WorldWideScience

Sample records for hydrocarbon polymeric binder

  1. Studies on the Renewability of Polymeric Binders for Foundry

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2012-09-01

    Full Text Available In this paper the results of studies of polymeric binders on the example of the new BioCo2 binder, including the problem of itsrenewability, are presented. The results of structural studies (FT-IR for the BioCo2 binder before and after crosslinking, and bendingstrength tests Rg u fresh and renewed cured molding sands with BioCo2 binder are discussed. The cross-linking binder and curring ofmoulding sand was carried out by physical agents (microwave radiation, temperature. On the basis of obtained results was shown that it is possible to restore the initial properties of the adhesive of BioCo2 binder. The initial properties of moulding sand can be achieved, after the cross-linking binders and after curing in the moulding sands with bioCo2 binder , by supplementing the moulding sand composition by the appropriate amount of water.

  2. THE STUDY OF CORE SAND MIXTURES BASED ON POLYMERIC BINDERS

    Directory of Open Access Journals (Sweden)

    Ms. Natalia V. Zakharova

    2016-06-01

    Full Text Available The possibility of using foamed polystyrene waste as the binder in manufacturing core sand mixtures. The article provides experimental data obtained by studying the core sand mixtures properties depending on the methods of addition, foamed polystyrene solution amount, its viscosity and the method of drying. The author investigates the ways of using foamed polystyrene as the binder and as the polymeric additive.

  3. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    Science.gov (United States)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  4. Viscoelastic Behaviour of Solid Propellants based on Various Polymeric Binders

    Directory of Open Access Journals (Sweden)

    N. Prabhakaran

    1995-01-01

    Full Text Available The dynamic mechanical properties of different binders and corresponding propellants are studied in terms of storage modulus and loss tangent. The binders investigated are HTPB, CTPB, PBAN, HEF-20 and ISRO polyol. The viscoelastic behaviour is investigated using Rheovibron viscoelastometer at 35 Hz covering a wide temperature range (-100 degree centigrade to 100 degree centigrade. The properties of the binder and corresponding propellant are compared in terms of parameters, tan delta/sub max/, T/sub g/ and the trend of their master relaxation modulus curves. It is found that polybutadiene binders exhibit lowest T/sub g/ (around -60 degree centigrade and ISRO polyol the highest (near -20 degree centigrade. The propellants have higher moduli than the binders at any temperature. The master relaxation modulus curve is influenced by the type of propellant.

  5. Characterization of hydrocarbon emissions from green sand foundry core binders by analytical pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yujue Wang; Fred S. Cannon; Magda Salama; Jeff Goudzwaard; James C. Furness [Pennsylvania State University, University Park, PA (United States). Department of Civil and Environmental Engineering

    2007-11-15

    Analytical pyrolysis was conducted to compare the hydrocarbon and greenhouse gas emissions of three foundry sand binders: (a) conventional phenolic urethane resin, (b) biodiesel phenolic urethane resin, and (c) collagen-based binder. These binders are used in the metal casting industry to create internal cavities within castings. Green sand contains silica sand, clay, carbonaceous additives (eg bituminous coal) and water. The core samples were flash pyrolyzed in a Curie-point pyrolyzer at 920{sup o}C with a heating rate of about 3000{sup o}C/sec. This simulated some key features of the fast heating conditions that the core binders would experience at the metal-core interface when molten metal is poured into green sand molds. The core samples were also pyrolyzed in a thermogravimetric analyzer (TGA) from ambient temperature to 1000{sup o}C with a heating rate of 30{sup o}C/min, and this simulated key features of the slow heating conditions that the core binders would experience at distances that are further away from the metal-core interface during casting cooling. Hydrocarbon emissions from flash pyrolysis were analyzed with a gas chromatography-flame ionization detector, while hydrocarbon and greenhouse gas emissions from TGA pyrolysis were monitored with mass spectrometry. The prominent hazardous air pollutant emissions during pyrolysis of the three binders were phenol, cresols, benzene, and toluene for the conventional phenolic urethane resin and biodiesel resin, and benzene and toluene for the collagen-based binder. Bench-scale analytical pyrolysis techniques could be a useful screening tool for the foundries to compare the relative emissions of alternative core binders and to choose proper materials in order to comply with air-emission regulations. 20 refs., 4 figs., 1 tab.

  6. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black

    KAUST Repository

    Ha, Don-Hyung

    2012-10-10

    In this work, we have developed a new fabrication method for nanoparticle (NP) assemblies for Li-ion battery electrodes that require no additional support or conductive materials such as polymeric binders or carbon black. By eliminating these additives, we are able to improve the battery capacity/weight ratio. The NP film is formed by using electrophoretic deposition (EPD) of colloidally synthesized, monodisperse cobalt NPs that are transformed through the nanoscale Kirkendall effect into hollow Co 3O 4. EPD forms a network of NPs that are mechanically very robust and electrically connected, enabling them to act as the Li-ion battery anode. The morphology change through cycles indicates stable 5-10 nm NPs form after the first lithiation remained throughout the cycling process. This NP-film battery made without binders and conductive additives shows high gravimetric (>830 mAh/g) and volumetric capacities (>2100 mAh/cm 3) even after 50 cycles. Because similar films made from drop-casting do not perform well under equal conditions, EPD is seen as the critical step to create good contacts between the particles and electrodes resulting in this significant improvement in battery electrode assembly. This is a promising system for colloidal nanoparticles and a template for investigating the mechanism of lithiation and delithiation of NPs. © 2012 American Chemical Society.

  7. Investigating the Use of Polymeric Binders in Twin Screw Melt Granulation Process for Improving Compactibility of Drugs.

    Science.gov (United States)

    Batra, Amol; Desai, Dipen; Serajuddin, Abu T M

    2017-01-01

    Traditionally, the melt granulation for pharmaceutical products was performed at low temperature (twin screw extruder where the processing temperature could be increased to as high as 180°C and polymers with high Tg could be used as binders. In this study, different polymeric binders were screened for their suitability in improving compactibility of 2 drugs, metformin hydrochloride and acetaminophen, by twin screw melt granulation. Processing temperatures for the 2 drugs were set at 180°C and 130°C, respectively. Screw configuration, screw speed, and feed rate were optimized such that all polymeric binders used produced granules. Several hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinylpyrrolidone, and methacrylate-based polymers, including Klucel(®) EXF, Eudragit(®) EPO, and Soluplus(®), demonstrated good tablet tensile strength (>2 MPa) when granules were produced using only 10% wt/wt polymer concentration. Certain polymers provided acceptable compactibility even at 5% wt/wt. Thus, twin screw melt granulation process may be used with different polymers at a wide range of temperature. Due to low excipient concentration, this granulation method is especially suitable for high-dose tablets.

  8. Evaluation of polycyclic aromatic hydrocarbons in asphalt binder using matrix solid-phase dispersion and gas chromatography.

    Science.gov (United States)

    Fernandes, Paulo R N; Soares, Sandra de A; Nascimento, Ronaldo F; Soares, Jorge B; Cavalcante, Rivelino M

    2009-10-01

    A method developed for the extraction and analysis of polycyclic aromatic hydrocarbons (PAHs) in the asphalt binder using a matrix solid-phase dispersion (MSPD) and gas chromatography is presented. The MSPD method was proposed as a rapid and easy approach to determining PAHs present in the maltenic phase of asphalt binder extracted through a mechanical shaking and sonication of the material. The recovery rates ranged from 62.77-89.92% (shaking) and from 56.54-93.6% (sonication) with relative standard deviations lower than 8.8%. The study shows that the recovery rates using shaking and sonication extractions are not significantly different at the p asphalt binder from Brazil. The main PAHs found were BbF, BaP, Per, IncdP, DahA, and BghiP, with average concentrations of 10.2-20.7 mg/kg, but the PAHs Ace and Acy were not detected. However, Nap, Fl, Phen, Ant, Flr, Pyr, Chry, BaA, and BkF were present in average concentrations amounting to less than 10 mg/kg. The results showed that the MSPD method is potentially a valuable tool for the determination of PAHs in the asphalt binder.

  9. Highly robust silicon nanowire/graphene core-shell electrodes without polymeric binders

    Science.gov (United States)

    Lee, Sang Eon; Kim, Han-Jung; Kim, Hwanjin; Park, Jong Hyeok; Choi, Dae-Geun

    2013-09-01

    A large theoretical charge storage capacity along with a low discharge working potential renders silicon a promising anode material for high energy density lithium ion batteries. However, up to 400% volume expansion during charge-discharge cycling coupled with a low intrinsic electronic conductivity causes pulverization and fracture, thus inhibiting silicon's widespread use in practical applications. We report herein on a low cost approach to fabricate hybrid silicon nanowire (SiNW)/graphene nanostructures that exhibit enhanced cycle performance with the capability of retaining more than 90% of their initial capacity after 50 cycles. We also demonstrate the use of hot-pressing in the absence of any common polymer binder such as PVDF to bind the hybrid structure to the current collector. The applied heat and pressure ensure strong adhesion between the SiNW/graphene nano-composite and current collector. This facile yet strong binding method is expected to find use in the further development of polymer-binder free anodes for lithium ion batteries.A large theoretical charge storage capacity along with a low discharge working potential renders silicon a promising anode material for high energy density lithium ion batteries. However, up to 400% volume expansion during charge-discharge cycling coupled with a low intrinsic electronic conductivity causes pulverization and fracture, thus inhibiting silicon's widespread use in practical applications. We report herein on a low cost approach to fabricate hybrid silicon nanowire (SiNW)/graphene nanostructures that exhibit enhanced cycle performance with the capability of retaining more than 90% of their initial capacity after 50 cycles. We also demonstrate the use of hot-pressing in the absence of any common polymer binder such as PVDF to bind the hybrid structure to the current collector. The applied heat and pressure ensure strong adhesion between the SiNW/graphene nano-composite and current collector. This facile yet strong

  10. Crystalline structures of polymeric hydrocarbon with 3,4-fold helical chains.

    Science.gov (United States)

    Lian, Chao-Sheng; Li, Han-Dong; Wang, Jian-Tao

    2015-01-12

    Molecular hydrocarbons are well-known to polymerize under pressure to form covalently bonded frameworks. Here we predict by ab initio calculations two distinct three-dimensional hydrocarbon crystalline structures composed of 3-fold and 4-fold helical CH chains in rhombohedral (R3) and tetragonal (I4₁/a) symmetry, respectively. Both structures with 1:1 stoichiometry are found to be energetically more favorable than solid acetylene and cubane, and even more stable than benzene II solid at high pressure. The calculations on vibrational, electronic, and optical properties reveal that the new chiral hydrocarbons are dynamically stable with large bulk moduli around 200 GPa, and exhibit a transparent insulating behavior with indirect band gaps of 5.9 ~ 6.7 eV and anisotropic adsorption spectra. Such forms of hydrocarbon, once synthesized, would have wide applications in mechanical, optoelectronic, and biological materials.

  11. The Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-ion Composite

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Cynthia; Liu, G.; Zheng, H.; Kim, S.; Deng, Y.; Minor, A.M.; Song, X.; Battaglia, V.S.

    2008-08-07

    Fundamental electrochemical methods, cell performance tests, and physical characterization tests such as electron microscopy were used to study the effects of levels of the inert materials (acetylene black (AB), a nano-conductive additive, and polyvinylidene difluoride (PVDF), a polymer binder) on the power performance of lithium-ion composite cathodes. The electronic conductivity of the AB/PVDF composites at different compositions was measured with a four-point probe direct current method. The electronic conductivity was found to increase rapidly and plateau at a AB:PVDF ratio 0.2:1 (by weight), with 0.8:1 being the highest conductivity composition. AB:PVDF compositions along the plateau of 0.2:1, 0.4:1, 0.6:1 and 0.8:1 were investigated. Electrodes of each of those compositions were fabricated with different fractions of AB/PVDF to active material. It was found that at the 0.8:1 AB:PVDF, the rate performance improved with increases in the AB/PVDF loading, whereas at the 0.2:1 AB:PVDF, the rate performance improved with decreases in the AB/PVDF loading. The impedance of electrodes made with 0.6:1 AB:PVDF was low and relatively invariant.

  12. The emissions of monoaromatic hydrocarbons from small polymeric toys placed in chocolate food products.

    Science.gov (United States)

    Marć, Mariusz; Formela, Krzysztof; Klein, Marek; Namieśnik, Jacek; Zabiegała, Bożena

    2015-10-15

    The article presents findings on the emissions of selected monoaromatic hydrocarbons from children's toys placed in chocolate food products. The emission test system involved the application of a new type of microscale stationary emission chamber, μ-CTE™ 250. In order to determine the type of the applied polymer in the manufacture of the tested toys, Fourier transform infrared spectroscopy and thermogravimetric analysis coupled with differential scanning calorimetry were used. It was found that the tested toy components or the whole toys (figurines) are made of two main types of polymers: polyamide and acrylonitrile-butadiene-styrene copolymer. Total number of studied small polymeric toys was 52. The average emissions of selected monoaromatic hydrocarbons from studied toys made of polyamide were as follows: benzene: 0.45 ± 0.33 ng/g; toluene: 3.3 ± 2.6 ng/g; ethylbenzene: 1.4 ± 1.4 ng/g; p,m-xylene: 2.5 ± 4.5 ng/g; and styrene: 8.2 ± 9.9 ng/g. In the case of studied toys made of acrylonitrile-butadiene-styrene copolymer the average emissions of benzene, toluene, ethylbeznene, p,m-xylene and styrene were: 0.31 ± 0.29 ng/g; 2.5 ± 1.4 ng/g; 4.6 ± 8.9 ng/g; 1.4 ± 1.1 ng/g; and 36 ± 44 ng/g, respectively.

