WorldWideScience

Sample records for hydrocarbon polymeric binder

  1. Studies on The Renewability of Polymeric Binders for Foundry

    Directory of Open Access Journals (Sweden)

    Grabowska B.

    2012-09-01

    Full Text Available In this paper the results of studies of polymeric binders on the example of the new BioCo2 binder, including the problem of its renewability, are presented. The results of structural studies (FT-IR for the BioCo2 binder before and after crosslinking, and bending strength tests Rg u fresh and renewed cured molding sands with BioCo2 binder are discussed. The cross-linking binder and curring of moulding sand was carried out by physical agents (microwave radiation, temperature. On the basis of obtained results was shown that it is possible to restore the initial properties of the adhesive of BioCo2 binder. The initial properties of moulding sand can be achieved, after the cross-linking binders and after curing in the moulding sands with bioCo2 binder , by supplementing the moulding sand composition by the appropriate amount of water.

  2. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black

    KAUST Repository

    Ha, Don-Hyung; Islam, Mohammad A.; Robinson, Richard D.

    2012-01-01

    In this work, we have developed a new fabrication method for nanoparticle (NP) assemblies for Li-ion battery electrodes that require no additional support or conductive materials such as polymeric binders or carbon black. By eliminating

  3. Crosslink the Novel Group of Polymeric Binders BioCo by the UV-radiation

    Directory of Open Access Journals (Sweden)

    Grabowska B.

    2016-06-01

    Full Text Available The spectroscopic FT-IR and FT-Raman methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid/sodium salt of carboxymethyl starch (PAA/CMS-Na applied as a binder for moulding sands (as a novel group binders BioCo. The cross-linking was performed by physical agent, applying the UV-radiation. The results of structural studies (IR, Raman confirm the overlapping of the process of cross-linking polymer composition PAA/CMS-Na in UV radiation. Taking into account the ingredients and structure of the polymeric composition can also refer to a curing process in a binder - mineral matrix mixture. In the system of binder-mineral matrix under the influence of ultraviolet radiation is also observed effect of binding. However, the bonding process does not occur in the entire volume of the investigated system, but only on the surface, which gives some possibilities for application in the use of UV curing surface of cores, and also to cure sand moulds in 3D printing technology.

  4. Elucidating the Polymeric Binder Distribution within Lithium-ion Battery Electrodes Using SAICAS.

    Science.gov (United States)

    Kim, Kyuman; Byun, Seoungwoo; Choi, Jaecheol; Hong, Seungbum; Ryou, Myung-Hyun; Lee, Yong Min

    2018-03-30

    Polymeric binder distribution within electrodes is crucial to guarantee the electrochemical performance of lithium-ion batteries (LIBs) for their long-term use in applications such as electric vehicles and energy-storage systems. However, due to limited analytical tools, such analyses have not been conducted so far. Herein, the adhesion properties of LIB electrodes at different depths are measured using a surface and interfacial cutting analysis system (SAICAS). Moreover, two LiCoO 2 electrodes, dried at 130 and 230 °C, are carefully prepared and used to obtain the adhesion properties at every 10 μm of depth as well as the interface between the electrode composite and the current collector. At high drying temperatures, more of the polymeric binder material and conductive agent appears adjacent to the electrode surface, resulting in different adhesion properties as a function of depth. When the electrochemical properties are evaluated at different temperatures, the LiCoO 2 electrode dried at 130 °C shows a much better high-temperature cycling performance than does the electrode dried at 230 °C due to the uniform adhesion properties and the higher interfacial adhesion strength. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Gamma-radiation induced polymerization of methyl methacrylate in aliphatic hydrocarbons: kinetics and evidence for incorporation of hydrocarbon in the polymer chain

    International Nuclear Information System (INIS)

    Mohan, H.; Iyer, R.M.

    1989-01-01

    On γ-radiolysis, the rate of polymerization of methyl methacrylate in hydrocarbon solvents is observed to decrease. It is explained by hydrocarbon entry into the polymer chains. The hydrocarbon entry into the polymer chains is observed to take place at later stages of polymerization and increases with hydrocarbon chain length. The extent of hydrocarbon entry into the polymer chains is estimated by NMR and GLC analysis. It is observed to be equal to ∼ 12% corresponding to ∼ 97 hexadecane molecules in each polymer chain. The IR, DSC, MW determination and radiation effects on the polymer showed evidences for hydrocarbon entry into the polymer. It is explained by chain transfer from the growing polymer radical to the hydrocarbon molecules. The chain transfer constant is determined to be equal to 1 x 10 -2 . (author)

  6. About a possibility of increasing the adhesion strength between mineral glass and polymeric binder under radio-frequency induction plasma treatment

    International Nuclear Information System (INIS)

    Miftakhov, I S; Trofimov, A V; Nagmutdinova, A I; Voznesensky, E F; Sharifullin, F S; Krasina, I V; Rakhmatullina, G R

    2017-01-01

    The paper investigated influences of radio-frequency induction plasma treatment on the surface of sheet mineral glasses for household purpose. Discussion for casting the most suitable treatment modes and theirs substantiation is shown. During the investigation the most productive plasma treatment modes for applied binders have been found. It is shown that the durability of adhesive joints between mineral glass and polymeric binder under low-temperature plasma treatment increase to 65%. (paper)

  7. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black

    KAUST Repository

    Ha, Don-Hyung

    2012-10-10

    In this work, we have developed a new fabrication method for nanoparticle (NP) assemblies for Li-ion battery electrodes that require no additional support or conductive materials such as polymeric binders or carbon black. By eliminating these additives, we are able to improve the battery capacity/weight ratio. The NP film is formed by using electrophoretic deposition (EPD) of colloidally synthesized, monodisperse cobalt NPs that are transformed through the nanoscale Kirkendall effect into hollow Co 3O 4. EPD forms a network of NPs that are mechanically very robust and electrically connected, enabling them to act as the Li-ion battery anode. The morphology change through cycles indicates stable 5-10 nm NPs form after the first lithiation remained throughout the cycling process. This NP-film battery made without binders and conductive additives shows high gravimetric (>830 mAh/g) and volumetric capacities (>2100 mAh/cm 3) even after 50 cycles. Because similar films made from drop-casting do not perform well under equal conditions, EPD is seen as the critical step to create good contacts between the particles and electrodes resulting in this significant improvement in battery electrode assembly. This is a promising system for colloidal nanoparticles and a template for investigating the mechanism of lithiation and delithiation of NPs. © 2012 American Chemical Society.

  8. Downstream processing from melt granulation towards tablets: In-depth analysis of a continuous twin-screw melt granulation process using polymeric binders.

    Science.gov (United States)

    Grymonpré, W; Verstraete, G; Vanhoorne, V; Remon, J P; De Beer, T; Vervaet, C

    2018-03-01

    The concept of twin-screw melt granulation (TSMG) has steadily (re)-gained interest in pharmaceutical formulation development as an intermediate step during tablet manufacturing. However, to be considered as a viable processing option for solid oral dosage forms there is a need to understand all critical sources of variability which could affect this granulation technique. The purpose of this study was to provide an in-depth analysis of the continuous TSMG process in order to expose the critical process parameters (CPP) and elucidate the impact of process and formulation parameters on the critical quality attributes (CQA) of granules and tablets during continuous TSMG. A first part of the study dealt with the screening of various amorphous polymers as binder for producing high-dosed melt granules of two model drug (i.e. acetaminophen and hydrochlorothiazide). The second part of this study described a quality-by-design (QbD) approach for melt granulation of hydrochlorothiazide in order to thoroughly evaluate TSMG, milling and tableting stage of the continuous TSMG line. Using amorphous polymeric binders resulted in melt granules with high milling efficiency due to their brittle behaviour without producing excessive amounts of fines, providing high granule yields with low friability. Therefore, it makes them extremely suitable for further downstream processing. One of the most important CPP during TSMG with polymeric binders was the granulation-torque, which - in case of polymers with high T g - increased during longer granulation runs to critical levels endangering the continuous process flow. However, by optimizing both screw speed and throughput or changing to polymeric binders with lower T g it was possible to significantly reduce this risk. This research paper highlighted that TSMG must be considered as a viable option during formulation development of solid oral dosage forms based on the robustness of the CQA of both melt granules and tablets. Copyright © 2017

  9. Preparation of Color Filter Photo Resists for Generating Color Pixels in Liquid Crystal Displays by Synthesis and Applications of Polymeric Binders

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Chun [Sejong University, Seoul (Korea, Republic of); Choi, Jae Hong [Kyungpook National University, Daegu (Korea, Republic of)

    2010-09-15

    This study was carried out based on several purposes. First, introductions of new binders have been requested due to the recent trend of red pigments; that is, a dieketo-pyrrolo-pyrrole with a smaller particle size and less polarity for a high contrast ratio is desired. The pigments for a high contrast ratio usually have a particle size in the range of 40 - 60 nm, while conventional pigments of anthraquinone have a particle size of approximately 90 nm. For this reason, less polar styrene was introduced to increase affinity by replacing or reducing benzyl methacrylate. Traditionally, a binder prepared from benzyl methacrylate and methacrylic acid has been widely used. Second, introductions of less expensive materials, such as styrene and methyl methacrylate, have been requested to contribute to the extreme competitiveness of the LCD industry. For this study, styrene, methacrylic acid, methyl methacrylate and benzyl methacylate were employed to synthesize the random copolymer into polymeric binders.

  10. Oxyphosphorus-containing polymers as binders for battery cathodes

    Science.gov (United States)

    Pratt, Russell Clayton; Mullin, Scott Allen; Eitouni, Hany Basam

    2018-05-29

    A class of polymeric phosphorous esters can be used as binders for battery cathodes. Metal salts can be added to the polymers to provide ionic conductivity. The polymeric phosphorous esters can be formulated with other polymers either as mixtures or as copolymers to provide additional desirable properties. Examples of such properties include even higher ionic conductivity and improved mechanical properties. Furthermore, cathodes that include the polymeric phosphorous esters can be assembled with a polymeric electrolyte separator and an anode to form a complete battery.

  11. Solvolytic Degradation of Polymeric Propellant Binders

    Science.gov (United States)

    1975-06-01

    propcllant! can be -carried, ou-t pi_,th surpriising jease- in- 60 -_ sca-le’.with- subsequenzr recovery -of constitu - s -in- high - yield -. the. kilproach...distillation of the ammonia yields about 84% -recovery of tile ammonium chloride. The aluminum powder remains behind in the degradedfpolyuruthane gel...msolvent. .n his experiment a 0.14- g- sample of -binder I having,, z, 50-80 mesh particle size was placed in a Soxhlet apparatus and the extraction

  12. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  13. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    Science.gov (United States)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  14. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    Yun Jeong Woo

    2013-01-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  15. Performance prediction of hot mix asphalt from asphalt binders

    International Nuclear Information System (INIS)

    Hafeez, I.; Kamal, M.A.; Shahzad, Q.; Bashir, N.; Ahadi, M.R.

    2012-01-01

    Asphalt binder being a high weight hydrocarbon contains asphaltene and maltene and is widely used as cementing materials in the construction of flexible pavements. Its performance in hot mix asphalt also depends on combining with different proportions of aggregates. The main objective of this study was to characterize asphalt cement rheological behavior and to investigate the influence of asphalt on asphalt-aggregate mixtures prepared with virgin binders and using polymers. Binder rheology and mixtures stiffness were determined under a range of cyclic loadings and temperature conditions. Master curves were developed for the evaluation of relationship between parameters like complex modulus and phase angle at different frequencies. Horizontal shift factors were also computed to determine time and temperature response of binders and mixes. The results showed that the stiffness of both the binder and the mixes depends on temperature and frequency of load. Polymer modified binder is least susceptible to temperature variations as compared to other virgin asphalt cement. Performance of asphalt mixtures can be predicted from those of asphalt binders using the master curve technique. (author)

  16. Effect of binder properties on electrochemical performance for silicon-graphite anode: Method and application of binder screening

    International Nuclear Information System (INIS)

    Yim, Taeeun; Choi, Soo Jung; Jo, Yong Nam; Kim, Tae-Hyun; Kim, Ki Jae; Jeong, Goojin; Kim, Young-Jun

    2014-01-01

    Highlights: • Binder properties are systematically characterized to estimate their suitability. • Interpretation of binder properties in connection with binding affinity, electrode properties, and degree of phase separation in slurry. • According to the screening results, hybridization of poly(acrylic acid) and poly(amide imide) is recommended. • The modified binder showed improved cycle performance based on enhanced binder properties. - Abstract: With increasing demand for lithium-ion batteries (LIBs) with high energy density, silicon-based negative electrode material has attracted much interest because of its high specific capacity. Practical utilization of Si remains unattainable, however, owing to severe volume expansion in the electrode, resulting in a loss of the electrical Si network, which is directly connected to drastic capacity fading of the cell. Therefore, there have been systematic studies on the characterization of fundamental binder properties to estimate the suitability of various binder materials. The binder properties are subdivided into mechanical and adhesion characteristics, electrode properties (rigidity and recovery), and phase separation behavior of slurry to correlate with the electrochemical performance and practical acceptance of candidate materials. Systematic screening showed that hybridization of poly(acrylic acid) (PAA) and poly(amide imide) (PAI) could complement each other's properties and the hybridized PAA–PAI was synthesized by a one-step, acid-catalyzed reaction. The PAA–PAI hybrid showed enhancement in overall properties as a result of co-polymerization and exhibited remarkable cycling performance after 300 cycles. Based on these results, it can be concluded that an understanding of binder characteristics provides useful insight into the search for a more efficient binder material, and fine tuning of fundamental binder properties through screening will be advantageous to the construction of more efficient LIB

  17. Determination of binder distributions in green-state ceramics by NMR imaging

    International Nuclear Information System (INIS)

    Garrido, L.; Ackerman, J.L.; Ellingson, W.A.; Weyand, J.D.

    1988-03-01

    The manufacture of reliable high performance structural ceramics requires a good understanding of the different steps involved in the process. The presence of nonuniformities in the distribution of the polymeric binder could give rise to local fluctuations of density that could produce failure of the ceramic piece. Specimens prepared from Al 2 O 3 with 15 and 2.5% ww binder were imaged using NMR in order to measure binder distribution maps. Results show that NMR imaging could be a useful technique to nondestructively evaluate the quality of green-state specimens. 5 refs., 5 figs

  18. Effect of composition polymeric PVB binder on physical, magnetic properties and microstructure of bonded magnet NdFeB

    Science.gov (United States)

    Sardjono, P.; Muljadi; Suprapedi; Sinuaji, P.; Ramlan; Gulo, F.

    2017-04-01

    The bonded magnet NdFeB has been made by using the hot press method and using Poly Vinyl Butiral (PVB) as a binder. The composition of polymeric binder was varied: 0, 2, 4, 6 and 7 % of weight. Both raw materials are weighed and mixed according to the composition of PVB, then formed by hot press with a pressure 30 MPa, a temperature of 160 ° C and holding time for 30 minutes. The bulk density was measured by using Archimedes method. SEM observation was done to determine the microstructure of bonded magnet NdFeB. The flux magnetic value was measured by using a Gauss meter and the measurement of hysteresis curves was done to know value of remanence Br, coercivity Hc and energy product BHmax by using VSM. According to the characterization results show that the best composition of PVB is 2 of weight. The properties of bonded magnet NdFeB of those compositions are the bulk density around 5.66 g/cm3. Flux Magnetic value: 1862 Gauss, Br value: 5000 kGauss, Hc value: 8.49 kOe and BHmax value : 5.10 MGOe. According of SEM observation results show that the polymer matrix of PVB appears to have covered on all surface grain and filled grain boundary.

  19. Preparation and characterization of RuO2/polyaniline/polymer binder composite electrodes for supercapacitor applications

    Directory of Open Access Journals (Sweden)

    SUZANA SOPČIĆ

    2012-03-01

    Full Text Available The composite electrodes consisting of amorphous and hydrous RuO2, polyaniline and polymeric binder, Nafion® or poly(vinilydene fluoride were prepared. The electro¬chem-ical and pseudocapacitive properties of the prepared electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the responses of composite electrodes are very sensitive to the presence of individual components and their respective ratio in the mixture. The difference in the electro-chemical behavior was explained by the different physico-chemical properties of the polymeric binders.

  20. Systematic molecular-level design of binders incorporating Meldrum's acid for silicon anodes in lithium rechargeable batteries.

    Science.gov (United States)

    Kwon, Tae-woo; Jeong, You Kyeong; Lee, Inhwa; Kim, Taek-Soo; Choi, Jang Wook; Coskun, Ali

    2014-12-17

    Covalent or Noncovalent? Systematic investigation of polymeric binders incorporating Meldrum's acid reveals most critical binder properties for silicon -anodes in lithium ion batteries, that is self-healing effect facilitated by a series of noncovalent interactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tuning biomimetic membrane barrier properties by hydrocarbon, cholesterol and polymeric additives

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Skovgaard, Nils; Hansen, Jesper Søndergaard

    2017-01-01

    The barrier properties of cellular membranes are increasingly attracting attention as a source of inspiration for designing biomimetic membranes. The broad range of potential technological applications makes the use of lipid and lately also polymeric materials a popular choice for constructing...... biomimetic membranes, where the barrier properties can be controlled by the composition of the membrane constituent elements. Here we investigate the membrane properties reported by the light-induced proton pumping activity of bacteriorhodopsin (bR) reconstituted in three vesicle systems of different...... membrane composition. Specifically we quantify how the resulting proton influx and efflux rates are influenced by the membrane composition using a variety of membrane modulators. We demonstrate that by adding hydrocarbons to vesicles with reconstituted bR formed from asolectin lipids the resulting...

  2. Experimental Evaluation of Geopolymer and ‘Lunamer’ Binders as Radioactive Shielding Materials for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Geopolymers are inorganic cementitious binders produced by polymeric reaction between an aluminosilica rich material and an alkali metal hydroxide/silicate liquid,...

  3. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    2017-01-01

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel binder systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing

  4. Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery.

    Science.gov (United States)

    Lee, Sang Ha; Lee, Jeong Hun; Nam, Dong Ho; Cho, Misuk; Kim, Jaehoon; Chanthad, Chalathorn; Lee, Youngkwan

    2018-05-16

    Polymeric binder is extremely important for Si-based anode in lithium-ion batteries due to large volume variation during charging/discharging process. Here, natural rubber-incorporated chitosan networks were designed as a binder material to obtain both adhesion and elasticity. Chitosan could strongly anchor Si particles through hydrogen bonding, while the natural rubber could stretch reversibly during the volume variation of Si particles, resulting in high cyclic performance. The prepared electrode exhibited the specific capacities of 1350 mAh/g after 1600 cycles at the current density of 8 A/g and 2310 mAh/g after 500 cycles at the current density of 1 A/g. Furthermore, the cycle test with limiting lithiation capacity was conducted to study the optimal binder properties at varying degree of the volume expansion of silicon, and it was found that the elastic property of binder material was strongly required when the large volume expansion of Si occurred.

  5. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders.

    Science.gov (United States)

    Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi

    2015-02-07

    Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed.

  6. Chemical Stability Investigations of Polyisobutylene as New Binder for Application in Lithium Air-Batteries

    International Nuclear Information System (INIS)

    Heine, Jennifer; Rodehorst, Uta; Badillo, Juan Pablo; Winter, Martin; Bieker, Peter

    2015-01-01

    ABSTRACT: The side reactions of LiO 2 , Li 2 O 2 and Li 2 O, formed during the discharge process at the cathode/electrolyte interphase, are still a main challenge of lithium-air batteries. During these reactions, polyvinylidene difluoride (PVdF), as the commonly used cathode binder material, is decomposing, leading to a shorter lifetime of the battery. In this paper, we introduced and investigated polyisobutylene (PIB), a chemically and electrochemically inert polymeric material, to substitute PVdF as binder for lithium-air batteries. Results obtained by X-ray diffraction and spectroscopic methods showed, that PIB is far more stable in the presence of O 2 − , O 2 2− as well as O 2− species compared to PVdF. This distinct inertness makes PIB a promising binder for lithium-air batteries

  7. Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling

    Science.gov (United States)

    Li, Dawei; Wang, Yikai; Hu, Jiazhi; Lu, Bo; Dang, Dingying; Zhang, Junqian; Cheng, Yang-Tse

    2018-05-01

    This work focuses on understanding the role of various binders, including sodium alginate (SA), Nafion, and polyvinylidene fluoride (PVDF), on the mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. In situ curvature measurement of bilayer electrodes, consisting of a silicon-binder-carbon black composite layer on a copper foil, is used to determine the effects of binders on bending deformation, elastic modulus, and stress on the composite electrodes. It is found that the lithiation induced curvature and the modulus of the silicon/SA electrodes are larger than those of electrodes with Nafion and PVDF as binders. Although the modulus of Nafion is smaller than that of PVDF, the curvature and the modulus of silicon/Nafion composite are larger than those of silicon/PVDF electrodes. The moduli of all three composites decrease not only during lithiation but also during delithiation. Based on the measured stress and scanning electron microscopy observations of cracking in the composite electrodes, we conclude that the stress required to crack the composite electrodes with SA and Nafion binders is considerably higher than that of the silicon/PVDF electrode during electrochemical cycling. Thus, the cracking resistance of silicon/SA and silicon/Nafion composite electrodes is higher than that of silicon/PVDF electrodes.

  8. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Crepaz, Rudolf; Eggert, Torben

    2010-01-01

    compositions were tested. A test method that provides uniform test conditions is described. The method can be used as general test method to analyse off gasses from binders. Moulds containing a standard size casting were produced and the amount and type of organic compounds resulting from thermal degradation...... of binders was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gasses in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content...

  9. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    Science.gov (United States)

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments.

  10. Potential of the application of the modified polysaccharides water solutions as binders of moulding sands

    Directory of Open Access Journals (Sweden)

    K. Kaczmarska

    2015-10-01

    Full Text Available The results of preliminary tests of selected properties of the moulding sands with the binder in the form of a 5 % water solution of the sodium salt of carboxymethyl starch (with a degree of substitution (DS of 0,2 and 0,87 arepresented in this study. The moulding sand properties such as permeability, abrasion resistance, tensile and bendingstrength - after curing - are shown in series of tests. The cure process was conducted in a field of electromagnetic radiation within the microwave range. The effect of the microwave treatment on the moulding sand was evaporating of water (solvent in a binder and cross-linking of the polymeric binder. As a result the cured moulding sands with particular properties, essential in the context of its application in the mould technology in the foundry industry, were obtained.

  11. Anionic surface binders

    OpenAIRE

    Aljaž-Rožič Mateja; Hočevar Nežka

    2004-01-01

    The MELAMIN Chemical Factory in Kočevje manufactures synthetic resins and binders for the paper industry. Binders based on AKD (alkyl ketene dimer) are produced which are used for binding paper and cardboard in the range of neutral and partially basic pH. Cationic and, lately, anionic binders are mostly used for the bulk binding of paper and board. The possibility of using AKD binders on paper or board surfaces is presented. In this case partially cationic AKD binders may be applied. When opt...

  12. Mechanically activated fly ash as a high performance binder for civil engineering

    International Nuclear Information System (INIS)

    Rieger, D; Kullová, L; Čekalová, M; Novotný, P; Pola, M

    2017-01-01

    This study is aimed for investigation of fly ash binder with suitable properties for civil engineering needs. The fly ash from Czech brown coal power plant Prunerov II was used and mechanically activated to achieve suitable particle size for alkaline activation of hardening process. This process is driven by dissolution of aluminosilicate content of fly ash and by subsequent development of inorganic polymeric network called geopolymer. Hardening kinetics at 25 and 30 °C were measured by strain controlled small amplitude oscillatory rheometry with strain of 0.01 % and microstructure of hardened binder was evaluated by scanning electron microscopy. Strength development of hardened binder was investigated according to compressional and flexural strength for a period of 180 days. Our investigation finds out, that mechanically activated fly ash can be comparable to metakaolin geopolymers, according to setting time and mechanical parameters even at room temperature curing. Moreover, on the bases of long time strength development, achieved compressional strength of 134.5 after 180 days is comparable to performance of high grade Portland cement concretes. (paper)

  13. MODIFIED GYPSUM BINDER

    Directory of Open Access Journals (Sweden)

    KONDRATEVA N. V.

    2017-02-01

    Full Text Available Summary. Statement of the problem. A disadvantage of the gypsum binder is the limited water resistance of products that historically led to the use of gypsum products mostly for internal construction and finishing works. To regulate the process of hydration and structure formation of the use of chemical additives that are introduced with the mixing water or in the production of the binder. As a rule, substances that increase the solubility of the gypsum binder referred to as the hardening accelerator, and substances which retard the solubility of the inhibitors of hardening of the mixture. Most accelerators and retarders hardening affect adversely on the final strength of the mixture. More effective impact on gypsum binder additives have plasticizers. The purpose of the article. Getting gypsum binder modified with the aim of improving its water resistance and improvement of some technological factors (the time of hardening, water gypsum ratio, etc. would reduce its shortcomings and expand the scope of application of the binder. Conclusion. The result of the research reviewed changes in the basic properties of the gypsum binder with the introduction of additives, plasticizers, and selected the most effective supplements to significantly reduce water gypsum ratio, to improve strength properties and to obtain gypsum binder more dense structure.

  14. Interactions of ceramic, metallic and polymeric filters with gaseous contaminants

    International Nuclear Information System (INIS)

    Haider, A.M.; Ma, Ce; Shadman, Farhang

    1993-01-01

    Outgassing characteristics of ceramic, metallic, and polymeric fitters for H 2 O, O 2 , CO 2 , and CH 4 were explored using APIMS in this study. The outgassing data has been normalized with respect to the parameters that varied from one filter to the other. Hydrocarbon outgassing is also explored both at room temperature from freshly installed filters as well as at elevated temperatures. Polymeric filters appeared to be more transparent but did show hydrocarbon outgassing when heated to 50 C

  15. The emissions of monoaromatic hydrocarbons from small polymeric toys placed in chocolate food products.

    Science.gov (United States)

    Marć, Mariusz; Formela, Krzysztof; Klein, Marek; Namieśnik, Jacek; Zabiegała, Bożena

    2015-10-15

    The article presents findings on the emissions of selected monoaromatic hydrocarbons from children's toys placed in chocolate food products. The emission test system involved the application of a new type of microscale stationary emission chamber, μ-CTE™ 250. In order to determine the type of the applied polymer in the manufacture of the tested toys, Fourier transform infrared spectroscopy and thermogravimetric analysis coupled with differential scanning calorimetry were used. It was found that the tested toy components or the whole toys (figurines) are made of two main types of polymers: polyamide and acrylonitrile-butadiene-styrene copolymer. Total number of studied small polymeric toys was 52. The average emissions of selected monoaromatic hydrocarbons from studied toys made of polyamide were as follows: benzene: 0.45 ± 0.33 ng/g; toluene: 3.3 ± 2.6 ng/g; ethylbenzene: 1.4 ± 1.4 ng/g; p,m-xylene: 2.5 ± 4.5 ng/g; and styrene: 8.2 ± 9.9 ng/g. In the case of studied toys made of acrylonitrile-butadiene-styrene copolymer the average emissions of benzene, toluene, ethylbeznene, p,m-xylene and styrene were: 0.31 ± 0.29 ng/g; 2.5 ± 1.4 ng/g; 4.6 ± 8.9 ng/g; 1.4 ± 1.1 ng/g; and 36 ± 44 ng/g, respectively. Copyright © 2015. Published by Elsevier B.V.

  16. Preliminary characterization of propellants based on p(GA/BAMO) and pAMMO binders

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Ugo; Polacco, Giovanni [Department of Chemical Engineering, University of Pisa (Italy); Keicher, Thomas [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal (Germany); Massimi, Roberto [AVIO S.p.A., Roma (Italy)

    2009-10-15

    In previous papers, the synthesis and characterization of OH-terminated glycidyl azide-r-(3,3-bis(azidomethyl)oxetane) copolymers (GA/BAMO) and poly-3-azidomethyl-3-methyl oxetane (pAMMO) by azidation of their respective polymeric substrates were described. The main objective was the preparation of amorphous azido-polymers, as substitutes of hydroxy-terminated polybutadiene (HTPB) in new formulations of energetic propellants. Here, the subsequent characterization of both the binders is presented. First of all, several isocyanates were checked in order to optimize the curing reaction, and then two small-scale formulations of a propellant, based on aluminium and ammonium perchlorate, were prepared and characterized. Finally, the mechanical properties and burning rate were compared to those of a similar propellant based on HTPB as binder. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization.

    Science.gov (United States)

    Fujibayashi, Teruhisa; Okubo, Masayoshi

    2007-07-17

    Micron-sized, monodisperse composite polymer particles having "disc-like" and "polyhedral" shapes were prepared by seeded dispersion polymerization of 2-ethylhexylmethacrylate (EHMA) with 2.67-mum-sized polystyrene (PS) seed particles in methanol/water media in the presence of droplets of various saturated hydrocarbons and evaporation of the hydrocarbon after the polymerization. Such nonspherical shapes were based on the volume reduction due to the evaporation. The primary factors influencing the particle shape seemed to be the absorption rate of the hydrocarbon into the resulting PS/poly(EHMA)/hydrocarbon composite particles during the polymerization, which affected the viscosities and the volumes of the PS and poly(EHMA) phases. It was found that the morphological development during the polymerization was retarded at "hamburger-like" morphology, which is a precursor of the disc-like particle, although this morphology is a thermodynamically metastable state.

  18. Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping; Schwarz, Ashleigh M.; Darsell, Jens T.; Henderson, Wesley A.; Tomalia, Donald A.; Liu, Jun; Zhang, Ji-Guang; Xiao, Jie

    2016-01-01

    Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfide shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).

  19. Aging of Rejuvenated Asphalt Binders

    Directory of Open Access Journals (Sweden)

    Mojtaba Mohammadafzali

    2017-01-01

    Full Text Available An important concern that limits the RAP content in asphalt mixtures is the fact that the aged binder that is present in the RAP can cause premature cracking. Rejuvenators are frequently added to high RAP mixtures to enhance the properties of the binder. There is no existing method to predict the longevity of a rejuvenated asphalt. This study investigated the aging of rejuvenated binders and compared their durability with that of virgin asphalt. Various samples with different types and proportions of RAP, virgin binder, and rejuvenator were aged by RTFO and three cycles of PAV. DSR and BBR tests were conducted to examine the high-temperature and low-temperature rheological properties of binders. Results indicated that the type and dosage of the rejuvenator have a great influence on the aging rate and durability of the binder. Some rejuvenators make the binder age slower, while others accelerate aging. These observations confirm the importance of evaluating the long-term aging of recycled binders. For this purpose, critical PAV time was proposed as a measure of binder’s longevity.

  20. Alkali-activated binders: a review : part 2. about materials and binders manufacture

    OpenAIRE

    Torgal, Fernando Pacheco; Gomes, J. P. Castro; Jalali, Said

    2008-01-01

    This paper summarizes current knowledge about alkali-activated binders, by reviewing previously published work. As it is shown in Part 1, alkali-activated binders have emerged as an alternative to (ordinary Portland cement) OPC binders, which seem to have superior durability and environmental impact. The subjects of Part 2 of this paper are prime materials, alkaline activators, additives, curing type and constituents mixing order. Practical problems and theoretical questions are discussed. To...

  1. Determination and theoretical analysis of supercritical fluid chromatographic retention of polycyclic aromatic hydrocarbons in a polymeric smectic phase

    International Nuclear Information System (INIS)

    Chao Yan; Martire, D.E.

    1992-01-01

    A mean-field lattice model is used to describe the partitioning of blocklike molecules between an isotropic mobile phase and an anisotropic stationary phase in chromatography by applying it to supercritical fluid retention of polycyclic aromatic hydrocarbons in a polymeric smectic phase. This concludes that the logarithm of the capacity factor (1) increases linearly with increasing reciprocal temperature, (2) decreases with increasing mobile phase density more rapidly for solute molecules with a relatively larger contact area with the mobile phase, and (3) is a linear function of the minimum area. The van't Hoff plot slope is also determined to be more negative for solute molecules with a relatively larger ratio of contact area with the stationary phase versus the mobile phase. 18 refs., 9 figs., 5 tabs

  2. Advances in alternative cementitious binders

    International Nuclear Information System (INIS)

    Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H.

    2011-01-01

    There is a burgeoning interest in the development, characterization, and implementation of alternatives to Portland cement as a binder in concrete. The construction materials industry is under increasing pressure to reduce the energy used in production of Portland cement clinker and the associated greenhouse gas emissions. Further, Portland cement is not the ideal binder for all construction applications, as it suffers from durability problems in particularly aggressive environments. Several alternative binders have been available for almost as long as Portland cement, yet have not been extensively used, and new ones are being developed. In this paper, four promising binders available as alternatives to Portland cement are discussed, namely calcium aluminate cement, calcium sulfoaluminate cement, alkali-activated binders, and supersulfated cements. The history of the binders, their compositions and reaction mechanisms, benefits and drawbacks, unanswered questions, and primary challenges are described.

  3. Twin screw wet granulation: Binder delivery.

    Science.gov (United States)

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration. Copyright © 2015. Published by Elsevier B.V.

  4. Insight into capacitive performance of polyaniline/graphene oxide composites with ecofriendly binder

    Science.gov (United States)

    Bilal, Salma; Fahim, Muhammad; Firdous, Irum; Ali Shah, Anwar-ul-Haq

    2018-03-01

    The behaviour of gold electrode modified with polyaniline/graphene oxide composites (PGO) was studied for electrochemical and charge storage properties in aqueous acidic media. The surface of gold electrode was modified with aqueous slurry of PGO by using Carboxymethyl cellulose (CMC) as binder. The intercalation of polyaniline in the GO layers, synthesized by in situ polymerization was confirmed by scanning electron microscopy (SEM). The electrochemical behaviour and charge storing properties were investigated using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS). A high specific capacitance of 1721 F g-1 was obtained for PGO with 69.8% retention of capacitance even after 1000 voltammetric cycles in the potential range of 0-0.9 V at 20 mV s-1. EIS indicated low charge transfer resistance (Rct) and solution resistance (Rs) values of 0.51 Ω and 0.07 Ω, respectively. This good performance of PGO coated electrode is attributed to the use of CMC binder which generate a high electrode/ electrolyte contact area and short path lengths for electronic transport and electrolyte ion.

  5. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders

    Directory of Open Access Journals (Sweden)

    Amir Mostafaei

    2017-02-01

    Full Text Available Binder jet printing (BJP is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016 [1–3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017 [4].

  6. Lectin binders

    International Nuclear Information System (INIS)

    Rudiger, H.; Gebauer, G.; Gansera, R.; Schurz, H.; Schimpl, A.

    1982-01-01

    Lectins are widely distributed in the plant kingdom, many of them being well characterized in their chemical structure and the effects they have on alien biological systems such as erythrocytes or lymphocytes. The biological function of plant lectins remains speculative. We therefore inspected plant extracts from components which might bind specifically to the lectin from the respective plant. Single proteins (lectin binders) could be isolated from each plant extract. The interaction of these proteins with lectins was demonstrated and qualified by several methods. Similar to the lectins, the lectin binders are localized in the cytoplasm in contrast to them, however, they persist during germination and plant growth. Their precise role in the plant is not known, but they are likely to be associated with lectins not only in vitro but also in vivo. They also interact with alien cells, and are able to stimulate mitosis in murine lymphocytes. Some lectin binders act specifically on B lymphocytes, leaving T cells uninfluenced

  7. STIR: Redox-Switchable Olefin Polymerization Catalysis: Electronically Tunable Ligands for Controlled Polymer Synthesis

    Science.gov (United States)

    2013-03-28

    production of polyethylene (PE) and polypropylene (PP) topped 53 billion pounds in 2011.1 This extreme demand has ensured that olefin polymerization...is an ideal starting monomer as it is a liquid at room temperature facilitating rapid screening and data collection without the need for cumbersome...elastomers, binders, thermoplastic elastomers, rheology modifiers, permeation selective membranes, and high strength, light-weight structural materials

  8. Observation of asphalt binder microstructure with ESEM.

    Science.gov (United States)

    Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S

    2017-09-01

    The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. Production and performance of desulfurized rubber asphalt binder

    Directory of Open Access Journals (Sweden)

    Yanping Sheng

    2017-05-01

    Full Text Available Asphalt rubber binder typically exhibits disadvantages like segregation and high viscosity; however, this can be improved by the incorporation of desulfurized rubber powder. This study examined the swelling principle of desulfurized rubber asphalt (DRA. In addition, it evaluated the performance of DRA fabricated with various rubber powder contents under different shear conditions and development time. Superpave binders tests, including Brookfield viscosity, dynamic shear rheometer (DSR and bending beam rheometer (BBR tests, were applied on three control binders (i.e., neat, 20 mesh asphalt rubber binder, 40 mesh asphalt rubber binder and a DRA binder. Binder testing results indicated that rubber powder swelled into the base binder and resulted in enhanced stability. Optimum performance of the DRA binder was achieved by adding 20% (by weight of rubber powder into the base binder at shear rate, shear temperature, shear time and development time of 7000 r/min, 170 °C, 60 min and 45 min, respectively. Modified ranges of production conditions were also provided to widen the application of DRA in field construction. It appeared that DRA binder benefited from the recovered plasticity and viscosity of the rubber and consequently, exhibited superior performance over the neat and conventional asphalt rubber binders. Preliminary mixture evaluation was also conducted and the DRA binder was found to significantly improve the mixture resistance to permanent deformation and water damage. Overall, the DAR binder is encouraged to be used as a modified binder for flexible pavements. Keywords: Desulfurized rubber asphalt, Swelling model, Production process, Asphalt performance, Rubber asphalt

  10. Yttria hydroxy-salt binders

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.

    1978-01-01

    Binder phase (primarily chloride or nitrate) formation was examined in YX 3 --NaOH--H 2 O, Y 2 O 3 --acid--H 2 O, and Y 2 O 3 --salt--H 2 O systems. The cementitious phase consisted mostly of plate- (or needle-) shaped hydroxy salts of the general formula Y 2 (OH)/sub 6-m/X/sub m/ nH 2 O, where m and n normally equal one. These binders were examined by x-ray diffraction and thermal analysis techniques. Nitrate binders decompose to Y 2 O 3 by 600 0 C, whereas chloride binders form oxychlorides that sublime or convert to Y 2 O 3 after oxygen replacement of chlorine (in air) at > 1000 0 C. Although nitric and hydrochloric acid solutions form porous ( 2 O 3 powder, salt solutions (i.e., NH 4 NO 3 , Mg(NO 3 ) 2 , NH 4 Cl, and YCl 3 approx. = 6H 2 O) slow the reaction considerably (48 h to 4 weeks), allowing 70- to 80%-dense cements to form. The effects of formation conditions on physical properties of binders were studied. Examination of scandium and lanthanide oxides showed that several behave in the same way as yttria

  11. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoqiang, E-mail: lxq_suse@sina.com [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); Hao, Junying, E-mail: jyhao@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xie, Yuntao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-08-30

    Highlights: • Evolution of nanostructure and properties of the polymeric amorphous carbon films were firstly studied. • Si doping enhanced polymerization of the hydrocarbon chains and Al doping resulted in increase in the ordered carbon clusters of polymeric amorphous carbon films. • Soft polymeric amorphous carbon films exhibited an unconventional frictional behaviors with a superior wear resistance. • The mechanical and vacuum tribological properties of the polymeric amorphous carbon films were significantly improved by Si and Al co-doping. - Abstract: Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  12. Heat-resistant inorganic binders.

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich,

    2017-04-01

    Full Text Available The authors consider some aspects of production of inorganic heat-resistant composite materials in which new classes of inorganic binders - the basic salts of various metals – are applied. The possibility to use hydroxochlorides and hydroxonitrates of aluminum, zirconium, chromium and a number of other metals as the binder has been shown. The main products of the thermal decomposition of all types of binders discussed in this paper are nano-dispersed highly refractory oxides. Increased pressure in the manufacture of these materials shifts the position of the minimum of the dependence «production strength – production temperature» in the direction of low temperatures. This effect is caused by decreased film thickness of the binder located between filler particles and hence by increased rate of transfer of the matter to the interface and by facilitated sintering process. Materials based on the systems containing chromium and some other elements in transitional oxidation states are colour. For this reason, they have the worst thermal conductivity under the same heat resistance compared to colorless materials.

  13. Seal coat binder performance specifications.

    Science.gov (United States)

    2013-11-01

    Need to improve seal coat binder specs: replace empirical tests (penetration, ductility) with : performance-related tests applicable to both : unmodified and modified binders; consider temperatures that cover entire in service : range that are tied t...

  14. Polymeric Gas-Separation Membranes for Petroleum Refining

    Directory of Open Access Journals (Sweden)

    Yousef Alqaheem

    2017-01-01

    Full Text Available Polymeric gas-separation membranes were commercialized 30 years ago. The interest on these systems is increasing because of the simplicity of concept and low-energy consumption. In the refinery, gas separation is needed in many processes such as natural gas treatment, carbon dioxide capture, hydrogen purification, and hydrocarbons separations. In these processes, the membranes have proven to be a potential candidate to replace the current conventional methods of amine scrubbing, pressure swing adsorption, and cryogenic distillation. In this paper, applications of polymeric membranes in the refinery are discussed by reviewing current materials and commercialized units. Economical evaluation of these membranes in comparison to traditional processes is also indicated.

  15. Investigation of the ageing effects on phenol-urea-formaldehyde binder and alkanol amine-acid anhydride binder coated mineral fibres

    DEFF Research Database (Denmark)

    Zafar, Ashar; Schjødt-Thomsen, Jan; Sodhi, R.

    2013-01-01

    -ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to identify the chemical changes occurring in the PUF binder coated mineral fibres and alkanol amine-acid anhydride binder coated mineral fibres during that ageing. The samples were aged in a climate......Phenol-Urea-Formaldehyde (PUF) binder coated mineral fibres' mechanical properties have been observed to degrade during ageing at elevated temperatures and humidity, while alkanol amine-acid anhydride binder based mineral fibres exhibited better ageing properties for same duration of ageing. X...... chamber for 7 days at 70 °C and 95% relative humidity. In the case of the PUF binder coated fibres, quantitative XPS measurements showed some significant changes in the atomic composition of the PUF binder coated mineral fibres after ageing, including decreased urea and carbonyl groups concentrations...

  16. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases.

    Science.gov (United States)

    Malykh, O V; Golub, A Yu; Teplyakov, V V

    2011-05-11

    Membrane gas separation technologies (air separation, hydrogen recovery from dehydrogenation processes, etc.) use traditionally the glassy polymer membranes with dominating permeability of "small" gas molecules. For this purposes the membranes based on the low free volume glassy polymers (e.g., polysulfone, tetrabromopolycarbonate and polyimides) are used. On the other hand, an application of membrane methods for VOCs and some toxic gas recovery from air, separation of the lower hydrocarbons containing mixtures (in petrochemistry and oil refining) needs the membranes with preferable penetration of components with relatively larger molecular sizes. In general, this kind of permeability is characterized for rubbers and for the high free volume glassy polymers. Data files accumulated (more than 1500 polymeric materials) represent the region of parameters "inside" of these "boundaries." Two main approaches to the prediction of gas permeability of polymers are considered in this paper: (1) the statistical treatment of published transport parameters of polymers and (2) the prediction using model of ≪diffusion jump≫ with consideration of the key properties of the diffusing molecule and polymeric matrix. In the frames of (1) the paper presents N-dimensional methods of the gas permeability estimation of polymers using the correlations "selectivity/permeability." It is found that the optimal accuracy of prediction is provided at n=4. In the frames of the solution-diffusion mechanism (2) the key properties include the effective molecular cross-section of penetrating species to be responsible for molecular transportation in polymeric matrix and the well known force constant (ε/k)(eff i) of {6-12} potential for gas-gas interaction. Set of corrected effective molecular cross-section of penetrant including noble gases (He, Ne, Ar, Kr, Xe), permanent gases (H(2), O(2), N(2), CO), ballast and toxic gases (CO(2), NO(,) NO(2), SO(2), H(2)S) and linear lower hydrocarbons (CH(4

  17. Testing of Binders Toxicological Effects

    Science.gov (United States)

    Strokova, V.; Nelyubova, V.; Rykunova, M.

    2017-11-01

    The article presents the results of a study of the toxicological effect of binders with different compositions on the vital activity of plant and animal test-objects. The analysis of the effect on plant cultures was made on the basis of the phytotesting data. The study of the effect of binders on objects of animal origin was carried out using the method of short-term testing. Based on the data obtained, binders are ranked according to the degree of increase in the toxic effect: Gypsum → Portland cement → Slag Portland cement. Regardless of the test-object type, the influence of binders is due to the release of various elements (calcium ions or heavy metals) into the solution. In case of plant cultures, the saturation of the solution with elements has a positive effect (there is no inhibitory effect), and in case of animal specimens - an increase in the toxic effect.

  18. Radiosotopic assay and binder therefor

    International Nuclear Information System (INIS)

    Caston, J.D.; Kamen, B.A.

    1976-01-01

    A rapid and less costly radioisotopic assay for measuring the concentration of folate in blood serum is described. This procedure utilizes 3 H-pteroylmonoglutamate, unlabeled 5-methyltetrahydrofolic acid, and a partially purified folate binder, such as for example a folate binder extracted from hog kidney. The procedure involves radioisotopically relating the bound amounts of a labeled folate and a known folate at various concentrations of the known folate in a system containing a predetermined amount of the labeled folate, a predetermined amount of the binder factor for the folates, and a predetermined amount of defolated test serum. 16 claims, 8 drawing figures

  19. Fabrication of Si negative electrodes for Li-ion batteries (LIBs) using cross-linked polymer binders.

    Science.gov (United States)

    Jang, Suk-Yong; Han, Sien-Ho

    2016-12-19

    Currently, Si as an active material for LIBs has been attracting much attention due to its high theoretical specific capacity (3572 mAh g -1 ). However, a disadvantage when using a Si negative electrode for LIBs is the abrupt drop of its capabilities during the cycling process. Therefore, there have been a few studies of polymers such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR) and polyacrylic acid (PAA) given that the robust structure of a polymeric binder to LIBs anodes is a promising means by which to enhance the performance of high-capacity anodes. These studies essentially focused mainly on modifying of the linear-polymer component or on copolymers dissolved in solvents. Cross-linking polymers as a binder may be preferred due to their good scratch resistance, excellent chemical resistance and high levels of adhesion and resilience. However, because these types of polymers (with a rigid structure and cross-linking points) are also insoluble in general organic solvents, applying these types in this capacity is virtually impossible.

  20. Tröger’s Base Ladder Polymer for Membrane-Based Hydrocarbon Separation

    KAUST Repository

    Alhazmi, Abdulrahman

    2017-01-01

    The use of polymeric membranes for natural gas separation has rapidly increased during the past three decades, particularly for carbon dioxide separation from natural gas. Another valuable application is the separation of heavy hydrocarbons from

  1. UJI FISIK PAKAN IKAN YANG MENGGUNAKAN BINDER TEPUNG GAPLEK PHYSICAL TEST OF FISH FEED USING CASSAVA FLOUR BINDER

    Directory of Open Access Journals (Sweden)

    Dini Siswani Mulia

    2017-03-01

    Full Text Available Pakan ikan dibuat selain memiliki kandungan nutrisi yang sesuai dengan kebutuhan ikan budidaya, juga secara fisik harus kompak dan stabil di dalam air. Kelemahan yang sering terjadi, sebagian besar kandungan nutrisi sudah terpenuhi tetapi pakan mudah tenggelam di dalam air dan cepat terurai sebelum semuanya dimakan ikan. Langkah strategis adalah menambahkan binder (bahan perekat dalam pembuatan pakan ikan agar bahan pakan tercampur dengan baik, kompak, serta memiliki daya apung yang baik pula. Salah satu bahan yang berpotensi sebagai binder pakan ikan adalah tepung gaplek. Penelitian ini bertujuan untuk mengkaji uji fisik pakan ikan yang menggunakan binder tepung gaplek. Metode penelitian menggunakan metode eksperimen dengan rancangan acak lengkap (RAL 4 perlakuan dan 4 kali ulangan, yaitu P0 : pakan komersial (kontrol; P1 : pakan dengan binder tepung gaplek 5 %; P2 : pakan dengan binder tepung gaplek 7,5 %; dan P3 : pakan dengan binder tepung gaplek 10%. Bahan baku pakan adalah tepung bulu ayam yang difermentasi dengan Bacillus licheniformis B2560, ampas tahu yang difermentasi dengan Aspergillus niger, dan tepung ikan rucah. Parameter yang diamati adalah uji fisik pakan ikan meliputi daya apung, tingkat kekerasan, tingkat homogenitas, dan kecepatan pecah pakan ikan serta sebagai data pendukung adalah kadar protein dan kadar air pakan ikan. Parameter uji fisik pakan ikan dianalisis dengan menggunakan Analysis of Variance (ANOVA dan Duncan Multiple Range Test (DMRT dengan taraf uji 5%, sedangkan data kadar protein dan kadar air dianalisis secara deskriptif. Hasil penelitian menunjukkan bahwa perlakuan pemberian binder tepung gaplek berpengaruh nyata terhadap hasil uji fisik pakan ikan. Perlakuan dengan binder tepung gaplek dengan konsentrasi 10% memiliki kualitas pakan yang paling baik dan mampu menyamai kualitas pakan komersial. Kadar protein yang dihasilkan pakan uji dapat memenuhi kriteria kebutuhan nutrisi pakan yang berkualitas, yaitu

  2. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  3. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Hiep Dinh Nguyen

    2016-10-01

    Full Text Available A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA were polymerized using an immobilized Candida antarctica lipase B (CALB and the potential for an enzymatic synthesis of alkyds was investigated. The developed method enables the use of both glycerol and also pentaerythritol (for the first time as the alcohol source and was found to be very robust. This allows simple variations in the molar mass and structure of the polyester without premature gelation, thus enabling easy tailoring of the branched polyester structure. The postpolymerization crosslinking of the polyesters illustrates their potential as binders in alkyds. The formed films had good UV stability, very high water contact angles of up to 141° and a glass transition temperature that could be controlled through the feed composition.

