thermal property and density measurements of samples taken from drilling cores from potential geologic media

    International Nuclear Information System (INIS)

    Lagedrost, J.F.; Capps, W.

    1983-12-01

    Density, steady-state conductivity, enthalpy, specific heat, heat capacity, thermal diffusivity and linear thermal expansion were measured on 59 materials from core drill samples of several geologic media, including rock salt, basalt, and other associated rocks from 7 potential sites for nuclear waste isolation. The measurements were conducted from or near to room temperature up to 500 0 C, or to lower temperatures if limited by specimen cracking or fracturing. Ample documentation establishes the reliability of the property measurement methods and the accuracy of the results. Thermal expansions of salts reached 2.2 to 2.8 percent at 500 0 C. Associated rocks were from 0.6 to 1.6 percent. Basalts were close to 0.3 percent at 500 0 C. Specific heats of salts varied from 0.213 to 0.233 cal g -1 C -1 , and basalts averaged 0.239 cal g -1 C -1 . Thermal conductivities of salts at 50 0 C were from 0.022 to 0.046 wcm -1 C -1 , and at 500 0 C, from 0.012 to 0.027 wcm -1 C -1 . Basalts conductivities ranged from 0.020 to 0.022 wcm -1 C -1 at 100 0 C and 0.016 to 0.018 at 500 0 C. There were no obvious conductivity trends relative to source location. Room temperature densities of salts were from 2.14 to 2.29 gcm -3 , and basalts, from 2.83 to 2.90 gcm -3 . The extreme friability of some materials made specimen fabrication difficult. 21 references, 17 figures, 28 tables

  17. Experimental and theoretical investigation of Fe-catalysis phenomenon in hydrogen thermal desorption from hydrocarbon plasma-discharge films from T-10 tokama

    Science.gov (United States)

    Stankevich, Vladimir G.; Sukhanov, Leonid P.; Svechnikov, Nicolay Yu.; Lebedev, Alexey M.; Menshikov, Kostantin A.; Kolbasov, Boris N.

    2017-10-01

    Investigations of the effect of Fe impurities on D2 thermal desorption (TD) from homogeneous CDx films (x ˜ 0.5) formed in the D-plasma discharge of the T-10 tokamak were carried out. The experimental TD spectra of the films showed two groups of peaks at 650-850 K and 900-1000 K for two adsorption states. The main result of the iron catalysis effect consists in the shift of the high-temperature peak by -24 K and in the increase in the fraction of the weakly bonded adsorption states. To describe the effect of iron impurities on TD of hydrogen isotopes, a structural cluster model based on the interaction of the Fe+ ion with the 1,3-C6H8 molecule was proposed. The potential energy surfaces of chemical reactions with the H2 elimination were calculated using ab initio methods of quantum chemistry. It was established that the activation barrier of hydrogen TD is reduced by about 1 eV due to the interaction of the Fe+ ion with the π-subsystem of the 1,3-C6H8 molecule leading to a redistribution of the double bonds along the carbon system. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)"", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  18. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  19. Hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. (South Carolina Univ., Columbia, SC (United States). Dept. of Geological Sciences)

    1993-01-01

    This special issue of the journal examines various aspects of the on-going search for hydrocarbons, ranging from frontier basins where little data are available, to more mature areas where considerable data are available. The incentives underlying the search for oil are roughly: the social, economic and industrial needs of a nation; the incentive of a corporation to be profitable; and the personal incentives of individuals in the oil industry and governments, which range from financial wealth to power and which are as diverse as the individuals who are involved. From a geopolitical perspective, the needs, requirements, goals, strategies, and philosophies of nations, and groups of nations, also impact on the oil exploration game. Strategies that have been employed have ranged from boycott to austerity and rationing, to physical intervention, to global ''flooding'' with oil by over-production. (author)

  20. Studies for determining thermal ion extraction potential for aluminium plasma generated by electron beam evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V Dileep; Barnwal, Tripti A; Mukherjee, Jaya; Gantayet, L M, E-mail: dileepv@barc.gov.i [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2010-02-01

    For effective evaporation of refractory metal, electron beam is found to be most suitable vapour generator source. Using electron beam, high throughput laser based purification processes are carried out. But due to highly concentrated electron beam, the vapour gets ionised and these ions lead to dilution of the pure product of laser based separation process. To estimate the concentration of these ions and extraction potential requirement to remove these ions from vapour stream, experiments have been conducted using aluminium as evaporant. The aluminium ingots were placed in water cooled copper crucible. Inserts were used to hold the evaporant, in order to attain higher number density in the vapour processing zone and also for confining the liquid metal. Parametric studies with beam power, number density and extraction potential were conducted. In this paper we discuss the trend of the generation of thermal ions and electrostatic field requirement for extraction.

  1. Preliminary analysis of the potential for thermally-induced rock fracture around high-level waste containers

    International Nuclear Information System (INIS)

    Ratigan, J.L.

    1976-01-01

    The major results are: the development of parametric formulations relating the potential for thermally induced fracturing in the high-level radioactive waste repository concept to the elastic and thermal properties of the site rock and the depth of the excavation, and the recognition of a need to determine the actual ''failure envelope'' for any potential site rock in the laboratory and adjust the parametric relations appropriately. Analysis of five rock types indicated that none would experience elastic/brittle failure due to the thermal stresses induced by the introduction of a 5 kW heat source. However, the rock strengths and elastic properties are laboratory values and not in situ values

  2. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system

    International Nuclear Information System (INIS)

    Ibrahim, Adnan; Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz

    2014-01-01

    Highlights: • Performances analysis of BIPVT solar collector based on energy and exergy analyses. • A new absorber design of BIPVT solar collector is presented. • BIPVT solar collector is produced primary-energy saving efficiency from about 73% to 81%. • PVT energy efficiency varies between 55% and 62% where as the variation in the PVT exergy efficiency is from 12% to 14%. • The improvement potential is between 98 and 404 W. - Abstract: Building integrated photovoltaic thermal (BIPVT) system has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such as building integrated heating system and domestic hot water system as well as many industrial including agricultural and commercial applications. The photovoltaic thermal (PVT) system comprises of a high efficiency multicrystal photovoltaic (PV) module and spiral flow absorber for BIPVT application, have been performed and investigated. In this study, it was assumed that the absorber was attached underneath the flat plate single glazing sheet of polycrystalline silicon PV module and water has been used as a heat transfer medium in absorber. Performances analysis of BIPVT system based on energy and exergy analyses. It was based on efficiencies including energy and exergy, and exergetic improvement potential (IP) based on the metrological condition of Malaysia has been carried out. Results show that the hourly variation for BIPVT system, the PVT energy efficiency of 55–62% is higher than the PVT exergy efficiency of 12–14%. The improvement potential increases with increasing solar radiation, it is between 98 and 404 W. On the other hand, BIPVT system was produced primary-energy saving efficiency from about 73% to 81%

  3. Biogeochemistry of Halogenated Hydrocarbons

    Science.gov (United States)

    Adriaens, P.; Gruden, C.; McCormick, M. L.

    2003-12-01

    Halogenated hydrocarbons originate from both natural and industrial sources. Whereas direct anthropogenic emissions to the atmosphere and biosphere are often easy to assess, particularly when they are tied to major industrial activities, the attribution of emissions to other human activities (e.g., biomass burning), diffuse sources (e.g., atmospheric discharge, run off), and natural production (e.g., soils, fungi, algae, microorganisms) are difficult to quantify. The widespread occurrence of both alkyl and aryl halides in groundwater, surface water, soils, and various trophic food chains, even those not affected by known point sources, suggests a substantial biogeochemical cycling of these compounds (Wania and Mackay, 1996; Adriaens et al., 1999; Gruden et al., 2003). The transport and reactive fate mechanisms controlling their reactivity are compounded by the differences in sources of alkyl-, aryl-, and complex organic halides, and the largely unknown impact of biogenic processes, such as enzymatically mediated halogenation of organic matter, fungal production of halogenated hydrocarbons, and microbial or abiotic transformation reactions (e.g., Asplund and Grimvall, 1991; Gribble, 1996; Watling and Harper, 1998; Oberg, 2002). The largest source may be the natural halogenation processes in the terrestrial environment, as the quantities detected often exceed the amount that can be explained by human activities in the surrounding areas ( Oberg, 1998). Since biogeochemical processes result in the distribution of a wide range of halogenated hydrocarbon profiles, altered chemical structures, and isomer distributions in natural systems, source apportionment (or environmental forensics) can often only be resolved using multivariate statistical methods (e.g., Goovaerts, 1998; Barabas et al., 2003; Murphy and Morrison, 2002).This chapter will describe the widespread occurrence of halogenated hydrocarbons, interpret their distribution and biogeochemical cycling in light of

  4. Predicting hydrocarbon release from soil

    International Nuclear Information System (INIS)

    Poppendieck, D.; Loehr, R.C.

    2002-01-01

    hydrocarbons in a contaminated soil. This knowledge can enhance the selection and determine the duration of a proper remediation strategy. Information will be provided on the correlation of the results from this protocol to the results of chemical loss in contaminated soil bioremediation systems. This research has been completed, the data is currently being analyzed and the results will be fully evaluated by early 2002. As a result, the protocol and potential applications to field decisions will be presented and discussed. (author)

  5. Thermal and Ash Characterization of Indonesian Bamboo and Its Potential for Solid Fuel and Waste Valorization

    Directory of Open Access Journals (Sweden)

    Aprilina Purbasari

    2016-08-01

    Full Text Available Bamboo has been widely used in Indonesia for construction, handicrafts, furniture and other uses. However, the use of bamboo as a biomass for renewable energy source has not been extensively explored. This paper describes the thermal and ash characterization of three bamboo species found in Indonesia, i.e. Gigantochloa apus, Gigantochloa levis and Gigantochloa atroviolacea. Characterization of bamboo properties as a solid fuel includes proximate and ultimate analyses, calorific value measurement and thermogravimetric analysis. Ash characterization includes oxide composition analysis and phase analysis by X-Ray diffraction. The selected bamboo species have calorific value comparable with wood with low nitrogen and sulphur contents, indicating that they can be used as renewable energy sources. Bamboo ash contains high silicon so that bamboo ash has potential to be used further as building materials or engineering purposes. Ash composition analysis also indicates high alkali that can cause ash sintering and slag formation in combustion process. This implies that the combustion of bamboo requires the use of additives to reduce the risk of ash sintering and slag formation. Article History: Received May 15, 2016; Received in revised form July 2nd, 2016; Accepted July 14th, 2016; Available online How to Cite This Article: Purbasari, A., Samadhi, T.W. & Bindar, Y. (2016 Thermal and Ash Characterization of Indonesian Bamboo and its Potential for Solid Fuel and Waste Valorization. Int. Journal of Renewable Energy Development, 5(2, 95-100. http://dx.doi.org/10.14710/ijred.5.2.96-100 

  6. The geothermal energy potential in Denmark - updating the database and new structural and thermal models

    Science.gov (United States)

    Nielsen, Lars Henrik; Sparre Andersen, Morten; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Leth Hjuler, Morten; Kristensen, Lars; Mathiesen, Anders; Olivarius, Mette; Weibel, Rikke

    2017-04-01

    Knowledge of structural, hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. In the framework of a project under the Danish Research program 'Sustainable Energy and Environment' funded by the 'Danish Agency for Science, Technology and Innovation', fundamental geological and geophysical information of importance for the utilization of geothermal energy in Denmark was compiled, analyzed and re-interpreted. A 3D geological model was constructed and used as structural basis for the development of a national subsurface temperature model. In that frame, all available reflection seismic data were interpreted, quality controlled and integrated to improve the regional structural understanding. The analyses and interpretation of available relevant data (i.e. old and new seismic profiles, core and well-log data, literature data) and a new time-depth conversion allowed a consistent correlation of seismic surfaces for whole Denmark and across tectonic features. On this basis, new topologically consistent depth and thickness maps for 16 geological units from the top pre-Zechstein to the surface were drawn. A new 3D structural geological model was developed with special emphasis on potential geothermal reservoirs. The interpretation of petrophysical data (core data and well-logs) allows to evaluate the hydraulic and thermal properties of potential geothermal reservoirs and to develop a parameterized numerical 3D conductive subsurface temperature model. Reservoir properties and quality were estimated by integrating petrography and diagenesis studies with porosity-permeability data. Detailed interpretation of the reservoir quality of the geological formations was made by estimating net reservoir sandstone thickness based on well-log analysis, determination of mineralogy including sediment provenance analysis, and burial history data. New local surface heat-flow values (range: 64-84 mW/m2) were determined for the Danish

  7. Small Scale Hydrocarbon Fire Test Concept

    OpenAIRE

    Joachim Søreng Bjørge; Maria-Monika Metallinou; Arjen Kraaijeveld; Torgrim Log

    2017-01-01

    In the oil and gas industry, hydrocarbon process equipment was previously often thermally insulated by applying insulation directly to the metal surface. Fire protective insulation was applied outside the thermal insulation. In some cases, severe corrosion attacks were observed due to ingress of humidity and condensation at cold surfaces. Introducing a 25 mm air gap to prevent wet thermal insulation and metal wall contact is expected to solve the corrosion issues. This improved insulation met...

  8. Heart rate variation and electroencephalograph--the potential physiological factors for thermal comfort study.

    Science.gov (United States)

    Yao, Y; Lian, Z; Liu, W; Jiang, C; Liu, Y; Lu, H

    2009-04-01

    Human thermal comfort researches mainly focus on the relation between the environmental factors (e.g. ambient temperature, air humidity, and air velocity, etc.) and the thermal comfort sensation based on a large amount of subjective field investigations. Although some physiological factors, such as skin temperature and metabolism were used in many thermal comfort models,they are not enough to establish a perfect thermal comfort model. In this paper,another two physiological factors, i.e. heart rate variation (HRV) and electroencephalograph (EEG), are explored for the thermal comfort study. Experiments were performed to investigate how these physiological factors respond to the environmental temperatures, and what is the relationship between HRV and EEG and thermal comfort. The experimental results indicate that HRV and EEG may be related to thermal comfort, and they may be useful to understand the mechanism of thermal comfort.

  9. Escherichia coli as a potential hydrocarbon conversion microorganism. Oxidation of aliphatic and aromatic compounds by recombinant E. coli in two-liquid phase (aqueous-organic) systems

    NARCIS (Netherlands)

    Favre-Bulle, Olivier

    1992-01-01

    The increased interest in the study of hydrocarbon utilizing microorganisms in recent years has been stimulated by the possibility of using their monooxygenases in the selective oxidation of aliphatic and aromatic compounds. As an example, long chain (>C16) n-alkanes are converted to dicarboxylic

  10. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    NARCIS (Netherlands)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2010-01-01

    In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass

  11. Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage

    NARCIS (Netherlands)

    Hoes, P.; Trcka, M.; Hensen, J.L.M.; Hoekstra Bonnema, B.

    2011-01-01

    In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass

  12. Estimating the potential for solar thermal applications in the industrial process heat market 1990-2030

    International Nuclear Information System (INIS)

    Demeter, C.P.; Gray, E.E.; Carwile, C.

    1991-01-01

    This paper reports the results of a preliminary evaluation of the potential domestic market for solar thermal energy supply technologies matched to industrial process heat applications. The study estimates current and projects future industrial process heat demand to the year 2030 by two-digit standard industrial classification code for the manufacturing industrial sector and discusses the potential to displace conventional fossil fuel sources such as natural gas with alternative sources of supply. The PC Industrial Model, used by DOE's Energy Information Administration in support of the National Energy Strategy (NES) is used for forecast industrial energy demand. Demand is disaggregated by census region to account for geographic variations in solar insolation, and by heat medium and temperature to facilitate end-use matching with appropriate solar energy supply technologies. Levelized energy costs (LEC) are calculated for flat plate collectors for low- temperature preheat applications, parabolic troughs for intermediate temperature process steam and direct heat, and parabolic dish technologies for high-temperature, direct heat applications. LEC is also developed for a conventional natural gas-fueled Industrial Process Heat (IPH) supply source assuming natural gas price escalation consistent with NES forecasts to develop a relative figure of merit used in a market penetration model

  13. Electromagnetic Acoustic Transducers Applied to High Temperature Plates for Potential Use in the Solar Thermal Industry

    Directory of Open Access Journals (Sweden)

    Maria Kogia

    2015-12-01

    Full Text Available Concentrated Solar Plants (CSPs are used in solar thermal industry for collecting and converting sunlight into electricity. Parabolic trough CSPs are the most widely used type of CSP and an absorber tube is an essential part of them. The hostile operating environment of the absorber tubes, such as high temperatures (400–550 °C, contraction/expansion, and vibrations, may lead them to suffer from creep, thermo-mechanical fatigue, and hot corrosion. Hence, their condition monitoring is of crucial importance and a very challenging task as well. Electromagnetic Acoustic Transducers (EMATs are a promising, non-contact technology of transducers that has the potential to be used for the inspection of large structures at high temperatures by exciting Guided Waves. In this paper, a study regarding the potential use of EMATs in this application and their performance at high temperature is presented. A Periodic Permanent Magnet (PPM EMAT with a racetrack coil, designed to excite Shear Horizontal waves (SH0, has been theoretically and experimentally evaluated at both room and high temperatures.

  14. Using thermal phase curves to probe the climate of potentially habitable planets

    Science.gov (United States)

    Kataria, Tiffany

    2018-01-01

    Thermal phase-curve observations probe the variation in emitted flux of a planet with phase, or longitude. When conducted spectroscopically, they allow us to probe the two-dimensional temperature structure in both longitude and altitude, which directly relate to the planet’s circulation and chemistry. In the case of small, potentially habitable exoplanets, spectroscopic phase-curve observations can provide us with direct evidence that the planet is capable of sustaining liquid water from measurements of its brightness temperature, and allow us to distinguish between a ‘airless’ body and one that has an appreciable atmosphere. In this talk I will summarize efforts to characterize exoplanets smaller than Neptune with phase-curve observations and emission spectroscopy using the Spitzer and Hubble Space Telescopes. I will then discuss how these ‘lessons learned’ can be applied to future efforts to characterize potentially habitable planets with phase-curve observations using JWST and future facilities such as the Origins Space Telescope (OST).

  15. ELECTRON IRRADIATION AND THERMAL PROCESSING OF MIXED-ICES OF POTENTIAL RELEVANCE TO JUPITER TROJAN ASTEROIDS

    International Nuclear Information System (INIS)

    Mahjoub, Ahmed; Poston, Michael J.; Hand, Kevin P.; Hodyss, Robert; Blacksberg, Jordana; Carlson, Robert W.; Ehlmann, Bethany L.; Choukroun, Mathieu; Brown, Michael E.; Eiler, John M.

    2016-01-01

    In this work we explore the chemistry that occurs during the irradiation of ice mixtures on planetary surfaces, with the goal of linking the presence of specific chemical compounds to their formation locations in the solar system and subsequent processing by later migration inward. We focus on the outer solar system and the chemical differences for ice mixtures inside and outside the stability line for H 2 S. We perform a set of experiments to explore the hypothesis advanced by Wong and Brown that links the color bimodality in Jupiter's Trojans to the presence of H 2 S in the surface of their precursors. Non-thermal (10 keV electron irradiation) and thermally driven chemistry of CH 3 OH–NH 3 –H 2 O (“without H 2 S”) and H 2 S–CH 3 OH–NH 3 –H 2 O (“with H 2 S”) ices were examined. Mid-IR analyses of ice and mass spectrometry monitoring of the volatiles released during heating show a rich chemistry in both of the ice mixtures. The “with H 2 S” mixture experiment shows a rapid consumption of H 2 S molecules and production of OCS molecules after a few hours of irradiation. The heating of the irradiated “with H 2 S” mixture to temperatures above 120 K leads to the appearance of new infrared bands that we provisionally assign to SO 2 and CS. We show that radiolysis products are stable under the temperature and irradiation conditions of Jupiter Trojan asteroids. This makes them suitable target molecules for potential future missions as well as telescope observations with a high signal-to-noise ratio. We also suggest the consideration of sulfur chemistry in the theoretical modeling aimed at understanding the chemical composition of Trojans and KOBs

  16. Retention model for sorptive extraction-thermal desorption of aqueous samples : application to the automated analysis of pesticides and polyaromatic hydrocarbons in water samples

    NARCIS (Netherlands)

    Baltussen, H.A.; David, F.; Sandra, P.J.F.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1998-01-01

    In this report, an automated method for sorptive enrichment of aqueous samples is presented. It is based on sorption of the analytes of interest into a packed bed containing 100% polydimethylsiloxane (PDMS) particles followed by thermal desorption for complete transfer of the enriched solutes onto

  17. Improvement of thermal exchange between feedstock and effluent in a hydrocarbon processing unit under hydrogen atmosphere by partial recycling of the product

    Energy Technology Data Exchange (ETDEWEB)

    Orieux, A.

    1990-01-19

    Heat exchange is improved in light naphta hydroisomerization and catalytic reforming by recirculation of a part of the product in the thermal exchange zone at a temperature higher than the dew point of the effluent under hydrogen atmosphere and preferentially as a temperature lower than the temperature of the recycled product.

  18. Evaluation of the quality, thermal maturity and distribution of potential source rocks in the Danish part of the Norwegian–Danish Basin

    Directory of Open Access Journals (Sweden)

    Kristensen, Lars

    2008-11-01

    Middle Jurassic Haldager Sand play. Potential trap structures are widely distributed in the basin, most commonly associated with the flanks of salt diapirs. The plays rely on charge from the Lower Jurassic (Toarcian or uppermost Jurassic – lowermost Cretaceous shales. Both plays have been tested with negative results, however, and failure is typically attributed to insufficient maturation (burial depth of the source rocks. This maturation question has been investigated by analysis of vitrinite reflectance data from the study area, corrected for post-Early Cretaceous uplift. A likely depth to the top of the oil window(vitrinite reflectance = 0.6%Ro is c. 3050–3100 m based on regional coalification curves. The Frederikshavn Formation had not been buried to this depth prior to post-Early Cretaceous exhumation,and the potential source rocks of the formation are thermally immature in terms of hydrocarbon generation. The potential source rocks of the Fjerritslev Formation are generally immature to very early mature. Mature source rocks in the Danish part of the Norwegian–Danish Basin are thus dependent on local, deeper burial to reach the required thermal maturity for oil generation. Such potential kitchen areas with mature Fjerritslev Formation source rocks may occur in the central part of the study area (central–northern Jylland, and a few places offshore. These inferred petroleum kitchens are areally restricted, mainly associated with salt structures and local grabens (such as the Fjerritslev Trough and the Himmerland Graben.

  19. Overview of direct air free cooling and thermal energy storage potential energy savings in data centres

    International Nuclear Information System (INIS)

    Oró, Eduard; Depoorter, Victor; Pflugradt, Noah; Salom, Jaume

    2015-01-01

    In the last years the total energy demand of data centres has experienced a dramatic increase which is expected to continue. This is why data centres industry and researchers are working on implementing energy efficiency measures and integrating renewable energy to overcome energy dependence and to reduce operational costs and CO 2 emissions. The cooling system of these unique infrastructures can account for 40% of the total energy consumption. To reduce the energy consumption, free cooling strategies are used more and more, but so far there has been little research about the potential of thermal energy storage (TES) solutions to match energy demand and energy availability. Hence, this work intends to provide an overview of the potential of the integration of direct air free cooling strategy and TES systems into data centres located at different European locations. For each location, the benefit of using direct air free cooling is evaluated energetically and economically for a data centre of 1250 kW. The use of direct air free cooling is shown to be feasible. This does not apply the TES systems by itself. But when using TES in combination with an off-peak electricity tariff the operational cooling cost can be drastically reduced. - Highlights: • The total annual hours for direct air free cooling in data centres are calculated. • The potential of TES integration in data centres is evaluated. • The implementation of TES to store the ambient air cold is not recommended. • TES is feasible if combined with redundant chillers and off-peak electricity price. • The cooling electricity cost is being reduced up to 51%, depending on the location

  20. Potential impact of enhanced fracture-toughness data on pressurized-thermal-shock analysis

    International Nuclear Information System (INIS)

    Dickson, T.L.; Theiss, T.J.

    1990-01-01

    The Heavy Section Steel Technology (HSST) Program is involved with the generation of ''enhanced'' fracture-initiation toughness and fracture-arrest toughness data of prototypic nuclear reactor vessel steels. These two sets of data are enhanced because they have distinguishing characteristics that could potentially impact PWR pressure vessel integrity assessments for the pressurized-thermal shock (PTS) loading condition which is a major plant-life extension issue to be confronted in the 1990's. Currently, the HSST Program is planning experiments to verify and quantify, for A533B steel, the distinguishing characteristic of elevated initiation-fracture toughness for shallow flaws which has been observed for other steels. Deterministic and probabilistic fracture-mechanics analyses were performed to examine the influence of the enhanced initiation and arrest fracture-toughness data on the cleavage fracture response of a nuclear reactor pressure vessel subjected to PTS loading. The results of the analyses indicated that application of the enhanced K Ia data does reduce the conditional probability of failure P(F|E); however, it does not appear to have the potential to significantly impact the results of PTS analyses. The application of enhanced fracture-initiation-toughness data for shallow flaws also reduces P(F|E), but it does appear to have a potential for significantly affecting the results of PTS analyses. The effect of including Type I warm prestress in probabilistic fracture-mechanics analyses is beneficial. The benefit is transient dependent and, in some cases, can be quite significant. 19 refs., 12 figs., 1 tab

  1. Ozonation and thermal pre-treatment of municipal sewage sludge – Implications for toxicity and methane potential

    DEFF Research Database (Denmark)

    Davidsson, A.; Eriksson, Eva; Fick, J.

    The aim of this study was to determine the effects on the methane potential and the overall sludge quality from two different sludge pre-treatment technologies (ozonation high/low dosage and thermal treatment 55/70 °C). In general both treatments gave an increased methane potential. The thermal t...... treatment resulted in higher chemical oxygen demand (COD)-solubilisation, while the highest volatile fatty acids (VFA) increase was obtained with ozonation. The sludges had inhibiting effects in a barley seed germination assay and a yeast oestrogen screen both before and after pre...

  2. Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics

    International Nuclear Information System (INIS)

    Yang, Chao; Chang, Chao; Song, Chengyi; Shang, Wen; Wu, Jianbo; Tao, Peng; Deng, Tao

    2016-01-01

    Highlights: • A flexible and high-performance heat pipe is fabricated. • Bending effect on thermal performance of flexible heat pipes is evaluated. • Theoretical analysis is carried out to reveal the change of thermal resistance with bending. • Thermal control of foldable electronics with flexible heat pipes is demonstrated. - Abstract: In this work, we report the fabrication and thermal performance evaluation of flexible heat pipes prepared by using a fluororubber tube as the connector in the adiabatic section and using strong base treated hydrophilic copper meshes as the wick structure. Deionized water was chosen as working fluid and three different filling ratios (10%, 20%, and 30%) of working fluid were loaded into the heat pipe to investigate its impact on thermal performance. The fabricated heat pipes can be easily bended from 0"o to 180"o in the horizontal operation mode and demonstrated consistently low thermal resistances after repeated bending. It was found that with optimized amount of working fluid, the thermal resistance of flexible heat pipes increased with larger bending angles. Theoretical analysis reveals that bending disturbs the normal vapor flow from evaporator to condenser in the heat pipe, thus leads to increased liquid–vapor interfacial thermal resistance in the evaporator section. The flexible heat pipes have been successfully applied for thermal control of foldable electronic devices showing superior uniform heat-transfer performance.

  3. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  4. A review on potential use of low-temperature water in the urban environment as a thermal-energy source

    Science.gov (United States)

    Laanearu, J.; Borodinecs, A.; Rimeika, M.; Palm, B.