  13. Development of composite solid propellent using dicyclopentadien binder

    Science.gov (United States)

    Bluestone, Stephen Ray

    Through the history of composite solid propellant binders new chemicals are introduced as binders to improve upon the previous generation. Sometimes this is done to improve upon the flaws or shortcomings of a previous binder. Other time it is to meet a new set of requirements desired by industry. Dicyclopentadiene (DCPD) is a hydrocarbon monomer being considered for its potential as a new binder in the composite propellant industry. The binder of a composite solid propellant is arguably the most important feature of the propellant. It is the binder that provides the majority of the structural characteristics of the propellant while also contributing itself as fuel to the combustion process. A binder in composite propellants must also be able to accept the introduction of a large quantity of solid filler; oxidizer, fuel, and other energetic and non-energetic particles. Many of the composite propellants used in industry today have over 80% of their weight composed of non-binder solid or liquid fillers. These requirements must be met by the binder in some form or fashion to produce a propellant able to compete with binders currently in use. When DCPD is polymerized it produces an extremely tough plastic with excellent tensile and impact strength. Experimentation has found that DCPD is able to support a large quantity of solid materials, over 80% weight of the mixture, while still retaining a great portion of its original strength. When compared to another similarly loaded binder currently used in industry, Hydroxyl-Terminated Polybutadiene (HTPB), it was found that DCPD composite propellant had nearly 1.5 times the stress capacity while still exhibiting over 75% of the strain capacity of HTPB based composite propellant. In addition it was also shown that DCPD composite propellant allows for tailoring of its mechanical properties with the addition of plasticizers. The DCPD based composite propellant also exhibits a burning rate nearly twice that HTPB. These factors

  14. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    Science.gov (United States)

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments.

  15. Synthesis of ordered conjugated polycyclic aromatic hydrocarbon polymers through polymerization reaction on Au(111)

    DEFF Research Database (Denmark)

    Wang, Zhongping; Zhao, Huiling; Lu, Yan;

    2016-01-01

    One-dimensional pi-conjugated polymer chains with variable lengths have been synthesized successfully via thermal polymerization reaction on the Au(111) surface. Such polymer chains form parallel arrays along specific directions according to the initial assembly orientations of the close-packed Br...

  16. Hydrogenation of unsaturated hydrocarbons in the presence of palladium complexes fixed on a polymeric support

    Energy Technology Data Exchange (ETDEWEB)

    Gvinter, L.I.; Ignatov, V.M.; Suvorova, L.N.; Sharf, V.Z.

    1987-01-01

    A new metal-complex Pd catalyst fixed on a polymer matrix has been synthesized. It exhibits high activity and stability in the hydrogenation of unsaturated hydrocarbons and does not require additional activation by NaBH/sub 4/. The activity of the catalyst depends on the nature and composition of the solvent. In a mixed benzene-methanol solvent, the rate of the reaction is higher than in pure benzene. 4 references, 3 tables.

  17. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  18. Crosslinked structurally-tuned polymeric ionic liquids as stationary phases for the analysis of hydrocarbons in kerosene and diesel fuels by comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Zhang, Cheng; Park, Rodney A; Anderson, Jared L

    2016-04-01

    Structurally-tuned ionic liquids (ILs) have been previously applied as the second dimension column in comprehensive two-dimensional gas chromatography (GC×GC) and have demonstrated high selectivity in the separation of individual aliphatic hydrocarbons from other aliphatic hydrocarbons. However, the maximum operating temperatures of these stationary phases limit the separation of analytes with high boiling points. In order to address this issue, a series of polymeric ionic liquid (PIL)-based stationary phases were prepared in this study using imidazolium-based IL monomers via in-column free radical polymerization. The IL monomers were functionalized with long alkyl chain substituents to provide the needed selectivity for the separation of aliphatic hydrocarbons. Columns were prepared with different film thicknesses to identify the best performing stationary phase for the separation of kerosene. The bis[(trifluoromethyl)sulfonyl]imide ([NTf2](-))-based PIL stationary phase with larger film thickness (0.28μm) exhibited higher selectivity for aliphatic hydrocarbons and showed a maximum allowable operating temperature of 300°C. PIL-based stationary phases containing varied amount of IL-based crosslinker were prepared to study the effect of the crosslinker on the selectivity and thermal stability of the resulting stationary phase. The optimal resolution of aliphatic hydrocarbons was achieved when 50% (w/w) of crosslinker was incorporated into the PIL-based stationary phase. The resulting stationary phase exhibited good selectivity for different groups of aliphatic hydrocarbons even after being conditioned at 325°C. Finally, the crosslinked PIL-based stationary phase was compared with SUPELCOWAX 10 and DB-17 columns for the separation of aliphatic hydrocarbons in diesel fuel. Better resolution of aliphatic hydrocarbons was obtained when employing the crosslinked PIL-based stationary phase as the second dimension column.

  19. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation.

  20. Extracellular polymeric substances enhanced mass transfer of polycyclic aromatic hydrocarbons in the two-liquid-phase system for biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Yang, Xinglun; Gu, Chenggang; Kengara, Fredrick Orori; Hong, Qing; Lv, Zhengyong; Jiang, Xin

    2011-05-01

    The objective was to elucidate the role of extracellular polymeric substances (EPS) in biodegradation of polycyclic aromatic hydrocarbons in two-liquid-phase system (TLPs). Therefore, biodegradation of phenanthrene (PHE) was conducted in a typical TLPs--silicone oil-water--with PHE-degrading bacteria capable of producing EPS, Sphingobium sp. PHE3 and Micrococcus sp. PHE9. The results showed that the presence of both strains enhanced mass transfer of PHE from silicone oil to water, and that biodegradation of PHE mainly occurred at the interfaces. The ratios of tightly bound (TB) proteins to TB polysaccharides kept almost constant, whereas the ratios of loosely bound (LB) proteins to LB polysaccharides increased during the biodegradation. Furthermore, polysaccharides led to increased PHE solubility in the bulk water, which resulted in an increased PHE mass transfer. Both LB-EPS and TB-EPS (proteins and polysaccharides) correlated with PHE mass transfer in silicone oil, indicating that both proteins and polysaccharides favored bacterial uptake of PHE at the interfaces. It could be concluded that EPS could facilitate microbial degradation of PHE in the TLPs.

  1. Metal-phosphate binders

    Science.gov (United States)

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  2. Anionic surface binders

    Directory of Open Access Journals (Sweden)

    Aljaž-Rožič Mateja

    2004-01-01

    Full Text Available The MELAMIN Chemical Factory in Kočevje manufactures synthetic resins and binders for the paper industry. Binders based on AKD (alkyl ketene dimer are produced which are used for binding paper and cardboard in the range of neutral and partially basic pH. Cationic and, lately, anionic binders are mostly used for the bulk binding of paper and board. The possibility of using AKD binders on paper or board surfaces is presented. In this case partially cationic AKD binders may be applied. When optical whiteners are used, the application of AKD binders is recommended. In the case of paper it is possible to substitute acrylate binders by AKD binders. The best results are obtained when the paper is first partly treated in bulk and subsequently surface treated.

  3. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Atashgahi, S.; Maphosa, F.; Vrieze, de J.; Haest, P.J.; Boon, N.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that

  4. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Atashgahi, S.; Maphosa, F.; Vrieze, de J.; Haest, P.J.; Boon, N.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that

  5. Solvolytic Degradation of Polymeric Propellant Binders

    Science.gov (United States)

    1975-06-01

    Pat. 1,003,713; Chem. Abstr.-, 53, 22982a (1959). ~8. A. Lupu, 1L. Dascalu and 1. Cristescu, Khim. Volokna, No. 3, 25(1962); Chein . Abstr., 57...Chim. Acta, 35, 1;1111(1952); Chem. Abot’r., f9, 23111f -(1953). 23. 14. Bender and Y. Chow, J. Amer. Chein . Soc., 81, 3929 (,1959). 24. C. Overbergc

  6. Phosphate binders in chronic kidney disease: a systematic review of recent data.

    Science.gov (United States)

    Floege, Jürgen

    2016-06-01

    Hyperphosphatemia is common in chronic kidney disease (CKD) and is treated by dietary measures, dialysis techniques and/or phosphate binders. For the present review PubMed was searched for new publications on phosphate binders appearing between January 2010 and October 2015. This review summarizes the latest information on non-pharmacological measures and their problems in lowering phosphate in CKD patients, effects of phosphate binders on morbidity and mortality, adherence to phosphate binder therapy as well as new information on specific aspects of the various phosphate binders on the market: calcium acetate, calcium carbonate, magnesium-containing phosphate binders, polymeric phosphate binders (sevelamer, bixalomer, colestilan), lanthanum carbonate, ferric citrate, sucroferric oxyhydroxide, aluminum-containing phosphate binders, and new compounds in development. The review also briefly covers the emerging field of drugs targeting intestinal phosphate transporters.

  7. HMX/TATB/binder development

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, T.L.; Osborn, A.G.; Schaffer, C.L.; Crutchmer, J.A.

    1981-05-01

    The processing and sensitivity characteristics of three HMX/TATB/Binder formulations were investigated. Viton A, Kraton G 1650, and Estane 5702-F1 binders were studied. The thermal stabilities of these compositions are near those of HMX/binder formulations, whereas impact, skid and friction sensitivity levels are less than HMX compositions, but greater than those of TATB/binder systems.

  8. Viscoelastic models for explosive binder materials

    Energy Technology Data Exchange (ETDEWEB)

    Bardenhagen, S.G.; Harstad, E.N.; Maudlin, P.J.; Gray, G.T. [Los Alamos National Lab., NM (United States); Foster, J.C. Jr. [Wright Lab., Eglin AFB, FL (United States)

    1997-07-01

    An improved model of the mechanical properties of the explosive contained in conventional munitions is needed to accurately simulate performance and accident scenarios in weapons storage facilities. A specific class of explosives can he idealized as a mixture of two components: energetic crystals randomly suspended in a polymeric matrix (binder). Strength characteristics of each component material are important in the macroscopic behavior of the composite (explosive). Of interest here is the determination of an appropriate constitutive law for a polyurethane binder material. This paper is a continuation of previous work in modeling polyurethane at moderately high strain rates and for large deformations. Simulation of a large deformation (strains in excess of 100%) Taylor Anvil experiment revealed numerical difficulties which have been addressed. Additional experimental data have been obtained including improved resolution Taylor Anvil data, and stress relaxation data at various strain rates. A thorough evaluation of the candidate viscoelastic constitutive model is made and possible improvements discussed.

  9. Breakpoint or Binder

    NARCIS (Netherlands)

    dr. Gürkan Çelik

    2013-01-01

    Civil society as a social sphere is constantly subjected to change. Using the Dutch context, this article addresses the question whether religiously inspired engagement is a binder or a breakpoint in modern societies. The author examines how religiously inspired people in the Netherlands involve the

  10. Binder/HMX interaction in PBX9501 at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    K., S C; M., T C

    2003-10-02

    Plastic bonded explosives (PBX) generally consist of 85 - 95 % by weight energetic material, such as HMX, and 5 - 15 % polymeric binder. Understanding of the structure and morphology at elevated temperatures and pressures is important for predicting of PBX behavior in accident scenarios. The crystallographic behavior of pure HMX has been measured as functions of temperature and grain size. The investigation is extended to the high temperature behavior of PBX 9501 (95% HMX, 2.5 % Estane, 2.5 % BDNPA/F). The results show that the HMX {beta}-phase to {delta}-phase transition in PBX 9501 is similar to that in neat HMX. However, in the presence of the PBX 9501 binder, {delta}-phase HMX readily converts back to {beta}-phase during cooling. Using the same temperature profile, the conversion rate decreases for each subsequent heating and cooling cycle. As observed in earlier experiments, no reverse conversion is observed without the polymer binder. It is proposed that the reversion of {delta}-phase to {beta}-phase is due to changes in the surface molecular potential caused by the influence of the polymer binder on the surface molecules of the {delta}-phase. Upon thermal cycling, the polymer binder segregates from the HMX particles and thus reduces the influence of the binder on the surface molecules. This segregation increases the resistance for the {delta}-phase to {beta}-phase transition, as demonstrated in an aged PBX 9501 material for which the reversion is not observed.

  11. Heat treatment of medium-temperature Sasol-Lurgi gasifier coal-tar pitch for polymerizing to higher value products

    Energy Technology Data Exchange (ETDEWEB)

    K. Mokoena; T.J. Van der Walt; T.J. Morgan; A.A. Herod; R. Kandiyoti [Sasol Technology (Pty) Ltd., Sasolburg (South Africa). R& amp; D Division

    2008-05-15

    Two coal-derived pitch samples, one a medium temperature pitch from a Sasol-Lurgi gasifier and the other from a high temperature coking process, have been heat treated to induce polymerization, both separately and as a mixture of pitches (co-pyrolysis). The initial pitch samples and the heat-treated samples have been examined by size exclusion chromatography (SEC) in 1-methyl-2-pyrrolidinone (NMP), by UV-fluorescence spectroscopy (UV-F), by solid state {sup 13}C NMR; elemental analyses of the initial pitch samples have been carried out. The Sasol-Lurgi pitch showed larger apparent sizes, more alkyl and carbonyl functions, and smaller polycyclic aromatic hydrocarbon (PAH) groups than the high temperature pitch. Co-pyrolysis of the two pitches indicated that polymerized product from the Sasol-Lurgi pitch can be used as an extender for high-temperature binder pitch. 16 refs., 7 figs., 2 tabs.