  4. Fugitive binder for nuclear fuel materials

    International Nuclear Information System (INIS)

    Gallivan, T.J.

    1980-01-01

    A compound consisting of ammonium cations and carbonate, bicarbonate, or carbamate anions, or a mixture of such compounds, is useful as a binder for uranium dioxide fuel pellets for which it is desired to maintain a certain degree of porosity, uniformity of pore size, a lack of interconnections between the pores, and the shape or configuration of the base material particles in the final article after sintering. Upon heating, these binders decompose into gases and leave substantially no impurities. A process for sintering green nuclear fuel pellets using these binders is provided. (LL)

  5. Reduced Graphene Oxide-Hybridized Polymeric High-Internal Phase Emulsions for Highly Efficient Removal of Polycyclic Aromatic Hydrocarbons from Water Matrix.

    Science.gov (United States)

    Huang, Yipeng; Zhang, Wenjuan; Ruan, Guihua; Li, Xianxian; Cong, Yongzheng; Du, Fuyou; Li, Jianping

    2018-03-27

    Reduced graphene oxide (RGO)-hybridized polymeric high-internal phase emulsions (RGO/polyHIPEs) with an open-cell structure and hydrophobicity have been successfully prepared using 2-ethylhexyl acrylate and ethylene glycol dimethacrylate as the monomer and the cross-linker, respectively. The adsorption mechanism and performance of this RGO/polyHIPEs to polycyclic aromatic hydrocarbons (PAHs) were investigated. Adsorption isotherms of PAHs on RGO/polyHIPEs show that the saturated adsorption capacity is 47.5 mg/g and the equilibrium time is 8 h. Cycling tests show that the adsorption capacity of RGO/polyHIPEs remains stable in 10 adsorption-desorption cycles without observable structure change in RGO/polyHIPEs. Moreover, the PAH residues in water samples after being purified by RGO/polyHIPEs are lower than the limit values in drinking water set by the European Food Safety Authority. These results demonstrate that the RGO/polyHIPEs have great potentiality in PAH removal and water purification.

  6. A combined approach for high-performance Li–O2 batteries: A binder-free carbon electrode and atomic layer deposition of RuO2 as an inhibitor–promoter

    Directory of Open Access Journals (Sweden)

    Hyun-Seop Shin

    2018-04-01

    Full Text Available A rechargeable lithium–oxygen (Li–O2 battery is considered as a promising technology for electrochemical energy storage systems because its theoretical energy density is much higher than those of state-of-the-art Li-ion batteries. The cathode (positive electrode for Li–O2 batteries is made of carbon and polymeric binders; however, these constituents undergo parasitic decomposition reactions during battery operation, which in turn causes considerable performance degradation. Therefore, the rational design of the cathode is necessary for building robust and high-performance Li–O2 batteries. Here, a binder-free carbon nanotube (CNT electrode surface-modified by atomic layer deposition (ALD of dual acting RuO2 as an inhibitor–promoter is proposed for rechargeable Li–O2 batteries. RuO2 nanoparticles formed directly on the binder-free CNT electrode by ALD play a dual role to inhibit carbon decomposition and to promote Li2O2 decomposition. The binder-free RuO2/CNT cathode with the unique architecture shows outstanding electrochemical performance as characterized by small voltage gaps (∼0.9 V as well as excellent cyclability without any signs of capacity decay over 80 cycles.

  7. A combined approach for high-performance Li-O2 batteries: A binder-free carbon electrode and atomic layer deposition of RuO2 as an inhibitor-promoter

    Science.gov (United States)

    Shin, Hyun-Seop; Seo, Gi Won; Kwon, Kyoungwoo; Jung, Kyu-Nam; Lee, Sang Ick; Choi, Eunsoo; Kim, Hansung; Hwang, Jin-Ha; Lee, Jong-Won

    2018-04-01

    A rechargeable lithium-oxygen (Li-O2) battery is considered as a promising technology for electrochemical energy storage systems because its theoretical energy density is much higher than those of state-of-the-art Li-ion batteries. The cathode (positive electrode) for Li-O2 batteries is made of carbon and polymeric binders; however, these constituents undergo parasitic decomposition reactions during battery operation, which in turn causes considerable performance degradation. Therefore, the rational design of the cathode is necessary for building robust and high-performance Li-O2 batteries. Here, a binder-free carbon nanotube (CNT) electrode surface-modified by atomic layer deposition (ALD) of dual acting RuO2 as an inhibitor-promoter is proposed for rechargeable Li-O2 batteries. RuO2 nanoparticles formed directly on the binder-free CNT electrode by ALD play a dual role to inhibit carbon decomposition and to promote Li2O2 decomposition. The binder-free RuO2/CNT cathode with the unique architecture shows outstanding electrochemical performance as characterized by small voltage gaps (˜0.9 V) as well as excellent cyclability without any signs of capacity decay over 80 cycles.

  8. Effect of heat treatment temperature on binder thermal conductivities

    International Nuclear Information System (INIS)

    Wagner, P.

    1975-12-01

    The effect of heat treatment on the thermal conductivities of a pitch and a polyfurfuryl alcohol binder residue was investigated. Graphites specially prepared with these two binders were used for the experiments. Measured thermal conductivities were treated in terms of a two-component system, and the binder thermal conductivities were calculated. Both binder residues showed increased thermal conductivity with increased heat treatment temperature

  9. Mechanical Behaviour of Soil Improved by Alkali Activated Binders

    Directory of Open Access Journals (Sweden)

    Enza Vitale

    2017-11-01

    Full Text Available The use of alkali activated binders to improve engineering properties of clayey soils is a novel solution, and an alternative to the widely diffused improvement based on the use of traditional binders such as lime and cement. In the paper the alkaline activation of two fly ashes, by-products of coal combustion thermoelectric power plants, has been presented. These alkali activated binders have been mixed with a clayey soil for evaluating the improvement of its mechanical behaviour. One-dimensional compression tests on raw and treated samples have been performed with reference to the effects induced by type of binder, binder contents and curing time. The experimental evidences at volume scale of the treated samples have been directly linked to the chemo-physical evolution of the binders, investigated over curing time by means of X Ray Diffraction. Test results showed a high reactivity of the alkali activated binders promoting the formation of new mineralogical phases responsible for the mechanical improvement of treated soil. The efficiency of alkali activated binders soil treatment has been highlighted by comparison with mechanical performance induced by Portland cement.

  10. Sol-gel additive for systems with inorganic binders

    International Nuclear Information System (INIS)

    Akstinat, M.; Antenen, D.; Suter, W.

    1996-01-01

    A sol-gel additive for inorganic binder systems and sol-gel process for producing air-placed concrete and mortar by using such sol-gel additives are disclosed. Sol-gel additives for gel-derived inorganic binder systems (for example plaster, cement, lime, special slags, etc.) marked improve the consistency of such binder systems during processing or allow their consistency to be regulated. In addition, these sol-gel additives regulate setting times and substantially improve durability (chemical resistance, reduced permeability) and the mechanical properties of the set binder system. (author)

  11. Cationic fluorinated polymer binders for microbial fuel cell cathodes

    KAUST Repository

    Chen, Guang; Wei, Bin; Logan, Bruce E.; Hickner, Michael A.

    2012-01-01

    Fluorinated quaternary ammonium-containing polymers were used as catalyst binders in microbial fuel cell (MFC) cathodes. The performance of the cathodes was examined and compared to NAFION ® and other sulfonated aromatic cathode catalyst binders using linear sweep voltammetry (LSV), impedance spectroscopy, and performance tests in single chamber air-cathode MFCs. The cathodes with quaternary ammonium functionalized fluorinated poly(arylene ether) (Q-FPAE) binders showed similar current density and charge transfer resistance (R ct) to cathodes with NAFION ® binders. Cathodes containing either of these fluorinated binders exhibited better electrochemical responses than cathodes with sulfonated or quaternary ammonium-functionalized RADEL ® poly(sulfone) (S-Radel or Q-Radel) binders. After 19 cycles (19 d), the power densities of all the MFCs declined compared to the initial cycles due to biofouling at the cathode. MFC cathodes with fluorinated polymer binders (1445 mW m -2, Q-FPAE-1.4-H; 1397 mW m -2, Q-FPAE-1.4-Cl; 1277 mW m -2, NAFION ®; and 1256 mW m -2, Q-FPAE-1.0-Cl) had better performance than those with non-fluorinated polymer binders (880 mW m -2, S-Radel; 670 mW m -2, Q-Radel). There was a 15% increase in the power density using the Q-FPAE binder with a 40% higher ion exchange capacity (Q-FPAE-1.4-H compared to Q-FPAE-1.0-Cl) after 19 cycles of operation, but there was no effect on the power production due to counter ions in the binder (Cl -vs. HCO 3 -). The highest-performance cathodes (NAFION ® and Q-FPAE binders) had the lowest charge transfer resistances (R ct) in fresh and in fouled cathodes despite the presence of thick biofilms on the surface of the electrodes. These results show that fluorinated binders may decrease the penetration of the biofilm and associated biopolymers into the cathode structure, which helps to combat MFC performance loss over time. © 2012 The Royal Society of Chemistry.

  12. RELATIONSHIP BETWEEN FOAMING BEHAVIOR AND SURFACE ENERGY OF ASPHALT BINDER

    Directory of Open Access Journals (Sweden)

    Jian-ping Xu

    2017-12-01

    Full Text Available To solve the problem of insufficiency in microscopic performance of foamed asphalt binder, surface energy theory was utilized to analyze the foaming behavior and wettability of asphalt binder. Based on the surface energy theory, the Wilhelmy plate method and universal sorption device method were employed to measure the surface energy components of asphalt binders and aggregates, respectively. Combined with the traditional evaluation indictor for foamed asphalt, the relationship between the foaming property and surface energy of asphalt binder was analyzed. According to the surface energy components, the wettability of asphalt binder to aggregate was calculated to verify the performance of foamed asphalt mixture. Results indicate that the foaming behavior of asphalt will be influenced by surface energy, which will increase with the decline of surface energy. In addition, the surface energy of asphalt binder significantly influences the wettability of asphalt binder to aggregates. Meanwhile, there is an inversely proportional relationship between surface energy of asphalt binder and wettability. Therefore, it can be demonstrated that surface energy is a good indictor which can be used to evaluate the foaming behavior of the asphalt binder. And it is suggested to choose the asphalt binder with lower surface energy in the process of design of foamed asphalt mixture.

  13. Polymeric compositions for “dry” decontamination of NPP equipment and premises

    International Nuclear Information System (INIS)

    Voronik, N.I.; Toropova, V.V.

    2015-01-01

    In JIPNR – “Sosny” NASB developed decontaminating polymeric compositions based on binder – polyvinyl alcohol solution with active additives such as nitric and borohydrofluoric acids, 1-hydroxyethylidene diphosphonic acid and its salts, detergents and fillers - natural tripoli; tripoli modified by ferrocyanides of nickel and copper; pulverized dolomite modified by manganese oxides, ferrocyanides of nickel and copper; clinoptilolite modified by iron chlorides (III) and calcium sodium phosphate and potassium ferrocyanide; hydrolytic lignin. It is shown that the developed decontaminating polymeric compositions (pastes) possess high decontaminating capacity (FD 102 – 103) and low adhesion to the surfaces of stainless and carbon steels, including painted, plastic, self-leveling floors, teflon-surface. Prolonged leaching method allowed determine the chemical resistance of “dry” decontamination wastes, strength of "1"3"7Cs and "6"0Co fixations in wastes obtained in result of using new decontamination pastes [ru

  14. Using mine waste mud to produce environmentally friendly new binders

    OpenAIRE

    Torgal, Fernando Pacheco; Gomes, J. P. Castro; Jalali, Said

    2007-01-01

    It is now accepted that new binders, such as alkali-activated binders, are needed to replace portland cement for enhanced environmental and durability performance. Alkali-activated binders have emerged as an alternative to (ordinary portland cement ) OPC binders, which seem to have superior durability and environmental impact.This paper reports results of a research project on the development of an alkali-activated binders using mineral waste mud from the Panasqueira tungsten mine in Portugal...

  15. On the microstructure of bituminous binders

    NARCIS (Netherlands)

    Fischer, H.R.; Dillingh, E.C.; Hermse, C.G.M.

    2014-01-01

    The objective of this work is to study the common features and the evolution of microstructures of bituminous binders regardless of their grade (PEN 10/20 to 160/220) and source/origin using the atomic force microscope operated in phase contrast mode. All bituminous binders show the same

  16. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 1. Backing sand with the alkaline inorganic binder RUDAL

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.

  17. Fatigue behaviour of bituminous materials : from binders to mixes

    OpenAIRE

    SOENEN, H; DE LA ROCHE, C; REDELIUS, P

    2003-01-01

    Test procedures, aiming at measuring fatigue directly on bituminous binders, are increasingly used. The purpose of this paper is to investigate the relevance of this type of binder fatigue tests and to compare the results with laboratory fatigue properties of the corresponding mixes, using one mix composition for all binders, and similar fatigue tests conditions. Eight binders were selected, derived from two crude sources, including an oxidised and two polymer modified samples. All fatigue te...

  18. Biodegradable materials as binders for IVth generation moulding sands

    OpenAIRE

    K. Major-Gabry

    2015-01-01

    This paper focuses on the possibility of using the biodegradable materials as binders (or parts of binders?compositions) for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the...

  19. The Adequacy of Phosphorus Binder Prescriptions Among American Hemodialysis Patients

    Science.gov (United States)

    Huml, Anne M.; Sullivan, Catherine M.; Leon, Janeen B.; Sehgal, Ashwini R.

    2013-01-01

    Because hemodialysis treatment has a limited ability to remove phosphorus, dialysis patients must restrict dietary phosphorus intake and use phosphorus binding medication. Among patients with restricted dietary phosphorus intake (1000 mg/d), phosphorus binders must bind about 250 mg of excess phosphorus per day and among patients with more typical phosphorus intake (1500 mg/d), binders must bind about 750 mg per day. To determine the phosphorus binding capacity of binder prescriptions among American hemodialysis patients, we undertook a cross-sectional study of a random sample of in-center chronic hemodialysis patients. We obtained data for one randomly selected patient from 244 facilities nationwide. About one-third of patients had hyperphosphatemia (serum phosphorus level > 5.5 mg/dL). Among the 224 patients prescribed binders, the mean phosphorus binding capacity was 256 mg/d (SD 143). 59% of prescriptions had insufficient binding capacity for restricted dietary phosphorus intake, and 100% had insufficient binding capacity for typical dietary phosphorus intake. Patients using two binders had a higher binding capacity than patients using one binder (451 vs. 236 mg/d, p phosphorus balance. Use of two binders results in higher binder capacity. Further work is needed to understand the impact of binder prescriptions on mineral balance and metabolism and to determine the value of substantially increasing binder prescriptions. PMID:23013171

  20. Development of a green binder system for paper products.

    Science.gov (United States)

    Flory, Ashley R; Vicuna Requesens, Deborah; Devaiah, Shivakumar P; Teoh, Keat Thomas; Mansfield, Shawn D; Hood, Elizabeth E

    2013-03-26

    It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of "green" binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found.

  1. Development of a green binder system for paper products

    Science.gov (United States)

    2013-01-01

    Background It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. Results In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. Conclusions These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of “green” binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found. PMID:23531016

  2. Alternative binder for copper concentrate briquetting

    Directory of Open Access Journals (Sweden)

    J. Łabaj

    2015-10-01

    Full Text Available In the paper, results of investigations on the use of new, alternative binder, based on technical grade glycerine and higher alcohols, for copper matte briquetting are presented. The use of alternative binder yields briquettes that show better drop and compressive strength properties compared with briquettes produced using traditional, sulphite lye binding material.

  3. Determination of volatile polycyclic aromatic hydrocarbons in waters using headspace solid-phase microextraction with a benzyl-functionalized crosslinked polymeric ionic liquid coating.

    Science.gov (United States)

    Merdivan, Melek; Pino, Verónica; Anderson, Jared L

    2017-08-01

    A benzyl-functionalized crosslinked polymeric ionic liquid (PIL), produced through the co-polymerization of the 1-vinylbenzyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (VBHDIM-NTf 2 ) ionic liquid (IL) monomer and 1,12-di(3-vinylbenzylimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide ((DVBIM) 2 C 12- 2NTf 2 ) IL crosslinker, was successfully used as a sorbent coating in headspace solid-phase microextraction (SPME) coupled to gas chromatography (GC) with flame-ionization detection (FID) to determine seven volatile polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Optimum extraction conditions for the PAHs when using the novel sorbent include an extraction temperature of 50°C, an ionic strength content adjusted with 30% (w/v) NaCl in the aqueous sample, and an extraction time of 60 min. The extraction performance of the crosslinked PIL fiber was compared to the SPME commercial coating polydimethylsiloxane fiber. The calibration ranges of the studied PAHs were linear in the range of 0.02-20 µg L -1 for the crosslinked PIL fiber. The accuracy of the proposed method was demonstrated by examining the spiked recoveries of seven PAHs which produced values ranging from 67.2% to 130% (for river- and seawater samples), and precision values lower than 9.4% for a spiked level of 1 µg L -1 , and detection limits between 0.01 and 0.04 µg L -1 , which supports the sensitivity of the method using GC-FID.

  4. Dependence of the mechanical fracture energy of the polymeric composite material from the mixture of filler fractions

    Directory of Open Access Journals (Sweden)

    E. M. Nurullaev

    2015-01-01

    Full Text Available This paper for the first time presents an equation for calculating the mechanical fracture energy of the polymeric composite material (PCM with regard to the basic formulation parameters. By means of the developed computer program the authors calculated the mechanical fracture energy of the polymer binder of the 3D cross-linked plasticized elastomer filled with multifractional silica. The solution of the integral equation was implemented using the corresponding dependence of stress on relative elongation at uniaxial tension. Engineering application of the theory was considered with respect to asphalt road covering. The authors proposed a generalized dependence of ruptural deformation of the polymer binder from the effective concentration of chemical and physical (intermolecular bonds for calculating the mechanical fracture energy of available and advanced PCMs as filled elastomers.

  5. Evaluation of wettability of binders used in moulding sands

    Directory of Open Access Journals (Sweden)

    Hutera B.

    2007-01-01

    Full Text Available Binders used in moulding sand have the differential properties. One of the main parameters influencing on moulding sand properties is wettability of the sand grain by binding material. In the article some problems concerned with wettability evaluation have been presented and the importance of this parameter for quantity description of process occurring in system: binder- sand grain has been mentioned. The procedure of wetting angle measurement and operation of prototype apparatus for wettability investigation of different binders used in moulding sand have been described, as well as the results of wetting angle measurement for different binders at different conditions. The addition of little amount of proper diluent to binder results in the state of equilibrium reached almost immediately. Such addition can also reduce the value of equilibrium contact angle. The uniform distribution of binder on the surface of the sand grains and reducing of the required mixing time can be obtained. It has also a positive effect on the moulding sand strength.

  6. Binder fraction reduction in non-ferrous metals concentrates briquetting process

    Directory of Open Access Journals (Sweden)

    M. Jodkowski

    2016-10-01

    Full Text Available The research results on a method of reducing the amount of binder applied during formation of metal concentrates are presented. Research was done on a model copper concentrate, which was mixed in assumed mass fraction with binder, as well as binder with addition of waste polyols. Such mixtures were formed and tested using static compressive strength, both immediately after forming and after the assumed seasoning times: 24, 96, 192 and 336 hours. The results confirm the possibility of binder dose lowering using high-efficiency system of binder dispersing with small addition of waste polyols and by homogeneous mixing of the binder with the material. In all examined cases increase in seasoning time influenced mechanical strength of the formed shapes advantageously.

  7. Production of jet fuel range paraffins by low temperature polymerization of gaseous light olefins using ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Peiwen; Wu, Xiaoping; Zhu, Lijuan; Jin, Feng; Liu, Junxu; Xia, Tongyan; Wang, Tiejun; Li, Quanxin

    2016-01-01

    Graphical abstract: A novel catalytic transformation of light olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. - Highlights: • A novel transformation of light olefins to jet fuel range paraffins was demonstrated. • The synthetic fuels can be produced by atmospheric olefin polymerizations. • C 8 –C 15 iso-paraffins from light olefins was achieved with a selectivity of 80.6%. - Abstract: This work demonstrated a novel catalytic transformation of gaseous olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. The production of the desired C 8 –C 15 iso-paraffins with the selectivity of 80.6 C mol% was achieved by the room-temperature polymerizations of gaseous light olefins using the [BMIM] Al 2 Cl 7 ionic liquid. The influences of the reaction conditions on the olefinic polymerizations were investigated in detail. The properties of hydrocarbons in the synthetic fuels were determined by the GC–MS analyses combined with 1 H NMR, and 13 C NMR analyses. The formation of C 8 –C 15 hydrocarbons from gaseous light olefins was illustrated by the identified products and the functional groups. This transformation potentially provides a useful avenue for the production of the most important components of iso-paraffins required in jet fuels.

  8. Modified binders on the basis of flotation tailings

    Science.gov (United States)

    Shapovalov, N. A.; Zagorodnyuk, L. Kh; Shchekina, A. Yu; Gorodov, A. I.

    2018-03-01

    The article proposes compositions of efficient modified composite binders on the basis of portland cement and flotation tailings; the new binders attain the ultimate compressive stress that is twice as high as that of the cement stone. At that, use of annually growing volume of flotation tailings in the production of the composite binder is a rational way for recycling this type of waste and allows saving the planet's natural resources.

  9. Thermo-mechanical properties improvement of asphalt binder by using methylmethacrylate/ethylene glycol dimethacrylate

    Directory of Open Access Journals (Sweden)

    A.A. Ragab

    2016-09-01

    Full Text Available Various polymer-modified asphalt compositions for paving and roofing applications are known since several years ago. The degree to which a polymer improves the asphalt’s properties depends on the compatibility of the polymer and the asphalt. Highly compatible polymers are more effective in providing property improvements. In this research, the influence of in situ polymerization of methylmethacrylate monomer with asphalt in presence of ethylene glycol dimethacrylate (EGDM as a crosslinker on the rheological and thermal properties of asphalt binder of type penetration grade 60/70 was studied. To achieve this aim, MMA/EGDM(MC in different ratios as 5, 10 and 15% (w/w were used to modify the thermo-mechanical properties of asphalt via forming chemical bond, and the changing in mechanical and thermal properties, of the mixes as well as the storage stability were studied. Also, the morphology (SEM, thermal characterization (TGA, dynamic mechanical analysis (DMA, bending and rheological tests were detected. The obtained experimental results revealed that the addition of MC causes both the rheological and thermal properties of the binder to improve and the prepared PMAs has high temperature susceptibility and low curing time. The improvement in the properties of the virgin asphalt will be effective in using this soft type in coating applications instead of highly expensive oxidized one.

  10. Properies of binder systems containing cement, fly ash, and limestone powder

    Directory of Open Access Journals (Sweden)

    Krittiya Kaewmanee

    2014-10-01

    Full Text Available Fly ash and limestone powder are two major widely available cement replacing materials in Thailand. However, the current utilization of these materials is still not optimized due to limited information on properties of multi-binder systems. This paper reports on the mechanical and durability properties of mixtures containing cement, fly ash, and limestone powder as single, binary, and ternary binder systems. The results showed that a single binder system consisting of only cement gave the best carbonation resistance. A binary binder system with fly ash exhibited superior performances in long-term compressive strength and many durability properties except carbonation and magnesium sulfate resistances, while early compressive strength of a binary binder system with limestone powder was excellent. The ternary binder system, taking the most benefit of selective cement replacing materials, yielded, though not the best, satisfactory performances in almost all properties. Thus, the optimization of binders can be achieved through a multi-binder system.

  11. Fugitive binder for nuclear fuel materials

    International Nuclear Information System (INIS)

    Gallivan, T.J.

    1977-01-01

    A process for fabricating a body of a nuclear fuel material has the steps of admixing the nuclear fuel material in powder form wih a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions, forming the resulting mixture into a green body such as by die pressing, heating the green body to decompose substantially all of the binder into gases, further heating the body to produce a sintered body, and cooling the sintered body in a controlled atmosphere. Preferred binders used in the practice of this invention include ammonium bicarbonate, ammonium carbonate, ammonium bicarbonate carbamate, ammonium sesquicarbonate, ammonium carbamate and mixtures thereof. This invention includes a composition of matter in the form of a compacted structure suitable for sintering comprising a mixture of a nuclear fuel material and a binder of a compound or its hydration products containing ammonium cations and anions selected from the group consisting of carbonate anions, bicarbonate anions, carbamate anions and mixtures of such anions. 9 claims, 4 figures

  12. Performance analysis of flexible DSSC with binder addition

    Energy Technology Data Exchange (ETDEWEB)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur, E-mail: putri.nur.anggraini@gmail.com [Research Center for Electronics and Telecommunications Indonesian Institute of Sciences (PPET-LIPI) Kampus LIPI, Jl. Sangkuriang, Bandung 40135 (Indonesia)

    2016-04-19

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO{sub 2} powder, butanol, and HCl were mixed for preparation of TiO{sub 2} paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO{sub 2} paste was deposited on ITO-PET plastic substrate with area of 1x1 cm{sup 2} by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO{sub 2} photoelectrode microstructures. Dyed TiO{sub 2} photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.

  13. Alkali-activated binders/geopolymer and an application to environmental engineering

    OpenAIRE

    Nida Chaimoon; Krit Chaimoon

    2014-01-01

    For environmental reason, new binders that can be used as Portland cement replacement materials are being needed. Recently, alkali-activated binders (AAB) and geopolymer have found increasing interest. As several research reports have showed that the two new binders are likely to have high potential to be developed and become an alternative to OPC. However, confusion in the classification of both binders is still there. This paper reviews knowledge about AAB and geopolymer including historica...

  14. The use of abdominal binders to treat over-shunting headaches.

    Science.gov (United States)

    Sklar, Frederick H; Nagy, Laszlo; Robertson, Brian D

    2012-06-01

    Headaches are common in children with shunts. Headaches associated with over-shunting are typically intermittent and tend to occur later in the day. Lying down frequently makes the headaches better. This paper examines the efficacy of using abdominal binders to treat over-shunting headaches. Over an 18-year period, the senior author monitored 1027 children with shunts. Office charts of 483 active patients were retrospectively reviewed to identify those children with headaches and, in particular, those children who were thought to have headaches as a result of over-shunting. Abdominal binders were frequently used to treat children with presumed over-shunting headaches, and these data were analyzed. Of the 483 patients undergoing chart review, 258 (53.4%) had headache. A clinical diagnosis of over-shunting was made in 103 patients (21.3% overall; 39.9% of patients with headache). In 14 patients, the headaches were very mild (1-2 on a 5-point scale) and infrequent (1 or 2 per month), and treatment with an abdominal binder was not thought indicated. Eighty-nine patients were treated with a binder, but 19 were excluded from this retrospective study for noncompliance, interruption of the binder trial, or lack of follow-up. The remaining 70 pediatric patients, who were diagnosed with over-shunting headaches and were treated with abdominal binders, were the subjects of a more detailed retrospective study. Significant headache improvement was observed in 85.8% of patients. On average, the patients wore the binders for approximately 1 month, and headache relief usually persisted even after the binders were discontinued. However, the headaches eventually did recur in many of the patients more than a year later. In these patients, reuse of the abdominal binder was successful in relieving headaches in 78.9%. The abdominal binder is an effective, noninvasive therapy to control over-shunting headaches in most children. This treatment should be tried before any surgery is

  15. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore

  16. Protein kinase activity associated with the corticosteroid binder IB

    International Nuclear Information System (INIS)

    Vujicic, M.; Djordjevic-Markovic, R.; Radic, O.; Krstic, M.; Kanazir, D.

    1997-01-01

    The physiological effects elicited by glucocorticoids are mediated via glucocorticoid receptors (GR). Analysis of specific glucocorticoid binding to radioactively labelled [ 3 H] triamcinolone acetonide in rat liver cytosol and analysis by ion exchange chromatography have revealed the presence of two distinct molecular species. The major form, designated as binder II appears to correspond to the well characterized glucocorticoid receptor by virtue of its size, charge, steroid binding characteristics and ability to bind to DNA.The second form, designated as corticosteroid binder IB, is a minor binding component in the liver. The binder IB differs from the binder II receptor by virtue of its lower molecular weight and its elution in the pre gradient of DEAE-Sephadex A-50 column which retains the un activated binder II receptor complexes. We examined the kinase activity of partially purified corticosteroid binder IB. Using (γ 3 2 P) ATP we detected kinase activity associated with the IB fraction from the rat liver. This kinase phosphorylate mixed histones and and dose not phosphorylate IB protein in vitro. The kinase activity is completely inhibited by the addition of Mg 2 + ions and is partially inhibited by the addition of Ca 2 +ions. (author)

  17. Comparative evaluation of an experimental binder in hot-mix asphalt: correlating the predicted performance of the binder with asphalt testing

    CSIR Research Space (South Africa)

    O'Connell, Johannes S

    2014-07-01

    Full Text Available The binder is an important constituent of an asphalt mix and it affects the overall performance of the mix, especially with regards to permanent deformation and fatigue cracking. The stiffest binder available from the Chevron refinery in the Western...

  18. Texas cracking performance prediction, simulation, and binder recommendation.

    Science.gov (United States)

    2014-10-01

    Recent studies show some mixes with softer binders used outside of Texas (e.g., Minnesotas Cold Weather Road Research Facility mixes) have both good rutting and cracking performance. However, the current binder performance grading (PG) system fail...

  19. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    Energy Technology Data Exchange (ETDEWEB)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  20. Effects of Fiber Finish on the Performance of Asphalt Binders and Mastics

    Directory of Open Access Journals (Sweden)

    Bradley J. Putman

    2011-01-01

    Full Text Available The objective of this study was to determine the effects of finishes applied to polyester fibers on the properties of asphalt binders and mastics. Asphalt binders were mixed with finishes that were extracted from the fibers, and mastics were also made with binder and fibers (with and without finish to isolate the effects of the finish. The results indicated that crude source plays a significant role in how the fiber finish affects the binders and mastics. Additionally different finishes had different effects on binder properties. The major finding of this study is that different polyester fibers, even from the same manufacturer, may not necessarily perform the same in an asphalt mixture. It is important to use fibers that are compatible with the particular asphalt binder that is being used because of the significance of the binder source on the interaction between the finish and the binder.

  1. Solidification of low-level wastes by inorganic binder

    International Nuclear Information System (INIS)

    Sasaki, M.T.; Shimojo, M.; Suzuki, K.; Kajikawa, A.; Karasawa, Y.

    1995-01-01

    The use of an alkali activated slag binder has been studied for solidification and stabilization of low-level wastes in nuclear power stations and spent fuel processing facilities. The activated slag effectively formed waste products having good physical properties with high waste loading for sodium sulfate, sodium nitrate, calcium pyrophosphate/phosphate and spent ion-exchange resins. Moreover, the results of the study suggest the slag has the ability to become a common inorganic binder for the solidification of various radioactive wastes. This paper also describes the fixation of radionuclides by the activated slag binder

  2. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  3. Routine Testing of Bitumen Binders

    Science.gov (United States)

    Holý, Michal; Remišová, Eva

    2017-12-01

    The quality of bituminous binders used in the construction and maintenance of road surfaces is currently assessed by empirical testing based on obtaining one value for specific boundary conditions, which were designed about 100 years ago. Basic empirical tests include the softening point and penetration, but the practice shows that these tests appear to be inadequate. The evaluation of changes of bitumen properties during the production and paving process of bituminous mixture is also important. The paper points out how the "traditional" tests as softening point and penetration and viscosity are sufficient to evaluate properties of bitumen binders.

  4. Phenomena during thermal removal of binders

    Science.gov (United States)

    Hrdina, Kenneth Edward

    The research presented herein has focused on debinding of an ethylene copolymer from a SiC based molded ceramic green body. Examination of the binder burnout process was carried out by breaking down the process into two distinct regions: those events which occur before any weight loss begins, and those events occurring during binder removal. Below the temperature of observed binder loss (175sp°C), both reversible and irreversible displacement was observed to occur. The displacement was accounted for by relaxation of molding stresses, thermal expansion of the system, and melting of the semicrystalline copolymer occurring during heating. Upon further heating the binder undergoes a two stage thermal degradation process. In the first stage, acetic acid is the only degradation product formed, as determined by GC/MS analysis. In this stage, component shrinkage persisted and it was found that one unit volume of shrinkage corresponded with one unit volume of binder removed, indicating that no porosity developed. The escaping acetic acid effluents must diffuse through liquid polymer filled porous regions to escape. The gas pressure of the acetic acid species produced in the first stage of the thermal degradation may exceed the ambient pressure promoting bubble formation. Controlling the heating rate of the specimen maintains the gas pressure below the bubbling threshold and minimizes the degradation time. Experiments have determined the kinetics of the reaction in the presence of the high surface area (10-15msp2/g) ceramic powder and then verified that acetic acid was diffusing through the polymer phase to the specimen surface where evaporation is taking place. The sorption method measured the diffusivity and activity of acetic acid within the filled ceramic system within a TGA. These data were incorporated into a Fickian type model which included the rate of generation of the diffusing species. The modeling process involved prediction of the bloating temperature as a

  5. Preparation of CaTiO3 Asymmetric Membranes Using Polyetherimide as Binder Polymer

    Directory of Open Access Journals (Sweden)

    Endang Purwanti Setyaningsih

    2016-03-01

    Full Text Available Asymmetric dense and thin membranes have been prepared from powders of perovskite oxide-type CaTiO3 without cracking by phase inversion method. Polyetherimide was used as a polymeric binder in the method. The resulting green membranes, composed of CaTiO3 powder and polyetherimide binder, were sintered at 890, 1100 or 1200 °C. The crystal phase of CaTiO3 was analyzed using X-Ray Diffraction (XRD. The XRD pattern of the synthesized CaTiO3 powder was matched with the reference indicating the formation of CaTiO3 structure. Sintering at 890 °C fails to form a strong membrane. Scanning Electron Microscope (SEM images of the membranes showed that the membrane had the asymmetric structure with dense layer on one side and porous layer on the other side. The pores in the porous layer were both finger-like and sponge-like structure. The mechanical strength of the membranes, which were determined by Vickers micro hardness method, varied from 3.5 to 25.8 Hv. The strongest membrane without any crack was resulted from sintering at 1200°C with hardness values between 19.4 and 25.8 Hv. Thermal expansion coefficients of the asymmetric membranes sintered at 1100 and 1200 °C, measured with Thermomechanical Analyzer (TMA, were 10.82 × 10-6 and 12.78 × 10-6.C-1 respectively.

  6. High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template.

    Science.gov (United States)

    Jones, Brad H; Lodge, Timothy P

    2009-02-11

    Nanoporous ceramic with a unique pore structure was derived from an all-hydrocarbon polymeric bicontinuous microemulsion (BmuE). The BmuE was designed to allow facile removal of one phase, resulting in a nanoporous polymer monolith with BmuE-like structure. The pores were filled with a commercially available, polymeric precursor to nonoxide, Si-based ceramics. Pyrolysis resulted in a monolith of nanoporous ceramic, stable to at least 1000 degrees C, with a BmuE-like pore structure. The pore structure is disordered and 3-D continuous. Microscopy and gas sorption measurements suggest a well-defined pore size distribution spanning roughly 60-100 nm, sizes previously unattainable through related techniques.

  7. Process and catalysts for hydrocarbon conversion. [high antiknock motor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1940-02-14

    High anti-knock motor fuel is produced from hydrocarbons by subjecting it at an elevated temperature to contact with a calcined mixture of hydrated silica, hydrated alumina, and hydrated zirconia, substantially free from alkali metal compounds. The catalyst may be prepared by precipitating silica gel by the acidification of an aqueous solution of an alkali metal silicate, intimately mixing hydrated alumina and hydrated zirconia therewith, drying, purifying the composite to substantially remove alkali metal compounds, again drying, forming the dried material into particles, and finally calcining. The resultant conversion products may be fractionated to produce gasoline, hydrocarbon oil above gasoling boiling point range, and a gaseous fraction of olefins which are polymerized into gasoline boiling range polymers.

  8. Practical experiences with new types of highly modified asphalt binders

    Science.gov (United States)

    Špaček, Petr; Hegr, Zdeněk; Beneš, Jan

    2017-09-01

    As a result of steadily increasing traffic load on the roads in the Czech Republic, we should be focused on the innovative technical solutions, which will lead to extending the life time of asphalt pavements. One of these ways could be the future use of bitumen with a higher degree of polymer modification. This paper discusses experience with comparison of new highly polymer modified asphalt binder type with conventional polymer modified asphalt binder and unmodified binder with penetration grade 50/70. There are compared the results of various types laboratory tests of asphalt binders, as well as the results of asphalt mixtures laboratory tests. The paper also mentions the experience with workability and compactability of asphalt mixture with highly polymer modified asphalt binder during the realization of the experimental reference road section by the Skanska company in the Czech Republic.

  9. ARBOLITCONCRETE ON SILICATESODIUM COMPOSITE BINDER AND SCRAPS OF VINE

    Directory of Open Access Journals (Sweden)

    Z. A. Manturov

    2016-01-01

    Full Text Available Aim.The results of experimental studies produce siliсatеsodium composite binder of calcareous stone sawing waste, anhydrous sodium silicate, and based on them wood concrete using as an organic filler vine cuttings for the production of heat-insulating, heat-insulating, structural and structural wall material.Methods.The main technological operations of the developed arbalitconcrete are given : preparation of a composite binder; production of organic filler from the vine; preparation of arbolit concrete mass; formation of arbolit concrete mass; low-temperature treatment (drying.Results. It is found that the composite binder derived from waste stone sawing and anhydrous sodium silicate at their joint fine grinding (Ssp = 3000 cm2 / g, acquires binding properties and with the appropriate seal and heat treatment hardens and gains strength characteristics sufficient for making arbolitconcrete using crushed vine.Conclusion. It was determined that arbolitobeton obtained on the basis of the crushed vine and silikatnatrievogo composite binder strength exceeds arbolitobetona from other types of binders and organic fillers of vegetable origin.

  10. Effect of starch binder on charcoal briquette properties

    Science.gov (United States)

    Borowski, Gabriel; Stępniewski, Witold; Wójcik-Oliveira, Katarzyna

    2017-10-01

    The paper shows the results of a study on the effect of starch binder on the mechanical, physical and burning properties of charcoal briquettes. Two types of binders were repeatedly used to make briquettes of native wheat starch and modified wheat starch, at 8% of the whole. Briquetting was performed in a roller press unit, and pillow-shaped briquettes were made. The moisture of the mixed material ranged from 28 to 32%. The product, whether the former or the latter, was characterized by very good mechanical properties and satisfactory physical properties. Moreover, the type of starch binder had no effect on toughness, calorific heating value, volatiles, fixed carbon content and ash content. However, the combustion test showed quite different burning properties. As briquettes should have short firing up time and lower smokiness, as well as high maximum temperature and long burning time, we have concluded that briquettes with native wheat starch as a binder are more appropriate for burning in the grill.

  11. Impact of non-binder ingredients and molecular weight of polymer binders on heat assisted twin screw dry granulation.

    Science.gov (United States)

    Liu, Y; Thompson, M R; O'Donnell, K P

    2018-01-30

    Two grades of commercial AFFINISOL™ HPMC HME were used as polymer binders to explore the influence of polymer viscosity and concentration on a novel heat assisted dry granulation process with a twin screw extruder. Contributions of other non-binder ingredients in the formulations were also studied for lactose, microcrystalline cellulose and an active pharmaceutical ingredient of caffeine. As sensitive indicators of processing conditions that expose the drug to high internally generated heat, dehydration of α-lactose monohydrate and polymorphic transformation of caffeine were monitored by differential scanning calorimetry (DSC) and powder X-ray diffraction (XRD). Additionally, any decomposition of caffeine was determined by high-performance liquid chromatography (HPLC). Granular samples were characterized by particle size, circularity, fracture strength and their temperature on the exit of extruder. Higher screw speed and lower feed rate were found to help particles agglomerate by allowing feed particles a greater opportunity to increase in temperature. Lower binder molecular weight and higher binder concentration enable granules to build stronger strength and thereby lead to higher particle size. This new twin screw dry granulation was demonstrated as offering advantages over conventional hot melt granulation by minimizing thermal degradation of the tested ingredients. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.; Fischer, H.B

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  13. GAP pre-polymer, as an energetic binder and high performance additive for propellants and explosives: A review

    Directory of Open Access Journals (Sweden)

    Mehmet S. Eroglu

    2017-08-01

    Full Text Available In preparation of energetic composite formulations, functionally terminated pre-polymers have been used as binder. After physically mixing the pre-polymers with oxidizing components, metallic fuel, burning rate modifier and other minor ingredients, they are cured with a suitable curing agent to provide physical and chemical stability. These pre-polymers could be functionalized with carboxyl, epoxide or hydroxyl groups at varying average chain functionalities. For carboxyl-terminated pre-polymers, an epoxy functional curing agents could be used. If the pre-polymer possesses hydroxyl groups, isocyanate functional curing agents are the most suitable curing agents in terms of easy and efficient processing. Glycidyl azide polymer (GAP is one of the well-known low-molecular weight energetic liquid pre-polymer, which was developed to use as energetic binder, high performance additive and gas generator for high performance smokeless composite propellant and explosive formulations. Linear or branched GAP can be synthesized by nucleophilic substitution reaction of corresponding poly(epichlorohydrin (PECH with sodium azide through replacement of chloromethyl groups of PECH with pendant energetic azido-methyl groups on the polyether main chain. Positive heat of formation (+957 kJ/kg enables exothermic and rapid decomposition of GAP producing fuel rich gases. Its polyether main chain provides GAP with relatively low glass transition temperature (Tg= - 48 oC and presence of hydroxyl functional groups allows it to have easy processing in curing with isocyanate curing agents to form covalently crosslinked polyurethane structure. These outstanding properties of GAP enable it to be used as energetic polymeric binder and high performance additive in preparation of energetic materials and low vulnerable explosives.

  14. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...... to various degrees. Series of grafting densities and graft lengths are prepared, and membranes are solvent cast from DMSO. The membrane properties in aqueous environments are evaluated from their water swelling behavior, and their thermal properties and stability are investigated by thermogravimetric...

  15. Screening of Low Clinker Binders, Compressive Strength and Chloride Ingress

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; De Weerdt, Klaartje; Garzón, Sergio Ferreiro

    2017-01-01

    This paper reports an initial screening of potential new binders for concrete with reduced CO2-emission. Mortars cured saturated for 90 days are compared with regard to a) compressive strength of mortars with similar water-to-binder ratio, and b) chloride ingress in similar design strength mortar...... compromising the 90 days compressive strength and resistance to chloride ingress in marine exposure by using selected alternative binders....

  16. Radiation induced solid-state polymerization of long-chain acrylates containing fluorocarbon chain

    International Nuclear Information System (INIS)

    Shibasaki, Y.; Zhu, Zhi-Qin

    1995-01-01

    γ-Ray irradiation post-polymerizations of long-chain acrylates containing fluorocarbon chain, H(CF 2 ) 10 CH 2 OCOCH=CH 2 and H(CF 2 ) 8 CH 2 OCOCH=CH 2 , were investigated and also the structures and thermal properties of comb-like polymers obtained were studied. It was found that these monomers exhibited very high polymerizability at wide temperature ranges around the melting points. Because the fluorocarbon chains are less flexible and thicker than the hydrocarbon chains, it can be expected that the aggregation force among the monomer molecules is strong and the conformational freedom of functional group for polymerization is large. According to the DSC and the X-ray diffraction measurements of the comb-like polymers obtained, the fluorocarbon chains are aggregated in a mode of hexagonal packing in the lamellar crystals. This situation can be considered as an optimum condition for the γ-ray irradiation post-polymerization. (author)

  17. The addition effects of macro and nano clay on the performance of asphalt binder

    Directory of Open Access Journals (Sweden)

    M. El-Shafie

    2012-12-01

    Full Text Available The study was carried out to explore the addition effect of macro and organically modified nanoclay on the physical and mechanical properties of asphalt binders. Both macroclay and modified nanoclay were blended in an asphalt binder in various percentages (starting from 2% to 8%. The blended asphalt binders were characterized using kinematic viscosity (C.st, softening point (°C, and penetration and compared with anunmodified binder. The tensile strength of the asphalt binders was also tested as a function of clay types and content%. The results of the study indicated an increase in softening point; kinematics viscosity and decrease in binder penetration. The tensile strength of modified clay binders was enhanced at all percentages by a comparison with both macroclay and unmodified binders. The best improvements in the modified binders were obtained with 6% nanoclay.

  18. Performance Modification of Asphalt Binders using Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    H. I. Al-Abdul Wahhab

    2004-12-01

    Full Text Available There is a need to improve the performance of asphalt binders to minimize stress cracking that occurs at low temperatures and plastic deformation at high temperatures. Importation of used asphalt-polymers from abroad, leads to an increase in the total construction cost as compared to the cost if the used polymers were of local origin. The main objective of this research was to modify locally produced asphalt. Ten polymers were identified as potential asphalt modifiers based on their physical properties and chemical composition. After preliminary laboratory evaluation for the melting point of these polymers, five polymers were selected for local asphalt modification. In the initial stage, required mixing time was decided based on the relation between shear loss modulus and mixing time .The optimum polymer content was selected based on Superpave binder performance grade specifications.The suitability of improvement was verified through the evaluation of permanent deformation and fatigue behavior of laboratory prepared asphalt concrete mixes. The results indicated that the rheological properties of the modified binders improved significantly with sufficient polymer content (3%. The aging properties of the modified binders were found to be dependent on the type of polymer.The fatigue life and resistance to permanent deformation were significantly improved due to enhanced binder rheological properties.  Thus, local asphalts can be modified using thermoplastic polymers.

  19. Nominal completion for rewrite systems with binders

    OpenAIRE

    Fernández, Maribel; Rubio Gimeno, Alberto

    2012-01-01

    We design a completion procedure for nominal rewriting systems, based on a generalisation of the recursive path ordering to take into account alpha equivalence. Nominal rewriting generalises first-order rewriting by providing support for the specification of binding operators. Completion of rewriting systems with binders is a notably difficult problem; the completion procedure presented in this paper is the first to deal with binders in rewrite rules. Peer Reviewed

  20. Proton-Conducting Sulfonated Ionomers by Chemical Modification and Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller

    The cornerstone in this dissertation is made up by three individual assessments of the diversity in the macromolecular landscape that can be obtained by applying relatively few efficient chemical tools. The intention is to gain deeper knowledge on the chemical tuning of proton exchange membranes...... of hydrocarbon macromolecular architectures, PSU with postsulfonated polystyrene (PS) grafts are investigated. Here, IEC is controlled through the degree of substitution, the graft length and DS. The grafting is performed with atom transfer radical polymerization (ATRP). The third assessment is dedicated...... of control by ATRP and click chemistry enables a wide selection of polymer structures with the handles: degree of substitution (DS), polymerization and sulfonation, and blending....