    2017-10-01

    The thermal-energy potential of urban water sources is largely unused to accomplish the up-to-date requirements of the buildings energy demands in the cities of Baltic Sea Region. A reason is that the natural and excess-heat water sources have a low temperature and heat that should be upgraded before usage. The demand for space cooling should increase in near future with thermal insulation of buildings. There are a number of options to recover heat also from wastewater. It is proposed that a network of heat extraction and insertion including the thermal-energy recovery schemes has potential to be broadly implemented in the region with seasonally alternating temperature. The mapping of local conditions is essential in finding the suitable regions (hot spots) for future application of a heat recovery schemes by combining information about demands with information about available sources. The low-temperature water in the urban environment is viewed as a potential thermal-energy source. To recover thermal energy efficiently, it is also essential to ensure that it is used locally, and adverse effects on environment and industrial processes are avoided. Some characteristics reflecting the energy usage are discussed in respect of possible improvements of energy efficiency.

  5. Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons.

    Science.gov (United States)

    Manilla-Pérez, Efraín; Lange, Alvin Brian; Hetzler, Stephan; Steinbüchel, Alexander

    2010-05-01

    Petroleum (or crude oil) is a complex mixture of hydrocarbons. Annually, millions of tons of crude petroleum oil enter the marine environment from either natural or anthropogenic sources. Hydrocarbon-degrading bacteria (HDB) are able to assimilate and metabolize hydrocarbons present in petroleum. Crude oil pollution constitutes a temporary condition of carbon excess coupled to a limited availability of nitrogen that prompts marine oil-degrading bacteria to accumulate storage compounds. Storage lipid compounds such as polyhydroxyalkanoates (PHAs), triacylglycerols (TAGs), or wax esters (WEs) constitute the main accumulated lipophilic substances by bacteria under such unbalanced growth conditions. The importance of these compounds as end-products or precursors to produce interesting biotechnologically relevant chemicals has already been recognized. In this review, we analyze the occurrence and accumulation of lipid storage in marine hydrocarbonoclastic bacteria. We further discuss briefly the production and export of lipophilic compounds by bacteria belonging to the Alcanivorax genus, which became a model strain of an unusual group of obligate hydrocarbonoclastic bacteria (OHCB) and discuss the possibility to produce neutral lipids using A. borkumensis SK2.

  6. Potentials for heat accumulators in thermal power plants; Potenziale fuer Waermespeicher in Heiz(kraft)werken

    Energy Technology Data Exchange (ETDEWEB)

    Dengel, Andreas [STEAG New Energies GmbH, Saarbruecken (Germany)

    2012-07-01

    STEAG New Energies GmbH (Saarbruecken, Federal Republic of Germany) is contractor and operator of a variety of decentralized plants for heat production and power generation. The customers consist of communities, cooperation associations, business enterprises as well as industrial enterprises. Beside merely heat generators, so-called heat and power cogeneration plants often are used. The power generation is of minor importance due to the heat-controlled energy supply of the customers. Biomass power plants being operated in line with the Renewable Energy Law are an exemption. The demand for regulating energy increased clearly due to the enhanced volatile feeding of regenerative produced electric power. If the operation of heat and power cogeneration plants becomes more independent from the actual energy demand by using energy storages, then the energy transducer can be implemented in the lucrative market of regulation energy supply. Thus, the potential of such storages at the sites within a company shall be determined. Additionally, the development and testing of a latent heat accumulator for a thermal power plant of the company supplying process vapour with a temperature of 300 Celsius to a foil manufacturing facility is envisaged.

  7. Microbial Diversity and Biochemical Potential Encoded by Thermal Spring Metagenomes Derived from the Kamchatka Peninsula

    Directory of Open Access Journals (Sweden)

    Bernd Wemheuer

    2013-01-01

    Full Text Available Volcanic regions contain a variety of environments suitable for extremophiles. This study was focused on assessing and exploiting the prokaryotic diversity of two microbial communities derived from different Kamchatkian thermal springs by metagenomic approaches. Samples were taken from a thermoacidophilic spring near the Mutnovsky Volcano and from a thermophilic spring in the Uzon Caldera. Environmental DNA for metagenomic analysis was isolated from collected sediment samples by direct cell lysis. The prokaryotic community composition was examined by analysis of archaeal and bacterial 16S rRNA genes. A total number of 1235 16S rRNA gene sequences were obtained and used for taxonomic classification. Most abundant in the samples were members of Thaumarchaeota, Thermotogae, and Proteobacteria. The Mutnovsky hot spring was dominated by the Terrestrial Hot Spring Group, Kosmotoga, and Acidithiobacillus. The Uzon Caldera was dominated by uncultured members of the Miscellaneous Crenarchaeotic Group and Enterobacteriaceae. The remaining 16S rRNA gene sequences belonged to the Aquificae, Dictyoglomi, Euryarchaeota, Korarchaeota, Thermodesulfobacteria, Firmicutes, and some potential new phyla. In addition, the recovered DNA was used for generation of metagenomic libraries, which were subsequently mined for genes encoding lipolytic and proteolytic enzymes. Three novel genes conferring lipolytic and one gene conferring proteolytic activity were identified.

  8. Potential for fuel melting and cladding thermal failure during a PCM event in LWRs

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Croucher, D.W.

    1979-01-01

    The primary concern in nuclear reactor safety is to ensure that no conceivable accident, whether initiated by a failure of the reactor system or by incorrect operation, will lead to a dangerous release of radiation to the environment. A number of hypothesized off-normal power or cooling conditions, generally termed as power-cooling-mismatch (PCM) accidents, are considered in the safety analysis of light water reactors (LWRs). During a PCM accident, film boiling may occur at the cladding surface and cause a rapid temperature increase in the fuel and the cladding, perhaps producing embrittlement of the zircaloy cladding by oxidation. Molten fuel may be produced at the center of the pellets, extrude radially through open cracks in the outer, unmelted portion of the pellet and relocate in the fuel-cladding gap. If the amount of extruded molten fuel is sufficient to establish contact with the cladding, which is at a high temperature during film boiling, the zircaloy cladding may melt. The present work assesses the potential for central fuel melting and thermal failure of the zircaloy cladding due to melting upon being contacted by extruded molten UO 2 -fuel during a PCM event

  9. New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid

    Science.gov (United States)

    Sun, Hongbing; Feistel, Rainer; Koch, Manfred; Markoe, Andrew

    2008-10-01

    A set of fitted polynomial equations for calculating the physical variables density, entropy, heat capacity and potential temperature of a thermal saline fluid for a temperature range of 0-374 °C, pressure range of 0.1-100 MPa and absolute salinity range of 0-40 g/kg is established. The freshwater components of the equations are extracted from the recently released tabulated data of freshwater properties of Wagner and Pruß [2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data 31, 387-535]. The salt water component of the equation is based on the near-linear relationship between density, salinity and specific heat capacity and is extracted from the data sets of Feistel [2003. A new extended Gibbs thermodynamic potential of seawater. Progress in Oceanography 58, 43-114], Bromley et al. [1970. Heat capacities and enthalpies of sea salt solutions to 200 °C. Journal of Chemical and Engineering Data 15, 246-253] and Grunberg [1970. Properties of sea water concentrates. In: Third International Symposium on Fresh Water from the Sea, vol. 1, pp. 31-39] in a temperature range 0-200 °C, practical salinity range 0-40, and varying pressure and is also calibrated by the data set of Millero et al. [1981. Summary of data treatment for the international high pressure equation of state for seawater. UNESCO Technical Papers in Marine Science 38, 99-192]. The freshwater and salt water components are combined to establish a workable multi-polynomial equation, whose coefficients were computed through standard linear regression analysis. The results obtained in this way for density, entropy and potential temperature are comparable with those of existing models, except that our new equations cover a wider temperature—(0-374 °C) than the traditional (0-40 °C) temperature range. One can apply these newly established equations to the calculation of in-situ or

  10. ELECTRON IRRADIATION AND THERMAL PROCESSING OF MIXED-ICES OF POTENTIAL RELEVANCE TO JUPITER TROJAN ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoub, Ahmed; Poston, Michael J.; Hand, Kevin P.; Hodyss, Robert; Blacksberg, Jordana; Carlson, Robert W.; Ehlmann, Bethany L.; Choukroun, Mathieu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Brown, Michael E.; Eiler, John M., E-mail: Mahjoub.Ahmed@jpl.nasa.gov [California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA 91125 (United States)

    2016-04-01

    In this work we explore the chemistry that occurs during the irradiation of ice mixtures on planetary surfaces, with the goal of linking the presence of specific chemical compounds to their formation locations in the solar system and subsequent processing by later migration inward. We focus on the outer solar system and the chemical differences for ice mixtures inside and outside the stability line for H{sub 2}S. We perform a set of experiments to explore the hypothesis advanced by Wong and Brown that links the color bimodality in Jupiter's Trojans to the presence of H{sub 2}S in the surface of their precursors. Non-thermal (10 keV electron irradiation) and thermally driven chemistry of CH{sub 3}OH–NH{sub 3}–H{sub 2}O (“without H{sub 2}S”) and H{sub 2}S–CH{sub 3}OH–NH{sub 3}–H{sub 2}O (“with H{sub 2}S”) ices were examined. Mid-IR analyses of ice and mass spectrometry monitoring of the volatiles released during heating show a rich chemistry in both of the ice mixtures. The “with H{sub 2}S” mixture experiment shows a rapid consumption of H{sub 2}S molecules and production of OCS molecules after a few hours of irradiation. The heating of the irradiated “with H{sub 2}S” mixture to temperatures above 120 K leads to the appearance of new infrared bands that we provisionally assign to SO{sub 2}and CS. We show that radiolysis products are stable under the temperature and irradiation conditions of Jupiter Trojan asteroids. This makes them suitable target molecules for potential future missions as well as telescope observations with a high signal-to-noise ratio. We also suggest the consideration of sulfur chemistry in the theoretical modeling aimed at understanding the chemical composition of Trojans and KOBs.

  11. Mamey sapote seed oil (Pouteria sapota. Potential, composition, fractionation and thermal behavior

    Directory of Open Access Journals (Sweden)

    Solís-Fuentes, J. A.

    2015-03-01

    Full Text Available The chemical composition of the waste from mamey sapote (Pouteria sapota and its oil extracted from the seed (MSSO of ripe and unripe fruits, was studied. The MSSO from ripe fruits was dry-fractionated, and the thermal and phase behaviors of its fractions and their mixtures with other known natural fats were analyzed. The main components of the mamey peel and the seed were crude fiber (81.32% and fat (44.41% db, respectively. The seed oil contained oleic, stearic, palmitic and linoleic as its main fatty acids. The MSSO showed a simple thermal behavior with a broad fusion range and four maximum temperature peaks. The solid fractions showed maximum melting peaks at higher temperatures than the residual liquid. The MSSO solid fractions showed a potential for use as constituents in mixtures with other natural fats, such as cocoa butter or mango seed fat.Se estudió la composición de los residuos del zapote mamey (Pouteria sapota y del aceite extraído de la semilla (ASZM de frutos maduros e inmaduros. El ASZM de frutos maduros fue fraccionado en seco y se analizó la conducta térmica y de fase de las fracciones y mezclas de éstas con otras grasas naturales conocidas. Los principales componentes de la cáscara y de la semilla fueron fibra cruda (81.32% bs y grasa (44.41% bs, respectivamente. Los principales ácidos grasos del ASZM fueron: oleico, esteárico, palmítico y linoleico y mostró una conducta térmica simple con un intervalo de fusión amplio y cuatro máximos de temperatura. Las fracciones sólidas obtenidas presentaron máximos de fusión a temperaturas más altas que la fracción líquida residual. Las fracciones sólidas del ASZM mostraron potencialidad para usarse como constituyente en mezclas con la manteca de cacao y la grasa de la semilla de mango.

  12. A Simplified Tool for Predicting the Thermal Behavior and the Energy Saving Potential of Ventilated Windows

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Larsen, Olena Kalyanova

    2016-01-01

    Currently, the studies of ventilated windows mainly rely on complex fluid and thermal simulation software, which require extensive information, data and are very time consuming. The aim of this paper is to develop a simplified tool to assess the thermal behavior and energy performance of ventilat...

  13. Comprehensive assessment of the role and potential for solar thermal in future energy systems

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad

    2018-01-01

    to the energy system configurations. Solar thermal benefits reduce when moving towards a high-renewable energy system as other renewable energy sources start competing with solar thermal on energy prices and energy system flexibility. The findings can be applied to a diversity of energy systems also beyond...

  14. Application of fission track analysis to hydrocarbon exploration

    International Nuclear Information System (INIS)

    Duddy, I.R.; Green, P.F.; Gleadow, A.J.W.; Marshallsea, S.; Tingate, P.; Laslett, G.M.; Hegarty, K.A.; Lovering, J.F.

    1985-01-01

    The temperature range over which fission tracks in apatite show observable annealing effects coincides with that responsible for the maximum generation of liquid hydrocarbons. Work is currently in progress in a number of Australian and overseas sedimentary basins, applying Apatite Fission Track Analysis (AFTA) to investigate the thermal evolution of these hydrocarbon prospective regions

  15. Bisphenol A alternatives in thermal paper from the Netherlands, Spain, Sweden and Norway. Screening and potential toxicity

    NARCIS (Netherlands)

    Björnsdotter, Maria K.; Jonker, Willem; Legradi, Jessica; Kool, Jeroen; Ballesteros-Gómez, Ana

    2017-01-01

    Thermal paper contains potentially toxic additives, such as bisphenol A (BPA), as a common color developer. Because of its known endocrine disrupting effects, structural analogues to BPA, such as bisphenol S (BPS), D-8 and Pergafast 201, have been used as alternatives, but little is known about the

  16. Solar water heating systems feasibility for domestic requests in Tunisia: Thermal potential and economic analysis

    International Nuclear Information System (INIS)

    Hazami, Majdi; Naili, Nabiha; Attar, Issam; Farhat, Abdelhamid

    2013-01-01

    Highlights: • The present work studies the potential of using Domestic Solar Water Heating systems. • The payback period is between 8 and 7.5 years. • The annual savings in electrical energy is between 1316 and 1459 kW h/year. • The savings by using the solar systems is about 3969–4400.34 $. • The annual GHG emission per house is reduced by 27,800 tCO 2 . - Abstract: The main goal of the present work is to study the energetic and the economic potential of the deployment of Domestic Solar Water Heating systems (DSWHs) instead of using electric/gas/town gas water heaters. A case study related to Tunisian scenario was performed according to a typical Tunisian households composed of 4–5 persons. In this scenario we evaluated the performance and the life cycle perspective of the two most popular DSWHs over the recent years (i.e. DSWH with flat-plate solar collector, FPC, and DSWHs with evacuated-tube solar collector, ETC). The dynamic behavior of DSWHs according to Tunisian data weather was achieved by means of TRNSYS simulation. The Results showed that the FPC and ETC provide about 8118 and 12032 kW h/year of thermal energy. The economic potential of DSWHs in saving electricity and reducing carbon dioxide emissions was also investigated. Results showed that the annual savings in electrical energy relatively to the FPC and ETC are about 1316 and 1459 kW h/year, with a payback period of around 8 and 10 years, respectively. Based on gas/town gas water heater, the FPC and ETC save about 306 m 3 and 410 m 3 of gas/town gas with a payback period about 6 and 7.5 years, respectively. We found that the life cycle savings by installing the solar system instead of buying electricity to satisfy hot water needs are about $3969 (FPC) and $4400 (ETC). We establish also that the use of the DSWHs instead of installing gas/town gas water heaters save about $1518 (FPC) and $2035 (ETC). From an environmental point of view the annual GHG emission per house is reduced by 27800

  17. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    Science.gov (United States)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, V.; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, A.; Hellén, H.; Laakso, L.; Hakola, H.

    2014-07-01

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol, which affect human health, crop production and regional climate. Measurements of aromatic hydrocarbons were conducted at the Welgegund measurement station (South Africa), which is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (> 10 million people), the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anticyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for 1 year. Samples were collected twice a week for 2 h during daytime and 2 h during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median (mean) total aromatic hydrocarbon concentrations ranged between 0.01 (0.011) and 3.1 (3.2) ppb. Benzene levels did not exceed the local air quality standard limit, i.e. annual mean of 1.6 ppb. Toluene was the most abundant compound, with an annual median (mean) concentration of 0.63 (0.89) ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found, and no distinct seasonal patterns were

  18. Lactose hydrolysis potential and thermal stability of commercial β-galactosidase in UHT and skimmed milk

    Directory of Open Access Journals (Sweden)

    Alessandra BOSSO

    2016-03-01

    Full Text Available Abstract The commercial enzyme (E.C. = 3.2.1.23 from Kluyveromyces lactis (liquid and Aspergillus oryzae(lyophilized was investigated for its hydrolysis potential in lactose substrate, UHT milk, and skimmed milk at different concentrations (0.7; 1.0 and 1.5%, pH values (5.0; 6.0; 6.5 and 7.0, and temperature (30; 35; 40 and 55 ºC. High hydrolysis rates were observed for the enzyme from K. lactis at pH 7.0 and 40 ºC, and from A. oryzae at pH 5.0 and 55 ºC. The enzyme from K. lactis showed significantly higher hydrolysis rates when compared to A. oryzae. The effect of temperature and β-galactosidase concentration on the lactose hydrolysis in UHT milk was higher than in skimmed milk, for all temperatures tested. With respect to the thermal stability, a decrease in hydrolysis rate was observed at pH 6.0 at 35 ºC for K. lactisenzyme, and at pH 6.0 at 55 ºC for the enzyme from A. oryzae. This study investigate the hydrolysis of β-galactosidase in UHT and skimmed milk. The knowledge about the characteristics of the β-galactosidase fromK. lactis and A. oryzae enables to use it most efficiently to control the enzyme concentration, temperature, and pH in many industrial processes and product formulations.

  19. Thermophysical parameters of coconut oil and its potential application as the thermal energy storage system in Indonesia

    Science.gov (United States)

    Putri, Widya A.; Fahmi, Zulfikar; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    The high consumption of electric energy for room air conditioning (AC) system in Indonesia has driven the research of potential thermal energy storage system as a passive temperature controller. The application of coconut oil (CO) as the potential candidate for this purpose has been motivated since its working temperature just around the human thermal comfort zone in the tropical area as Indonesia. In this research we report the time-dependent temperature data of CO, which is adopting the T-history method. The analysis of the data revealed a set of thermophysical parameters, consist of the mean specific heats of the solid and liquid, as well as the latent heat of fusion for the phase change transition. The performance of CO to decrease the air temperature was measured in the thermal chamber. From the results it is shown that the latent phase of CO related to the solid-liquid phase transition show the highest capability in heat absorption, directly showing the potential application of CO as thermal energy storage system in Indonesia.

  20. Adaptive dynamics of cuticular hydrocarbons in Drosophila

    Czech Academy of Sciences Publication Activity Database

    Rajpurohit, S.; Hanus, Robert; Vrkoslav, Vladimír; Behrman, E. L.; Bergland, A. O.; Petrov, D.; Cvačka, Josef; Schmidt, P. S.

    2017-01-01

    Roč. 30, č. 1 (2017), s. 66-80 ISSN 1010-061X R&D Projects: GA ČR GAP206/12/1093 Institutional support: RVO:61388963 Keywords : cuticular hydrocarbons * Drosophila * experimental evolution * spatiotemporal variation * thermal plasticity Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.792, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/jeb.12988/full

  1. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  2. Microbial utilization of naturally occurring hydrocarbons at the Guaymas Basin hydrothermal vent site

    International Nuclear Information System (INIS)

    Bazylinski, D.A.; Wirsen, C.O.; Jannasch, H.W.

    1989-01-01

    The Guaymas Basin (Gulf of California; depth, 2,000 m) is a site of hydrothermal activity in which petroliferous materials is formed by thermal alteration of deposited planktonic and terrestrial organic matter. We investigated certain components of these naturally occurring hydrocarbons as potential carbon sources for a specific microflora at these deep-sea vent sites. Respiratory conversion of [1- 14 C]hexadecane and [1(4,5,8)- 14 C]naphthalene to 14 CO 2 was observed at 4 degree C and 25 degree C, and some was observed at 55 degree C, but none was observed at 80 degree C. Bacterial isolates were capable of growing on both substrates as the sole carbon source. All isolates were aerobic and mesophilic with respect to growth on hydrocarbons but also grew at low temperatures (4 to 5 degree C). These results correlate well with previous geochemical analyses, indicating microbial hydrocarbon degradation, and show that at least some of the thermally produced hydrocarbons at Guaymas Basin are significant carbon sources to vent microbiota

  3. Small Scale Hydrocarbon Fire Test Concept

    Directory of Open Access Journals (Sweden)

    Joachim Søreng Bjørge

    2017-11-01

    Full Text Available In the oil and gas industry, hydrocarbon process equipment was previously often thermally insulated by applying insulation directly to the metal surface. Fire protective insulation was applied outside the thermal insulation. In some cases, severe corrosion attacks were observed due to ingress of humidity and condensation at cold surfaces. Introducing a 25 mm air gap to prevent wet thermal insulation and metal wall contact is expected to solve the corrosion issues. This improved insulation methodology does, however, require more space that may not be available when refurbishing older process plants. Relocating structural elements would introduce much hot work, which should be minimized in live plants. It is also costly. The aim of the present study is therefore to develop a test concept for testing fire resistance of equipment protected with only air-gap and thermal insulation, i.e., without the fire-protective insulation. The present work demonstrates a conceptual methodology for small scale fire testing of mockups resembling a section of a distillation column. The mockups were exposed to a small-scale propane flame in a test configuration where the flow rate and the flame zone were optimized to give heat flux levels in the range 250–350 kW/m2. Results are presented for a mockup resembling a 16 mm thick distillation column steel wall. It is demonstrated that the modern distance insulation in combination with the heat capacity of the column wall indicates 30+ minutes fire resistance. The results show that this methodology has great potentials for low cost fire testing of other configurations, and it may serve as a set-up for product development.

  4. Assessment of damage potential to the TMI-2 lower head due to thermal attack by core debris

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Behling, S.R.; Broughton, J.M.

    1986-06-01

    Camera inspection of the Three Mile Island Unit 2 (TMI-2) inlet plenum region has shown that approximately 10 to 20 percent of the core material loading may have relocated to the lower plenum. Although vessel integrity was maintained, a question of primary concern is ''how close to vessel failure'' did this accident come. This report summarizes the results of thermal analyses aimed at assessing damage potential to the TMI-2 lower head and attached instrument penetration tubes due to thermal attack by hot core debris. Results indicate that the instrument penetration nozzles could have experienced melt failure at localized hot spot regions, with attendant debris drainage and plugging of the instrument lead tubes. However, only minor direct thermal attack of the vessel liner is predicted

  5. Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.; McGlynn, Brian L.; Kershner, Jeffrey L.

    2013-01-01

    Understanding the vulnerability of aquatic species and habitats under climate change is critical for conservation and management of freshwater systems. Climate warming is predicted to increase water temperatures in freshwater ecosystems worldwide, yet few studies have developed spatially explicit modelling tools for understanding the potential impacts. We parameterized a nonspatial model, a spatial flow-routed model, and a spatial hierarchical model to predict August stream temperatures (22-m resolution) throughout the Flathead River Basin, USA and Canada. Model comparisons showed that the spatial models performed significantly better than the nonspatial model, explaining the spatial autocorrelation found between sites. The spatial hierarchical model explained 82% of the variation in summer mean (August) stream temperatures and was used to estimate thermal regimes for threatened bull trout (Salvelinus confluentus) habitats, one of the most thermally sensitive coldwater species in western North America. The model estimated summer thermal regimes of spawning and rearing habitats at <13 C° and foraging, migrating, and overwintering habitats at <14 C°. To illustrate the useful application of such a model, we simulated climate warming scenarios to quantify potential loss of critical habitats under forecasted climatic conditions. As air and water temperatures continue to increase, our model simulations show that lower portions of the Flathead River Basin drainage (foraging, migrating, and overwintering habitat) may become thermally unsuitable and headwater streams (spawning and rearing) may become isolated because of increasing thermal fragmentation during summer. Model results can be used to focus conservation and management efforts on populations of concern, by identifying critical habitats and assessing thermal changes at a local scale.

  6. Hydrocarbon-degradation by Isolate Pseudomonas lundensis UTAR FPE2

    Directory of Open Access Journals (Sweden)

    Adeline, S. Y. Ting

    2009-01-01

    Full Text Available In this study, the potential of isolate Pseudomonas lundensis UTAR FPE2 as a hydrocarbon degrader was established. Their biodegradation activity was first detected with the formation of clearing zones on Bushnell-Hass agar plates, with the largest diameter observed on plates supplemented with paraffin, followed by mineral oil and petrol. Utilization of hydrocarbon sources were again detected in broth cultures supplemented with similar hydrocarbon substrates, where the mean viable cell count recovered from hydrocarbon-supplemented broth cultures were higher than the initial inoculum except for napthalene. In both tests, the isolate showed higher degradability towards aliphatic hydrocarbon sources, and the least activity towards the aromatic hydrocarbon naphthalene. The isolate P. lundensis UTAR FPE2 (8 log10 cfu/mL also degraded crude diesel sample, with 69% degradation during the first three days. To conclude, this study suggests the potential use of this isolate for bioremediation of hydrocarbon-contaminated environments.

  7. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  8. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  9. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  10. Analysis of ORC (Organic Rankine Cycle) systems with pure hydrocarbons and mixtures of hydrocarbon and retardant for engine waste heat recovery

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei

    2015-01-01

    The Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology for the recovery of engine waste heat. Systems with hydrocarbons as the working fluids exhibit good thermal performance. However, the flammability of hydrocarbons limits their practical applications because of safety concerns. This paper examines the potential of using mixtures of a hydrocarbon and a retardant in an ORC system for engine waste heat recovery. Refrigerants R141b and R11 are selected as the retardants and blended with the hydrocarbons to form zeotropic mixtures. The flammability is suppressed, and in addition, zeotropic mixtures provide better temperature matches with the heat source and sink, which reduces the exergy loss within the heat exchange processes, thereby increasing the cycle efficiency. Energetic and exergetic analysis of ORC systems with pure hydrocarbons and with mixtures of a hydrocarbon and a retardant are conducted and compared. The net power output and the second law efficiency are chosen as the evaluation criteria to select the suitable working fluid compositions and to define the optimal set of thermodynamic parameters. The simulation results reveal that the ORC system with cyclohexane/R141b (0.5/0.5) is optimal for this engine waste heat recovery case, thereby increasing the net power output of the system by 13.3% compared to pure cyclohexane. - Highlights: • ORC with zeotropic mixtures for engine waste heat recovery is discussed. • Energetic and exergetic analysis of ORC system are conducted. • Optimal mixture working fluid composition is identified. • Greater utilization of jacket water and lower irreversible loss are important.

  11. Properties of Agro-Industrial Aerated Concrete as Potential Thermal Insulation for Building

    Directory of Open Access Journals (Sweden)

    Aminudin Eeydzah

    2016-01-01

    Full Text Available The present paper is aiming to provide an actual state of the development of non autoclaved Agro-Industrial aerated concrete by using multiple ashes as improvement of thermal behavior for building. The feasibility of Agro-Industrial wastes as lightweight concrete by utilizing the Palm Oil Fuel Ash (POFA as binder replacement and bottom ash as fine aggregate was investigated in this paper. Portland cement, bottom ash, aluminum powder and lime (Ca(OH2 were used in this study. The POFA was used to replace Portland cement and Hydrated Lime at 0%, 5%, 10% and 15% by weight and aluminum powder was added at 0.75% dry weight in order to form bubbles. The compressive strength, water absorption, porosity and the thermal conductivity test were carried out after the concrete were water cured for 7 days and later being exposed to the air and water until 28days. The results show that the 20% replacements give the optimum strength of 7.143MPa and 30% give the best thermal conductivity with 0.48W/mK. Hence, this study aim, was to develop an agro-industrial aerated concrete good in insulation but having an optimum strength. Hence, it has been found that the more the percentage of POFA is added the lower the thermal conductivity since the pore structure is increasing and by the optimization done, 30% replacement has been chosen as the best mix design for Agro-Industrial Aerated Concrete.