  12. Interaction nonlinearity in asphalt binders

    Science.gov (United States)

    Motamed, Arash; Bhasin, Amit; Liechti, Kenneth M.

    2012-05-01

    Asphalt mixtures are complex composites that comprise aggregate, asphalt binder, and air. Several research studies have shown that the mechanical behavior of the asphalt mixture is strongly influenced by the matrix, i.e. the asphalt binder. Characterization and a thorough understanding of the binder behavior is the first and crucial step towards developing an accurate constitutive model for the composite. Accurate constitutive models for the constituent materials are critical to ensure accurate performance predictions at a material and structural level using micromechanics. This paper presents the findings from a systematic investigation into the nature of the linear and nonlinear response of asphalt binders subjected to different types of loading using the Dynamic Shear Rheometer (DSR). Laboratory test data show that a compressive normal force is generated in an axially constrained specimen subjected to torsional shear. This paper investigates the source of this normal force and demonstrates that the asphalt binder can dilate when subjected to shear loads. This paper also presents the findings from a study conducted to investigate the source of the nonlinearity in the asphalt binder. Test results demonstrate that the application of cyclic shear loads results in the development of a normal force and a concomitant reduction in the dynamic shear modulus. This form of nonlinear response is referred to as an "interaction nonlinearity". A combination of experimental and analytical tools is used to demonstrate and verify the presence of this interaction nonlinearity in asphalt binders. The findings from this study highlight the importance of modeling the mechanical behavior of asphalt binders based on the overall stress state of the material.

  13. Eaton's reagent-mediated domino π-cationic arylations of aromatic carboxylic acids to Iasi-red polymethoxylated polycyclic aromatic hydrocarbons: products with unprecedented biological activities as tubulin polymerization inhibitors.

    Science.gov (United States)

    Ghinet, Alina; Gautret, Philippe; Hijfte, Nathalie Van; Ledé, Bertrand; Hénichart, Jean-Pierre; Bîcu, Elena; Darbost, Ulrich; Rigo, Benoît; Daïch, Adam

    2014-08-04

    A rapid domino π-cationic arylation of aromatic carboxylic acids, mediated by Eaton's reagent, has been developed for the synthesis of Iasi-red polymethoxylated polycyclic aromatic hydrocarbons (PAHs). This route is currently the easiest method to obtain such popular PAH compounds, which bear in addition numerous methoxy groups. The domino process was generalized, the structure of the obtained red products and the mechanism of their formations were elucidated, and some of their photophysical properties were determined. Newly synthesized polymethoxylated-PAHs were tested for their interaction with tubulin polymerization as well as for their cytotoxicity on a panel of NCI-60 human cancer cell lines. Interestingly, one of these rubicene derivatives exhibited remarkable cytotoxicity in vitro, including inhibition of leukemia, colon, melanoma, CNS, and ovarian cancer cell lines with GI50 values in the low nanomolar range (GI50 < 10 nM). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Increase in composite binder activity

    Science.gov (United States)

    Fediuk, R.; Smoliakov, A.; Stoyushko, N.

    2016-11-01

    The binder of portland cement (51-59 wt.%), fly ash of thermal power stations (3644 wt.%), limestone crushing waste (4-9 wt.%) and dry hyper plasticizer (0.2 wt.%) has been created. It can be used in the building materials industry for production of high-strength concrete. The composite binder is obtained by co-milling of the components in vario-planetary mill to a specific surface area of 550-600 m2/kg. The technical result is the possibility of obtaining a composite binder with significant replacement of cement with industrial waste, cost-effective and superior to portland cement for construction and technical properties, increased activity. This allows producing concrete for walling with a compressive strength of 100 MPa, while using more than 50% of industrial waste.

  15. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds.

    Science.gov (United States)

    Tiedje, Niels; Crepaz, Rudolf; Eggert, Torben; Bey, Niki

    2010-12-01

    Emissions from mould and core sand binders commonly used in the foundry industry have been investigated. Degradation of three different types of binders was investigated: Furfuryl alcohol (FA), phenolic urethane (PU) and resol-CO2 (RC). In each group of binders, at least two different binder compositions were tested. A test method that provides uniform test conditions is described. The method can be used as a general test method to analyse off gases from binders. Moulds, containing a standard size casting, were produced and the amount and type of organic compounds, resulting from thermal degradation of binders, was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gases in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content. It is shown how off-gases vary with time after pouring and shake out. Also the composition of off-gases is analysed and shown. It is further shown how the composition of off-gasses varies between different types of binders and with varying composition of the binders as well as function of the thermal load on the moulding sand.

  16. Electrochemical components employing polysiloxane-derived binders

    Science.gov (United States)

    Delnick, Frank M.

    2013-06-11

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  17. Heat-resistant inorganic binders.

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich,

    2017-04-01

    Full Text Available The authors consider some aspects of production of inorganic heat-resistant composite materials in which new classes of inorganic binders - the basic salts of various metals – are applied. The possibility to use hydroxochlorides and hydroxonitrates of aluminum, zirconium, chromium and a number of other metals as the binder has been shown. The main products of the thermal decomposition of all types of binders discussed in this paper are nano-dispersed highly refractory oxides. Increased pressure in the manufacture of these materials shifts the position of the minimum of the dependence «production strength – production temperature» in the direction of low temperatures. This effect is caused by decreased film thickness of the binder located between filler particles and hence by increased rate of transfer of the matter to the interface and by facilitated sintering process. Materials based on the systems containing chromium and some other elements in transitional oxidation states are colour. For this reason, they have the worst thermal conductivity under the same heat resistance compared to colorless materials.

  18. The Influence of Wall Binders

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    This report is an analysis of the thermal bridge effects that occur in wall binders in masonry buildings. The effects are analyzed using a numerical calculation programme.The results are compared to the values given in the danish standard, DS418....

  19. Polymeric Binders which Reversibly Dissociate at Elevated Temperatures

    Science.gov (United States)

    1978-05-01

    materials must be used which are capable of regenerating the free isocyana.e on heating and will not undergo undesirable side reactions . The most widely...such as imidazole, indazole and benzotriazole, exhibit a marked tendency to dissociate at temperatures as low as 80*C to 100*C. With 4,5...only undergo a Diels-Alder reaction at room temperature with a variety of dienes, but it will also react with other functional groups. Many of these

  20. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Crepaz, Rudolf; Eggert, Torben;

    2010-01-01

    of binders was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gasses in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content...... compositions were tested. A test method that provides uniform test conditions is described. The method can be used as general test method to analyse off gasses from binders. Moulds containing a standard size casting were produced and the amount and type of organic compounds resulting from thermal degradation...

  1. Hydrocarbon pneumonia

    Science.gov (United States)

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  2. Preparation and characterization of RuO2/polyaniline/polymer binder composite electrodes for supercapacitor applications

    Directory of Open Access Journals (Sweden)

    SUZANA SOPČIĆ

    2012-03-01

    Full Text Available The composite electrodes consisting of amorphous and hydrous RuO2, polyaniline and polymeric binder, Nafion® or poly(vinilydene fluoride were prepared. The electro¬chem-ical and pseudocapacitive properties of the prepared electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the responses of composite electrodes are very sensitive to the presence of individual components and their respective ratio in the mixture. The difference in the electro-chemical behavior was explained by the different physico-chemical properties of the polymeric binders.

  3. Investigation of film solidification and binder migration during drying of Li-Ion battery anodes

    Science.gov (United States)

    Jaiser, Stefan; Müller, Marcus; Baunach, Michael; Bauer, Werner; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    The property determining micro-structure of battery electrodes essentially evolves during drying, appointing it a paramount, yet insufficiently understood processing step in cell manufacturing. The distribution of functional additives such as binder or carbon black throughout the film strongly depends on the drying process. A representative state-of-the-art model system comprising graphite, polymeric binder, carbon black and solvent is investigated to gain an insight into the underlying processes. A new experimental approach is introduced that allows for revelation of the evolution of binder concentration gradients throughout the film during drying. Binder is detected by means of energy-dispersive x-ray spectroscopy (EDS) at the top and bottom surface. Drying kinetics is investigated and the impact of the drying process on electrochemical performance is disclosed. The enrichment of binder at the surface, which is observed while applying high drying rates, is shown to depend on two fundamental processes, namely capillary action and diffusion. The findings reveal characteristic drying stages that provide fundamental insights into film solidification. Based on that, a top-down consolidation mechanism capable of explaining the experimental findings is disclosed. Adhesion of the active layer to the substrate is shown to strongly depend on the local binder concentration in the vicinity of the substrate.

  4. Azidated Ether-Butadiene-Ether Block Copolymers as Binders for Solid Propellants

    Science.gov (United States)

    Cappello, Miriam; Lamia, Pietro; Mura, Claudio; Polacco, Giovanni; Filippi, Sara

    2016-07-01

    Polymeric binders for solid propellants are usually based on hydroxyl-terminated polybutadiene (HTPB), which does not contribute to the overall energy output. Azidic polyethers represent an interesting alternative but may have poorer mechanical properties. Polybutadiene-polyether copolymers may combine the advantages of both. Four different ether-butadiene-ether triblock copolymers were prepared and azidated starting from halogenated and/or tosylated monomers using HTPB as initiator. The presence of the butadiene block complicates the azidation step and reduces the storage stability of the azidic polymer. Nevertheless, the procedure allows modifying the binder properties by varying the type and lengths of the energetic blocks.

  5. Observation of asphalt binder microstructure with ESEM.

    Science.gov (United States)

    Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S

    2017-09-01

    The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  6. Twin screw wet granulation: Binder delivery.

    Science.gov (United States)

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration.

  7. Polymeric microspheres

    Science.gov (United States)

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  8. Bitumen modifiers for reduced temperature asphalts: a comparative analysis between three polymeric and non-polymeric additives

    OpenAIRE

    Cuadri Vega, Antonio Abad; Carrera Páez, Virginia; Izquierdo Rodríguez, María Angeles; García Morales, Moisés; Navarro Domínguez, Francisco Javier

    2014-01-01

    This study presents three bitumen modifiers which may find successful application in the fabrication of binders for warm mix asphalt in the paving industry. In that sense, two non-polymeric additives, thiourea and thiourea dioxide, along with a reactive isocyanate-terminated prepolymer have been evaluated. Viscous flow and linear viscoelasticity tests, at 60 ºC, reveal bituminous modified binders which evolve towards highly viscous materials when subjected to ambient curing. However, at 135 º...

  9. Bitumen modifiers for reduced temperature asphalts: a comparative analysis between three polymeric and non-polymeric additives

    OpenAIRE

    Cuadri Vega, Antonio Abad; Carrera Páez, Virginia; Izquierdo Rodríguez, María Angeles; García Morales, Moisés; Navarro Domínguez, Francisco Javier

    2014-01-01

    This study presents three bitumen modifiers which may find successful application in the fabrication of binders for warm mix asphalt in the paving industry. In that sense, two non-polymeric additives, thiourea and thiourea dioxide, along with a reactive isocyanate-terminated prepolymer have been evaluated. Viscous flow and linear viscoelasticity tests, at 60 ºC, reveal bituminous modified binders which evolve towards highly viscous materials when subjected to ambient curing. However, at 135 º...

  10. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders

    Science.gov (United States)

    Airey, G. D.; Grenfell, J. R. A.; Apeagyei, A.; Subhy, A.; Lo Presti, D.

    2016-08-01

    Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.

  11. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.

    2009-12-02

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  12. Potential of the application of the modified polysaccharides water solutions as binders of moulding sands

    Directory of Open Access Journals (Sweden)

    K. Kaczmarska

    2015-10-01

    Full Text Available The results of preliminary tests of selected properties of the moulding sands with the binder in the form of a 5 % water solution of the sodium salt of carboxymethyl starch (with a degree of substitution (DS of 0,2 and 0,87 arepresented in this study. The moulding sand properties such as permeability, abrasion resistance, tensile and bendingstrength - after curing - are shown in series of tests. The cure process was conducted in a field of electromagnetic radiation within the microwave range. The effect of the microwave treatment on the moulding sand was evaporating of water (solvent in a binder and cross-linking of the polymeric binder. As a result the cured moulding sands with particular properties, essential in the context of its application in the mould technology in the foundry industry, were obtained.

  13. Water-resistant gypsum binder

    Directory of Open Access Journals (Sweden)

    Panchenko Alexander I.

    2016-01-01

    Full Text Available The authors developed a multi-component gypsum binder (MGB with an improved (by 1.8 to 2.2 times water resistance value in comparison with the initial gypsum and a softening factor value within the range of 0.85 to 0.91 through the introduction of a complex additive containing carbide mud and bio-silica. The use of a complex additive provides for the formation of a denser structure due to the formation of low-base calcium hydrated silicates at early stages of the hardening process under wet or dry air conditions. The developed binding agent has a lower (by 2.5 to 3 times open porosity, a greater compressive strength (by 1.4 to 1.6 times for a dry state and by 2.6 times in a water-saturated state and does not require any special curing conditions in contrast to the other multi-component gypsum binders. The authors show the influence of mud-and-silica additive on the properties of hardened MGB and suggest a method of computation of the optimum MGB composition for given components.