  1. Compound- and position-specific carbon isotopic signatures of abiogenic hydrocarbons from on-land serpentinite-hosted Hakuba Happo hot spring in Japan

    Science.gov (United States)

    Suda, Konomi; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Ueno, Yuichiro

    2017-06-01

    It has been proposed that serpentinite-hosted hydrothermal/hot spring systems played a significant role in the origin and early evolution of life on early Earth because abiogenic synthesis of organic compounds may accompany serpentinization. However, production mechanisms for apparently abiogenic hydrocarbons that have been observed in the ongoing serpentinizing systems are still poorly constrained. We report a new geochemical study of hydrocarbons in an on-land serpentinite-hosted hot spring in Hakuba Happo, Japan. We have conducted both compound-specific and position-specific carbon isotopic analyses of the observed C1 to C5 hydrocarbons. A positive linear relationship between the δ13C values and the inverse carbon number is found in C1 to C5 straight-chain alkanes in the Happo sample. This isotopic trend is consistent with a simple polymerization model developed in this study. Our model assumes that, for any particular alkane, all of the subsequently added carbons have the same isotopic composition, and those are depleted in 13C with respect to the first carbon in the growing carbon chain. The fit of this model suggests that Happo alkanes can be produced via polymerization from methane with a constant kinetic isotopic fractionation of -8.9 ± 1.0‰. A similar carbon isotopic relationship among alkanes has been observed in some serpentinite-hosted seafloor hydrothermal systems, indicating that the same process is responsible for the abiological hydrocarbon in general serpentinization fields, not only in the Hakuba Happo hot spring. Moreover, our model is also applicable to other potentially abiogenic natural gases and experimentally synthesized hydrocarbon products. For the first time, the intramolecular 13C composition of propane from a natural sample derived from a serpentinite-hosted system was determined. The intramolecular 13C distribution in propane shows the important potential to identify different polymerization mechanisms that cannot be discriminated

  2. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...... of grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one...

  3. Evaluation of Thermal Oxidative Aging Effect on the Rheological Performance of Modified Asphalt Binders

    Science.gov (United States)

    Zhu, Cheng

    Modified asphalt binder, which is combined by base binder and additive modifier, has been implemented in pavement industry for more than 30 years. Recently, the oxidative aging mechanism of asphalt binder has been studied for several decades, and appreciable finding results of asphalt binder aging mechanism were achieved from the chemistry and rheological performance aspects. However, most of these studies were conducted with neat binders, the research of aging mechanism of modified asphalt binder was limited. Nowadays, it is still highly necessary to clarify how the asphalt binder aging happens with the modified asphalt binder, what is the effect of the different modifiers (additives) on the binder aging process, how the rheological performance changes under the thermal oxidative aging conditions and so on. The objective of this study was to investigate the effect of isothermal oxidative aging conditions on the rheological performance change of the modified and controlled asphalt binders. There were totally 14 different sorts of asphalt binders had been aged in the PAV pans in the air-force drafted ovens at 50°C, 60°C and 85°C for 0.5 day to 240 days. The Fourier-Transform Infrared Spectroscopy (FT-IR) and Dynamic Shear Rheometer (DSR) were used to perform the experiments. The analysis of rheological indices (Low shear viscosity-LSV, Crossover modulus-G*c, Glover-Rowe Parameter-G-R, DSR function-DSR Fn) as a function of carbonyl area (CA) was conducted. With the SBS modification, both of the hardening susceptibility of the rheological index-LSV and G-R decreases compared with the corresponding base binder. The TR increased the hardening susceptibility of all the rheological indexes. While for the G*c, SBS increases the slope of the most modified asphalt binders except A and B_TR_X series binders. The multiple linear regression statistical analysis results indicate that the oxidative aging conditions play an important role on the CA, and rheological performance

  4. Alkaline Activator Impact on the Geopolymer Binders

    Science.gov (United States)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.

  5. Efficiency of Composite Binders with Antifreezing Agents

    Science.gov (United States)

    Ogurtsova, Y. N.; Zhernovsky, I. V.; Botsman, L. N.

    2017-11-01

    One of the non-heating methods of cold-weather concreting is using concretes hardening at negative temperatures. This method consists in using chemical additives which reduce the freezing temperature of the liquid phase and provide for concrete hardening at negative temperatures. The non-heating cold-weather concreting, due to antifreezing agents, allows saving heat and electric energy at the more flexible work performance technology. At selecting the antifreezing components, the possibility of concreting at temperatures up to minus 20 °C and combination with a plasticizer contained in the composite binder were taken into account. The optimal proportions of antifreezing and complex agents produced by MC-Bauchemie Russia for fine-grained concretes were determined. So, the introduction of antifreezing and complex agents allows obtaining a structure of composite characteristic for cement stone in the conditions of below zero temperatures at using different binders; the hydration of such composite proceeded naturally. Low-water-demand binders (LWDB) based composites are characterized by a higher density and homogeneity due to a high dispersity of a binder and its complicated surface providing for a lot of crystallization centers. LWDB contains small pores keeping water in a liquid form and promoting a more complete hydration process.

  6. STUDY ON OIL WASTEWATER TREATMENT WITH POLYMERIC REAGENTS

    Directory of Open Access Journals (Sweden)

    RODICA BUCUROIU

    2016-04-01

    Full Text Available Used the polymeric reagents in oil wastewater treatment is an effective method of eliminate hydrocarbons. The present study aims to finding reagents that lead to lowering of extractible (EXT, suspended solids (SS and chemical oxygen demand (COD of industrial wastewater from washing cars in loading ramps petroleum products. For this purpose five reagents were tested, namely: polyamines, cationic polyacrylamides, polydiallydimethyl ammonium chloride (PolyDADMAC, melamine formaldehyde polymer resin and polydicyandiamide polymer resin. Obtaining removal degrees over 80 % justifies using this method in the industrial practice.

  7. Modified polysaccharides as alternative binders for foundry industry

    Directory of Open Access Journals (Sweden)

    K. Kaczmarska

    2016-10-01

    Full Text Available Polysaccharides constitute a wide group of important polymers with many commercial applications, for example food packaging, fibres, coatings, adhesives etc. This review is devoted to the presentation of polysaccharide application in foundry industry. In this paper the selected properties of foundry moulding sand and core sand containing modified polysaccharides as binders are presented according to foreign literature data. Also, author’s own research about effect of using moulding sand binder consisting of modified polysaccharide (modified starch or its composition with non-toxic synthetic polymers are discussed. Based on technologies taken under consideration in this paper, it could be concluded that polysaccharides are suitable as an alternative for use as binder in foundry moulding applications.

  8. Effects of replacement of binder content on bond strength of mortars

    Directory of Open Access Journals (Sweden)

    E. B. C. Costa

    Full Text Available The reduction of binder content in cementitious systems is an effective way to mitigate environmental impacts without increasing costs. The main purpose of this study is to evaluate the effect of content binder on bond strength of mortar-brick interface. For thus, it was studied mortars produced with two limestone fines with different particle size distribution. The limestone fines were added at rates of 0% to 60% at increments of 15% as partial volume replacement of binder. Mortars were prepared in proportion of 1:3 (binder + limestone: sand in volume. The water content was kept constant and equal to 18% in relation to total weight of solids. The mechanical property of mortars was evaluated by tensile strength and the performance of interface by bond strength tests at 14 days. Results indicate that is possible make mortars with 45% less than binder without reducing bond strength. Thus, the use of appropriate particles of limestone can produce more environmentally friendly concrete and rendering mortars by reducing its binder factor without affecting its performance.

  9. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  10. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler; K. Lewandowski

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  11. Decoring Behaviour of Chosen Moulding Materials with Alkali Silicate Based Inorganic Binders

    Directory of Open Access Journals (Sweden)

    Conev M.

    2017-06-01

    Full Text Available This paper contains basic information about new processes for cores for cylinder heads production with alkali silicate based inorganic binders. Inorganic binders are coming back to the foreground due to their ecologically friendly nature and new technologies for cores production and new binder systems were developed. Basically these binder systems are modified alkali silicates and therefore they carry some well-known unfavourable properties with their usage. To compensate these disadvantages, the binder systems are working with additives which are most often in powder form and are added in the moulding material. This paper deals with decoring behaviour of different moulding sands as well as the influence of chosen additives on knock-out properties in laboratory terms. For this purpose, specific methods of specimen production are described. Developed methods are then used to compare decoring behaviour of chosen sands and binder systems.

  12. Influence of Mycotoxin Binders on the Oral Bioavailability of Doxycycline in Pigs.

    Science.gov (United States)

    De Mil, Thomas; Devreese, Mathias; De Saeger, Sarah; Eeckhout, Mia; De Backer, Patrick; Croubels, Siska

    2016-03-16

    Mycotoxin binders are feed additives that aim to adsorb mycotoxins in the gastrointestinal tract of animals, making them unavailable for systemic absorption. The antimicrobial drug doxycycline (DOX) is often used in pigs and is administered through feed or drinking water; hence, DOX can come in contact with mycotoxin binders in the gastrointestinal tract. This paper describes the effect of four mycotoxin binders on the absorption of orally administered DOX in pigs. Two experiments were conducted: The first used a setup with bolus administration to fasted pigs at two different dosages of mycotoxin binder. In the second experiment, DOX and the binders were mixed in the feed at dosages recommended by the manufacturers (= field conditions). Interactions are possible between some of the mycotoxin binders dosed at 10 g/kg feed but not at 2 g/kg feed. When applying field conditions, no influences were seen on the plasma concentrations of DOX.

  13. Application of Microwaves for Binder Content Assessment in Moulding Sands

    Directory of Open Access Journals (Sweden)

    Nowak D.

    2012-09-01

    Full Text Available The paper presents results of preliminary examinations on possibility of determining binder content in traditional moulding sands with the microwave method. The presented measurements were carried-out using a special stand, the so-called slot line. Binder content in the sandmix was determined by measurements of absorption damping Ad and insertion losses IL of electromagnetic wave. One of main advantages of the suggested new method of binder content measurement is short measuring time.

  14. Radiation Polymerization of Acetylene Hydrocarbons. Special Features; Particularites de la polymerisation radiochimique des hydrocarbures acetyleniques; Radiatsionnaya polimerizatsiya atsetilenovykh proizvodnykh; Particularidades de la radiopolimerizacion de los hidrocarburos acetilenicos

    Energy Technology Data Exchange (ETDEWEB)

    Barkalov, I. M.; Gol' danskij, V. I.; Go, Min' -Gao

    1963-11-15

    The synthesis and study of the properties of polymers with conjugated bond systems offers new and extremely promising prospects in the chemistry of high molecular compounds. A high degree of de-localization of p-electrons in the macromolecule is characteristic of such polymer systems. The decrease in the energy excited in the triplet state, just like the diminished ionization potential with large conjugated bonds, conditions the semiconductor and specific magnetic properties of such compounds. In addition, polymer systems with conjugated bonds have proved to be extremely effective stabilizers in the thermo- and photo-oxidation destruction of polymers. The radiation polymerization of acetylene derivatives offers one suitable method of obtaining such polymers and is the only one which ensures that the polymers obtained are free of contamination from initiators at low temperatures. The kinetics of the radiation polymerization of ethynyl benzene and other acetylene derivatives have a number of features typical of ion polymerization quite rare in radical polymerization (speed of polymerization linearly proportional to speed of initiation: very low activation energy; no oxygen inhibition). Nevertheless this polymerization is obviously radical. We reached that conclusion on the basis of a study of polymerization initiation for acetylene hydrocarbons by typical radical initiators - benzoyl peroxide and the dinitrile of azoisobutyric acid. They investigated the kinetic features and mechanism of peroxide decomposition in the presence of acetylene hydrocarbons (e.g. ethynyl benzene, deutero-ethynyl benzene and phenylpropyne). The kinetics of radiation co-polymerization of ethynyl benzene with different vinyl monomers and the composition of copolymers in different initial mixtures were also studied. These data and the results of a study of the kinetics of inhibited ethynyl benzene polymerization (benzoquinone initiator) indicate a small reactivity capacity of the ethynyl

  15. Cirugía ortognática y rinoplastia en el síndrome de Binder Orthognathic surgery and rhinoplasty in Binder syndrome

    Directory of Open Access Journals (Sweden)

    M. Tito

    2007-04-01

    Full Text Available El síndrome de Binder es una patología caracterizada por hipoplasia nariz-maxilar, ángulo naso-frontal plano, senos frontales hipoplasicos, ausencia de la espina nasal anterior, columela corta y ángulo nasolabial agudo. El tratamiento del los pacientes con síndrome de Binder puede ser ortodóntico o quirúrgico según la gravedad de la malformación. En este trabajo hemos realizado una revision bibliográfica sobre la etiología, el diagnóstico diferential y el tratamiento de la sindrome de Binder y presentamos un caso clínico de un paciente binderiano sometido a intervención de cirugía ortognática y rinoplastia con injerto de cartílago costal para recostruir el dorso y la punta nasal.Binder syndrome is a disorder characterized by nasomaxillary hypoplasia that results in a short nose, a frontonasal angle of almost 180 degrees, hypoplasia of the frontal sinuses, an absent anterior nasal spine, a short columella and an acute nasolabial angle. The patient can be treated orthodontically or surgically depending on the seriousness of the malformation. We review the literature on the etiology, differential diagnosis and treatment of Binder syndrome. We present the case of a boy with this syndrome surgically treated with orthognatic surgery and rhinoplasty with an L-shaped rib cartilage graft.

  16. Polyimide Binder: A Facile Way to Improve Safety of Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Qian, Guannan; Wang, Li; Shang, Yuming; He, Xiangming; Tang, Shuangfeng; Liu, Ming; Li, TuanWei; Zhang, Gaoqiang; Wang, Jianlong

    2016-01-01

    A soluble polyimide (PI) is attempted to be a binder for transition metal oxide cathode in lithium ion batteries. It is synthesized from 2,2-Bis[4-(4-aminophenoxy)phenyl]propane, 4,4′-Oxydianiline and 4,4′-Oxydiphthalic anhydride, and characterized by FT-IR and 1 H NMR techniques. To be a binder, the synthesized PI is applied to fabricate the electrodes, showing binding property and electrochemical performance as good as poly(vinylidene fluoride) (PVDF) that is conventional binder widely used in lithium ion batteries. The 2 Ah pouch full cells with PI and PVDF binders are assembled to compare their performances. As a result, the batteries with PI binder display 91.4% capacity retention after 500 cycles, which is almost the same as the cells withPVDF binder. The overcharge safetytests are carried by 2 Ah pouch full cells, indicating that PI cells can pass the test, no fire and no explosion, but the PVDF cells fail the test, catching fire. The result shows that the PI binder can enhance the safety of Li-ion batteries. This study paves a new way to improve the safety performance of lithium ion batteries.

  17. Rutting resistance of asphalt mixture with cup lumps modified binder

    Science.gov (United States)

    Shaffie, E.; Hanif, W. M. M. Wan; Arshad, A. K.; Hashim, W.

    2017-11-01

    Rutting is the most common pavement distress in pavement structures which occurs mainly due to several factors such as increasing of traffic volume, climatic conditions and also due to construction design errors. This failure reduced the service life of the pavement, reduced driver safety and increase cost of maintenance. Polymer Modified Binder has been observed for a long time in improving asphalt pavement performance. Research shows that the use of polymer in bituminous mix not only improve the resistance to rutting but also increase the life span of the pavement. This research evaluates the physical properties and rutting performance of dense graded Superpave-designed HMA mix. Two different types of dense graded Superpave HMA mix were developed consists of unmodified binder mix (UMB) and cup lumps rubber (liquid form) modified binder mix (CLMB). Natural rubber polymer modified binder was prepared from addition of 8 percent of cup lumps into binder. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicate that these mixtures were good with respect to durability and flexibility. Furthermore, rutting results from APA rutting test was determined to evaluate the performance of these mixtures. The rutting result of CLMB demonstrates better resistance to rutting than those prepared using UMB mix. Addition of cup lumps rubber in asphalt mixture was found to be significant, where the cup lumps rubber has certainly improves the binder properties and enhanced its rutting resistance due to greater elasticity offered by the cup lumps rubber particles. It shows that the use of cup lumps rubber can significantly reduce the rut depth of asphalt mixture by 41% compared to the minimum rut depth obtained for the UMB mix. Therefore, it can be concluded that the cup lumps rubber is suitable to be used as a modifier to modified binder in order to enhance the properties of the binder and thus improves the performance of asphalt mixes.

  18. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL... Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the asbestos paper... asbestos paper (starch binder). ...

  19. Tapioca binder for porous zinc anodes electrode in zinc–air batteries

    Directory of Open Access Journals (Sweden)

    Mohamad Najmi Masri

    2015-07-01

    Full Text Available Tapioca was used as a binder for porous Zn anodes in an electrochemical zinc-air (Zn-air battery system. The tapioca binder concentrations varied to find the optimum composition. The effect of the discharge rate at 100 mA on the constant current, current–potential and current density–power density of the Zn-air battery was measured and analyzed. At concentrations of 60–80 mg cm−3, the tapioca binder exhibited the optimum discharge capability, with a specific capacity of approximately 500 mA h g−1 and a power density of 17 mW cm−2. A morphological analysis proved that at this concentration, the binder is able to provide excellent binding between the Zn powders. Moreover, the structure of Zn as the active material was not affected by the addition of tapioca as the binder, as shown by the X-ray diffraction analysis. Furthermore, the conversion of Zn into ZnO represents the full utilization of the active material, which is a good indication that tapioca can be used as the binder.

  20. Binder-induced surface structure evolution effects on Li-ion battery performance

    Science.gov (United States)

    Rezvani, S. J.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F.; Di Cicco, A.

    2018-03-01

    A comparative investigation on binder induced chemical and morphological evolution of Li4Ti5O12 electrodes was performed via X-ray photoemission spectroscopy, scanning electron microscopy, and electrochemical measurements. Composite electrodes were obtained using three different binders (PAA, PVdF, and CMC) with 80:10:10 ratio of active material:carbon:binder. The electrochemical performances of the electrodes, were found to be intimately correlated with the evolution of the microstructure of the electrodes, probed by XPS and SEM analysis. Our analysis shows that the surface chemistry, thickness of the passivation layers and the morphology of the electrodes are strongly dependent on the type of binders that significantly influence the electrochemical properties of the electrodes. These results point to a key role played by binders in optimization of the battery performance and improve our understanding of the previously observed and unexplained electrochemical properties of these electrodes.

  1. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang

    2012-11-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m -2, while SS mesh had a slightly lower power of 1680 ± 12 mW m -2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m -2 (copper) and 1480 ± 56 mW m -2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications. © 2012 Elsevier B.V.

  2. Review of some research work on surface modification and polymerizations by non-equilibrium plasma in Turkey

    International Nuclear Information System (INIS)

    Akovali, Guneri

    2004-01-01

    Non equilibrium plasma studies in Turkey can be considered as organized on two different lines: surface modification studies and plasma polymerization studies. Plasma surface modification studies: In different laboratories in Turkey the modification of materials' surfaces by plasma covers a wide spectra, for example: fibers (Carbon (CF) and polyacrylonitrile (PAN)), fabrics (PET/Cotton and PET/PA), biomaterials-food oriented (PU), denture Acrylic matrix, plasmochemical modification of a (PE and PP) film surface by several selected silicon and tin containing monomers, polymer blends and composites, recycled rubber and epoxy systems, etc. Plasma polymerization studies: This topic is accomplished by a great number of projects, for instance: plasma initiation polymerization and copolymerization of Styrene and MMA, Plasma-initiated polymerizations of Acrylamide (AA), kinetics of polymer deposition of several selected saturated hydrocarbons, silanization treatments by hexamethyldisilazane (HDMS), Plasma initiated polymerization (PIP) of allyl alcohol and 1-propano, (PSP) and (PIP) studies related to activated charcoal are done to explore their applications in haemoperfusion, an amperometric alcohol single-layer electrode is prepared by (EDA) plasma polymerization, preparation of mass sensitive immuno sensors and single layer multi enzyme electrodes by plasma polymerisation technique, etc

  3. Evaluation of binder and disintegrant properties of starch derived ...

    African Journals Online (AJOL)

    The aim of the study was to formulate metronidazole tablets using starch from Xanthosoma sagittifolium as binder and disintegrant in metronidazole tablets. Metronidazole tablets were produced by wet granulation method using X. sagittifolium starch as binder at concentrations of 5, 10, 15 and 20% w/w, and as disintegrant ...

  4. Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Dept. of Chemistry, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Le, D.-B. [3M Electronic Markets Materials Division, 3M Center, St. Paul, MN 55144-1000 (United States); Ferguson, P.P. [Dept. of Physics and Atmospheric Science, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Dahn, J.R., E-mail: jeff.dahn@dal.c [Dept. of Chemistry, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada); Dept. of Physics and Atmospheric Science, Dalhousie University, Halifax, N.S. B3H 3J5 (Canada)

    2010-03-01

    A lithium polyacrylate (Li-PAA) binder has been developed by 3M Company that is useful with electrodes comprising alloy anode materials. This binder was used to prepare electrodes made with Sn{sub 30}Co{sub 30}C{sub 40} material prepared by mechanical attrition. The electrochemical performance of electrodes using Li-PAA binder was characterized and compared to those using sodium carboxymethyl cellulose (CMC) and polyvinylidene fluoride (PVDF) binders. The Sn{sub 30}Co{sub 30}C{sub 40} electrodes using Li-PAA and CMC binders show much smaller irreversible capacity than the ones using PVDF binder. Poor capacity retention is observed when PVDF binder is used. By contrast, the electrodes using Li-PAA binder show excellent capacity retention for Sn{sub 30}Co{sub 30}C{sub 40} materials and a specific capacity of 450 mAh/g is achieved for at least 100 cycles. The results suggest that Li-PAA is a promising binder for electrodes made from large-volume change alloy materials.

  5. Comparison of the Emission of Aromatic Hydrocarbons from Moulding Sands with Furfural Resin with the Low Content of Furfuryl Alcohol and Different Activators

    Directory of Open Access Journals (Sweden)

    Żymankowska-Kumon S.

    2016-12-01

    Full Text Available No-bake process refers to the use of chemical binders to bond the moulding sand. Sand is moved to the mould fill station in preparation for filling of the mould. A mixer is used to blend the sand with the chemical binder and activator. As the sand exits the mixer, the binder begins the chemical process of hardening. This paper presents the results of decomposition of the moulding sands with modified urea-furfuryl resin (with the low content of furfuryl alcohol below 25 % and different activators: organic and inorganic on a quartz matrix, under semi-industrial conditions. Investigations of the gases emission in the test foundry plant were executed according to the method extended in the Faculty of Foundry Engineering (AGH University of Science and Technology. Article presents the results of the emitted chosen aromatic hydrocarbons and loss on ignition compared with the different activators used to harden this resin. On the bases of the data, it is possible to determine the content of the emitted dangerous substances from the moulding sand according to the content of loss on ignition.

  6. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature. The binder plays ...

  7. Evaluation of hybrid binder for use in surface mixtures in Florida : final report, June 2009.

    Science.gov (United States)

    2009-06-01

    Binder and mixture tests were performed to evaluate the relative performance of a PG 67-22 base binder and six other commercially available binders produced by modifying the same base binder with the following modifiers: one Styrene Butadiene Styrene...

  8. 40 CFR 427.40 - Applicability; description of the asbestos paper (elastomeric binder) subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos paper (elastomeric binder) subcategory. 427.40 Section 427.40 Protection of Environment... SOURCE CATEGORY Asbestos Paper (Elastomeric Binder) Subcategory § 427.40 Applicability; description of the asbestos paper (elastomeric binder) subcategory. The provisions of this subpart are applicable to...

  9. Grade determination of crumb rubber-modified performance graded asphalt binder.

    Science.gov (United States)

    2013-08-01

    Due to particulates common in crumb rubber-modified asphalt binders, conventional PG grading using the Dynamic : Shear Rheometer (DSR) with a gap height of 1.0 mm may not be valid and in accordance with current specifications. : Asphalt binder testin...

  10. Effect of crumb rubber on asphaltic binder chemistry and rheology

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Cicero de S.; Tome, Luisa G.A.; Sant' ana, Hosiberto B.; Soares, Jorge B.; Soares, Sandra A. [University Federal of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    The use of the crumb rubber (CR) from scraps tires to modify asphalt binders (AB) at high temperature can improve significantly the performance grade, but the storage stability can be influenced after the mix of AB and CR or polymer. The major concern of asphalt binder with polymer and CR blends is their lack of stability during prolonged storage at high temperatures. The tendency to phase separation under quiescent conditions appears as an important limitation for the practical use of these blends. After the RTFOT and PAV process, the binder conventional and modified was analyzed in a Fourier Transform Infrared spectrometer (FTIR) for chemical characterization. After aging in RTFOT, the AB presented a larger degradation compared to the CR of RABC and RABC commercial. So, the crumb rubber contributed to the binder stability, acting as an antioxidant in the aging process. The dynamic mechanical properties of CR modify asphalts binder before and after graft has been characterized by use of dynamic shear rheometer (DSR) or advances rheology expanded system (ARES) of Rheometric Scientific. The difference in the viscoelastic parameters between the top and the bottom sections of the tube was measured. It has been found that the added content of CR has great effect on the rheological properties of the AB and its high temperature performance. It also has been confirmed that the RABC sample showed larger storage stability compared to the sample RABC commercial observed with viscoelastic parameters. As a consequence, the use CR and aromatic oil can be considered a suitable alternative for modification of binder in pavement. (author)

  11. Influence of solidification accelerators on structure formation of anhydrite-containing binders

    Energy Technology Data Exchange (ETDEWEB)

    Anikanova, L., E-mail: alasmit@mail.ru; Volkova, O., E-mail: v.olga.nikitina@gmail.com; Kudyakov, A.; Sarkisov, Y.; Tolstov, D. [Tomsk State University of Architecture and Building, 2 Solyanaya sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    The article presents results of scientific analysis of chemical additives influence on acid fluoride binder. It was found that the influence of sulfate nature additives on the process of hydration and solidification of the binder is similar to influence of additives on indissoluble anhydrite. Additives with SO{sub 4}{sup 2−} anion NO{sup −} are more efficient. The mentioned additives according to accelerating effect belong to the following succession: K{sub 2}SO{sub 4} > Na{sub 2}SO{sub 4} > FeSO{sub 4} > MgSO{sub 4}. Facilitation of the process of hydration and solidification of the binder, increase in density and durability of the binder (32 MPa) is to the greatest extent achieved with the introduction of 2% sodium sulfate additive of the binder’s mass into the composition of the binder along with the ultrasonic treatment of water solution. Directed crystal formation process with healing of porous structure by new growths presented as calcium sulfate dehydrate and hydroglauberite provides positive effect.

  12. Sustainable binders for concrete: A structured approach from waste screening to binder composition development

    NARCIS (Netherlands)

    Vinai, R.; Panagiotopoulou, C.; Soutsos, M.; Taxiarchou, M.; Zervaki, M.; Valcke, S.L.A.; Ligero, V.C.; Couto, S.; Gupta, A.; Pipilikaki, P.; Alvarez, I.L.; Coelho, D.; Branquinho, J.

    2015-01-01

    Worldwide, the building sector requires the production of 4 billion tonnes of cement annually, consuming more than 40% of global energy. Alkali activated “cementless” binders have recently emerged as a novel eco-friendly construction material with a promising potential to replace ordinary Portland

  13. ALTERNATIVE BINDERS TO BENTONITE FOR IRON ORE PELLETIZING : PART II : EFFECTS ON METALLURGICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Osman Sivrikaya

    2014-07-01

    Full Text Available This study was started to find alternative binders to bentonite and to recover the low preheated and fired pellet mechanical strengths of organic binders-bonded pellets. Bentonite is considered as a chemical impurity for pellet chemistry due to acid constituents (SiO2 and Al2O3. Especially addition of silica-alumina bearing binders is detrimental for iron ore concentrate with high acidic content. Organic binders are the most studied binders since they are free in silica. Although they yield pellets with good wet strength; they have found limited application in industry since they fail to give sufficient physical and mechanical strength to preheated and fired pellets. It is investigated that how insufficient preheated and fired pellet strengths can be improved when organic binders are used as binder. The addition of a slag bonding/strength increasing constituent (free in acidic contents into pellet feed to provide pellet strength with the use of organic binders was proposed. Addition of boron compounds such as colemanite, tincal, borax pentahydrate, boric acid together with organic binders such as CMC, starch, dextrin and some organic based binders, into magnetite and hematite pellet mixture was tested. After determining the addition of boron compounds is beneficial to recover the low pellet physical and mechanical qualities in the first part of this study, in this second part, metallurgical and chemical properties (reducibility - swelling index – microstructure – mineralogy - chemical content of pellets produced with combined binders (an organic binder plus a boron compound were presented. The metallurgical and chemical tests results showed that good quality product pellets can be produced with combined binders when compared with the bentonite-bonded pellets. Hence, the suggested combined binders can be used as binder in place of bentonite in iron ore pelletizing without compromising the pellet chemistry.

  14. Colloid Zirconia Binder of Improved Wetting Properties

    Directory of Open Access Journals (Sweden)

    Grażyna Para

    2012-03-01

    Full Text Available Physicochemical properties of colloid zirconia aqueous sol, used as a binder in the investment casting industry, werethoroughly determined. The size of the particles was determined by dynamic light scattering, and the zeta potential of theparticles was measured by microelectrophoresis. The average size of the particles was 13 nm and the zeta potential waspositive, equal to 30 mV. The size distribution of particles deposited on mica surface was also determined using AFMmeasurements. The wetting properties of the binder suspension were determined for the paraffin/air interface using the shapeanalysis of pendant and sessile drops. The perfluorononanoic acid (PFNA, an anionic surfactant, the non-ionic fluorinatedsurfactants Zonyl FSO-100 and Rokafenol RN8, and the mixtures of the surfactants were studied. Our investigations showedthat the Zonyl-FSO surfactant and its mixture with Rokafenol effectively reduced the dynamic contact angle from the initialvalue of 94° to the value of 30°. Such low contact angles represent an essential improvement of zirconia binder wettability,thus widen the range of applicability in investment casting of finely shaped details.

  15. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations.

    Science.gov (United States)

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-15

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking). Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations

    Science.gov (United States)

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-01

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking).

  17. Briquetting of coal fines and sawdust. Part 1: binder and briquetting-parameters evaluations

    Energy Technology Data Exchange (ETDEWEB)

    D. Taulbee; D.P. Patil; Rick Q. Honaker; B.K. Parekh [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2009-01-15

    Various technical and economic aspects relating to the briquetting of fine coal with sawdust have been evaluated with the results for two segments of that study presented here: binder and briquetting-parameter evaluations. Approximately 50 potential binder formulations were subjected to a series of screening evaluations to identify three formulations that were the most cost effective for briquetting fine coal with sawdust. Two of the binders, guar gum and wheat starch, were selected as most suitable for the pulverized coal market while the third formulation, lignosulfonate/lime, was targeted for the stoker market. Following binder selection, a number of briquetting parameters including binder and sawdust concentration, sawdust type, briquetting pressure and dwell time, coal and sawdust particle size, clay content, moisture content, and cure temperature and cure time were evaluated. Briquetting pressure and dwell time have the least impact while binder and sawdust concentrations, sawdust type, and curing conditions exerted the greatest influence on briquette quality. 7 refs.

  18. Elastic and Sorption Characteristics of an Epoxy Binder in a Composite During Its Moistening

    Science.gov (United States)

    Aniskevich, K.; Glaskova, T.; Jansons, J.

    2005-07-01

    Results of an experimental investigation into the elastic and sorption characteristics of a model composite material (CM) — epoxy resin filled with LiF crystals — during its moistening are presented. Properties of the binder in the CM with different filler contents ( v f = 0, 0.05, 0.11, 0.23, 0.28, 0.33, 0.38, and 0.46) were evaluated indirectly by using known micromechanical models of CMs. It was revealed that, for the CM in a conditionally initial state, the elastic modulus of the binder in it and the filler microstrain (change in the interplanar distance in the crystals, measured by the X-ray method) as functions of filler content had the same character. The elastic modulus of the binder in the CM with a low filler content was equal to that for the binder in a block; the elastic modulus of the binder in the CM decreased with increasing filler content. The maximum (corresponding to water saturation of the CM) stresses in the binder and the filler microstresses as functions of filler content were of the same character. Moreover, the absolute values of maximum stresses in the binder and of filler microstresses coincided for high and low contents of the filler. At v f = 0.2-0. 3, the filler microstrains exceeded the stresses in the binder. The effect of moisture on the epoxy binder in the CM with a high filler content was not entirely reversible: the elastic characteristics of the binder increased, the diffusivity decreased, and the ultimate water content increased after a moistening-drying cycle.

  19. A Binder Viscosity Effect on the Wet-Wounded Composite Porosity in the Impregnating Bath

    Directory of Open Access Journals (Sweden)

    M. A. Komkov

    2014-01-01

    Full Text Available The aim of this work is to define experimentally an impregnation rate of VM-1 glass fibers and CBM aramid bundles with the epoxy binder EDB-10 using wet method of winding. During the impregnation process of the fibrous fillers by the liquid binder, air is displaced from the interfiber space of fiber and bundle. With the composite product winding a fiber impregnation process is short. That is why gas inclusions or pores are formed in the polymer-fiber compositeThe impregnation rate or porosity of wound material will depend directly on the binder viscosity. To reduce an epoxy binder viscosity temporarily is possible by two ways. The first is to heat a liquid epoxy composition EDB-10 to the maximum possible temperature during the winding process of the product. The second method is to dilute the binder by a solvent, such as acetone or alcohol. However, the solvent reduces its strength.The paper presents experimental data to show the volumetric content of pores in the wound composite affected only by the viscosity of the epoxy binder. Heating a binder allowed us to regulate a changing conditional viscosity of the binder in the impregnating bath for the normal conditions of impregnation. Other impacts on the impregnation and filament-winding processes, such as filler kinks, squeeze, vacuuming binder, highly tensioned winding, and others were not used.Experimentally obtained dependences of the porosity value of wound composite on the conditional viscosity of binder are nonlinear and can be used to design heaters for impregnating devices of winders. The research technique and results can be used in development of technological processes to manufacture composite structures by winding from the other reinforcing fibrous fillers and thermo-active binders.The results show that the volumetric content of pores can significantly vary within 8 - 14 % of material volume. Therefore, to reduce the number of pores in the wound composite to 1-2 %, auxiliary

  20. The Influence of Wall Binders

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    This report is an analysis of the thermal bridge effects that occur in wall binders in masonry buildings. The effects are analyzed using a numerical calculation programme.The results are compared to the values given in the danish standard, DS418....

  1. Historic lime-binders: An example of 19th Century Dutch Military plain concrete

    NARCIS (Netherlands)

    Nijland, T.G.; Copuroglu, O.; Heinemann, H.A.

    2012-01-01

    Before the general acceptance of Portland cement as the main binder for concrete in the late 19th century, other, locally available binders were occasionally used. In the case of the Netherlands, which did not produce Portland cement, traditional lime-based binders were not uncommon. With a strong

  2. Coke briquets for metallurgy based on a thermoreactive binder

    Energy Technology Data Exchange (ETDEWEB)

    Tjutjunnikov, J.B.; Florinskij, V.N.; Orechov, V.N.; Nefedov, P.J.; Sasmurin, V.I.; Kirenskij, V.N. (Khar' kovskii Inzhenerno-Ehkonomicheskii Institut (USSR))

    1992-02-01

    Describes a process for production of briquets for metallurgy with binder and coke fines or anthracite. The suggested binder is waste phenol resin from the production of phenol (cumene method). Resin properties are given. Possible reaction mechanisms yielding solidified matter are discussed. The production process requires 10-15% binder and applies charge heating up to 200 C over 30 min. Catalytic amounts of sodium hydroxide or sulfuric acid were also employed. The production process is shown in a flowsheet. Properties of produced briquets are tabulated. The briquets were used in a 8 t/h cupola furnace and their performance was compared to that of KL-1 coke. Performance was found to be comparable; the cost of coke briquets was less than that of heating coke. 2 refs.

  3. FINELY DISPERSED COMPOSITE BINDER FOR REINFORCING SOILS BY INJECTION METHOD

    Directory of Open Access Journals (Sweden)

    Kharchenko Igor Yakovlevich

    2017-11-01

    Full Text Available Subject: we consider the problem of supplying the construction industry, in particular underground construction, with mineral binder for diluted aqueous suspensions that meet the requirements for reinforcement of low-strength sand and clastic soils by injections into the reinforced soil mass. Research objectives: substantiating possibility of using amorphous biosilica in combination with carbide sludge, whose particles size does not exceed 10 mm on average, as a binder for aqueous suspensions being injected. Materials and methods: as raw materials we used: common construction hydrated lime from “Stroimaterialy” JSC, Belgorod, hydrated lime in the form of carbide sludge from the dumps of Protvino plant (carbide sludge, hereafter, active mineral admixture biosilica from the group of companies “DIAMIX” and a plasticizer Sika viscocrete 5 new. Test methods are in accordance with applicable standards. To obtain samples of impregnated soils, a specially developed technique was used in the form of a unidirectional model. Results: properties of the composite binder prepared with different compositions are presented. The optimal component ratios are determined. The following properties of aqueous suspensions are studied: conditional viscosity, sedimentation and penetrating ability. Conditional viscosity is no more than 40 sec on average. Sedimentation does not exceed 1.2 %. Soil-concrete obtained by injection of a dilute aqueous suspension based on this composite binder has a compressive strength in the range from 4.44 to 12.5 MPa. Conclusions: utilization of finely dispersed composite mineral binder, which is based on interaction of amorphous silica with calcium hydroxide, as a binder for high penetration aqueous suspensions has been substantiated. This binder is not inferior to foreign analogues in terms of its strength and technological parameters and can be used for reinforcement of loose and low-strength soils. In case of using carbide

  4. Intensive Hemodialysis, Mineral and Bone Disorder, and Phosphate Binder Use.

    Science.gov (United States)

    Copland, Michael; Komenda, Paul; Weinhandl, Eric D; McCullough, Peter A; Morfin, Jose A

    2016-11-01

    Mineral and bone disorder is a common complication of end-stage renal disease. Notably, hyperphosphatemia likely promotes calcification of the myocardium, valves, and arteries. Hyperphosphatemia is associated with higher risk for cardiovascular mortality and morbidity along a gradient beginning at 5.0mg/dL. Among contemporary hemodialysis (HD) patients, mean serum phosphorus level is 5.2mg/dL, although 25% of patients have serum phosphorus levels of 5.5 to 6.9mg/dL; and 13%, >7.0mg/dL. Treatment of hyperphosphatemia is burdensome. Dialysis patients consume a mean of 19 pills per day, half of which are phosphate binders. Medicare Part D expenditures on binders for dialysis patients approached $700 million in 2013. Phosphorus removal with thrice-weekly HD (4 hours per session) is ∼3,000mg/wk. However, clearance is unlikely to counterbalance dietary intake, which varies around a mean of 7,000mg/wk. Dietary restriction and phosphate binders are important interventions, but each has limitations. Dietary control is complicated by limited access to healthy food choices and unclear labeling. Meanwhile, adherence to phosphate binders is poor, especially in younger patients and those with high pill burden. Multiple randomized clinical trials show that intensive HD reduces serum phosphorus levels. In the Frequent Hemodialysis Network (FHN) trial, short daily and nocturnal schedules reduced serum phosphorus levels by 0.6 and 1.6mg/dL, respectively, relative to 3 sessions per week. A similar effect of nocturnal HD was observed in an earlier trial. In the daily arm of the FHN trial, intensive HD significantly lowered estimated phosphate binder dose per day, whereas in the nocturnal arm, intensive HD led to binder discontinuation in 75% of patients. However, intensive HD appears to have no meaningful effects on serum calcium and parathyroid hormone concentrations. In conclusion, intensive HD, especially nocturnal HD, lowers serum phosphorus levels and decreases the need for

  5. Fatigue and fracture properties of aged binders in the context of reclaimed asphalt mixes.

    Science.gov (United States)

    2014-08-01

    Evidence in the literature indicates that the stiffness of the asphalt binder increases and ductility of the binder decreases : with oxidative aging. Typically for unmodified asphalt binders, increase in stiffness or decrease in ductility is regarded...

  6. Cellular Composites with Ambient and Autoclaved Type of Hardening with Application of Nanostructured Binder

    International Nuclear Information System (INIS)

    Nelyubova, V; Pavlenko, N; Netsvet, D

    2015-01-01

    The research presents the dimensional and structural characteristics of nonhydrational hardening binders - nanostructured binders. Rational areas of their use in composites for construction purposes are given. The paper presents the results of the development of natural hardening foam concrete and aerated autoclaved concrete for thermal insulating and construction and thermal insulating purposes. Thus nanostructured binder (NB) in the composites was used as a primary binder and a high reactive modifier. (paper)

  7. Computer-aided design of new metal binders

    International Nuclear Information System (INIS)

    Varnek, A.; Fourches, D.; Klimchuk, O.; Marcou, G.; Kireeva, N.; Tsivadze, A.; Solov'ev, V.

    2008-01-01

    Chemoinformatics approaches open new opportunities for computer-aided design of new efficient metal binders. Here, we demonstrate performances of ISIDA and COMET software tools to predict stability constants (log K) of the metal ion/organic ligand complexes in solution and to design in silico new molecules possessing desirable properties. The predictive models for log K of lanthanides complexation in water have been developed. Some new uranyl binders based on monoamides and on phosphoryl-containing podands were suggested theoretically, then synthesized and tested experimentally. Reasonable agreement between experimental uranyl distribution coefficients and theoretically predicted values has been observed. (orig.)

  8. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    Science.gov (United States)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  9. Effect of food binders on the textual and sensory characteristics of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... On the basis of the textural and sensory characteristics of the local binders studied, D. microcarpum at. 0.7% concentration was ... known as local food binders are mainly tuber starches ... refrigeration storage. The samples ...

  10. Evaluation of the Texas tier system for seal coat binder specification.

    Science.gov (United States)

    2012-09-01

    The Texas Department of Transportation (TxDOT) instituted a change in their seal coat binder specification in 2010 which allowed districts to select multiple binders within specified traffic levels or tiers for the purposes of allowing contractors to...

  11. Lectin binders. A new group of plant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rudiger, H; Gebauer, G; Gansera, R; Schurz, H; Schimpl, A [Wuerzburg Univ. (Germany, F.R.)

    1982-09-01

    Lectins are widely distributed in the plant kingdom, many of them being well characterized in their chemical structure and the effects they have on alien biological systems such as erythrocytes or lymphocytes. The biological function of plant lectins remains speculative. We therefore inspected plant extracts from components which might bind specifically to the lectin from the respective plant. Single proteins (lectin binders) could be isolated from each plant extract. The interaction of these proteins with lectins was demonstrated and qualified by several methods. Similar to the lectins, the lectin binders are localized in the cytoplasm in contrast to them, however, they persist during germination and plant growth. Their precise role in the plant is not known, but they are likely to be associated with lectins not only in vitro but also in vivo. They also interact with alien cells, and are able to stimulate mitosis in murine lymphocytes. Some lectin binders act specifically on B lymphocytes, leaving T cells uninfluenced.

  12. Effectiveness and cost-efficiency of phosphate binders in hemodialysis

    Directory of Open Access Journals (Sweden)

    Zsifkovits, Johannes

    2009-06-01

    Full Text Available Health political background: In 2006, the prevalence of chronic renal insufficiency in Germany was 91,718, of which 66,508 patients were on dialysis. The tendency is clearly growing. Scientific background: Chronic renal insufficiency results in a disturbance of the mineral balance. It leads to hyperphosphataemia, which is the strongest independent risk factor for mortality in renal patients. Usually, a reduction in the phosphate intake through nutrition and the amount of phosphate filtered out during dialysis are not sufficient to reduce the serum phosphate values to the recommended value. Therefore, phosphate binders are used to bind ingested phosphate in the digestive tract in order to lower the phosphate concentration in the serum. Four different groups of phosphate binders are available: calcium- and aluminium salts are the traditional therapies. Sevelamer and Lanthanum are recent developments on the market. In varying doses, all phosphate binders are able to effectively lower phosphate concentrations. However, drug therapies have achieved recommended phosphate levels in only 50 percent of patients during the last years. Research questions: How effective and efficient are the different phosphate binders in chronic renal insufficient patients? Methods: The systematic literature search yielded 1,251 abstracts. Following a two-part selection process with predefined criteria 18 publications were included in the assessment. Results: All studies evaluated conclude that serum phosphate, serum calcium and intact parathyroid hormone can be controlled effectively with all phosphate binders. Only the number of episodes of hypercalcaemia is higher when using calcium-containing phosphatebinders compared to Sevelamer and Lanthanum. Regarding the mortality rate, the cardiovascular artery calcification and bone metabolism no definite conclusions can be drawn. In any case, the amount of calcification at study start seems to be crucial for the further

  13. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    Science.gov (United States)

    Mudge, David W; Johnson, David W; Hawley, Carmel M; Campbell, Scott B; Isbel, Nicole M; van Eps, Carolyn L; Petrie, James J B

    2011-05-13

    Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing concerns about the risks of

  14. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    Directory of Open Access Journals (Sweden)

    van Eps Carolyn L

    2011-05-01

    Full Text Available Abstract Background Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. Discussion The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer, which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. Summary This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more

  15. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    Science.gov (United States)

    2011-01-01

    Background Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. Discussion The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. Summary This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing

  16. Natural asphalt modified binders used for high stiffness modulus asphalt concrete

    Science.gov (United States)

    Bilski, Marcin; Słowik, Mieczysław

    2018-05-01

    This paper presents a set of test results supporting the possibility of replacing, in Polish climate conditions, hard road 20/30 penetration grade bitumen used in the binder course and/or base course made of high stiffness modulus asphalt concrete with binders comprising of 35/50 or 50/70 penetration grade bitumens and additives in the form of natural Gilsonite or Trinidad Epuré asphalts. For the purpose of comparing the properties of the discussed asphalt binders, values of the Performance Grade have been determined according to the American Superpave system criteria.

  17. Development of partitioning method: adsorption behavior of Sr on titanic acid pelletized with binder

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, Kenichi; Yamaguchi, Isoo; Morita, Yasuji; Yamagishi, Isao; Fujiwara, Takeshi; Kubota, Masumitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-05-01

    The adsorption behavior of Sr was examined with the titanic acid with the binder and with binderless titanic acid. Then the effect of the difference of the neutralizer was also examined. When the initial concentration of Sr was constant, distribution coefficient (Kd) increased with pH after adsorption. At pH 4, Kd decreased in order of the titanic acid neutralized with NH{sub 4}OH solution without the binder > the titanic acid neutralized with NH{sub 4}OH solution and pelletized with the binder > the titanic acid neutralized with KOH solution and pelletized with the binder. At pH 6, Kd decreased with increasing the concentration of Sr in the solution, but the decreasing tendency of Kd for each titanic acid was the same. Adsorption kinetics was examined with titanic acids neutralized with NH{sub 4}OH solution, keeping the initial concentration of Sr and the initial pH constant. It took about one hour to reach Kd of 100mL/g for the titanic acid without the binder but over 10 hours for the titanic acid pelletized with the binder. It was confirmed that by pelletizing titanic acid with the binder, Kd of Sr became small and it took very long time to reach the adsorption equilibrium. However, by sufficient conditioning with water of the titanic acid pelletized with the binder, 1) it took about half time of titanic acid without conditioning to reach Kd of 100mL/g, 2) after 24 hours mixing, Kd for the titanic acid pelletized with the binder was almost equal to that for the titanic acid without the binder, 3) apparent ion exchange capacity obtained through a column test became over about 1meq/g. (J.P.N.)

  18. Development of partitioning method: adsorption behavior of Sr on titanic acid pelletized with binder

    International Nuclear Information System (INIS)

    Mizoguchi, Kenichi; Yamaguchi, Isoo; Morita, Yasuji; Yamagishi, Isao; Fujiwara, Takeshi; Kubota, Masumitsu

    1998-05-01

    The adsorption behavior of Sr was examined with the titanic acid with the binder and with binderless titanic acid. Then the effect of the difference of the neutralizer was also examined. When the initial concentration of Sr was constant, distribution coefficient (Kd) increased with pH after adsorption. At pH 4, Kd decreased in order of the titanic acid neutralized with NH 4 OH solution without the binder > the titanic acid neutralized with NH 4 OH solution and pelletized with the binder > the titanic acid neutralized with KOH solution and pelletized with the binder. At pH 6, Kd decreased with increasing the concentration of Sr in the solution, but the decreasing tendency of Kd for each titanic acid was the same. Adsorption kinetics was examined with titanic acids neutralized with NH 4 OH solution, keeping the initial concentration of Sr and the initial pH constant. It took about one hour to reach Kd of 100mL/g for the titanic acid without the binder but over 10 hours for the titanic acid pelletized with the binder. It was confirmed that by pelletizing titanic acid with the binder, Kd of Sr became small and it took very long time to reach the adsorption equilibrium. However, by sufficient conditioning with water of the titanic acid pelletized with the binder, 1) it took about half time of titanic acid without conditioning to reach Kd of 100mL/g, 2) after 24 hours mixing, Kd for the titanic acid pelletized with the binder was almost equal to that for the titanic acid without the binder, 3) apparent ion exchange capacity obtained through a column test became over about 1meq/g. (J.P.N.)