  12. No evidence for thermal transgenerational plasticity in metabolism when minimizing the potential for confounding effects.

    Science.gov (United States)

    Kielland, Ø N; Bech, C; Einum, S

    2017-01-11

    Environmental change may cause phenotypic changes that are inherited across generations through transgenerational plasticity (TGP). If TGP is adaptive, offspring fitness increases with an increasing match between parent and offspring environment. Here we test for adaptive TGP in somatic growth and metabolic rate in response to temperature in the clonal zooplankton Daphnia pulex Animals of the first focal generation experienced thermal transgenerational 'mismatch' (parental and offspring temperatures differed), whereas conditions of the next two generations matched the (grand)maternal thermal conditions. Adjustments of metabolic rate occurred during the lifetime of the first generation (i.e. within-generation plasticity). However, no further change was observed during the subsequent two generations, as would be expected under TGP. Furthermore, we observed no tendency for increased juvenile somatic growth (a trait highly correlated with fitness in Daphnia) over the three generations when reared at new temperatures. These results are inconsistent with existing studies of thermal TGP, and we describe how previous experimental designs may have confounded TGP with within-generation plasticity and selective mortality. We suggest that the current evidence for thermal TGP is weak. To increase our understanding of the ecological and evolutionary role of TGP, future studies should more carefully identify possible confounding factors. © 2017 The Author(s).

  13. In situ performance and potential applications of a thermal bed-load measurement method

    CSIR Research Space (South Africa)

    Ilgner, HJ

    2010-09-01

    Full Text Available Methods to detect the flow condition at the pipeline invert are reviewed. New results of a small heated plate inserted into a non-metallic pipe are presented. This thermal method is based on mini-heaters and can detect erratic flow behaviour near...

  14. Potential Health Implications of the Consumption of Thermally-Oxidized Cooking Oils – a Review

    Directory of Open Access Journals (Sweden)

    Falade Ayodeji Osmund

    2017-06-01

    Full Text Available Cooking oils are an integral part of a human diet as they are used in almost all types of culinary practices. They serve as sources of lipids with a significant nutritive value and health benefits which can be attributed to their fatty acid compositions and biological antioxidants. However, cooking oils are usually subjected to thermal oxidation which occurs when fresh cooking oil is heated at high temperatures during various food preparations. Repeated use of cooking oils in the commercial food industry is also common to maximize profit. Thermal oxidation of edible oils had since attracted great attention of nutritionist and researchers given the deteriorative effect such as generation of very cytotoxic compounds, loss of carotenoid, phenolics and vitamins thus reducing the overall antioxidant properties of the oils. Furthermore, several in vivo studies had suggested that consumption of thermally-oxidized cooking oils might not be healthy as it might negatively influence the lipid profile (increased low density lipoprotein (LDL, decreased high density lipoprotein (HDL and elevated cholesterol level, haematological system (alteration in concentration of heamoglobin (Hb, packed cell volume (PCV, white blood cell (WBC count, neutrophil and lymphocyte counts, kidney function, and induce lipid peroxidation and oxidative stress which have been associated with the pathogenesis of various degenerative diseases. Therefore, thermal oxidation seems not to provide any health benefit, as it deteriorates cooking oils and the consumption of the oils may predispose consumers to various disease conditions that may ensue from free radical generation, thereby having deleterious effect on human health.

  15. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    Science.gov (United States)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  16. Organic richness and gas generation potential of Permian Barren

    Indian Academy of Sciences (India)

    The organic geochemistry of shales in terms of its organic richness, hydrocarbon source potential, thermal maturity, depositional environment, etc., are essential stipulations for shale gas resources assessment. In this study, a total of 32 core samples of Permian Barren Measures from four boreholes in Raniganj field of ...

  17. The transcriptomic response to thermal stress is immediate, transient and potentiated by ultraviolet radiation in the sea anemone Anemonia viridis.

    Science.gov (United States)

    Moya, A; Ganot, P; Furla, P; Sabourault, C

    2012-03-01

    Among the environmental threats to coral reef health, temperature and ultraviolet increases have been proposed as major agents, although the relative contribution of each in the cnidarian/zooxanthellae symbiosis breakdown has been poorly addressed. We have investigated the transcriptomic response to thermal stress, with and without ultraviolet radiation (UVR), in the symbiotic sea anemone Anemonia viridis. Using the Oligo2K A. viridis microarray, dedicated to genes potentially involved in the symbiosis interaction, we monitored the gene expression profiles after 1, 2 and 5 days of stresses that further lead to massive losses of zooxanthellae. Each stress showed a specific gene expression profile with very little overlap. We showed that the major response to thermal stress is immediate (24 h) but returns to the baseline gene expression profile after 2 days. UVR alone has little effect but potentiates thermal stress, as a second response at 5 days was observed when the two stresses were coupled. Several pathways were highlighted, such as mesoglea loosening, cell death and calcium homeostasis and described in more details. Finally, we showed that the dermatopontin gene family, potentially involved in collagen fibrillogenesis, issued from actinarian-specific duplication events, with one member preferentially expressed in the gastroderm and specifically responding to stress. Anemonia viridis EST sequences have been deposited into GenBank dbEST ([GenBank:FK719875–FK759813]. © 2012 Blackwell Publishing Ltd.

  18. Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption.

    Science.gov (United States)

    Ngatia, L W; Hsieh, Y P; Nemours, D; Fu, R; Taylor, R W

    2017-08-01

    Phosphorus (P) eutrophication is a major pollution problem globally, with unprecedented amount of P emanating from agricultural sources. But little is known about the optimization of soil-biochar P sorption capacity. The study objective was to determine how biochar feedstocks and pyrolysis conditions influences carbon (C) thermal stability, C composition and pH and in turn influence the phosphorus sorption optimization. Biochar was produced from switchgrass, kudzu and Chinese tallow at 200, 300, 400, 500, 550, 650,750 °C. Carbon thermal stability was determined by multi-element scanning thermal analysis (MESTA), C composition was determined using solid state 13 C NMR. Phosphorus sorption was determined using a mixture of 10% biochar and 90% sandy soil after incubation. Results indicate increased P sorption (P biochar pyrolysis temperature. However, optimum P sorption was feedstock specific with switchgrass indicating P desorption between 200 and 550 °C. Phosphorus sorption was in the order of kudzu > switchgrass > Chinese tallow. Total C, C thermal stability, aromatic C and alkalinity increased with elevated pyrolysis temperature. Biochar alkalinity favored P sorption. There was a positive relationship between high thermal stable C and P sorption for Kudzu (r = 0.62; P = 0.0346) and Chinese tallow (r = 0.73; P = 0.0138). In conclusion, biochar has potential for P eutrophication mitigation, however, optimum biochar pyrolysis temperature for P sorption is feedstock specific and in some cases might be out of 300-500 °C temperature range commonly used for agronomic application. High thermal stable C dominated by aromatic C and alkaline pH seem to favor P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Federal Air Pollutant Emission Regulations and Preliminary Estimates of Potential-to-Emit from Biorefineries. Pathway #1: Dilute-Acid and Enzymatic Deconstruction of Biomass-to-Sugars and Biological Conversion of Sugars-to-Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bhatt, Arpit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomas, Mae [Eastern Research Group, Lexington, MA (United States); Renzaglia, Jason [Eastern Research Group, Lexington, MA (United States)

    2016-02-01

    Biorefineries are subject to environmental laws, including complex air quality regulations that aim to protect and improve the quality of the air. These regulations govern the amount of certain types of air pollutants that can be emitted from different types of emission sources. To determine which federal air emission regulations potentially apply to the sugars-to-hydrocarbon (HC) biorefinery, we first identified the types of regulated air pollutants emitted to the ambient environment by the biorefinery or from specific equipment. Once the regulated air pollutants are identified, we review the applicability criteria of each federal air regulation to determine whether the sugars-to-HC biorefinery or specific equipment is subject to it. We then estimate the potential-to-emit of pollutants likely to be emitted from the sugars-to-HC biorefinery to understand the air permitting requirements.

  20. Observation of ion confining potential enhancement due to thermal barrier potential formation and its scaling law in the tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, Teruji; Nakashima, Yousuke; Foote, J.H.

    1987-01-01

    In the tandem mirror GAMMA 10, (i) the enhancement of the ion confining potential, φ c , only during the period of the thermal barrier potential φ b -formation, has been observed first by using not only end-loss-analysers (ELA's) of GAMMA 10 but an end-loss-ion-spectrometer (ELIS) installed from TMX-U. This results in strong end-loss-ion plugging with increased central cell density. (ii) The first experimental observation of the φ c vs φ b -scaling law is obtained, where φ c increases with φ b . This scaling law is consistently interpreted by Cohen's theories of the weak-ECH and the strong-ECH in the plug region. (iii) Good agreement of the plug potential measured with the ELA's and the ELIS is achieved. (author)

  1. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, Ville; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, Alex B.; Hellen, H.; Laakso, L.; Hakola, H.

    2014-07-11

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours 1 during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass 2 selective detector was used for sample preparation and analysis. Results indicated that the 3 monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. 4 Benzene levels did not exceed local air quality standards. Toluene was the most abundant 5 species, with an annual median concentration of 0.63 ppb. No statistically significant 6 differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be

  2. Emulsification of Hydrocarbons by Biosurfactant: Exclusive Use of Agrowaste

    Directory of Open Access Journals (Sweden)

    Olusola Solomon Amodu

    2014-04-01

    Full Text Available Novel biosurfactant-producing strains were isolated from hydrocarbon-contaminated environments that exclusively utilize agro-waste as their primary carbon source for the expression of biosurfactants. These were quantified using various standardized methods. Among the agro-waste screened, Beta vulgaris (Beetroot proved to be the most suitable substrate, for which the biosurfactants produced by three bacterial isolates–B. licheniformis STK01, B. subtilis STK02, and P. aeruginosa STK03–lowered the surface tension of the culture media to 30.0, 32.98, and 30.37 mN/m, respectively. The biosurfactants achieved considerable emulsification activity, particularly for heavy hydrocarbons, with the highest emulsification indices being 65.5% and 95% for anthracene and lubricant oil, respectively. The emulsion formed with lubricant oil was thermally stable even up to 50 °C for 21 days. The results showed the proficiency of the novel bacterial isolates used, as well as the suitability of solid agro-waste for biosurfactant production, thus suggesting that exclusive utilization of solid agro-waste is a promising option for use in biosurfactant production for environmental remediation. The outstanding emulsification activity and thermal stability demonstrated by the biosurfactants produced showed their potential applications in enhancing bioavailability and bioremediation of recalcitrant and hydrophobic environmental contaminants.

  3. Comparative Genomics of the Ubiquitous, Hydrocarbon-degrading Genus Marinobacter

    Science.gov (United States)

    Singer, E.; Webb, E.; Edwards, K. J.

    2012-12-01

    The genus Marinobacter is amongst the most ubiquitous in the global oceans and strains have been isolated from a wide variety of marine environments, including offshore oil-well heads, coastal thermal springs, Antarctic sea water, saline soils and associations with diatoms and dinoflagellates. Many strains have been recognized to be important hydrocarbon degraders in various marine habitats presenting sometimes extreme pH or salinity conditions. Analysis of the genome of M. aquaeolei revealed enormous adaptation versatility with an assortment of strategies for carbon and energy acquisition, sensation, and defense. In an effort to elucidate the ecological and biogeochemical significance of the Marinobacters, seven Marinobacter strains from diverse environments were included in a comparative genomics study. Genomes were screened for metabolic and adaptation potential to elucidate the strategies responsible for the omnipresence of the Marinobacter genus and their remedial action potential in hydrocarbon-polluted waters. The core genome predominantly encodes for key genes involved in hydrocarbon degradation, biofilm-relevant processes, including utilization of external DNA, halotolerance, as well as defense mechanisms against heavy metals, antibiotics, and toxins. All Marinobacter strains were observed to degrade a wide spectrum of hydrocarbon species, including aliphatic, polycyclic aromatic as well as acyclic isoprenoid compounds. Various genes predicted to facilitate hydrocarbon degradation, e.g. alkane 1-monooxygenase, appear to have originated from lateral gene transfer as they are located on gene clusters of 10-20% lower GC-content compared to genome averages and are flanked by transposases. Top ortholog hits are found in other hydrocarbon degrading organisms, e.g. Alcanivorax borkumensis. Strategies for hydrocarbon uptake encoded by various Marinobacter strains include cell surface hydrophobicity adaptation via capsular polysaccharide biosynthesis and attachment

  4. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  5. Can Rotational Atherectomy Cause Thermal Tissue Damage? A Study of the Potential Heating and Thermal Tissue Effects of a Rotational Atherectomy Device

    International Nuclear Information System (INIS)

    Gehani, Abdurrazzak A.; Rees, Michael R.

    1998-01-01

    Purpose: Thermal tissue damage (TTD) is customarily associated with some lasers. The thermal potential of rotational atherectomy (RA) devices is unknown. We investigated the temperature profile and potential TTD as well as the value of fluid flushing of an RA device. Methods: We used a high-resolution infrared imaging system that can detect changes as small as 0.1 deg. C to measure the temperature changes at the tip of a fast RA device with and without fluid flushing. To assess TTD, segments of porcine aorta were subjected to the rotating tip under controlled conditions, stained by a special histochemical stain (picrisirius red) and examined under normal and polarized light microscopy. Results: There was significant heating of the rotating cam. The mean 'peak' temperature rise was 52.8 ± 16.9 deg. C. This was related to rotational speed; thus the 'peak' temperature rise was 88.3 ± 12.6 deg. C at 80,000 rpm and 17.3 ± 3.8 deg. C at 20,000 rpm (p < 0.001, t-test). Fluid flushing at 18 ml/min reduced, but did not abolish, heating of the device (11.8 ± 2.9 deg. C). A crater was observed in all segments exposed to the rotating tip. The following features were most notable: (i) A zone of 'thermal' tissue damage extended radially from the crater reaching adventitia in some sections, especially at high speeds. This zone showed markedly reduced or absent birefringence. (ii) Fluid flushing of the catheter reduced the above changes but increased the incidence and extent of dissections in the media, especially when combined with high atherectomy speeds. (iii) These changes were observed in five of six specimens exposed to RA without flushing, but in only one of six with flushing (p < 0.05). (iv) None of the above changes was seen in control segments. Conclusion: RA is capable of generating significant heat and potential TTD. Fluid flushing reduced heating and TTD. These findings warrant further studies in vivo, and may influence the design of atherectomy devices

  6. No evidence for thermal transgenerational plasticity in metabolism when minimizing the potential for confounding effects

    OpenAIRE

    Kielland, Øystein Nordeide; Bech, Claus; Einum, Sigurd

    2017-01-01

    Environmental change may cause phenotypic changes that are inherited across generations through transgenerational plasticity (TGP). If TGP is adaptive, offspring fitness increases with an increasing match between parent and offspring environment. Here we test for adaptive TGP in somatic growth and metabolic rate in response to temperature in the clonal zooplankton Daphnia pulex. Animals of the first focal generation experienced thermal transgenerational ‘mismatch’ (parental and offspring temp...

  7. Potential of Hollow Glass Microsphere as Cement Replacement for Lightweight Foam Concrete on Thermal Insulation Performance

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available Global warming can be defined as a gradual increase in the overall temperature of the earth’s atmosphere. A lot of research work has been carried out to reduce that heat inside the residence such as the used of low density products which can reduce the self-weight, foundation size and construction costs. Foamed concrete it possesses high flow ability, low self-weight, minimal consumption of aggregate, controlled low strength and excellent thermal insulation properties. This study investigate the characteristics of lightweight foamed concrete where Portland cement (OPC was replaced by hollow glass microsphere (HGMs at 0%, 3%, 6%, 9% by weight. The density of wet concrete is 1000 kg/m3 were tested with a ratio of 0.55 for all water binder mixture. Lightweight foamed concrete hollow glass microsphere (HGMs produced were cured by air curing and water curing in tank for 7, 14 and 28 days. A total of 52 concrete cubes of size 100mm × 100mm × 100mm and 215mm × 102.5mm × 65mm were produced. Furthermore, Scanning Electron Microscope (SEM and X-ray fluorescence (XRF were carried out to study the chemical composition and physical properties of crystalline materials in hollow glass microspheres. The experiments involved in this study are compression strength, water absorption test, density and thermal insulation test. The results show that the compressive strength of foamed concrete has reached the highest in 3% of hollow glass microsphere with less water absorption and less of thermal insulation. As a conclusion, the quantity of hollow glass microsphere plays an important role in determining the strength and water absorption and also thermal insulation in foamed concrete and 3% hollow glass microspheres as a replacement for Portland cement (OPC showed an optimum value in this study as it presents a significant effect than other percentage.

  8. A Novel Composite PMMA-based Bone Cement with Reduced Potential for Thermal Necrosis.

    Science.gov (United States)

    Lv, Yang; Li, Ailing; Zhou, Fang; Pan, Xiaoyu; Liang, Fuxin; Qu, Xiaozhong; Qiu, Dong; Yang, Zhenzhong

    2015-06-03

    Percutaneous vertebroplasty (VP) and balloon kyphoplasty (BKP) are now widely used to treat patients who suffer painful vertebral compression fractures. In each of these treatments, a bone cement paste is injected into the fractured vertebral body/bodies, and the cement of choice is a poly(methyl methacrylate) (PMMA) bone cement. One drawback of this cement is the very high exothermic temperature, which, it has been suggested, causes thermal necrosis of surrounding tissue. In the present work, we prepared novel composite PMMA bone cement where microcapsules containing a phase change material (paraffin) (PCMc) were mixed with the powder of the cement. A PCM absorbs generated heat and, as such, its presence in the cement may lead to reduction in thermal necrosis. We determined a number of properties of the composite cement. Compared to the values for a control cement (a commercially available PMMA cement used in VP and BKP), each composite cement was found to have significantly lower maximum exothermic temperature, increased setting time, significantly lower compressive strength, significantly lower compressive modulus, comparable biocompatibility, and significantly smaller thermal necrosis zone. Composite cement containing 20% PCMc may be suitable for use in VP and BKP and thus deserves further evaluation.

  9. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  10. Stable Carbon Isotope Fractionation during Bacterial Acetylene Fermentation: Potential for Life Detection in Hydrocarbon-Rich Volatiles of Icy Planet(oid)s.

    Science.gov (United States)

    Miller, Laurence G; Baesman, Shaun M; Oremland, Ronald S

    2015-11-01

    We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sediment collected at freshwater Searsville Lake, California. However, C2H2 uptake by a highly enriched mixed culture (strain SV7) obtained from Searsville Lake sediments resulted in a larger KIE of 9.0 ± 0.7‰. These are modest KIEs when compared with fractionation observed during oxidation of C1 compounds such as methane and methyl halides but are comparable to results obtained with other C2 compounds. These observations may be useful in distinguishing biologically active processes operating at distant locales in the Solar System where C2H2 is present. These locales include the surface of Saturn's largest moon Titan and the vaporous water- and hydrocarbon-rich jets emanating from Enceladus. Acetylene-Fermentation-Isotope fractionation-Enceladus-Life detection.

  11. Potential of using stable nitrogen isotope ratio measurements to resolve fuel and thermal NOx in coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chenggong Sun; Janos Lakatos; Colin E. Snape; Tony Fallick [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering (SChEME)

    2003-07-01

    In order to examine the potential of applying isotopic analysis to apportion NOx formation from different mechanisms, stable nitrogen isotope ratio measurements have been conducted on a number of thermal/prompt (diesel) and actual (coal) PF NO samples generated from a 1MW test facility at Powergen (UK), together with measurements on a range of pyrolysis and combustion chars obtained from a drop-tube reactor. A highly effective nitrogen-free sorbent, derived from white sugar with Mn as promoter, has been developed using an innovative procedure. This adsorbent has facilitated, for the first time, the determination of {delta}{sup 15}N values without background corrections. The isotopic data indicate that the thermal/prompt NOx collected during start-up with diesel as fuel has a {delta}{sup 15}N of close to 6.5(per thousand) compared to +15(per thousand) for the actual PF sample analysed. Thus, differences of up to ca. 20(per thousand) have been found to exist between thermal and PF fuel (char) NOx isotopic values. This augurs very well for the further development of the approach in order to help quantify the extent of thermal/prompt NOx formation in PF combustion. Measurements on chars have indicated that the extent of isotopic fractionation that occurs between coal-N and NOx from char is related to the reactivity of coals. Further, it would appear that much of the isotopic fractionation that occurs between coal nitrogen and fuel NO arises in the formation of char, although further fractionation can be inferred to occur during char combustion. In contrast, a lesser degree of isotopic fractionation is associated with the formation of thermal NO (ca. 6(per thousand)), atmospheric nitrogen having a value of 0(per thousand). 4 refs., 6 tabs.

  12. A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15

    International Nuclear Information System (INIS)

    Celik, Ali Naci; Muneer, Tariq; Clarke, Peter

    2009-01-01

    This article analyses the energy statistics of 15 European Union countries (EU-15), giving special emphasis to the installed solar photovoltaic and thermal collector capacity. The installed capacities per capita are analysed in relation to the solar radiation income of respective countries with the view to explore the relationship between the solar income and its utilisation as of the year 2006. In terms of the installed solar thermal collector capacity, Austria leads the statistics amongst the countries studied with 223W th collector capacity per capita, followed by Greece with 207W th . Except for Greece, it is observed that the countries with high solar radiation income are lacking to realise their solar potential. Regarding the installed photovoltaic power per capita, Luxembourg leads the pack by a wide margin with 47W p capacity, followed by Germany with 30W p . Fiscal instruments to invigorate the deployment of solar energy have also been identified in this work. (author)

  13. The effects of thermal motion of neutrals on the non-potential instabilities in a weakly sodium plasma

    International Nuclear Information System (INIS)

    Zigman, V.J.; Milic, B.S.

    1982-01-01

    The results of recent experimental measurements of the differential cross-section for elastic scattering of electrons on sodium atoms are used to evaluate the electron steady-state distribution function in a weakly ionized, uniform and non-magnetized sodium plasma placed in a d.c. electric field. The field is assumed to be of moderate intensity, so that the thermal motion of the neutrals has to be taken into account in the evaluation of the distribution function. The resulting 'modified Druyvesteinian function' is applied to study the non-potential instabilities arising from the presence of the field in this particular plasma. Threshold drifts for both very slow and slow modes are obtained and the conditions for the onset of instabilities are discussed. It is shown that the thermal motion of the neutrals affects both critical drifts and the angles of propagation. (author)

  14. Exploring the potential of fulvalene dimetals as platforms for molecular solar thermal energy storage: computations, syntheses, structures, kinetics, and catalysis.

    Science.gov (United States)

    Börjesson, Karl; Ćoso, Dušan; Gray, Victor; Grossman, Jeffrey C; Guan, Jingqi; Harris, Charles B; Hertkorn, Norbert; Hou, Zongrui; Kanai, Yosuke; Lee, Donghwa; Lomont, Justin P; Majumdar, Arun; Meier, Steven K; Moth-Poulsen, Kasper; Myrabo, Randy L; Nguyen, Son C; Segalman, Rachel A; Srinivasan, Varadharajan; Tolman, Willam B; Vinokurov, Nikolai; Vollhardt, K Peter C; Weidman, Timothy W

    2014-11-17

    A study of the scope and limitations of varying the ligand framework around the dinuclear core of FvRu2 in its function as a molecular solar thermal energy storage framework is presented. It includes DFT calculations probing the effect of substituents, other metals, and CO exchange for other ligands on ΔHstorage . Experimentally, the system is shown to be robust in as much as it tolerates a number of variations, except for the identity of the metal and certain substitution patterns. Failures include 1,1',3,3'-tetra-tert-butyl (4), 1,2,2',3'-tetraphenyl (9), diiron (28), diosmium (24), mixed iron-ruthenium (27), dimolybdenum (29), and ditungsten (30) derivatives. An extensive screen of potential catalysts for the thermal reversal identified AgNO3 -SiO2 as a good candidate, although catalyst decomposition remains a challenge. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The organic petrology and thermal maturity of Lower Carboniferous and Upper Devonian source rocks in the Liard Basin, at Jackfish Gap-Yohin Ridge and North Beaver River, northern Canada: Implications for hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Potter, J. (Univ. of Newcastle-upon-Tyne (United Kingdom)); Richards, B.C.; Goodarzi, G. (Geological Survey, Calgary, Alberta (Canada))

    Basinal shales of the Besa River Fm. have TOC values ranging from 1 to 4% and contain abundant type II, dominantly amorphous, kerogen of marine origin. Shales in the Yohin, Clausen, Prophet, and Golata Formations are of mixed maring and terrestrial origins and yield TOC values of 1 to 3%. Kerogen in the Golata and Yohin Formations are dominated by terrestrial components, while the Clausen and Flett kerogen comprises marine liptinites and bitumens. Kerogen from the deltaic Mattson shales at Jackfish Gap are types II and III, having mixed marine and terrestrial origins consistent with shallow, nearshore, subtidal environments. The coals are sapropelic and probably lacustrine in origin. Algal laminites associated with coals in the Upper Mattson have >10% TOC values, while non-laminite shales contain between 2 and 5% TOC. Comparable measured and calculated vitrinite reflectance data indicate that kerogen in the Lower Carboniferous at Jackfish Gap is mature. Kerogen in correlative formations in the subsurface at North Beaver River is more marine. Vitrinites are rate and oxidized, but four populations of bitumens are distinguished on the basis of relative reflectivity and morphological or petrophysical associations. Types A and B bitumens are primary and by-products of hydrocarbon generation from type II (algal and amorphous) kerogens. Correlations between depth and reflectance of bitumens A and B are very good. Vitrinite reflectance data calculated from bitumen reflectance measurements for the Besa River, Prophet, and Golata indicate that they are potential sources of catagenic gas. The Mattson kerogen is mature, oil and gas-prone.

  16. Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review

    Science.gov (United States)

    Toma, Filofteia-Laura; Potthoff, Annegret; Berger, Lutz-Michael; Leyens, Christoph

    2015-10-01

    Research and development work for about one decade have demonstrated many unique thermal spray coating properties, particularly for oxide ceramic coatings by using suspensions of fine powders as feedstock in APS and HVOF processes. Some particular advantages are direct feeding of fine nano- and submicron-scale particles avoiding special feedstock powder preparation, ability to produce coating thicknesses ranging from 10 to 50 µm, homogeneous microstructure with less anisotropy and lower surface roughness compared to conventional coatings, possibility of retention of the initial crystalline phases, and others. This paper discusses the main aspects of thermal spraying with suspensions which have been taken into account in order to produce these coatings on an economical way. The economic efficiency of the process depends on the availability of suitable additional system components (suspension feeder, injectors), on the development and handling of stable suspensions, as well as on the high process stability for acceptance at industrial scale. Special focus is made on the development and processability of highly concentrated water-based suspensions. While costs and operational safety clearly speak for use of water as a liquid media for preparing suspensions on an industrial scale, its use is often critically discussed due to the required higher heat input during spraying compared to alcoholic suspensions.

  17. The potential of permeability damage during the thermal recovery of the Cold Lake bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Wiwchar, B.; Gunter, W. D. [Alberta Research Council, Devon, AB (Canada); Dudley, J. S. [Imperial Oil Ltd., Sarnia, ON (Canada). Research Dept.

    1997-08-01

    It has been suggested that hydrothermal reactions of clay minerals, present in all oil sands deposits in the Clearwater Formation at Cold Lake, may cause permeability damage during thermal recovery. To gain an idea of the extent of the damage, two corefloods were conducted at 250 degrees C. The first period of permeability damage occurred during and shortly after the core was heated to 250 degrees C, the second period was a gradual process , but resulted in 65 per cent and 78 per cent respectively, whereas the third period occurred when fresh water was injected into the core. These periods of damage were attributed to thermally activated grain crushing and fines migration, hydrothermal reactions, and osmotic swelling of the hydrothermal clay, respectively. Laboratory results do not agree with field experiments, although there is some field evidence for the disruption of berthierine (a form of clay) grain coats and permeability damage due to subsequent fines migration. In view of this evidence it was suggested that injection wells should not be placed in berthierine-rich zone. 15 refs., 2 tabs., 7 figs.