  14. On the microstructure of bituminous binders

    NARCIS (Netherlands)

    Fischer, H.R.; Dillingh, E.C.; Hermse, C.G.M.

    2014-01-01

    The objective of this work is to study the common features and the evolution of microstructures of bituminous binders regardless of their grade (PEN 10/20 to 160/220) and source/origin using the atomic force microscope operated in phase contrast mode. All bituminous binders show the same microstruct

  15. Rheological characteristics of aged asphalt binder

    Institute of Scientific and Technical Information of China (English)

    刘聪慧; 吴少鹏; 刘全涛; 朱国军

    2008-01-01

    Different aging levels(RTFOT,PAV-10h,PAV-20h and PAV-30 h) of asphalt binders with various mass ratios of mineral powder to asphalt(0,0.4,0.8,1.2,1.6,2.0) were used to investigate the rheological properties of aged asphalt binders with respect to their short and long terms aging characteristics.Viscosity test,dynamic shear test and creep test were conducted.The test results indicate that the viscosity of aged asphalt binder increases sharply with the extension of aging period.Complex shear modulus of aged asphalt increases,which indicates that the stiffness of asphalt binders can increase.The phase angle for aged asphalt binders reduces,which indicates that the elastic portion for viscoelastic property of asphalt binders increases.|G*|·sin δ increases after aging procedure which means that the fatigue resistance becomes poor.The creep test results show that creep strain curves varies remarkably for virgin and aged asphalt binders.The total strain during loading period and the permanent strain decreases significantly for aged asphalt binders,which implies that the elastic portion increases and the viscous portion decreases.

  16. Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon-carbon composite rechargeable Li-ion battery anodes

    Science.gov (United States)

    Kuruba, Ramalinga; Datta, Moni Kanchan; Damodaran, Krishnan; Jampani, Prashanth H.; Gattu, Bharat; Patel, Prasad P.; Shanthi, Pavithra M.; Damle, Sameer; Kumta, Prashant N.

    2015-12-01

    Long term cyclability of a composite Li-ion anode electrode comprised of 82 wt.% Si/C lithium ion active material along with 8 wt.% polymeric binder and 10 wt.% Super P conductive carbon black has been studied utilizing polymeric binders exhibiting different elastic/tensile moduli and tensile yield strengths. Accordingly, electrochemically active Si/C composite synthesized by high energy mechanical milling (HEMM), exhibiting reversible specific capacities of ∼780 mAh/g and ∼600 mAh/g at charge/discharge rates of ∼50 mA/g and ∼200 mA/g, respectively were selected as the Li-ion active anode. Polyvinylidene fluoride (PVDF) and purified guar gum (PGG) with reported elastic moduli ∼1000 MPa and ∼3200 MPa, respectively were selected as the binders. Results show that the composite electrode (Si/C + binder + conducting carbon) comprising the higher elastic modulus binder (PGG) exhibits better long term cyclability contrasted with PVDF. 1H-NMR analysis of the polymer before and after cycling shows structural degradation/deformation of the low elastic modulus PVDF, whereas the high elastic modulus PGG binder shows no permanent structural deformation or damage. The results presented herein thus suggest that PGG based polymers exhibiting high elastic modulus are a promising class of binders with the desired mechanical integrity needed for enduring the colossal volume expansion stresses of Si/C based composite anodes.

  17. Optimization of Binder Jetting Using Taguchi Method

    Science.gov (United States)

    Shrestha, Sanjay; Manogharan, Guha

    2017-03-01

    Among several additive manufacturing (AM) methods, binder-jetting has undergone a recent advancement in its ability to process metal powders through selective deposition of binders on a powder bed followed by curing, sintering, and infiltration. This study analyzes the impact of various process parameters in binder jetting on mechanical properties of sintered AM metal parts. The Taguchi optimization method has been employed to determine the optimum AM parameters to improve transverse rupture strength (TRS), specifically: binder saturation, layer thickness, roll speed, and feed-to-powder ratio. The effects of the selected process parameters on the TRS performance of sintered SS 316L samples are studied with the American Society of Testing Materials (ASTM) standard test method. It was found that binder saturation and feed-to-powder ratio were the most critical parameters, which reflects the strong influence of binder powder interaction and density of powder bed on resulting mechanical properties. This article serves as an aid in understanding the optimum process parameters for binder jetting of SS 316L.

  18. Optimization of Binder Jetting Using Taguchi Method

    Science.gov (United States)

    Shrestha, Sanjay; Manogharan, Guha

    2017-01-01

    Among several additive manufacturing (AM) methods, binder-jetting has undergone a recent advancement in its ability to process metal powders through selective deposition of binders on a powder bed followed by curing, sintering, and infiltration. This study analyzes the impact of various process parameters in binder jetting on mechanical properties of sintered AM metal parts. The Taguchi optimization method has been employed to determine the optimum AM parameters to improve transverse rupture strength (TRS), specifically: binder saturation, layer thickness, roll speed, and feed-to-powder ratio. The effects of the selected process parameters on the TRS performance of sintered SS 316L samples are studied with the American Society of Testing Materials (ASTM) standard test method. It was found that binder saturation and feed-to-powder ratio were the most critical parameters, which reflects the strong influence of binder powder interaction and density of powder bed on resulting mechanical properties. This article serves as an aid in understanding the optimum process parameters for binder jetting of SS 316L.

  19. Interpenetrating Polymer Networks as Binders for Solid Composite Propellants

    Directory of Open Access Journals (Sweden)

    S. Parthiban

    1992-07-01

    Full Text Available A new family of polymeric binders for solid composite propellants is proposed, based on two component interpenetrating polymer networks (IPNs. These networks comprise two different polyurethanes based on hydroxy terminated polybutadiene and ISRO polyol interpenetrated with two different vinyl polymers, viz poly methyl methacrylate and polystyrene. the networks synthesized by the simultaneous interpenetrating technique have been characterized for their properties, such as stress-strain, density, viscosity, thermal degradation, and heat of combustion. Phase morphologies have been determined using electron microscopy. Suitable explanations have been adduced to rationalize the properties of IPNs in terms of their structures and chain interactions. A study of the mechanical properties and burning rates of the ammonium perchlorate (AP-based solid propellant using the newly synthesised IPNs as binders, has been carried out. The results show that both mechanical strength and burning rate of solid propellants could be suitably modified by simply changing the nature and/or the ratio of the two interpenetrating polymer components.

  20. Thermal Degradation Studies of A Polyurethane Propellant Binder

    Energy Technology Data Exchange (ETDEWEB)

    Assink, R.A.; Celina, M.; Gillen, K.T.; Graham, A.C.; Minier, L.M.

    1999-06-12

    The thermal oxidative aging of a crosslinked hydroxy-terminated polybutadiene (HTPB)/isophorone diisocyanate (IPDI) based polyurethane rubber, used as a polymeric binder in solid propellant grain, was investigated at temperatures from 25 C to 125 C. The changes in tensile elongation, polymer network properties and chain dynamics, mechanical hardening and density were determined with a range of techniques including modulus profiling, solvent swelling, NMR relaxation and O{sub 2} permeability measurements. We critically evaluated the Arrhenius methodology that is commonly used with a linear extrapolation of high temperature aging data using extensive data superposition and highly sensitive oxygen consumption experiments. The effects of other constituents in the propellant formulation on aging were also investigated. We conclude that crosslinking is the dominant process at higher temperatures and that the degradation involves only limited hardening in the bulk of the material. Significant curvature in the Arrhenius diagram of the oxidation rates was observed. This is similar to results for other rubber materials.

  1. Thermal Degradation Studies of A Polyurethane Propellant Binder

    Energy Technology Data Exchange (ETDEWEB)

    Assink, R.A.; Celina, M.; Gillen, K.T.; Graham, A.C.; Minier, L.M.

    1999-06-12

    The thermal oxidative aging of a crosslinked hydroxy-terminated polybutadiene (HTPB)/isophorone diisocyanate (IPDI) based polyurethane rubber, used as a polymeric binder in solid propellant grain, was investigated at temperatures from 25 C to 125 C. The changes in tensile elongation, polymer network properties and chain dynamics, mechanical hardening and density were determined with a range of techniques including modulus profiling, solvent swelling, NMR relaxation and O{sub 2} permeability measurements. We critically evaluated the Arrhenius methodology that is commonly used with a linear extrapolation of high temperature aging data using extensive data superposition and highly sensitive oxygen consumption experiments. The effects of other constituents in the propellant formulation on aging were also investigated. We conclude that crosslinking is the dominant process at higher temperatures and that the degradation involves only limited hardening in the bulk of the material. Significant curvature in the Arrhenius diagram of the oxidation rates was observed. This is similar to results for other rubber materials.

  2. Emissions of tar-containing binders: field studies.

    Science.gov (United States)

    Hugener, Martin; Emmenegger, Lukas; Mattrel, Peter

    2009-01-01

    This study describes the measurement of emissions during field construction of asphalt pavements using tar-containing recycled asphalt pavement (RAP), which is known to release harmful substances, such as polycyclic aromatic hydrocarbons (PAH). At three different test sites, the main emission sources were identified and the total emission rates of fumes and PAHs of the paving process were determined. For this purpose, the paver was temporarily enclosed. While the screed area was the main emission source, the hopper area and freshly compacted pavement were also significant. In comparison with previous laboratory tests, the binder composition and the resulting emissions were comparable, except for Naphthalene. Benzo(a)pyrene (BaP) as a representative for carcinogenic PAHs was identified as a good leading compound, correlating well with the toxicity weighted sum of PAHs. In contrast, the unweighted, mass related sum of all EPA PAHs does not seem to be a good parameter to assess workplace concentrations because emissions by mass are dominated by the less hazardous 2-, 3- and 4-ring PAHs. Workplace concentrations for bitumen fumes and PAHs were below limit values in all three field studies. However, the margin was not large and the field tests were done under favourable meteorological conditions. Therefore, we suggest maintaining the current Swiss limit of 5000 mg EPA-PAH per kg binder in the RAP-containing hot mix.

  3. The absorption of polymeric composites

    Science.gov (United States)

    Řídký, R.; Popovič, M.; Rolc, S.; Drdlová, M.; Krátký, J.

    2016-06-01

    An absorption capacity of soft, viscoelastic materials at high strain rates is important for wide range of practical applications. Nowadays there are many variants of numerical models suitable for this kind of analysis. The main difficulty is in selection of the most realistic numerical model and a correct setup of many unknown material constants. Cooperation between theoretical simulations and real testing is next crucial point in the investigation process. Standard open source material database offer material properties valid for strain rates less than 250 s-1. There are experiments suitable for analysis of material properties with strain rates close to 2000 s-1. The high strain-rate characteristics of a specific porous blast energy absorbing material measured by modified Split Hopkinson Pressure Bar apparatus is presented in this study. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. One of the possible solution leads to complex and frequency depended Young modulus of testing bars material. This testing technique was applied to materials composed of porous glass/ceramic filler and polymeric binder, with density of 125 - 300 kg/m3 and particle size in range of 50 µm - 2 mm. The achieved material model was verified in practical application of sandwich structure includes polymeric composites under a blast test.

  4. Methodology of preparing and evaluation of water, containing aromatic hydrocarbons, presents in a petroleum composition, for treatment in adsorption columns, containing polymeric resins; Metodologia de preparo e avaliacao de aguas contendo hidrocarbonetos aromaticos presentes na composicao do petroleo para o tratamento em colunas de adsorcao contendo resinas polimericas

    Energy Technology Data Exchange (ETDEWEB)

    Queiros, Yure G.C.; Lucas, Elizabete F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: yuregomes@hotmail.com; elucas@ima.ufrj.br; Barbosa, Celina C.R. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)]. E-mail: celina@ima.ufrj.br; Furtado, Claudio Furtado; Barbosa, Luis C.F. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento Leopoldo Americo Miguez de Mello]. E-mail: lcesar@cenpes.petrobras.com.br

    2003-07-01

    This work deals with the analysis of aromatic components present in small amounts in oily waters produced by oil wells. The methodology for preparing this kind of water with simulation of reservoir conditions, as well as its storage, has been studied. Fluorimetry was the technique of choice for the component's analysis, with good results in terms of analytical speed and efficiency. The passage of toluene-containing solutions through adsorption columns based on polymeric packing shows satisfactory preliminary results as regards the retention of this aromatic hydrocarbon, where the compound detection level after the treatment attained values near to zero concentration. (author)

  5. Correlation between hydrocarbon distribution and water-hydrocarbon ratio in Fischer-Tropsch synthesis

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Zhou; Qingling Chen; Yuewu Tao; Huixin Weng

    2011-01-01

    In order to shorten the evaluation cycle of cobalt catalyst before the optimized catalyst is fixed on,a mathematical method is proposed to calculate weight percentage of C5+ hydrocarbons.Based on the carbide polymerization mechanism and the main hydrocarbons being linear alkanes and α-olefins,the correlation between hydrocarbon distribution and the molecular mass ratio of water to hydrocarbons is discussed.The result shows the ratio was within the range of 1.125-1.286 and the lower the ratio,the more gaseous hydrocarbons were obtained.Moreover,a linear equation between the weight percentage of C5+ hydrocarbons and the weight ratio of C5+ hydrocarbons to the total water is established.These results are validated by corresponding experiments.The weight percentage of C5+ hydrocarbons could be immediately calculated by this linear equation without detailed gas chromatography (GC) analysis of them.