  19. Selectivity of radiation-induced processes in hydrocarbons, related polymers and organized polymer systems

    International Nuclear Information System (INIS)

    Feldman, V.I.; Sukhov, F.F.; Zezin, A.A.; Orlov, A.Yu.

    1999-01-01

    Fundamental aspects of the selectivity of radiation-induced events in polymers and polymeric systems were considered: (1) The grounds of selectivity of the primary events were analyzed on the basis of the results of studies of model compounds (molecular aspect). Basic results were obtained for hydrocarbon molecules irradiated in low-temperature matrices. The effects of selective localization of the primary events on the radical formation were examined for several polymers irradiated at low and superlow temperatures (77 and 15 K). A remarkable correlation between the properties of prototype ionized molecules (radical cations) and selectivity of the primary bond rupture in the corresponding polymers were found for polyethylene, polystyrene and some other hydrocarbon polymers. The first direct indication of selective localization of primary events at conformational defects was obtained for oriented high-crystalline polyethylene irradiated at 15 K. The significance of dimeric ring association was proved for the radiation chemistry of polystyrene. Specific mechanisms of low-temperature radiation-induced degradation were also analyzed for polycarbonate and poly(alkylene terephthalates). (2) Specific features of the localization of primary radiation-induced events in microheterogeneous polymeric systems were investigated (microstructural aspect). It was found that the interphase processes played an important role in the radiation chemistry of such systems. The interphase electron migration may result in both positive and negative non-additive effects in the formation of radiolysis products. The effects of component diffusion and chemical reactions on the radiation-induced processes in microheterogeneous polymeric systems were studied with the example of polycarbonate - poly(alkylene terephthalate) blends. (3) The effects of restricted molecular motion on the development of the radiation-chemical processes in polymers were investigated (dynamic aspect). In particular, it

  20. Effect of type of binder on growth, digestibility, and energetic balance of Octopus maya

    OpenAIRE

    Rosas, C; Tut, J; Baeza, J; Sanchez, A; Sosa, V; Pascual, C; Arena, L; Domingues, P; Cuzon, Gerard

    2008-01-01

    The present study was designed to test the effects of type of binder on growth, nutritional physiology, total apparent digestibility, and some elements of the energetic balance of early O. maya juveniles. Two experiments were performed. One was aimed at evaluating the effect of type of binder on growth, nutritional physiology, and energetic balance and the other at knowing the effect of the binder on total apparent digestibility of O. maya. Binder type affected growth and survival of early O....

  1. Hyperscaling breakdown and Ising spin glasses: The Binder cumulant

    Science.gov (United States)

    Lundow, P. H.; Campbell, I. A.

    2018-02-01

    Among the Renormalization Group Theory scaling rules relating critical exponents, there are hyperscaling rules involving the dimension of the system. It is well known that in Ising models hyperscaling breaks down above the upper critical dimension. It was shown by Schwartz (1991) that the standard Josephson hyperscaling rule can also break down in Ising systems with quenched random interactions. A related Renormalization Group Theory hyperscaling rule links the critical exponents for the normalized Binder cumulant and the correlation length in the thermodynamic limit. An appropriate scaling approach for analyzing measurements from criticality to infinite temperature is first outlined. Numerical data on the scaling of the normalized correlation length and the normalized Binder cumulant are shown for the canonical Ising ferromagnet model in dimension three where hyperscaling holds, for the Ising ferromagnet in dimension five (so above the upper critical dimension) where hyperscaling breaks down, and then for Ising spin glass models in dimension three where the quenched interactions are random. For the Ising spin glasses there is a breakdown of the normalized Binder cumulant hyperscaling relation in the thermodynamic limit regime, with a return to size independent Binder cumulant values in the finite-size scaling regime around the critical region.

  2. Historic lime-binders : An example of the 19th century Dutch military plain concrete

    NARCIS (Netherlands)

    Heinemann, H.A.; Copuroglu, O.; Nijland, T.G.

    2012-01-01

    Before the general acceptance of Portland cement as the main binder for concrete in the late 19th century, other, locally available binders were occasionally used. In the case of the Netherlands, which did not produce Portland cement, traditional lime-based binders were not uncommon. With a strong

  3. Adherence to phosphate binders in hemodialysis patients: prevalence and determinants.

    Science.gov (United States)

    Van Camp, Yoleen P M; Vrijens, Bernard; Abraham, Ivo; Van Rompaey, Bart; Elseviers, Monique M

    2014-12-01

    Phosphate control is a crucial treatment goal in end-stage renal disease, but poor patient adherence to phosphate binder therapy remains a challenge. This study aimed to estimate the extent of phosphate binder adherence in hemodialysis patients and to identify potential determinants. Phosphate binder adherence was measured blindly in 135 hemodialysis patients for 2 months using the medication event monitoring system. Patient data, gathered at inclusion through medical records, ad hoc questionnaires and the short form (SF)-36 health survey, included: (1) demographics, (2) perceived side-effects, belief in benefit, self-reported adherence to the therapy, (3) knowledge about phosphate binder therapy, (4) social support, and (5) quality of life (SF-36). Phosphatemia data was collected from charts. 'Being adherent' was defined as missing adherent' as missing adherent. Over the entire 8-week period, 22 % of patients were totally adherent. Mean phosphatemia levels were 0.55 mg/dl lower in adherent than nonadherent patients (4.76 vs. 5.31 mg/dl). Determinants for being totally adherent were living with a partner, higher social support (both were interrelated) and higher physical quality of life. Experiencing intake-related inconvenience negatively affected adherence. The social support and quality of life physical score explained 26 % of the variance in adherence. Phosphate binder nonadherence remains a major problem. Interventions should aim, at least, to improve social support. With few associated factors found and yet low adherence, an individualized approach seems indicated.

  4. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of

  5. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    Science.gov (United States)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  6. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    Science.gov (United States)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  7. Preparation and Properties of Asphalt Binders Modified by THFS Extracted From Direct Coal Liquefaction Residue

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-11-01

    Full Text Available This paper aims to study the preparation and viscoelastic properties of asphalt binder modified by tetrahydrofuran soluble fraction (THFS extracted from direct coal liquefaction residue. The modified asphalt binders, which blended with SK-90 (control asphalt binder and 4%, 6%, 8% and 10% THFS (by weight of SK-90, were fabricated. The preparation process for asphalt binder was optimized in terms of the orthogonal array test strategy and gray correlation analysis results. The properties of asphalt binder were measured by applying Penetration performance grade and Superpave performance grade specifications. In addition, the temperature step and frequency sweep test in Dynamic Shear Rheometer were conducted to predict the rheological behavior, temperature and frequency susceptibility of asphalt binder. The test results suggested the optimal preparation process, such as 150 °C shearing temperature, 45 min shearing time and 4000 rpm shearing rate. Subsequently, the addition of THFS was beneficial in increasing the high-temperature properties but decreased the low-temperature properties and resistance to fatigue. The content analysis of THFS showed the percentage of 4~6% achieved a balance in the high-and-low temperature properties of asphalt binder. The asphalt binder with higher THFS content exhibited higher resistance to rutting and less sensitivity to frequency and temperature.

  8. Briquetting of Tuncbilek lignite fines by using ammonium nitrohumate as a binder

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, M.; Ozbayoglu, G. [Cukurova University, Adana (Turkey). Mining Engineering Dept.

    2004-03-01

    Results of experiments on the briquetting of Tuncbilek lignite fines using ammonium nitrohumate (anh), a low calorific value, young lignite-derived humic acid salt solution, are reported. The particulate material was blended with ammonium nitrohumate serving as the binder. In the briquetting tests, the effects of moisture content, pressure, binder content, nitrogen content and heat treatment were investigated. Durable briquettes, in terms of mechanical strength and water resistance, were produced with a 7% binder content at 10.5% moisture, following pressing at 1280 kg/cm{sup 2} and drying at 165{sup o}C for 1 h. The briqueues produced with ammonium nitrohumate had better combustion properties than run-of-mine samples; the contribution of the binder to smoke and sulphur emissions was very low and fine dust particles were negligible.

  9. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  10. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells

    KAUST Repository

    Ivanov, Ivan

    2017-06-02

    Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.

  11. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells

    KAUST Repository

    Ivanov, Ivan; Ahn, YongTae; Poirson, Thibault; Hickner, Michael A.; Logan, Bruce

    2017-01-01

    Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.

  12. Rheological and thermal performance of newly developed binder systems for ceramic injection molding

    Science.gov (United States)

    Hausnerova, Berenika; Kasparkova, Vera; Hnatkova, Eva

    2016-05-01

    In a novel binder system, carnauba wax was considered to replace the synthetic backbone polymers (polyolefins) enhancing the environmental sustainability of Ceramic Injection Molding (CIM) technology. The paper presents comparison of the rheological performance and thermal behavior of the aluminum oxide CIM feedstocks based on a binder containing carnauba wax with those consisting of a commercial binder. Further, acrawax (N, N'-Ethylene Bis-stearamide) has been considered as another possible substitute of polyolefins. For both proposed substitutes there is a significant reduction in viscosity, and in case of carnauba wax based feedstock also in processing temperature, which is essential for injection molding of reactive powders. Thermal characterization comprised analyses of single neat binders, their mixtures and mixtures with aluminum oxide. The presence of powder lowered melting temperatures of all tested binders except of polyolefin. Further depression in melting point of poly(ethylene glycol) is observed in combination with polyolefin in the presence of powder, and it is related to changes in size of the crystalline domains.

  13. Research on preparation of phosphate-modified animal glue binder for foundry use

    Science.gov (United States)

    Wang, Tian-Shu; Liu, Wei-Hua; Li, Ying-Min

    2018-03-01

    In this paper, three phosphates were used as modifiers to modify animal glue binder. The structural characteristics and thermal properties of animal glue binder treated with phosphates were studied by Fourier transform-infrared spectroscopy, gel permeation chromatography and derivative thermogravimetric analysis. The results showed that the modified animal glue binder had better sand tensile strength and lower viscosity than untreated animal glue binder. The best modification process was as follows: the optimal amount of sodium carbonate was 4 wt% to animal glue; the optimal weight ratio of the modifiers was sodium pyrophosphate : sodium tripolyphosphate : sodium hexametaphosphate : animal glue = 3 : 3 : 4 : 100, and the optimal reaction should be performed at 80°C for a reaction time of 120 min. A final tensile strength of approximately 3.20 MPa was achieved and the viscosity value was approximately 880 mPa s.

  14. Investigation of Ageing Effects on Organic Binders used for Mineral Wool Products

    DEFF Research Database (Denmark)

    Zafar, Ashar

    mainly due to hydrolyzation of urea containing groups. On the other hand, XPS and ToF-SIMS characterization of alkanol amine-acid anhydride binder coated mineral fibres consistently showed that the surface chemical composition of the organic components of these samples did not change appreciably during......Phenol-Urea-Formaldehyde (PUF) binder based mineral wool products’ mechanical properties have been observed to degrade during ageing at elevated temperatures and humidity, while mineral wool products based on a newly developed alkanol amine-acid anhydride binder exhibited better ageing properties...... for the same duration of ageing. The main purpose of the present work is to examine the chemical changes occurring in the phenol-urea-formaldehyde binder based mineral fibres due to ageing, which cause deterioration of the mechanical properties of mineral wool products. This has been done using surface...

  15. Ultrasmooth plasma polymerized coatings for laser-fusion targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Myers, D.W.; Witt, L.A.

    1980-01-01

    Coatings for laser fusion targets were deposited up to 135 μm thick by plasma polymerization onto 140 μm diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 μm) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power, gas flow, and pressure, and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets

  16. Road binders and energy savings. Strassenbau und Energie, Verwendung energiesparender Bindemittel

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This report is the outcome of a joint research project carried through by an international group of experts. The object was to establish whether current advances in research and practice permit to reduce energy consumption, especially the consumption of petroleum products, by making substitution, either in part or in full, for traditional binders in the construction, maintenance and strengthening of road pavements. The first part deals with bituminous binders, the second part is dedicated to hydraulic binders. As regards the possibility to make substitution for bitumen, the following materials are investigated: coal tar, sulfur, plastics, lignin, and natural rock impregnated with carbohydrates. The modification of the properties of bitumens (through polymers or rubber wastes), the use of emulsions, and the recovery of old road construction materials are dealt with in separate chapters. As regards hydraulic binders, the report investigates cements of low energy content, industrial by-products, and natural materials with hydraulic or pozzolanic properties as well as substandard materials. A separate chapter is dedicated to the possibility of reducing the thickness of the bituminous road cover over road bases with hydraulic binders. The appendix contains detailed energy balances for current road construction materials and pavement constructions. The report is meant to constitute a decision-aid for road authorities and contractors working in the public sector in choosing appropriate road construction materials and techniques on the basis of rational criteria. (orig.)

  17. Aqueous Binder Enhanced High-Performance GeP5 Anode for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jun He

    2018-02-01

    Full Text Available GeP5 is a recently reported new anode material for lithium ion batteries (LIBs, it holds a large theoretical capacity about 2300 mAh g−1, and a high rate capability due to its bi-active components and superior conductivity. However, it undergoes a large volume change during its electrochemical alloying and de-alloying with Li, a suitable binder is necessary to stable the electrode integrity for improving cycle performance. In this work, we tried to apply aqueous binders LiPAA and NaCMC to GeP5 anode, and compared the difference in electrochemical performance between them and traditional binder PVDF. As can be seen from the test result, GeP5 can keep stable in both common organic solvents and proton solvents such as water and alcohol solvents, it meets the application requirements of aqueous binders. The electrochemistry results show that the use of LiPAA binder can significantly improve the initial Coulombic efficiency, reversible capacity, and cyclability of GeP5 anode as compared to the electrodes based on NaCMC and PVDF binders. The enhanced electrochemical performance of GeP5 electrode with LiPAA binder can be ascribed to the unique high strength long chain polymer structure of LiPAA, which also provide numerous uniform distributed carboxyl groups to form strong ester groups with active materials and copper current collector. Benefit from that, the GeP5 electrode with LiPAA can also exhibit excellent rate capability, and even at low temperature, it still shows attractive electrochemical performance.

  18. An Open Challenge Problem Repository for Systems Supporting Binders

    OpenAIRE

    Felty, A.; Momigliano, A.; Pientka, B.

    2015-01-01

    A variety of logical frameworks support the use of higher-order abstract syntax in representing formal systems; however, each system has its own set of benchmarks. Even worse, general proof assistants that provide special libraries for dealing with binders offer a very limited evaluation of such libraries, and the examples given often do not exercise and stress-test key aspects that arise in the presence of binders. In this paper we design an open repository ORBI (Open challenge problem Repo...

  19. The Influence of Phosphor and Binder Chemistry on the Aging Characteristics of Remote Phosphor Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Lynn; Yaga, Robert; Lamvik, Michael; Mills, Karmann; Fletcher, B.

    2017-06-30

    The influence of phosphor and binder layer chemistries on the lumen maintenance and color stability of remote phosphor disks were examined using wet high-temperature operational lifetime testing (WHTOL). As part of the experimental matrix, two different correlated color temperature (CCT) values, 2700 K and 5000 K, were studied and each had a different binder chemistry. The 2700 K samples used a urethane binder whereas the 5000 K samples used an acrylate binder. Experimental conditions were chosen to enable study of the binder and phosphor chemistries and to minimize photo-oxidation of the polycarbonate substrate. Under the more severe WHTOL conditions of 85°C and 85% relative humidity (RH), absorption in the binder layer significantly reduced luminous flux and produced a blue color shift. The milder WHTOL conditions of 75°C and 75% RH, resulted in chemical changes in the binder layer that may alter its index of refraction. As a result, lumen maintenance remained high, but a slight yellow shift was found. The aging of remote phosphor products provides insights into the impact of materials on the performance of phosphors in an LED lighting system.

  20. Efficiency of Polymeric Membrane Graphene Oxide-TiO2 for Removal of Azo Dye

    Directory of Open Access Journals (Sweden)

    Elahe Dadvar

    2017-01-01

    Full Text Available Achieving the desired standard of drinking water quality has been one of the concerns across water treatment plants in the developing countries. Processes such as grid chamber, coagulation, sedimentation, clarification, filtration, and disinfection are typically used in water purification plants. Among these methods, unit filtration which employs polymers is one of the new technologies. There have been many studies about the use of semiconductive TiO2 with graphene oxide (GO on the base of different polymeric membranes for the removal of azo dyes, especially methylene blue (MB. Polymeric GO-TiO2 membranes have high photocatalytic, antifouling property and permeate the flux removal of organic pollutants. The aim of this study was to investigate the characteristics of different polymeric membranes such as anionic perfluorinated polymer (Nafion, cellulose acetate, polycarbonate (PC, polysulfone fluoride (PSF, and polyvinylidene fluoride (PVDF. The result of this study showed that the GO-TiO2 membrane can be used in the field of water treatment and will be used for the removal of polycyclic aromatic hydrocarbons (PAHs from wastewater.

  1. Validity of multiple stress creep recovery test for LADOTD asphalt binder specification.

    Science.gov (United States)

    2010-09-01

    The objectives of this research are to characterize the elastic response of various binders used by LADOTD to determine the feasibility of the Multiple Stress Creep Recovery (MSCR) test to be included in the LADOTD asphalt binder specification and to...

  2. Comparative Assessment of Stabilised Polybutadiene Binder under Accelerated Ageing

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Cannaval Sbegue

    2016-04-01

    Full Text Available Polybutadiene elastomers are versatile materials, being employed at several applications from rocket propellant binder to adhesives and sealants. The elastomers derived from hydroxyl-terminated polybutadiene are usually stabilised with antioxidants to prevent degradation. In this study, a comparative assessment among 2,2’-methylene-bis (4-methyl-6-tert-butylphenol (AO2246, 2,6-di-tert-butyl-4-methylphenol (BHT, p-phenylenediamine (pPDA, and triphenylphosphine (TPP regarding stabilisation of hydroxyl-terminated polybutadiene binder under accelerated ageing (six months at 65 °C was carried out. Evaluation of antioxidants effectiveness was examined through Oxidation Induction time, sol/gel extraction, swelling and mechanical testing, dynamic mechanical analysis, and mass variation measurement. AO2246 yielded the best performance, meanwhile BHT was poorly protective. TPP acted as prooxidant, causing a severe degradation of the binder, and pPDA was not manageable to be assessed due to the lower curing degree of the resulted polyurethane.

  3. Pharmaceutical equivalence of gabapentin tablets with various extragranular binders Pharmaceutical equivalence of gabapentin tablets with various extragranular binders

    Directory of Open Access Journals (Sweden)

    SWATI C. JAGDALE

    2010-06-01

    Full Text Available Gabapentin is a high-dose drug widely used as an oral anti-epilepticagent. Due to high crystalline and has poor compaction properties it is difficult to form tablets by direct compression. The aim of this study was to develop gabapentin tablets, pharmaceutically equivalent to the reference product Neurontin (marketed in USA. Gabapentin 800mg tablets were produced by wet granulation by keeping intragranular binder as well as its concentration constant and by changing with various extragranular binders with its concentration (A = PVPK 30, B = HPMC 15 cps, C = Kollidon VA 64, D =Klucel EXF.The tablet having no weight, thickness and hardness variation and having appropriate, friability as well as disintegration profile were coated with a 3% film coating solution .Seven formulations F1 (A in lower concentration F2 (A in higher concentration, F3 (B in lower concentration and F4 (B in higher concentration, F5 (C in lower concentration, F6 (C in higher concentration, F7 (D in lower concentration were formulated. Among them F6 demonstrated adequate hardness, friability, disintegration, uniformity of content, and total drug dissolution after 45minutes. The dissimilarity factor (f1 is 5.93 and the similarity factor (f2 is 67.85. So F6 was found to be equivalent to Neurontin.Gabapentin is widely used as an oral anti-epileptic agent. However, owing to its high crystallinity and poor compaction properties, it is difficult to form tablets of this drug by direct compression. The aim of this study was to develop gabapentin tablets, pharmaceutically equivalent to the brand-name pioneer product Neurontin® (marketed in USA. Gabapentin 800mg tablets were produced by wet granulation with a constant concentration of intragranular binder and a varying concentration of extragranular binders (A = polyvinylpyrrolidone K30, B = hydroxypropylmethylcellulose 15 cps, C = Kollidon VA64, D =Klucel EXF. The tablets that did not vary in weight, thickness or hardness and had

  4. Evaluation of bitumen-rubber asphalt manufactured from modified binder at lower viscosity

    CSIR Research Space (South Africa)

    O'Connell, Johannes S

    2010-08-01

    Full Text Available In South Africa, crumb tyre-modified bitumen commnly known as bitumen-rubber binder has viscosity limits specified by the current edition of TG1: The Use of Modified Bituminous Binders in Road Construction. As the crumb rubber is 'digested...

  5. Alkali – activated binders: a review part 1. Historical background, terminology, reaction mechanisms and hydration products

    OpenAIRE

    Torgal, Fernando Pacheco; Gomes, J. P. Castro; Jalali, Said

    2008-01-01

    The disintegration of concrete structures made of ordinary Portland cement (OPC) is a worrying topic of increasing significance. The development of new binders with longer durability is therefore needed. Alkali-activated binders have emerged as an alternative to OPC binders, which seems to have superior durability and environmental impact. This paper reviews current knowledge about alkali-activated binders. The subjects of Part 1 in this paper are historical background, terminology a...

  6. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    Science.gov (United States)

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A randomized-clinical trial examining a neoprene abdominal binder in gynecologic surgery patients

    Science.gov (United States)

    Szender, J.B.; Hall, K.L.; Kost, E.R.

    2016-01-01

    Summary Purpose of Investigation Pain control and early ambulation are two important postoperative goals. Strategies that decrease morphine use while increasing ambulation have the potential to decrease postoperative complications. In this study the authors sought to determine the effect of an abdominopelvic binder on postoperative morphine use, pain, and ambulation in the first day after surgery. Materials and Methods The authors randomly assigned 75 patients undergoing abdominal gynecologic surgery to either binder or not after surgery. Demographic data and surgical characteristics were collected. Outcome variables included morphine use, pain score, time to ambulation, and number of ambulations. Results A group at high risk for decreased mobility was identified and the binder increased the number of ambulatory events by 300%, 260%, and 240% in patients with vertical incisions, age over 50 years, and complex surgeries, respectively. Morphine use and pain scores were not significantly different. Conclusion The binder increased ambulations in the subset of patients at the highest risk for postoperative complications: elderly, cancer patients, and vertical incisions. Routine use of the binder may benefit particularly high-risk gynecologic surgical patients. PMID:25864252

  8. Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material

    International Nuclear Information System (INIS)

    Liu, Yuping; Huang, Kai; Fan, Yu; Zhang, Qing; Sun, Fu; Gao, Tian; Wang, Zhongzheng; Zhong, Jianxin

    2013-01-01

    A nonwoven nanofiber fabric with paper-like qualities composed of Si nanoparticles and carbon as binder-free anode electrode is reported. The nanofiber fabrics are prepared by convenient electrospinning technique, in which, the Si nanoparticles are uniformly confined in the carbon nanofibers. The high strength and flexibility of the nanofiber fabrics are beneficial for alleviating the structural deformation and facilitating ion transports throughout the whole composited electrodes. Due to the absence of binder, the less weight, higher energy density, and excellent electrical conductivity anodes can be attained. These traits make the composited nanofiber fabrics excellent used as a binder-free, mechanically flexible, high energy storage anode material in the next generation of rechargeable lithium ions batteries

  9. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    Science.gov (United States)

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  10. Utilization of date syrup as a tablet binder, comparative study.

    Science.gov (United States)

    Alanazi, Fars Kaed

    2010-04-01

    The aim of this study was to investigate the possibility of using dates syrup as a tablet binder. Dates syrup (40%, 50%, 60% w/w dates syrup:water) was utilized for the granulation of sodium bicarbonate and calcium carbonate as examples for water-soluble and water-insoluble materials; correspondingly. Those two materials represent examples of bulky drugs as well. Starch paste (10% w/w starch in water) and sucrose syrup (50% w/w sucrose in water), the well-known tablet binders, were used in the granulation of the same materials for the sake of comparison. The granulations were evaluated with regard to particle size and particle size distribution, granule strength, bulk density, flowability, moisture content and compression behavior. In addition, tablets prepared and evaluated from these granules. Taste and flavor of the prepared tablet have been tested by seven healthy volunteers. Within the scope of this work, dates syrup showed excellent properties as a tablet binder in comparison to starch paste or sucrose syrup for the granulation of both water-soluble and water-insoluble materials. Also, better flavoring and masking taste have been noticed from an evaluation by human volunteers demonstrating the usefulness of the date syrup as sweetener and flavoring the tablets in addition to its use as binder.

  11. Performance characterizations of asphalt binders and mixtures incorporating silane additive ZycoTherm

    Science.gov (United States)

    Hasan, Mohd Rosli Mohd; Hamzah, Meor Othman; Yee, Teh Sek

    2017-10-01

    Experimental works were conducted to evaluate the properties of asphalt binders and mixtures produced using a relatively new silane additive, named ZycoTherm. In this study, 0.1wt% ZycoTherm was blended with asphalt binder to enable production of asphalt mixture at lower than normal temperatures, as well as improve mix workability and compactability. Asphalt mixture performances towards pavement distresses in tropical climate region were also investigated. The properties of control asphalt binders (60/70 and 80/10 penetration grade) and asphalt binders incorporating 0.1% ZycoTherm were reported based on the penetration, softening point, rotational viscosity, complex modulus and phase angle. Subsequently, to compare the performance of asphalt mixture incorporating ZycoTherm with the control asphalt mixture, cylindrical samples were prepared at recommended temperatures and air voids depending on the binder types and test requirements. The samples were tested for indirect tensile strength (ITS), resilient modulus, dynamic creep, Hamburg wheel tracking and moisture induced damage. From compaction data using the Servopak gyratory compactor, specimen prepared using ZycoTherm exhibit higher workability and compactability compared to the conventional mixture. From the mixture performance test results, mixtures prepared with ZycoTherm showed comparable if not better performance than the control sample in terms of the resistance to moisture damage, permanent deformation and cracking.

  12. Evaluation of the rheological behavior of asphaltic binder modified with zeolite material

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, E.M. da; Sant' ana, Hosiberto B.; Soares, Sandra A.; Soares, Jorge B. [Federal University of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    Several new processes have been developed to reduce mixing and compaction temperatures of hot mix asphalt without sacrificing the quality of the resulting pavement. One of these processes utilizes the zeolite, a crystalline hydrated aluminum silicate. A laboratory study was conducted to determine the applicability of zeolite to improve the rheological and chemical behavior of an asphaltic binder. The synthetic asphaltic binder was produced with different zeolite contents (0,1; 0.3; and 0.5% w/w) by wet process. The rheological and chemical behavior was verified by Dynamic Shear Rheometer and Infrared Spectroscopy, respectively. The zeolite's chemical composition and morphology was studied by Dispersive X-ray Spectroscopy (EDX). Additionally, the scanning electron microscope (SEM) was utilized to establish the zeolite elemental composition. The results showed that investigated zeolite was classified as a sodium aluminum silicate and it was able to modify the rheological properties of the neat asphalt binder. The G*/sin{delta} parameter was affected by the zeolite presence, indicating better performance for the binders with zeolite. The results show that synthetic binders can partly replicate the rheological properties of conventional AB. Comparable complex modulus values was obtained. No significant difference was found in viscoelastic response, given by the phase angles as a function of both temperature and frequency. (author)

  13. Tröger’s Base Ladder Polymer for Membrane-Based Hydrocarbon Separation

    KAUST Repository

    Alhazmi, Abdulrahman

    2017-05-01

    The use of polymeric membranes for natural gas separation has rapidly increased during the past three decades, particularly for carbon dioxide separation from natural gas. Another valuable application is the separation of heavy hydrocarbons from methane (fuel gas conditioning), more importantly for remote area and off-shore applications. A new potential polymeric membrane that might be utilized for natural gas separations is a Tröger’s base ladder polymer (PIM-Trip-TB-2). This glassy polymeric membrane was synthesized by the polymerization reaction of 9, 10-dimethyl-2,6 (7) diaminotriptycene with dimethoxymethane. In this research, the polymer was selected due to its high surface area and highly interconnected microporous structure. Sorption isotherms of nitrogen (N2), oxygen (O¬2), methane (CH4), carbon dioxide (CO2), ethane (C2H6), propane (C3H8), and n-butane (n-C4H10) were measured at 35 °C over a range of pressures using a Hiden Intelligent Gravimetric Analyzer, IGA. The more condensable gases (C2H6, CO2, C3H8, and n-C4H10) showed high solubility due to their high affinity to the polymer matrix. The permeation coefficients were determined for various gases at 35 °C and pressure difference of 5 bar via the constant-pressure/variable-volume method. The PIM-Trip-TB-2 film exhibited high performance for several high-impact applications, such as O2/N2, H2/N2 and H2/CH4. Also, physical aging for several gases was examined by measuring the permeability coefficients at different periods of time. Moreover, a series of mixed-gas permeation tests was performed using 2 vol.% n-C4H10/98 vol.% CH4 and the results showed similar transport characteristics to other microporous polymers with pores of less than 2 nm. The work performed in this research suggested that PIM-Trip-TB-2 is suitable for the separation of: (i) higher hydrocarbons from methane and (ii) small, non-condensable gases such as O2/N2 and H2/CH4.

  14. Study of chloride ion transport of composite by using cement and starch as a binder

    Energy Technology Data Exchange (ETDEWEB)

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,; Reski, Nurhadi; Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are depending on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.

  15. Development of an MgO-based binder for stabilizing fine sediments and storing CO2.

    Science.gov (United States)

    Hwang, Kyung-Yup; Ahn, Jun-Young; Kim, Cheolyong; Seo, Jeong-Yun; Hwang, Inseong

    2015-12-01

    An MgO-based binder was developed that could stabilize fine dredged sediments for reuse and store CO2. Initially, a binder consisting of fly ash (FA) and blast furnace slag (BFS) was developed by using alkaline activators such as KOH, NaOH, and lime. The FA0.4-BFS0.6 binder (mixed at a FA-to-BFS weight ratio of 4:6) showed the highest compressive strength of 10.7 MPa among FA/BFS binders when 5 M KOH was used. When lime (L) was tested as an alkaline activator, the strength was comparable with those obtained when KOH or NaOH was used. The L0.1-(FA0.4BFS0.6)0.9 binder (10 % lime mixed with the FA/BFS binder) showed the highest strength of 11.0 MPa. Finally, by amending this L0.1-(FA0.4BFS0.6)0.9 binder with MgO, a novel MgO-based binder (MgO0.5-(L0.1-(FA0.4BFS0.6)0.9) 0.5) was developed, which demonstrated the 28th day strength of 11.9 MPa. The MgO-based binder was successfully applied to stabilize a fine sediment to yield a compressive strength of 4.78 MPa in 365 days, which was higher than that obtained by the Portland cement (PC) system (3.22 MPa). Carbon dioxide sequestration was evidenced by three observations: (1) the decrease in pH of the treated sediment from 12.2 to 11.0; (2) the progress of the carbonation front inward the treated sediment; and (3) the presence of magnesium carbonates. The thermogravimetric analysis (TGA) results showed that 67.2 kg of CO2 per ton of the treated sediment could be stored under the atmospheric condition during 1 year.

  16. Autoclave-hardening slag-alkali binder with high water content

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Kozyrin, N.A.; Melikhova, N.I.; Narkevich, N.K.; Ryabov, G.G.

    1987-01-01

    The results of investigations into properties of slag-alkali binder, that may be used for concretes of reactor radiation and thermal shieldings, are presented. These concretes have increased chemical stability and mechanical strength, high content of chemically bound water (approximately 14%), that is not lost under heating up to 550 deg C. Dumping and granulated slags of blast-furnace process, sodium-bicarbonate-alkali fusion cake formed at burning of adipic acid residues, technical sodium hydroxide and sodium liquid glass are used as raw material for slag-alkali binder

  17. Organic-mineral binder for molybdenum concentrate granulation

    International Nuclear Information System (INIS)

    Guro, Vitaliy P.; Ibragimova, Matluba A.; Safarov, Edgorjon T.

    2016-01-01

    Process of pyrite cinders production from Mo middlings consists of molybdenite concentrate granulation, firing to oxidize sulfide minerals and to recover Re-oxide. If kaolin binder is used a pyrite cinders dilution with Mo takes place. So, the development of organic binding agents, alternative to kaolin, is an actual issue. The approach is based on the comparison of the hydrophilic, strength and technological features of the hydrometallurgical processing of pellets. The new batch is developed. It differs from the traditional mixture by polymer burning and minimizing Mo dilution, thus aiming to maximize Re, Au, Ag recovery. The composition of the new organic-mineral batch is as follows: 97.3 % of molybdenite concentrate, 2 % of kaolin and 0.7 % of SK polymer. Keywords: molybdenum middlings, binder, organic additive, batch, granulation.

  18. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc

    OpenAIRE

    Jin, Fei; Al-Tabbaa, Abir

    2014-01-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration pr...

  19. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    Directory of Open Access Journals (Sweden)

    Berenika Hausnerova

    2014-02-01

    Full Text Available This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  20. Supercritical Fluid Processing of Propellant Polymers

    Science.gov (United States)

    1991-01-01

    of insoluble material present in the polymeric neopentyl glycol azelate (NPGA) binder. Laub (2) summarizes (from Refs 3 & 4) the various polymeric...binders used in composite propellant formulations for DOD missile systems. e.g., these include: polyneopentyl glycol azelate (NPGA) in HAWK. hydroxy...systems. Composite smokeless propellants containing polyethylene glycol (PEG), polyethylene glycol adepate (PEGA) and polycaprolactone are currently under

  1. Ultrasmooth plasma polymerized coatings for laser fusion targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Myers, D.W.; Witt, L.A.

    1980-01-01

    Coatings for laser fusion were deposited up to 135μm thick by plasma polymerization onto 140 μm diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 μm) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power (20 watts), gas flow (0.3 sccm trans-2-butene, 10.0 sccm hydrogen), and pressure (75 millitorr), and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets

  2. Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries

    Science.gov (United States)

    Wang, Rui; Feng, Lili; Yang, Wenrong; Zhang, Yinyin; Zhang, Yanli; Bai, Wei; Liu, Bo; Zhang, Wei; Chuan, Yongming; Zheng, Ziguang; Guan, Hongjin

    2017-10-01

    When testing the electrochemical performance of metal oxide anode for lithium-ion batteries (LIBs), binder played important role on the electrochemical performance. Which binder was more suitable for preparing transition metal oxides anodes of LIBs has not been systematically researched. Herein, five different binders such as polyvinylidene fluoride (PVDF) HSV900, PVDF 301F, PVDF Solvay5130, the mixture of styrene butadiene rubber and sodium carboxymethyl cellulose (SBR+CMC), and polyacrylonitrile (LA133) were studied to make anode electrodes (compared to the full battery). The electrochemical tests show that using SBR+CMC and LA133 binder which use water as solution were significantly better than PVDF. The SBR+CMC binder remarkably improve the bonding capacity, cycle stability, and rate performance of battery anode, and the capacity retention was about 87% after 50th cycle relative to the second cycle. SBR+CMC binder was more suitable for making transition metal oxides anodes of LIBs.

  3. Binder effect on seashell structure

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Hatta, Mohamed Nasrul Mohamed; Baba, Noor Wahida Ab; Hussin, Rosniza; Ismail, Al Emran

    2017-10-01

    Self-protection or known as defensive covering can be alluded to something that can secure body, building, or vehicles from harm or assault. As the evolution going on, the material utilized as a part of plate armour continue changing, from steel, Kevlar, ceramic and the materials that can give better impact and benefit to the user. A study has been led to distinguish either seashell can be one of the fundamental source to produce protective material due to the properties of seashell that consist of calcium chloride. Seashell is crushed and chipped using variable speed rotor mill and is compressed into specimen shape followed the ASTM C1211-13. Three different samples is tested made from seashells that mix with three different binder i.e. water, kaolin and polyethylene glycol (PEG) each. The specimens then were sintered at elevated controlled temperature 400°C before run for three point bending test to determine their mechanical properties results. Result shows that specimen with water gives highest value for Young's modulus and ultimate strength compared to sample with binder of kaolin and PEG. This proved that seashell powder remain intact even at higher temperature.

  4. Binder-free Na-mordenite pellets for tritium processing

    International Nuclear Information System (INIS)

    Toci, F.; Viola, A.; Edwards, R.A.H.; Mencarelli, T.; Brossa, P.

    1995-01-01

    Gas separation systems based on adsorption on zeolites are used in various applications involving tritium: air and inert gas detritiation, purification of Q 2 and Q 2 O, and isotope separation. Differential adsorption processes are attractive because efficient separation can be combined with small plant dimensions, low energy consumption and a small tritium inventory. Zeolites are the usual choice for the adsorbate because they combine high adsorption capacity with high selectivity and stability. However, commercial pellets show appreciable tritium retention due to inappropriate activation procedures or the presence of a binder. In this paper we report a research study aimed at producing a pelletized zeolite without binder (self-bound) with low tritium retention. (orig.)

  5. Alkali-Activated Natural Pozzolan/Slag Binder for Sustainable Concrete

    Science.gov (United States)

    Najimi, Meysam

    This study aimed to fully replace Portland cement (PC) with environmentally friendly binders capable of improving longevity of concrete. The new binders consisted of different proportions of natural Pozzolan and slag which were alkaline-activated with various combinations of sodium hydroxide and sodium silicate. A step-by-step research program was designed to (1) develop alkali-activated natural Pozzolan/slag pastes with adequate fresh and strength properties, (2) produce alkali-activated natural Pozzolan/slag mortars to assess the effects of dominant variables on their plastic and hardened properties, and (3) finally produce and assess fresh, mechanical, dimensional, transport and durability properties of alkali-activated natural Pozzolan/slag concretes. The major variables included in this study were binder combination (natural Pozzolan/slag combinations of 70/30, 50/50 and 30/70), activator combination (sodium silicate/sodium hydroxide combinations of 20/80, 25/75 and 30/70), and sodium hydroxide concentration (1, 1.75 and 2.5M). The experimental program assessed performance of alkali-activated natural Pozzolan/slag mixtures including fresh properties (flow and setting times), unit weights (fresh, demolded and oven-dry), mechanical properties (compressive and tensile strengths, and modulus of elasticity), transport properties (absorption, rapid chloride penetration, and rapid chloride migration), durability (frost resistance, chloride induced corrosion, and resistance to sulfuric acid attack), and dimensional stability (drying shrinkage). This study also compared the performance of alkali-activated natural Pozzolan/slag concretes with that of an equivalent reference Portland cement concrete having a similar flow and strength characteristics. The results of this study revealed that it was doable to find optimum binder proportions, activator combinations and sodium hydroxide concentrations to achieve adequate plastic and hardened properties. Nearly for all studied

  6. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  7. Composite binders for concrete with reduced permeability

    International Nuclear Information System (INIS)

    Fediuk, R; Yushin, A

    2016-01-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m 2 , it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa). (paper)

  8. Long-term aging of recycled binders : [summary].

    Science.gov (United States)

    2015-10-01

    At 80 million tons a year representing more than 80% of all milled asphalt pavement : asphalt paving is Americas most recycled material. Asphalt can be recycled in place, which is : very cost effective; however, aging of recycled binder ca...

  9. Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method

    International Nuclear Information System (INIS)

    Aldahdooh, M.A.A.; Muhamad Bunnori, N.; Megat Johari, M.A.

    2013-01-01

    Highlights: • We develop a practical method for adjusting the binder content of UHP-FRC. • We adjust the binder content of UHP-FRC mixtures using RSM. • Increasing the cement content does not contribute to enhance strength. • Increasing the content of cement will increase the flow of UHP-FRC mixtures. - Abstract: One of the major disadvantages in ultra-high-performance-fiber reinforced concrete (UHP-FRC) is its high ordinary Portland cement (OPC) content, which directly translates into an increase in OPC production. More OPC production results in increased emission of greenhouse gases, as well increased electrical energy consumption and concrete price. This study is aimed at adjusting the binder content (OPC and silica fume (SF) contents) of UHP-FRC using the response surface method. The present investigation shows that, for a given water/binder and superplasticizer/OPC, the compressive strength is independent of the binder content, whereas the flow depends on the binder content. Increasing the binder content does not enhance the strength compared with the required design strength because the capillary porosity increases with increasing OPC content; however, the workability increases. The final result is the production of a UHP-FRC with an OPC content of 720.49 kg/m 3 , an SF content of 214.25 kg/m 3 , a compressive strength of 181.41 MPa, a direct tensile strength of 12.49 MPa, a bending tensile strength of 30.31 MPa, and a flow of 167 mm

  10. A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries.

    Science.gov (United States)

    Lacey, Matthew J; Österlund, Viking; Bergfelt, Andreas; Jeschull, Fabian; Bowden, Tim; Brandell, Daniel

    2017-07-10

    We report here a water-based functional binder framework for the lithium-sulfur battery systems, based on the general combination of a polyether and an amide-containing polymer. These binders are applied to positive electrodes optimised towards high-energy electrochemical performance based only on commercially available materials. Electrodes with up to 4 mAh cm -2 capacity and 97-98 % coulombic efficiency are achievable in electrodes with a 65 % total sulfur content and a poly(ethylene oxide):poly(vinylpyrrolidone) (PEO:PVP) binder system. Exchange of either binder component for a different polymer with similar functionality preserves the high capacity and coulombic efficiency. The improvement in coulombic efficiency from the inclusion of the coordinating amide group was also observed in electrodes where pyrrolidone moieties were covalently grafted to the carbon black, indicating the role of this functionality in facilitating polysulfide adsorption to the electrode surface. The mechanical properties of the electrodes appear not to significantly influence sulfur utilisation or coulombic efficiency in the short term but rather determine retention of these properties over extended cycling. These results demonstrate the robustness of this very straightforward approach, as well as the considerable scope for designing binder materials with targeted properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of polymeric films subjected to lithium ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, Gary S., E-mail: gary.groenewold@inl.gov [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Cannon, W. Roger; Lessing, Paul A. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark [Image and Chemical Analysis Laboratory, Montana State University, Bozeman, MT 59717 (United States); Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States)

    2013-02-01

    Highlights: ► Polyethylene glycol (PEG) and paraffinic polymers were subjected to Li ion irradiation. ► Small oligomers detected in irradiated PEG by electrospray ionization (ESI) mass spectrometry. ► Radiolytic scission observed in X-ray photoelectron and electrospray ionization mass spectra. ► Radiation modified paraffinics characterized by changes in non-ionic surfactant additives. ► Results suggest that extent of radiolysis, and radiolytic pathways can be inferred. -- Abstract: Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H{sub 2}O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with H{sup ·} and OH{sup ·}. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp{sup 2} carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H{sub 2}O or a H{sub 2}O–methanol solution, and

  12. Binders of intravenously administered zinc 65 in rat liver cytoplasm

    International Nuclear Information System (INIS)

    Stortenbeek, A.J.; Hamer, C.J.A. van den.

    1976-01-01

    The fate of intravenously injected trace amounts of 65 Zn 2+ in the rat was studied over a period of ten days after injection. Tissue distributions were determined and a special study was made of 65 Zn-binders in liver cytoplasm. A total of six 65 Zn-binding fractions was found and a tentative identification of the main 65 Zn-binders in these six fractions is given using the collected data regarding their apparent molecular weight, time dependent prominence and content of stable zinc

  13. Utilization of date syrup as a tablet binder, comparative study

    OpenAIRE

    Alanazi, Fars Kaed

    2010-01-01

    The aim of this study was to investigate the possibility of using dates syrup as a tablet binder. Dates syrup (40%, 50%, 60% w/w dates syrup:water) was utilized for the granulation of sodium bicarbonate and calcium carbonate as examples for water-soluble and water-insoluble materials; correspondingly. Those two materials represent examples of bulky drugs as well. Starch paste (10% w/w starch in water) and sucrose syrup (50% w/w sucrose in water), the well-known tablet binders, were used in th...

  14. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  15. Effects of droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed.

    Science.gov (United States)

    Seo, Anette; Holm, Per; Schaefer, Torben

    2002-08-01

    This study was performed in order to evaluate the effects of binder droplet size and type of binder on the agglomerate growth mechanisms by melt agglomeration in a fluidised bed granulator. Lactose monohydrate was agglomerated with melted polyethylene glycol (PEG) 3000 or Gelucire 50/13 (esters of polyethylene glycol and glycerol), which was atomised at different nozzle air flow rates giving rise to median droplet sizes of 40, 60, and 80 microm. Different product temperatures were investigated, below the melting range, in the middle of the melting range, and above the melting range for each binder. The agglomerates were found to be formed by initial nucleation of lactose particles immersed in the melted binder droplets. Agglomerate growth occurred by coalescence between nuclei followed by coalescence between agglomerates. Complex effects of binder droplet size and type of binder were seen at low product temperatures. Low product temperatures resulted in smaller agglomerate sizes, because the agglomerate growth was counteracted by very high binder viscosity or solidification of the binder. At higher product temperatures, neither the binder droplet size nor the type of binder had a clear effect on the final agglomerate size.

  16. Processing nanoparticle–nanocarbon composites as binder-free electrodes for lithium-based batteries

    Directory of Open Access Journals (Sweden)

    Marya Baloch

    2017-09-01

    Full Text Available Abstract The processing of battery materials into functional electrodes traditionally requires the preparation of slurries using binders, organic solvents, and additives, all of which present economic and environmental challenges. These are amplified in the production of nanostructured carbon electrodes which are often more difficult to disperse in slurries and require more energy-intensive and longer processing. In this study we demonstrate a new process for preparing binder-free nanocarbon/nanoparticle (Fe–C composite electrodes and study the effect of processing on the nanocomposite’s cycling performance in lithium cells. The binder-free electrodes were prepared by a two-step method: pulsed-electrodeposition of iron-based catalyst followed by chemical vapor deposition of a carbon film. SEM and TEM of the Fe–C showed that the active materials have a fibrous and tortuous morphology with disordered nanocrystalline domains characteristic of an amorphous carbon. The Fe–C electrodes showed good mechanical stability and an excellent cycle performance with an average stable capacity of 221 mAhg−1, and 85% capacity retention for up to 50 cycles. By reducing the number of processing steps and eliminating the use of binders and other chemicals this new method offers a “greener” alternative than current processing methods. Graphical abstract Synopsis: gains in sustainability can be achieved by eliminating use of binders, chemicals, and the number of electrode’s processing steps in this new method.

  17. Concentrated emulsion pathway to novel composite polymeric membranes and their use in pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ruckenstein, E.; Sun, F. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemical Engineering

    1995-10-01

    Pervaporation is becoming recognized as an energy-efficient alternative to distillation and other separation methods of liquid mixtures, especially in cases in which the traditional separation techniques are not efficient, such as the separation of azeotropic mixtures, close-boiling-point components, isomeric components, and recovery or removal of trace organic substances from aqueous solutions. Novel composite polymeric membranes have been prepared, using concentrated emulsions as precursors, and employed in the pervaporation of various liquid mixtures. In order to improve the stability of the concentrated emulsion, the hydrophilicity and/or the hydrophobicity of the phases involved must be increased by replacing them with their solutions in water and/or in a hydrocarbon, respectively. Another possibility of improving the stability is to increase the viscosity of the phases, by partial polymerization of one or both phases before preparing the concentrated emulsion. The emulsion gel was subsequently transformed into a polymer composite by polymerizing both phases. The dispersed phase should be selected to yield a hydrophobic (hydrophilic) polymer which is compatible with the components selected for separation and incompatible with the other components, while the continuous phase should be selected to yield a hydrophilic (hydrophobic) polymer which is incompatible with all of the components of the mixture, and thus it can ensure the integrity of the membrane. As examples, several composite polymeric membranes were designed, prepared, and employed in the separation by pervaporation of water-ethanol,aromatics-paraffinics, and aromatics-alcohol mixtures.

  18. Process development for green part printing using binder jetting additive manufacturing

    Science.gov (United States)

    Miyanaji, Hadi; Orth, Morgan; Akbar, Junaid Muhammad; Yang, Li

    2018-05-01

    Originally developed decades ago, the binder jetting additive manufacturing (BJ-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compatibility and technological expandability. However, the adoption of BJ-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for BJ-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in-process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.

  19. Production of synthetic hydrocarbon lube oil from highly waxy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Q; Ding, Z; Zheng, Sh; Wu, W

    1980-01-01

    A feasible way to utilize the low value soft wax is to convert it into synthetic hydrocarbon lube oil by thermal cracking/polymerization route. The first commercial plant for this purpose has been in normal operation since 1970. It has been proved to be economically sound. The antioxidant response of the product polymer oil can be distinctly improved by hydro-refining. It has been found that the vacuum gas oil from highly waxy crude with or without furfural refining can be used as cracking stock. If high viscosity index polymer oil is desired, it is better to use slack wax as the cracking stock.