  18. The potential of permeability damage during thermal recovery of Cold Lake bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Wiwchar, B.; Gunter, W. D. [Alberta Research Council, Devon, AB (Canada); Dudley, J. S. [Imperial Oil Resources, Calgary, AB (Canada)

    1999-09-01

    Methods and results of coreflood tests designed to evaluate permeability damage caused by Clearwater formation clays in the Cold Lake area of Alberta are described. Three periods of permeability damage were encountered, the first during and shortly after the core was heated to 250 degrees C. Experimental evidence suggests that thermally activated grain crushing and subsequent fines migration were responsible for this initial permeability loss. The second period of damage was a gradual process which resulted in 65 per cent and 78 percent of permeability loss for the two corefloods, respectively. This phase of the permeability damage was considered to have been the result of hydrothermal reactions (berthierine to Fe-saponite). The third period of permeability damage occurred when fresh water was injected into the core. This was attributed to osmotic swelling of the Fe-saponite. A comparison of field evidence with experimental results revealed certain discrepancies, suspected to be due to the kinetics of the reaction, including disruption of berthierine grain coats and permeability damage due to subsequent fines migration. To err on the safe side, it is recommended that thermal recovery wells should be completed away from berthierine-rich zones. 15 refs., 2 tabs., 7 figs.

  19. Coke Formation During Hydrocarbons Pyrolysis. Part Two: Methane Thermal Cracking Formation de coke pendant la pyrolyse des hydrocarbures. Deuxième partie : pyrolyse du méthane

    Directory of Open Access Journals (Sweden)

    Billaud F.

    2006-11-01

    Full Text Available Part one of this article dealt with coking in a steam cracking furnace. In this process, coke deposition is a very complex phenomenon due to the number of parameters involved. Nevertheless, for this process, coke deposition is a secondary reaction which does not affect steam cracking yields. It is completely different for methane thermal cracking. Coke is one of the main products of this reaction. Part two of this article deals with coke deposition on the walls of the reactors used for methane thermal cracking. After a brief description of the different set-ups used to study coke deposition, the main parameters involved are listed. The importance of temperature, conversion, type of diluent, and hydrocarbon partial pressure will be enhanced. To conclude, two approaches to the mechanism are proposed to explain coke formation during methane thermal cracking. La première partie de cet article faisait le point sur les réactions indésirables de cokage dans les réacteurs de vapocraquage : dans le cadre de ce procédé, la formation de coke est un phénomène complexe du fait du nombre important de paramètres mis en jeu. Toutefois, pour ce procédé, la réaction de formation du coke à la paroi des réacteurs est une réaction secondaire qui n'affecte pas les rendements de vapocraquage. Ceci est complètement différent dans le cas de la pyrolyse thermique du méthane, procédé pour lequel le coke est un produit principal et indésirable de la réaction. La seconde partie de cet article est consacrée plus particulièrement à la formation du coke, lors de la pyrolyse du méthane et présente les principaux résultats expérimentaux décrits dans la littérature. Parmi les différents montages expérimentaux utilisés pour mesurer le dépôt de coke, il est mentionné, à partir des travaux de la littérature, les 2 techniques suivantes : - la technique de la paroi chaude, - la technique du fil chaud. Pour la première technique, les montages exp

  20. Self-potential monitoring of a thermal pulse advecting through a preferential flow path

    Science.gov (United States)

    Ikard, S. J.; Revil, A.

    2014-11-01

    There is a need to develop new non-intrusive geophysical methods to detect preferential flow paths in heterogeneous porous media. A laboratory experiment is performed to non-invasively localize a preferential flow pathway in a sandbox using a heat pulse monitored by time-lapse self-potential measurements. Our goal is to investigate the amplitude of the intrinsic thermoelectric self-potential anomalies and the ability of this method to track preferential flow paths. A negative self-potential anomaly (-10 to -15 mV with respect to the background signals) is observed at the surface of the tank after hot water is injected in the upstream reservoir during steady state flow between the upstream and downstream reservoirs of the sandbox. Repeating the same experiment with the same volume of water injected upstream, but at the same temperature as the background pore water, produces a negligible self-potential anomaly. The negative self-potential anomaly is possibly associated with an intrinsic thermoelectric effect, with the temperature dependence of the streaming potential coupling coefficient, or with an apparent thermoelectric effect associated with the temperature dependence of the electrodes themselves. We model the experiment in 3D using a finite element code. Our results show that time-lapse self-potential signals can be used to track the position of traveling heat flow pulses in saturated porous materials, and therefore to find preferential flow pathways, especially in a very permeable environment and in real time. The numerical model and the data allows quantifying the intrinsic thermoelectric coupling coefficient, which is on the order of -0.3 to -1.8 mV per degree Celsius. The temperature dependence of the streaming potential during the experiment is negligible with respect to the intrinsic thermoelectric coupling. However, the temperature dependence of the potential of the electrodes needs to be accounted for and is far from being negligible if the electrodes

  1. Reducing the potential for migration of radioactive waste: Aqueous thermal degradation of the chelating agent disodium EDTA

    International Nuclear Information System (INIS)

    Boles, J.S.; Ritchie, K.; Crerar, D.A.

    1987-01-01

    Ethylenediaminetetraacetic acid (EDTA), a common component of cleaning solutions used for decontamination of radioactive equipment, has been associated with increased migration of radionuclides into local groundwaters at some radwaste disposal sites. It has been proposed that predisposal thermal degradation of EDTA-containing aqueous solutions may reduce the potential for chelate-enhanced mobilization of radionuclides at these sites. Aqueous thermal degradation experiments with disodium EDTA have shown that the compound degrades rapidly at 200 0 C with an activation energy of 114.3 +- 7.87 kJ/mol, and forms the decomposition product methyliminodiacetic acid (MIDA). A comparison of the values for stability constants of transition metal and actinide complexes with EDTA, MIDA, and two other reported degradation products, indicates that the chelating efficiency of the degradation products is 6 to 22 orders of magnitude lower than that of EDTA at 25 0 C. It is concluded that aqueous thermal degradation should significantly reduce the overall chelating efficiency of EDTA-containing solutions

  2. Numerical method for assessing the potential of smart engine thermal management: Application to a medium-upper segment passenger car

    International Nuclear Information System (INIS)

    Caresana, F.; Bilancia, M.; Bartolini, C.M.

    2011-01-01

    Significant reductions in vehicle fuel consumption can be obtained through a greater control of the thermal status of the engine, especially under partial load conditions. Different systems have been proposed to implement this concept, referred to as improved engine thermal management. The amount of fuel saved depends on the components and layout of the engine cooling plant and on the performance of its control system. In this work, a method was developed to calculate the theoretical minimum fuel consumption of a passenger car and used as a reference in comparing different engine cooling system concepts. A high-medium class car was taken as an example and simulated on standard cycles. Models for power train and cooling system components were developed and linked to simulate the vehicle. A preliminary analysis of the engine was performed using AVL's Boost program. The fuel consumption of the complete vehicle, equipped with a conventional cooling plant, was determined on standard cycles and compared with that of a vehicle equipped with a 'perfect' cooling system, to calculate the theoretical reduction in fuel consumption. - Highlights: → We propose a method for assessing the potential of smart engine thermal management. → A conventional cooling system is compared to a 'perfect' one to estimate fuel economy. → We tested the method in an upper-medium segment passenger car.

  3. Total site integration of light hydrocarbons separation process

    OpenAIRE

    Ulyev, L.; Vasilyev, M.; Maatouk, A.; Duic, Neven; Khusanovc, Alisher

    2016-01-01

    Ukraine is the largest consumer of hydrocarbons per unit of production in Europe (Ukraine policy review, 2006). The most important point is a reduction of energy consumption in chemical and metallurgical industries as a biggest consumer. This paper deals with energy savings potential of light hydrocarbons separation process. Energy consumption of light hydrocarbons separation process processes typical of Eastern European countries were analysed. Process Integration (PI) was used to perform a ...

  4. Thermal modeling for a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1994-03-01

    Repository performance models based on numerical simulation of fluid and heat flows have recently been developed by several different groups. Model conceptualizations generally focus on large-scale average behavior. This comparison finds that current performance assessment (PA) models use generally similar approximations and parameters. Certain differences exist in some performance-relevant parameters, especially absolute permeabilities, characteristic curves, and thermal conductivities. These reflect present uncertainties about the most appropriate parameters applicable to Yucca Mountain and must be resolved through future field observations and laboratory measurements. For a highly heterogeneous fractured-porous hydrogeologic system such as Yucca Mountain, water infiltration through the unsaturated zone is expected to be dominated by highly localized phenomena. These include fast channelized flow along preferential paths in fractures, and frequent local ponding. The extended dry repository concept proposed by the Livermore group is reviewed. Predictions of large-scale drying around the repository on the average for large thermal loads cannot be taken to indicate that waste packages will not be contacted by liquid water, and that aqueous-phase transport of contaminants is not possible. Specifically, the authors find that modest water infiltration, on the order of a few millimeters per year, would be sufficient to overwhelm the vaporization capacity of the repository heat and inundate the waste packages within a time frame of a few thousand years. A preliminary analysis indicates that channelized flow of water may persist over large vertical distances. The vaporization-condensation cycle has a capacity for generating huge amounts of ponded water. A small fraction of the total condensate, if ponded and then episodically released, would be sufficient to cause liquid phase to make contact with the waste packages

  5. Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars

    Science.gov (United States)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.

    2010-01-01

    Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.

  6. 生物质炭中多环芳烃的潜在环境风险研究进展%Progress of the Research on Potential Environmental Risk of Polycyclic Aromatic Hydrocarbons(PAHs)in Biochar

    Institute of Scientific and Technical Information of China (English)

    李增波; 王聪颖; 蒋新; 王芳

    2016-01-01

    作为土壤改良剂和环境污染修复材料,生物质炭在近年来得以广泛应用。生物质炭制备过程中会产生一定量的多环芳烃(PAHs),对其潜在环境负面效应和风险尚缺乏应有的认识。本文总结了生物质炭中PAHs的形成机理、影响因素(包括原材料、裂解温度、裂解升温速率和保留时间等)、总量和生物有效含量及其分析方法,旨在为生物质炭在环境中的安全应用提供理论依据和技术参考。%Biochar is a kind of highly aromatic carbonized material produced through thermal decomposition of biomass under reductive conditions(i.e. in the absence of or with a limited supply of oxygen). Biochar is found to be able to play an important role in mitigating global climate change,removing pollutants from water and soil,as well as maintaining functions of ecosystems. During the pyrolytic processes of biological materials,a certain amount of organic pollutants,such as polycyclic aromatic hydrocarbons (PAHs),would form and remain on the surface of the biochar. Consequently,increasing application of biochar may bring about a certain risk to the environment. Current researches pay much attention to the positive effects biochar may have,while ignoring its potential hazards to the ecosystem. To assess environmental risk of the PAHs in biochar,it is necessary to determine the contents of total and bioavailable PAHs in biochar. At present,the following four methods,i.e. Soxhlet extraction, accelerated solvent extraction(ASE),ultrasonication extraction and thermal extraction,are available for determining total PAHs in biochar. However,the four methods were often used to determine semivolatile organic compounds in solid matrix(soil or sediment). Among the four methods,the Soxhlet extraction and ASE methods are the most commonly used ones,because of their higher recoveries of target compounds. However,when they are used to extract PAHs in biochar,PAHs recoveries depend

  7. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  8. Source rock hydrocarbons. Present status

    International Nuclear Information System (INIS)

    Vially, R.; Maisonnier, G.; Rouaud, T.

    2013-01-01

    This report first presents the characteristics of conventional oil and gas system, and the classification of liquid and gaseous non conventional hydrocarbons, with the peculiar case of coal-bed methane. The authors then describe how source rock hydrocarbons are produced: production of shale oils and gases (horizontal drilling, hydraulic fracturing, exploitation) and of coal-bed methane and coal mine methane. In the next part, they address and discuss the environmental impact of source rock hydrocarbon production: installation footprint, water resource management, drilling fluids, fracturing fluids composition, toxicity and recycling, air pollution, induced seismicity, pollutions from other exploitation and production activities. They propose an overview of the exploitation and production of source rock gas, coal-bed gas and other non conventional gases in the world. They describe the current development and discuss their economic impacts: world oil context and trends in the USA, in Canada and other countries, impacts on the North American market, on the world oil industry, on refining industries, on the world oil balance. They analyse the economic impacts of non conventional gases: development potential, stakes for the world gas trade, consequence for gas prices, development opportunities for oil companies and for the transport sector, impact on CO 2 emissions, macro-economic impact in the case of the USA

  9. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  10. Ex-situ bioremediation of polycyclic aromatic hydrocarbons in sewage sludge

    DEFF Research Database (Denmark)

    Larsen, Sille Bendix; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAH) are regarded as environmental pollutants. A promising approach to reduce PAH pollution is based on the implementation of the natural potential of some microorganisms to utilize hydrocarbons. In this study Proteiniphilum acetatigenes was used for bioaugmentat...

  11. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    isolation tubes with crude oil. Three isolates tested showed positive hydrophobicity of cell walls as judged by the Microbial Adhesion to Hydrocarbons (MATH) assay. Addition of Bombay High crude oil to nutrient broth slightly enhanced growth of the protists...

  12. Biodegradation of petroleum hydrocarbons at low temperatures

    International Nuclear Information System (INIS)

    Whyte, L. G.; Greer, C W.

    1999-01-01

    Bioremediation of contaminated Arctic sites has been proposed as the logistically and economically most favorable solution despite the known technical difficulties. The difficulties involve the inhibition of pollutants removal by biodegradation below freezing temperatures and the relative slowness of the process to remove enough hydrocarbon pollutants during the above-freezing summer months. Despite these formidable drawbacks, biodegradation of hydrocarbon contaminants is possible even in below-zero temperatures, especially if indigenous psychrophilic and psychrotropic micro-organism are used. This paper reports results of a study involving several hydrocarbon-degrading psychrotropic bacteria and suggests bioaugmentation with specific cold-adapted organisms and/or biostimulation with commercial fertilizers for enhancing degradation of specific contaminants in soils from northern Canada. An evaluation of the biodegradation potential of hydrocarbon contaminated soils in the high Arctic suggested that the contaminated soils contained sufficient numbers of cold-adapted hydrocarbon-degrading bacteria and that the addition of fertilizer was sufficient to enhance the level of hydrocarbon degradation at low ambient summer temperatures. 9 refs., 2 tabs., 3 figs

  13. Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate

    Energy Technology Data Exchange (ETDEWEB)

    Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko; Thorpe, James H.; Nguyen, Thanh Lam; Baraban, Joshua H.; Stanton, John F.; Daily, John W.; Ellison, G. Barney

    2017-06-09

    Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH3COOCH3) and methyl butanoate (CH3CH2CH2COOCH3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures of 300 – 1600 K were explored. Decomposition of CH3COOCH3 commences at 1000 K and the initial products are (CH2=C=O and CH3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH2=C=O and CH3OH, CH3, CH2=O, H, CO, CO2) appears. The thermal cracking of CH3CH2CH2COOCH3 begins at 800 K with the formation of (CH3CH2CH=C=O, CH3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH3CH2CH=C=O, CH3OH, CH3, CH2=O, CO, CO2, CH3CH=CH2, CH2CHCH2, CH2=C=CH2, HCCCH2, CH2=C=C=O, CH2=CH2, HCΞCH, CH2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH2-COOCH3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted

  14. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  15. Process for refining hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Risenfeld, E H

    1924-11-26

    A process is disclosed for the refining of hydrocarbons or other mixtures through treatment in vapor form with metal catalysts, characterized by such metals being used as catalysts, which are obtained by reduction of the oxide of minerals containing the iron group, and by the vapors of the hydrocarbons, in the presence of the water vapor, being led over these catalysts at temperatures from 200 to 300/sup 0/C.

  16. Potential of different mechanical and thermal treatments to control off-flavour generation in broccoli puree.

    Science.gov (United States)

    Koutidou, Maria; Grauwet, Tara; Van Loey, Ann; Acharya, Parag

    2017-02-15

    The aim of this study was scientifically investigate the impact of the sequence of different thermo-mechanical treatments on the volatile profile of differently processed broccoli puree, and to investigate if any relationship persists between detected off-flavour changes and microstructural changes as a function of selected process conditions. Comparison of the headspace GC-MS fingerprinting of the differently processed broccoli purees revealed that an adequate combination of processing steps allows to reduce the level of off-flavour volatiles. Moreover, applying mechanical processing before or after the thermal processing at 90°C determines the pattern of broccoli tissue disruption, resulting into different microstructures and various enzymatic reactions inducing volatile generation. These results may aid the identification of optimal process conditions generating a reduced level of off-flavour in processed broccoli. In this way, broccoli can be incorporated as a food ingredient into mixed food products with limited implications on sensorial consumer acceptance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands

    International Nuclear Information System (INIS)

    Osorio, Andrés F.; Arias-Gaviria, Jessica; Devis-Morales, Andrea; Acevedo, Diego; Velasquez, Héctor Iván; Arango-Aramburo, Santiago

    2016-01-01

    Small islands face difficult challenges to guarantee energy, freshwater and food supply, and sustainable development. The urge to meet their needs, together with the mitigation and adaptation plans to address climate change, have led them to develop renewable energy systems, with a special interest in Ocean Thermal Energy Conversion (OTEC) in tropical islands. Deep Ocean Water (DOW) is a resource that can provide electricity (through OTEC in combination with warm surface water), low temperatures for refrigeration, and nutrients for food production. In this paper we propose an Ocean Technology Ecopark (OTEP) as an integral solution for small islands that consists of an OTEC plant, other alternative uses of DOW, and a Research and Development (R&D) center. We present an application of OTEP to San Andres, a Colombian island that meets all the necessary conditions for the implementation of OTEC technology, water desalinization, and a business model for DOW. We present the main entrance barriers and a four-stage roadmap for the consolidation and sustainability of the OTEP. - Highlights: • Small islands face problems such as development, energy, freshwater and food supply. • Tropical islands with access to deep ocean water can use OTEC all year round. • An Ocean Ecopark is proposed as an integral solution for San Andrés Island, Colombia. • The Ecopark consists of OTEC, desalinization, SWAC, greenhouses, and R&D activities. • This article discusses entrance barriers and presents a four-stage roadmap

  18. A study of thermally activated Mg–Fe layered double hydroxides as potential environmental catalysts

    Directory of Open Access Journals (Sweden)

    MILICA S. HADNAĐEV-KOSTIĆ

    2010-09-01

    Full Text Available Layered double hydroxides (LDHs and mixed oxides derived after thermal decomposition of LDHs with different Mg–Fe contents were investigated. These materials were chosen because of the possibility to tailor their various properties, such as ion-exchange capability, redox and acid–base and surface area. Layered double hydroxides, [Mg1-xFex(OH2](CO3x/2×mH2O (where x presents the content of trivalent ions, x = M(III/(M(II + M(III were synthesized using the low supersaturation precipitation method. The influence of different Mg/Fe ratios on the structure and surface properties of the LDH and derived mixed oxides was investigated in correlation to their catalytic properties in the chosen test reaction (Fischer–Tropsch synthesis. It was determined that the presence of active sites in the mixed oxides is influenced by the structural properties of the initial LDH and by the presence of additional Fe phases. Furthermore, a synthesis outside the optimal range for the synthesis of single phase LDHs leads to the formation of metastable, multiphase systems with specific characteristics and active sites.

  19. Analysis of Medium-Scale Solar Thermal Systems and Their Potential in Lithuania

    Directory of Open Access Journals (Sweden)

    Rokas Valančius

    2015-06-01

    Full Text Available Medium-scale solar hot water systems with a total solar panel area varying from 60 to 166 m2 have been installed in Lithuania since 2002. However, the performance of these systems varies depending on the type of energy users, equipment and design of the systems, as well as their maintenance. The aim of this paper was to analyse operational SHW systems from the perspective of energy production and economic benefit as well as to outline the differences of their actual performance compared to the numerical simulation results. Three different medium-scale solar thermal systems in Lithuania were selected for the analysis varying in both equipment used (flat type solar collectors, evacuated tube collectors and type of energy user (swimming pool building, domestic hot water heating, district heating. The results of the analysis showed that in the analysed cases the gap between measured and modelled data of heat energy produced by SHW systems was approx. 11%. From the economical perspective, the system with flat type solar collectors used for domestic hot water production was proved to be most efficient. However, calculation of Internal Rate of Return showed that a grant of 35% is required for this project to be fully profitable.

  20. Effects of Thermal Lattice Vibration on the Effective Potential of Weak-Coupling Bipolaron in a Quantum Dot

    International Nuclear Information System (INIS)

    Eerdunchaolu; Xiao Xin; Han Chao; Xin Wei; Wuyunqimuge

    2012-01-01

    Based on the Huybrechts' linear-combination operator, effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory. The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength, but decreases with increasing the temperature and the distance of electrons, respectively; the absolute value of the effective potential increases with increasing the radius of the quantum dot, electron-phonon coupling strength and the distance of electrons, respectively, but decreases with increasing the temperature; the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron: the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower; the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    of reserves and resources (H. Le Leuch); Additional reserves: the role of new technologies - A global perspective on EORIOR (G. Fries); - Updating reservoir models with dynamic data and uncertainty quantification: an integrated approach (F. Roggero); Seismic technology for the OAPEC countries (P. Canal); Exploration knowledge and technologies: impact of progress - Statistical results (N. Alazard); Stratigraphic modelling as a key to find new potentialities in exploration (D. Granjeon); Modelling hydrocarbon migration as a tool for reserve estimation (J-L. Rudkiewicz); The contribution of surface and near surface geology to hydrocarbon discoveries (S.M. Kumati); Contribution of the exploration activity in renewing reserves - The case of Algeria (R. Lounissi); Egypt's petroleum hydrocarbon potential (H. Hataba); Future of hydrocarbon reserves in Syria (T. Hemsh); Natural gas, the fuel of choice for decades to com (M.F. Chabrelie); The role and importance of Arab natural gas in world market (M. Al-Lababidi); LNG and GTL: two pathways for natural gas utilization (C. Cameron); Yet to find hydrocarbon potential (S. Al Menhali); Libyan context of hydrocarbon reserves: abundance or scarcity? (M. Elazi)

  2. Hydrocarbon Reserves: Abundance or Scarcity

    International Nuclear Information System (INIS)

    2005-01-01

    of reserves and resources (H. Le Leuch); Additional reserves: the role of new technologies - A global perspective on EORIOR (G. Fries); - Updating reservoir models with dynamic data and uncertainty quantification: an integrated approach (F. Roggero); Seismic technology for the OAPEC countries (P. Canal); Exploration knowledge and technologies: impact of progress - Statistical results (N. Alazard); Stratigraphic modelling as a key to find new potentialities in exploration (D. Granjeon); Modelling hydrocarbon migration as a tool for reserve estimation (J-L. Rudkiewicz); The contribution of surface and near surface geology to hydrocarbon discoveries (S.M. Kumati); Contribution of the exploration activity in renewing reserves - The case of Algeria (R. Lounissi); Egypt's petroleum hydrocarbon potential (H. Hataba); Future of hydrocarbon reserves in Syria (T. Hemsh); Natural gas, the fuel of choice for decades to com (M.F. Chabrelie); The role and importance of Arab natural gas in world market (M. Al-Lababidi); LNG and GTL: two pathways for natural gas utilization (C. Cameron); Yet to find hydrocarbon potential (S. Al Menhali); Libyan context of hydrocarbon reserves: abundance or scarcity? (M. Elazi)

  3. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    impact on the growth of reserves and resources (H. Le Leuch); Additional reserves: the role of new technologies - A global perspective on EORIOR (G. Fries); - Updating reservoir models with dynamic data and uncertainty quantification: an integrated approach (F. Roggero); Seismic technology for the OAPEC countries (P. Canal); Exploration knowledge and technologies: impact of progress - Statistical results (N. Alazard); Stratigraphic modelling as a key to find new potentialities in exploration (D. Granjeon); Modelling hydrocarbon migration as a tool for reserve estimation (J-L. Rudkiewicz); The contribution of surface and near surface geology to hydrocarbon discoveries (S.M. Kumati); Contribution of the exploration activity in renewing reserves - The case of Algeria (R. Lounissi); Egypt's petroleum hydrocarbon potential (H. Hataba); Future of hydrocarbon reserves in Syria (T. Hemsh); Natural gas, the fuel of choice for decades to com (M.F. Chabrelie); The role and importance of Arab natural gas in world market (M. Al-Lababidi); LNG and GTL: two pathways for natural gas utilization (C. Cameron); Yet to find hydrocarbon potential (S. Al Menhali); Libyan context of hydrocarbon reserves: abundance or scarcity? (M. Elazi)

  4. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  5. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  6. Characteristics of thermal hydraulic stability in a HYPER system with enhanced natural circulation potential

    International Nuclear Information System (INIS)

    Tak, Nam Il; Park, Won S.; Han, Seok Jung

    1999-06-01

    Pb-Bi eutectic chosen as a coolant of HYPER is an excellent heat transfer medium but requires relatively large pumping power. Thus the mixed cooling concept to increase economy and safety is being considered for HYPER. In this cooling concept, a large fraction of total thermal power is carried by natural circulation. However, the mixed cooling concept has been considered for conceptual designs only an it has never been applied to real reactors. The purpose of the present study is to provide simple tools to analyze mixed flow and to examine fundamental stability characteristics of mixed flow. Conventional one-dimensional approaches using mass, momentum, and energy conservation are used to describe a forced circulating flow affected by a large buoyancy force. The results of simple analysis using preliminary design parameters of HYPER show that cooling by mixed flow is possible only when the total pressure loss of system is sufficiently low. The stability behavior of mixed flow in a simple rectangular loop has been studied using numerical solutions of the governing equations. As in the case of natural circulation, three types of flow regions, such as stable, neutrally stable, and unstable regions, were found. The stability map of mixed flow has been obtained using the results of calculations. Forced flow due to the pump is found to increase the stability of the loop, since the stable portion of the stability map is increased. However, the unstable region of the mixed flow does not completely disappear, even though the pump exists. (author). 37 refs., 4 tabs., 23 figs

  7. Chromium as a potential catalyst in the thermal formation of chlorinated aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, T. [T. Oeberg Konsult AB, Lyckeby (Sweden); Bergstroem, J. [Bergstroem und Oehrstroem, Nykoeping (Sweden)

    2004-09-15

    Chlorinated aromatic compounds were detected in fly ash from municipal solid waste incinerators in the late 1970s. It was later shown that this fly ash possess catalytic properties enhancing the formation of PCDD/PCDF also at moderate temperatures. Copper is a well-known active oxychlorination catalyst in the Deacon process and is postulated to be responsible for this the lowtemperature formation of chlorinated aromatics. The catalytic activity of copper has also been demonstrated in both laboratory experiments and full-scale trials. However, copper is not the only metal that is an active oxychlorination catalyst. A substantial number of other transition elements also possess similar activity and interactions are well known. It is therefore of interest to widen the scope to include the fly ash metal composition as a whole. The number of studies with other elements than copper is limited. The element composition of municipal waste is not constant, but changing both between sources and over time. These variations could provide the means to study the influence from fuel composition on the thermal formation of chlorinated aromatics, and such studies have been attempted. Unfortunately process related factors will hide correlations in the observation data, making this approach difficult. An experimental study can be more successful in providing information about the effect from fuel and fly ash composition. Previous investigations in Sweden of the influence from different separation schemes on waste fuel composition can provide data suitable for evaluating the link between element composition in the fly ash, catalytic activity and the formation of polychlorinated benzenes, phenols, dibenzo-pdioxins and dibensofurans. Here we will attempt to re-evaluate the analytical results from a series of 16 trials with different waste fuels in the same combustion plant.