  6. Condensation Polymerization

    Indian Academy of Sciences (India)

    S Ramakrishnan

    2017-04-01

    The very idea that large polymer molecules can indeed existwas hotly debated during the early part of the 20th century.As highlighted by Sivaram in his articles on Carothersand Flory, Staudinger’s macromolecular hypothesis was finallyaccepted, and the study of polymers gained momentumbecause of the remarkable efforts of the these two individualswho laid down the foundations concerning the processes thatled to the formation of large polymer molecules, and to thosethat led to an understanding of many of their extraordinaryphysical properties. Condensation polymerizations, as thename suggests, utilizes bond-forming reactions that generatea small molecule condensate, which often needs to be continuouslyremoved to facilitate the formation of the polymer. Inthis article, I shall describe some of the essential principles ofcondensation polymerizations or more appropriately calledstep-growth polymerizations; and I will also describe someinteresting extensions that lead to the formation of polymernetworks and highly branched polymers.

  7. Membrane separation of hydrocarbons

    Science.gov (United States)

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  8. Hydrocarbon conversion catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1989-08-15

    This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting a hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.35A, a water absorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of at least 8% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; an alumina binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

  9. Biodegradable materials as foundry moulding sands binders

    Directory of Open Access Journals (Sweden)

    K. Major - Gabryś

    2015-07-01

    Full Text Available The aim of this article is to show the possibility of using biodegradable materials as part of the composition of foundry moulding and core sand binders. Research shows that moulding sands with biodegradable materials selected as binders are not only less toxic but are also better suited to mechanical reclamation than moulding sands with phenol-furfuryl resin. The use of biodegradable materials as additives to typical synthetic resins can result in their decreased toxicity and improved ability to reclamation as well as in accelerated biodegradation of binding material leftovers of mechanical reclamation.

  10. Irreversible volume growth in polymer-bonded powder systems: effects of crystalline anisotropy, particle size distribution, and binder strength

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A; Gee, R H; Hoffman, D; Fried, L E

    2007-08-22

    Pressed-powdered crystallites of intrinsically anisotropic materials have been shown to undergo irreversible volume expansion when subjected to repeated cycles of heating and cooling. We develop a coarse-grained (micron-scale) interaction Hamiltonian for this system and perform molecular dynamics simulations, which quantitatively reproduce the experimentally observed irreversible growth. The functional form and values of the interaction parameters at the coarse-grained level are motivated by our knowledge at the atomic/molecular scale, and allows a simple way to incorporate the effect of polymeric binder. We demonstrate that irreversible growth happens only in the presence of intrinsic crystalline anisotropy of the powder material, is mediated by particles much smaller than the average crystallite size, and can be significantly reduced in the presence of high-strength polymeric binder with elevated glass transition temperatures.

  11. Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping; Schwarz, Ashleigh M.; Darsell, Jens T.; Henderson, Wesley A.; Tomalia, Donald A.; Liu, Jun; Zhang, Ji-Guang; Xiao, Jie

    2016-01-01

    Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfide shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).

  12. A molecular dynamics study of the role of molecular water on the structure and mechanics of amorphous geopolymer binders

    Science.gov (United States)

    Sadat, Mohammad Rafat; Bringuier, Stefan; Asaduzzaman, Abu; Muralidharan, Krishna; Zhang, Lianyang

    2016-10-01

    In this paper, molecular dynamics simulations are used to study the effect of molecular water and composition (Si/Al ratio) on the structure and mechanical properties of fully polymerized amorphous sodium aluminosilicate geopolymer binders. The X-ray pair distribution function for the simulated geopolymer binder phase showed good agreement with the experimentally determined structure in terms of bond lengths of the various atomic pairs. The elastic constants and ultimate tensile strength of the geopolymer binders were calculated as a function of water content and Si/Al ratio; while increasing the Si/Al ratio from one to three led to an increase in the respective values of the elastic stiffness and tensile strength, for a given Si/Al ratio, increasing the water content decreased the stiffness and strength of the binder phase. An atomic-scale analysis showed a direct correlation between water content and diffusion of alkali ions, resulting in the weakening of the AlO4 tetrahedral structure due to the migration of charge balancing alkali ions away from the tetrahedra, ultimately leading to failure. In the presence of water molecules, the diffusion behavior of alkali cations was found to be particularly anomalous, showing dynamic heterogeneity. This paper, for the first time, proves the efficacy of atomistic simulations for understanding the effect of water in geopolymer binders and can thus serve as a useful design tool for optimizing composition of geopolymers with improved mechanical properties.

  13. Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries

    Science.gov (United States)

    Yoo, Jung-Keun; Jeon, Jaebeom; Kang, Kisuk; Jung, Yeon Sik

    2017-01-01

    Recently, investigation of Si-based anode materials for rechargeable battery applications garnered much interest due to its exceptionally high capacity. High-capacity Si anode ( 4,200 mAhg-1) is highly desirable for the replacement of conventional graphite anode (storage applications such as in electric vehicles (EVs) and energy storage systems (ESSs) for renewable energy sources. However, Si-based anodes suffer from poor cycling stability due to their large volumetric changes during repeated Li insertion. Therefore, development of highly efficient binder materials that can suppress the volume change of Si is one of the most essential parts of improving the performance of batteries. We herein demonstrate highly cross-linked polymeric binder (glyoxalated polyacrylamide) with an enhanced mechanical property by applying wet-strengthening chemistry used in paper industry. We found that the degree of cross-linking can be systematically adjusted by controlling the acidity of the slurry and has a profound effect on the cell performance using Si anode. The enhanced cycle performance of Si nanoparticles obtained by treating the binder at pH 4 can be explained by its strong interaction between the binder and Si surface and current collector, and also rigidity of binder by cross-linking. [Figure not available: see fulltext.

  14. THE STUDY ON MECHANISM OF BINDER MIGRATION DURING COATING PROCESS

    Institute of Scientific and Technical Information of China (English)

    YunLiang; KefuChen

    2004-01-01

    Binder migration during coating process and themechanism of binder migration were studied in thispaper. After the latex was tagged by osmium, thedegree of binder migration was measured byenergy-dispersive X-ray spectrometer. For the wetsample just after coating application, the realinformation of binder distribution was kept byquenching the sample in liquid nitrogen followed byfreeze-drying. The results showed: under thecondition of this research, binder migration occurredboth in the process of coating application and drying.But the amount of binder migration occurred duringcoating application was much little than that occurredduring drying. The mechanism of binder migrationduring the process of coating application was studiedby force analyses. And one viewpoint was proposedthat was binder migration was caused by Magnusforce and Saffman force.

  15. THE STUDY ON MECHANISM OF BINDER MIGRATION DURING COATING PROCESS

    Institute of Scientific and Technical Information of China (English)

    Yun Liang; Kefu Chen

    2004-01-01

    Binder migration during coating process and the mechanism of binder migration were studied in this paper. After the latex was tagged by osmium, the degree of binder migration was measured by energy-dispersive X-ray spectrometer. For the wet sample just after coating application, the real information of binder distribution was kept by quenching the sample in liquid nitrogen followed by freeze-drying. The results showed: under the condition of this research, binder migration occurred both in the process of coating application and drying.But the amount of binder migration occurred during coating application was much little than that occurred during drying. The mechanism of binder migration during the process of coating application was studied by force analyses. And one viewpoint was proposed that was binder migration was caused by Magnus force and Saffman force.

  16. Modification Bituminous Binders Petroleum Resin (Based on C9 Fraction

    Directory of Open Access Journals (Sweden)

    Elena A. Chigorina

    2015-12-01

    Full Text Available The goal of the present study is to measure the basic parameters of a bituminous binder obtained by modification of the BND 60/90 binder with petroleum resin, for both dynamic and static modification modes.

  17. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...

  18. Macroporous polymer foams by hydrocarbon templating

    OpenAIRE

    Shastri, Venkatram Prasad; Martin, Ivan; Langer, Robert

    2000-01-01

    Porous polymeric media (polymer foams) are utilized in a wide range of applications, such as thermal and mechanical insulators, solid supports for catalysis, and medical devices. A process for the production of polymer foams has been developed. This process, which is applicable to a wide range of polymers, uses a hydrocarbon particulate phase as a template for the precipitation of the polymer phase and subsequent pore formation. The use of a hydrocarbon template allows for enhanced control ov...

  19. BINDER DRAINAGE TEST FOR POROUS MIXTURES MADE BY VARYING THE MAXIMUM AGGREGATE SIZES

    Directory of Open Access Journals (Sweden)

    Hardiman Hardiman

    2004-01-01

    Full Text Available Binder drainage occurs with mixes of small aggregate surface area particularly porous asphalt. The binder drainage test, developed by the Transport Research Laboratory, UK, is commonly used to set an upper limit on the acceptable binder content for a porous mix. This paper presents the results of a laboratory investigation to determine the effects of different binder types on the binder drainage characteristics of porous mix made of various maximum aggregate sizes 20, 14 and 10 mm. Two types of binder were used, conventional 60/70 pen bitumen, and styrene butadiene styrene (SBS modified bitumen. The amount of binder lost through drainage after three hours at the maximum mixing temperature were measured in duplicate for mixes of different maximum sizes and binder contents. The maximum mixing temperature adopted depends on the types of binder used. The retained binder is plotted against the initial mixed binder content, together with the line of equality where the retained binder equals the mixed binder content. The results indicate the significant contribution of using SBS modified bitumen to increase the target bitumen binder content. Their significance is discussed in terms of target binder content, the critical binder content, the maximum mixed binder content and the maximum retained binder content values obtained from the binder drainage test. It was concluded that increasing maximum aggregate sizes decrease the maximum retained binder content, critical binder content, target binder content, maximum mixed binder content, and mixed content for both binders, but however for all mixtures, SBS is the highest.

  20. The effect of sodium hydroxide treatment on biomass binder preparation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Xu, D.; Xu, Z.; Chen, Q. [China University of Mining and Technology, Beijing (China). Beijing Campus

    2001-02-01

    The possibility of rice straw which has been treated with sodium hydroxide for use as coal briquette binder was studied. The main factor which influenced the binder preparation was the concentration of sodium hydroxide. It was found that the binding ability of the solid component was higher than the liquid part. The prepared rice straw binder was mixed with inorganic material, bentonite, or high molecular synthetic organic materials to manufacture a compound coal briquette binder. This compound binder is waterproofing and can further enhance the strength of the briquette. 5 refs., 5 figs., 2 tabs.

  1. Phenomena during thermal removal of binders

    Science.gov (United States)

    Hrdina, Kenneth Edward

    The research presented herein has focused on debinding of an ethylene copolymer from a SiC based molded ceramic green body. Examination of the binder burnout process was carried out by breaking down the process into two distinct regions: those events which occur before any weight loss begins, and those events occurring during binder removal. Below the temperature of observed binder loss (175sp°C), both reversible and irreversible displacement was observed to occur. The displacement was accounted for by relaxation of molding stresses, thermal expansion of the system, and melting of the semicrystalline copolymer occurring during heating. Upon further heating the binder undergoes a two stage thermal degradation process. In the first stage, acetic acid is the only degradation product formed, as determined by GC/MS analysis. In this stage, component shrinkage persisted and it was found that one unit volume of shrinkage corresponded with one unit volume of binder removed, indicating that no porosity developed. The escaping acetic acid effluents must diffuse through liquid polymer filled porous regions to escape. The gas pressure of the acetic acid species produced in the first stage of the thermal degradation may exceed the ambient pressure promoting bubble formation. Controlling the heating rate of the specimen maintains the gas pressure below the bubbling threshold and minimizes the degradation time. Experiments have determined the kinetics of the reaction in the presence of the high surface area (10-15msp2/g) ceramic powder and then verified that acetic acid was diffusing through the polymer phase to the specimen surface where evaporation is taking place. The sorption method measured the diffusivity and activity of acetic acid within the filled ceramic system within a TGA. These data were incorporated into a Fickian type model which included the rate of generation of the diffusing species. The modeling process involved prediction of the bloating temperature as a

  2. Mechanically activated fly ash as a high performance binder for civil engineering

    Science.gov (United States)

    Rieger, D.; Kullová, L.; Čekalová, M.; Novotný, P.; Pola, M.

    2017-01-01

    This study is aimed for investigation of fly ash binder with suitable properties for civil engineering needs. The fly ash from Czech brown coal power plant Prunerov II was used and mechanically activated to achieve suitable particle size for alkaline activation of hardening process. This process is driven by dissolution of aluminosilicate content of fly ash and by subsequent development of inorganic polymeric network called geopolymer. Hardening kinetics at 25 and 30 °C were measured by strain controlled small amplitude oscillatory rheometry with strain of 0.01 % and microstructure of hardened binder was evaluated by scanning electron microscopy. Strength development of hardened binder was investigated according to compressional and flexural strength for a period of 180 days. Our investigation finds out, that mechanically activated fly ash can be comparable to metakaolin geopolymers, according to setting time and mechanical parameters even at room temperature curing. Moreover, on the bases of long time strength development, achieved compressional strength of 134.5 after 180 days is comparable to performance of high grade Portland cement concretes.