  20. Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples

    International Nuclear Information System (INIS)

    Wei, Songbo; Lin, Wei; Xu, Jianqiao; Wang, Ying; Liu, Shuqin; Zhu, Fang; Liu, Yuan; Ouyang, Gangfeng

    2017-01-01

    In this contribution, it was discovered that even distribution of a metal-organic framework (MOF) [e.g. copper 1,4-benzenedicarboxylate (CBDC)] within polymeric matrixes (e.g. polyimide) resulted in a high-efficient coating material on the surface of a stainless steel wire (SSW). Consequently, a home-made solid phase microextraction (SPME) fiber was fabricated for fast determination of target analytes in real water samples. Scanning electron microscope images indicated that the coating possessed homogenously porous surface. Coupled with gas chromatography-mass spectrometry (GC-MS) and direct immersion SPME (DI-SPME) technique, the fiber was evaluated through the analysis of five polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Under optimized extraction and desorption conditions, the established method based on the home-made fiber exhibited good repeatability (4.2–12.7%, n = 6) and reproducibility (0.9–11.7%, n = 3), low limits of detection (LODs, 0.11–2.10 ng L"−"1), low limits of quantification (LOQs, 0.36–6.99 ng L"−"1) and wide linear ranges (20–5000 ng L"−"1). Eventually, the method was proven applicable in the determination of PAHs in real samples, as the recoveries were in a satisfactory range (81.7–116%). - Highlights: • A homogenously porous CBDC@polyimide-coated fiber was fabricated and characterized. • The fiber exhibited highly desired extraction performance towards PAHs. • The fiber was employed for the determination of PAHs in real aqueous samples.

  1. Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Songbo; Lin, Wei; Xu, Jianqiao [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Ying [School of Pharmacy, Guiyang Medical University, Guiyang 550004 (China); Liu, Shuqin; Zhu, Fang [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yuan, E-mail: yliu@shou.edu.cn [College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306 (China); Ouyang, Gangfeng, E-mail: cesoygf@mail.sysu.edu.cn [MOE Key Laboratory of Aquatic Product of Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-06-08

    In this contribution, it was discovered that even distribution of a metal-organic framework (MOF) [e.g. copper 1,4-benzenedicarboxylate (CBDC)] within polymeric matrixes (e.g. polyimide) resulted in a high-efficient coating material on the surface of a stainless steel wire (SSW). Consequently, a home-made solid phase microextraction (SPME) fiber was fabricated for fast determination of target analytes in real water samples. Scanning electron microscope images indicated that the coating possessed homogenously porous surface. Coupled with gas chromatography-mass spectrometry (GC-MS) and direct immersion SPME (DI-SPME) technique, the fiber was evaluated through the analysis of five polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Under optimized extraction and desorption conditions, the established method based on the home-made fiber exhibited good repeatability (4.2–12.7%, n = 6) and reproducibility (0.9–11.7%, n = 3), low limits of detection (LODs, 0.11–2.10 ng L{sup −1}), low limits of quantification (LOQs, 0.36–6.99 ng L{sup −1}) and wide linear ranges (20–5000 ng L{sup −1}). Eventually, the method was proven applicable in the determination of PAHs in real samples, as the recoveries were in a satisfactory range (81.7–116%). - Highlights: • A homogenously porous CBDC@polyimide-coated fiber was fabricated and characterized. • The fiber exhibited highly desired extraction performance towards PAHs. • The fiber was employed for the determination of PAHs in real aqueous samples.

  2. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

    Science.gov (United States)

    Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li

    2016-03-01

    Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.

  3. The Effect of Crumb Rubber Particle Size to the Optimum Binder Content for Open Graded Friction Course

    Directory of Open Access Journals (Sweden)

    Mohd Rasdan Ibrahim

    2014-01-01

    Full Text Available The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC. Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12% and different percentages of binder content (4%–7%. The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.

  4. Rubber modification of asphalt binders and mixes

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, G.; Hesp, S.A.M. [Queen`s Univ., Kingston, ON (Canada). Dept. of Chemistry

    1995-12-31

    The physical properties of asphalt binders and concrete, modified with waste rubber tire, were examined. In an experiment designed to address the concern of waste disposal of scrap rubber, a control asphalt, devulcanized rubber modified asphalt and a crumb rubber modified asphalt were used to make asphalt concrete mixes. The three mixes were subjected to a thermal stress test to determine their low temperature fracture temperatures and strengths. Results were discussed in terms of the binder material used. At high service temperatures, the addition of 10% devulcanized rubber was found to have no beneficial effect, whereas the addition of 10% 80 mesh crumb rubber produced a modest improvement in performance. At low temperatures, the addition of devulcanized rubber produced increased resistance to cracking up to 90%. The addition of 10% 80 mesh crumb rubber increased fracture toughness by a factor of 3.3 times. 12 refs., 3 tabs.

  5. Curing mechanism of flexible aqueous polymeric coatings.

    Science.gov (United States)

    Irfan, Muhammad; Ahmed, Abid Riaz; Kolter, Karl; Bodmeier, Roland; Dashevskiy, Andriy

    2017-06-01

    The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat® SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat® SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60°C or 60°C/75% RH for 24h. The film formation of the aqueous dispersion of Kollicoat® SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60°C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with (1) high flexibility of coating, (2) adhesion between coating and drug layer, (3) water retaining properties of the drug layer, and (4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified

  6. Mechanical Properties of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders : Executive Summary Report

    Science.gov (United States)

    2011-03-01

    Hot mix asphalt (HMA) is a mixture containing aggregates and asphalt binders prepared at specified : proportions. The aggregates and asphalt binder proportions are determined through a mix design : procedure such as the Marshall Mix Design or the Sup...

  7. Effect of Binder on Combustion Quality on EFB Bio-briquettes

    Science.gov (United States)

    Handra, Nofriady; Hafni

    2017-12-01

    Energy demand in various sectors in Indonesia has increased in line with the rate of population growth and the national economy. Fulfillment of energy needs can be obtained from various energy sources such as fuel oil, solar, biomass, wind, water and others. So far, energy sources used in Indonesia are still using many non-renewable energy sources, such as fuel oil. The utilization of waste from empty palm oil bunches into bio-briquettes has helped the government in overcoming the problem of EFB waste. The availability of biomass has prompted researchers to utilize biomass waste that includes Agricultural and Forestry waste, to be processed into briquettes as an alternative energy substitute for fuel oil. This research aims to improve the utilization of waste of Palm Oil Bunches through the manufacture of bio-briquette as alternative fuel and determine the appropriate binder material for briquette making so as to produce optimal combustion value. The binders used for the manufacture of briquettes are pine sap and starch flour. The test result showed that the highest value of calorific was found in the mixture of 50% EFB composition with fibre size ± 1-5 mm with 50% pine resin which is 6331,7 cal/g. Meanwhile, lowest value on EFB ± with fibre size 5-10 mm composition EFB 60% and 40% starch flour binder that is 2295,7 cal/g. The results of a flame test study of several points that are known to turn on until it emits a flame for ± 30 seconds, it takes 22,2 minutes for the burnt-out briquette (to ashes). Based on visual observations that the fire colour of bio-briquette with finer fibre on the EFB composition 50% pine gum binder produces a bluish red fire colour. It is generally assumed that pine resin glues produce better fuel value compared to starch binder. Besides that, fibre particles size also affects the combustion quality produced.

  8. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  9. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  10. Influence of hydroxyl content of binders on rheological properties of cerium-gadolinium oxide (CGO) screen printing inks

    DEFF Research Database (Denmark)

    Marani, Debora; Gadea, Christophe; Hjelm, Johan

    2015-01-01

    vinyl resins) were selected and characterized in solution via viscosimetry method. A high degree of hyper-entanglement was observed for ethyl cellulose polymers, whereas a mitigated effect characterized the two vinyl resins. Cerium-gadolinium oxides (CGO)-based inks, prepared using the selected binders......The influence of hydroxyl content of binders on rheological properties of screen printing inks is investigated. The actual amount of hydroxyl groups is correlated to the level of hyper-entanglement that characterizes the binders in solution. Three of the most used binders (ethyl cellulose, and two...

  11. A study of binder materials subjected to isentropic compression loading

    International Nuclear Information System (INIS)

    Hall, Clint Allen; Orler, E. Bruce; Sheffield, Steve A.; Gustavsen, Rick L.; Sutherland, Gerrit; Baer, Melvin R.; Hooks, D.E.

    2005-01-01

    Binders such as Estane, Teflon, Kel F and HTPB are typically used in heterogeneous explosives to bond polycrystalline constituents together as an energetic composite. Combined theoretical and experimental studies are underway to unravel the mechanical response of these materials when subjected to isentropic compression loading. Key to this effort is the determination of appropriate constitutive and EOS property data at extremely high stress-strain states as required for detailed mesoscale modeling. The Sandia Z accelerator and associated diagnostics provides new insights into mechanical response of these nonreactive constituents via isentropic ramp-wave compression loading. Several thicknesses of samples, varied from 0.3 to 1.2 mm, were subjected to a ramp load of ∼42 Kbar over 500 ns duration using the Sandia Z-machine. Profiles of transmitted ramp waves were measured at window interfaces using conventional VISAR. Shock physics analysis is then used to determine the nonlinear material response of the binder materials. In this presentation we discuss experimental and modeling details of the ramp wave loading ICE experiments designed specifically for binder materials.

  12. A novel and efficient water-based composite binder for LiCoO{sub 2} cathodes in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yung-Ju [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei (China); Peng, Xing-Wei [Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei (China); Wang, Fu-Ming; Yang, Chang-Rung [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu (China); Li, Chia-Chen [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei (China); Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei (China); Lee, Jyh-Tsung

    2007-11-15

    The dispersion, adhesion strength, electrical, and electrochemical properties of LiCoO{sub 2} cathodes in lithium-ion batteries with the addition of a new composite binder composed of two acrylic emulsions, poly(butyl acrylate)-based (PBA) and polyacrylonitrile-based (PA) latex in a ratio of 3:7, were evaluated. PBA binder has a low-glass transition temperature of 10 C, which can improve the flexibility of the electrode. This new composite binder has a very good binding ability as same as the typical organic solvent-based binder, poly(vinylidene fluoride). The dispersions of the water-based cathode slurries with the composite binder were measured by analyzing the viscosity and sedimentation behaviors. The results show that the new composite binder can well disperse the LiCoO{sub 2}. Moreover, using the new composite binder could greatly improve the rate capabilities and the cycle stability of water-based LiCoO{sub 2} cathodes. (author)

  13. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Li, Xinpei; Yang, Mingming; Chai, Weihong; Wang, Kai; zhang, Yingfeng

    2016-04-01

    In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and essence of binders on the HA crystallographic planes for 3DP fabrication bone scaffolds. The cohesive energy densities of binders and the binding energies, PCFs g(r), mechanical properties of binder/HA interaction models were analyzed through the MD simulation. Additionally, we prepared the HA bone scaffold specimens with different glues by 3DP additive manufacturing, and tested their mechanical properties by the electronic universal testing machine. The simulation results revealed that the relationship of the binding energies between binders and HA surface is consistent with the cohesive energy densities of binders, which is PAM/HA>PVA/HA>PVP/HA. The PCFs g(r) indicated that their interfacial interactions mainly attribute to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA. The results of mechanical experiments verified the relationship of Young׳s modulus for three interaction models in simulation, which is PVA/HA>PAM/HA>PVP/HA. But the trend of compressive strength is PAM/HA>PVA/HA>PVP/HA, this is consistent with the binding energies of simulation. Therefore, the Young׳s modulus of bone scaffolds are limited by the Young׳s modulus of binders, and the compressive strength is mainly decided by the viscosity of binder. Finally, the major reasons for differences in mechanical properties between simulation and experiment were found, the space among HA pellets and the incomplete infiltration of glue were the main reasons influencing the mechanical properties of 3DP fabrication HA bone scaffolds. These results provide useful information in choosing binder for 3DP fabrication

  14. The role of bentonite binders in single or concomitant mycotoxin contamination of chicken diets.

    Science.gov (United States)

    Pappas, A C; Tsiplakou, E; Tsitsigiannis, D I; Georgiadou, M; Iliadi, M K; Sotirakoglou, K; Zervas, G

    2016-08-01

    Concomitant presence of mycotoxins is more likely to appear than a single mycotoxicosis since many mycotoxigenic fungi grow and produce their toxic metabolites under similar conditions. The present study was designed to evaluate the efficacy of 4 mycotoxin binders to protect meat-type chickens against single and concomitant administration in the feed of two mycotoxins, namely aflatoxin B1 (AFB1) and ochratoxin A (OTA) both at concentration of 0.1 mg/kg. A total of 440 as hatched, d-old, Ross 308 broilers were reared for 42 d. There were 11 dietary treatments. Chickens were fed on either an uncontaminated basal diet, basal diet and AFB1, basal with concomitant presence of AFB1 and OTA, basal diet and three binders A, B and C (1%) with or without AFB1 or basal diet and binder D (0.5%) with or without concomitant presence of AFB1 and OTA. Performance, carcass yield and several biochemical parameters were examined. Mycotoxin concentration in liver and breast muscle samples was determined. Broiler performance under concomitant mycotoxin contamination was poorer than that under single mycotoxicosis. Mycotoxin presence increased relative heart weight compared to that of broilers fed on uncontaminated diets. Only OTA and not AFB1 was detected and only in the liver. OTA concentration was four-fold lower in broilers fed on a diet with binder compared to those fed on contaminated diets without binder. In conclusion, the study revealed that binder composition and presence or not of multiple toxins may be important factors for optimum broiler performance under mycotoxicosis.

  15. Ductile Binder Phase For Use With Almgb14 And Other Hard Ceramic Materials

    Science.gov (United States)

    Cook, Bruce A.; Russell, Alan; Harringa, Joel

    2005-07-26

    This invention relates to a ductile binder phase for use with AlMgB14 and other hard materials. The ductile binder phase, a cobalt-manganese alloy, is used in appropriate quantities to tailor good hardness and reasonable fracture toughness for hard materials so they can be used suitably in industrial machining and grinding applications.

  16. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    Science.gov (United States)

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  17. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  18. Binder extrusion of sliding wear of WC-Co alloys

    International Nuclear Information System (INIS)

    Larsen-Basse, J.

    1985-01-01

    It has previously been proposed that preferential removal of the cobalt binder is an important mechanism in the abrasive wear of cemented carbides in the WC-Co family. It is here demonstrated that binder extrusion occurs also in metal-to-metal sliding wear contacts. The wear scar generated by sliding a hardened steel ball repeatedly over a polished WC-Co surface was studied by SEM. The extruded cobalt fragments accumulate by surface defects, such as cracks caused by the sliding loaded ball, and gradual microfragmentation of the carbide grains follows. The energy required to extrude the cobalt and cause the gradual change in surface layer microstructure is provided by the frictional forces

  19. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  20. Processing of Building Binder Materials to Increase their Activation

    Science.gov (United States)

    Fediuk, R. S.; Garmashov, I. S.; Kuzmin, D. E.; Stoyushko, N. Yu; Gladkova, N. A.

    2018-01-01

    The paper deals modern physical methods of activation of building powder materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of Portland cement. Activated concrete has a number of features that are used as design characteristics of structures and are due to the structure of the activated binder and its contacts with concrete aggregates. These features also have a significant impact on the nature of the destruction of concrete under load, changing the boundaries of its microcracks and durability.

  1. STRUCTURE AND PROPERTIES OF COMPOSITE MATERIAL BASED ON GYPSUM BINDER AND CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    CHUMAK Anastasia Gennadievna

    2013-04-01

    Full Text Available The aim of this work is to carry out a number of studies in the area of nanomodi­fication of gypsum binder matrix and to investigate the influence of multilayer carbon nanotubes on the structure, physical and mechanical properties of obtained compos­ites. The study of the gypsum binders structure formation mechanisms with the use of nanoadditives makes it possible to control the production processes of gypsum materi­als and articles with the given set of properties. The main tasks of the binder nanomodification are: even distribution of carbon nanostructures over the whole volume of material and provision of stability for the nanodimensional modifier during production process of the construction composite.

  2. RELATIVE DOSING OF PHOSPHATE BINDERS FOR EFFECTIVE MANAGEMENT OF PHOSPHATE AND PROTEIN INTAKE IN CHRONIC KIDNEY DISEASE

    Directory of Open Access Journals (Sweden)

    J Brian Copley

    2012-06-01

    The availability of binding capacity data for P binders, presents physicians with the possibility of tailoring doses of binder to a patient’s diet, facilitating sufficient intake of dietary protein while maintaining a neutral P balance. Use of high-capacity binders, such as lanthanum carbonate, would minimize the tablet burden faced by patients and this may also encourage adherence.

  3. The Influence of Aggregate Size and Binder Material on the Properties of Pervious Concrete

    Directory of Open Access Journals (Sweden)

    Tun Chi Fu

    2014-01-01

    Full Text Available Specimens were prepared by altering parameters such as aggregate sizes, binder materials, and the amounts of binder used and were subsequently tested by using permeability, porosity, mechanical strength, and soundness tests. The results indicated that the water permeability coefficient and connected porosity decreased as the amount of binder used increased and increased with increasing aggregate size. In the mechanical strength test, the compressive, splitting tensile, and flexural strengths increased as the amount of binder used increased and decreased with the increase of aggregate size. Highly viscous binder enhanced compressive strength, water permeability, and the resistance to sulfate attacks. In the mechanics and sulfate soundness tests, the mix proportion of alkali-activated slag paste used in this study exhibited a superior performance than the Portland cement pervious concrete (the control did, but the difference in water permeability between the two types of concrete was insignificant. The mix proportions of cement paste containing 20% and 30% silica fume exhibited less mechanical strength than the control did. Moreover, compared with the control, the cement paste containing silica fume demonstrated poor resistance to sulfate attacks, and the difference in the water permeability between such specimen and the control was not noticeable.

  4. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    Directory of Open Access Journals (Sweden)

    Uğur GÖKMEN

    2016-02-01

    Full Text Available In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG based and can be dissolved in water, were used. Polypropylene was used as binder and steric acid was used as lubricant for both binder systems as skeleton binder. Dry binder system were mixed for 30 min in a three dimensional Turbola. Capillary rheometer was used to characterize the rheological properties of feed stocks at 150-200 °C and a pressures of 0.165-2.069 MPa. Powder loading capacity of PEG and PW based feed stocks were found to be %55 and %61 respectively. The lowest viscosity of PEG and PW based feed stocks were found to be 304.707 Pa.s and 48.857 Pa.s respectively.Keywords: PIM, Binder, Rheological properties

  5. The Compositions: Biodegradable Material - Typical Resin, as Moulding Sands’ Binders

    Directory of Open Access Journals (Sweden)

    Major-Gabryś K.

    2015-03-01

    Full Text Available The paper presents possibility of using biodegradable materials as parts of moulding sands’ binders based on commonly used in foundry practice resins. The authors focus on thermal destruction of binding materials and thermal deformation of moulding sands with tested materials. All the research is conducted for the biodegradable material and two typical resins separately. The point of the article is to show if tested materials are compatible from thermal destruction and thermal deformation points of view. It was proved that tested materials characterized with similar thermal destruction but thermal deformation of moulding sands with those binders was different.

  6. Cold in-place recycling characterization framework for single or multiple component binder systems

    Science.gov (United States)

    Cox, Benjamin C.

    Cold in-place recycling (CIR) is a pavement rehabilitation technique which has gained momentum in recent years. This momentum is due partly to its economic and sustainability characteristics, which has led to CIR market expansion. When pavement network deterioration is considered alongside increasing material costs, it is not beyond reason to expect demands on CIR to continue to increase. Historically, single component binder (SCB) systems, those with one stabilization binder (or two if the secondary binder dosage is 1% or less), have dominated the CIR market and could be considered the general state of practice. Common stabilization binders are either bituminous or cementitious. Two example SCB systems would be: 1) 3% portland cement, or 2) 3% asphalt emulsion with 1% hydrated lime. While traditional SCB systems have demonstrated positive economic and sustainability impacts, this dissertation focuses on multiple component binder (MCB) systems (bituminous and cementitious combined) which exhibit the potential to provide better overall economics and performance. Use of MCBs has the potential to alleviate SCB issues to some extent (e.g. cracking with cementitious SCBs, rutting with bituminous SCBs). Furthermore, to fairly represent both binders in an MCB system a universal design method which can accommodate multiple binder types is needed. The main objectives of this dissertation are to develop a universal CIR design framework and, using this framework, characterize multiple SCB and MCB systems. Approximately 1500 CIR specimens were tested herein along with approximately 300 asphalt concrete specimens which serve as a reference data set for CIR characterization. A case study of a high-traffic Mississippi CIR project which included cement SCB and emulsion SCB sections is also presented to support laboratory efforts. Individual components needed to comprise a universal design framework, such as curing protocols, were developed. SCB and MCB characterization indicated

  7. Determination of usable residual asphalt binder in RAP.

    Science.gov (United States)

    2009-01-01

    For current recycled mix designs, the Illinois Department of Transportation (IDOT) assumes 100% contribution of : working binder from Recycled Asphalt Pavement (RAP) materials when added to Hot Mix Asphalt (HMA). However, it is : unclear if this assu...

  8. Validity of multiple stress creep recovery (MSCR) test for DOTD asphalt binder specification : technical summary.

    Science.gov (United States)

    2017-09-01

    Higher traffic coupled with heavier loads led the asphalt industry to introduce polymer-modified binders to enhance the durability and strength of hot mix asphalt (HMA) pavements. When the Superpave Performance Graded (PG) binder specification (AASHT...

  9. Implementation of nondestructive testing and mechanical performance approaches to assess low temperature fracture properties of asphalt binders

    Directory of Open Access Journals (Sweden)

    Salman Hakimzadeh

    2017-05-01

    Full Text Available In the present work, three different asphalt binders were studied to assess their fracture behavior at low temperatures. Fracture properties of asphalt materials were obtained through conducting the compact tension [C(T] and indirect tensile [ID(T] strength tests. Mechanical fracture tests were followed by performing acoustic emissions test to determine the “embrittlement temperature” of binders which was used in evaluation of thermally induced microdamages in binders. Results showed that both nondestructive and mechanical testing approaches could successfully capture low-temperature cracking behavior of asphalt materials. It was also observed that using GTR as the binder modifier significantly improved thermal cracking resistance of PG64-22 binder. The overall trends of AE test results were consistent with those of mechanical tests. Keywords: Thermal cracking, Indirect tensile strength test, Compact tension test, Nondestructive approach, Acoustic emission test, Embrittlement temperature

  10. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    Chai, Lili; Qu, Qunting; Zhang, Longfei; Shen, Ming; Zhang, Li; Zheng, Honghe

    2013-01-01

    Highlights: • Chitosan is used as a new electrode binder for graphite anode. • Electrochemical properties of the chitosan-based electrode are compared with that of PVDF-based one. • Electrochemical performances of the graphite anode are improved by using chitosan binder. • Chitosan binder facilitates the formation of a thin, homogenous and stable SEI film of the electrode. -- Abstract: Chitosan was applied as the electrode binder material for a spherical graphite anode in lithium-ion batteries. Compared to using poly (vinylidene fluoride) (PVDF) binder, the graphite anode using chitosan exhibited enhanced electrochemical performances in terms of the first Columbic efficiency, rate capability and cycling behavior. With similar specific capacity, the first Columbic efficiency of the chitosan-based anode is 95.4% compared to 89.3% of the PVDF-based anode. After 200 charge–discharge cycles at 0.5C, the capacity retention of the chitosan-based electrode showed to be significantly higher than that of the PVDF-based electrode. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) measurements were carried out to investigate the formation and evolution of the solid electrolyte interphase (SEI) formed on the graphite electrodes. The results show that a thin, homogenous and stable SEI layer is formed on the graphite electrode surface with chitosan binder compared with that using the conventional PVDF binder

  11. Studies on organic binders with high infrared transparency

    International Nuclear Information System (INIS)

    Cheng-Wu, Fu; Hao-Shen, Zhou; Ming-Qing, Chen

    2009-01-01

    This paper reports that two kinds of polymers with high infrared transparency and good mechanical and physical properties have been prepared. An internal standard method is used to evaluate the infrared transparency of the binders. The physical and mechanical properties of the binders are measured according to corresponding standards. The results show the absorbance of polymer A in 8–14 μm range is 26% that of the ethylene-vinyl acetate copolymer (EVA), and polymer B is 9% that of the EVA correspondingly. The film of polymer A shows good flexibility of above 1 mm, a hardness of grade 1, and adhesion of grade 2. The film of polymer B shows good flexibility of above 1 mm, a hardness of grade 1, and adhesion of grade 1. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Composite Gypsum Binders with Silica-containing Additives

    Science.gov (United States)

    Chernysheva, N. V.; Lesovik, V. S.; Drebezgova, M. Yu; Shatalova, S. V.; Alaskhanov, A. H.

    2018-03-01

    New types of fine mineral additives are proposed for designing water-resistant Composite Gypsum Binders (CGB); these additives significantly differ from traditional quartz feed: wastes from wet magnetic separation of Banded Iron Formation (BIF WMS waste), nanodispersed silica powder (NSP), chalk. Possibility of their combined use has been studied as well.

  13. Low toxicity binder systems for tape cast Ce0.9Gd0.1O1.95 laminates

    DEFF Research Database (Denmark)

    Klemensø, Trine; Menon, Mohan; Ramousse, Severine

    2010-01-01

    Conventional binder systems for tape casting contain toxic phthalate plasticizers and butanone (MEK) as part of the solvent. The effects of exchanging the phthalate with a non-toxic alternative, and butanone with ethanol, were studied on laminates of high-green density CGO (Ce0.9Gd0.1O1.95) tapes....... Samples were prepared with a binder system containing DBP (dibutyl phthalate) plasticizer and MEK solvent, and with a binder system based on a non-toxic non-phthalate plasticizer and ethanol. In both systems, the weight ratio of plasticizer to the PVB (polyvinyl butyral) binder was varied between 0.......4 and 0.7. Substitution to the less toxic binder system had no adverse impacts on the microstructure. In fact, denser packing and improved homogeneity were observed with the non-phthalate-based system at ratio 0.5 indicating improved dispersion in this system. The denser packing also coincided...

  14. Effects of metal binder on the microstructure and mechanical properties of Ti(C,N)-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Ai, Xing, E-mail: aixingsdu@163.com; Zhao, Jun; Gong, Feng; Pang, Jiming; Wang, Yintao

    2015-09-25

    Highlights: • Ni–Co binder improves the solid solution reaction and the wetting of hard phases. • Cermets with 25 wt.% binder have evenly distributed grains with moderate rims. • Co/(Ni + Co) ratios influence the grain sizes and microstructure features of cermets. • The cermets with pure Co as binder exhibit optimal mechanical properties. - Abstract: To optimize the mechanical properties of Ti(C,N)-based cermets used as tool materials, the cermets with different Ni–Co binder contents and Co/(Ni + Co) weight ratios were prepared. The effects of metal binder content and Co/(Ni + Co) ratio on the microstructure and mechanical properties of Ti(C,N)-based cermets were investigated by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and measuring the transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}). The experimental results reveal that increasing Ni–Co binder content can increase the thickness of rim phases by improving the solid solution reaction and the wetting of hard phases. The cermets with 25 wt.% binder addition present good comprehensive mechanical properties, which is attributed to the moderate rim phases and uniformly distributed Ti(C,N) grains. The Co/(Ni + Co) weight ratios in binder have a great influence on the grain sizes and microstructure features of Ti(C,N)-based cermets, in virtue of the synergic effects between the wettability of Co and the solubilizing capacity of Ni on hard phases. The cermets with pure Co as binder exhibit optimal mechanical properties with a TRS of 1767 ± 81 MPa, a hardness of 12.26 ± 0.10 GPa and a K{sub IC} of 8.40 ± 0.47 MPa m{sup 1/2}, which meet the requirements for tool materials. And the cermets with a Co/(Ni + Co) ratio of 0.2 have the second best mechanical properties with a TRS of 1848 ± 201 MPa, a hardness of 11.12 ± 0.40 GPa and a K{sub IC} of 9.43 ± 0.54 MPa m{sup 1/2}, in which the lower hardness can

  15. Effect of Co-Production of Renewable Biomaterials on the Performance of Asphalt Binder in Macro and Micro Perspectives.

    Science.gov (United States)

    Qu, Xin; Liu, Quan; Wang, Chao; Wang, Dawei; Oeser, Markus

    2018-02-06

    Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately.

  16. Effect of Co-Production of Renewable Biomaterials on the Performance of Asphalt Binder in Macro and Micro Perspectives

    Directory of Open Access Journals (Sweden)

    Xin Qu

    2018-02-01

    Full Text Available Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately.

  17. OPERATIONAL PROPERTIES AS THE INDICATORS OF SULFUR BINDERS NANOMODIFICATION

    Directory of Open Access Journals (Sweden)

    KOROLEV Evgenij Valerjevich

    2013-06-01

    Full Text Available Both computed dependence and theoretical estimation of the variation range for generalized material’s quality criterion are presented. It is shown that first of all realization of nanotechnology should be held in respect to the properties which determine the area of material’s application. As the particular criteria of the material’s quality, it is most appropriate to use the attributes which are closely connected to the intrinsic features of the process or property being analyzed. The technology of sulfur-based binders was the area of application of nanoscale improvement of disperse phases. It was found that sulfur-based binders are chemically resistant materials (according to RU GOST 25246–82**. Fillers nanomodification increases resistance of materials within the predicted range of values.

  18. Stabilization/solidification of hot dip galvanizing ash using different binders.

    Science.gov (United States)

    Vinter, S; Montanes, M T; Bednarik, V; Hrivnova, P

    2016-12-15

    This study focuses on solidification of hot dip-galvanizing ash with a high content of zinc and soluble substances. The main purpose of this paper is to immobilize these pollutants into a matrix and allow a safer way for landfill disposal of that waste. Three different binders (Portland cement, fly ash and coal fluidized-bed combustion ash) were used for the waste solidification. Effectiveness of the process was evaluated using leaching test according to EN 12457-4 and by using the variance analysis and the categorical multifactorial test. In the leaching test, four parameters were observed: pH, zinc concentration in leachate, and concentration of chlorides and dissolved substances in leachate. The acquired data was then processed using statistical software to find an optimal solidifying ratio of the addition of binder, water, and waste to the mixture, with the aim to fulfil the requirement for landfill disposal set by the Council Decision 2003/33/EC. The influence on the main observed parameters (relative amount of water and a binder) on the effectiveness of the used method and their influence of measured parameters was also studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of WMA Additive on the Rheological Properties of Asphalt Binder and High Temperature Performance Grade

    Directory of Open Access Journals (Sweden)

    Jiupeng Zhang

    2015-01-01

    Full Text Available Sasobit additives with different dosages were added into 70# and 90# virgin asphalt binders to prepare WMA binders. The rheological properties, including G∗ and δ, were measured by using DSR at the temperature ranging from 46°C to 70°C, and the effects of temperature, additive dosage and aging on G∗/sin⁡δ, critical temperature, and H-T PG were investigated. The results indicate that WMA additive improves G∗ but reduces δ, and the improvement on 70# virgin binder is more significant. G∗/sin⁡δ exponentially decreases with the increasing temperature but linearly increases with the increasing additive dosage. Aging effect weakens the interaction between binder and additive but significantly increases the binder’s viscosity; that is why G∗/sin⁡δ is higher after short-term aging. In addition, the critical temperature increases with the increasing additive dosage, and the additive dosage should be more than 3% and 5% to improve H-T PG by one grade for 70# and 90# virgin binder, respectively.

  20. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Cao, Peng, E-mail: p.cao@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Wen, Guian [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Edmonds, Neil [School of Chemical Science, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)

    2013-05-15

    Polyethylene glycol (PEG) has been becoming a common component in the design of water soluble binder systems for metal injection moulding. Similar to solvent debinding, PEG can be leached out by water and the mechanism of debinding was proposed in the literature with somehow misleading information about the debinding mechanism, particularly about the formation of PEG gel. This work investigates the debinding behaviours of a PEG-based binder in titanium compacts. Titanium powder is formulated with PEG, poly(methyl methacrylate) (PMMA) and stearic acid (SA) to formulate titanium feedstock. To determine the debinding kinetics, the PEG removal percentages are measured at three different temperatures and for various specimen thicknesses. A mathematic model based on diffusion-controlled debinding process is established. The evolution of porous microstructure during the water debinding process is observed using scanning electron microscopy. Based on these observations, a water debinding mechanism for titanium alloy compacts formulated with PEG-based binders is proposed. - Highlights: ► The water-debinding behaviours of the PEG binder system were investigated. ► PEG dissolution and transportation, and the pore structure development. ► A water debinding mechanism of PEG-based binders is proposed. ► Incorrect explanation of PEG gelling in the literature is corrected. ► Correction/modification made as per the reviewers' comments and suggestions.

  1. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding

    International Nuclear Information System (INIS)

    Chen, Gang; Cao, Peng; Wen, Guian; Edmonds, Neil

    2013-01-01

    Polyethylene glycol (PEG) has been becoming a common component in the design of water soluble binder systems for metal injection moulding. Similar to solvent debinding, PEG can be leached out by water and the mechanism of debinding was proposed in the literature with somehow misleading information about the debinding mechanism, particularly about the formation of PEG gel. This work investigates the debinding behaviours of a PEG-based binder in titanium compacts. Titanium powder is formulated with PEG, poly(methyl methacrylate) (PMMA) and stearic acid (SA) to formulate titanium feedstock. To determine the debinding kinetics, the PEG removal percentages are measured at three different temperatures and for various specimen thicknesses. A mathematic model based on diffusion-controlled debinding process is established. The evolution of porous microstructure during the water debinding process is observed using scanning electron microscopy. Based on these observations, a water debinding mechanism for titanium alloy compacts formulated with PEG-based binders is proposed. - Highlights: ► The water-debinding behaviours of the PEG binder system were investigated. ► PEG dissolution and transportation, and the pore structure development. ► A water debinding mechanism of PEG-based binders is proposed. ► Incorrect explanation of PEG gelling in the literature is corrected. ► Correction/modification made as per the reviewers' comments and suggestions

  2. (Methacrylic Acid-Co-Divinylbenzene) Resin as Filler- Binder for ...

    African Journals Online (AJOL)

    Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand. Abstract ... Methods: Powder properties of PMD and MCC were characterized. Tablets ... with the widely used filler-binder, ... Gravimetric swelling was determined by.

  3. Synthesis of polycyclic aromatic hydrocarbon-protein conjugates for preparation and immunoassay of antibodies.

    Science.gov (United States)

    Glushkov, Andrey N; Kostyanko, Mikhail V; Cherno, Sergey V; Vasilchenko, Ilya L

    2002-04-01

    The method is described dealing with the synthesis of conjugates protein-polycyclic aromatic hydrocarbons (PAHs), highly soluble in water, stable without special stabilizers and containing the minimum quantity of cross-linked products. The reaction of protein with PAH containing an aldehyde group, has been carried out in an alkaline solution, and stabilization of the conjugate has been achieved by reduction with sodium borohydride in the presence of a compound blocking the formation of an insoluble polymeric fraction. The efficiency of synthesized conjugates for the induction and immunoassay of Abs to PAH for benzo[a]pyrene is shown.

  4. Graphene nanocomposites for electrochemical cell electrodes

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun

    2015-11-19

    A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.

  5. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-01-01

    A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.

  6. Synthesis of samarium complexes with the derivative binder of Schiff Quinolinic base. Characterization and photophysical study

    International Nuclear Information System (INIS)

    Lucas H, J.

    2016-01-01

    In this work we determined the metal: binder stoichiometry of the species formed during the UV/Vis spectrophotometric titration of the derivative binder of Schiff quinolinic base, L1 with the samarium nitrate pentahydrate in methanol. Statistical analysis of the data allowed proposing the metal: binder stoichiometry for the synthesis of the complexes which was one mole of samarium salt by 2.5 moles of binder and thus favor the formation of complexes with 1M: 1L and 1M: 2L stoichiometries. They were synthesized in aqueous-organic medium (water-ethanol), isolated and purified two complexes with stoichiometry 1 Sm: 1 L1, complex 1 and 1 Sm: 2 L1, complex 2. The overall yield of the reaction was 76%. The characterization of the formed complexes was performed by visible ultraviolet spectrometry (UV/Vis), nuclear magnetic resonance, X-ray photoelectron spectroscopy (XP S), thermal gravimetric analysis with differential scanning calorimetry (TGA/DSC), and radial distribution function. These complexes were studied by fluorescence and emission phosphorescence at variable temperature. Spectroscopic techniques used in both solution and solid demonstrated the formation and stability of these complexes. In addition XP S indicated that in both complexes the samarium retains its oxidation state 3+. Luminescence studies indicated that there is intra-binding charge transfer which decreases the transfer of light energy from the binder to the samarium. Based on the experimental results, L1 binder molecules and complexes 1 and 2 were modeled that demonstrated the proposed Nc for each complex, as well as allowed to visualize the structural arrangement of the molecules, complexes and binder. (Author)

  7. Rheological characterization of asphalt binders used in strain relief asphalt mixtures (SRAM)

    OpenAIRE

    Vasconcelos, Kamilla L.; Bariani Bernucci, Liedi Legi; Midori Takahashi, Marcia; Castelo-Branco, Verônica T. F.

    2017-01-01

    Abstract The use of ´interlayers´ that tolerate high tensile and shear strain that exists above cracks in deteriorated pavements is becoming an interesting solution to prevent reflective cracking. Recent advances in polymer technology have led to binders that can be used to produce interlayer mixtures with good mechanical properties. In this study, two polymer-modified asphalt binders were evaluated, both from the production of strain relief asphalt mixtures used as interlayers in the field. ...

  8. Absorption of vitamin B12 and effect of pancreatic juice on gastric vitamin B12 binder in the dog

    International Nuclear Information System (INIS)

    Kasaki, Yukio

    1977-01-01

    The effect of pancreatic juice on vitamin B 12 absorption was studied in dogs. It was found that dog gastric juice as well as pancreatic juice contain vitamin B 12 binding proteins which differ in the elution pattern on DEAE-cellulose columns, the former being eluted at much lower sodium chloride concentrations. When radio-active vitamin B 12 was fed or instilled in the proximal bowel and vitamin B 12 recovered at different bowel levels, it was found that vitamin B 12 -protein complex behaved like gastric juice binder in the proximal bowel and like pancreatic binder in the distal. In vitro digestion of gastric binder with pancreatic juice altered vitamin B 12 -protein complex in such a way that elution pattern became similar to that of pancreatic juice. It was also shown that the change was not due to transfer of vitamin B 12 from gastric binder to pancreatic binder. Trypsin digestion had similar effect on gastric binder, and Sephadex G-200 gelfiltration demonstrated reduction in the molecular size. In the doz, vitamin B 12 first bound to gastric binder undergoes chemical changes in the bowel and becomes a readily absorbable form in the distal bowel. (auth.)

  9. Environmentally-Friendly Geopolymeric Binders Made with Silica

    Science.gov (United States)

    Erdogan, S. T.

    2013-12-01

    Portland cement (PC) is the ubiquitous binding material for constructions works. It is a big contributor to global warming and climate change since its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. Recently there have been efforts to develop alternative binders with lower greenhouse gas emissions. One such class of binders is geopolymers, formed by activating natural or waste materials with suitable alkaline or acidic solutions. These binders use natural or industrial waste raw materials with a very low CO2 footprint from grinding of the starting materials, and some from the production of the activating chemicals. The total CO2 emissions from carefully formulated mixtures can be as low as 1/10th - 1/5th of those of PC concrete mixtures with comparable properties. While use of industrial wastes as raw materials is environmentally preferable, the variability of their chemical compositions over time renders their use difficult. Use of natural materials depletes resources but can have more consistent properties and can be more easily accepted. Silica sand is a natural material containing very high amounts of quartz. Silica fume is a very fine waste from silicon metal production that is mostly non-crystalline silica. This study describes the use of sodium hydroxide and sodium silicate solutions to yield mortars with mechanical properties comparable to those of portland cement mortars and with better chemical and thermal durability. Strength gain is slower than with PC mixtures at room temperature but adequate ultimate strength can be achieved with curing at slightly elevated temperatures in less than 24 h. The consistency of the chemical compositions of these materials and their abundance in several large, developing countries makes silica attractive for producing sustainable concretes with reduced carbon

  10. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.

    Science.gov (United States)

    Ling, Min; Qiu, Jingxia; Li, Sheng; Yan, Cheng; Kiefel, Milton J; Liu, Gao; Zhang, Shanqing

    2015-07-08

    An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.

  11. Distribution of a viscous binder during high shear granulation--sensitivity to the method of delivery and its impact on product properties.

    Science.gov (United States)

    Tan, Bernice Mei Jin; Loh, Zhi Hui; Soh, Josephine Lay Peng; Liew, Celine Valeria; Heng, Paul Wan Sia

    2014-01-02

    Binder distribution in the powder mass during high shear granulation is especially critical with the use of viscous liquid binders and with short processing times. A viscous liquid binder was delivered into the powder mass at two flow rates using three methods: pouring, pumping and spraying from a pressure pot. Binder content analyses at the scale of individual granules were conducted to investigate the impact of different delivery conditions on the homogeneity of binder distribution. There was clear evidence of non-uniformity of binder content among individual granules across all delivery conditions, particularly for the fast rates of delivery. Poorer reproducibility values of tablet thickness and disintegration time were observed when binder was poured but this may be overcome by pumping or spraying from the pressure pot. Greater homogeneity of binder distribution occurred with the slow rates of delivery and led to the earlier onset of granule growth and a consequent increase in granule size. Larger granule size and lower proportion of fines were in turn associated with increased granule bulk density and improvement of granule flow. In conclusion, delivery of a viscous binder at a slow rate either by pumping or via a pressure pot was most desirable during granulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Influence of the solvents on the γ-ray polymerization of acrylic acid. II

    International Nuclear Information System (INIS)

    Laborie, F.

    1977-01-01

    The presence of plurimolecular H-bonded aggregates in the acrylic acid allows the polymer to involve some stereoregular sequences. This effect is made easier when some polymer is already formed in the reacting medium: the aggregates are stabilized by hydrogen bonds with the polymer which gives rise to a matrix effect. Two groups of solvents have been characterized by examination of the monomer's association forms in solution. In a first group of solvents (methanol--dioxan--water), the aggregates are maintained and reinforced; in the second one, acrylic acid exists only as cyclic dimers (hydrocarbons--chlorinated solvents). The difference between the association forms of the monomer involves some important modifications on the kinetics of polymerization and the structure of the obtained polymers. In the solvents of the first group, the obtained polymers are crystallizable and may involve syndiotactic sequences, while in the presence of the solvents of the second group no crystallization or stereoregularity of the polymer can occur. A very close correlation is thus found between the aggregated structure of the monomer, the polymerization kinetics, and the structure of the polymers

  13. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  14. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  15. Validity of multiple stress creep recovery (MSCR) test for DOTD asphalt binder specification : final report 564.

    Science.gov (United States)

    2017-09-01

    Numerous studies have shown that G*/Sin, the high temperature specification parameter for current Performance Graded (PG) asphalt binder is not adequate to reflect the rutting characteristics of polymer-modified binders. Consequently, many state De...

  16. Certain structural properties of the phase-binder of the alloys in W-Ni-Fe system

    International Nuclear Information System (INIS)

    Minakova, R.V.; Storchak, N.A.; Verkhovodov, P.A.; Bazhenova, L.G.; Poltoratskaya, V.L.

    1980-01-01

    The paper is concerned with effect of cooling conditions and subsequent heat treatment on grain size, lattice parameter and distribution of composing elements in the phase-binder of the W-Ni-Fe-alloy. The X-ray diffraction analysis was used to determine that the phase-binder structure depends on the heat treatment after liquid-phase sintering and consists of coarse grains with a diameter 3-8 mm for the annealed W-Ni-Fe-alloy decreasing to 40-100 μm at slow cooling. The determined change in solubility and of grain interface enrichment with tungsten in the phase-binder

  17. In Vitro Adsorption and in Vivo Pharmacokinetic Interaction between Doxycycline and Frequently Used Mycotoxin Binders in Broiler Chickens.

    Science.gov (United States)

    De Mil, Thomas; Devreese, Mathias; Broekaert, Nathan; Fraeyman, Sophie; De Backer, Patrick; Croubels, Siska

    2015-05-06

    Mycotoxin binders are readily mixed in feeds to prevent uptake of mycotoxins by the animal. Concerns were raised for nonspecific binding with orally administered veterinary drugs by the European Food Safety Authority in 2010. This paper describes the screening for in vitro adsorption of doxycycline-a broad-spectrum tetracycline antibiotic-to six different binders that were able to bind >75% of the doxycycline. Next, an in vivo pharmacokinetic interaction study of doxycycline with two of the binders, which demonstrated significant in vitro binding, was performed in broiler chickens using an oral bolus model. It was shown that two montmorillonite-based binders were able to lower the area under the plasma concentration-time curve of doxycycline by >60% compared to the control group. These results may indicate a possible risk for reduced efficacy of doxycycline when used concomitantly with montmorillonite-based mycotoxin binders.

  18. Glass binder development for a glass-bonded sodalite ceramic waste form

    International Nuclear Information System (INIS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.

    2017-01-01

    This paper discusses work to develop Na_2O-B_2O_3-SiO_2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na_2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  19. Interactions Of Binder, Disintegrant And Compression Pressure In ...

    African Journals Online (AJOL)

    Binders, disintegrants and compression pressures play important roles in producing good tablets. The interactions between these three factors were analyzed to observe how they contribute to tablet properties. The concentration levels of the factors were determined using 23 factorial study designs by wet granulation ...

  20. Optimization of binder, disintegrant and compression pressure for ...

    African Journals Online (AJOL)

    This was done by studying the contributions of variable factors of binder concentration, disintegrant concentration and compression pressure to tablet friability, hardness and disintegration time under factor combinations given by 23 factorial experimental designs. The effect of every factor was determined by finding the ...

  1. effects of different grain starches as feed binders for

    African Journals Online (AJOL)

    users

    KEY WORDS: Grain Starches; Feed Binder, AQUA-Feed, Pelletability Water ... in their incorporation in on farm aqua feed and thus. 19 ..... International Seminar on Advanced Extrusion. Technology in Food Application, Sao Paulo. Brazil pp.

  2. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  3. Setup of Columellar Height with Costal Cartilage Graft Modification in a Patient with Binder Syndrome

    Directory of Open Access Journals (Sweden)

    Şafak Uygur

    2016-03-01

    Full Text Available Binder syndrome is an uncommon disorder of unknown etiology. It is characterized by hypoplasia of the nose and maxilla and altered morphology of the associated soft tissue. We present a surgical technique for setting up the columellar height in a patient with Binder syndrome.

  4. Binder characterisation of mortars used at different ages in the San Lorenzo church in Milan

    International Nuclear Information System (INIS)

    Bertolini, Luca; Carsana, Maddalena; Gastaldi, Matteo; Lollini, Federica; Redaelli, Elena

    2013-01-01

    The paper describes a study on the mortars of the basilica of San Lorenzo in Milan, which was carried out to support an archaeological study aimed at dating and documenting the construction techniques used throughout the centuries. The church, which was founded between the 4th and 5th century, at the end of the period when Milan was the capital of the Roman Empire, was subjected in time to extensions, collapses and reconstructions that lasted until the Renaissance period and even later on. Thanks to the good state of conservation, San Lorenzo church is a collection of materials and construction techniques throughout a period of more than a millennium. Mortars were investigated in order to compare the binders used for structural elements built in different historical ages. From an archaeological study, samples of mortars attributed to the late Roman period, the Middle Ages and the Renaissance were available. The binder of each sample was separated by the aggregates and it was characterised on the basis of X-ray diffraction analysis, thermogravimetric analysis and scanning electron microscopy. Constituents of the binder were identified and their origin is discussed in order to investigate if they could be attributed to the original composition of the binder or to possible alteration in time due to atmospheric pollution. Results show that, even though the binder is mainly based on magnesian lime, there are significant differences in the microstructure of the binding matrix used in mortars ascribed to the different historical periods. In the Roman period, in correspondence of the structural elements that required higher strength, also hydraulic cocciopesto mortars were detected. Gypsum was found in most samples, which was maybe added intentionally. - Highlights: • Binders of mortars of San Lorenzo church in Milan were investigated. • Roman, Middle Ages and Renaissance samples were studied by XRD, TG and SEM. • Magnesian-lime binders containing silico

  5. Desenvolvimento de pó à base de gesso e binder para prototipagem rápida

    Directory of Open Access Journals (Sweden)

    C. R. Meira

    2013-09-01

    Full Text Available Foram desenvolvidas formulações de pó à base de gesso e binder para aplicação em equipamento de prototipagem do tipo 3D Print. Na técnica de impressão tridimensional, impressoras denominadas 3D Print são baseadas em cabeçotes de impressão de impressoras comerciais a jato de tinta, que depositam um binder sobre camadas sucessivas de pó e, em cada fatia, o binder reage com o pó e consolida o formato bidimensional da seção, que somadas às fatias subsequentes, consolidam um modelo tridimensional. Embora este modelo de impressora tridimensional esteja se popularizando pelo baixo custo, ainda tem em seus insumos o pó e o binder o seu maior empecilho devido ao custo elevado. Neste projeto foram desenvolvidas formulações de pós, obtidos pela moagem do gesso em meio alcoólico com ligantes e aditivos, seguido de aglomeração das finas partículas de gesso, e formulações de binder baseadas na reação com o gesso. Foram avaliadas as condições do pó aglomerado para a uniformidade da deposição das camadas e os requisitos mínimos do binder para a operação do cabeçote de impressão. Corpos de prova no formato de barras foram produzidos em equipamento comercial e analisados com relação à resistência a flexão, densidade e metrologia. Foram obtidos corpos a partir de pó com adição de 5 vol.% de PVB e binder com 90 vol.% de água destilada e resistência de 290 kΩ, que apresentaram resistência média à flexão de 0,33 MPa, suficiente para o manuseio inicial dos prototipados, com manufatura simplificada e a um custo muito econômico.