  8. Unusual equilibration of a particle in a potential with a thermal wall

    Science.gov (United States)

    Bhat, Deepak; Sabhapandit, Sanjib; Kundu, Anupam; Dhar, Abhishek

    2017-11-01

    We consider a particle in a one-dimensional box of length L, with a Maxwell bath at one end and a reflecting wall at the other end. Using a renewal approach, as well as directly solving the master equation, we show that the system exhibits a slow power law relaxation, with a logarithmic correction, towards the final equilibrium state. We extend the renewal approach to a class of confining potentials of the form U(x) \\propto x^α , x>0 , where we find that the relaxation is ∼ t-(α+2)/(α-2) for α >2 , with a logarithmic correction when (α+2)/(α-2) is an integer. For α <2 the relaxation is exponential. Interestingly for α=2 (harmonic potential) the localised bath cannot equilibrate the particle.

  9. Structural, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: Potential application in tissue engineering

    International Nuclear Information System (INIS)

    Balen, Rodrigo; Vidotto da Costa, Wilian; Lara Andrade, Jéssica de; Piai, Juliana Francis; Muniz, Edvani Curti; Companhoni, Mychelle Vianna; Nakamura, Tânia Ueda

    2016-01-01

    Highlights: • Films and fibers of PMMA/ZnO nanocomposite were prepared. • ZnO NPs incorporated into PMMA fibers reduces their diameter and beads presence. • PMMA films containing ZnO exhibit higher thermal stability than pure polymer. • PMMA/ZnO nanocomposites show improved optical properties compared to pure polymer. • PMMA/ZnO shows potential for applications in tissue engineering. - Abstract: Films and fibers of PMMA/ZnO nanocomposites (100/0, 99/01, 97/03, 95/05, 90/10, and 85/15 wt.%) were produced by casting and electrospinning, respectively. Their structural, thermal, and optical properties were investigated by XRD, SEM, TGA, PAS, and PL. The incorporation of ZnO NPs reduced the diameter of PMMA fibers and the presence of beads. The surfaces of the fibers exhibited greater hydrophobicity, compared to the films, with contact angles of around 120° and 94°, respectively. PMMA films containing ZnO exhibited higher thermal stability than the pure polymer, while the corresponding fibers did not show any changes in thermal stability. The dispersion of the ZnO NPs at the surface and in the bulk of the nanocomposites appeared to be relatively homogeneous. ZnO improved the optical properties of the PMMA, with an intense absorption band near 370 nm observed for all the nanocomposites, which also exhibited luminescence with emission in the near-UV region, both attributed to ZnO. Biological tests demonstrated that fibers and films with up to 1% of ZnO exhibited good performance in the proliferation of fibroblast cells, indicating their potential for applications in tissue engineering. The fibers provided higher cell viability than the films, presumably due to their greater surface area and/or more suitable surface morphology. Nanocomposites with 15% ZnO inhibited cell proliferation, due to the cytotoxicity of the ZnO NPs. Although several applications of PMMA have been suggested by biomedical researchers, until now there have been no reports on the specific

  10. Structural, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: Potential application in tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Balen, Rodrigo; Vidotto da Costa, Wilian; Lara Andrade, Jéssica de; Piai, Juliana Francis [Programa de Pós-Graduação em Química, Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Zona Sete, Maringá, PR (Brazil); Muniz, Edvani Curti [Programa de Pós-Graduação em Química, Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Zona Sete, Maringá, PR (Brazil); Programa de Pós-Graduação em Biotecnologia Aplicada à Agricultura, Universidade Paranaense (UNIPAR), 87502-210, Umuarama, PR (Brazil); Programa de Pós- Graduação em Ciências de Materiais & Engenharia, Universidade Tecnológica Federal do Paraná (UTFPR-LD), 86036-370, Londrina, PR (Brazil); Companhoni, Mychelle Vianna; Nakamura, Tânia Ueda [Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Zona Sete, Maringá, PR (Brazil); and others

    2016-11-01

    Highlights: • Films and fibers of PMMA/ZnO nanocomposite were prepared. • ZnO NPs incorporated into PMMA fibers reduces their diameter and beads presence. • PMMA films containing ZnO exhibit higher thermal stability than pure polymer. • PMMA/ZnO nanocomposites show improved optical properties compared to pure polymer. • PMMA/ZnO shows potential for applications in tissue engineering. - Abstract: Films and fibers of PMMA/ZnO nanocomposites (100/0, 99/01, 97/03, 95/05, 90/10, and 85/15 wt.%) were produced by casting and electrospinning, respectively. Their structural, thermal, and optical properties were investigated by XRD, SEM, TGA, PAS, and PL. The incorporation of ZnO NPs reduced the diameter of PMMA fibers and the presence of beads. The surfaces of the fibers exhibited greater hydrophobicity, compared to the films, with contact angles of around 120° and 94°, respectively. PMMA films containing ZnO exhibited higher thermal stability than the pure polymer, while the corresponding fibers did not show any changes in thermal stability. The dispersion of the ZnO NPs at the surface and in the bulk of the nanocomposites appeared to be relatively homogeneous. ZnO improved the optical properties of the PMMA, with an intense absorption band near 370 nm observed for all the nanocomposites, which also exhibited luminescence with emission in the near-UV region, both attributed to ZnO. Biological tests demonstrated that fibers and films with up to 1% of ZnO exhibited good performance in the proliferation of fibroblast cells, indicating their potential for applications in tissue engineering. The fibers provided higher cell viability than the films, presumably due to their greater surface area and/or more suitable surface morphology. Nanocomposites with 15% ZnO inhibited cell proliferation, due to the cytotoxicity of the ZnO NPs. Although several applications of PMMA have been suggested by biomedical researchers, until now there have been no reports on the specific

  11. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China.

    Science.gov (United States)

    Liu, Shan; Qi, Shihua; Luo, Zhaohui; Liu, Fangzhi; Ding, Yang; Huang, Huanfang; Chen, Zhihua; Cheng, Shenggao

    2018-02-01

    Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water-rock-hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water-rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T 2 g 3 ) and upper of Yongningzhen formation (T 1 yn 4 ). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.

  12. Extraction of hydrocarbons from high-maturity Marcellus Shale using supercritical carbon dioxide

    Science.gov (United States)

    Jarboe, Palma B.; Philip A. Candela,; Wenlu Zhu,; Alan J. Kaufman,

    2015-01-01

    Shale is now commonly exploited as a hydrocarbon resource. Due to the high degree of geochemical and petrophysical heterogeneity both between shale reservoirs and within a single reservoir, there is a growing need to find more efficient methods of extracting petroleum compounds (crude oil, natural gas, bitumen) from potential source rocks. In this study, supercritical carbon dioxide (CO2) was used to extract n-aliphatic hydrocarbons from ground samples of Marcellus shale. Samples were collected from vertically drilled wells in central and western Pennsylvania, USA, with total organic carbon (TOC) content ranging from 1.5 to 6.2 wt %. Extraction temperature and pressure conditions (80 °C and 21.7 MPa, respectively) were chosen to represent approximate in situ reservoir conditions at sample depth (1920−2280 m). Hydrocarbon yield was evaluated as a function of sample matrix particle size (sieve size) over the following size ranges: 1000−500 μm, 250−125 μm, and 63−25 μm. Several methods of shale characterization including Rock-Eval II pyrolysis, organic petrography, Brunauer−Emmett−Teller surface area, and X-ray diffraction analyses were also performed to better understand potential controls on extraction yields. Despite high sample thermal maturity, results show that supercritical CO2 can liberate diesel-range (n-C11 through n-C21) n-aliphatic hydrocarbons. The total quantity of extracted, resolvable n-aliphatic hydrocarbons ranges from approximately 0.3 to 12 mg of hydrocarbon per gram of TOC. Sieve size does have an effect on extraction yield, with highest recovery from the 250−125 μm size fraction. However, the significance of this effect is limited, likely due to the low size ranges of the extracted shale particles. Additional trends in hydrocarbon yield are observed among all samples, regardless of sieve size: 1) yield increases as a function of specific surface area (r2 = 0.78); and 2) both yield and surface area increase with increasing

  13. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    Science.gov (United States)

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.

  14. Feasibility and potential of thermal demand side management in residential buildings considering different developments in the German energy market

    International Nuclear Information System (INIS)

    Wolisz, Henryk; Punkenburg, Carl; Streblow, Rita; Müller, Dirk

    2016-01-01

    Highlights: • A scenario analysis for the German energy market in the year 2030 is performed. • Growing demand for flexible electric capacities is identified in all scenarios. • Significant potential for domestic demand side management is identified. • A distinct potential for dynamic operation of domestic supply systems is found. • The necessity for a quick introduction of smart metering and control is found. - Abstract: A transition in the electricity market is required to manage the volatility of increasing renewable energy generation. These fluctuations can be faced with flexible consumption through Demand Side Management (DSM), establishment of further centralized storage capacities and provisioning of dynamic back up generation capacities. At least the latter two options can impose large establishment and operation costs upon the electricity market. Therefore, the feasibility and the resulting potential of coupling the electricity grid with the thermal supply of residential buildings is analysed in this paper. Thereby, inexpensive and widespread thermal storage capacities could be used to improve the integration of dynamic renewable electricity generation. In this paper the technical and economical key impact factors for such thermal DSM approach are elaborated. Based on a literature review, the identified key factors are aggregated to form consistent scenarios of the German “Energiewende” (turnaround in energy policy). The practicability and possible magnitude of the intended DSM is then analysed based on the identified scenarios. All resulting scenarios highlight the growing demand for a flexible electricity market. Especially in scenarios with strong growth of renewable electricity generation, up to 45 GW of flexible electric capacities would be required in Germany by the year 2030. Furthermore, the analysis demonstrates that independently of the energy market development, it is very likely that electricity coupled supply systems will

  15. Gravel bar thermal variability and its potential consequences for CO2 evasion from Alpine coldwater streams

    Science.gov (United States)

    Boodoo, Kyle; Battin, Tom; Schelker, Jakob

    2017-04-01

    Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. We extended our study to 13 other gravel bars of varying physical characteristics within the surrounding Ybbs and Erlauf catchments, conducting diurnal spot samplings in summer 2016. Temperatures within the observed permanently wetted hyporheic zone (-56 to -100cm depth below GB surface) of the OSB, were warmer than both end members, surface water and groundwater >18% of the year, particularly during summer. There was a general increase in exceedance within the periodically wetted gravel bar sediment toward the gravel bar surface, further evidencing downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB seasonal temperatures were associated with increased CO2 evasion fluxes within the OSB, particularly during summer. This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn, while downward heat transfer in summer may enhance GB metabolism and therefore

  16. Analysis of the energy potential of municipal solid waste for the thermal treatment technology development in Poland

    Science.gov (United States)

    Midor, Katarzyna; Jąderko, Karolina

    2017-11-01

    The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.

  17. Assessment of the origin and geothermal potential of the thermal waters by hydro-isotope geochemistry: Eskisehir province, Turkey.

    Science.gov (United States)

    Yuce, Galip; Italiano, Francesco; Yasin, Didem; Taskiran, Lutfi; Gulbay, Ahmet Hilmi

    2017-05-01

    The thermal fluids vented over Eskisehir province have been investigated for their origin and to estimate the geothermal potential of the area. Thermal waters as well as bubbling and dissolved gases were collected and analysed for their chemical and isotopic features. Their isotopic composition varies in the range from -11.5 to -7.7 ‰ for δ 18 O, -84 and -57 ‰ for δ 2 H, and 0-7.2 TU for tritium. The gases (bubbling and dissolved) are mostly N 2 -dominated with a significant amount of CO 2 . The helium isotopic ratios are in the range of 0.2-0.66 R/Rac, indicate remarkable mantle-He contribution ranging between 2 and 10 % in the whole study area. Considering the estimated geothermal gradient about three times higher than the normal gradient, and the reservoir temperatures estimated to be between 50 and 100 °C using quartz and chalcedony geothermometers, a circulation model was built where possible mixing with shallow waters cool down the uprising geothermal fluids.

  18. The use potential of aquifer thermal energy storage systems in Canada; Das Anwendungspotential fuer Aquiferwaermespeichersysteme in Kanada

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshanks, F. [Environment Canada, Dartmouth, ON (Canada); Morofski, E. [Government Services Canada, Ottawa, ON (Canada). Technology RD and D

    1994-12-31

    This paper offers a brief overview of the historical and technical aspects of aquifer thermal energy storage and its use potential in commercial buildings in Canada. Aquifer thermal energy storage systems are now attractive both for new commercial buildings in Canada and for some already existing ones. This holds true especially of the Atlantic region, where fuel costs are rising and electric power rates vary according to the time of day. The simple pay-back period for ATES systems is between zero and five years. The economic aspects of the use of ATES systems in buildings are pointed out. (orig./BWI) [Deutsch] Dieser Beitrag gibt eine kurze Uebersicht der historischen und technischen Aspekte der Waermespeicherung in Aquiferen und deren Verwendungspotential in kommerziellen Gebaeuden in Kanada. Aquiferwaermespeicherungssysteme sind nunmehr attraktiv sowohl fuer neue als auch fuer manche bereits bestehenden kommerziellen Gebaeude in Kanada. Dies gilt insbesondere fuer die atlantische Region wegen der dort steigenden Kosten fuer Brennstoffe und tageszeitabhaengigen fuer elektrischen Strom. Die einfache Amortisationszeit fuer ATES-Systeme liegt zwischen null und fuenf Jahren. Die wirtschaftlichen Gesichtspunkte des Einsatzes von ATES-Systemen in kommerziellen Gebaeuden werden angefuehrt. (orig./BWI)

  19. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  20. Kinetics and Thermal Properties of Crude and Purified β-Galactosidase with Potential for the Production of Galactooligosaccharides

    Directory of Open Access Journals (Sweden)

    Anna Rafaela Cavalcante Braga

    2013-01-01

    Full Text Available β-Galactosidase is an enzyme that catalyzes the hydrolysis of lactose. It has potential importance due to various applications in the food and dairy industries, involving lactose-reduced ingredients. The properties of two β-galactosidase enzymes, crude and purified, from different sources, Kluyveromyces marxianus CCT 7082 and Kluyveromyces marxianus ATCC 16045, were analyzed. The pH and temperature optima, deactivation energy, thermal stability and kinetic and thermodynamic parameters were determined, as well as the ability to hydrolyze lactose and produce galactooligosaccharides. Purification process improved the properties of the enzymes, and the results showed that purified enzymes from both strains had a higher optimum temperature, and lower values of Km, thus showing greater affinity for o-nitrophenyl-β-D-galactopiranoside than the crude enzymes. The production of galactooligosaccharides was also greater when using purified enzymes, increasing the synthesis by more than 30 % by both strains.

  1. Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030

    International Nuclear Information System (INIS)

    1991-12-01

    This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE's Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets

  2. Process for desulfurizing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-04-12

    A process is described for the desulfurization of a mixture of hydrocarbons, and in particular hydrocarbons containing less than 7 atoms of carbon and sulfur compounds of the type of sulfur carbonyl, characterized by the fact that the mixture, preferably in the liquid phase, is brought in contact with a solution of caustic alkali, essentially anhydrous or preferably with a solution of alkali hydroxide in an organic hydroxy nonacid solvent, for example, an alcohol, or with an alkaline alcoholate, under conditions suitable to the formation of hydrogen sulfide which produces a hydrocarbon mixture free from sulfur compounds of the sulfur carbonyl type but containing hydrogen sulfide, and that it is treated, following mixing, having beem submitted to the first treatment, by means of aqueous alkaline hydroxide to eliminate the hydrogen sulfide.

  3. Heating and thermal control of brazing technique to break contamination path for potential Mars sample return

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Campos, Sergio

    2017-04-01

    The potential return of Mars sample material is of great interest to the planetary science community, as it would enable extensive analysis of samples with highly sensitive laboratory instruments. It is important to make sure such a mission concept would not bring any living microbes, which may possibly exist on Mars, back to Earth's environment. In order to ensure the isolation of Mars microbes from Earth's Atmosphere, a brazing sealing and sterilizing technique was proposed to break the Mars-to-Earth contamination path. Effectively, heating the brazing zone in high vacuum space and controlling the sample temperature for integrity are key challenges to the implementation of this technique. The break-thechain procedures for container configurations, which are being considered, were simulated by multi-physics finite element models. Different heating methods including induction and resistive/radiation were evaluated. The temperature profiles of Martian samples in a proposed container structure were predicted. The results show that the sealing and sterilizing process can be controlled such that the samples temperature is maintained below the level that may cause damage, and that the brazing technique is a feasible approach to breaking the contamination path.

  4. Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles

    International Nuclear Information System (INIS)

    Bernardos, Eva; López, Ignacio; Rodríguez, Javier; Abánades, Alberto

    2013-01-01

    This paper proposes a first study in-depth of solar–fossil hybridization from a general perspective. It develops a set of useful parameters for analyzing and comparing hybrid plants, it studies the case of hybridizing Brayton cycles with current solar technologies and shows a tentative extrapolation of the results to integrated combined cycle systems (ISCSS). In particular, three points have been analyzed: the technical requirements for solar technologies to be hybridized with Brayton cycles, the temperatures and pressures at which hybridization would produce maximum power per unit of fossil fuel, and their mapping to current solar technologies and Brayton cycles. Major conclusions are that a hybrid plant works in optimum conditions which are not equal to those of the solar or power blocks considered independently, and that hybridizing at the Brayton cycle of a combined cycle could be energetically advantageous. -- Highlights: •We model a generic solar–fossil hybrid Brayton cycle. •We calculate the operating conditions for maximum ratio power/fuel consumption. •Best hybrid plant conditions are not the same as solar or power blocks separately. •We study potential for hybridization with current solar technologies. •Hybridization at the Brayton in a combined cycle may achieve high power/fuel ratio

  5. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT's. However, there appears to be potential for introduction of CCT's in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT's introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT's in a number of countries.

  6. Bisphenol A alternatives in thermal paper from the Netherlands, Spain, Sweden and Norway. Screening and potential toxicity.

    Science.gov (United States)

    Björnsdotter, Maria K; Jonker, Willem; Legradi, Jessica; Kool, Jeroen; Ballesteros-Gómez, Ana

    2017-12-01

    Thermal paper contains potentially toxic additives, such as bisphenol A (BPA), as a common color developer. Because of its known endocrine disrupting effects, structural analogues to BPA, such as bisphenol S (BPS), D-8 and Pergafast 201, have been used as alternatives, but little is known about the presence and toxicological effects of alternatives other than BPS. In this study, thermal paper is screened by direct probe ambient mass spectrometry (rapid pre-screening method not requiring sample preparation) and by liquid chromatography (LC) with high resolution time-of flight (TOF-MS) mass spectrometry. Cash receipts and other thermal paper products (cinema tickets, boarding passes and luggage tags) were analyzed. Besides BPA and BPS, other developers only recently reported (Pergafast 201, D-8) or to the best of our knowledge not reported before (D-90, TGSA, BPS-MAE) were frequently found as well as some related unreported impurities (2,4-BPS that is a BPS related impurity and a TGSA related impurity). To gain some insight into the potential estrogenicity of the detected developers, a selection of extracts was further analyzed using a LC-nanofractionation platform in combination with cell-based bioassay testing. These preliminary results seems to indicate very low or absence of estrogenic activity for Pergafast 201, D-8, D-90, TGSA and BPS-MAE in comparison to BPA and BPS, although further dose-response tests with authentic standards are required to confirm these results. Compounds for which standards were available were also tested for developmental toxicity and neurotoxicity using zebrafish (Danio rerio) embryos. TGSA and D-8 induced similar teratogenic effects as BPA in zebrafish embryos. BPS and 2,4-BPS did not induce any developmental effects but 2,4-BPS did alter the locomotor activity at the tested concentration. Our findings suggest that the alternatives used as alternatives to BPA (except BPS) might not be estrogenic. However, TGSA and D-8 showed abnormal

  7. Distribution, Sources and Toxicity Potentials of Polycyclic Aromatic Hydrocarbons in Soil Around the Vicinity of Balogun-Birro Dumpsite of Oshogbo, Nigeria

    International Nuclear Information System (INIS)

    Adedosu, T.A.; Adeniyi, O.K.; Adedosu, H.O.

    2015-01-01

    Contamination of soil within the vicinity of dumpsites by toxic and persistent organic pollutants is of environmental concern because of their carcinogenic, genotoxic and environmental persistence. Waste disposal sites have been identified as potential source of PAHs accumulating in soil. Assessment of level, distribution and sources of PAHs in environmental media is important for evaluation of ecotoxicological and health effect. This study investigated the distribution, sources and level of PAHs in soil within the vicinity of Balogun-Birro Dumpsite in Osogbo, Nigeria and their potential impacts on human health. Soil samples were collected at ten points within the vicinity of the dumpsite. The level of the 16 USEPA PAHs in the soil samples were determined by gas chromatography - flame ionization detector (GC-FID). The total concentration of the 16PAHs ranged between 0.1137 mg/ kg to 5.6491 mg/ kg. Samples from the main dumpsite and the mechanic workshops had highest PAHs concentrations of 5.6491 mg/ kg and 3.6529 mg/ kg respectively. The distribution of PAHs ring size is in the order of 3>4>5>6>2. Carcinogenic fractions represent 34.74 % of the total PAHs. The total concentration of carcinogenic PAHs ranged from 0.06425 mg/ kg to 1.6775 mg/ kg. Diagnostic ratios of PAHs indicate that pyrogenic activities are major sources of PAHs. The study had revealed increasing accumulation of carcinogenic PAHs in soil within the vicinity of the dumpsite. (author)

  8. Recovery of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1941-02-10

    A process is disclosed for recovery of hydrocarbon oils, especially lubricating oils or diesel oils, through pressure hydrogenation of distillation, extraction of hydrogenation products from coal or coaly materials or from oils such as mineral oils or tars in liquid phase by use in a reaction vessel of fixed-bed catalysts, characterized in that as starting material is employed material which has been freed of asphaltic and resinous material by hydrogenation refining, vacuum-steam distillation, treatment with hydrogen-rich hydrocarbons (hydroforming), or sulfuric acid.

  9. Palynofacies characterization for hydrocarbon source rock ...

    Indian Academy of Sciences (India)

    source rock potential of the Subathu Formation in the area. Petroleum geologists are well aware of the fact that the dispersed organic matter derived either from marine or non-marine sediments on reach- ing its maturation level over extended period of time contributes as source material for the produc- tion of hydrocarbons.

  10. Microbial and molecular techniques to evaluate and to implement in-situ biodegradation potential and activity at sites contaminated with aromatic and chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Karg, F.; Henkler, Ch.

    2005-01-01

    Intrinsic bio-remediation harnesses the ability of indigenous microorganisms to degrade contaminants that are present in soil and groundwater. Over the past decade many environmental regulatory agencies especially in Europe have come to recognize the importance of these natural processes in contaminant attenuation. In order to use in-situ bio-remediation to clean up a site successfully it is necessary to investigate the indigenous microbial population and its potential activity to degrade the contaminants of concern (COCs). The evaluation of naturally-occurring degradative activity in initial screening of soil and groundwater samples using recently developed molecular and microbial methods may allow for the implementation of a contaminant reduction and management program without the need for fully engineered remediation intervention. Limited engineering approaches (nutrient delivery etc.) can be implemented to support naturally-occurring bio-restoration processes to achieve a controlled, dynamic attenuation of COCs. Techniques for monitoring pollutant-degrading microorganisms were previously limited to standard culturing techniques. More recently, techniques based upon detection of genetic elements and metabolic activities have been developed in collaboration with university partners Europe, especially in France. The modern techniques are more sensitive for monitoring microbial populations, metabolic activity and the genetic potential to degrade the COCs, and avoid the need for cultivation of microbes under artificial conditions in the laboratory. Especially the application of PCR-Tests (Polymerase Chain Reaction) are able to quantify the Genetic Potential of Pollutant Microbiological Degradation on a contaminated site. This enables to use very economic in-situ site rehabilitation strategies as for example (Dynamic Natural Attenuation). For this modern application of these new strategies PLANREAL created with HPC Envirotec and together with a French University

  11. Support to the identification of potential risks for the environment and human health arising from hydrocarbons operations involving hydraulic fracturing in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Broomfield, L.; Lelland, A.

    2012-09-15

    The potential risks for the environment and human health arising from shale gas production (hydraulic fracturing) in Europe are assessed. As readily accessible oil and gas reserves are becoming progressively limited, the energy supply industry is turning more to unconventional reserves, which were previously too complex or too expensive to extract, like shale gas. There are significant shale gas reserves in Europe. Permission is being sought in many EU Member States for exploratory works and to bring forward projects for hydraulic fracturing and extraction of shale gas. As with any drilling and extraction process, shale gas extraction brings environmental and health risks which need to be understood and addressed. CE Delft conducted the legal assessment on shale gas related EU legislation. Gaps and uncertainties have been addressed, but no real risks within the legislation have been discovered. A large part of the shale gas related legislation is part of the individual member states legislation and not directly addressed by EU legislation.

  12. Assessment of potential impact of the Clinch River Breeder Reactor Plant thermal effluent on the Watts Bar Reservoir striped bass population

    International Nuclear Information System (INIS)

    Heuer, J.H.; McIntosh, D.; Ostrowski, P.; Tomljanovich, D.A.

    1983-11-01

    This report is an assessment of potential adverse impact to striped bass (Morone saxatilis) in Watts Bar Reservoir caused by thermal effluent from operation of the Clinch River Breeder Reactor Plant (CRBRP). The Clinch River arm of Watts Bar Reservoir is occupied by adult striped bass during the warmest months of the year. Concern was raised that operation of the CRBRP, specifically thermal discharges, could conflict with management of striped bass. In all cases examined the thermal plume becomes nearly imperceptible within a short distance from the discharge pipe (about 30 ft [10 m]) compared to river width (about 630 ft [190 m]). Under worst case conditions any presence of the plume in the main channel (opposite side of the river from the discharge) will be confined to the surface layer of the water. An ample portion of river cross sections containing ambient temperature water for passage or residence of adult striped bass will always be available in the vicinity of this thermal effluent. Although a small portion of river cross section would exceed the thermal tolerance of striped bass, the fish would naturally avoid this area and seek out adjacent cooler water. Therefore, it is concluded the CRBRP thermal effluent will not significantly affect the integrity of the striped bass thermal refuge in the Clinch River arm of Watts Bar Reservoir. At this time there is no need to consider alternative diffuser designs and thermal modeling. 8 references, 3 figures, 2 tables

  13. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  14. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  15. Olive-pomace harbors bacteria with the potential for hydrocarbon-biodegradation, nitrogen-fixation and mercury-resistance: promising material for waste-oil-bioremediation.