  3. Biokompatible Polymere

    Science.gov (United States)

    Ha, Suk-Woo; Wintermantel, Erich; Maier, Gerhard

    Der klinische Einsatz von synthetischen Polymeren begann in den 60-er Jahren in Form von Einwegartikeln, wie beispielsweise Spritzen und Kathetern, vor allem aufgrund der Tatsache, dass Infektionen infolge nicht ausreichender Sterilität der wiederverwendbaren Artikel aus Glas und metallischen Werkstoffen durch den Einsatz von sterilen Einwegartikeln signifikant reduziert werden konnten [1]. Die Einführung der medizinischen Einwegartikel aus Polymeren erfolgte somit nicht nur aus ökonomischen, sondern auch aus hygienischen Gründen. Wegen der steigenden Anzahl synthetischer Polymere und dem zunehmenden Bedarf an ärztlicher Versorgung reicht die Anwendung von Polymeren in der Medizin von preisgünstigen Einwegartikeln, die nur kurzzeitig intrakorporal eingesetzt werden, bis hin zu Implantaten, welche über eine längere Zeit grossen Beanspruchungen im menschlichen Körper ausgesetzt sind. Die steigende Verbreitung von klinisch eingesetzten Polymeren ist auf ihre einfache und preisgünstige Verarbeitbarkeit in eine Vielzahl von Formen und Geometrien sowie auf ihr breites Eigenschaftsspektrum zurückzuführen. Polymere werden daher in fast allen medizinischen Bereichen eingesetzt.

  4. Curing Reaction Model of Epoxy Asphalt Binder

    Institute of Scientific and Technical Information of China (English)

    QIAN Zhendong; CHEN Leilei; WANG Yaqi; SHEN Jialin

    2012-01-01

    In order to understand the strength developing law of the epoxy asphalt mixture,a curing reaction model of the epoxy asphalt binder was proposed based upon the thermokinetic analysis.Given some assumptions,the model was developed by applying the Kissinger law as well as Arrhenius equation,and the differential scanning calorimetry was performed for estimating the model parameters.To monitor the strength development of the epoxy asphalt mixture,a strength test program was employed and then results were compared to those produced from the proposed model.The comparative evaluation shows that a good consistency exists between the outputs from test program and the proposed model,indicating that the proposed model can be used effectively for simulating the curing reaction process for the epoxy asphalt binder and predicting the strength development for the epoxy asphalt mixture.

  5. Composite binders for concrete with reduced permeability

    Science.gov (United States)

    Fediuk, R.; Yushin, A.

    2016-02-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m2, it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa).

  6. Zirconium phosphate binder for periclase refractories

    Energy Technology Data Exchange (ETDEWEB)

    Volceanov, E. [ICEM S.A., Bucharest (Romania). Metallurgical Research Inst.; Georgescu, M.; Volceanov, A. [Universitatea Politehnica, Bucharest (Romania). Faculty of Industrial Chemistry; Mihalache, F. [REAL S.A., Ploiesti (Romania)

    2002-07-01

    Present paper brings information concerning the physical-mechanical properties of some high thermal resistant composites with phosphate bonding obtained from periclase clinker as solid component and various zirconium phosphates solutions as liquid component: ZI, ZII and ZIII. All these solutions were prepared from hydrous zirconia and orthophosphoric acid. The batches corresponding to a weight ratio solid / liquid = 3 / 1, have shown a good hardening behavior at normal temperature, especially for the ZII binder. Such compositions exhibit a very good thermal-mechanical behavior in the temperature range 1400 C - 1750 C. X-ray diffraction and electronomicroscopy (TEM) analysis provided information concerning the evolution of phase composition and microstructure during heating of the thermal resistant specimens chemically bound with a zirconium phosphate binder. (orig.)

  7. Valorization of phosphogypsum as hydraulic binder.

    Science.gov (United States)

    Kuryatnyk, T; Angulski da Luz, C; Ambroise, J; Pera, J

    2008-12-30

    Phosphogypsum (calcium sulfate) is a naturally occurring part of the process of creating phosphoric acid (H(3)PO(4)), an essential component of many modern fertilizers. For every tonne of phosphoric acid made, from the reaction of phosphate rock with acid, commonly sulfuric acid, about 3t of phosphogypsum are created. There are three options for managing phosphogypsum: (i) disposal or dumping, (ii) stacking, (iii) use-in, for example, agriculture, construction, or landfill. This paper presents the valorization of two Tunisian phosphogypsums (referred as G and S) in calcium sulfoaluminate cement in the following proportions: 70% phosphogypsum-30% calcium sulfoaluminate clinker. The use of sample G leads to the production of a hydraulic binder which means that it is not destroyed when immersed in water. The binder including sample S performs very well when cured in air but is not resistant in water. Formation of massive ettringite in a rigid body leads to cracking and strength loss.

  8. Modular mobility investigation of polymer binder bitumen

    Science.gov (United States)

    Ayupov, D.; Makarov, D.; Murafa, A.; Khozin, V.; Khakimullin, Y.; Sundukov, V.; Khakimov, A.; Gizatullin, B.

    2015-01-01

    This paper is aimed to obtain polymer binder bitumen for the road applications with improved properties. Objectives included studying the degradation of crumb rubber during devulcanization in melted petroleum bitumen for its modification and resulted structural properties of bitumen. Using equilibrium swelling technique reduced density of the polymer chains was observed and analysis of sol-gel fractions showed a significant decrease in gel fraction. Under selected method of devulcanization 64% of the backbone rubber remained. With The H1 NMR relaxation method the reduction of bitumen molecular mobility was observed due to thickening of its light fractions. The effectiveness of devulcanization was optimized using a new agent in a powder form and vacuum application. The developed binder has an improved spectrum of physical and technical properties such as softening point temperature, hardness, elasticity, frost resistance, low temperature characteristics.

  9. High Performance Binder for EMCDB Propellants

    Directory of Open Access Journals (Sweden)

    V. K. Bhat

    1995-01-01

    Full Text Available A novel block polymer has been synthesised from caprolactone using hydroxy terminated polybutadiene as ring opening initiator. Usefulness of this polymer as propellant binder has been studied by generating data on physico-chemical properties of the polymer. The polymer exhibited high miscibility with nitrate ester and high solid loading capability. Preliminary data generated on typical propellant formulation indicated higher performance as compared to composite propellant.

  10. A Novel Polar Copolymer Design as a Multi-Functional Binder for Strong Affinity of Polysulfides in Lithium-Sulfur Batteries

    Science.gov (United States)

    Jiao, Yu; Chen, Wei; Lei, Tianyu; Dai, Liping; Chen, Bo; Wu, Chunyang; Xiong, Jie

    2017-03-01

    High energy density, low cost and environmental friendliness are the advantages of lithium-sulfur (Li-S) battery which is regarded as a promising device for electrochemical energy storage systems. As one of the important ingredients in Li-S battery, the binder greatly affects the battery performance. However, the conventional binder has some drawbacks such as poor capability of absorbing hydrophilic lithium polysulfides, resulting in severe capacity decay. In this work, we reported a multi-functional polar binder (AHP) by polymerization of hexamethylene diisocyanate (HDI) with ethylenediamine (EDA) bearing a large amount of amino groups, which were successfully used in electrode preparation with commercial sulfur powder cathodes. The abundant amide groups of the binder endow the cathode with multidimensional chemical bonding interaction with sulfur species within the cathode to inhibit the shuttling effect of polysulfides, while the suitable ductility to buffer volume change. Utilizing these advantageous features, composite C/S cathodes based the binder displayed excellent capacity retention at 0.5 C, 1 C, 1.5 C, and 3 C over 200 cycles. Accompany with commercial binder, AHP may act as an alternative feedstock to open a promising approach for sulfur cathodes in rechargeable lithium battery to achieve commercial application.

  11. Shear History Extensional Rheology Experiment II (SHERE II) Microgravity Rheology with Non-Newtonian Polymeric Fluids

    Science.gov (United States)

    Jaishankar, Aditya; Haward, Simon; Hall, Nancy Rabel; Magee, Kevin; McKinley, Gareth

    2012-01-01

    The primary objective of SHERE II is to study the effect of torsional preshear on the subsequent extensional behavior of filled viscoelastic suspensions. Microgravity environment eliminates gravitational sagging that makes Earth-based experiments of extensional rheology challenging. Experiments may serve as an idealized model system to study the properties of lunar regolith-polymeric binder based construction materials. Filled polymeric suspensions are ubiquitous in foods, cosmetics, detergents, biomedical materials, etc.

  12. Characterization of polymeric films subjected to lithium ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gary S. Groenewold; W. Roger Cannon; Paul A. Lessing; Recep Avci; Muhammedin Deliorman; Mark Wolfenden; Doug W. Akers; J. Keith Jewell

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with Hradical dot and OHradical dot. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O–methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were

  13. Characterization of polymeric films subjected to lithium ion beam irradiation

    Science.gov (United States)

    Groenewold, Gary S.; Cannon, W. Roger; Lessing, Paul A.; Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark; Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D.

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium-plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C-O and C-C bonds, which furnish radical intermediates that react by radical recombination with Hrad and OHrad . Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O-methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by

  14. Conductive Polymer Binder for High-Tap-Density Nanosilicon Material for Lithium-Ion Battery Negative Electrode Application.

    Science.gov (United States)

    Zhao, Hui; Wei, Yang; Qiao, Ruimin; Zhu, Chenhui; Zheng, Ziyan; Ling, Min; Jia, Zhe; Bai, Ying; Fu, Yanbao; Lei, Jinglei; Song, Xiangyun; Battaglia, Vincent S; Yang, Wanli; Messersmith, Phillip B; Liu, Gao

    2015-12-09

    High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87% when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. The combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.

  15. Binder content influences on chloride ingress in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Dhir, R.K.; Jones, M.R.; McCarthy, M.J. [Univ. of Dundee (United Kingdom)

    1996-12-01

    The reported study looked at the effect of reducing free water contents, and thereby binder contents, and thereby binder contents, on the ingress of chloride in concrete. Concretes with equal water/binder ratio (and design strength), but with water contents reduced by up to 30 liters/m{sup 3}, were tested for chloride diffusion (D) and penetration. The quality of the microstructure was inferred from initial surface absorption tests (ISAT). The results show no practical difference in chloride durability between the corresponding concretes, and that reducing the binder content, (providing that the water/binder ratio is maintained) is not likely to be detrimental. However, the results reported underline the importance of binder type, in this case PFA. Implications of the results are discussed and, in light of the findings, whether specifications which demand minimum cement contents are justified.

  16. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    hydrocarbon polluted sediments and water .... ecosystem may result in selective increase or decrease in microbial population (Okpokwasili ... been implicated in degradation of hydrocarbons such as crude oil, polyaromatic hydrocarbons and.

  17. Application of Microwaves for Binder Content Assessment in Moulding Sands

    Directory of Open Access Journals (Sweden)

    Nowak D.

    2012-09-01

    Full Text Available The paper presents results of preliminary examinations on possibility of determining binder content in traditional moulding sands with the microwave method. The presented measurements were carried-out using a special stand, the so-called slot line. Binder content in the sandmix was determined by measurements of absorption damping Ad and insertion losses IL of electromagnetic wave. One of main advantages of the suggested new method of binder content measurement is short measuring time.

  18. Thermal debinding dynamics of novel binder system

    Institute of Scientific and Technical Information of China (English)

    周继承; 黄伯云; 张传福; 刘业翔

    2001-01-01

    The thermal debinding dynamics of newly developed binders for cemented carbides extrusion molding was studied. It is shown that the thermal debinding processes can be divided into two stages: low temperature region, in which the low molecular mass components (LMMCs) are removed; and high temperature region, in which the polymer components are removed. The rate of thermal debinding is controlled by diffusion mechanism. The thermal debinding activation energies were solved out by differential method and integral method. The results show that the addition of other components acted as a catalyzer can effectively decrease the activation energy of thermal debinding processes.

  19. Sustainable binders for concrete: A structured approach from waste screening to binder composition development

    NARCIS (Netherlands)

    Vinai, R.; Panagiotopoulou, C.; Soutsos, M.; Taxiarchou, M.; Zervaki, M.; Valcke, S.L.A.; Ligero, V.C.; Couto, S.; Gupta, A.; Pipilikaki, P.; Alvarez, I.L.; Coelho, D.; Branquinho, J.

    2015-01-01

    Worldwide, the building sector requires the production of 4 billion tonnes of cement annually, consuming more than 40% of global energy. Alkali activated “cementless” binders have recently emerged as a novel eco-friendly construction material with a promising potential to replace ordinary Portland c

  20. Apparatus for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  1. Evolution of geopolymer binders: a review

    Science.gov (United States)

    Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.

    2016-06-01

    This study aimed to present the current state of research about the terminology, chemical reactions, mechanisms, and microstructure modelling of geopolymer binders. Modelling the structure of the geopolymerization products is essential for controlling the product properties. The currently available models have shown some limitations in determining the rate of geopolymerization and setting time of the gel. There is a need for deeper knowledge regarding the physicochemical analysis of geopolymer binders. Most of the available models have used pure material like metakaolin; however, the less pure materials are expected to have different mechanisms. The FTIR and MAS-NMR analysis are considered as effective tools in providing information on the molecular deviations during geopolymerization. However, XRD analysis is not effective because most of the changes take place in amorphous phases. Also, the role of the iron oxides and some of the other impurities still not clear where none of the previous method of investigation can be used to detect the molecular changes of the iron compounds. This issue is very relevant hence the iron oxides are existed in substantial amounts in most of the waste materials that are suitable to be used as geopolymer source materials.