  6. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  7. Dicationic polymeric ionic-liquid-based magnetic material as an adsorbent for the magnetic solid-phase extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Jiang, Qiong; Liu, Qin; Chen, Qiliang; Zhao, Wenjie; Xiang, Guoqiang; He, Lijun; Jiang, Xiuming; Zhang, Shusheng

    2016-08-01

    Magnetic particles modified with a dicationic polymeric ionic liquid are described as a new adsorbent in magnetic solid-phase extraction. They were obtained through the copolymerization of a 1,8-di(3-vinylimidazolium)octane-based ionic liquid with vinyl-modified SiO2 @Fe3 O4 , and were characterized by FTIR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. The modified magnetic particles are effective in the extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons. Also, they can provide different extraction performance for the selected analytes including fenitrothion, parathion, fenthion, phoxim, phenanthrene, and fluoranthene, where the extraction efficiency is found to be in agreement with the hydrophobicity of analytes. Various factors influencing the extraction efficiency, such as, the amount of adsorbent, extraction, and desorption time, and type and volume of the desorption solvent, were optimized. Under the optimized conditions, a good linearity ranging from 1-100 μg/L is obtained for all analytes, except for parathion (2-200 μg/L), where the correlation coefficients varied from 0.9960 to 0.9998. The limits of detection are 0.2-0.8 μg/L, and intraday and interday relative standard deviations are 1.7-7.4% (n = 5) and 3.8-8.0% (n = 3), respectively. The magnetic solid-phase extraction combined with high-performance liquid chromatography can be applied for the detection of trace targets in real water samples with satisfactory relative recoveries and relative standard deviations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Phosphate binders for the treatment of hyperphosphatemia in chronic kidney disease patients on dialysis: a comparison of safety profiles.

    Science.gov (United States)

    Locatelli, Francesco; Del Vecchio, Lucia; Violo, Leano; Pontoriero, Giuseppe

    2014-05-01

    Hyperphosphatemia is common in the late stages of chronic kidney disease (CKD) and is associated with elevated parathormone levels, abnormal bone mineralization, extraosseous calcification and increased risk of cardiovascular events and death. Several classes of oral phosphate binders are available to help control phosphorus levels. Although effective at lowering serum phosphorus, they all have safety issues that need to be considered when selecting which one to use. This paper reviews the use of phosphate binders in patients with CKD on dialysis, with a focus on safety and tolerability. In addition to the more established agents, a new resin-based phosphate binder, colestilan, is discussed. Optimal phosphate control is still an unmet need in CKD. Nonetheless, we now have an extending range of phosphate binders available. Aluminium has potentially serious toxic risks. Calcium-based binders are still very useful but can lead to hypercalcemia and/or positive calcium balance and cardiovascular calcification. No long-term data are available for the new calcium acetate/magnesium combination product. Lanthanum is an effective phosphate binder, but there is insufficient evidence about possible long-term effects of tissue deposition. The resin-based binders, colestilan and sevelamer, appear to have profiles that would lead to less vascular calcification, and the main adverse events seen with these agents are gastrointestinal effects.

  9. Adsorption of volatile hydrocarbons in iron polysulfide chalcogels

    KAUST Repository

    Ahmed, Ejaz

    2014-11-01

    We report the synthesis, characterization and possible applications of three new metal-chalcogenide aerogels KFe3Co3S 21, KFe3Y3S22 and KFe 3Eu3S22. Metal acetates react with the alkali metal polychalcogenides in formamide/water mixture to form extended polymeric frameworks that exhibit gelation phenomena. Amorphous aerogels obtained after supercritical CO2 drying have BET surface area from 461 to 573 m 2/g. Electron microscopy images and nitrogen adsorption measurements showed that pore sizes are found in micro (below 2 nm), meso (2-50 nm), and macro (above 50 nm) porous regions. These chalcogels possess optical bandgaps in the range of 1.55-2.70 eV. These aerogels have been studied for the adsorption of volatile hydrocarbons and gases. A much higher adsorption of toluene in comparison with cyclohexane and cyclopentane vapors have been observed. The adsorption capacities of the three volatile hydrocarbons are found in the following order: toluene > cyclohexane > cyclopentane. It has been observed that high selectivity in adsorption is feasible with high-surface-area metal chalcogenides. Similarly, almost an eight to ten times increase in adsorption selectivity towards CO2 over H2/CH4 was observed in the aerogels. Moreover, reversible ion-exchange properties for K+/Cs+ ions have also been demonstrated. © 2014 Elsevier Inc. All rights reserved.

  10. Effect of different binders on the physico-chemical, textural, histological, and sensory qualities of retort pouched buffalo meat nuggets.

    Science.gov (United States)

    Devadason, I Prince; Anjaneyulu, A S R; Babji, Y

    2010-01-01

    The functional properties of 4 binders, namely corn starch, wheat semolina, wheat flour, and tapioca starches, were evaluated to improve the quality of buffalo meat nuggets processed in retort pouches at F(0) 12.13. Incorporation of corn starch in buffalo meat nuggets produced more stable emulsion than other binders used. Product yield, drip loss, and pH did not vary significantly between the products with different binders. Shear force value was significantly higher for product with corn starch (0.42 +/- 0.0 Kg/cm(3)) followed by refined wheat flour (0.36 +/- 0.010 Kg/cm(3)), tapioca starch (0.32 +/- 0.010 Kg/cm(3)), and wheat semolina (0.32 +/- 0.010 Kg/cm(3)). Type of binder used had no significant effect on frying loss, moisture, and protein content of the product. However, fat content was higher in products with corn starch when compared to products with other binders. Texture profile indicated that products made with corn starch (22.17 +/- 2.55 N) and refined wheat flour (21.50 +/- 0.75 N) contributed firmer texture to the product. Corn starch contributed greater chewiness (83.8 +/- 12.51) to the products resulting in higher sensory scores for texture and overall acceptability. Products containing corn starch showed higher sensory scores for all attributes in comparison to products with other binders. Panelists preferred products containing different binders in the order of corn starch (7.23 +/- 0.09) > refined wheat flour (6.48 +/- 0.13) > tapioca starch (6.45 +/- 0.14) > wheat semolina (6.35 +/- 0.13) based on sensory scores. Histological studies indicated that products with corn starch showed dense protein matrix, uniform fat globules, and less number of vacuoles when compared to products made with other binders. The results indicated that corn flour is the better cereal binder for developing buffalo meat nuggets when compared to all other binders based on physico-chemical and sensory attributes.

  11. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.

    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  12. Mechanical strength development of mortars containing volcanic scoria-based binders with different fineness

    Directory of Open Access Journals (Sweden)

    Aref M. al-Swaidani

    2016-06-01

    Full Text Available The benefits of using natural pozzolan as cement replacement are often associated with shortcomings such as the need to moist-curing for longer time and a reduction of strength at early ages. The objective of the study is to investigate the influence of binder fineness on the mechanical strength development of scoria-based binder mortars. In the study, mortar specimens have been produced with four types of binder: one plain Portland cement (control and three scoria-based binders with three replacement levels: 25%, 30% and 35%, respectively. All scoria-based binders have been inter-ground into four different Blaine fineness: 2400, 3200, 4200 and 5100 cm2/g. The development of the compressive and flexural tensile strength of all mortar specimens with curing time has been investigated. The effects of the Blaine fineness of the scoria-based blended cement on the compressive and flexural strengths of mortar have been evaluated at curing ages of 2, 7, 28 and 90 days, respectively. Particle size distribution measured by a laser diffractometer has been considered in the study. Test results revealed that there is a decrease in strength with increasing amounts of scoria. In addition, there was found an increase in strength with increasing the Blaine fineness values. No direct relationship between Blaine and particle size distribution was observed. Effects of Blaine fineness on some physical properties of blended cements such as water demand, setting times and soundness have also been investigated. Further, an estimation equation for strength development incorporating the effects of fineness measured either by Blaine or by particle size distribution has been derived by the authors.

  13. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  14. Thermal Conductivity of Moulding Sand with Chemical Binders, Attempts of its Increasing

    Directory of Open Access Journals (Sweden)

    Zych J.

    2015-04-01

    Full Text Available The investigation results of the thermal conductivity of the selected group of moulding sands with chemical binders, mainly organic, are presented in the hereby paper. Studies encompassed also moulding sands into which additions improving the thermal conductivity were introduced. Two testing methods were applied, i.e. investigations at a steady and unsteady temperature zone. For investigations at a steady temperature zone the new original experimental stand was designed and built, adapted also for testing moulding sands with binders undergoing destruction at relatively low temperatures.

  15. An Analysis of Rheological Properties of Inconel 625 Superalloy Feedstocks Formulated with Backbone Binder Polypropylene System for Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Gökmen U.

    2017-12-01

    Full Text Available Binder formula is one of the most significant factors which has a considerable influence on powder injection molding (PIM processes. In the study, rheological behaviors and properties of different binder systems containing PIM feedstocks, Inconel 625 powder commonly used in space industry, were investigated. The feedstocks were prepared 59%-69% (volume powder loading ratios with three diversified binder systems by use of Polypropylene as backbone binder. The average particle size of the Inconel 625 powder used was 12.86 microns. Components used in the binder were mixed for 30 minutes as dry in three dimensional mixing to prepare binder systems. Rheological features of the feedstock were characterized by using a capillary rheometer. Viscosities of the feedstocks were calculated within the range of 37.996-1900 Pa.s based on the shear rate, shear stress, binder formula and temperature. “n” parameters for PIM feedstocks were determined to be less than 1. Influences of temperature on the viscosities of the feedstocks were also studied and “Ea” under various shear stresses were determined within the range of 24.41-70.89 kJ/mol.

  16. Effect of treatment temperature on the microstructure of asphalt binders: insights on the development of dispersed domains.

    Science.gov (United States)

    Menapace, I; Masad, E; Bhasin, A

    2016-04-01

    This paper offers important insights on the development of the microstructure in asphalt binders as a function of the treatment temperature. Different treatment temperatures are useful to understand how dispersed domains form when different driving energies for the mobility of molecular species are provided. Small and flat dispersed domains, with average diameter between 0.02 and 0.70 μm, were detected on the surface of two binders at room temperature, and these domains were observed to grow with an increase in treatment temperature (up to over 2 μm). Bee-like structures started to appear after treatment at or above 100°C. Moreover, the effect of the binder thickness on its microstructure at room temperature and at higher treatment temperatures was investigated and is discussed in this paper. At room temperature, the average size of the dispersed domains increased as the binder thickness decreased. A hypothesis that conciliates current theories on the origin and development of dispersed domains is proposed. Small dispersed domains (average diameter around 0.02 μm) are present in the bulk of the binder, whereas larger domains and bee-like structures develop on the surface, following heat treatment or mechanical disturbance that reduces the film thickness. Molecular mobility and association are the key factors in the development of binder microstructure. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  17. Synthesis and characterization of hydrophobically modified polymeric betaines

    Directory of Open Access Journals (Sweden)

    Alexey Shakhvorostov

    2015-09-01

    Full Text Available Polymeric betaines containing long alkyl chains C12H25, C14H29, C16H33 and C18H37 were synthesized by Michael addition reaction of alkylaminocrotonates and methacrylic acid (MAA. They were characterized by FTIR, 13C NMR, DSC, DLS, GPC, cryo-TEM, viscometry and zeta-potential measurements. The polymers were fully soluble in DMF, THF and DMSO, partially dissolved in aromatic hydrocarbons (benzene, toluene, o-xylene and formed colloid solutions in aqueous KOH. In aqueous KOH and DMSO solutions, hydrophobically modified polymeric betaines behaved as polyelectrolytes. The average hydrodynamic size and zeta potential of diluted aqueous solutions of hydrophobic polybetainess containing dodecyl-, tetradecyl-, hexadecyl-, and octadecyl groups were studied as a function of pH. Anomalous low values of the isoelectric point (IEP of amphoteric macromolecules were found to be in the range of pH 2.7-3.4. According to DLS data, the average size of macromolecules tends to decrease with dilution. Zeta-potential of amphoteric macromolecules in aqueous solution is much higher than that in DMSO. The cryo-TEM results revealed that in both aqueous KOH and DMSO media, the micron- and nanosized vesicles existed. The structural organization of vesicles in water and DMSO is discussed. The wax inhibition effect of hydrophobic polybetaines at a decrease of the pour point temperatures of high paraffinic oils was better in comparison with commercial available ethylene-vinylacetate copolymers (EVA.

  18. NMR detects molecular interactions of graphene with aromatic and aliphatic hydrocarbons in water

    Science.gov (United States)

    Bichenkova, Elena V.; Raju, Arun P. A.; Burusco, Kepa K.; Kinloch, Ian A.; Novoselov, Kostya S.; Clarke, David J.

    2018-03-01

    Polyaromatic carbon is widely held to be strongly diamagnetic and hydrophobic, with textbook van der Waals and ‘π-stacked’ binding of hydrocarbons, which disrupt their self-assembled supramolecular structures. The NMR of organic molecules sequestered by polyaromatic carbon is expected to be dominated by shielding from the orbital diamagnetism of π electrons. We report the first evidence of very different polar and magnetic behavior in water, wherein graphene remained well-dispersed after extensive dialysis and behaved as a 1H-NMR-silent ghost. Magnetic effects dominated the NMR of organic structures which interacted with graphene, with changes in spin-spin coupling, vast increase in relaxation, line broadening and decrease in NMR peak heights when bound to graphene. However, the interactions were weak, reversible and did not disrupt organic self-assemblies reliant on hydrophobic ‘π-stacking’, even when substantially sequestered on the surface of graphene by the high surface area available. Interacting assemblies of aromatic molecules retained their strongly-shielded NMR signals and remained within self-assembled structures, with slower rates of diffusion from association with graphene, but with no further shielding from graphene. Binding to graphene was selective for positively-charged organic assemblies, weaker for non-aromatic and negligible for strongly-negatively-charged molecules, presumably repelled by a negative zeta potential of graphene in water. Stronger binders, or considerable excess of weaker binders readily reversed physisorption, with no evidence of structural changes from chemisorption. The fundamental nature of these different electronic interactions between organic and polyaromatic carbon is considered with relevance to electronics, charge storage, sensor, medical, pharmaceutical and environmental research.

  19. Binding Properties Of A Polymeric Gum From Cola accuminata ...

    African Journals Online (AJOL)

    However all the tablets produced with 1 % w/w binder; Sodium carboxyl methyl cellulose (SCMC) and Cola accuminata failed the hardness test. Hardness increased while friability decreased as tablet binder concentration increased. However, the tablets produced with Cola accuminata gum had long disintegration times ...

  20. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  1. Properties of concretes and wood composites using a phosphate-based binder

    Science.gov (United States)

    Hong, Luong Thanh

    Magnesium potassium phosphate ceramics are from the family of phosphate-based cements which can be used as alternatives to Portland cements. In this study, concretes and wood composites were produced using magnesium potassium phosphate ceramic binders and supplementary materials including fly ash, sand, silica fume and sawdust. Bentonite, Delvo Stabilizer and baking soda were used as additives to increase the workability and the setting time of the fresh mixutres and decrease the density of the hardened products. The materials were then reinforced with chopped glass-fibers or textile glass-fabrics to increase their hardened properties. At 50% fly ash by total mass of the binder, the concretes had compressive strength and density of 33 MPa and 2170 kg/m3, respectively, after 90 days of simple curing. At 20% fly ash by total mass of the binder, the wood composites had compressive strength and density of 13 MPa and 1320 kg/m3, respectively, after 90 days. The flexural strengths were about 10% to 47% of the corresponding cylinder compressive strengths for these mixes. Increases in both compressive and flexural strengths for these mixes were observed with the addition of chopped glass-fibers or textile glass-fabrics.

  2. Binder Development for Metal Injection Moulding: A CSIR Perspective

    CSIR Research Space (South Africa)

    Machaka, R

    2014-05-01

    Full Text Available The paper reviews the CSIR’s progress and challenges concerning the development of a wax-based binder system suitable for metal injection moulding (MIM). It reports on a consolidation study wherein different widely used wax-based feedstock...

  3. Haemodynamic and respiratory effects of an abdominal compression binder

    DEFF Research Database (Denmark)

    Toft, M.H.; Bulow, J.; Simonsen, L.

    2008-01-01

    In order to elucidate the circulatory and respiratory effects of a newly developed abdominal compression binder 25 healthy, normal weight subjects were studied. In supine position the central haemodynamics were measured and estimated with a Finapress device. Lower extremity venous haemodynamics...

  4. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori; Roberts, Timothy H.; Long, Timothy E.; Logan, Bruce E.; Hickner, Michael A.

    2011-01-01

    and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes

  5. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Wenjun; Wang, Feijun; Wang, Jianquan

    2014-10-13

    Novel water-based binder CMC-Li is synthesized using cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and CMC-Li as a water-soluble binder are investigated. CMC-Li is a novel lithium-ion binder. Compare with conventional poly(vinylidene fluoride) (PVDF) binder, and the battery with CMC-Li as the binder retained 97.8% of initial reversible capacity after 200 cycles at 176 mAh g(-1), which is beyond the theoretical specific capacity of LFP. Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, follow closely by that using PVDF binder. The batteries have good electrochemical property, outstanding pollution-free and excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Changes of Properties of Bitumen Binders by Additives Application

    Science.gov (United States)

    Remišová, Eva; Holý, Michal

    2017-10-01

    Requirements for properties of bituminous binders are determined in the European standards. The physico-chemical behaviour of bitumen depends on its colloidal structure (asphaltenes dispersed into an oily matrix constituted by saturates, aromatics and resins) that depends primarily on its crude source and processing. Bitumen properties are evaluated by group composition, elementary analysis, but more often conventional or functional tests. Bitumen for road uses is assessed according to the physical characteristics. For the purpose of improving the qualitative properties of bitumen and asphalts the additives are applied e.g. to increase elasticity, improving the heat stability, improving adhesion to aggregate, to decrease viscosity, increasing the resistance to aging, to prevent binder drainage from the aggregate surface, etc. The objective of presented paper is to assess and compare effect of additives on properties of bitumen binders. In paper, the results of bitumen properties, penetration, softening point, and dynamic viscosity of two paving grade bitumen 35/50, 50/70 and polymer modified bitumen PmB 45/80-75 are analyzed and also the changes of these properties by the application of selected additives (Sasobit, Licomont BS100, Wetfix BE and CWM) to improve adhesion to aggregate and improve workability. Measurements of properties have been performed according to the relevant European standards. The laboratory tests showed significantly increasing the softening point of paving grade bitumen 50/70 and 35/50 by 13 to 45°C. The effect of various additives on bitumen softening point is different. Penetration varies according to type of bitumen and type of used additive. The penetration values of modified bitumen PmB 45/80-75 with additives Sasobit and Licomont BS100 show increase of bitumen stiffness of 16 0.1mm and a shift in the gradation. The changes in penetration and in softening point significantly shown when calculating on Penetration index as a parameter of

  7. Performance of adsorbent-embedded heat exchangers using binder-coating method

    KAUST Repository

    Li, Ang

    2016-01-01

    The performance of adsorption (AD) chillers or desalination cycles is dictated by the rates of heat and mass transfer of adsorbate in adsorbent-packed beds. Conventional granular-adsorbent, packed in fin-tube heat exchangers, suffered from poor heat transfer in heating (desorption) or cooling (adsorption) processes of the batch-operated cycles, with undesirable performance parameters such as higher footprint of plants, low coefficient of performance (COP) of AD cycles and higher capital cost of the machines. The motivation of present work is to mitigate the heat and mass "bottlenecks" of fin-tube heat exchangers by using a powdered-adsorbent cum binder coated onto the fin surfaces of exchangers. Suitable adsorbent-binder pairs have been identified for the silica gel adsorbent with pore surface areas up to 680 m2/g and pore diameters less than 6 nm. The parent silica gel remains largely unaffected despite being pulverized into fine particles of 100 μm, and yet maintaining its water uptake characteristics. The paper presents an experimental study on the selection and testing processes to achieve high efficacy of adsorbent-binder coated exchangers. The test results indicate 3.4-4.6 folds improvement in heat transfer rates over the conventional granular-packed method, resulting a faster rate of water uptake by 1.5-2 times on the suitable silica gel type. © 2015 Elsevier Ltd. All rights reserved.

  8. Evaluation of binder and disintegrant properties of starch derived ...

    African Journals Online (AJOL)

    AMARA

    2013-05-15

    May 15, 2013 ... Full Length Research Paper. Evaluation of binder and disintegrant properties of starch derived from Xanthosoma sagittifolium in metronidazole tablets. Onyishi Ikechukwu V., Chime Salome A.* and Ugwu Jonathan C. Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, ...

  9. Comparison of the effect of recycled crumb rubber and polymer concentration on the performance of binders for asphalt mixtures

    Directory of Open Access Journals (Sweden)

    Jiménez del Barco-Carrión, A.

    2016-09-01

    Full Text Available Crumb rubber modified binders are environmental-friendly alternatives to polymer modified bitumens in asphalt mixtures. This paper compares the performance of both types of binders with different modifier contents. Six binders were characterised by conventional tests and analysed using the UCL method. This method evaluates different properties of binders regarding their role in asphalt mixtures (cohesion, water and thermal sensitivity and resistance to ageing. Results showed that i crumb rubber concentration has to be higher than that of SBS-polymers in order to obtain a similar performance to that of SBS-polymer modified bitumen; ii crumb rubber modified binders are more stable than SBS-polymer modified binders in terms of modifier concentration; iii crumb rubber modified binders exhibited less water sensitivity and similar thermal and ageing susceptibility to SBS-polymer modified binders; iv linear relationships have been found between modifier concentration and the properties studied for both kind of binders.Los betunes modificados con polvo de neumático (PN son alternativas ambientalmente sostenibles a los betunes modificados con polímeros. Este artículo compara el comportamiento de ambos tipos de betunes con varios contenidos de modificador. Para ello, se caracterizaron seis betunes mediante ensayos convencionales y método UCL. Este método evalúa propiedades de ligantes para su uso en mezclas bituminosas (cohesión, sensibilidad al agua, térmica y al envejecimiento. Los resultados muestran que i la concentración de PN ha de ser más elevada que la de polímeros para obtener comportamiento semejante; ii los betunes con PN son más estables ante cambios en la concentración de modificador que los betunes con polímeros; iii los betunes con PN presentan menor sensibilidad al agua y equivalente susceptibilidad térmica y al envejecimiento que los betunes con polímeros; iv se encontraron buenos ajustes lineales entre la concentraci

  10. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bercaw, John E. [California Institute of Technology

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  11. Effects of Titanate Coupling Agent on Engineering Properties of Asphalt Binders and Mixtures Incorporating LLDPE-CaCO3 Pellet

    Directory of Open Access Journals (Sweden)

    Mohd Rosli Mohd Hasan

    2018-06-01

    Full Text Available This study was initiated to evaluate the performance of asphalt binders and mixtures incorporating linear low-density polyethylene- calcium carbonate (LLDPE-CaCO3 pellet, either with or without titanate coupling agent. The detailed manufacturing process of modifier pellets was displayed. The coupling agent was used to enhance the cross-linking between materials by means of winding up covalent bonds or molecule chains, thus improving the performance of composites. In the preparation of modified bitumen, the preheated asphalt binder was mixed with the modifiers using a high shear mixer at 5000 rpm rotational speed for 45 min. Experimental works were conducted to evaluate the performance of asphalt binders in terms of volatile loss, viscosity, rutting potential, and low temperature cracking. Meanwhile, the asphalt mixtures were tested using the flow number test and tensile strength ratio (TSR test. The addition of LLDPE-CaCO3 modifiers and coupling agent does not significantly affect the volatile loss of modified asphalt binders. The addition of modifiers and coupling agent has significantly improved the resistance to permanent deformation of asphalt binders. Even though, the addition of LLDPE-CaCO3 modifier and coupling agent remarkably increased the mixture stiffness that contributed to lower rutting potential, the resistance to low temperature cracking of asphalt binder was not adversely affected. The combination of 1% coupling agent with 3% PECC is optimum dosage for asphalt binder to have satisfactory performance in resistance to moisture damage and rutting.

  12. Alkali-Activated Mortars for Sustainable Building Solutions: Effect of Binder Composition on Technical Performance

    Directory of Open Access Journals (Sweden)

    Agnese Attanasio

    2018-02-01

    Full Text Available There is a growing interest in the construction sector in the use of sustainable binders as an alternative to ordinary Portland cement, the production of which is highly impacting on the environment, due to high carbon dioxide emissions and energy consumption. Alkali-activated binders, especially those resulting from low-cost industrial by-products, such as coal fly ash or metallurgical slag, represent a sustainable option for cement replacement, though their use is more challenging, due to some technological issues related to workability or curing conditions. This paper presents sustainable alkali-activated mortars cured in room conditions and based on metakaolin, fly ash, and furnace slag (both by-products resulting from local sources and relevant blends, aiming at their real scale application in the building sector. The effect of binder composition—gradually adjusted taking into consideration technical and environmental aspects (use of industrial by-products in place of natural materials in the view of resources saving—on the performance (workability, compressive strength of different mortar formulations, is discussed in detail. Some guidelines for the design of cement-free binders are given, taking into consideration the effect of each investigated alumino-silicate component. The technical feasibility to produce the mortars with standard procedures and equipment, the curing in room conditions, the promising results achieved in terms of workability and mechanical performance (from 20.0 MPa up to 52.0 MPa, confirm the potential of such materials for practical applications (masonry mortars of class M20 and Md. The cement-free binders resulting from this study can be used as reference for the development of mortars and concrete formulations for sustainable building materials production.

  13. Pengaruh perbedaan jumlah penambahan binder uretan dan berbagai motif embossing terhadap kualitas kulit reject

    Directory of Open Access Journals (Sweden)

    Emiliana Kasmudjiastuti

    2016-06-01

    Full Text Available Rejected tanned leather is tanned lether product with damages of more than 30% of its total surface area, but can be improved by embossing. Embossing is the provision of patterns that influences the properties of articles and contributes to the closure of the defects on the surface of leather. This study aims to determine the influence of urethane binder and embossing motives to the quality of rejected leather for shoe upper applications. Variables investigated were urethane binder composition (100, 150, and 200 part in 1000 part of base coat and embossing motives (crocodile, ostrich, shark fish, and milled motive. The quality of the leather was then tested in terms of organoleptic properties (feel, flexibility, visual appearance, mechanical properties (tear strength, tensile strength, elongation at break, rub fastness (dry, wet, adhesive strength of cover paint (dry, wet, and flexing resistance, physical properties (WVP and WVA, as well as morphology (SEM. The results showed that the addition of urethane binder and embossing patterns affect the quality of shoe upper leather, i.e. in general covering the leather defects and increasing the visual appearance (organoleptic properties, and changing the collagen network structure (based on SEM test. Visually preferred skin is skin with the addition of 200 parts of the urethane binder and crocodile patterned leather.

  14. Burning Characteristics of Ammonium-Nitrate-Based Composite Propellants with a Hydroxyl-Terminated Polybutadiene/Polytetrahydrofuran Blend Binder

    Directory of Open Access Journals (Sweden)

    Makoto Kohga

    2012-01-01

    Full Text Available Ammonium-nitrate-(AN- based composite propellants prepared with a hydroxyl-terminated polybutadiene (HTPB/polytetrahydrofuran (PTHF blend binder have unique thermal decomposition characteristics. In this study, the burning characteristics of AN/HTPB/PTHF propellants are investigated. The specific impulse and adiabatic flame temperature of an AN-based propellant theoretically increases with an increase in the proportion of PTHF in the HTPB/PTHF blend. With an AN/HTPB propellant, a solid residue is left on the burning surface of the propellant, and the shape of this residue is similar to that of the propellant. On the other hand, an AN/HTPB/PTHF propellant does not leave a solid residue. The burning rates of the AN/HTPB/PTHF propellant are not markedly different from those of the AN/HTPB propellant because some of the liquefied HTPB/PTHF binder cover the burning surface and impede decomposition and combustion. The burning rates of an AN/HTPB/PTHF propellant with a burning catalyst are higher than those of an AN/HTPB propellant supplemented with a catalyst. The beneficial effect of the blend binder on the burning characteristics is clarified upon the addition of a catalyst. The catalyst suppresses the negative influence of the liquefied binder that covers the burning surface. Thus, HTPB/PTHF blend binders are useful in improving the performance of AN-based propellants.

  15. Preparation of alanine/ESR dosimeter using different binder of polymer blend

    International Nuclear Information System (INIS)

    Razzak, M.T.; Sudiro, Sutjipto; Sudradjat, Adjat; Waskito, Ashar; Djamili, M.F.

    1995-01-01

    Different composition of polymer blend of low density polyethylene (PE) and polystyrene (PS) have been studied to be used as a binder for the preparation of Alanine/ESR dosimeter. The polymer binder and Alanine powder were blended in Laboplastomil Mixer at 140 o C and then it was pressed into a plastic film of 0.50 mm thickness. The film was cut into sample size of 250 mm x 2.5 mm and irradiated by gamma rays from a cobalt-60 source at different dose and dose rate. It was found that a blend of Alanine, PS and PE in composition of 60:30:10 is appropriate to prepare the Alanine/ESR dosimeter. (author)

  16. [Phosphate binders in chronic kidney disease: the positions of sevelamer].

    Science.gov (United States)

    Fomin, V V; Shilov, E M; Svistunov, A A; Milovanov, Iu S

    2013-01-01

    The paper shows the role of phosphate binders in the correction of phosphorus and calcium metabolic disturbances in chronic kidney disease. The results of clinical trials demonstrating the efficacy and safety of sevelamer are discussed.

  17. Enhancing mechanical properties of ceramic papers loaded with zeolites using borate compounds as binders

    OpenAIRE

    Juan P. Cecchini; Ramiro M. Serra; María A. Ulla; Miguel A. Zanuttini; Viviana G. Milt

    2013-01-01

    NaY zeolite-containing ceramic papers were prepared by a papermaking technique with a dual polyelectrolyte retention system that implied the use of cationic and anionic polymers. To improve their mechanical properties, we found that some borate compounds could be successfully used as ceramic binders. Three types of sodium and/or calcium borates were tested as binders: colemanite, nobleite, and anhydrous ulexite. The improvement in the mechanical properties depends both on the borate used and ...

  18. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    Science.gov (United States)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  19. Final Report on Initial Samples Supplied by LLNL for Task 3.3 Binder Burnout and Sintering Schedule Optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Walls, P

    1999-01-04

    Sixteen of the twenty-one samples have been investigated using the scanning laser dilatometer. This includes all three types of samples with different preparation routes and organic content. Cracks were observed in all samples, even those only heated to 300 C. It was concluded that the cracking was occurring in the early part of the heat treatment before the samples reached 300 C. Increase in the rate of dilation of the samples occurred above 170 C which coincided with the decomposition of the binder/wax additives as determined by differential thermal analysis. A comparison was made with SYNROC C material (Powder Run 143), samples of which had been CIPed and green machined to a similar diameter and thickness as the 089mm SRTC pucks. These samples contained neither binder nor other organic processing aids and had been kept in the same desiccator as the SRTC samples. The CIPed Synroc C samples sintered to high density with zero cracks. As the cracks made up only a small contribution to the change in diameter of the sample compared to the sintering shrinkage, useful information could still be gained from the runs. The sintering curves showed that there was much greater shrinkage of the Type III samples containing only the 5% PEG binder compared to the Type I which contained polyolefin wax as processing aid. Slight changes in gradient of the sintering curve were observed, however, due to the masking effect of the cracking, full analysis of the sintering kinetics cannot be conducted. Even heating the samples to 300 C at 1.0 or 0.5 C/min could not prevent crack formation. This indicated that heating rate was not the critical parameter causing cracking of the samples. Sectioning of green bodies revealed the inhomogeneous nature of the binder/lubricant distribution in the samples. Increased homogeneity would reduce the amount of binder/lubricant required, which should in turn, reduce the degree of cracking observed during heating to the binder burnout temperature. A

  20. Randomized Clinical Trial on the postoperative use of an abdominal binder after laparoscopic umbilical and epigastric hernia repair

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Olsen, B H; Rosenberg, J

    2015-01-01

    PURPOSE: Application of an abdominal binder is often part of a standard postoperative regimen after ventral hernia repair to reduce pain and seroma formation. However, there is lack of evidence of the clinical effects. The aim of the present study was to investigate the pain- and seroma......-reducing effect of an abdominal binder in patients undergoing laparoscopic umbilical or epigastric hernia repair. METHODS: Based on power analysis, a minimum of 54 patients undergoing laparoscopic umbilical and epigastric hernia repair were to be included. Patients were randomized to abdominal binders vs....... no abdominal binders during the first postoperative week. Standardized surgical technique, anaesthesia, and analgesic regimens were used and study observers were blinded towards the intervention. Postoperative pain (visual analogue score) on day 1 was the primary outcome. In addition, ultrasonographic...

  1. Distribution of hydrocarbon-utilizing microorganisms and hydrocarbon biodegradation potentials in Alaskan continental shelf areas

    International Nuclear Information System (INIS)

    Roubal, G.; Atlas, R.M.

    1978-01-01

    Hydrocarbon-utilizing microogranisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14 C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14 C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene >> pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population

  2. Surface analysis characterisation of gum binders used in modern watercolour paints

    Science.gov (United States)

    Sano, Naoko; Cumpson, Peter J.

    2016-02-01

    Conducting this study has demonstrated that not only SEM-EDX but also XPS can be an efficient tool for characterising watercolour paint surfaces. We find that surface effects are mediated by water. Once the powdered components in the watercolour come into contact with water they dramatically transform their chemical structures at the surface and show the presence of pigment components with a random dispersion within the gum layer. Hence the topmost surface of the paint is confirmed as being composed of the gum binder components. This result is difficult to confirm using just one analytical technique (either XPS or SEM-EDX). In addition, peak fitting of C1s XPS spectra suggests that the gum binder in the commercial watercolour paints is probably gum arabic (by comparison with the reference materials). This identification is not conclusive, but the combination techniques of XPS and SEM shows the surface structure with material distribution of the gum binder and the other ingredients of the watercolour paints. Therefore as a unique technique, XPS combined with SEM-EDX may prove a useful method in the study of surface structure for not only watercolour objects but also other art objects; which may in future help in the conservation for art.

  3. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  4. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  5. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  6. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  7. 46 CFR 308.303 - Amounts insured under interim binder.

    Science.gov (United States)

    2010-10-01

    ... 308.303 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE Second Seamen's War Risk Insurance § 308.303 Amounts insured under interim binder. The amounts insured are the amounts specified in the Second Seamen's War Risk Policy (1955) or as modified by shipping...

  8. Center for BioBased Binders and Pollution Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Jerry [Univ. of Northern Iowa, Cedar Falls, IA (United States)

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  9. Novel binder-free forming of Al2O3 ceramics by microwave-assisted hydration reaction

    International Nuclear Information System (INIS)

    Shirai, Takashi; Yasuoka, Masaki; Watari, Koji

    2008-01-01

    A novel binder-free forming of ceramics via microwave irradiation is developed. The irradiation of microwave to an alumina green body enhances the hydration reaction strongly between water and particle surfaces, creating surface aluminum trihydroxides structure adjacent to particles that bind them together tightly. This process makes it possible to manufacture mechanically strong green bodies with excellent shape retention ability without the use of organic binders

  10. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  11. Assay for intrinsic factor based on blocking of the R binder of gastric juice by cobinamide

    International Nuclear Information System (INIS)

    Begley, J.A.; Trachtenberg, A.

    1979-01-01

    An in vitro assay for measurement of gastric juice intrinsic factor (IF) was developed based on the ability of the cobinamide (Cbi) [(CN, OH) Cbi] to bind to the gastric juice R-type binders of cobalamin (Cbl) and not to the IF binder. Subsequently added radioactive Cbl, CN-[ 57 Co] Cbl, binds only to the IF binders and allows for direct measurement of this Cbl binding protein. This Cbi blocking assay was found to function as well as the more conventional methods of IF measurement, G-100 column chromatography, and IF blocking antibody assay. The present assay has the advantage of eliminating the need for elaborate forms of protein separation and does not rely on a source of antibody

  12. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  13. Final report on initial samples supplied by LLNL for task 3.3 binder burnout and sintering schedule optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Walls, P

    1999-01-04

    Sixteen of the twenty-one samples have been investigated using the scanning laser dilatometer. This includes all three types of samples with different preparation routes and organic content. Cracks were observed in all samples, even those only heated to 300 C. It was concluded that the cracking was occurring in the early part of the heat treatment before the samples reached 300 C. Increase in the rate of dilation of the samples occurred above 170 C which coincided with the decomposition of the binder/wax additives as determined by differential thermal analysis. A comparison was made with SYNROC C material (Powder Run 143), samples of which had been CIPed and green machined to a similar diameter and thickness as the 089 mm SRTC pucks. These samples contained neither binder nor other organic processing aids and had been kept in the same desiccator as the SRTC samples. The CIPed Synroc C samples sintered to high density with zero cracks. As the cracks made up only a small contribution to the change in diameter of the sample compared to the sintering shrinkage, useful information could still be gained from the runs. The sintering curves showed that there was much greater shrinkage of the Type III samples containing only the 5% PEG binder compared to the Type I which contained polyolefin wax as processing aid. Slight changes in gradient of the sintering curve were observed, however, due to the masking effect of the cracking, full analysis of the sintering kinetics cannot be conducted. Even heating the samples to 300 C at 1.0 or 0.5 C/min could not prevent crack formation. This indicated that heating rate was not the critical parameter causing cracking of the samples. Sectioning of green bodies revealed the inhomogeneous nature of the binder/lubricant distribution in the samples. Increased homogeneity would reduce the amount of binder/lubricant required, which should in turn, reduce the degree of cracking observed during heating to the binder burnout temperature. A

  14. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature.

  15. Oil-Acrylic hybrid latexes as binders for waterborne coatings

    NARCIS (Netherlands)

    Hamersveld, E.M.S.; Es, van J.J.G.S.; German, A.L.; Cuperus, F.P.; Weissenborn, P.; Hellgren, A.C.

    1999-01-01

    The combination of the characteristics of oil, or alkyd, emulsions and acrylic latexes in a waterborne binder has been the object of various studies in the past. Strategies for combining the positive properties of alkyds, e.g. autoxidative curing, gloss and penetration in wood, with the fast drying

  16. Oil-acrylic hybrid latexes as binders for waterborne coatings

    NARCIS (Netherlands)

    Hamersveld, van E.M.S.; Es, van J.; German, A.L.; Cuperus, F.P.; Weissenborn, P.; Hellgren, A.C.

    1999-01-01

    The combination of the characteristics of oil, or alkyd, emulsions and acrylic latexes in a waterborne binder has been the object of various studies in the past. Strategies for combining the positive properties of alkyds, e.g. autoxidative curing, gloss and penetration in wood, with the fast drying

  17. Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

    International Nuclear Information System (INIS)

    Song, Ha Won; Ann, Ki Yong; Kim, Tae Sang

    2009-01-01

    The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (I.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/m 3 at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC

  18. Studies on thermal decomposition of phenol binder using TG/DTG/DTA and FTIR-DRIFTS techniques in temperature range 20-500 °C

    Directory of Open Access Journals (Sweden)

    *Artur Bobrowski

    2018-03-01

    Full Text Available This paper presents results of thermoanalytical and structural research on phenolic binder used in foundry for the preparation of moulding sand. The binder has been prepared based on resole type phenolic resin with the addition of ester hardener. The aim of the study was to determine the structural changes taking place in the phenolic binder under the influence of temperature. Results show that in the investigated range of temperatures,phenolic binder exhibits three exothermic thermal effects accompanying the decomposition process. The test results using the Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS technique show that the addition of a hardener stabilizes the binder structure within methylene bridges. The reduction in the reaction rate observed in the DTA curve at about 330 癈 can be associated with the formation of gaseous products by decomposition of the binder or, as suggested by the literature data, the formation of triple bonds and CN-HCN groups.

  19. Production of metallurgical cokes from some Turkish lignites using sulphite liquor binders

    Energy Technology Data Exchange (ETDEWEB)

    Yanik, J.; Saglam, M.; Yuksel, M. (Ege University, Izmir (Turkey). Dept. of Chemistry)

    1990-04-01

    Soma and Tuncbilek lignites were briquetted at 80{degree}C under 0-100 MPa, using varying amounts of sulphite liquor binders. The briquettes were then carbonized at 950{degree}C, and the resulting formed cokes were examined. The effects of the type and concentration of binders, and of the briquetting pressure, on the strength and porosity of the formcokes were investigated. As a result of these experiments, optimal briquetting conditions were established. It was also stated that formcokes made from both Turkish lignite samples under optimal briquetting conditions could be used for metallurgical purposes, particularly in non-ferrous metallurgy. 17 refs., 1 fig., 4 tabs.

  20. Effect of varying the amount of binder on the electrochemical characteristics of palm shell activated carbon

    Science.gov (United States)

    Imam Maarof, Hawaiah; Daud, Wan Mohd Ashri Wan; Kheireddine Aroua, Mohamed

    2017-06-01

    Polytetrafluoroethylene (PTFE) is among the most common binders used in the fabrication of an electrode, which is used for various electrochemical applications such as desalination, water purification, and wastewater treatment. In this study, the amount of the binder was varied at 10, 20, 30, and 40 wt% of the total mass of palm shell activated carbon (PSAC). The PSAC was used as the active material and carbon black was used as the conductive agent. The effect of different amounts of binder was observed by evaluating the electrochemical characteristics of the electrode through cyclic voltammetry (CV) and potentio electrochemical spectroscopy (PEIS). The CV analysis was employed to determine the geometric area normalised electrode double layer capacitance, CE , and the electrode reaction of the prepared electrode. Meanwhile, the common redox probe, ferro/ferricyanide in 0.5 M NaCl, was employed to estimate the electron transfer resistance through PEIS. The electrochemical characterisation proved that the optimum amount of PTFE was 20 wt% for the 4:1 ratio of active material to conductive agent. On increasing the amount of the binder to 30 wt% and 40 wt%, the estimated value of CE decreased and remained almost equivalent. Adding more than 30 wt% of binder resulted in pore blockage and reduced the available active site on the PSAC electrode. In addition, the electron transfer resistance of the prepared electrode was found to be in the range of 4-5 Ω·cm2.

  1. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  2. Effects of Sasobit® content on the rheological characteristics of unaged and aged asphalt binders at high and intermediate temperatures

    Directory of Open Access Journals (Sweden)

    Ali Jamshidi

    2012-08-01

    Full Text Available This paper describes the rheological properties of PG64, PG70, and PG76 asphalt binders blended with different Sasobit® contents. The rheological properties of the Sasobit®-modified binders were characterized after being subjected to different aging conditions using the dynamic shear rheometer (DSR and rotational viscometer (RV according to SuperpaveTM test protocols. The results indicated that the characterization of aging in terms of the Aging Index (AI depends on the rheological property of the asphalt binder selected for use in evaluating aging, the amount of Sasobit®, the binder type, and the temperature range. Linear relationships between failure temperatures of unaged and short-term-aged asphalt were observed for three binder types. Design charts were developed to select the appropriate Sasobit® content as a function of temperature, taking into consideration the stiffening effects of Sasobit®, using the SuperpaveTM fatigue factor and asphalt mix construction temperatures.

  3. The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil.

    Science.gov (United States)

    Wang, Fei; Wang, Hailing; Jin, Fei; Al-Tabbaa, Abir

    2015-03-21

    This paper presents an investigation of the effects of novel binders and pH values on the effectiveness of the in-situ stabilisation/solidification technique in treating heavy metals and organic contaminated soils after 1.5-year treatment. To evaluate the performance of different binders, made ground soils of SMiRT site, upto 5 m depth, were stabilised/solidified with the triple auger system and cores were taken for laboratory testing after treatment. Twenty four different binders were used including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and zeolite. Unconfined compressive strength (UCS), leachate pH and the leachability of heavy metals and total organics were applied to study the behaviours of binders in treating site soils. Under various contaminant level and binder level, the results show that UCS values were 22-3476 kPa, the leachability of the total organics was in the range of 22-241 mg/l and the heavy metals was in the range of 0.002-0.225 mg/l. In addition, the combination of GGBS and MgO at a ratio of 9:1 shows better immobilisation efficiency in treating heavy metals and organic contaminated soils after 1.5-year treatment, and the binding mechanisms under different binders were also discussed in this paper. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Atashgahi, S.; Maphosa, F.; Vrieze, de J.; Haest, P.J.; Boon, N.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that

  5. Mechanical and Permeability Characteristics of Latex-Modified Pre-Packed Pavement Repair Concrete as a Function of the Rapid-Set Binder Content

    Directory of Open Access Journals (Sweden)

    Jae-Woong Han

    2015-10-01

    Full Text Available We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ¥21 MPa and a flexural strength of ¥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement. The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ¥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.29. The mixture exhibited a flexural strength of ¥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ¤0.29.

  6. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  7. Radiation induced emulsion polymerization

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1990-01-01

    High energy radiation is particularly favored for the initiation of emulsion polymerization. The yield of free radicals, for example, from the radiolysis of the aqueous phase, is high; G(radical) values of 5-7. In addition, the rather special kinetics associated with emulsion polymerization lead, in general, to very large kinetic chain lengths, even with 'non-ideal' monomers such as vinyl acetate. Together, high polymerization rates at low doses become possible. There are some important advantages of radiation polymerization compared with chemical initiators, such as potassium persulfate. Perhaps the most important among them is the temperature independence of the initiation step. This makes low temperature polymerization very accessible. With monomers such as vinyl acetate, where chain termination to monomer is predominant, low temperatures lead to often highly desirable higher molecular weights. With styrene, the classical ideally behaved monomer, there are the advantages such as, for example, the feasibility of using cationic monomers. These and some attendant disadvantages are discussed in detail, including pilot plant studies

  8. Phosphate binder use and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS): evaluation of possible confounding by nutritional status.

    Science.gov (United States)

    Lopes, Antonio Alberto; Tong, Lin; Thumma, Jyothi; Li, Yun; Fuller, Douglas S; Morgenstern, Hal; Bommer, Jürgen; Kerr, Peter G; Tentori, Francesca; Akiba, Takashi; Gillespie, Brenda W; Robinson, Bruce M; Port, Friedrich K; Pisoni, Ronald L

    2012-07-01

    Poor nutritional status and both hyper- and hypophosphatemia are associated with increased mortality in maintenance hemodialysis (HD) patients. We assessed associations of phosphate binder prescription with survival and indicators of nutritional status in maintenance HD patients. Prospective cohort study (DOPPS [Dialysis Outcomes and Practice Patterns Study]), 1996-2008. 23,898 maintenance HD patients at 923 facilities in 12 countries. Patient-level phosphate binder prescription and case-mix-adjusted facility percentage of phosphate binder prescription using an instrumental-variable analysis. All-cause mortality. Overall, 88% of patients were prescribed phosphate binders. Distributions of age, comorbid conditions, and other characteristics showed small differences between facilities with higher and lower percentages of phosphate binder prescription. Patient-level phosphate binder prescription was associated strongly at baseline with indicators of better nutrition, ie, higher values for serum creatinine, albumin, normalized protein catabolic rate, and body mass index and absence of cachectic appearance. Overall, patients prescribed phosphate binders had 25% lower mortality (HR, 0.75; 95% CI, 0.68-0.83) when adjusted for serum phosphorus level and other covariates; further adjustment for nutritional indicators attenuated this association (HR, 0.88; 95% CI, 0.80-0.97). However, this inverse association was observed for only patients with serum phosphorus levels ≥3.5 mg/dL. In the instrumental-variable analysis, case-mix-adjusted facility percentage of phosphate binder prescription (range, 23%-100%) was associated positively with better nutritional status and inversely with mortality (HR for 10% more phosphate binders, 0.93; 95% CI, 0.89-0.96). Further adjustment for nutritional indicators reduced this association to an HR of 0.95 (95% CI, 0.92-0.99). Results were based on phosphate binder prescription; phosphate binder and nutritional data were cross

  9. Influence of Binding Rates on Strength Properties of Moulding Sands with the GEOPOL Binder

    Directory of Open Access Journals (Sweden)

    Holtzer M.