    Science.gov (United States)

    Dashti, Narjes; Ali, Nedaa; Khanafer, Majida; Al-Awadhi, Husain; Sorkhoh, Naser; Radwan, Samir

    2015-05-15

    Olive-pomace, a waste by-product of olive oil industry, took up >40% of its weight crude oil. Meanwhile, this material harbored a rich and diverse hydrocarbonoclastic bacterial population in the magnitude of 10(6) to 10(7) cells g(-1). Using this material for bioaugmentation of batch cultures in crude oil-containing mineral medium, resulted in the consumption of 12.9, 21.5, 28.3, and 43% oil after 2, 4, 6 and 8 months, respectively. Similar oil-consumption values, namely 11.0, 29.3, 34.7 and 43.9%, respectively, were recorded when a NaNO3-free medium was used instead of the complete medium. Hydrocarbonoclastic bacteria involved in those bioremediation processes, as characterized by their 16S rRNA-gene sequences, belonged to the genera Agrococcus, Pseudomonas, Cellulosimicrobium, Streptococcus, Sinorhizobium, Olivibacter, Ochrobactrum, Rhizobium, Pleomorphomonas, Azoarcus, Starkeya and others. Many of the bacterial species belonging to those genera were diazotrophic; they proved to contain the nifH-genes in their genomes. Still other bacterial species could tolerate the heavy metal mercury. The dynamic changes of the proportions of various species during 8 months of incubation were recorded. The culture-independent, phylogenetic analysis of the bacterioflora gave lists different from those recorded by the culture-dependent method. Nevertheless, those lists comprised among others, several genera known for their hydrocarbonoclastic potential, e.g. Pseudomonas, Mycobacterium, Sphingobium, and Citrobacter. It was concluded that olive-pomace could be applied in oil-remediation, not only as a physical sorbent, but also for bioaugmentation purposes as a biological source of hydrocarbonoclastic bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evaluation of soil thermal potential under Tunisian climate using a new conic basket geothermal heat exchanger: Energy and exergy analysis

    International Nuclear Information System (INIS)

    Boughanmi, Hassen; Lazaar, Mariem; Farhat, Abdelhamid; Guizani, Amenallah

    2017-01-01

    Highlights: • Conic geothermal basket heat exchanger (CBGHE) is experimentally investigated. • Charging and discharging processes of CBGHE are evaluated. • Energy and exergy efficiencies of CBGHE are performed. • High and stable performance of surface geothermal energy in Tunisia is established. - Abstract: Geothermal heat exchangers system composed of two conic baskets serially connected is designed and realized. Both heat exchangers are made in polyethylene high-density material and have a length of 3 m each one. They will be used for greenhouse cooling and heating through a geothermal heat pump. Its conical geometry is selected to reduce the operation cost and the exploited area, compared to vertical and horizontal geothermal heat exchangers often used. It also assures the maximum of heat exchange with the soil. The aim of this study is to determine the thermal performance of one Conic Basket Geothermal Heat Exchanger (CBGHE), buried at 3 m deep, in the exploitation of the soil thermal potential, in summer. A rate of heat exchange with the soil is determined and the global heat exchange of the CBGHE is assessed. Its energy and exergy efficiencies are also evaluated using both first and second law of thermodynamic. Results show that the specific heat exchange ranges between 20 W m"−"1 and 50 W m"−"1. Maximal energetic and exergetic efficiencies of the CBGHE, equal to 62% and 37% respectively, are reached for a mass flow rate of 0.1 kg s"−"1. For this value of mass flow rate, the overall heat exchange coefficient is of 52 W m"−"2 K"−"1.

  17. Burial and thermal history of the Paradox Basin, Utah and Colorado, and petroleum potential of the Middle Pennsylvanian Paradox Basin

    Science.gov (United States)

    Nuccio, Vito F.; Condon, Steven M.

    1996-01-01

    The Ismay?Desert Creek interval and Cane Creek cycle of the Alkali Gulch interval of the Middle Pennsylvanian Paradox Formation in the Paradox Basin of Utah and Colorado contain excellent organic-rich source rocks having total organic carbon contents ranging from 0.5 to 11.0 percent. The source rocks in both intervals contain types I, II, and III organic matter and are potential source rocks for both oil and gas. Organic matter in the Ismay?Desert Creek interval and Cane Creek cycle of the Alkali Gulch interval (hereinafter referred to in this report as the ?Cane Creek cycle?) probably is more terrestrial in origin in the eastern part of the basin and is interpreted to have contributed to some of the gas produced there. Thermal maturity increases from southwest to northeast for both the Ismay?Desert Creek interval and Cane Creek cycle, following structural and burial trends throughout the basin. In the northernmost part of the basin, the combination of a relatively thick Tertiary sedimentary sequence and high basinal heat flow has produced very high thermal maturities. Although general thermal maturity trends are similar for both the Ismay?Desert Creek interval and Cane Creek cycle, actual maturity levels are higher for the Cane Creek due to the additional thickness (as much as several thousand feet) of Middle Pennsylvanian section. Throughout most of the basin, the Ismay?Desert Creek interval is mature and in the petroleum-generation window (0.10 to 0.50 production index (PI)), and both oil and gas are produced; in the south-central to southwestern part of the basin, however, the interval is marginally mature (0.10 PI) in the central part of the basin and is overmature (past the petroleum-generation window (>0.50 PI)) throughout most of the eastern part of the basin. The Cane Creek cycle generally produces oil and associated gas throughout the western and central parts of the basin and thermogenic gas in the eastern part of the basin. Burial and thermal

  18. Analysis of hydrocarbons generated in coalbeds

    Science.gov (United States)

    Butala, Steven John M.

    This dissertation describes kinetic calculations using literature data to predict formation rates and product yields of oil and gas at typical low-temperature conditions in coalbeds. These data indicate that gas formation rates from hydrocarbon thermolysis are too low to have generated commercial quantities of natural gas, assuming bulk first-order kinetics. Acid-mineral-catalyzed cracking, transition-metal-catalyzed hydrogenolysis of liquid hydrocarbons, and catalyzed CO2 hydrogenation form gas at high rates. The gaseous product compositions for these reactions are nearly the same as those for typical natural coalbed gases, while those from thermal and catalytic cracking are more representative of atypical coalbed gases. Three Argonne Premium Coals (Upper-Freeport, Pittsburgh #8 and Lewiston-Stockton) were extracted with benzene in both Soxhlet and elevated pressure extraction (EPE) systems. The extracts were compared on the basis of dry mass yield and hydrocarbon profiles obtained by gas chromatography/mass spectrometry. The dry mass yields for the Upper-Freeport coal gave consistent results by both methods, while the yields from the Pittsburgh #8 and Lewiston-Stockton coals were greater by the EPE method. EPE required ˜90 vol. % less solvent compared to Soxhlet extraction. Single-ion-chromatograms of the Soxhlet extracts all exhibited bimodal distributions, while those of the EPE extracts did not. Hydrocarbons analyzed from Greater Green River Basin samples indicate that the natural oils in the basin originated from the coal seams. Analysis of artificially produced oil indicates that hydrous pyrolysis mimics generation of C15+ n-alkanes, but significant variations were found in the branched alkane, low-molecular-weight n-alkanes, and high-molecular-weight aromatic hydrocarbon distributions.

  19. Water pollution potential of mineral oils with high content of polycyclic aromatic hydrocarbons (heavy fuel oil and neutral oil extracts); Untersuchungen zur Wassergefaehrdung durch Mineraloele mit hohen Gehalten an polycyclischen aromatischen Kohlenwasserstoffen (Heizoel Schwer und Extrakte)

    Energy Technology Data Exchange (ETDEWEB)

    Albers, G. [Mobil Schmierstoff GmbH, Hamburg (Germany)

    1999-01-01

    A data base on highly aromatic mineral oils has been compiled to classify mineral oil products according to their water-pollution potential (water hazard class or Wassergefaehrdungsklasse, WGK). This activity has been undertaken through the Commission for Water Hazardous Materials (Kommission Bewertung Wassergefaehrdender Stoffe, KBwS). In this special case, highly aromatic mineral oils containing a high concentration of polycyclic aromatic hydrocarbons (Polyaromatische Kohlenwasserstoffe, PAK) were evaluated. A test method for measuring the elution potential of PAK into water was developed on petroleum products with high viscosity and high freeze point. This method was applied to determine the solubility of 23 PAK (including 16 PAK according to EPA 610 and 6 PAK according to the German drinking water regulation (Trinkwasserverordnung, TVO)) from heavy fuel oil and neutral oil extract in the aqueous phase. For the 6 PAK, according to TVO, a sum limit of 0,2 {mu}g/l in drinking water is permitted by German legislation. This limit was not exceeded in any of the water phases examined. (orig.) [Deutsch] Fuer die Einstufung von Mineraloelprodukten in die Wassergefaehrdungsklassen (WGK) durch die Kommission Bewertung Wassergefaehrdender Stoffe ist es notwendig, Basisdaten zur Verfuegung zu stellen. Im speziellen Fall handelt es sich um die Bewertung von Mineraloelen, die sich durch einen hohen Gehalt an polycyclischen aromatischen Kohlenwasserstoffen (PAK) auszeichnen. Zur Eluierbarkeit von PAK`s aus Produkten mit hoher Viskosiaet bzw. mit hohem Stockpunkt wurde eine Pruefmethode entwickelt. Diese Methode wurde zur Bestimmung der Loeslichkeit von 23 PAK`s (16 PAK`s nach EPA-Liste incl. 6 PAK`s der TVO) aus den Mineraloelen Heizoel Schwer und Neutralextrakt in der Wasserphase eingesetzt. Fuer die PAK der TVO ist in der TVO ein Summengrenzwert von 0,2 {mu}g/l Trinkwasser angegeben. Dieser Grenzwert wurde in keiner der untersuchten Wasserphasen ueberschritten. (orig.)

  20. Total Petroleum Hydrocarbon Content (TPH) As an Index ...

    African Journals Online (AJOL)

    MICHAEL

    potential for hydrocarbon accumulation and could be evaluated for its efficacy as a tool in phytoremediation exercise for cleaning ... often assessed from changes in the physical, chemical ... Germination test: The approach adapted by Agboola.

  1. Petroleum Hydrocarbons Contamination Profile of Ochani Stream in ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: Petroleum hydrocarbon contamination profile, heavy metals and .... potential conduits for oil and water migrating from the ... by Gas Chromatography: Soil / sediment / sludge ..... fractions contained in the dump pits) which have.

  2. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  3. The electrostatic atomization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A J

    1984-06-01

    Exploitation of the unique and potentially beneficial characteristics of electrostatic atomization in combustion systems has foundered upon the inability of two element, diode devices to operate at flow rates that are larger than a fraction of a millilitre per second. This restriction has been attributed to the high innate electrical resistivity of hydrocarbon fuels. A discussion of proposed electrostatic fuel atomizers and their limitations is presented from the vantage of a recently developed theory of electrostatic spraying. Comparison of theory and experiment reveals the existence of a 'constant of spraying' and the presence of an operational regime in which low charge density droplet development is possible. Operation with hydrocarbons in this regime occurs when the mean droplet size is greater than or equal to 10 ..mu..m and fluid viscosity is below about 250 cp. The resulting spray has a mean droplet size that is functionally dependent only upon the free charge density level of the fluid. Consequently there is no theoretical impediment to the attainment of high flow rate electrostatic atomization with fluids of arbitrary conductivity. Implementation is achieved by a general class of electrostatic spray devices which employ direct charge injection. The Spray Triode, a submerged field-emission electron gun, represents a particularly simple member of this new class of atomizer. Among the Spray Triode operational characteristics to be discussed is insensitivity to spray fluid properties and flow rate.

  4. Thermal soil remediation

    International Nuclear Information System (INIS)

    Nelson, D.

    1999-01-01

    The environmental properties and business aspects of thermal soil remediation are described. Thermal soil remediation is considered as being the best option in cleaning contaminated soil for reuse. The thermal desorption process can remove hydrocarbons such as gasoline, kerosene and crude oil, from contaminated soil. Nelson Environmental Remediation (NER) Ltd. uses a mobile thermal desorption unit (TDU) with high temperature capabilities. NER has successfully applied the technology to target heavy end hydrocarbon removal from Alberta's gumbo clay in all seasons. The TDU consist of a feed system, a counter flow rotary drum kiln, a baghouse particulate removal system, and a secondary combustion chamber known as an afterburner. The technology has proven to be cost effective and more efficient than bioremediation and landfarming

  5. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  6. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.

    Science.gov (United States)

    Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W

    2010-04-01

    A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.

  7. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    International Nuclear Information System (INIS)

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests

  8. Correlation between thermal gradient and flexure-type deformation as a potential trigger for exfoliation-related rock falls (Invited)

    Science.gov (United States)

    Collins, B. D.; Stock, G. M.

    2010-12-01

    Stress-induced exfoliation of granitic rocks is an important means by which cliffs deform and subsequently erode. During exfoliation, fractures are formed, and when exposed in cliff faces, are susceptible to subsequent rock falls. This is the case in Yosemite National Park, California, where exfoliation continues to play a primary role in cliff evolution. In Yosemite, numerous mechanisms are inferred to trigger rock falls; nevertheless, many rock falls have no recognized triggers. As a result, several potential, but as yet unquantified, triggering mechanisms have been proposed. One of these, thermally induced flexure, wherein solar radiation and temperature variation drives cumulative deformation of partially detached rock flakes, has the potential to explain several recent rock falls in Yosemite. We explore this potential mechanism by quantifying the deformation, temperature, and solar radiation exposure of a near-vertical rock flake in Yosemite Valley. The flake, 14 m tall, 4 m wide and 12 cm thick, receives direct sunlight during most of the day. Whereas the flake is attached to the cliff face at its bottom and top, the sides are detached from the cliff by a 10 cm wide crack on one side, tapering to a 1 cm wide crack on the opposite side. Instrumentation consists of three custom-designed crackmeters placed between the flake and the adjacent cliff face, three air temperature sensors located behind the flake, and three dual air temperature-light sensors located on the outside surface of the flake. Nearby relative humidity and barometric pressure sensors complete the instrumentation. Five-minute interval data from spring - fall 2010 indicate the flake undergoes maximum deformation at mid-span between attachment points and that it deforms from both diurnal and climatic temperature fluctuations. Recorded maximum deformations, measured perpendicular to crack orientation, are 1 cm diurnally and nearly 1.5 cm (including diurnal effect) over a 5-day period of cooler

  9. Structural segregation of petroleum and prospective hydrocarbon regions in Azerbaijan

    International Nuclear Information System (INIS)

    Kerimov, K.M.; Huseynov, A.N.; Hajiyev, F.M.

    2002-01-01

    Full text : Structural segregation allows identify the earth crust blocks according to their geological setting and structural history conductive for hydrocarbon generation and their entrapment in the sedimentary fill reservoirs. Since then there has been a need to design a new tectonic map of petroleum and hydrocarbons potential systems in Azerbaijan embracing both on- and offshore areas. Map's legend designed upon above mentioned concepts and principles has made it possible to evaluate the role of individual stratigraphic units in hydrocarbon generation and its entrapment, as well as in recognition of regional structural criteria of the hydrocarbon bearing potential of different structural patterns. Tectonic map of petroleum and prospective hydrocarbon bearing on and offshore areas in Azerbaijan for the first time contained a wide range of information related to structural criteria of hydrocarbon bearing potential, sedimentary fill's structural architecture, its thickness, both timing of their formation stages and basement consolidation, its subsidence depth, as well as hydrocarbon deposit areal and vertical distribution across individual regions. This map was considered to be of important implication both for the petroleum geoscience and petroleum industry endeavors.

  10. Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ruey-Lung; Shu, Shiu-Ya [Department of Architecture, National United University, 1, Lien-Da, Kung-Ching Li, Miaoli, 36003 (China)

    2011-04-15

    This paper presents an investigation of the effect of building envelope regulation on thermal comfort and on the energy-saving potential for PMV-based comfort control in glass facade buildings. Occurrences and severity of overheating, based on the PMV-PPD model contained in ISO 7730, were used for the thermal comfort assessment. Parametric study simulations for an actual building with a large glass facade were carried out to predict the changes in thermal comfort levels in a space due to different glazing types, depths of overhang and glazing areas, which are the key parameters of the building envelope regulation index, named ENVLOAD, in Taiwan. The result demonstrates that the ENVLOAD has significant effect on thermal comfort. Additionally, comparative simulations between PMV-based comfort control and conventional thermostatic control were performed to investigate the changes in the energy-saving potential of a thermal comfort-controlled space due to changes of its ENVLOAD. The results demonstrate that the energy-saving potential in a PMV-based controlled space increases with low ENVLOAD conditions. (author)

  11. Colorimetric Detection of Caspase 3 Activity and Reactive Oxygen Derivatives: Potential Early Indicators of Thermal Stress in Corals

    Directory of Open Access Journals (Sweden)

    Mickael Ros

    2016-01-01

    Full Text Available There is an urgent need to develop and implement rapid assessments of coral health to allow effective adaptive management in response to coastal development and global change. There is now increasing evidence that activation of caspase-dependent apoptosis plays a key role during coral bleaching and subsequent mortality. In this study, a “clinical” approach was used to assess coral health by measuring the activity of caspase 3 using a commercial kit. This method was first applied while inducing thermal bleaching in two coral species, Acropora millepora and Pocillopora damicornis. The latter species was then chosen to undergo further studies combining the detection of oxidative stress-related compounds (catalase activity and glutathione concentrations as well as caspase activity during both stress and recovery phases. Zooxanthellae photosystem II (PSII efficiency and cell density were measured in parallel to assess symbiont health. Our results demonstrate that the increased caspase 3 activity in the coral host could be detected before observing any significant decrease in the photochemical efficiency of PSII in the algal symbionts and/or their expulsion from the host. This study highlights the potential of host caspase 3 and reactive oxygen species scavenging activities as early indicators of stress in individual coral colonies.

  12. In-situ hydrocarbon delineation using laser-induced fluorescence

    International Nuclear Information System (INIS)

    Taer, A.D.; Hastings, R.W.; Brown, A.Y.; Frend, R.

    1996-01-01

    An investigation of hydrocarbons in soils was conducted at an active Shell Oil Company petroleum products terminal, located in Carson, California. An investigation approach involving Laser-Induced Fluorescence (LIF) and Cone Penetrometer Testing (CPT) technologies was implemented to provide real-time, in-situ characterization of site stratigraphy, hydrocarbon distribution and importantly, hydrocarbon product differentiation. The area of investigation is located along a property boundary, where a plume of separate phase hydrocarbons has been actively recovered for several years. CPT/LIF technology was selected for the investigation since previous delineation efforts using hydrocarbon fingerprinting methods proved inconclusive. Additionally, the CPT/LIF technology had the potential to provide a cost effective solution to accomplish project objectives. Based on the information obtained during this investigation, it was determined that the plume of separate phase hydrocarbons along the northern property boundary is from a source distinctly different than any identified hydrocarbons known to be from on-site sources. In addition, the plume was determined to not be connected with any other known on-site hydrocarbon plumes. The results of this CPT/LIF investigation were consistent with the known hydrogeologic conditions. This evaluation determined that CPT/LIF technology was very effective in addressing project objectives and resulted in a significant cost savings

  13. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-01-01

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  14. Hydrocarbon toxicity: an analysis of AAPCC TESS data.

    Science.gov (United States)

    Cobaugh, Daniel J; Seger, Donna L; Krenzelok, Edward P

    2007-01-01

    Human hydrocarbon exposures have the potential to cause significant morbidity and mortality. To determine which hydrocarbons were associated with the most severe adverse outcomes, human exposure data reported to American poison information centers were analyzed. Outcome data for single-substance, hydrocarbon exposures reported to the American Association of Poison Control Centers Toxic Exposure Surveillance System from 1994 through 2003 were analyzed. Only cases with definitive medical outcomes were included. Analyses were stratified by five age groups: 59 years. Hazard factors were determined by calculating the sum of the major effects and fatalities for each hydrocarbon category and dividing this by the total number of exposures for that category. To normalize the data, the overall rate of major effects and deaths for each age group was assigned hazard factor value of 1. Hydrocarbon categories with a HF of > or = 1.5 were included in the final analyses. Estimated rates of major effect and fatal outcomes (outcomes/1000 people) were also calculated. 318,939 exposures were analyzed. Exposures to benzene, toluene/xylene, halogenated hydrocarbons, kerosene and lamp oil resulted in the highest hazard factor values. These data demonstrate that hydrocarbons that are absorbed systemically and those with low viscosities are associated with higher hazard factors. The risks associated with hydrocarbons often implicated in abuse by older children and adolescents are also confirmed.

  15. Distilling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C

    1917-11-23

    In the fractional or destructive distillation of hydrocarbon oils or other liquids, the pressure in the still is raised and lowered alternately. The still is closed to raise the pressure, and is opened to lower the pressure rapidly solely by expansion of the vapors. The operation is effected without intermittent cooling, except such as may occur during the lowering of the pressure. In distilling hydrocarbon oil, pressure steam is blown into the oil until the pressure reaches 5 lb/in./sup 2/. The vapor outlet is then opened until the pressure falls to 2 lb/in./sup 2/, whereupon the vapor outlet is closed and steam is again admitted. The operation is continued until the steam, which is of 20 lb pressure, no longer effects distillation; after this stage, superheated steam is used.

  16. Distilling hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Tausz, J

    1924-07-16

    Hydrocarbon oils such as petroleum, shale oils, lignite or coal tar oils are purified by distilling them and collecting the distillate in fractions within narrow limits so that all the impurities are contained in one or more of the narrow fractions. In distilling ligroin obtained by destructive distillation of brown coal, it is found that the coloring and resin-forming constituents are contained in the fractions distilling over at 62 to 86/sup 0/C and 108/sup 0/C. The ligroin is purified, therefore, by distillating in an apparatus provided with an efficient dephlegmotor and removing these two fractions. The distillation may be carried out wholly or in part under reduced pressure, and fractions separated under ordinary pressure may be subsequently distilled under reduced pressure. The hydrocarbons may be first separated into fractions over wider limits and the separate fractions be subjected to a further fractional distillation.

  17. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  18. Treatment of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-22

    A process is described for refining a mixture of liquid hydrocarbons containing harmful substances, this process permitting the operation, which consists in treating the liquid mixture at a temperature higher than 200/sup 0/C with a solid catalyst of phosphoric acid, consisting of phosphoric acid deposited on a solid support of the type of metallurgical coke, for a time sufficient to convert the harmful components to inoffensive substances.

  19. Cracking hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Seigle, A A.F.M.

    1922-12-20

    Hydrocarbon oils such as petroleum, peat, shale, or lignite oils, heavy tars, resin oils, naphthalene oils, etc., are vaporized by being fed from a tank through a preheater to the lower part of a vertical annular retort heated by a flame projected down the central cavity from a burner. The oil vapors rise through annular passages formed by disks, on which are placed chips of copper, iron, aluminum, etc., to act as catalysts.

  20. High boiling point hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1929-04-29

    A process is given for the production of hydrocarbons of high boiling point, such as lubricating oils, from bituminous substances, such as varieties of coal, shale, or other solid distillable carbonaceous materials. The process consists of treating the initial materials with organic solvents and then subjecting the products extracted from the initial materials, preferably directly, to a reducing treatment in respect to temperature, pressure, and time. The reduction treatment is performed by means of hydrogen under pressure.

  1. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  2. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  3. Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons.

    Science.gov (United States)

    Vidonish, Julia E; Zygourakis, Kyriacos; Masiello, Caroline A; Gao, Xiaodong; Mathieu, Jacques; Alvarez, Pedro J J

    2016-03-01

    Pyrolysis of contaminated soils at 420 °C converted recalcitrant heavy hydrocarbons into "char" (a carbonaceous material similar to petroleum coke) and enhanced soil fertility. Pyrolytic treatment reduced total petroleum hydrocarbons (TPH) to below regulatory standards (typically hydrocarbons (PAHs) was not observed, with post-pyrolysis levels well below applicable standards. Plant growth studies showed a higher biomass production of Arabidopsis thaliana and Lactuca sativa (Simpson black-seeded lettuce) (80-900% heavier) in pyrolyzed soils than in contaminated or incinerated soils. Elemental analysis showed that pyrolyzed soils contained more carbon than incinerated soils (1.4-3.2% versus 0.3-0.4%). The stark color differences between pyrolyzed and incinerated soils suggest that the carbonaceous material produced via pyrolysis was dispersed in the form of a layer coating the soil particles. Overall, these results suggest that soil pyrolysis could be a viable thermal treatment to quickly remediate soils impacted by weathered oil while improving soil fertility, potentially enhancing revegetation.

  4. From biowaste to magnet-responsive materials for water remediation from polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Nisticò, Roberto; Cesano, Federico; Franzoso, Flavia; Magnacca, Giuliana; Scarano, Domenica; Funes, Israel G; Carlos, Luciano; Parolo, Maria E

    2018-07-01

    Composted urban biowaste-derived substances (BBS-GC) are used as carbon sources for the preparation of carbon-coated magnet-sensitive nanoparticles obtained via co-precipitation method and the subsequent thermal treatment at 550 °C under nitrogen atmosphere. A multitechnique approach has been applied to investigate the morphology, magnetic properties, phase composition, thermal stability of the obtained magnet-sensitive materials. In particular, pyrolysis-induced modifications affecting the BBS-GC/carbon shell were highlighted. The adsorption capacity of such bio-derivative magnetic materials for the removal of hydrophobic contaminants such as polycyclic aromatic hydrocarbons was evaluated in order to verify their potential application in wastewater remediation process. The promising results suggest their use as a new generation of magnet-responsive easily-recoverable adsorbents for water purification treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Catalyst for reforming hydrocarbons with water vapors

    International Nuclear Information System (INIS)

    Nicklin, T.; Farrington, F.; Whittaker, J.R.

    1979-01-01

    The catalyst should reform hydrocarbons with water vapour. It consists of a carrier substance (preferably clay) on whose surface the catalytically active substances are formed. By impregnation one obtains this with a mixture of thermally destructable nickel and uranium compounds and calcination of the impregnated carrier. The catalyst is marked by a definite weight ratio of uranium to nickel (about 0.6 to 1), the addition of barium compounds and a maximum limit of these additives. All details of manufacture and the range of variations are described in detail. (UWI) [de

  6. The presence and distribution of polycyclic aromatic hydrocarbons and inorganic elements in water and lakebed materials and the potential for bioconcentration in biota at established sampling sites on Lake Powell, Utah and Arizona

    Science.gov (United States)

    Schonauer, Kurt T.; Hart, Robert J.; Antweiler, Ronald C.

    2014-01-01

    The National Park Service is responsible for monitoring the effects of visitor use on the quality of water, lakebed material (bottom sediments), and biota, in Lake Powell, Utah and Arizona. A sampling program was begun in 2010 to assess the presence, distribution, and concentrations of organic and inorganic compounds in the water column and bottom sediment. In response to an Environmental Impact Statement regarding personal watercraft and as a continuation from previous studies by the U.S. Geological Survey and the National Park Service, Glen Canyon National Recreation Area, water samples were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) using semipermeable membrane devices and inorganic elements using a fixed-bottle sampler deployed at established monitoring sites during 2010 and 2011. Lakebed material samples were also analyzed for polycyclic aromatic hydrocarbons and inorganic elements, some of which could be harmful to aquatic biota if present at concentrations above established aquatic life criteria. Of the 44 PAH compounds analyzed, 26 individual compounds were detected above the censoring limit in the water column by semipermeable membrane devices. The highest number of compounds detected were at Lone Rock Beach, Wahweap Marina, Rainbow Bridge National Monument, and Antelope Marina which are all located in the southern part of Lake Powell where visitation and boat use is high. Because PAHs can remain near their source, the potential for bioconcentration is highest near these sites. The PAH compound found in the highest concentration was phenol (5,902 nanograms per liter), which is included in the U.S. Environmental Protection Agency’s priority pollutants list. The dissolved inorganic chemistry of water samples measured at the sampling sites in Lake Powell defined three different patterns of elements: (1) concentrations were similar between sites in the upper part of the lake near Farley Canyon downstream to Halls Crossing Marina, a

  7. Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings

    International Nuclear Information System (INIS)

    Rismanchi, B.; Saidur, R.; Masjuki, H.H.; Mahlia, T.M.I.