  2. Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders

    Science.gov (United States)

    Musil, Sean

    Geopolymers are an inorganic polymeric material composed of alumina, silica, and alkali metal oxides. Geopolymers are chemical and fire resistant, can be used as refractory adhesives, and are processed at or near ambient temperature. These properties make geopolymer an attractive choice as a matrix material for elevated temperature composites. This body of research investigated numerous different reinforcement possibilities and variants of geopolymer matrix material and characterized their mechanical performance in tension, flexure and flexural creep. Reinforcements can then be chosen based on the resulting properties to tailor the geopolymer matrix composites to a specific application condition. Geopolymer matrix composites combine the ease of processing of polymer matrix composites with the high temperature capability of ceramic matrix composites. This study incorporated particulate, unidirectional fiber and woven fiber reinforcements. Sodium, potassium, and cesium based geopolymer matrices were evaluated with cesium based geopolymer showing great promise as a high temperature matrix material. It showed the best strength retention at elevated temperature, as well as a very low coefficient of thermal expansion when crystallized into pollucite. These qualities made cesium geopolymer the best choice for creep resistant applications. Cesium geopolymer binders were combined with unidirectional continuous polycrystalline mullite fibers (Nextel(TM) 720) and single crystal mullite fibers, then the matrix was crystallized to form cubic pollucite. Single crystal mullite fibers were obtained by the internal crystallization method and show excellent creep resistance up to 1400°C. High temperature flexural strength and flexural creep resistance of pollucite and polycrystalline/single-crystal fibers was evaluated at 1000-1400°C.

  3. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  4. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Facultative binder, Form MA-315. 308.544 Section 308.544 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form...

  5. An Open Challenge Problem Repository for Systems Supporting Binders

    Directory of Open Access Journals (Sweden)

    Amy Felty

    2015-07-01

    Full Text Available A variety of logical frameworks support the use of higher-order abstract syntax in representing formal systems; however, each system has its own set of benchmarks. Even worse, general proof assistants that provide special libraries for dealing with binders offer a very limited evaluation of such libraries, and the examples given often do not exercise and stress-test key aspects that arise in the presence of binders. In this paper we design an open repository ORBI (Open challenge problem Repository for systems supporting reasoning with BInders. We believe the field of reasoning about languages with binders has matured, and a common set of benchmarks provides an important basis for evaluation and qualitative comparison of different systems and libraries that support binders, and it will help to advance the field.

  6. Environmentally Friendly Geopolymeric Binders Made with Perlite

    Science.gov (United States)

    Erdogan, S. T.

    2011-12-01

    Production of Portland cement (PC), the ubiquitous binding material for construction works, is responsible for 5-10 % of all anthropogenic CO2 emissions. Nearly half of these emissions arise from the decomposition of calcareous raw materials, and the other half from kiln fuel combustion and cement clinker grinding operations. As such, PC production contributes significantly to global warming and climate change. Lately, there have been efforts to develop alternative binders with lower associated green house gas emissions. An important class of such binders is geopolymers, formed by activating natural or waste materials with suitable alkaline or acidic solutions. These binders have very low CO2 emissions from grinding of the starting material, and some from the production of the activating chemical. The total CO2 emission from carefully formulated mixtures can be as low as 1/5th - 1/10th of those of Portland cement concrete mixtures with comparable properties. While use of industrial wastes is environmentally preferable, the variability of their chemical compositions over time makes their use difficult. Use of natural materials depletes resources but can have more consistent properties and can be more easily accepted. Perlite is a volcanic aluminosilicate glass abundant in Turkey, China, Japan, the US and several EU countries. It has been used in its expanded form, for horticulture, for insulation, and for producing lightweight concrete. Turkish perlites contain more than 70 % SiO2, and have a SiO2/Al2O3 ratio of ~5.5. This study shows that ground perlite can be mixed with alkaline activators like sodium hydroxide or sodium silicate to yield mortars with strengths comparable to those of portland cement mortars. Strength gain is slower than with PC mixtures at room temperature but adequate ultimate strength can be achieved with curing at slightly elevated temperatures in 24 h or less. Since perlite is natural, perlite geopolymers can have environmental, energetic, and

  7. Development of a green binder system for paper products.

    Science.gov (United States)

    Flory, Ashley R; Vicuna Requesens, Deborah; Devaiah, Shivakumar P; Teoh, Keat Thomas; Mansfield, Shawn D; Hood, Elizabeth E

    2013-03-26

    It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of "green" binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found.

  8. Development of a green binder system for paper products

    Science.gov (United States)

    2013-01-01

    Background It is important for industries to find green chemistries for manufacturing their products that have utility, are cost-effective and that protect the environment. The paper industry is no exception. Renewable resources derived from plant components could be an excellent substitute for the chemicals that are currently used as paper binders. Air laid pressed paper products that are typically used in wet wipes must be bound together so they can resist mechanical tearing during storage and use. The binders must be strong but cost-effective. Although chemical binders are approved by the Environmental Protection Agency, the public is demanding products with lower carbon footprints and that are derived from renewable sources. Results In this project, carbohydrates, proteins and phenolic compounds were applied to air laid, pressed paper products in order to identify potential renewable green binders that are as strong as the current commercial binders, while being organic and renewable. Each potential green binder was applied to several filter paper strips and tested for strength in the direction perpendicular to the cellulose fibril orientation. Out of the twenty binders surveyed, soy protein, gelatin, zein protein, pectin and Salix lignin provided comparable strength results to a currently employed chemical binder. Conclusions These organic and renewable binders can be purchased in large quantities at low cost, require minimal reaction time and do not form viscous solutions that would clog sprayers, characteristics that make them attractive to the non-woven paper industry. As with any new process, a large-scale trial must be conducted along with an economic analysis of the procedure. However, because multiple examples of “green” binders were found that showed strong cross-linking activity, a candidate for commercial application will likely be found. PMID:23531016

  9. Hydrocarbon conversion process and catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1989-08-15

    This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.40 A, a water adsorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of between 10% and 15% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; am amorphous cracking component, a binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

  10. Dilatometric examination of moulds with plaster binder

    Directory of Open Access Journals (Sweden)

    M. Nadolski

    2011-01-01

    Full Text Available Investigations concerning thermal expansion of moulding materials with plaster binder have been performed for two mixture compositionsof Authors’ own design, as well as for the material used in jewellery industry under the Prima-Cast trade name, and for ThermoMold 1200moulding material. The results of dilatometric examinations of these materials, carried out within the temperature range from about 20°Cto 650°C by means of the DA-3 automatic dilatometer, have been compared. An analysis of this comparison has revealed that it is thematrix composition which is decisive for the magnitude of dimensional changes of moulds, and that applying components which do notexhibit polymorphic transformations reduces dimensional changes of a mould during its thermal treatment.

  11. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  12. Thermomechanical properties of bitumen modified with crumb tire rubber and polymeric additives

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, V.; Martinez-Boza, F.J.; Navarro, F.J.; Gallegos, C. [Departamento de Ingenieria Quimica, Universidad de Huelva, Campus del Carmen, 21071 Huelva (Spain); Perez-Lepe, A.; Paez, A. [Centro de Tecnologia, Repsol-YPF, Carretera de Extremadura, N-V, km 18, 28931 Mostoles-Madrid (Spain)

    2010-09-15

    In this paper, the influence of some additives on the rheological and technological properties of crumb rubber modified binders has been studied. The research has been mainly focused on the degree of bitumen modification, measured as the improvement of the mechanical properties, produced by the additives used, and the storage stability of these binders at high temperature. The experimental results obtained reveal that all the polymeric additives used yield an improvement in both rheological and technological properties of the binder. The storage instability of these binders has been associated to sedimentation processes of insoluble CR particles that strongly influence the mechanical properties of the binder. The additives and processing conditions selected in this study do not completely prevent problems associated with the poor stability of CRMBs during storage at high temperature. Nevertheless, the use of polyoctenamer, FT-wax or SBS-containing additives improves CRMB stability. In this sense, similar loss tangent values were found before and after hot storage of these binders. (author)

  13. Carbon nanotube reinforced metal binder for diamond cutting tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Mishnaevsky, Leon; Levashov, Evgeny

    2015-01-01

    of grain size of the structural constituents of the binder, what in turn leads to the improved simultaneously hardness, Young modulus, plastic extension, bending strength and performances of the metallic binders. Comparing service properties of diamond end-cutting drill bits with and without MWCNT one......The potential of carbon nanotube reinforcement of metallic binders for the improvement of quality and efficiency of diamond cutting wheels is studied. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the mechanical properties i.e. hardness, Young modulus, strength and deformation...

  14. Cationic fluorinated polymer binders for microbial fuel cell cathodes

    KAUST Repository

    Chen, Guang

    2012-01-01

    Fluorinated quaternary ammonium-containing polymers were used as catalyst binders in microbial fuel cell (MFC) cathodes. The performance of the cathodes was examined and compared to NAFION ® and other sulfonated aromatic cathode catalyst binders using linear sweep voltammetry (LSV), impedance spectroscopy, and performance tests in single chamber air-cathode MFCs. The cathodes with quaternary ammonium functionalized fluorinated poly(arylene ether) (Q-FPAE) binders showed similar current density and charge transfer resistance (R ct) to cathodes with NAFION ® binders. Cathodes containing either of these fluorinated binders exhibited better electrochemical responses than cathodes with sulfonated or quaternary ammonium-functionalized RADEL ® poly(sulfone) (S-Radel or Q-Radel) binders. After 19 cycles (19 d), the power densities of all the MFCs declined compared to the initial cycles due to biofouling at the cathode. MFC cathodes with fluorinated polymer binders (1445 mW m -2, Q-FPAE-1.4-H; 1397 mW m -2, Q-FPAE-1.4-Cl; 1277 mW m -2, NAFION ®; and 1256 mW m -2, Q-FPAE-1.0-Cl) had better performance than those with non-fluorinated polymer binders (880 mW m -2, S-Radel; 670 mW m -2, Q-Radel). There was a 15% increase in the power density using the Q-FPAE binder with a 40% higher ion exchange capacity (Q-FPAE-1.4-H compared to Q-FPAE-1.0-Cl) after 19 cycles of operation, but there was no effect on the power production due to counter ions in the binder (Cl -vs. HCO 3 -). The highest-performance cathodes (NAFION ® and Q-FPAE binders) had the lowest charge transfer resistances (R ct) in fresh and in fouled cathodes despite the presence of thick biofilms on the surface of the electrodes. These results show that fluorinated binders may decrease the penetration of the biofilm and associated biopolymers into the cathode structure, which helps to combat MFC performance loss over time. © 2012 The Royal Society of Chemistry.

  15. Strength properties of moulding sands with chosen biopolymer binders

    Directory of Open Access Journals (Sweden)

    St.M. Dobosz

    2010-07-01

    Full Text Available The article presents the results of primary researches of the IV generation moulding sands, in which as the binders are used differentbiodegradable materials. The bending and the tensile strength of the moulding sands with polylactide, poly(lactic-co-glycolic acid,polycaprolactone, polyhydroxybutyrate and cellulose acetate as binders were measured. The researches show that the best strengthproperties have the moulding sands with polylactide as binder. It was proved that the tested moulding sands’ strength properties are goodenough for foundry practice.

  16. Upgrading mild gasification liquids to produce electrode binder pitch. Technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.A. [Institute of Gas Technology, Chicago, IL (United States); Banerjee, D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-05-01

    The objective of this program is to investigate the production of electrode binder pitch from mild gasification liquids. The IGT MILDGAS process pyrolyzes coal in a 1000{degree}--1500{degree}F (538{degree}--816{degree}C) fluidized/entrained bed to produce solid, gas, and liquid co-products. With Illinois coal, the 750{degree} F+ (400{degree}C+) distillation residue (crude pitch) comprises 40--70% of the MILDGAS liquids, representing up to 20 wt % of feed coal. The largest market for pitch made from coal liquids is the aluminum industry, which uses it to make carbon anodes for electrolytic furnaces. Traditionally, binder pitches have only been made from high-temperature coke-oven tars. In this project, crude pitch from the DOE-sponsored MILDGAS process research program is being modified by a flash thermocracking technique to achieve specifications typical of a binder pitch. A pitch thermocracking unit has been constructed for operation at 1200{degree}--1800{degree}F (650{degree}--982{degree}C). Atomization of the pitch at the thermocracker inlet is being examined as a method of optimizing the particle size of polymerized pitch components. With the production of cracked pitch samples, test electrodes will be fabricated using the best performing pitch samples and petroleum coke or calcined pitch coke filler.

  17. Effects of binder addition on the mechanical properties of bulk Y-Ba-Cu-O superconductors

    Science.gov (United States)

    Seki, H.; Wongsatanawarid, A.; Kobayashi, S.; Ikeda, Y.; Murakami, M.

    2010-11-01

    We studied the effects of binder addition on the mechanical properties of bulk Y-Ba-Cu-O superconductors. We prepared YBa2Cu3Oy, Y2BaCuO5 powders and polyvinyl alcohol mixed with water as a binder. These raw materials were mixed, and the binder-added powders were pressed into pellets. The hardness of the green compacts with binder is higher than that without the binder. However, the hardness of green compacts with 8% binder is the same as that with 4% binder. The maximum compression strength of the precursor with binder is higher than that without binder. Equally, the maximum strength of the green compacts with 8% binder is higher than that with 4% binder. The differential thermal analysis measurements showed that the exothermic reaction due to the decomposition of the organic binder started at 550 °C and gradually proceeded with further heating. After de-binder treatment, BaCO3 powders were produced on the green compacts. The green compacts were subjected to melt-processing. We also measured trapped magnetic fields of binder-added bulk Y-Ba-Cu-O superconductors with a Hall probe scanning device. Trapped magnetic field of the bulk added with 4% is higher than that of the binder-free bulk. Hence, Y-Ba-Cu-O bulk with suitable amount of binder shows good influence for mechanical strength and trapped magnetic field.