    2014-03-01

    Full Text Available The results of investigations of moulding sands with an inorganic binder called GEOPOL, developed by the SAND TEAM Company are presented in the paper. Hardeners of various hardening rates are used for moulding sands with this binder. The main aim of investigations was determination of the influence of the hardening rate of moulding sands with the GEOPOL binder on technological properties of these sands (bending strength, tensile strength, permeability and grindability. In addition, the final strength of moulding sands of the selected compositions was determined by two methods: by splitting strength and shear strength measurements. No essential influence of the hardening rate on such parameters as: permeability, grindability and final strength was found. However, the sand in which the slowest hardener (SA 72 were used, after 1 hour of holding, had the tensile and bending strength practically zero. Thus, the time needed for taking to pieces the mould made of such moulding sand will be 1.5 - 2 hours.

  10. Chloride accelerated test: influence of silica fume, water/binder ratio and concrete cover thickness

    Directory of Open Access Journals (Sweden)

    E. Pereira

    Full Text Available In developed countries like the UK, France, Italy and Germany, it is estimated that spending on maintenance and repair is practically the same as investment in new constructions. Therefore, this paper aims to study different ways of interfering in the corrosion kinetic using an accelerated corrosion test - CAIM, that simulates the chloride attack. The three variables are: concrete cover thickness, use of silica fume and the water/binder ratio. It was found, by analysis of variance of the weight loss of the steel bars and chloride content in the concrete cover thickness, there is significant influence of the three variables. Also, the results indicate that the addition of silica fume is the path to improve the corrosion protection of low water/binder ratio concretes (like 0.4 and elevation of the concrete cover thickness is the most effective solution to increase protection of high water/binder ratio concrete (above 0.5.

  11. Preparation Parameter Analysis and Optimization of Sustainable Asphalt Binder Modified by Waste Rubber and Diatomite

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2018-01-01

    Full Text Available In this study, crumb rubber and diatomite were used to modify asphalt binder. Wet process was adopted as a preparation method, and the corresponding preparation process was determined firstly. The effects of six preparation parameters (crumb rubber concentration, diatomite concentration, shear time, shear speed, shear temperature, and storing time on properties of modified asphalt binder (penetration at 25°C, softening point, ductility, viscosity at 135°C, elastic recovery, and penetration index were investigated, and multiresponse optimization was conducted using the response surface method. The results revealed that softening points, viscosity, elastic recovery, and penetration index increase, while penetration and ductility decrease with the increase of crumb rubber concentration. Softening points, viscosity, and penetration index increase, while penetration and ductility decrease with the increase of diatomite concentration, which presents little influence on elastic recovery of binder. Shear temperature presented significant effects on penetration, softening point, viscosity, and ductility. Shear speed, shear time, and storing time have similar effects on binder properties because of their similar mechanism of action. Based on the model obtained from the response surface method, optimized preparation parameters corresponding to specific criteria can be determined, which possess favorable accuracy compared with experimental results.

  12. Graphene Oxides Used as a New "Dual Role" Binder for Stabilizing Silicon Nanoparticles in Lithium-Ion Battery.

    Science.gov (United States)

    Shan, Changsheng; Wu, Kaifeng; Yen, Hung-Ju; Narvaez Villarrubia, Claudia; Nakotte, Tom; Bo, Xiangjie; Zhou, Ming; Wu, Gang; Wang, Hsing-Lin

    2018-05-09

    For the first time, we report that graphene oxide (GO) can be used as a new "dual-role" binder for Si nanoparticles (SiNPs)-based lithium-ion batteries (LIBs). GO not only provides a graphene-like porous 3D framework for accommodating the volume changes of SiNPs during charging/discharging cycles, but also acts as a polymer-like binder that forms strong chemical bonds with SiNPs through its Si-OH functional groups to trap and stabilize SiNPs inside the electrode. Leveraging this unique dual-role of GO binder, we fabricated GO/SiNPs electrodes with remarkably improved performances as compared to using the conventional polyvinylidene fluoride (PVDF) binder. Specifically, the GO/SiNPs electrode showed a specific capacity of 2400 mA h g -1 at the 50th cycle and 2000 mA h g -1 at the 100th cycle, whereas the SiNPs/PVDF electrode only showed 456 mAh g -1 at the 50th cycle and 100 mAh g -1 at 100th cycle. Moreover, the GO/SiNPs film maintained its structural integrity and formed a stable solid-electrolyte interphase (SEI) film after 100 cycles. These results, combined with the well-established facile synthesis of GO, indicate that GO can be an excellent binder for developing high performance Si-based LIBs.

  13. Improving of Water Resistance of Asphalt Concrete Wearing Course Using Latex-Bitumen Binder

    Directory of Open Access Journals (Sweden)

    Siswanto Henri

    2017-01-01

    Full Text Available It is well known that presence of water in a bituminous mix is a critical factor which can lead to premature failure of flexible pavements. This requires solutions one of which is to formulate an asphalt mix that has a high resistance to moisture and one way to do this is to mix latex with the asphalt mix. The purpose of this experimental study was to investigate the effect of water on Marshall stability of asphalt concrete wearing course (ACWC made with a latex-bitumen binder. Latex-bitumen was mixed with aggregate and four levels of latex content were investigated in this study, namely, 0%, 2%, 4% and 6% respectively by weight of asphalt. Wet procces was used in the blending of mixtures. The procedure used to obtain the optimum binder contents conformed to the Marshall procedure (SNI 06-2489-1991. Six Marshall specimens at optimum binder content were prepared for each binder mix investigated. Three of six specimens from each group were tested under Marshall standards. The remaining specimens were tested by immersion in a bath at 60°C for 24 hours. The Marshall index of retained stability was used to evaluate the effect of water on the Marshall stability of ACWC. The results indicated that the addition of up to 4% latex to ACWC mix increased the retained Marshall stability, whereas the addition of latex above 4% decreased the retained stability of the mixture. The addition of 4% CRM significantly improved the retained stability of the mixture and was the best latex – ACWC mix.

  14. Lignin as a Binder Material for Eco-Friendly Li-Ion Batteries

    Science.gov (United States)

    Lu, Huiran; Cornell, Ann; Alvarado, Fernando; Behm, Mårten; Leijonmarck, Simon; Li, Jiebing; Tomani, Per; Lindbergh, Göran

    2016-01-01

    The industrial lignin used here is a byproduct from Kraft pulp mills, extracted from black liquor. Since lignin is inexpensive, abundant and renewable, its utilization has attracted more and more attention. In this work, lignin was used for the first time as binder material for LiFePO4 positive and graphite negative electrodes in Li-ion batteries. A procedure for pretreatment of lignin, where low-molecular fractions were removed by leaching, was necessary to obtain good battery performance. The lignin was analyzed for molecular mass distribution and thermal behavior prior to and after the pretreatment. Electrodes containing active material, conductive particles and lignin were cast on metal foils, acting as current collectors and characterized using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge cycles. Good reversible capacities were obtained, 148 mAh·g−1 for the positive electrode and 305 mAh·g−1 for the negative electrode. Fairly good rate capabilities were found for both the positive electrode with 117 mAh·g−1 and the negative electrode with 160 mAh·g−1 at 1C. Low ohmic resistance also indicated good binder functionality. The results show that lignin is a promising candidate as binder material for electrodes in eco-friendly Li-ion batteries. PMID:28773252

  15. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  16. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  17. "Click" i polymerer 2

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  18. Evaluation of binder aging and its influence in aging of hot mix asphalt concrete : literature review and experimental design.

    Science.gov (United States)

    2009-02-01

    Binder oxidation in pavements and its impact on pavement performance has been addressed by : numerous laboratory studies of binder oxidation chemistry, reaction kinetics, and hardening and its impact on : mixture fatigue. Studies also have included s...

  19. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  20. Identification of Proteinaceous Binders in Ancient Tripitaka by the Use of an Enzyme-linked Immunosorbent Assay.

    Science.gov (United States)

    Liu, Yi; Li, Yi; Chang, Runxing; Zheng, Hailing; Li, Menglu; Hu, Zhiwen; Zhou, Yang; Wang, Bing

    2016-01-01

    Proteinaceous materials, such as ovabumin and collagen, were commonly used as binding media, and as adhesives and protective coatings. However, the identification of ancient proteinaceous binders is a great challenge for archaeologists, due to their limited sample size, complex combinations of various ingredients and reduced availability of the binder during the process of protein degradation. In this paper, an enzyme-linked immunosorbent assay (ELISA) provides to be a particularly promising method for the detection of proteinaceous binding materials in ancient relics. The present work focused on the specific identification of proteins in archaeological binders, which was brushed on the Tripitaka. Two samples, the adhesion area (S1) and the ink area (S2), were tested by ELISA. The results showed that both S1 and S2 reacted positively when treated with an anti-collagen-I antibody. It proved the existence of proteinaceous binders in Ancient Tripitaka, and the percentage of collagen in S1 and S2 was 61.44 and 15.4%, respectively. Compared with other conventional techniques, ELISA has advantages of high specificity, sensitivity, rapidity and low cost, making it especially suitable for the protein detection in the archaeological field.

  1. Application of lithiated perfluorosulfonate ionomer binders to enhance high rate capability in LiMn2O4 cathodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih Hsuan; Leu, Hoang-Juh; Chen, Yi Shiang

    2014-01-01

    Lithiated perfluorosulfonate ionomer has been used as the binder for LiMn 2 O 4 cathodes. Casted membranes of the lithiated ionomer exhibit ionic conductivity of 1.4 × 10 −4 S/cm. Composite cathodes composed of LiMn 2 O 4 , carbon black and the ionomer binder have been fabricated. All components of the cathodes are well bound and dispersed as characterized by scanning electron microscope and energy dispersive spectroscope. The cathodes using the conventional poly-vinylidene fluoride binder have also been prepared for comparison. Under high rate (5 C-20 C) and high temperature (60 °C) operation, the LiMn 2 O 4 cathodes with the ionomer binder exhibit higher capacity and improved cycling stability. As indicated by the electrochemical impedance spectra, the ionomer binder forms ion-conducting interface layers on the LiMn 2 O 4 particles and results in lower interface resistance. It enables the cells utilizing the ionomer binder to achieve higher capacity and enhanced cycling stability even under harsh conditions

  2. Survey and research on precision polymerization polymeric materials; Seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey and research on the precision control of primary structure of polymeric materials and the precision evaluation technology have been conducted to develop advanced polymeric materials. It is proposed that the three basic processes of polymer synthesis, i.e., addition, condensation, and biomimesis, in forming the precision polymerization skeleton are to be covered through a centralized joint research effort with participation of industry, academia, and the government institute and under the leadership of researchers from academic institutions as the team leaders. For the study of technology trends, international conferences held in UK, Germany, and Hawaii are introduced, and domestic meetings, i.e., Annual Polymer Congress and Polymer Conference, are summarized. In addition, Precision Polymerization Forum and International Workshop on Precision Polymerization were held. The basic studies include a quantum-chemical elucidation of the elementary process in polymerization reaction, time-resolved analysis of polymerization process and polymer properties, synthesis of polymers with controlled microstructures by coordination polymerization using metal complexes, synthesis of polymer with controlled microstructures by precision polycondensation, molecular recognition in catalyst-reaction site, and synthesis of imprinting polymers. 246 refs., 117 figs., 14 tabs.

  3. Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain

    Science.gov (United States)

    Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh

    2018-02-01

    This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.

  4. Molecular Dynamics Study of the Separation Behavior at the Interface between PVDF Binder and Copper Current Collector

    Directory of Open Access Journals (Sweden)

    Seungjun Lee

    2016-01-01

    Full Text Available In Li-ion batteries, the mechanical strengths at the interfaces of binder/particle and binder/current collector play an important role in maintaining the mechanical integrity of the composite electrode. In this work, the separation behaviors between polyvinylidene fluoride (PVDF binders and copper current collectors are studied in the opening and sliding modes using molecular dynamics (MD simulations. The simulation shows that the separation occurs inside the PVDF rather than at the interface due to the strong adhesion between PVDF and copper. This fracture behavior is different from the behavior of the PVDF/graphite basal plane that shows a clear separation at the interface. The results suggest that the adhesion strength of the PVDF/copper is stronger than that of the PVDF/graphite basal plane. The methodology used in MD simulation can directly evaluate the adhesion strength at the interfaces of various materials between binders, substrates, and particles at the atomic scales. The proposed method can therefore provide a guideline for the design of the electrode in order to enhance the mechanical integrity for better battery performance.

  5. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  6. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  7. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Lambertin, D.; Lahalle, H.; Antonucci, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Cannes, C.; Delpech, S. [Institut de Physique Nucléaire, CNRS, Univ. Paris-Sud 11, 91406 Orsay Cedex (France)

    2014-10-15

    Highlights: • Binders capable of reducing the pore solution pH compared with Portland cements are reviewed. • The binders are then tested against aluminum corrosion. • Corrosion of aluminum metal is minimal with magnesium phosphate cement. • The H{sub 2} release can be reduced still further by adding LiNO{sub 3} to the mixing solution. • Electrochemical characterizations show that aluminum tends to a passive state. - Abstract: In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  8. Coal and potash flotation enhancement using a clay binder

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Chen, G.L.; Zhou, X.H.; Zhao, C.; Fan, M.M.; Aron, M.; Wright, J. [University of Kentucky, Lexington, KY (United States)

    2007-07-15

    The adverse effects of clay particles on coal and mineral processing operations such as gravity separation, flotation, filtration and thickening are well known in the mining industry. In particular, the presence of ultra-fine clay particles deteriorates froth flotation performance, which has been attributed to slime coatings that inhibit bubble attachment and to adsorption of the frother and/or collector by the clay particles. The present study was conducted to evaluate the performance of a clay binding agent developed by Georgia-Pacific Resins, Inc. in enhancing coal and mineral flotation performance. Mechanical flotation tests were carried out using coal and potash samples. Process parameters investigated included slurry solids percentage, impeller rotation speed, binder dosage, etc. Flotation results show that the use of GP reagents significantly enhanced flotation efficiency under different conditions. The required binder dosage and conditioning time were about 0.45 kg/t and 0.5 to 1 minute, respectively. More significant improvements in process performance were observed at higher solids percentage and higher impeller rotation speed.

  9. Study of radionuclides migration in hydraulic binders. Influence of binder alteration on transfer mechanisms and kinetic

    International Nuclear Information System (INIS)

    Richet, C.

    1992-01-01

    In the framework of low and medium activity wastes surface storage, hydraulic binders materials are usually used as containment barrier. The safety analysis of this storage mode involves the knowledge of their behaviour and of their retention capacity towards radionuclides, at short and long-term. The knowledge of diffusional processes inside their liquid phase and those of the interactions existing between the diffusing element and the cement matrix, as well as their kinetics, are essential elements for the study of their durability on 300 years. An experimental methodology has been defined, allowing the characterization of the transfer of an element j in a porous material by the determination of the diffusion coefficient of j in the pores of the material x and the determination of the local equilibrium constant characterizing the interaction of j with the material x. This can be made from the analytical expressions coming from the Fick laws. These parameters have been studied from diffusion and leaching experiments of radionuclides in pure cement pastes. A modelling of the leaching processes is proposed here. The decomposition of the hydraulic binders, by their leaching in a demineralized solution at 'aggressive' pH, leads essentially to their decalcification - whose kinetics answers to a pure diffusion law in √t - and an increase of their porosity. In these attack conditions, it seems that it exists a decalcification limit condition, from which a lattice of interconnected microcracks is developed in all the material. In consequence, the retention capacity of these degraded materials towards radionuclides decreases. The cesium transfer appears more sensitive to the degradation of the material than of those of the tritium. (O.M.)

  10. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  11. Influence of surface modified nano silica on alkyd binder before and after accelerated weathering

    DEFF Research Database (Denmark)

    Nikolic, Miroslav; Nguyen, Hiep Dinh; Daugaard, Anders Egede

    2016-01-01

    Introduction of nano fillers in exterior wood coatings is not straight forward. Influence on aging of polymer binder needs to be taken into account along with possible benefits that nano fillers can provide immediately after application. This study shows the influence of two differently modified...... hydrophobic nano silica on an alkyd binder for exterior wood coatings. One month after application, the highest strength and energy required to break the films was obtained with addition of 3% disilazane modified silica. Changes in tensile properties were accompanied with a small increase in glass transition...

  12. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  13. Additive manufacturing of ceramics: Stereolithography versus binder jetting

    OpenAIRE

    Nachum, Sarig; Vogt, Joachim; Raether, Friedrich

    2016-01-01

    Stereolithography and Binder Jetting are two promising Additive Manufacturing techniques for the fabrication of complex ceramics components. The Fraunhofer Center for High Temperature Material and Design HTL/DE has experience in the fabrication and development of ceramic and metallic components with both technologies. This paper describes and compares the respective process setups as well as the advantages and disadvantages of both techniques, and discusses future challenges and developments ...

  14. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in Hong Kong marine sediments

    International Nuclear Information System (INIS)

    Zheng, G.J.; Richardson, B.J.

    1999-01-01

    A total of 20 surficial sediment samples, obtained from Hong Kong coastal waters, were analysed for petroleum hydrocarbons (PHCs) and a suite of 15 polycyclic aromatic hydrocarbons (PAHs). The results indicate that Hong Kong coastal sediments are often seriously polluted with petroleum related hydrocarbons. This is especially so in heavily urbanised or industrialized localities, such as Kowloon Bay (Victoria Harbour), Tsing Yi North and Tolo Harbour. Petroleum hydrocarbon pollutants in marine sediments are believed to be mainly derived from the transportation of oil, shipping activities, spillages, and industrial, stormwater and waste wastewater discharge. The ratio of unresolved complex mixture (UCM) to n-alkanes, carbon preference index (CPI), and n-C 16 values indicate that the main contribution to petroleum hydrocarbon contamination is via oil and its products. Pollutant sources appear to be stable and continuing when compared with previous data. (author)

  15. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  16. Adherent diamond coatings on cemented tungsten carbide substrates with new Fe/Ni/Co binder phase

    International Nuclear Information System (INIS)

    Polini, Riccardo; Delogu, Michele; Marcheselli, Giancarlo

    2006-01-01

    WC-Co hard metals continue to gain importance for cutting, mining and chipless forming tools. Cobalt metal currently dominates the market as a binder because of its unique properties. However, the use of cobalt as a binder has several drawbacks related to its hexagonal close-packed structure and market price fluctuations. These issues pushed the development of pre-alloyed binder powders which contain less than 40 wt.% cobalt. In this paper we first report the results of extensive investigations of WC-Fe/Ni/Co hard metal sintering, surface pretreating and deposition of adherent diamond films by using an industrial hot filament chemical vapour deposition (HFCVD) reactor. In particular, CVD diamond was deposited onto WC-Fe/Ni/Co grades which exhibited the best mechanical properties. Prior to deposition, the substrates were submitted to surface roughening by Murakami's etching and to surface binder removal by aqua regia. The adhesion was evaluated by Rockwell indentation tests (20, 40, 60 and 100 kg) conducted with a Brale indenter and compared to the adhesion of diamond films grown onto Co-cemented tungsten carbide substrates, which were submitted to similar etching pretreatments and identical deposition conditions. The results showed that diamond films on medium-grained WC-6 wt.% Fe/Ni/Co substrates exhibited good adhesion levels, comparable to those obtained for HFCVD diamond on Co-cemented carbides with similar microstructure

  17. Effect of Chitosan Binder on Water Absorption of Empty Fruit Bunches Filter Media

    International Nuclear Information System (INIS)

    Aziatul Niza Sadikin; Mohd Ghazali Mohd Nawawi; Norasikin Othman

    2015-01-01

    The potential of chitosan as filter media binder was investigated in this study. Chitosan solution with different concentrations were applied to the empty fruit bunches using two different deposition techniques, namely, spray method and addition method. In this study, a water absorption test was used to study the sorption behaviour of empty fruit bunches filter media. The water absorption study showed that the water uptake for empty fruit bunches filter media without the chitosan binder increases with time, until the water sorption reaches the equilibrium state. It was observed that the water uptake decreased from 23 % to 14 % for the chitosan-filled filter media as compared to binder-less filter media, over the duration of 24 hours. For 1 % chitosan concentration, the water uptake is higher compared to 3 % chitosan-filled filter media. The water absorption is relatively lower for filter media with a higher concentration of chitosan due to the high compatibility achieved at this interfacial region between empty fruit bunches fibres and chitosan. Alkali-treated filter media showed the lowest water uptake compared to diethyl ether, ethanol and hot water pretreatment methods. (author)

  18. Design and Properties of Asphalt Concrete Mixtures Using Renewable Bioasphalt Binder

    Science.gov (United States)

    Setyawan, A.; Djumari; Irfansyah, P. A.; Shidiq, A. M.; Wibisono, I. S.; Fauzy, M. N.; Hadi, F. N.

    2017-02-01

    The needs of petroleum asphalt as materials for pavement is very large, while the petroleum classified as natural resources that cannot be renewable. As a result of petroleum dwindling and prices tend to be more expensive. So that requiring other alternative materials as a substitute for conventional asphalt derived from biomass or often called bioasphalt. This study aims to know the volumetric and Marshall characteristics on Asphalt Cement ( AC ) using the Damar asphalt modification to substitute 60/70 penetration asphalt as a binder. The volumetric and Marshall characteristic are porosity, density, flow, stability, and Marshall quotient. The characteristic of asphalt concrete at optimum bitumen content are compared to the conditions from highway agency 1987 and the general specification of asphalt concrete Bina Marga 2010 the third revision. The research uses experimental method in the laboratory with the samples made using the dasphalt modification as binder and incorporating the aggregate gradation no. VII SNI 03-1737-1989. The research is using 15 samples divided into 5 contents of damar asphalt, they are 5%, 5,5%, 6%, 6,5%, dan 7%. Tests carried out using Marshall test equipment to get the value of flow and stability and then be searched the value of optimum damar asphalt content. The result of asphalt concrete analysis using dasphalt modification as binder gives the value of optimum dasphalt content at 5,242%. The most characteristics already met the requirements and specifications.

  19. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Sanjaya D.; Patel, Bijal; Seitz, Oliver; Ferraris, John P.; Balkus, Kenneth J. Jr. [Department of Chemistry and the Alan G. MacDiarmid Nanotech Institute, 800 West Campbell Rd, University of Texas at Dallas, Richardson, TX 75080 (United States); Nijem, Nour; Roodenko, Katy; Chabal, Yves J. [Laboratory for Surface and Nanostructure Modification, Department of Material Science and Engineering, 800 West Campbell Rd, University of Texas Dallas, Richardson, TX 75080 (United States)

    2011-10-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) layered nanostructures are known to have very stable crystal structures and high faradaic activity. The low electronic conductivity of V{sub 2}O{sub 5} greatly limits the application of vanadium oxide as electrode materials and requires combining with conducting materials using binders. It is well known that the organic binders can degrade the overall performance of electrode materials and need carefully controlled compositions. In this study, we develop a simple method for preparing freestanding carbon nanotube (CNT)-V{sub 2}O{sub 5} nanowire (VNW) composite paper electrodes without using binders. Coin cell type (CR2032) supercapacitors are assembled using the nanocomposite paper electrode as the anode and high surface area carbon fiber electrode (Spectracarb 2225) as the cathode. The supercapacitor with CNT-VNW composite paper electrode exhibits a power density of 5.26 kW Kg{sup -1} and an energy density of 46.3 Wh Kg{sup -1}. (Li)VNWs and CNT composite paper electrodes can be fabricated in similar manner and show improved overall performance with a power density of 8.32 kW Kg{sup -1} and an energy density of 65.9 Wh Kg{sup -1}. The power and energy density values suggest that such flexible hybrid nanocomposite paper electrodes may be useful for high performance electrochemical supercapacitors. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Research and development project in fiscal 1989 for fundamental technologies for next generation industries. Achievement report on research and development on electrically conductive polymeric materials; 1989 nendo dodensei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    With an objective to develop electric and electronic materials characterized by light weight, high corrosion resistance, and easy-to-process performance, and by having functions different from electricity conduction mechanism of metals, researches have been performed on fundamental technologies for electrically conductive polymeric materials. This paper summarizes the achievements in fiscal 1989. In new hydrocarbon conjugate polymers, researches were performed for the purpose of fabricating the conjugate system polymer and dopant complex system conductive thin films, and polyacene system polymer thin films. In developing the vehicular conjugate conductive materials, discussions were given on enhancing the molecular weight dependence and the conductivity by cross-linking the conjugate system, with regard to hydrocarbon system polymers that go through vehicular polymeric intermediates. In the research of vehicular graphite materials, it was discovered that mono-axial mono-plane PPV films and PTV films are graphitized. In developing the hetero aromatic system polymers, researches were advanced on the correlation among the gegen ions, high-order structures, and electric conductivity, mainly on polypyrrole. (NEDO)

  1. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  2. Formation of polymer micro-agglomerations in ultralow-binder-content composite based on lunar soil simulant

    Science.gov (United States)

    Chen, Tzehan; Chow, Brian J.; Zhong, Ying; Wang, Meng; Kou, Rui; Qiao, Yu

    2018-02-01

    We report results from an experiment on high-pressure compaction of lunar soil simulant (LSS) mixed with 2-5 wt% polymer binder. The LSS grains can be strongly held together, forming an inorganic-organic monolith (IOM) with the flexural strength around 30-40 MPa. The compaction pressure, the number of loadings, the binder content, and the compaction duration are important factors. The LSS-based IOM remains strong from -200 °C to 130 °C, and is quite gas permeable.

  3. Aptamer sensor for cocaine using minor groove binder based energy transfer.

    Science.gov (United States)

    Zhou, Jinwen; Ellis, Amanda V; Kobus, Hilton; Voelcker, Nicolas H

    2012-03-16

    We report on an optical aptamer sensor for cocaine detection. The cocaine sensitive fluorescein isothiocyanate (FITC)-labeled aptamer underwent a conformational change from a partial single-stranded DNA with a short hairpin to a double-stranded T-junction in the presence of the target. The DNA minor groove binder Hoechst 33342 selectively bound to the double-stranded T-junction, bringing the dye within the Förster radius of FITC, and therefore initiating minor groove binder based energy transfer (MBET), and reporting on the presence of cocaine. The sensor showed a detection limit of 0.2 μM. The sensor was also implemented on a carboxy-functionalized polydimethylsiloxane (PDMS) surface by covalently immobilizing DNA aptamers. The ability of surface-bound cocaine detection is crucial for the development of microfluidic sensors. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  5. Effects of Mineral Admixtures, Water Binder Ratio and Curing on ...

    African Journals Online (AJOL)

    Suitable addition of mineral admixtures like fly ash (FA), silica fume (SF), metakaolin (MK) etc., in concrete improves strength and durability characteristics of concrete. This paper presents the laboratory investigation on the effects of mineral admixtures and water binder ratio on compressive strength is discussed. The study ...

  6. Influence of binder solvent on carbon-layer structure in electrical ...

    Indian Academy of Sciences (India)

    This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors.

  7. Treatability Study Report for In SITU Lead Immobilization Using Phosphate-Based Binders

    National Research Council Canada - National Science Library

    Bricka, R. M; Marwaha, Anirudha; Fabian, Gene L

    2008-01-01

    .... The treatability study described in this report was designed to develop the information necessary to support the immobilization of lead contaminants in soil by in situ treatment with phosphate-based binders...

  8. Synthesis and characterization of associating polymers which contain siloxanes chains; Synthese et caracterisation de polymeres associatifs porteurs de groupes siloxanes

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, V

    1999-01-11

    Polymers that associate via physical interactions in solutions have received much attention as viscosifiers. Such associating polymers are now used in variety of applications due to their unique theological properties coating, food thickeners, paints, enhanced oil recovery, water treatment). They contain a hydrophilic main chain with hydrophobic side chain that is generally constituted of hydrocarbon or fluorocarbon groups. Novel copolymers with sites of association in aqueous solution were prepared by co-polymerizing acrylamide with an hydrophobic monomer containing siloxane parts. Rheological properties were studied as a function of polymer concentration, microstructure, shear rate and frequency in order to show intra intermolecular associations between the hydrophobic parts. The polymer solution viscosity increases as a function of the hydrophobic group content. Tests of adsorption show a high affinity of these copolymers with clay and the amount absorbed increase with the quantity of hydrophobic entities containing in the chain. These properties are enhanced compared to copolymers containing hydrocarbon chains. (authors) 456 refs.

  9. Characterization and evaluation of acid-modified starch of Dioscorea oppositifolia (Chinese yam as a binder in chloroquine phosphate tablets

    Directory of Open Access Journals (Sweden)

    Adenike Okunlola

    2013-12-01

    Full Text Available Chinese yam (Dioscorea oppositifolia starch modified by acid hydrolysis was characterized and compared with native starch as a binder in chloroquine phosphate tablet formulations. The physicochemical and compressional properties (using density measurements and the Heckel and Kawakita equations of modified Chinese yam starch were determined, and its quantitative effects as a binder on the mechanical and release properties of chloroquine phosphate were analyzed using a 2³ full factorial design. The nature (X1, concentration of starch (X2 and packing fraction (X3 were taken as independent variables and the crushing strength-friability ratio (CSFR, disintegration time (DT and dissolution time (t80 as dependent variables. Acid-modified Chinese yam starch showed a marked reduction (p<0.05 in amylose content and viscosity but increased swelling and water-binding properties. The modified starch had a faster onset and greater amount of plastic flow. Changing the binder from native to acid-modified form led to significant increases (p<0.05 in CSFR and DT but a decrease in t80. An increase in binder concentration and packing fraction gave similar results for CSFR and DT only. These results suggest that acid-modified Chinese yam starches may be useful as tablet binders when high bond strength and fast dissolution are required.

  10. Meal phosphate variability does not support fixed dose phosphate binder schedules for patients treated with peritoneal dialysis: a prospective cohort study.

    Science.gov (United States)

    Leung, Simon; McCormick, Brendan; Wagner, Jessica; Biyani, Mohan; Lavoie, Susan; Imtiaz, Rameez; Zimmerman, Deborah

    2015-12-09

    Removal of phosphate by peritoneal dialysis is insufficient to maintain normal serum phosphate levels such that most patients must take phosphate binders with their meals. However, phosphate 'counting' is complicated and many patients are simply prescribed a specific dose of phosphate binders with each meal. Therefore, our primary objective was to assess the variability in meal phosphate content to determine the appropriateness of this approach. In this prospective cohort study, adult patients with ESRD treated with peritoneal dialysis and prescribed phosphate binder therapy were eligible to participate. Participants were excluded from the study if they were unable to give consent, had hypercalcemia, were visually or hearing impaired or were expected to receive a renal transplant during the time of the study. After providing informed consent, patients kept a 3-day diet diary that included all foods and beverages consumed in addition to portion sizes. At the same time, patients documented the amount of phosphate binders taken with each meal. The phosphate content of the each meal was estimated using ESHA Food Processor SQL Software by a registered dietitian. Meal phosphate and binder variability were estimated by the Intra Class Correlation Coefficient (ICC) where 0 indicates maximal variability and 1 indicates no variability. Seventy-eight patients consented to participate in the study; 18 did not complete the study protocol. The patients were 60 (± 17) years, predominately male (38/60) and Caucasian (51/60). Diabetic nephropathy was the most common cause of end stage kidney disease. The daily phosphate intake including snacks ranged from 959 ± 249 to 1144 ± 362 mg. The phosphate ICC by meal: breakfast 0.63, lunch 0.16; supper 0.27. The phosphate binder ICC by meal: breakfast 0.68, lunch 0.73, supper 0.67. The standard prescription of a set number of phosphate binders with each meal is not supported by the data; patients do not appear to be adjusting their

  11. Constrained Combinatorial Libraries of Gp2 Proteins Enhance Discovery of PD-L1 Binders.

    Science.gov (United States)

    Kruziki, Max A; Sarma, Vidur; Hackel, Benjamin J

    2018-06-05

    Engineered protein ligands are used for molecular therapy, diagnostics, and industrial biotechnology. The Gp2 domain is a 45-amino acid scaffold that has been evolved for specific, high-affinity binding to multiple targets by diversification of two solvent-exposed loops. Inspired by sitewise enrichment of select amino acids, including cysteine pairs, in earlier Gp2 discovery campaigns, we hypothesized that the breadth and efficiency of de novo Gp2 discovery will be aided by sitewise amino acid constraint within combinatorial library design. We systematically constructed eight libraries and comparatively evaluated their efficacy for binder discovery via yeast display against a panel of targets. Conservation of a cysteine pair at the termini of the first diversified paratope loop increased binder discovery 16-fold ( p libraries with conserved cysteine pairs, within the second loop or an interloop pair, did not aid discovery thereby indicating site-specific impact. Via a yeast display protease resistance assay, Gp2 variants from the loop one cysteine pair library were 3.3 ± 2.1-fold ( p = 0.005) more stable than nonconstrained variants. Sitewise constraint of noncysteine residues-guided by previously evolved binders, natural Gp2 homology, computed stability, and structural analysis-did not aid discovery. A panel of binders to programmed death ligand 1 (PD-L1), a key target in cancer immunotherapy, were discovered from the loop 1 cysteine constraint library. Affinity maturation via loop walking resulted in strong, specific cellular PD-L1 affinity ( K d = 6-9 nM).

  12. Topological calculation of key parameters of fibre for production of foam concrete based on cement-free nanostructured binder

    Directory of Open Access Journals (Sweden)

    KHARKHARDIN Anatoly Nikolaevich

    2016-08-01

    Full Text Available Fiber reinforcement is the process of introduction of fibers of different origins into binding system to enhance strength, stress-strain behavior of products and structures. Maximal effect of reinforcing process is possible when optimal parameters (length and consumption of fibre are determined. Moreover one need to consider particle-size composition and hardening process of binding system. In this paper the critical length of natural and sinthesized fibres as well as minimally required content in cellular systems is calculated with the mathematical apparatus of structural topology. As an example the foam concrete based on cement-free nanostructured binder with basalt fibre and microreinforcing constructional polymeric fibre is studied. Fiber diameter, refined with microstructure analysis, accomplished by SEM-microscopy and experimentally determined packing density in loose and compact state are applied as input parameters. Measurement of the fibre topological characteristics with acceptable is accomplished according to material porosity and pore size. So the minimal effective fibre length taking into account homogeneous distribution in bulk of composite matrix is less of 1 mm; minimal fibre consumption is 0,2–0,5 (by wt. %. Irrational optimization leads to unreasonable cost growth of final materials as well as formation of balling inclusions that negatively affects on final performance of composite.

  13. Mechanical Properties of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders

    Science.gov (United States)

    2011-03-01

    Warm mix asphalt (WMA) is a name given to a group of technologies that have the common purpose of reducing the viscosity : of the asphalt binders. This reduction in viscosity offers the advantage of producing asphalt-aggregate mixtures at lower mixin...

  14. Polyols as filler-binders for disintegrating tablets prepared by direct compaction

    NARCIS (Netherlands)

    Bolhuis, Gerad K.; Rexwinkel, Erik G.; Zuurman, Klaas

    Background: Although polyols are frequently used as tablet excipients in lozenges, chewing tablets, and orodisperse tablets, special directly compressible (DC) forms are recommended as filler-binder in common disintegrating tablets. Aim: In this article, DC types of isomalt, lactitol, mannitol,

  15. Comparative Study on Characteristics and Potential of Rice Straws and Dry Leaves as a Binder in Refuse Derived Fuel (RDF)

    International Nuclear Information System (INIS)

    Zulhafizal Othman; Lias, K.; Hashim, N.H.; Clement, F.N.

    2013-01-01

    Integrated waste management systems are one of the greatest challenges in order to develop the green environment. In this research, two types of binder were chosen in producing of Refuse Derived Fuel (RDF) which is rice straws and dry leaves. The objective of the research is to identify which types of binder that can give the optimum performance. This two binder was mixed with paper and plastic waste with controlled mixing ratio which is 3:1 (ratio 1), 3:1.5(ratio 2) and 3:2 (ratio 3). In order to identify the optimum ratio of RDF, 45 number of samples was prepared and their properties such as moisture content, carbon content, sulfur content, chlorine content and calorific value were evaluated. Result indicated that samples with rice straw as a binder give the optimum result with the ratio of 3:1. The optimum values of the carbon content is 50.9 %, moisture content is 5.5 %, chlorine content is 0.0 %, sulfur content is 2.1 % and calorific value is 29.0 MJ/ kg. Hence, rice straws shows a great potential to be used as binder in production of RDF. (author)

  16. Cost-Effectiveness of First-Line Sevelamer and Lanthanum versus Calcium-Based Binders for Hyperphosphatemia of Chronic Kidney Disease.

    Science.gov (United States)

    Habbous, Steven; Przech, Sebastian; Martin, Janet; Garg, Amit X; Sarma, Sisira

    2018-03-01

    Phosphate binders are used to treat hyperphosphatemia among patients with chronic kidney disease (CKD). To conduct an economic evaluation comparing calcium-free binders sevelamer and lanthanum with calcium-based binders for patients with CKD. Effectiveness data were obtained from a recent meta-analysis of randomized trials. Effectiveness was measured as life-years gained and translated to quality-adjusted life-years (QALYs) using utility weights from the literature. A Markov model consisting of non-dialysis-dependent (NDD)-CKD, dialysis-dependent (DD)-CKD, and death was developed to estimate the incremental costs and effects of sevelamer and lanthanum versus those of calcium-based binders. A lifetime horizon was used and both costs and effects were discounted at 1.5%. All costs are presented in 2015 Canadian dollars from the Canadian public payer perspective. Results of probabilistic sensitivity analysis were presented using cost-effectiveness acceptability curves. Sensitivity analyses were conducted for risk pooling methods, omission of dialysis costs, and persistence of drug effects on mortality. Sevelamer resulted in an incremental cost-effectiveness ratio of $106,522/QALY for NDD-CKD and $133,847/QALY for DD-CKD cohorts. Excluding dialysis costs, sevelamer was cost-effective in the NDD-CKD cohort ($5,847/QALY) and the DD-CKD cohort ($11,178/QALY). Lanthanum was dominated regardless of whether dialysis costs were included. Existing evidence does not clearly support the cost-effectiveness of non-calcium-containing phosphate binders (sevelamer and lanthanum) relative to calcium-containing phosphate binders in DD-CKD patients. Our study suggests that sevelamer may be cost-effective before dialysis onset. Because of the remaining uncertainty in several clinically relevant outcomes over time in DD-CKD and NDD-CKD patients, further research is encouraged. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier

  17. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  18. Thermodynamic and kinetic characterization of polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography.

    Science.gov (United States)

    Howerton, Samuel B; McGuffin, Victoria L

    2003-07-15

    The retention of six polycyclic aromatic hydrocarbons (PAHs) was characterized by reversed-phase liquid chromatography. The PAHs were detected by laser-induced fluorescence at four points along an optically transparent capillary column. The profiles were characterized in space and time using an exponentially modified Gaussian equation. The resulting parameters were used to calculate the retention factors, as well as the concomitant changes in molar enthalpy and molar volume, for each PAH on monomeric (2.7 micromol/m2) and polymeric (5.4 micromol/m2) octadecylsilica. The changes in molar enthalpy become more exothermic as ring number increases and as annelation structure becomes less condensed. The changes in molar volume become more negative as ring number increases for the planar PAHs, but are positive for the nonplanar solutes. In addition, the rate constants, as well as the concomitant activation enthalpy and activation volume, are calculated for the first time. The kinetic data demonstrate that many of the PAHs exhibit very fast transitions between the mobile and stationary phases. The transition state is very high in energy, and the activation enthalpies and volumes become greater as ring number increases and as annelation structure becomes less condensed. The changes in thermodynamic and kinetic behavior are much more pronounced for the polymeric phase than for the monomeric phase.

  19. Nanobodies and recombinant binders in cell biology.

    Science.gov (United States)

    Helma, Jonas; Cardoso, M Cristina; Muyldermans, Serge; Leonhardt, Heinrich

    2015-06-08

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. © 2015 Helma et al.

  20. Nanobodies and recombinant binders in cell biology

    Science.gov (United States)

    Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge

    2015-01-01

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137

  1. Influence of mycotoxin binders on the oral bioavailability of tylosin, doxycycline, diclazuril, and salinomycin in fed broiler chickens.

    Science.gov (United States)

    De Mil, T; Devreese, M; Maes, A; De Saeger, S; De Backer, P; Croubels, S

    2017-07-01

    The presence of mycotoxins in broiler feed can have deleterious effects on the wellbeing of the animals and their performance. Mycotoxin binders are feed additives that aim to adsorb mycotoxins in the intestinal tract and thereby prevent the oral absorption of the mycotoxin. The simultaneous administration of coccidiostats and/or antimicrobials with mycotoxin binders might lead to a reduced oral bioavailability of these veterinary medicinal products. This paper describes the influence of 3 mycotoxin binders (i.e., clay 1 containing montmorillonite, mica, and feldspars; clay 2 containing montmorillonite and quartz; and yeast 1 being a modified glucomannan fraction of inactivated yeast cells) and activated carbon on the oral bioavailability and pharmacokinetic parameters of the antimicrobials doxycycline and tylosin, and the coccidiostats diclazuril and salinomycin. A feeding study with 40 15 day-old broilers was performed evaluating the effects of long-term feeding 2 g mycotoxin binder/kg of feed. The birds were randomly divided into 5 groups of 8 birds each, i.e., a control group receiving no binder and 4 test groups receiving either clay 1, clay 2, yeast 1, or activated carbon mixed in the feed. After 15 d of feeding, both the control and each test group were administered doxycycline, tylosin, diclazuril, and salinomycin, consecutively, respecting a wash-out period of 2 to 3 d between each administration. The 4 medicinal products were dosed using a single bolus administration directly in the crop. After each bolus administration, blood was collected for plasma analysis and calculation of the main pharmacokinetic parameters and relative oral bioavailability (F = area under the plasma concentration-time curve (AUC0-8 h) in the test groups/AUC0-8 h in the control group)*100). No effects were observed of any of the mycotoxin binders on the relative oral bioavailability of the coccidiostats (i.e., F between 82 and 101% and 79 and 93% for diclazuril and salinomycin

  2. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  3. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance

    Science.gov (United States)

    He, Shuijian; Chen, Wei

    2015-04-01

    Because of the excellent intrinsic properties, especially the strong mechanical strength, extraordinarily high surface area and extremely high conductivity, graphene is deemed as a versatile building block for fabricating functional materials for energy production and storage applications. In this article, the recent progress in the assembly of binder-free and self-standing graphene-based materials, as well as their application in supercapacitors are reviewed, including electrical double layer capacitors, pseudocapacitors, and asymmetric supercapacitors. Various fabrication strategies and the influence of structures on the capacitance performance of 3D graphene-based materials are discussed. We finally give concluding remarks and an outlook on the scientific design of binder-free and self-standing graphene materials for achieving better capacitance performance.

  4. Harmfulness Assessment of Moulding Sands with a Geopolymer Binder and a New Hardener, in An Aspect of the Emission of Substances from the Btex Group

    Directory of Open Access Journals (Sweden)

    Bobrowski A.

    2015-04-01

    Full Text Available The harmfulness assessment of moulding sands with a geopolymer binder and a new hardener, in an aspect of the emission of substances from the BTEX group, was performed. Within the expedience project the new series of hardeners for the inorganic GEOPOL binder was developed. Before the introduction of the new system of moulding sands it was necessary to estimate their influence on the environment. To this aim the gasses emission from moulding sands subjected to the influence of liquid cast iron was tested with regard to the content of the gases from the BTEX group (benzene, toluene, ethylbenzene and xylenes. For the comparison the analogous investigations of the up to now applied moulding sands with the geopolymer binder, were performed. It was found that both systems of moulding sands binding emit similar amounts of gases, as well as similar amounts of substances from the BTEX group. Moulding sands with the GEOPOL binder are much more environmentally friendly than moulding sands with organic binders. The content of the BTEX group substances in gases emitted from moulding sands with the GEOPOL binder was approximately 10-times lower than in case of the moulding sands with organic binders.

  5. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  6. Recovery of gasoline

    Energy Technology Data Exchange (ETDEWEB)

    1937-02-27

    The abstract describes a process for recovering a maximum quantity of commercial gasoline from a composite hydrocarbon stream containing hydrocarbons within and below the gasoline boiling range, including olefins. The hydrocarbon stream is separated into low vapor pressure gasoline and a gas fraction consisting of hydrocarbons of the 4 carbon atom group and some of the 3 carbon atom group. The gas fraction is subjected to a polymerization operation, characterized by utilizing the products of the polymerization procedure - both liquid polymers and unconverted gases - to increase the yield of gasoline and to adjust the low vapor pressure gasoline to the vapor pressure of commercial gasoline. A fraction of the gaseous products of the polymerization procedure are used for this purpose. The remainder of the gaseous products are recycled through the polymerization operation.

  7. Effects of graphite on rheological and conventional properties of bituminous binders

    Directory of Open Access Journals (Sweden)

    Yunus Erkuş

    2017-07-01

    Full Text Available In this study, the effects of graphite used for developing the rheological and conventional properties of bitumen were investigated using various bituminous binder tests. Penetration, softening point, rotational viscosity (RV, dynamic shear rheometer (DSR and bending beam rheometer (BBR tests were applied to bituminous binders modified with four different proportions of graphite by bitumen weight. The penetration values declined while softening point values increased with rising graphite content. While graphite induced 8 °C increases in mixing-compacting temperature by increasing the viscosity values, it also increased the rutting parameter. According to the BBR test, the deformation and stiffness values changed significantly with increasing graphite content, but the m-values did not change significantly. These results showed that graphite generally used for improving the thermal properties can improve to high temperature performance of mixtures. Keywords: Graphite, Bitumen, Conventional properties, Rheological properties

  8. Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode

    International Nuclear Information System (INIS)

    Tran, Binh; Oladeji, Isaiah O.; Wang, Zedong; Calderon, Jean; Chai, Guangyu; Atherton, David; Zhai, Lei

    2013-01-01

    We report the first fully compressed Li 4 Ti 5 O 12 electrode designed by an aqueous process. An adhesive, elastomeric, and lithium ion conductive PEG-based copolymer is used as a binder for the aqueous fabrication thick, flexible, and densely packed Li 4 Ti 5 O 12 (LTO) electrodes. Self-adherent cathode films exceeding 200 μm in thickness and withholding high active mass loadings of 28 mg/cm 2 deliver 4.2 mAh/cm 2 at C/2 rate. Structurally defect-free electrodes are fabricated by casting aqueous cathode slurries onto nickel foam, dried, and hard-calendared at 10 tons/cm 2 . As a multifunctional material, the binder is synthesized by the copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA), methyl methacrylate (MMA), and isobutyl vinyl ether (IBVE) in optimal proportions. Furthermore, coordinating the binder with lithium salt is necessary for the electrode to function

  9. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  10. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  11. Resistance to minor groove binders.

    Science.gov (United States)

    Colmegna, Benedetta; Uboldi, Sarah; Erba, Eugenio; D'Incalci, Maurizio

    2014-03-01

    In this paper multiple resistance mechanisms to minor groove binders (MGBs) are overviewed. MGBs with antitumor properties are natural products or their derivatives and, as expected, they are all substrates of P-glycoprotein (P-gp). However, a moderate expression of P-gp does not appear to reduce the sensitivity to trabectedin, the only MGB so far approved for clinical use. Resistance to this drug is often related to transcriptional mechanisms and to DNA repair pathways, particularly defects in transcription-coupled nucleotide excision repair (TC-NER). Therefore tumors resistant to trabectedin may become hypersensitive to UV rays and other DNA damaging agents acting in the major groove, such as Platinum (Pt) complexes. If this is confirmed in clinic, that will provide the rationale to combine trabectedin sequentially with Pt derivates.

  12. Deadly Throwaways--Plastic Six-Pack Binders and Metal Pull-Tabs Doom Wildlife

    Science.gov (United States)

    Ward, Penny

    1975-01-01

    Thousands of creatures are vulnerable to entrapment, entanglement, strangulation, or starvation as a result of plastic six-pack binders and metal pull-tabs. Possible solutions include: recycling, clean-up campaigns, and strong container legislation. (BT)

  13. Collagen-based proteinaceous binder-pigment interaction study under UV ageing conditions by MALDI-TOF-MS and principal component analysis.