    2013-01-01

    Highlights: • Simulating the CTES system behavior based on Malaysian climate. • Almost 65% of power is used for cooling for cooling the office buildings, every day. • The baseline shows an acceptable match with real data from the fieldwork. • Overall, the energy used for full load storage is much than the conventional system. • The load levelling storage strategy has 3.7% lower energy demand. - Abstract: In Malaysia, air conditioning (AC) systems are considered as the major energy consumers in office buildings with almost 57% share. During the past decade, cold thermal energy storage (CTES) systems have been widely used for their significant economic benefits. However, there were always doubts about their energy saving possibilities. The main objective of the present work is to develop a computer model to determine the potential energy savings of implementing CTES systems in Malaysia. A case study building has been selected to determine the energy consumption pattern of an office building. In the first step the building baseline model was developed and validated with the recorded data from the fieldwork. Once the simulation results reach an acceptable accuracy, different CTES system configuration was added to the model to predict their energy consumption pattern. It was found that the overall energy used by the full load storage strategy is considerably more than the conventional system. However, by applying the load leveling storage strategy, and considering its benefits to reduce the air handling unit size and reducing the pumping power, the overall energy usage was almost 4% lower than the non-storage system. Although utilizing CTES systems cannot reduce the total energy consumption considerably, but it has several outstanding benefits such as cost saving, bringing balance in the grid system, reducing the overall fuel consumption in the power plants and consequently reducing to total carbon footprint

  8. Gibbsian segregating alloys driven by thermal and concentration gradients: A potential grazing collector optics used in EUV lithography

    Science.gov (United States)

    Qiu, Huatan

    A critical issue for EUV lithography is the minimization of collector degradation from intense plasma erosion and debris deposition. Reflectivity and lifetime of the collector optics will be heavily dependent on surface chemistry interactions between fuels and various mirror materials, in addition to high-energy ion and neutral particle erosion effects. An innovative Gibbsian segregation (GS) concept has been developed for being a self-healing, erosion-resistant collector optics. A Mo-Au GS alloy is developed on silicon using a DC dual-magnetron co-sputtering system in order for enhanced surface roughness properties, erosion resistance, and self-healing characteristics to maintain reflectivity over a longer period of mirror lifetime. A thin Au segregating layer will be maintained through segregation during exposure, even though overall erosion is taking place. The reflective material, Mo, underneath the segregating layer will be protected by this sacrificial layer which is lost due to preferential sputtering. The two dominant driving forces, thermal (temperature) and surface concentration gradient (surface removal flux), are the focus of this work. Both theoretical and experimental efforts have been performed to prove the effectiveness of the GS alloy used as EUV collection optics, and to elucidate the underlying physics behind it. The segregation diffusion, surface balance, erosion, and in-situ reflectivity will be investigated both qualitatively and quantitatively. Results show strong enhancement effect of temperature on GS performance, while only a weak effect of surface removal rate on GS performance. When equilibrium between GS and erosion is reached, the surface smoothness could be self-healed and reflectivity could be maintained at an equilibrium level, instead of continuously dropping down to an unacceptable level as conventional optic mirrors behave. GS process also shows good erosion resistance. The effectiveness of GS alloy as EUV mirror is dependent on

  9. Hydrocarbons in Argentina: networks, territories, integration

    International Nuclear Information System (INIS)

    Carrizo, S.C.

    2003-12-01

    Argentinean hydrocarbons networks have lived a huge reorganizing the structure, after the State reform in the 90's. Activities deregulation and the privatization of YPF and Gas del Estado forced the sector re-concentration, since then dominated by foreign companies, leaded by Repsol YPF. The hydrocarbons federalization contributed to the weakening and un-capitalization loss of wealth of the State. These changes resulted in an increase of the hydrocarbons production allowing to achieve the self-supply. Nevertheless, the expansion of internal networks has not been large enough to ensure the coverage of new requirements. Besides, several infrastructures have been built up to join external markets. National networks are connected to those of near neighboring countries. This integration is an opportunity for the 'South Cone' countries to enhance their potentials. In the country, hydrocarbons territories undergo the reorganizing the structure effects (unemployment, loss of territorial identity, etc). With many difficulties and very different possibilities, those territories, like Comodoro Rivadavia, Ensenada et and Bahia Blanca, look for their re-invention. (author)

  10. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  11. Evaluation of environmental samples containing heavy hydrocarbon components in environmental forensic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Raia, J.C.; Blakley, C.R.; Fuex, A.N.; Villalanti, D.C.; Fahrenthold, P.D. [Triton Anal Corp, Houston, TX (United States)

    2004-03-01

    This article presents a procedure to evaluate and characterize environmental samples containing mixtures of hydrocarbons over a wide boiling range of materials that include fuels and other products used in commerce. The range of the method extends to the higher boiling and heavier molecular weight hydrocarbon products in the range of motor oil, bunker fuel, and heavier residue materials. The procedure uses the analytical laboratory technique of high-temperature simulated distillation along with mathematical regression of the analytical data to estimate the relative contribution of individual products in mixtures of hydrocarbons present in environmental samples. An analytical technique to determine hydrocarbon-type distributions by gas chromatography-mass spectrometry with nitric oxide ionization spectrometry evaluation is also presented. This type of analysis allows complex hydrocarbon mixtures to be classified by their chemical composition, or types of hydrocarbons that include paraffins, cycloparaffins, monoaromatics, and polycyclic aromatic hydrocarbons. Characteristic hydrocarbon patterns for example, in the relative distribution of polycyclic aromatic hydrocarbons are valuable for determining the potential origin of materials present in environmental samples. These methods provide quantitative data for hydrocarbon components in mixtures as a function of boiling range and 'hydrocarbon fingerprints' of the types of materials present. This information is valuable in assessing environmental impacts of hydrocarbons at contaminated sites and establishing the liabilities and cost allocations for responsible parties.

  12. Measuring Trace Hydrocarbons in Silanes

    Science.gov (United States)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  13. Hydrocarbons prospecting using an integrated approach of petrography, geochemistry and modeling of organic matter transformation. Analysis and reconstitution of the thermal history of the central carboniferous basins of Asturias (Spain) and of the Sabinas - Piedras Negras basin (Coahuila, Mexico); Prospection des hydrocarbures par une approche integree de petrographie, geochimie et modelisation de la transformation de la matiere organique. Analyse et reconstitution de l'histoire thermique des Bassins Carbonifere Central des Asturies (Espagne) et Sabinas - Piedras Negras (Coahuila, Mexique)

    Energy Technology Data Exchange (ETDEWEB)

    Piedad-Sanchez, N.

    2004-09-01

    Solid knowledge of the transformation and evolution of organic matter during hydrocarbon generation in sedimentary basins serves to improve natural gas exploration. With this geological problem in mind, the thermal influence on organic matter was analyzed in two basins containing different characteristics (age, composition of organic matter, litho-stratigraphy, depth, thickness of the layers of rock, the maturation of organic matter, etc.) in order to understand the natural processes in generating oil and natural gas. With a view to studying this geological phenomenon, this work outlines the study of the chemical and macerals composition, the coal rank and geochemical characteristics of organic matter in these two sedimentary basins for the first time: The Asturian Central Carboniferous Basin (Spain) and Sabinas - Piedras Negras Basin (Mexico). Moreover, an approach to shed light on the thermal history and evolution of organic matter through 1D modeling in the two basins is developed. The Central Carboniferous Basin in Asturias is an important coal mining area where coal types range from bituminous carbons with high content in volatile matter to anthracite. The petrographical and geochemical study in this region has shown that at the moment of oil and gas exploration, the coals correspond to an efficient expulsion of oil and have been formed in an environment of swamp with a facies rich in vitrinite, low in sulfur and ash and varying in mineral content. As regards the paleo-environmental reconstruction, the bio-markers suggest a swamp with a relatively high water table and a humid climate. The coal type, the vitrinite reflectance and the volatile matter content in the basin show a N-S trend which could be correlated to the paleo-temperatures calculated in this study. These data point to the influence of two thermal gradients in the region: A normal thermal gradient of long duration and an oblique thermal gradient of short duration due to a pluton. The evolution of

  14. Fractional separation of hydrocarbon vapours

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-10

    A process is described for converting higher boiling hydrocarbons to lower boiling hydrocarbons by subjecting them at elevated temperatures to a conversion operation, then separating the higher and lower boiling fractions. The separation takes place while the reaction products are maintained in the vapor phase by contact with a mass of solid porous material which has little or no catalytic activity but does have a preferential absorption property for higher boiling hydrocarbons so that the lower boiling part of the reaction products pass through the separation zone while the heavier hydrocarbons are retained. The separation is accomplished without substantial loss of heat of these reaction products.

  15. Process for preparing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Krauch, C; Anther, E; Pier, M

    1926-04-07

    A process is described for the conversion of coal of all kinds, wood, oil, shale, as well as other carbonaceous materials into liquid hydrocarbons in two steps, characterized by treatment of the coal and so forth with a stream of hydrogen or hydrogen-containing gases at raised temperatures and raised pressures and producing a tarry product which, after separation of the ashlike residue, is converted by a further treatment, in the presence of catalysts, with hydrogen or hydrogen-containing gases at raised temperature and pressure, largely into low-boiling products.

  16. Recovering valuable liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1931-06-11

    A process for recovering valuable liquid hydrocarbons from coking coal, mineral coal, or oil shale through treatment with hydrogen under pressure at elevated temperature is described. Catalysts and grinding oil may be used in the process if necessary. The process provides for deashing the coal prior to hydrogenation and for preventing the coking and swelling of the deashed material. During the treatment with hydrogen, the coal is either mixed with coal low in bituminous material, such as lean coal or active coal, as a diluent or the bituminous constituents which cause the coking and swelling are removed by extraction with solvents. (BLM)

  17. Hydrogen production from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Docekal, J

    1986-01-01

    Hydrogen is an important feed stock for chemical and petroleum industries, in addition to being considered as the energy carrier of the future. At the present time the feed stock hydrogen is mainly manufactured from hydrocarbons using steam reforming. In steam reforming two processes are employed, the conventional process and PSA (pressure swing adsorption) process. These two processes are described and compared. The results show that the total costs and the maintenance costs are lower for the PSA process, the capital outlay is lower for the conventional process, and the operating costs are similar for the two processes.

  18. Electrochemical Routes towards Sustainable Hydrocarbon Fuels

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2012-01-01

    The potential of renewable energy and possible solution to the intermittency problem of renewable energy sources like sun and wind are explained. The densest storage of energy is in the form of hydrocarbons. The most suitable method of conversion and storage within a foreseeable future is electro...... in the future. In spite of this, it is important to research and develop as many viable sustainable energy technologies as economical possible. © 2012 ECS - The Electrochemical Society  ...

  19. Determination of polynuclear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, Jr, J P

    1963-01-01

    At the present time, the method of choice for the determination of polynuclear hydrocarbons appears to be the following, (a) extraction of the benzene-soluble fraction from the gross collected particulate matter, (b) one pass through a chromatographic column of partially deactivated alumina, (c) spectral examination of the fractions and (d) the application of appropriate chemical tests as indicated by the previous step. Using this method, the presence of pyrene, fluoranthene, one of the benzofluorenes, chrysens, benz(a)anthracene, benzo(a)pyrene, benzo(e)pyrene, benzo(k)fluoranthene, anthanthrene, and coronene was demonstrated in the air of numerous American cities, and benzo(a)pyrene was measured at some 130 sites. Invaluable as such accurate determinations may be for research purposes, they are still too costly and time-consuming for routine survey purposes. While studies on the subject are by no means complete, they indicate the validity of piperonal chloride test as a general index of polycyclic hydrocarbons. This procedure is described in this paper. 7 references.

  20. Hydrocarbons: source of energy

    International Nuclear Information System (INIS)

    Imarisio, G.; Frias, M.; Bemtgen, J.M.

    1989-01-01

    Hydrocarbons are at present the single most important source of energy, since they are the most versatile and widely used. It is expected that their importance will extend well into the next century and therefore it is essential to provide for all those improvements which will extend their availability and usefulness. The sub-programme ''Optimization of the production and utilization of hydrocarbons'' (within the Non-Nuclear Energy R and D Programme of the European Communities) is pursuing a number of R and D topics aimed at the above-mentioned results. It is implemented by means of shared-cost R and D contracts. At this first Seminar held in Lyon (France) from 21-23 September, 1988, all contractors of the sub-programme presented the state of progress of their R and D projects. These proceedings comprise all the papers presented at the Seminar. The section on oilfield exploration includes a report of work on the interpretation of nuclear logs by means of mathematical models. (author)

  1. Potential effect of fracture technology on IPTS [Integrated Pressurized Thermal Shock] analysis (Fracture toughness: Kla and Klc and warm prestressing)

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1990-01-01

    A major nuclear plant life extension issue to be confronted in the 1990's is pressure vessel integrity for the pressurized thermal shock (PTS) loading condition. Governing criteria associated with PTS are included in ''The PTS Rule'' (10 CFR 50.61) and Regulatory Guide 1.154: Format and Content of Plant-Specific Pressurized Thermal Shock Safety Analysis Reports for Pressurized Water Reactors. The results of the Integrated Pressurized Water Reactors. The results of the Integrated Pressurized Thermal Shock (IPTS) Program, along with risk assessments and fracture analyses performed by the NRC and reactor system vendors, contributed to the derivation of the PTS Rule. Over the last several years, the Heavy Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) has performed a series of large-scale fracture-mechanics experiments. The Thermal Shock Experiments (TSE), Pressurized Thermal Shock Experiments (PTSE), and Wide Plate Experiments (WPE) produced K IC and K Ia data that suggest increased mean K IC and K Ia curves relative to the ones used in the IPTS study. Also, the PTSE and WPE have demonstrated that prototypical nuclear reactor pressure vessel steels are capable of arresting a propagating crack at K I values considerably above 220 MPa√m, the implicit limit of the ASME Code and the limit used in the IPTS studies. This document provides a discussion of the results of these experiments

  2. Potential impact of thermal effects during ultrasonic neurostimulation: retrospective numerical estimation of temperature elevation in seven rodent setups

    Science.gov (United States)

    Constans, Charlotte; Mateo, Philippe; Tanter, Mickaël; Aubry, Jean-François

    2018-01-01

    In the past decade, a handful but growing number of groups have reported worldwide successful low intensity focused ultrasound induced neurostimulation trials on rodents. Its effects range from movement elicitations to reduction of anesthesia time or reduction of the duration of drug induced seizures. The mechanisms underlying ultrasonic neuromodulation are still not fully understood. Given the low intensities used in most of the studies, a mechanical effect is more likely to be responsible for the neuromodulation effect, but a clear description of the thermal and mechanical effects is necessary to optimize clinical applications. Based on five studies settings, we calculated the temperature rise and thermal doses in order to evaluate its implication in the neuromodulation phenomenon. Our retrospective analysis shows thermal rise ranging from 0.002 °C to 0.8 °C in the brain for all setups, except for one setup for which the temperature increase is estimated to be as high as 7 °C. We estimate that in the latter case, temperature rise cannot be neglected as a possible cause of neuromodulation. Simulations results were supported by temperature measurements on a mouse with two different sets of parameters. Although the calculated temperature is compatible with the absence of visible thermal lesions on the skin, it is high enough to impact brain circuits. Our study highlights the usefulness of performing thermal simulations prior to experiment in order to fully take into account not only the impact of the peak intensity but also pulse duration and pulse repetition.

  3. Market potential of solar thermal enhanced oil recovery-a techno-economic model for Issaran oil field in Egypt

    Science.gov (United States)

    Gupta, Sunay; Guédez, Rafael; Laumert, Björn

    2017-06-01

    Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil

  4. High Resolution Decision Maps for Urban Planning: A Combined Analysis of Urban Flooding and Thermal Stress Potential In Asia and Europe

    Directory of Open Access Journals (Sweden)

    Boogaard Floris

    2017-01-01

    Full Text Available Urban flooding and thermal stress have become key issues for many cities around the world. With the continuing effects of climate change, these two issues will become more acute and will add to the serious problems already experienced in dense urban areas. Therefore, the sectors of public health and disaster management are in the need of tools that can assess the vulnerability to floods and thermal stress. The present paper deals with the combination of innovative tools to address this challenge. Three cities in different climatic regions with various urban contexts have been selected as the pilot areas to demonstrate these tools. These cities are Tainan (Taiwan, Ayutthaya (Thailand and Groningen (Netherlands. For these cities, flood maps and heat stress maps were developed and used for the comparison analysis. The flood maps produced indicate vulnerable low-lying areas, whereas thermal stress maps indicate open, unshaded areas where high Physiological Equivalent Temperature (PET values (thermal comfort can be expected. The work to date indicates the potential of combining two different kinds of maps to identify and analyse the problem areas. These maps could be further improved and used by urban planners and other stakeholders to assess the resilience and well-being of cities. The work presented shows that the combined analysis of such maps also has a strong potential to be used for the analysis of other challenges in urban dense areas such as air and water pollution, immobility and noise disturbance.

  5. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential.

    Science.gov (United States)

    Yang, Linlin; Li, Nianbei; Li, Baowen

    2014-12-01

    The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.

  6. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential

    Science.gov (United States)

    Yang, Linlin; Li, Nianbei; Li, Baowen

    2014-12-01

    The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.

  7. The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs: a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie Formation in Dongying Sag

    DEFF Research Database (Denmark)

    Yang, Tian; Cao, Ying-Chang; Wang, Yan-Zhong

    2016-01-01

    The relationships between permeability and dynamics in hydrocarbon accumulation determine oilbearing potential (the potential oil charge) of low permeability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member...... facies A and diagenetic facies B do not develop accumulation conditions with low accumulation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock. Also...

  8. Steam hydrocarbon cracking and reforming

    NARCIS (Netherlands)

    Golombok, M.

    2004-01-01

    Many industrial chemical processes are taught as distinct contrasting reactions when in fact the unifying comparisons are greater than the contrasts. We examine steam hydrocarbon reforming and steam hydrocarbon cracking as an example of two processes that operate under different chemical reactivity

  9. Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system

    Science.gov (United States)

    Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G; Spohn, Brian L

    2014-01-14

    A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.

  10. Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    In the present study, the sludge was pretreated with microwave irradiation and low-temperature thermal method, both conducted under the same temperature range (30–100°C). Microwave pretreatment was found to be superior over the thermal treatment with respect to sludge solubilization and biogas pr...... experiments indicated that pre-treated sludge (microwave irradiation: 900W, temperature: 60–70°C) gave 35% more methane, compared to untreated sludge. Moreover, the results of this study clearly demonstrated that microwave pretreated sludge showed better degree of sanitation....

  11. Observation of scaling laws of ion confining potential versus thermal barrier depth and of axial particle confinement time in the tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Inutake, M.; Ishii, K.

    1988-01-01

    In the thermal barrier tandem mirror GAMMA 10, the scaling law governing the enhancement of the ion confining potential, φ c , resulting from thermal barrier formation, is obtained experimentally, and is consistently interpreted in terms of the weak and strong ECH theories set up by Cohen and co-workers. The scaling law on the axial particle confinement time, τ pparallel , related to this φ c formation, is also demonstrated in detail; it is in good agreement with the Pastukhov theory as modified by Cohen and co-workers. This scaling is verified at any radial position in the core plasma region and at any time through the various stages of a discharge; this indicates a scaling with drastic improvement of τ pparallel , due to the potential formation in the tandem mirror plasma. (author). 41 refs, 12 figs

  12. Prediction of phonon thermal transport in thin GaAs, InAs and InP nanowires by molecular dynamics simulations: influence of the interatomic potential

    Energy Technology Data Exchange (ETDEWEB)

    Carrete, J; Longo, R C; Gallego, L J, E-mail: jesus.carrete@usc.es [Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain)

    2011-05-06

    A number of different potentials are currently being used in molecular dynamics simulations of semiconductor nanostructures. Confusion can arise if an inappropriate potential is used. To illustrate this point, we performed direct molecular dynamics simulations to predict the room temperature lattice thermal conductivity {lambda} of thin GaAs, InAs and InP nanowires. In each case, simulations performed using the classical Harrison potential afforded values of {lambda} about an order of magnitude smaller than those obtained using more elaborate potentials (an Abell-Tersoff, as parameterized by Hammerschmidt et al for GaAs and InAs, and a potential of Vashishta type for InP). These results will be a warning to those wishing to use computer simulations to orient the development of quasi-one-dimensional systems as heat sinks or thermoelectric devices.

  13. Improved performance of heat pumps helps to use full potential of subsurface space for Aquifer Thermal Energy Storage

    NARCIS (Netherlands)

    Bloemendal, J.M.; Jaxa-Rozen, M.; Rostampour Samarin, Vahab

    2017-01-01

    The application of seasonal Aquifer Thermal Energy Storage (ATES) contributes to meet goals for energy savings and greenhouse gas (GHG) emission reductions. Heat pumps have a crucial position in ATES systems because they dictate the operation scheme of the ATES wells and therefore play an important

  14. Conceptual market potential framework of high temperature aquifer thermal energy storage - A case study in the Netherlands

    NARCIS (Netherlands)

    Wesselink, Maxim; Liu, Wen; Koornneef, Joris; van den Broek, Machteld

    2018-01-01

    High temperature aquifer thermal energy storage (HT-ATES) can contribute to the integration of renewable energy sources in the energy system, the replacement of fossil fuel-based heat supply and the utilization of surplus heat from industrial sources. However, there is limited understanding on the

  15. Canada's hydrocarbon processing evolution

    International Nuclear Information System (INIS)

    Wise, T.H.; Horton, R.

    2000-01-01

    The development of petroleum refining, petrochemicals and natural gas industries in Canada are discussed together with future issues and prospects. Figures give data on (a) refined products trade 1998; (b) refining capacity; (c) product demand 1980-1999; (d) refinery crude runs and capacity; (e) refining and marketing, historical returns 1993-1999; (f) processing power index for Canada and USA; (g) ethylene capacity; (eye) Montreal petrochemical capacities; (j) Sarnia petrochemical capacities in 2000; (k) Alberta petrochemicals capacities 2001; (l) ethylene net equivalent trade; (m) ethylene costs 1999 for W. Canada and other countries. It was concluded that the hydrocarbon processing business continues to expand in Canada and natural gas processing is likely to increase. Petrochemicals may expand in W. Canada, possibly using feed stock from the Far North. Offshore developments may stimulate new processing on the E. Coast

  16. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  17. Treating hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R; MacIvor, W

    1869-09-01

    The treatment of hydrocarbon oils, such as coal or shale oils, paraffin oils, and petroleum, either in the crude or more or less refined state has the object of reducing the specific gravity and otherwise improving the qualities of such oils. The oil to be treated is put into any ordinary still and distilled. The vapor escaping during the distillation is passed through one or more heating vessels or chambers and exposed to the heat necessary to produce the change. The heating vessels or chambers may be made of metal, clay, or any other material adapted to endure heat, and they may be made of any desired form, or they may be constituted of a coil of metal pipes or a series of tubes such as are used for heating air for blast furnaces.

  18. Seawater-cultured Botryococcus braunii for efficient hydrocarbon extraction.

    Directory of Open Access Journals (Sweden)

    Kenichi Furuhashi

    Full Text Available As a potential source of biofuel, the green colonial microalga Botryococcus braunii produces large amounts of hydrocarbons that are accumulated in the extracellular matrix. Generally, pretreatment such as drying or heating of wet algae is needed for sufficient recoveries of hydrocarbons from B. braunii using organic solvents. In this study, the Showa strain of B. braunii was cultured in media derived from the modified Chu13 medium by supplying artificial seawater, natural seawater, or NaCl. After a certain period of culture in the media with an osmotic pressure corresponding to 1/4-seawater, hydrocarbon recovery rates exceeding 90% were obtained by simply mixing intact wet algae with n-hexane without any pretreatments and the results using the present culture conditions indicate the potential for hydrocarbon milking.Seawater was used for efficient hydrocarbon extraction from Botryococcus braunii. The alga was cultured in media prepared with seawater or NaCl. Hydrocarbon recovery rate exceeding 90% was obtained without any pretreatment.

  19. Thermal Rate Coefficients and Kinetic Isotope Effects for the Reaction OH + CH4 → H2O + CH3 on an ab Initio-Based Potential Energy Surface.

    Science.gov (United States)

    Li, Jun; Guo, Hua

    2018-03-15

    Thermal rate coefficients for the title reaction and its various isotopologues are computed using a tunneling-corrected transition-state theory on a global potential energy surface recently developed by fitting a large number of high-level ab initio points. The calculated rate coefficients are found to agree well with the measured ones in a wide temperature range, validating the accuracy of the potential energy surface. Strong non-Arrhenius effects are found at low temperatures. In addition, the calculations reproduced the primary and secondary kinetic isotope effects. These results confirm the strong influence of tunneling to this heavy-light-heavy hydrogen abstraction reaction.

  20. Low-maturity Kulthieth Formation coal: A possible source of polycyclic aromatic hydrocarbons in benthic sediment of the northern Gulf of Alaska

    Science.gov (United States)

    Van Kooten, G. K.; Short, J.W.; Kolak, J.J.

    2002-01-01

    The successful application of forensic geology to contamination studies involving natural systems requires identification of appropriate endmembers and an understanding of the geologic setting and processes affecting the systems. Studies attempting to delineate the background, or natural, source for hydrocarbon contamination in Gulf of Alaska (GOA) benthic sediments have invoked a number of potential sources, including seep oils, source rocks, and coal. Oil seeps have subsequently been questioned as significant sources of hydrocarbons present in benthic sediments of the GOA in part because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Likewise, native coal has been dismissed in part because ratios of labile hydrocarbons to total organic carbon (e.g. PAH:TOC) for Bering River coal field (BRCF) sources are too low - i.e. the coals are over mature - to be consistent with GOA sediments. We present evidence here that native coal may have been prematurely dismissed, because BRCF coals do not adequately represent the geochemical signatures of coals elsewhere in the Kulthieth Formation. Contrary to previous thought, Kulthieth Formation coals east of the BRCF have much higher PAH: TOC ratios, and the patterns of labile hydrocarbons in these low thermal maturity coals suggest a possible genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analyses of low-maturity Kulthieth Formation coal indicate the low maturity coal is a significant source of PAH. Source apportionment models that neglect this source will underestimate the contribution of native coals to the regional background hydrocarbon signature. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  1. Geothermal potential assessment of the Nevado del Ruiz volcano based on rock thermal conductivity measurements and numerical modeling of heat transfer

    Science.gov (United States)

    Vélez, Maria Isabel; Blessent, Daniela; Córdoba, Sebastián; López-Sánchez, Jacqueline; Raymond, Jasmin; Parra-Palacio, Eduardo

    2018-01-01

    This work presents an estimation of the geothermal potential of the Nevado del Ruiz (NDR) volcano, bridging the knowledge gap to develop geothermal energy in Colombia and improve resource estimates in South America. Field work, laboratory measurements, geological interpretations, 2D numerical modeling, and uncertainty analysis were conducted to the northwest of the NDR to assess temperature at depth and define thermal energy content. About 60 rock samples were collected at outcrops to measure thermal conductivity with a needle probe. A 2D numerical model, built from an inferred geological cross-section, was developed with the software OpenGeoSys to simulate the underground temperature distribution and then estimate the geothermal potential of a 1 km2 area with sufficient temperature, assuming a recovery factor equal to 2.4% and a 30 years exploitation time. Coupled groundwater flow and heat transfer were simulated in steady-state considering two different thermal conductivity scenarios. Results show that the average estimated potential is 1.5 × 10-2 MWt m-1 of the reservoir thickness, considering temperatures greater than 150 °C located at a depth of approximately 2 km, in a selected area situated outside of the Los Nevados National Natural Park (NNP), to avoid any direct intervention on this protected area. According to a Monte Carlo analysis considering pessimist and optimist scenarios of thermal conductivity, the estimated geothermal power was 1.54 × 10-2 MW m-1 (σ = 2.91 × 10-3 MW m-1) and 1.88 × 10-2 MW/m (σ = 2.91 × 10-3 MW m-1) for the two modeling scenario considered.

  2. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    National Research Council Canada - National Science Library

    Cernansky, N.P

    1998-01-01

    .... The research program entailed mechanistic studies examining the oxidation chemistry of single-component hydrocarbons and ignition studies examining the overall ignition of pure single component fuels and fuel blends...

  3. Anaerobic fermentation combined with low-temperature thermal pretreatment for phosphorus-accumulating granular sludge: Release of carbon source and phosphorus as well as hydrogen production potential.

    Science.gov (United States)

    Zou, Jinte; Li, Yongmei

    2016-10-01

    Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Growth of hydrocarbon utilizing microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Mavinkurve, S.

    Two isolates from marine mud having broad spectrum hydrocarbon utilizing profile were identified as Arthrobacter simplex and Candida tropicalis.Both the organisms grew exponentially on crude oil. The cell yield of the organisms was influenced...