    Science.gov (United States)

    Romero-Pastor, Julia; Navas, Natalia; Kuckova, Stepanka; Rodríguez-Navarro, Alejandro; Cardell, Carolina

    2012-03-01

    This study focuses on acquiring information on the degradation process of proteinaceous binders due to ultra violet (UV) radiation and possible interactions owing to the presence of historical mineral pigments. With this aim, three different paint model samples were prepared according to medieval recipes, using rabbit glue as proteinaceus binders. One of these model samples contained only the binder, and the other two were prepared by mixing each of the pigments (cinnabar or azurite) with the binder (glue tempera model samples). The model samples were studied by applying Principal Component Analysis (PCA) to their mass spectra obtained with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS). The complementary use of Fourier Transform Infrared Spectroscopy to study conformational changes of secondary structure of the proteinaceous binder is also proposed. Ageing effects on the model samples after up to 3000 h of UV irradiation were periodically analyzed by the proposed approach. PCA on MS data proved capable of identifying significant changes in the model samples, and the results suggested different aging behavior based on the pigment present. This research represents the first attempt to use this approach (PCA on MALDI-TOF-MS data) in the field of Cultural Heritage and demonstrates the potential benefits in the study of proteinaceous artistic materials for purposes of conservation and restoration. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries

    Science.gov (United States)

    Zhong, Haoxiang; He, Aiqin; Lu, Jidian; Sun, Minghao; He, Jiarong; Zhang, Lingzhi

    2016-12-01

    A water-soluble conductive composite binder consisting of carboxymethyl chitosan (CCTS) as a binder and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a conduction-promoting agent is reported for the LiFePO4 (LFP) cathode in Li-ion batteries. The introduction of conductive PEDOT:PSS as a conductive composite binder facilitates the formation of homogeneous and continuous conducting bridges throughout the electrode and raises the compaction density of the electrode sheet by decreasing the amounts of the commonly used conducting agent of acetylene black. The optimized replacement ratios of acetylene black with PEDOT:PSS (acetylene black/PEDOT:PSS = 1:1, by weight) are obtained by measuring electrical conductivity, peel strength and compaction density of the electrode sheets. The LFP half-cell with the optimized conductive binder exhibits better cycling and rate performance and more favorable electrochemical kinetics than that using only acetylene black conducting agent. The pilot application of PEDOT:PSS/CCTS binder in 10 Ah CCTS-LFP prismatic cell exhibits a comparable cycling performance, retaining 89.7% of capacity at 1 C/2 C (charge/discharge) rate as compared with 90% for commercial PVDF-LFP over 1000 cycles, and better rate capability than that of commercial PVDF-LFP, retaining 98% capacity of 1 C at 7 C rate as compared with 95.4% for PVDF-LFP.

  15. The hydrophobic modification of gypsum binder by peat products: physico-chemical and technological basis

    Directory of Open Access Journals (Sweden)

    O. Misnikov

    2018-04-01

    Full Text Available Gypsum binder is a quick-setting and fast-hardening material that is used widely in the construction industry for plastering and as an ingredient of concrete, other binding materials, etc. The issue addressed here is its short shelf life (around three months which arises because it is hygroscopic, i.e. it readily absorbs moisture and begins to set during transport and storage. The main methods that are currently available for protecting gypsum binder against unwanted exposure to moisture and water vapour are considered, and hydrophobic modification with the bitumen released during peat thermolysis (a method previously considered for cement is proposed as a promising alternative. Because there is overlap in the temperature ranges used in the manufacture of gypsum binder and those required for the initial stages of thermal decomposition of the organic matter in peat, it is expected that hydrophobisation could be achieved during the established manufacturing process without any changes to plant or procedures. The optimum concentration of organic (peat additive for gypsum rock mined from the Shushokskoye deposit in Russia is derived experimentally. With 0.5–1 % of peat additive, the strength grading of the gypsum plaster is preserved and its storage time without caking and hydration increases, even under adverse conditions (100 % relative humidity. The proposed method is compatible with current gypsum production technology, it does not require any changes in equipment, and the prices of mineral raw materials and semi-finished peat products are approximately the same. Thus, the incorporation of hydrophobic modification using peat into the manufacturing process for gypsum binder is unlikely to increase the cost of the product.

  16. Fundamental evaluation of the interaction between RAS/RAP and virgin asphalt binders.

    Science.gov (United States)

    2017-08-01

    A comprehensive laboratory testing program was conducted in this research project to examine the blending between reclaimed asphalt pavement (RAP)/recycled asphalt shingles (RAS) and virgin asphalt binders and to evaluate the factors that may affect ...

  17. Comparison of Witczak NCHRP 1-40D & Hirsh dynamic modulus models based on different binder characterization methods: a case study

    Directory of Open Access Journals (Sweden)

    Khattab Ahmed M.

    2017-01-01

    Full Text Available The Pavement ME Design method considers the hot mix asphalt (HMA dynamic modulus (E* as the main mechanistic property that affects pavement performance. For the HMA, E* can be determined directly by laboratory testing (level 1 or it can be estimated using predictive equations (levels 2 and 3. Pavement-ME Design introduced the NCHRP1-40D model as the latest model for predicting E* when levels 2 or 3 HMA inputs are used. This study focused on utilizing laboratory measured E* data to compare NCHRP1-40D model with Hirsh model. This comparison included the evaluation of the binder characterization level as per Pavement ME Design and its influence on the performance of these models. E*tests were conducted in the laboratory on 25 local mixes representing different road construction projects in the kingdom of Saudi Arabia. The main tests for the mix binders were dynamic Shear Rheometer (DSR and Brookfield Rotational Viscometer (RV. Results showed that both models with level 3 binder data produced very similar accuracy. The highest accuracy and lowest bias for both models occurred with level 3 binder data. Finally, the accuracy of prediction and level of bias for both models were found to be a function of the binder input level.

  18. Hierarchical shell/core CuO nanowire/carbon fiber composites as binder-free anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yuan, Wei; Luo, Jian; Pan, Baoyou; Qiu, Zhiqiang; Huang, Shimin; Tang, Yong

    2017-01-01

    Highlights: •The composite anode is composed of CuO nanowire shell and carbon fiber core. •The composite anode avoids completely the use of binders. •Synergistic effect of carbon fibers and CuO nanowires enhances performance. •Carbon fibers improve electrical conductivity and buffer volume change. •CuO nanowires shorten diffusion length and alleviate structural strain. -- Abstract: Developing high-performance electrode structures is of great importance for advanced lithium-ion batteries. This study reports an efficient method to fabricate hierarchical shell/core CuO nanowire/carbon fiber composites via electroless plating and thermal oxidation processes. With this method, a binder-free CuO nanowire/carbon fiber shell/core hierarchical network composite anode for lithium-ion batteries is successfully fabricated. The morphology and chemical composition of the anode are characterized, and the electrochemical performance of the anode is investigated by standard electrochemical tests. Owing to the superior properties of carbon fibers and the morphological advantages of CuO nanowires, this composite anode still retains an excellent reversible capacity of 598.2 mAh g −1 with a capacity retention rate above 86%, even after 50 cycles, which is much higher than the CuO anode without carbon fibers. Compared to the typical CuO/C electrode systems, the novel binder-free anode yields a performance close to that of the typical core/shell electrode systems and a much higher reversible capacity and capacity retention than the similar shell/core patterns as well as the anodes with binders. It is believed that this novel anode will pave the way to the development of binder-free anodes in response to the increasing demands for high-power energy storage.

  19. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  20. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    Science.gov (United States)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm-2 (~548 F g-1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  1. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors.

    Science.gov (United States)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-04

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm(-2) (~548 F g(-1)) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  2. KINETICS OF SUSPENDED EMULSION POLYMERIZATION OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Cheng-xi Wang; Zhi-ming Huang; Zhi-xue Weng

    2004-01-01

    The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0 ∝ [I]0.73[S]0.32 and Rp ∝ [I]0.71[S]0.23. The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methyl methacrylate) decreased as the polymerization temperature, [I] and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.

  3. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  4. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin

    2014-01-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  5. Effect of binder concentration and blade gap on Yttria stabilized Zirconia tapes obtained by tape casting

    Energy Technology Data Exchange (ETDEWEB)

    Mena Garcia, J.; Reyes Rojas, A.; Rodriguez Gonzalez, C.A.; Hernandez Paz, J.; Garcia Casillas, P.E.; Enriquez Carrejo, J.L.; Camacho Montes, H.

    2016-07-01

    The tape casting method has kept its interest over the years due to the wide spectrum of its applications and its economic viability in comparison to other techniques focused on micrometric thin films. Two key parameters for tape casting are the binder relative amount and the Dr. Blade gap. The binder relative amount has a strong influence on the rheological properties for the ceramic YSZ slurry (ethanol, butanone, TEA, PVB, PEG, DEP). The coefficient K and the exponent m of the Cross model are reported to be inside the ranges 152.25-231.12 and 0.00987-0.26646 for PVB binder weight percentage concentrations between 6% and 12%. It is possible to describe the ceramic tape thickness dependence by means of a linear relation depending on the Dr. Blade gap whose linear coefficients (slope) are equal to 0.0350 and 0.2171 for green and sintered tapes respectively, with the YSZ slurry of the present work. (Author)

  6. Instrumentation for studying binder burnout in an immobilized plutonium ceramic wasteform

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M; Pugh, D; Herman, C

    2000-04-21

    The Plutonium Immobilization Program produces a ceramic wasteform that utilizes organic binders. Several techniques and instruments were developed to study binder burnout on full size ceramic samples in a production environment. This approach provides a method for developing process parameters on production scale to optimize throughput, product quality, offgas behavior, and plant emissions. These instruments allow for offgas analysis, large-scale TGA, product quality observation, and thermal modeling. Using these tools, results from lab-scale techniques such as laser dilametry studies and traditional TGA/DTA analysis can be integrated. Often, the sintering step of a ceramification process is the limiting process step that controls the production throughput. Therefore, optimization of sintering behavior is important for overall process success. Furthermore, the capabilities of this instrumentation allows better understanding of plant emissions of key gases: volatile organic compounds (VOCs), volatile inorganics including some halide compounds, NO{sub x}, SO{sub x}, carbon dioxide, and carbon monoxide.

  7. Synthesis of boehmite by hydrothermal treatment used as inorganic binder for alumina powder

    International Nuclear Information System (INIS)

    Lima, M.B.; Tercini, M.B.; Yoshimura, H.N.

    2012-01-01

    Presently, due to the concerns with the environment, it has been developed studies to replace the organic binder by an inorganic binder for forming of ceramic powders, in order to avoiding the generation of polluting gases during sintering (firing). A potential alternative is the use of boehmite, produced by hydrothermal treatment on the surfaces of the alumina powder, previously ground in a ball mill using zirconia milling media to produce hydrated phases on alumina powder which are converted to boehmite. In the treated alumina powders, it was observed the formation of boehmite phase by X-ray diffraction analysis and Fourier transformed infrared (FTIR) spectroscopy, demonstrating the efficiency of boehmite formation during the hydrothermal treatment at 150°C for 3 hours.(author)

  8. SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION (ATRP)

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu

    2000-01-01

    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  9. Detection of hydrocarbons in irradiated foods

    International Nuclear Information System (INIS)

    Miyahara, Makoto; Maitani, Tamio; Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko; Kobayashi, Yasuo; Ito, Hitoshi

    2003-01-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  10. Detection of hydrocarbons in irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Makoto; Maitani, Tamio [National Inst. of Health Sciences, Tokyo (Japan); Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Allied Health Sciences; Kobayashi, Yasuo; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Establishment

    2003-06-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  11. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  12. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  13. Tolerance of Antarctic soil fungi to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Kevin A.; Bridge, Paul; Clark, Melody S. [British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET (United Kingdom)

    2007-01-01

    Little is known about the effects of hydrocarbons and fuel oil on Antarctic filamentous fungi in the terrestrial Antarctic environment. Growth of fungi and bacteria from soils around Rothera Research Station (Adelaide Island, Antarctic Peninsula) was assessed in the presence of ten separate aromatic and aliphatic hydrocarbons [marine gas oil (MGO), dodecane, hexadecane, benzoic acid, p-hydroxybenzoic acid, toluene, phenol, biphenyl, naphthalene and m- and p-xylenes with ethylbenzene]. Aromatic hydrocarbons inhibited soil microbial growth more than aliphatic hydrocarbons. Soil microorganisms from a moss patch, where little previous impact or hydrocarbon contamination had occurred, were less tolerant of hydrocarbons than those from high impact sites. Fungal growth rates of Mollisia sp., Penicillium commune, Mortierella sp., Trichoderma koningii, Trichoderma sp. and Phoma herbarum were assessed in the presence of hydrocarbons. Generally, aromatic hydrocarbons inhibited or stopped hyphal extension, though growth rates increased with some aliphatic hydrocarbons. Hyphal dry weight measurements suggested that Mortierella sp. may be able to use dodecane as sole carbon and energy source. Hydrocarbon-degrading Antarctic fungi may have use in future hydrocarbon spill bioremediation. (author)

  14. Ellipsometry and energy characterization of the electron impact polymerization in the range 0–20 eV

    International Nuclear Information System (INIS)

    Zyn, V.I.

    2016-01-01

    The electron impact polymerization of adsorbed vapors of a hydrocarbon vacuum oil with molecular mass 450 Da (C 32 H 66 ) has been studied in-situ in the range 0–20 eV using ellipsometry and a servo system with the Kelvin's vibrating probe. This allowed registering at the same time the two energy-dependent characteristics (spectra) of the process: the film growth rate and the electrical potential of the irradiated surface. The first spectrum has two resonance maxima near 2.5 and 9.5 eV while the surface potential has only one weak extremum near 9.5 eV. The first growth rate peak at 2.5 eV was connected with a creation of radicals through a resonant process of the dissociative electron attachment and beginning polymerization. The peaks at 9.5 eV in both the spectra mean accelerating polymerization and decreasing surface charge owing to simultaneous birth of highly active radicals and free electrons. The single resonant process controlling both the processes simultaneously is the dissociative attachment of an electron to an anti-bonding molecular orbital, almost the same as at the 2.5 eV but differing by deeper decomposition of the transient anion, among the products of which are now not the radicals only but also free electrons. The kinetic curves obtained in pulsed regimes of the electron bombardment were qualitatively identical for different precursors and were used for calculations of cross sections of these processes. - Highlights: • Obtaining spectra of activated polymerization using ellipsometry and Kelvin probe. • Identified: two resonant and one non-resonant mechanisms of the activation. • The resonances are due to the action of the dissociative electron attachment. • Kinetics of transient processes in adsorbed layer under 20 eV pulsed electron beam.

  15. Radiation-Induced Graft Polymerization of Vinyl Monomers with Anion Groups onto MWNT Supports and Their Application as Electrogenerated Chemiluminescence (ECL Biosensors

    Directory of Open Access Journals (Sweden)

    Ji-Hye Park

    2014-01-01

    Full Text Available Vinyl polymer-grafted multiwalled carbon nanotube (MWNT supports with anion groups were prepared for use as biosensor supports by radiation-induced graft polymerization (RIGP of the vinyl monomers acryloyl diphosphoric acid (ADPA, acrylic acid (AA, sodium styrenesulfonate (NaSS, and methacrylic acid (MA onto the surface of MWNTs. The electrogenerated chemiluminescence sensors based on a glass carbon electrode (ECL-GCE and a screen printed electrode (ECL-SPE were fabricated by immobilization of Ru(bpy3 2+ complex after coating of vinyl polymer-grafted MWNT inks on the surface of the GCE and SPE without any polymer binders in order to obtain high electrogenerated chemiluminescence intensity. For detection of alcohol concentration, alcohol dehydrogenase (ADH was immobilized onto an ECL-GCE sensor prepared by poly(NaSS-g-MWNT supports. The prepared biosensor based on ADH is suitable for the detection of ethanol concentration in commercial drinks.

  16. Cement-free Binders for Radioactive Waste Produced from Blast-furnace Slag using Vortex Layer Activation Technology

    Directory of Open Access Journals (Sweden)

    Mazov Ilya

    2017-01-01

    Full Text Available The paper addresses the issue of recycling granulated blast-furnace slag (gBFS as a source for production of cement-free binder materials for further usage in rare-earth metals production for radioactive waste disposal. The use of the vortex layer activator was provided as main technique allowing to produce high-dispersed chemically activated binders. The paper examines the effect of processing conditions on the physical-chemical and mechanical properties of the resulting BFS-based cement-free materials and gBFS-based concretes.

  17. Application areas of phosphogypsum in production of mineral binders and composites based on them: a review of research results

    Directory of Open Access Journals (Sweden)

    Dvorkin Leonid

    2018-01-01

    Full Text Available The increase of the consumption of gypsum products in construction industry with a limited amount of natural gypsum deposits requires alternative sources of gypsum-containing raw materials. In some countries which have fertilizers industry plants, the problem can be solved using industrial wastes, e.g. phosphorgypsum – a byproduct of fertilizers’ production. Kept in dumps over decades, phosphorgypsum is subjected to the chemical changes due to washing out impurities with rain and other natural factors. However, there are observed deviations of harmful impurities in dumped PG depending on its age., Phosphorgypsum of any age requires chemical treatment to neutralize remains of phosphorus and sulfuric acids, fluorine compounds. According to our researches one of the most simple and effective method of neutralization the impurities is using lime-containing admixtures. The paper presents results of laboratory tests of phosphorgypsum as a component of clinker and non-clinker binders. There were investigated the impact of phosphorgypsum as admixture for clinker binders to substitute natural gypsum. Neutralized phosphorgypsum can be applied as mineralizing admixture in calcination of Portland cement clinker. Adding 2 to 2.5% of phosphorgypsum as setting time regulator resulted in a similar physical and mechanical properties compared to mix made with natural gypsum. Another important area of phosphorgypsum application is sulphate activatoion of low-clinker blast-furnace slag cement (clinker content is less than 19%. According to results, the incorporation of phosphorgypsum as sulphate activator in cement has the better effect as natural gypsum. Other development has been carried out to modify the phosphorgypsum binder properties. Complex additive consisted of polycarboxylate-based superplasticizer and slaked lime permitted an increase mechanical properties of hardened phosphorgypsum binder due to significant a reduction of water consumption. Such

  18. Electron beam hardened paint binder

    International Nuclear Information System (INIS)

    Johnson, O.B.; Labana, S.S.

    1976-01-01

    The invention concerns a paint binder hardened by the effect of electron beams (0.1-100 Mrad/sec). It consists of a dispersion of (A) an ethylenic unsaturated material in (B) at least one vinyl monomer. The component (A) in a reaction product of degraded rubber particles (0.1-4 μm) and an ethylenic unsaturated component with a reactive epoxy, hydroxy or carboxy group which is bonded to the rubber particles by ester or urethane compounds. The rubber particles possess a nucleus and a cross-linked elastomeric acryl polymer, an outer shell with reactive groups and an intermediate layer formed by the monomers of the nucleus and the shell. The manner of production is described in great detail and supplemented by 157 examples. The coatings are suitable to coat articles which will be subject to deformation. (UWI) [de

  19. Production of light hydrocarbons, etc. [from heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-10-07

    A process is given for the production of light hydrocarbons of the gasoline type and, if desired, of the middle-oil type, from liquid or fusible heavy or medium heavy hydrocarbon materials. The process comprises subjecting the said initial materials in the first stage to catalytic hydrofining, separating the lower boiling constituents and the hydrogenating gas from the resulting products and then subjecting the higher boiling constituents in a second stage to a splitting destructive hydrogenation and then recycling substantially the entire reaction mixture obtained in the second stage to the frst stage.

  20. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  1. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  2. The Effect of Water or Wax-based Binders on the Chemical and Morphological Characteristics of the Margin Ceramic-Framework Interface.

    Science.gov (United States)

    Güler, Umut; de Queiroz, José Renato Cavalcanti; de Oliveira, Luiz Fernando Cappa; Canay, Senay; Ozcan, Mutlu

    2015-09-01

    This study evaluated the effect of binder choice in mixing ceramic powder on the chemical and morphological features between the margin ceramic-framework interfaces. Titanium and zirconia frameworks (15 x 5 x 0.5 mm3) were veneered with margin ceramics prepared with two different binders, namely a) water/conventional or b) wax-based. For each zirconia framework material, four different margin ceramics were used: a- Creation Zi (Creation Willi Geller International); b- GC Initial Zr (GC America); Triceram (Dentaurum); and d- IPS emax (voclar Vivadent). For the titanium framework, three different margin ceramics were used: a- Creation Ti (Creation Willi Geller International); b- Triceram (Dentaurum); and c- VITA Titaniumkeramik (Vita Zahnfabrik). The chemical composition of the framework-margin ceramic interface was analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and porosity level was quantified within the margin ceramic using an image program (ImageJ) from four random areas (100 x 100 pixels) on each SEM image. EDS analysis showed the presence of Carbon at the margin ceramic-framework interface in the groups where wax-based binder technique was used with the concentration being the highest for the IPS emax ZirCAD group. While IPS system (IPS ZirCAD and IPS Emax) presented higher porosity concentration using wax binder, in the other groups wax-based binder reduced the porosity of margin ceramic, except for Titanium - Triceram combination.

  3. THE EFFECTS OF N-2-HYDROXYETHYL-N-METHYL-P-TOLUIDINE ON METHYL METHACRYLATE RADICAL POLYMERIZATION AND ACRYLONITRILE PHOTOINDUCED POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Zhanghua; FENG Xinde

    1992-01-01

    The effects of N-2-hydroxyethyl-N-methyl-p-toluidine (HMT) on MMA polymerization using organic peroxide as an initiator and on AN photoinduced polymerization have been investigated respectively. The kinetics of polymerization and the overall activation energy of polymerization were determined. Based on kinetics study and the end group analysis of the polymer obtained by UV spectrum method, the initiation mechanism is proposed.

  4. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone.

    Directory of Open Access Journals (Sweden)

    Xiangjin Kong

    Full Text Available The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst.

  5. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone.

    Science.gov (United States)

    Kong, Xiangjin; Liu, Junhai

    2014-01-01

    The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst.

  6. Poly vinyl acetate used as a binder for the fabrication of a LiFePO4-based composite cathode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Prosini, Pier Paolo; Carewska, Maria; Cento, Cinzia; Masci, Amedeo

    2014-01-01

    This paper describes a method for the preparation of composite cathodes for lithium ion-batteries by using poly vinyl acetate (PVAc) as a binder. PVAc is a non-fluorinated water dispersible polymer commonly used in a large number of industrial applications. The main advantages for using of this polymer are related to its low cost and negligible toxicity. Furthermore, since the PVAc is water processable, its use allows to replace the organic solvent, employed to dissolve the fluorinated polymer normally used as a binder in lithium battery technology, with water. In such a way it is possible to decrease the hazardousness of the preparation process as well as the production costs of the electrodes. In the paper the preparation, characterization and electrochemical performance of a LiFePO 4 electrode based on PVAc as the binder is described. Furthermore, to assess the effect of the PVAc binder on the electrode properties, its performance is compared to that of a conventional electrode employing PVdF-HFP as a binder

  7. Characterization behavior of some polymeric composite ion exchangers

    International Nuclear Information System (INIS)

    El-Zahhar, A.A; Ahdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    Polymeric composite resins were prepared by template polymerization process in aqueous solution. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and The X-ray diffraction patterns (XRD) were performed to evaluate the physico chemical properties of the different polymeric composite resins. The TGA and DTA clarify high thermal stability of prepared polymeric composite resins. XRD of prepared polymeric composite shows that there is crystalline structure of some resins while other are amorphous one

  8. Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: Spectroscopic investigation and leaching tests.

    Science.gov (United States)

    Li, Jiang-Shan; Wang, Lei; Cui, Jin-Li; Poon, Chi Sun; Beiyuan, Jingzi; Tsang, Daniel C W; Li, Xiang-Dong

    2018-08-01

    The low-alkalinity stabilization/solidification (S/S) treatment of the soil containing high concentrations of geogenic As by physical encapsulation is considered as a proper management before land development; however, the choice of an effective binder and the leaching potential of As remain uncertain. In this study, the influence of S/S binders (cement blended with fuel ash (FA), furnace bottom ash (FBA), or ground granulated blast furnace slag (GGBS)) on the speciation and leaching characteristics of geogenic As was studied. The results of X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS) showed the reduced amount of calcium silicate hydrate phase and the decrease in oxidation state of As(V)-O on the surface of Fe(III) oxides/hydroxides in the low-alkalinity S/S treated soils. This might be due to the binder incorporation and change in pH conditions, which slightly affected the As-Fe interaction and increased the non-specifically sorbed species of As. Therefore, the S/S treatment increased the leachability and bioaccessibility of geogenic As to varying degree but decreased the phyto-extractable As. The S/S treatment by cement incorporating 25% of class C fly ash (O4C1) could achieve comparable or better performance, while reducing the risk assessment code (RAC) to a greater extent compared to that of using cement only. This study illustrates the effectiveness and limitations of low-alkalinity binders (e.g., O4C1) for geogenic As immobilization and encapsulation, which provides a new insight for determining the appropriate S/S binder in soil remediation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Versatility of hydrocarbon production in cyanobacteria.

    Science.gov (United States)

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  10. Nanoparticles from a controlled polymerization process

    International Nuclear Information System (INIS)

    Tirumala, V.R.; Caneba, G.T.; Dar, Y.; Wang, H.-H.; Mancini, D.C.

    2003-01-01

    Free-radical retrograde precipitation polymerization process in the past has shown excellent control characteristics over reaction rate, molecular weight, and in the entrapment of live radicals for the generation of block copolymers. The same principle has now been extended to study the reaction confinement to a nanoscale region. Nanosized polymer particles have been reported to form from block copolymers, conventional precipitation polymerization methods, or through emulsion polymerization approaches. In this work, we present a new method of generating nanosized polymer particles by polymerizing the monomer in an environment that precipitates the polymer above the lower critical solution temperature. The nanoparticles have been characterized by both tapping-mode atomic force microscopy observations and in situ synchrotron time-resolved small-angle X-ray scattering analysis. The results from both the techniques showed the formation of nanoparticles in the size range of 15-30 nm, directly from the polymerization process.

  11. Assessment of low temperature cracking in asphalt pavement mixes and rheological performance of asphalt binders

    Science.gov (United States)

    Sowah-Kuma, David

    Government spends a lot of money on the reconstruction and rehabilitation of road pavements in any given year due to various distresses and eventual failure. Low temperature (thermal) cracking, one of the main types of pavement distress, contributes partly to this economic loss, and comes about as a result of accumulated tensile strains exceeding the threshold tensile strain capacity of the pavement. This pavement distress leads to a drastic reduction of the pavement's service life and performance. In this study, the severity of low temperature (thermal) cracking on road pavements selected across the Province of Ontario and its predicted time to failure was assessed using the AASTHO Mechanistic-Empirical Pavement Design Guide (MEPDG) and AASHTOWARE(TM) software, with inputs such as creep compliance and tensile strength from laboratory test. Highway 400, K1, K2, Y1, Sasobit, Rediset LQ, and Rediset WMX were predicted to have a pavement in-service life above 15 years. Additionally, the rheological performance of the recovered asphalt binders was assessed using Superpave(TM) tests such as the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). Further tests using modified standard protocols such as the extended bending beam rheometer (eBBR) (LS-308) test method and double-edge notched tension (DENT) test (LS-299) were employed to evaluate the failure properties associated with in service performance. The various rheological tests showed K1 to be the least susceptible to low temperature cracking compared to the remaining samples whiles Highway 24 will be highly susceptible to low temperature cracking. X-ray fluorescence (XRF) analysis was performed on the recovered asphalt binders to determine the presence of metals such as zinc (Zn) and molybdenum (Mo) believed to originate from waste engine oil, which is often added to asphalt binders. Finally, the severity of oxidative aging (hardening) of the recovered asphalt binders was also evaluated using the

  12. Pd-Pt loaded graphene aerogel on nickel foam composite as binder-free anode for a direct glucose fuel cell unit

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2017-09-01

    Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm-2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.

  13. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    Science.gov (United States)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  14. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  15. Development of microwave absorbing materials prepared from a polymer binder including Japanese lacquer and epoxy resin

    Science.gov (United States)

    Iwamaru, T.; Katsumata, H.; Uekusa, S.; Ooyagi, H.; Ishimura, T.; Miyakoshi, T.

    Microwave absorption composites were synthesized from a poly urushiol epoxy resin (PUE) mixed with one of microwave absorbing materials; Ni-Zn ferrite, Soot, Black lead, and carbon nano tube (CNT) to investigate their microwave absorption properties. PUE binders were specially made from Japanese lacquer and epoxy resin, where Japanese lacquer has been traditionally used for bond and paint because it has excellent beauty. Japanese lacquer solidifies with oxygen contained in air's moisture, which has difficulty in making composite, but we improved Japanese lacquer's solidification properties by use of epoxy resin. We made 10 mm thickness composite samples and cut them into toroidal shape to measure permittivity, permeability, and reflection loss in frequencies ranging from 50 Hz to 20 GHz. Electric magnetic absorber's composites synthesized from a PUE binders mixed either with Soot or CNT showed significantly higher wave absorption over -27 dB than the others at frequencies around 18 GHz, although Japanese lacquer itself doesn't affect absorption. This means Japanese lacquer can be used as binder materials for microwave absorbers.

  16. Peptide block copolymers by N-carboxyanhydride ring-opening polymerization and atom transfer radical polymerization: The effect of amide macroinitiators

    NARCIS (Netherlands)

    Habraken, G.J.M.; Koning, C.E.; Heise, A.

    2009-01-01

    The synthesis of polypeptide-containing block copolymers combining N-carboxyanhydride (NCA) ring-opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was

  17. Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2 cathodes: NMP-soluble binder. II - Chemical changes in the anode

    Science.gov (United States)

    Bloom, Ira; Bareño, Javier; Dietz Rago, Nancy; Dogan, Fulya; Graczyk, Donald G.; Tsai, Yifen; Naik, Seema R.; Han, Sang-Don; Lee, Eungje; Du, Zhijia; Sheng, Yangping; Li, Jianlin; Wood, David L.; Steele, Leigh Anna; Lamb, Joshua; Spangler, Scott; Grosso, Christopher; Fenton, Kyle

    2018-05-01

    Cells based on nickel manganese cobalt oxide (NMC)/graphite electrodes, which contained polyvinylidene difluoride (PVDF) binders in the electrodes, were systematically charged to 100, 120, 140, 160, 180, and 250% state of charge (SOC). Characterization of the anodes by inductively-coupled-plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS) showed several extent-of-overcharge-dependent trends. The concentrations (by wt) of nickel, manganese, and cobalt in the negative electrode increased with SOC, but the metals remained in the same ratio as that of the positive. Electrolyte reaction products, such as LiF:LiPO3, increased with overcharge, as expected. Three organic products were found by HPLC-ESI-MS. From an analysis of the mass spectra, two of these compounds seem to be organophosphates, which were formed by the reaction of polymerized electrolyte decomposition products and PF3 or O=PF3. Their concentration tended to reach a constant ratio. The third was seen at 250% SOC only.

  18. Predicting hydrocarbon release from soil

    International Nuclear Information System (INIS)

    Poppendieck, D.; Loehr, R.C.

    2002-01-01

    'Full text:' The remediation of hazardous chemicals from soils can be a lengthy and costly process. As a result, recent regulatory initiatives have focused on risk-based corrective action (RBCA) approaches. Such approaches attempt to identify the amount of chemical that can be left at a site with contaminated soil and still be protective of human health and the environment. For hydrocarbons in soils to pose risk to human heath and the environment, the hydrocarbons must be released from the soil and accessible to microorganisms, earthworms, or other higher level organisms. The sorption of hydrocarbons to soil can reduce the availability of the hydrocarbon to receptors. Typically in soils and sediments, there is an initial fast release of a hydrocarbon from the soil to the aqueous phase followed by a slower release of the remaining hydrocarbon to the aqueous phase. The rate and extent of slow release can influence aqueous hydrocarbon concentrations and the fate and transport of hydrocarbons in the subsurface. Once the fast fraction of the chemical has been removed from the soil, the remaining fraction of a chemical may desorb at a rate that natural mechanisms can attenuate the released hydrocarbon. Hence, active remediation may be needed only until the fast fraction has been removed. However, the fast fraction is a soil and chemical specific parameter. This presentation will present a tier I type protocol that has been developed to quickly estimate the fraction of hydrocarbons that are readily released from the soil matrix to the aqueous phase. Previous research in our laboratory and elsewhere has used long-term desorption (four months) studies to determine the readily released fraction. This research shows that a single short-term (less than two weeks) batch extraction procedure provides a good estimate of the fast released fraction derived from long-term experiments. This procedure can be used as a tool to rapidly evaluate the release and bioavailability of

  19. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  20. Nanoscale study on water damage for different warm mix asphalt binders

    Directory of Open Access Journals (Sweden)

    Kefei Liu

    2016-11-01

    Full Text Available In order to analyze the water damage to different warm mix asphalt binders from the micro scale, five kinds of asphalt binders, 70#A base asphalt, sasobit warm mix asphalt, energy champion 120 °C (EC120 warm mix asphalt, aspha-min warm mix asphalt, sulfur-extended asphalt modifier (SEAM warm mix asphalt, under different conditions (dry/wet, original/aging are prepared for laboratory tests. The atomic force microscope (AFM is used to observe the surface properties and measure the adhesion force between the asphalt and the mineral aggregate. The obtained results show that under the dry condition aspha-min warm mix asphalt and SEAM warm mix asphalt show stronger adhesive ability with the mineral aggregate compared with other asphalt binders, but also have relatively large dispersion and fluctuation in the tested results; under the wet condition, aspha-min warm mix asphalt and SEAM warm mix asphalt show stronger water damage resistance ability. The EC120 warm mix asphalt and aspha-min warm mix asphalt are less sensitive to moist, and their corresponding adhesion force is less susceptible to the change of external moisture conditions, leading to a better ability to resist water erosion. The aging process significantly lowers the moisture erosion resistance ability, which further impairs the water damage resistance ability. The base asphalt is more sensitive to moisture and more vulnerable to water damage, no matter whether it is under original or aging conditions. The aging aspha-min warm mix asphalt has the least loss of adhesion force, the smallest dispersion of the tested adhesion force, the strongest water damage resistance ability, no matter it is dry or wet. Keywords: Road engineering, Warm mix asphalt, Moisture damage, Atomic force microscope, Microcosmic

  1. 46 CFR 308.302 - Issuance of interim binder; terms and conditions.

    Science.gov (United States)

    2010-10-01

    ... OPERATIONS WAR RISK INSURANCE Second Seamen's War Risk Insurance § 308.302 Issuance of interim binder; terms..., conditions, and warranties contained in the application for Second Seamen's war risk insurance (set forth in § 308.3) and the Second Seamen's War Risk Policy (1955) (set forth in § 308.306) to the same extent as...

  2. Synthesis and polymerization of vinyl triazolium ionic liquids

    Science.gov (United States)

    Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian

    2018-05-15

    Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.

  3. Polyaniline-coated cigarette filters as a solid-phase extraction sorbent for the extraction and enrichment of polycyclic aromatic hydrocarbon in water samples.

    Science.gov (United States)

    Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya

    2016-06-01

    Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fractional separation of hydrocarbon vapours

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-10

    A process is described for converting higher boiling hydrocarbons to lower boiling hydrocarbons by subjecting them at elevated temperatures to a conversion operation, then separating the higher and lower boiling fractions. The separation takes place while the reaction products are maintained in the vapor phase by contact with a mass of solid porous material which has little or no catalytic activity but does have a preferential absorption property for higher boiling hydrocarbons so that the lower boiling part of the reaction products pass through the separation zone while the heavier hydrocarbons are retained. The separation is accomplished without substantial loss of heat of these reaction products.

  5. Experimental study of living free radical polymerization using trifunctional initiator and polymerization mediated by nitroxide

    International Nuclear Information System (INIS)

    Galhardo, Eduardo; Lona, Liliane M.F.

    2009-01-01

    Controlled free radical polymerization or living free radical polymerization has received increasing attention as a technique for the production of polymers with microstructure highly controlled. In particular, narrow molecular weight distributions are obtained with polydispersity very close to one. In this research it was investigate the controlled polymerization mediated by nitroxide, using a cyclic trifunctional peroxide. As long as we know, there are only publications in literature dealing with NMRP using mono- and bi-functional initiators. It was believed that the trifunctional peroxide can increase the rate of polymerization, since more free radicals are generated, if compared with initiators with lower functionality. Furthermore, the fact of the initiator be cyclic means that branches are not generated in the chains, which theoretically prevents an increase in polydispersity of the polymer. The effect of the dissociation constant of the trifunctional initiator in the velocity of the reaction was analyzed. (author)

  6. Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell.

    Science.gov (United States)

    Walter, Xavier Alexis; Greenman, John; Ieropoulos, Ioannis

    2018-04-19

    The recently developed self-stratifying membraneless microbial fuel cell (SSM-MFC) has been shown as a promising concept for urine treatment. The first prototypes employed cathodes made of activated carbon (AC) and polytetrafluoroethylene (PTFE) mixture. Here, we explored the possibility to substitute PTFE with either polyvinyl-alcohol (PVA) or PlastiDip (CPD; i.e. synthetic rubber) as binder for AC-based cathode in SSM-MFC. Sintered activated carbon (SAC) was also tested due to its ease of manufacturing and the fact that no stainless steel collector is needed. Results indicate that the SSM-MFC having PTFE cathodes were the most powerful measuring 1617 μW (11 W·m -3 or 101 mW·m -2 ). SSM-MFC with PVA and CPD as binders were producing on average the same level of power (1226 ± 90 μW), which was 24% less than the SSM-MFC having PTFE-based cathodes. When balancing the power by the cost and environmental impact, results clearly show that PVA was the best alternative. Power wise, the SAC cathodes were shown being the less performing (≈1070 μW). Nonetheless, the lower power of SAC was balanced by its inexpensiveness. Overall results indicate that (i) PTFE is yet the best binder to employ, and (ii) SAC and PVA-based cathodes are promising alternatives that would benefit from further improvements. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Managing oral phosphate binder medication expenditures within the Medicare bundled end-stage renal disease prospective payment system: economic implications for large U.S. dialysis organizations.

    Science.gov (United States)

    Park, Haesuk; Rascati, Karen L; Keith, Michael S

    2015-06-01

    From January 2016, payment for oral-only renal medications (including phosphate binders and cinacalcet) was expected to be included in the new Medicare bundled end-stage renal disease (ESRD) prospective payment system (PPS). The implementation of the ESRD PPS has generated concern within the nephrology community because of the potential for inadequate funding and the impact on patient quality of care. To estimate the potential economic impact of the new Medicare bundled ESRD PPS reimbursement from the perspective of a large dialysis organization in the United States. We developed an interactive budget impact model to evaluate the potential economic implications of Medicare payment changes to large dialysis organizations treating patients with ESRD who are receiving phosphate binders. In this analysis, we focused on the budget impact of the intended 2016 integration of oral renal drugs, specifically oral phosphate binders, into the PPS. We also utilized the model to explore the budgetary impact of a variety of potential shifts in phosphate binder market shares under the bundled PPS from 2013 to 2016. The base model predicts that phosphate binder costs will increase to $34.48 per dialysis session in 2016, with estimated U.S. total costs for phosphate binders of over $682 million. Based on these estimates, a projected Medicare PPS $33.44 reimbursement rate for coverage of all oral-only renal medications (i.e., phosphate binders and cinacalcet) would be insufficient to cover these costs. A potential renal drugs and services budget shortfall for large dialysis organizations of almost $346 million was projected. Our findings suggest that large dialysis organizations will be challenged to manage phosphate binder expenditures within the planned Medicare bundled rate structure. As a result, large dialysis organizations may have to make treatment choices in light of potential inadequate funding, which could have important implications for the quality of care for patients

  8. DC Calcium lactate, a new filler-binder for direct compaction of tablets

    NARCIS (Netherlands)

    Bolhuis, GK; Eissens, AC; Zoestbergen, E

    2001-01-01

    In this paper, a directly compressible form of calcium lactate is introduced as a filler-binder for direct compaction of tablets. Calcium lactate is one of the most important calcium sources and has, in comparison with other organic calcium salts, a good solubility and bioavailability. Two different

  9. The economic impact of improving phosphate binder therapy adherence and attainment of guideline phosphorus goals in hemodialysis patients: a Medicare cost-offset model.

    Science.gov (United States)

    Ramakrishnan, Karthik; Braunhofer, Peter; Newsome, Britt; Lubeck, Deborah; Wang, Steven; Deuson, Jennifer; Claxton, Ami J

    2014-12-01

    Hyperphosphatemia (serum phosphorus >5.5 mg/dL) in hemodialysis patients is a key factor in mineral and bone disorders and is associated with increased hospitalization and mortality risks. Treatment with oral phosphate binders offers limited benefit in achieving target serum phosphorus concentrations due to high daily pill burden (7-10 pills/day) and associated poor medication adherence. The economic value of improving phosphate binder adherence and increasing percent time in range (PTR) for target phosphorus concentrations has not been previously assessed in dialysis patients. The current retrospective analysis was conducted to summarize health care cost savings to United States (US) payers associated with improved phosphate binder adherence and increased PTR for target phosphorus concentrations in adult end-stage renal disease (ESRD) patients receiving hemodialysis therapy. Phosphate binder adherence and PTR were derived from hemodialysis patients who were treated at a large dialysis organization between January 2007 and December 2011. Cost model inputs were derived from US Renal Data System data between July 2007 and December 2009. A cost-offset model was constructed to estimate monthly and annual incremental health care costs (total Medicare; inpatient, outpatient, and Medicare Part B) associated with different levels of phosphate binder adherence and PTR. Model inputs included number of ESRD patients, population adherence to phosphate binders, PTR associated with adherence to phosphate binders, and per-patient per-month cost associated with PTR. A base case model estimated monthly and annual costs of phosphate binder therapy in the population using estimated model inputs. The estimated adherence rate was used to determine number of patients in compliant and noncompliant groups. Monthly costs were calculated as the sum of per-patient per-month cost times the number of patients in adherent and nonadherent groups. Annual costs were monthly costs times 12 and

  10. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang; Chen, Guang; Hickner, Michael A.; Logan, Bruce E.

    2012-01-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst

  11. Preparations of spherical polymeric particles from Tanzanian ...

    African Journals Online (AJOL)

    Spherical Polymeric Particles (SPP) have been prepared from Tanzanian Cashew Nut Shell Liquid (CNSL) by suspension polymerization technique involving either step-growth or chain- growth polymerization mechanisms. The sizes of the SPP, which ranged from 0.1 to 2.0 mm were strongly influenced by the amounts of ...

  12. Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes

    KAUST Repository

    Huang, Ming; Li, Fei; Zhao, Xiao Li; Luo, Da; You, Xue Qiu; Zhang, Yu Xin; Li, Gang

    2015-01-01

    © 2014 Elsevier Ltd. All rights reserved. Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam have been fabricated by a facile two-step hydrothermal approach and further investigated as the binder-free electrode for supercapacitors. The core-shell hybrid nanostructure is achieved by decorating ultrathin self-standing MnO2 nanosheets on ZnO pillar arrays grown radically on Nickel foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (423.5 F g-1 at a current density of 0.5 A g-1), and excellent cycling stability (92% capacitance retention after 3000 cycles). The improved electrochemical results show that the ZnO@MnO2 core-shell nanostructure electrode is promising for high-performance supercapacitors. The facile design of the unique core-shell array architectures provides a new and effective approach to fabricate high-performance binder-free electrode for supercapacitors.

  13. Influences of Restaurant Waste Fats and Oils (RWFO from Grease Trap as Binder on Rheological and Solvent Extraction Behavior in SS316L Metal Injection Molding

    Directory of Open Access Journals (Sweden)

    Mohd Halim Irwan Ibrahim

    2016-02-01

    Full Text Available This article deals with rheological and solvent extraction behavior of stainless steel 316L feedstocks using Restaurant Waste Fats and Oils (RWFO from grease traps as binder components along with Polypropylene (PP copolymer as a backbone binder. Optimal binder formulation and effect of solvent extraction variables on green compacts are being analyzed. Four binder formulations based on volumetric ratio/weight fraction between PP and RWFO being mixed with 60% volumetric powder loading of SS316L powder each as feedstock. The rheological analysis are based on viscosity, shear rate, temperature, activation energy, flow behavior index, and moldability index. The optimal feedstock formulation will be injected to form green compact to undergo the solvent extraction process. Solvent extraction variables are based on solvent temperature which are 40 °C, 50 °C, and 60 °C with different organic solvents of n-hexane and n-heptane. Analysis of the weight loss percentage and diffusion coefficient is done on the green compact during the solvent extraction process. Differential Scanning Calorimeter (DSC is used to confirm the extraction of the RWFO in green compacts. It is found that all binder fractions exhibit pseudoplastic behavior or shear thinning where the viscosity decreases with increasing shear rate. After considering the factors that affect the rheological characteristic of the binder formulation, feedstock with binder formulation of 20/20 volumetric ratio between PP and RWFO rise as the optimal binder. It is found that the n-hexane solvent requires less time for extracting the RWFO at the temperature of 60 °C as proved by its diffusion coefficient.

  14. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  15. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Sato, Nobuhiro, E-mail: sato-n@rri.kyoto-u.ac.j [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Matsuyama, Tomochika [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-08-15

    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through {gamma}-ray-induced graft polymerization were investigated with {sup 1}H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of {sup 1}H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of {gamma}-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  16. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG

    Directory of Open Access Journals (Sweden)

    Hiroshi Takasaki

    2015-01-01

    Full Text Available The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met using the moist aqueous granulation (MAG process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone–vinyl acetate copolymer (Kollidon VA64 fine: VA64, polyvidone (Povidone K12: PVP, hydroxypropyl cellulose (HPC SSL SF: HPC and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API. HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance.

  17. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  18. High temperature zirconia binders for ex-vessel catcher brickwork

    International Nuclear Information System (INIS)

    Mineev, V.N.; Borovkova, L.B.; Akopov, F.A.; Akopyan, A.A.; Barykin, B.M.; Borodina, T.I.; Val'yano, G.E.; Bel'maz, N.S.; Bel'maz, K.N.

    2000-01-01

    The studies on selection of compositions of binding materials (mortars) on the zirconium dioxide basis with two types of binders - the barium monoaluminate and zirconium dioxide binding suspension - are accomplished. The bases of technology for their fabrication and application are developed; the density, porosity, shrinkage and behavior in contact with the steel melts and iron oxide are specified. The mortars developed are recommended for application in the external trap fireproof protection on the basis of the zirconium dioxide refractory materials [ru

  19. Polymerization of N-(fluoro phenyl) maleimides

    International Nuclear Information System (INIS)

    Barrales-Rienda, J.M.; Ramos, J.G.; Chaves, M.S.

    1979-01-01

    Poly(N-aryl maleimide)s of characteristic structures have been synthesized and some of their physical properties studied. The polymerization of N-(fluoro phenyl) maleimides by free-radical initiation in bulk or in solution and by anionic catalyst have been studied to compare the characteristics of polymerization by γ-ray irradiation with that by free-radical initiation. The polymers were characterized by elemental analysis, intrinsic viscosity, spectroscopy (IR and NMR), programmed thermogravimetric analysis, and x-ray diffraction. Spectra of polymers prepared by radiation and anionic polymerization were nearly identical with those of polymers prepared by free-radical polymerization initiated by azobisisobutyronitrile in bulk or in solution and by the self-initiated thermal polymerization. A variety of reaction conditions were tried, but all attempts to change the molecular structure of the polymers were unsuccessful. Rates of thermal degradation for poly[N-(fluoro phenyl) maleimide]s have been analyzed by using a multiple-heating-rate procedure. Overall activation energy, order of reaction, and frequency factor have been evaluated. 6 figures, 8 tables

  20. Bioremediation of soils containing petroleum hydrocarbons, chlorinated phenols, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    Bench-scale treatability investigations, pilot-scale and full-scale bioremediation projects were conducted to evaluate Daramend trademark bioremediation of soils containing petroleum hydrocarbons, heavy oils, paraffins, chlorinated phenols and polycyclic aromatic hydrocarbons (PAHs). Bench-scale investigations were conducted using glass microcosms. Pilot-scale and full-scale demonstrations were conducted at industrial sites and included treatment of excavated soils and sediments in on-site cells constructed using synthetic liners and covered by steel/polyethylene structures as well as in-situ treatment. A total of approximately 5,000 tons of soil was treated. The soil treatment included organic soil amendments, specialized tillage/aeration apparatus, and strict control of soil moisture. The amendments are composed of naturally-occurring organic materials prepared to soil-specific particle size distributions, nutrient profiles, and nutrient-release kinetics. Bench-scale work indicated that in refinery soil containing high concentrations of heavy oils, extractable hydrocarbon concentrations could be rapidly reduced to industrial clean-up criteria, and that the hydrocarbons were fully mineralized with release of CO 2