  5. Process for treating hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-15

    A process is described for treating simultaneously bituminous substances and hydrocarbon oils for the production of low-boiling hydrocarbons and volatilization of the bituminous substances, characterized by the fact that it consists of heating a current of charge constituted by a mixture of the bituminous substances and hydrocarbon oils, to a high temperature, passing the heated current into a zone of extended reaction where the vapors are separated from the liquid or solid residue to favor transformation of the liquid hydrocarbons and volatilization of the bituminous substances, owing to the utilization of a heating agent carried to a high temperature being brought in contact with the heated charge in order to communicate its heat to the charge, while this later presents itself as relatively fine pellet or in the condition of distinct particles, particularly separated from one another.

  6. Enumeration of petroleum hydrocarbon utilizing bacteria

    International Nuclear Information System (INIS)

    Mukherjee, S.; Barot, M.; Levine, A.D.

    1996-01-01

    In-situ biological treatment is one among a number of emerging technologies that may be applied to the remediation of contaminated soils and groundwater. In 1985, a surface spill of 1,500 gallons of dielectric transformer oil at the Sandia National Laboratories (HERMES II facility) resulted in contamination of soil up to depths of 160 feet. The extent of contamination and site characteristics favored the application of in-situ bioremediation as a potential remedial technology. The purpose of this research was to enumerate indigenous microbial populations capable of degrading petroleum hydrocarbons. Microbial enumeration and characterization methods suitably adapted for hydrocarbon utilizing bacteria were used as an indicator of the presence of viable microbial consortia in excavated oil samples with hydrocarbon (TPH) concentrations ranging from 300 to 26,850 ppm. Microbial activity was quantified by direct and streak plating soil samples on silica gel media. Effects of toxicity and temperature were studied using batch cultures of hydrocarbon utilizing bacteria (selectively isolated in an enrichment medium), at temperatures of 20 and 35 C. It was concluded from this study that it is possible to isolate native microorganisms from contaminated soils from depths of 60 to 160 feet, and with oil concentration ranging from 300 to 26,850 ppm. About 62% of the microorganisms isolated form the contaminated soil were capable of using contaminant oil as a substrate for growth and metabolism under aerobic conditions. Growth rates were observed to be 50% higher for the highest contaminant concentration at 20 C. Resistance to toxicity to contaminant oil was also observed to be greater at 20 C than at 35 C

  7. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  8. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.

    Science.gov (United States)

    Ruiz-Hernando, M; Martín-Díaz, J; Labanda, J; Mata-Alvarez, J; Llorens, J; Lucena, F; Astals, S

    2014-09-15

    Waste activated sludge is slower to biodegrade under anaerobic conditions than is primary sludge due to the glycan strands present in microbial cell walls. The use of pre-treatments may help to disrupt cell membranes and improve waste activated sludge biodegradability. In the present study, the effect of ultrasound, low-temperature thermal and alkali pre-treatments on the rheology, hygienization and biodegradability of waste activated sludge was evaluated. The optimum condition of each pre-treatment was selected based on rheological criteria (reduction of steady state viscosity) and hygienization levels (reduction of Escherichia coli, somatic coliphages and spores of sulfite-reducing clostridia). The three pre-treatments were able to reduce the viscosity of the sludge, and this reduction was greater with increasing treatment intensity. However, only the alkali and thermal conditioning allowed the hygienization of the sludge, whereas the ultrasonication did not exhibit any notorious effect on microbial indicators populations. The selected optimum conditions were as follows: 27,000 kJ/kg TS for the ultrasound, 80 °C during 15 min for the thermal and 157 g NaOH/kg TS for the alkali. Afterward, the specific methane production was evaluated through biomethane potential tests at the specified optimum conditions. The alkali pre-treatment exhibited the greatest methane production increase (34%) followed by the ultrasonication (13%), whereas the thermal pre-treatment presented a methane potential similar to the untreated sludge. Finally, an assessment of the different treatment scenarios was conducted considering the results together with an energy balance, which revealed that the ultrasound and alkali treatments entailed higher costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Hydrocarbon removal with constructed wetlands

    OpenAIRE

    Eke, Paul Emeka

    2008-01-01

    Wetlands have long played a significant role as natural purification systems, and have been effectively used to treat domestic, agricultural and industrial wastewater. However, very little is known about the biochemical processes involved, and the use of constructed treatment wetlands in the removal of petroleum aromatic hydrocarbons from produced and/or processed water. Wastewaters from the oil industry contain aromatic hydrocarbons such as benzene, toluene, ethylbenzene and x...

  10. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  11. The Attribute for Hydrocarbon Prediction Based on Attenuation

    International Nuclear Information System (INIS)

    Hermana, Maman; Harith, Z Z T; Sum, C W; Ghosh, D P

    2014-01-01

    Hydrocarbon prediction is a crucial issue in the oil and gas industry. Currently, the prediction of pore fluid and lithology are based on amplitude interpretation which has the potential to produce pitfalls in certain conditions of reservoir. Motivated by this fact, this work is directed to find out other attributes that can be used to reduce the pitfalls in the amplitude interpretation. Some seismic attributes were examined and studies showed that the attenuation attribute is a better attribute for hydrocarbon prediction. Theoretically, the attenuation mechanism of wave propagation is associated with the movement of fluid in the pore; hence the existence of hydrocarbon in the pore will be represented by attenuation attribute directly. In this paper we evaluated the feasibility of the quality factor ratio of P-wave and S-wave (Qp/Qs) as hydrocarbon indicator using well data and also we developed a new attribute based on attenuation for hydrocarbon prediction -- Normalized Energy Reduction Stack (NERS). To achieve these goals, this work was divided into 3 main parts; estimating the Qp/Qs on well log data, testing the new attribute in the synthetic data and applying the new attribute on real data in Malay Basin data. The result show that the Qp/Qs is better than Poisson's ratio and Lamda over Mu as hydrocarbon indicator. The curve, trend analysis and contrast of Qp/Qs is more powerful at distinguishing pore fluid than Poisson ratio and Lamda over Mu. The NERS attribute was successful in distinguishing the hydrocarbon from brine on synthetic data. Applying this attribute on real data on Malay basin, the NERS attribute is qualitatively conformable with the structure and location where the gas is predicted. The quantitative interpretation of this attribute for hydrocarbon prediction needs to be investigated further

  12. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.

    Science.gov (United States)

    Caldwell, Amanda J; While, Geoffrey M; Beeton, Nicholas J; Wapstra, Erik

    2015-08-01

    Climatic changes are predicted to be greater in higher latitude and mountainous regions but species specific impacts are difficult to predict. This is partly due to inter-specific variance in the physiological traits which mediate environmental temperature effects at the organismal level. We examined variation in the critical thermal minimum (CTmin), critical thermal maximum (CTmax) and evaporative water loss rates (EWL) of a widespread lowland (Niveoscincus ocellatus) and two range restricted highland (N. microlepidotus and N. greeni) members of a cool temperate Tasmanian lizard genus. The widespread lowland species had significantly higher CTmin and CTmax and significantly lower EWL than both highland species. Implications of inter-specific variation in thermal tolerance for activity were examined under contemporary and future climate change scenarios. Instances of air temperatures below CTmin were predicted to decline in frequency for the widespread lowland and both highland species. Air temperatures of high altitude sites were not predicted to exceed the CTmax of either highland species throughout the 21st century. In contrast, the widespread lowland species is predicted to experience air temperatures in excess of CTmax on 1 or 2 days by three of six global circulation models from 2068-2096. To estimate climate change effects on activity we reran the thermal tolerance models using minimum and maximum temperatures selected for activity. A net gain in available activity time was predicted under climate change for all three species; while air temperatures were predicted to exceed maximum temperatures selected for activity with increasing frequency, the change was not as great as the predicted decline in air temperatures below minimum temperatures selected for activity. We hypothesise that the major effect of rising air temperatures under climate change is an increase in available activity period for both the widespread lowland and highland species. The

  13. Nutritional mitigation of winter thermal stress in gilthead seabream associated metabolic pathways and potential indicators of nutritional state

    DEFF Research Database (Denmark)

    Richard, Nadege; Silva, Tomé S.; Wulff, Tune

    2016-01-01

    and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional....... A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle...... and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state....

  14. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  15. HYDROCARBONS RESERVES IN VENEZUELA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Cruz, D.J.

    2007-07-01

    Venezuela is an important player in the energy world, because of its hydrocarbons reserves. The process for calculating oil and associated gas reserves is described bearing in mind that 90% of the gas reserves of Venezuela are associated to oil. Likewise, an analysis is made of the oil reserves figures from 1975 to 2003. Reference is also made to inconsistencies found by international experts and the explanations offered in this respect by the Ministry of Energy and Petroleum (MENPET) and Petroleos de Venezuela (PDVSA) regarding the changes that took place in the 1980s. In turn, Hubbert's Law is explained to determine peak production of conventional oil that a reservoir or field will reach, as well as its relationship with remaining reserves. Emphasis is placed on the interest of the United Nations on this topic. The reserves of associated gas are presented along with their relationship with the different crude oils that are produced and with injected gas, as well as with respect to the possible changes that would take place in the latter if oil reserves are revised. Some recommendations are submitted so that the MENPET starts preparing the pertinent policies ruling reserves. (auth)

  16. Sedimentary facies and lithologic characters as main factors controlling hydrocarbon accumulations and their critical conditions

    Directory of Open Access Journals (Sweden)

    Jun-Qing Chen

    2015-10-01

    Full Text Available Taking more than 1000 clastic hydrocarbon reservoirs of Bohai Bay Basin, Tarim Basin and Junggar Basin, China as examples, the paper has studied the main controlling factors of hydrocarbon reservoirs and their critical conditions to reveal the hydrocarbon distribution and to optimize the search for favorable targets. The results indicated that the various sedimentary facies and lithologic characters control the critical conditions of hydrocarbon accumulations, which shows that hydrocarbon is distributed mainly in sedimentary facies formed under conditions of a long-lived and relatively strong hydrodynamic environment; 95% of the hydrocarbon reservoirs and reserves in the three basins is distributed in siltstones, fine sandstones, lithified gravels and pebble-bearing sandstones; moreover, the probability of discovering conventional hydrocarbon reservoirs decreases with the grain size of the clastic rock. The main reason is that the low relative porosity and permeability of fine-grained reservoirs lead to small differences in capillary force compared with surrounding rocks small and insufficiency of dynamic force for hydrocarbon accumulation; the critical condition for hydrocarbon entering reservoir is that the interfacial potential in the surrounding rock (Φn must be more than twice of that in the reservoir (Φs; the probability of hydrocarbon reservoirs distribution decreases in cases where the hydrodynamic force is too high or too low and when the rocks have too coarse or too fine grains.

  17. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...... to various degrees. Series of grafting densities and graft lengths are prepared, and membranes are solvent cast from DMSO. The membrane properties in aqueous environments are evaluated from their water swelling behavior, and their thermal properties and stability are investigated by thermogravimetric...

  18. Nr 1115 National Assembly, Nr 640 Senate - Stage report on alternate techniques to hydraulic fracturing for the exploration and exploitation of non conventional hydrocarbons

    International Nuclear Information System (INIS)

    Lenoir, Jean-Claude; Bataille, Christian

    2013-01-01

    While noticing that these resources are more supposed that demonstrated, this report first addresses the potential of non conventional hydrocarbon resources: definition, forms and assessment. It presents the status and locations of such resources in France, and discusses how uncertainties can be reduced as far as gas shale and hydrocarbons are concerned (exploration drillings seem necessary). The second part proposes an overview of the various extraction techniques: technologies without fracturing, and hydraulic fracturing (description, recall of previous uses in France, technique management). The third part presents alternate techniques as research topics to be explored: stimulation by another pressurized fluid than water, or by other physical processes (electric arc, thermal process). Proposals are stated. The document also comprised a report of meeting of the scientific committee, a list of heard persons, and a feasibility study

  19. TRAC-PF1 analyses of potential pressurized-thermal-shock transients at a Combustion-Engineering PWR

    International Nuclear Information System (INIS)

    Koenig, J.E.; Spriggs, G.D.; Smith, R.C.

    1984-01-01

    Los Alamos is participating in a program to assess the risk of pressurized thermal shock (PTS) to a reactor vessel. Our role is to provide best-estimate thermal-hydraulic analyses of 12 postulated overcooling transients using TRAC-PF1. These transients are hypothetical and include multiple operator/equipment failures. Calvert Cliffs/Unit-1, a Combustion-Engineering plant, is the pressurized water reactor modeled for this study. The utility and the vendor supplied information for the comprehensive TRAC-PF1 model. Secondary and primary breaks from both hot-zero-power and full-power conditions were simulated for 7200 s (2 h). Low bulk temperatures and loop-flow stagnation while the system was at a high pressure were of particular interest for PTS analysis. Three transients produced primary temperatures below 405 K (270 0 F - the NRC screening criterion) with system repressurization. Six transients indicated flow stagnation would occur in one loop but not both. One transient showed flow stagnation might occur in both loops. Oak Ridge National Laboratory will do fracture-mechanics analysis using these TRAC-PF1 results and make the final determination of the risk of PTS

  20. Synthesis, growth, spectral, electrical, mechanical and thermal characterization of a potential optical material: γ-glycine single crystal

    Science.gov (United States)

    Sivakumar, N.; Jayavel, R.; Anbalagan, G.; Yadav, R. R.

    2018-06-01

    Gamma glycine, an organic material was grown by slow solvent evaporation method. Conventional polythermal method was employed in the temperature range, 30-50 °C to obtain the solubility and the metastable zonewidth. The crystal and molecular structures were analyzed by X-ray powder diffraction, FT-IR and FT-Raman spectral studies. Optical refractive index was determined by prism coupling technique and was found to be 1.4488. Electrical properties such as ac conductivity and activation energy were studied for different temperatures in the frequency range from 40 Hz to 6 MHz. The dc electrical conductivity was estimated from the Cole-Cole plot and the values were found to be 2.19 × 10-6 Sm-1 at 353K and 1.46 × 10-6 Sm-1 at 373K respectively. Mechanical studies on the grown crystal revealed that the material belongs to soft materials category. Thermal conductivity and specific heat capacities were estimated by Hot Disk Thermal Constants Analyzer.

  1. Potential effects of urbanization on urban thermal comfort, a case study of Nairobi city, Kenya: A review

    Directory of Open Access Journals (Sweden)

    Ongoma Victor

    2016-01-01

    Full Text Available This study reviews the effect of urbanization on human thermal comfort over Nairobi city in Kenya. Urbanization alters urban center's land use and land cover, modifying the climate of the urban setting. The modification in climate affects human comfort and the environment at large. This study focuses on the recent studies conducted in Nairobi city and many other cities globally to examine modification of wind, temperature and humidity over Nairobi. There was observed reduction in wind speed and relative humidity over the city, posing threat to human and animal comfort and the environment at large. The city of Nairobi, just like other cities globally is observed to experience urban heat island (UHI. The observed increase in minimum temperature as compared to maximum temperature signifies overall warming. A combination of all these changes reduces human comfort. Borrowing lessons from developed cities, increasing the urban forest cover is thus suggested as one of the practical and effective measures that can help prevent further modification of weather and urban climates. The study recommends further research involving multi-sectoral urban stake holders, on forcing driving urban thermal comfort. In the short term, design and construction of appropriate structures can help minimize energy consumption and emissions, thus enhancing comfort.

  2. Nutritional mitigation of winter thermal stress in gilthead seabream: Associated metabolic pathways and potential indicators of nutritional state.

    Science.gov (United States)

    Richard, Nadège; Silva, Tomé S; Wulff, Tune; Schrama, Denise; Dias, Jorge P; Rodrigues, Pedro M L; Conceição, Luís E C

    2016-06-16

    A trial was carried out with gilthead seabream juveniles, aiming to investigate the ability of an enhanced dietary formulation (diet Winter Feed, WF, containing a higher proportion of marine-derived protein sources and supplemented in phospholipids, vitamin C, vitamin E and taurine) to assist fish in coping with winter thermal stress, compared to a low-cost commercial diet (diet CTRL). In order to identify the metabolic pathways affected by WF diet, a comparative two dimensional differential in-gel electrophoresis (2D-DIGE) analysis of fish liver proteome (pH 4–7) was undertaken at the end of winter. A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state. Winter low water temperature is a critical factor for gilthead seabream farming in the Mediterranean region, leading to a reduction of feed intake, which often results in metabolic and immunological disorders and stagnation of growth performances. In a recent trial, we investigated the ability of an enhanced dietary formulation (diet WF) to assist gilthead seabream in coping with winter thermal stress, compared to a standard commercial diet (diet CTRL). Within this context, in the present work, we identified metabolic processes that are involved in the stress-mitigating effect observed

  3. Geochemical assessment of light gaseous hydrocarbons in near-surface soils of Kutch-Saurashtra: Implication for hydrocarbon prospects

    Science.gov (United States)

    Rao, P. Lakshmi Srinivasa; Madhavi, T.; Srinu, D.; Kalpana, M. S.; Patil, D. J.; Dayal, A. M.

    2013-02-01

    Light hydrocarbons in soil have been used as direct indicators in geochemical hydrocarbon exploration, which remains an unconventional path in the petroleum industry. The occurrence of adsorbed soil gases, methane and heavier homologues were recorded in the near-surface soil samples collected from Kutch-Saurashtra, India. Soil gas alkanes were interpreted to be derived from deep-seated hydrocarbon sources and have migrated to the surface through structural discontinuities. The source of hydrocarbons is assessed to be thermogenic and could have been primarily derived from humic organic matter with partial contribution from sapropelic matter. Gas chromatographic analyses of hydrocarbons desorbed from soil samples through acid extraction technique showed the presence of methane through n-butane and the observed concentrations (in ppb) vary from: methane (C1) from 4-291, ethane (C2) from 0-84, propane (C3) from 0-37, i-butane (iC4) from 0-5 and n-butane (nC4) from 0-4. Carbon isotopes measured for methane and ethane by GC-C-IRMS, range between -42.9‰ to -13.3‰ (Pee Dee Belemnite - PDB) and -21.2‰ to -12.4‰ (PDB), respectively. The increased occurrence of hydrocarbons in the areas near Anjar of Kutch and the area south to Rajkot of Saurashtra signifies the area potential for oil and gas.

  4. Scattering of thermal He beams by crossed atomic and molecular beams. I. Sensitivity of the elastic differential cross section to the interatomic potential

    International Nuclear Information System (INIS)

    Keil, M.; Kuppermann, A.

    1978-01-01

    The ability of diffraction oscillations in atomic beam scattering experiments to uniquely determine interatomic potentials for highly quantal systems is examined. Assumed but realistic potentials are used to generate, by scattering calculations and incorporation of random errors, differential cross sections which are then treated as if they were ''experimental'' data. From these, attempts are made to recover the initial potential by varying the parameters of assumed mathematical forms different from the original one, until a best fit to the ''experimental'' results is obtained. It is found that the region of the interaction potential around the van der Waals minimum is accurately determined by the ''measured'' differential cross sections over a range of interatomic separations significantly wider than would be expected classically. It is also found, for collision energies at which the weakly repulsive wall is appreciably sampled, that the SPF--Dunham and double Morse--van der Waals types of potentials lead to accurate determinations of the interatomic potential, whereas many other mathematical forms do not. Analytical parameterizations most appropriate for obtaining accurate interatomic potentials from thermal DCS experiments, for a given highly quantal system, may depend on the collision energy used

  5. Laser spectroscopy of hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    The author reports the application of supersonic jet flash pyrolysis to the specific preparation of a range of organic radicals, biradicals, and carbenes in a skimmed molecular beam. Each species was produced cleanly and specifically, with little or no secondary reactions by the thermal dissociation of appropriately designed and synthesized organic precursors. Photoelectron spectra of the three isomeric C{sub 3}H{sub 2} carbenes, ortho-benzyne, and the {alpha},3-dehydrotoluene biradical, were used to establish adiabatic ionization potentials for use in thermochemical determinations.

  6. Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    Francesco Baino

    2017-12-01

    Full Text Available Multicomponent silicate glasses and their corresponding glass-ceramic derivatives were prepared and tested for potential applications in dentistry. The glasses were produced via a melting-quenching process, ground and sieved to obtain fine-grained powders that were pressed in the form of small cylinders and thermally treated to obtain sintered glass-ceramic samples. X-ray diffraction investigations were carried out on the materials before and after sintering to detect the presence of crystalline phases. Thermal analyses, mechanical characterizations (assessment of bending strength, Young’s modulus, Vickers hardness, fracture toughness, and in vitro bioactivity tests in simulated body fluid were performed. On the basis of the acquired results, different potential applications in the dental field were discussed for the proposed glass-ceramics. The use of such materials can be suggested for either restorative dentistry or dental implantology, mainly depending on their peculiar bioactive and mechanical properties. At the end of the work, the feasibility of a novel full-ceramic bilayered implant was explored and discussed. This implant, comprising a highly bioactive layer expected to promote osteointegration and another one mimicking the features of tooth enamel, can have an interesting potential for whole tooth substitution.

  7. Scattering of thermal He beams by crossed atomic and molecular beams. II. The He--Ar van der Waals potential

    International Nuclear Information System (INIS)

    Keilb, M.; Slankas, J.T.; Kuppermann, A.

    1979-01-01

    Differential cross sections for He--Ar scattering at room temperature have been measured. The experimental consistency of these measurements with others performed in different laboratories is demonstrated. Despite this consistency, the present van der Waals well depth of 1.78 meV, accurate to 10%, is smaller by 20% to 50% than the experimental values obtained previously. These discrepancies are caused by differences between the assumed mathematical forms or between the assumed dispersion coefficients of the potentials used in the present paper and those of previous studies. Independent investigations have shown that the previous assumptions are inappropriate for providing accurate potentials from fits to experimental differential cross section data for He--Ar. We use two forms free of this inadequacy in the present analysis: a modified version of the Simons--Parr--Finlan--Dunham (SPFD) potential, and a double Morse--van der Waals (M 2 SV) type of parameterization. The resulting He--Ar potentials are shown to be equal to with experimental error, throughout the range of interatomic distances to which the scattering data are sensitive. The SPFD or M 2 SV potentials are combined with a repulsive potential previously determined exclusively from fits to gas phase bulk properties. The resulting potentials, valid over the extended range of interatomic distances r> or approx. =2.4 A, are able to reproduce all these bulk properties quite well, without adversely affecting the quality of the fits to the DCS

  8. Alkanes as Components of Soil Hydrocarbon Status: Behavior and Indication Significance

    Science.gov (United States)

    Gennadiev, A. N.; Zavgorodnyaya, Yu. A.; Pikovskii, Yu. I.; Smirnova, M. A.

    2018-01-01

    Studies of soils on three key plots with different climatic conditions and technogenic impacts in Volgograd, Moscow, and Arkhangelsk oblasts have showed that alkanes in the soil exchange complex have some indication potential for the identification of soil processes. The following combinations of soil-forming factors and processes have been studied: (a) self-purification of soil after oil pollution; (b) accumulation of hydrocarbons coming from the atmosphere to soils of different land use patterns; and (c) changes in the soil hydrocarbon complex beyond the zone of technogenic impact due to the input of free hydrocarbon-containing gases. At the injection input of hydrocarbon pollutants, changes in the composition and proportions of alkanes allow tracing the degradation trend of pollutants in the soil from their initial content to the final stage of soil self-purification, when the background concentrations of hydrocarbons are reached. Upon atmospheric deposition of hydrocarbons onto the soil, from the composition and mass distribution of alkanes, conclusions can be drawn about the effect of toxicants on biogeochemical processes in the soil, including their manifestation under different land uses. Composition analysis of soil alkanes in natural landscapes can reveal signs of hydrocarbon emanation fluxes in soils. The indication potentials of alkanes in combination with polycyclic aromatic hydrocarbons and other components of soil hydrocarbon complex can also be used for the solution of other soil-geochemical problems.

  9. Potential steam generator tube rupture in the presence of severe accident thermal challenge and tube flaws due to foreign object wear

    International Nuclear Information System (INIS)

    Liao, Y.; Guentay, S.

    2009-01-01

    This study develops a methodology to assess the probability for the degraded PWR steam generator to rupture first in the reactor coolant pressure boundary, under severe accident conditions with counter-current natural circulating high temperature gas in the hot leg and SG tubes. The considered SG tube flaws are caused by foreign object wear, which in recent years has emerged as a major inservice degradation mechanism for the new generation tubing materials. The first step develops the statistical distributions for the flaw frequency, size, and the flaw location with respect to the tube length and the tube's tubesheet position, based on data of hundreds of flaws reported in numerous SG inservice inspection reports. The next step performs thermal-hydraulic analysis using the MELCOR code and recent CFD findings to predict the thermal challenge to the degraded tubes and the tube-to-tube difference in thermal response at the SG entrance. The final step applies the creep rupture models in the Monte Carlo random walk to test the potential for the degraded SG to rupture before the surge line. The mean and range of the SG tube rupture probability can be applied to estimate large early release frequency in probabilistic safety assessment.

  10. An assessment by calorimetric calculations of the potential thermal benefit of warming and humidification of insufflated carbon dioxide.

    Science.gov (United States)

    Roth, Jonathan V; Sea, Stephanie

    2014-06-01

    Heat transfer from a patient to warm and humidify insufflated carbon dioxide (CO2) during laparoscopic surgery may contribute to perioperative hypothermia. The magnitude of this effect was calculated using calorimetric calculations. Warming to 37°C and humidifying to 100%, each 100 L of insufflated CO2 would prevent a heat transfer of 3220 calories, which would result in a decrease of temperature by 0.06°C in a 70 kg patient after total body distribution of heat. We conclude that the thermal benefit of warming and humidifying insufflated CO2 is minor, particularly in comparison with other effective and inexpensive perioperative technologies, some of which are not always used out could easily be used. The decision to use heating and humidification of insufflated CO2 should be based on its other risks, benefits, and costs.

  11. Evaluation of the potential of optical switching materials for overheating protection of thermal solar collectors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huot, G.; Roecker, Ch.; Schueler, A.

    2008-01-15

    Providing renewable energy for domestic hot water production and space heating, thermal solar collectors are more and more widespread, and users' expectations with respect to performance and service lifetime are rising continuously. The durability of solar collector materials is a critical point as the collector lifetime should be at least 25 years. Overheating and the resulting stagnation of the collector is a common problem with solar thermal systems. During stagnation high temperatures lead to water evaporation, glycol degradation, and stresses in the collector with increasing pressure. Special precautions are necessary to release this pressure; only mechanical solutions exist nowadays. Additionally, the occurring elevated temperatures lead to degradation of the materials that compose collectors: seals, insulation materials, and also the selective coating which is the most important part of the collector. A promising way to achieve active cooling of collectors without any mechanical device for pressure release or collector emptying is to produce a selective coating which is able to switch its optical properties at a critical temperature Tc. An optical switch allows changing the selective coating efficiency; the goal is to obtain a coating with a poor selectivity above Tc (decreasing of absorptance, increasing of emittance). Obtaining self-cooling collectors will allow increasing collector surfaces on facades and roofs in order to get high efficiency and hot water production during winter without inconvenient overheating during summer. Optical switching of materials can be obtained by many ways. Inorganic and organic thermochromic compounds, and organic thermotropic coatings are the main types of switching coatings that have been studied at EPFL-LESO-PB. Aging studies of organic thermochromic paints fabricated at EPFL suggest that the durability of organic compounds might not be sufficient for glazed metallic collectors. First samples of inorganic coatings

  12. Unconventional hydrocarbons. New prospects for the para-petroleum industry

    International Nuclear Information System (INIS)

    Bennaceur, Kamel

    2011-01-01

    Unconventional hydrocarbons represent a significant potential despite complications in extracting them. The International Energy Agency's annual report in 2008 estimated that 9 trillion barrels of liquid hydrocarbons could be produced - a figure to be compared with the current production of 1,1 trillion barrels and the 1,3-1,4 trillion barrels of proven reserves. This estimate includes the potential production from heavy oils, shale oil and tar belts as well as the liquid hydrocarbons obtained by converting coal and natural gas. The IAE's 2009 report estimates resources in gas at more than 850 trillion cubic meters (T m"3), as compared