  18. Haemodynamic and respiratory effects of an abdominal compression binder

    DEFF Research Database (Denmark)

    Toft, M.H.; Bulow, J.; Simonsen, L.

    2008-01-01

    In order to elucidate the circulatory and respiratory effects of a newly developed abdominal compression binder 25 healthy, normal weight subjects were studied. In supine position the central haemodynamics were measured and estimated with a Finapress device. Lower extremity venous haemodynamics...... with or without the abdominal compression binder. The results show that the compression binder significantly increases the venous volume in the lower extremities as showed by a reduction in the venous capacitance in the lower extremities and a reduction in the stroke volume and cardiac output, while it does...... not influence the pulmonary volumes. It is concluded that the applied abdominal binder significantly affects peripheral and central haemodynamics. It should therefore be used with caution when in the supine position for longer periods, as the pooling of blood it induces in the lower extremities may have...

  19. New BioCo binders containing biopolymers for foundry industry

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2013-01-01

    Full Text Available Possibilities of cross-linking of new polymer binders from the BioCo group, their hardening in moulding sands at the application of cross-linking agents both physical and chemical are presented. Their thermal stability was determined. It was proved, that moulding sands bound by the BioCo binders are characterised by the compression strength (Ruc of an order of 2 MPa, and the bending strength (Rug of 1 MPa, after 1 hour of a sample curing. The worked out BioCo binders are biodegradable and renewable in the part which was not completely burned. The investigated moulding sands with the BioCo binders are easily knocked out and have a good susceptibility for mechanical reclamation processes.

  20. Development of bio-sourced binder to metal injection moulding

    Science.gov (United States)

    Royer, Alexandre; Barrière, Thierry; Gelin, Jean-Claude

    2016-10-01

    In the MIM process the binder play the most important role. It provides fluidity of the feedstock mixture for injection molding and adhesion of the powder to keep the molded shape. The binder must provide strength and cohesion for the molded part, must be easy to be removed from the molded part, and must be the recyclable, environmentally friendly and economical ones. The goal of this study is to develop a binder environmentally friendly. For this, a study of formulation based on polyethylene glycol, because of is water debinding properties, was made. Polylactic acid and Polyhydroxyalkanoates were investigated as bio sourced polymers. The chemical, miscibility and rheological behavior of the binder formulation were investigated.

  1. Role of binder in the synthesis of titania membrane

    Indian Academy of Sciences (India)

    K S Seshadri; M Selvaraj; R Kesava Moorthy; K Varatharajan; M P Srinivasan; K B Lal

    2003-02-01

    The synthesis of titania membrane through sol–gel route involves hydrolysis of alkoxide, peptization of hydrous oxide of titanium to obtain a sol, adjustment of the sol viscosity by including a binder and filtration of the viscous sol through a microporous support, gelation and sintering to desired temperature. The binder plays an important role in that it not only helps in adjustment of sol viscosity but also helps in binding the sol particle with porous support. Here a comparative study on the role of different binders, viz. polyvinyl alcohol, polyethyleneimine, polyacrylamide, effect of their viscosity and surface tension effect on the morphology of the titania membrane is presented. The results show that among the three binders studied polyvinyl alcohol gave rise to membranes of desired characteristics when the sol viscosity was 0.08 pa.s.

  2. THE USE OF METAL PHOSPHATE BINDER AND SAND IN FOUNDRIES

    Directory of Open Access Journals (Sweden)

    I. E. Illarionov

    2013-01-01

    Full Text Available Some features of the use of mixtures of metal phosphate binder and management principles of their properties for production of castings of ferrous and non-ferrous metals and alloys were shown.

  3. Impact of Binder Composition on Inkjet Printing Paper

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-01-01

    Full Text Available This article is focused on the impact of different binder mixtures on the performances of paper surface and printability. The coating properties were studied with the chosen silica pigment, and the binder consisted of vinyl acetate copolymer and polyvinyl alcohol with different ratios, followed by the measurement of smoothness, whiteness, and surface strength. The inkjet image quality was assessed using water-based inks. The print density, dot gain, and line quality were analyzed. The results showed that the surface performance and printability were affected by the composition of the binder. With the decrease of vinyl acetate copolymer and the increase of polyvinyl alcohol, the surface smoothness and strength decreased, and the penetration and diffusion of the ink changed as well. When the binder mixture was used with proper ratio, a larger solid density, smaller dot gain, and higher definition can be achieved, which were better than using either one of them alone.

  4. Rheological Evaluation of Polymer Modiifed Asphalt Binders

    Institute of Scientific and Technical Information of China (English)

    WANG Lan; CHANG Chunqing

    2015-01-01

    The microstructure and dynamic rheological characteristics of asphalt containing different polymer modifiers (crumb rubber, styrene-butadiene-styrene and crumb rubber mix with styrene-butadiene-styrene) at mid and high service temperature levels were investigated by using scanning electron microscopy(SEM), dynamic shear rheometer(DSR) and repeat creep test. The main objective of the investigation was to rank the modifiers based on their effect on performance characteristics of asphalt under service conditions. To evaluate the effect of different modiifers on the viscoelastic response of asphalt, the temperature and frequency dependences of the dynamic viscoelastic properties were compared. The mid-temperature fatigue resistance and high-temperature rutting resistance of three polymer modiifed asphalts were evaluated to predict their ifeld performance in roads. Based on the current results, an improved rutting factor was proposed to determine the rutting resistance of asphalt pavements. In addition, the viscous stiffness (Gv), deifned as the reciprocal of viscous compliance, was used to evaluate the high-temperature deformation resistance of asphalt mixtures. The experimental results indicate that the asphalt containing crumb rubber only shows superior performance at mid and high service temperatures in all three modiifed asphalt binders due to the action of the crumb rubber.

  5. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  6. Realizing of Optimization of Binder Backfill Material Under Certain Strength with Fuzzy Sets

    Institute of Scientific and Technical Information of China (English)

    崔明义; 胡华

    2001-01-01

    The main factors deciding the compressive strength of binder backfill body are tailing density and binder dosage in binder backfill materials. Based on the antecedent of certain pulp density, the method of increasing the tailing density and reducing the binder dosage, or the manner of cutting down the tailing density and gaining the binder dosage are taken to guarantee the strength of backfill body. The problem that should be solved is how to determine the tailing density and the binder dosage rationally. This paper tries to realize the correct selection of the tailing density and the binder dosage in computer with the method of fuzzy mathematics.

  7. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore

  8. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  9. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore

  10. Aqueous Tape Casting Process with Styrene-acrylic Latex Binder

    Institute of Scientific and Technical Information of China (English)

    CUI Xue-min; OUYANG Shi-xi; HUANG Yong; YU Zhi-yong; ZHAO Shi-ke; WANG Chang-an

    2004-01-01

    A commercial styrene-acrylic latex binder has been investigated as a good binder for aqueous Al2O3 suspensions tape-casting process. This paper focuses on the forming film mechanism of latex binder, the rheological behaviors of the suspensions, physical properties of green tapes and drying process of aqueous slurries with latex binder system. The drying process of the alumina suspensions is shown to follow a two-stage mechanism (the first stage: evaporation controlled process; and the second stage: diffusion controlled process). During the drying stage of the suspensions, the compressive force presses the latex particles and makes them be distorted, which results in cross-linking structure in contacted latex particles of the solidified tapes.A smooth-surface and high-strength green tape was fabricated by aqueous tape casting with latex binder system. The results from the SEM images of the crossing section microstructure of green tapes show that the latex is a very suitable binder for aqueous tape casting.

  11. A novel screening system for claudin binder using baculoviral display.

    Directory of Open Access Journals (Sweden)

    Hideki Kakutani

    Full Text Available Recent progress in cell biology has provided new insight into the claudin (CL family of integral membrane proteins, which contains more than 20 members, as a target for pharmaceutical therapy. Few ligands for CL have been identified because it is difficult to prepare CL in an intact form. In the present study, we developed a method to screen for CL binders by using the budded baculovirus (BV display system. CL4-displaying BV interacted with a CL4 binder, the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE, but it did not interact with C-CPE that was mutated in its CL4-binding region. C-CPE did not interact with BV and CL1-displaying BV. We used CL4-displaying BV to select CL4-binding phage in a mixture of a scFv-phage and C-CPE-phage. The percentage of C-CPE-phage in the phage mixture increased from 16.7% before selection to 92% after selection, indicating that CL-displaying BV may be useful for the selection of CL binders. We prepared a C-CPE phage library by mutating the functional amino acids. We screened the library for CL4 binders by affinity to CL4-displaying BV, and we found that the novel CL4 binders modulated the tight-junction barrier. These findings indicate that the CL-displaying BV system may be a promising method to produce a novel CL binder and modulator.

  12. A Granule Model for Evaluating Adhesion of Pharmaceutical Binders

    Directory of Open Access Journals (Sweden)

    Hossein Orafai

    2003-10-01

    Full Text Available Granule capability is defined in terms of the strength of individual granule and friability of granulation batch to withstand breaking, abrasion and compactibility. Binder(s are added to perform the above properties .The common methods to asses their capability are to test crushing strength of the granules directly and to make statistical analysis and /or testing the friability of bulk granulation. In this work four substrate models including polymethylmetacrylate beads(PMMA,glass powder, acetaminophen, and para-aminobebzoic acid were chosen. The binder models were corn starch, gelatin, methylcellulose (MC and hydroxypropylmethylcellulose (HPMC. After massing the substrates with the binder solutions, discs were produced by the mean of the mold technique. The discs were dried and conditioned and then tested for tensile strength while the failed areas were scanned by SEM. Various granulations were made and the results of friability and crush strength were compared with the discs strength .The bond areas in the SEM showed the trend with the binder concentration .A comparison of the standard deviation shows that discs have much lower level of the strength than granules. The resulting discs showed a higher performance which is related to the stems for the discs shape .In conclusion, this method is a simple and is applicable to differentiate efficacy of binder under studies.

  13. PRELIMINARY TESTING OF NANOPARTICLE EFFECTIVENESS IN BINDER JETTING APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Alta C [ORNL; Elliott, Amy M [ORNL; Basti, Mufeed M [ORNL

    2016-01-01

    Binder jetting works by selectively depositing a binder with an inkjet print head into layers of powdered material. Compared with other metal Additive Manufacturing (AM) processes, binder jetting has significant potential for near-term adoption in manufacturing environments due to its reliability and throughput. The Achilles heel of binder jetting, however, is the inability to produce fully dense, single-alloy materials. The lack of density in printed binder jet parts is strictly dictated by the packing factor of the powder feedstock. Adding nanoparticles during printing will not only increase the part s packing factor but may also serve as a sintering aid. This study focuses on the effect of both the binder and nanoparticles on the final part density. As an unintended consequence of high nanoparticle loading, printed parts underwent a significant increase in porosity during the curing process. This unintended consequence is the apparent result of the nanoparticles blocking the exit of the solvent vapor during the curing step. Additionally, nanoparticle use for densification is validated with SEM imagery.

  14. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    Energy Technology Data Exchange (ETDEWEB)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  15. Evaluation of wettability of binders used in moulding sands

    Directory of Open Access Journals (Sweden)

    Hutera B.

    2007-01-01

    Full Text Available Binders used in moulding sand have the differential properties. One of the main parameters influencing on moulding sand properties is wettability of the sand grain by binding material. In the article some problems concerned with wettability evaluation have been presented and the importance of this parameter for quantity description of process occurring in system: binder- sand grain has been mentioned. The procedure of wetting angle measurement and operation of prototype apparatus for wettability investigation of different binders used in moulding sand have been described, as well as the results of wetting angle measurement for different binders at different conditions. The addition of little amount of proper diluent to binder results in the state of equilibrium reached almost immediately. Such addition can also reduce the value of equilibrium contact angle. The uniform distribution of binder on the surface of the sand grains and reducing of the required mixing time can be obtained. It has also a positive effect on the moulding sand strength.

  16. Development of an innovative bio-binder using Asphalt-rubber technology

    OpenAIRE

    2013-01-01

    This research work evaluates several parameters that can affect Asphalt Rubber (AR) binder performance and applies the AR technology to the development of an innovative renewable bio-binder that can fully and cost-effectively replace asphaltic bitumen derived from petroleum in flexible pavement construction. The “Binder Accelerated Separator” method was used to divide the constituents of the Asphalt Rubber and bio-binder (residual binder and swelled rubber). The physical and chemi...

  17. New functional polyether binders for low vulnerability propellants; Nouveaux liants polyethers fonctionnels pour propergols a faible vulnerabilite

    Energy Technology Data Exchange (ETDEWEB)

    Moreau-Friot, C.; Eck, G.; Jacob, G.; Chevalier, S.; Golfier, M.; Guengant, Y. [Groupe SNPE Propulsion/ Centre de Recherches du Boucher, 91 - Vert le Petit (France)

    2002-09-01

    HTPB propellants are widely used in solid rocket propellants. Their slow cook-off behaviour has to be improved because they lead to reactions type IV or V in the MURAT scale. Some work on propellants with polyether binders has shown that they lead to moderate reactions at slow cook-off tests. Work is based on the synthesis of functional polyethers. The objective consists in preparing a hydroxyl terminated polymer with a molecular weight between 1000 and 4000 g.mol{sup -1}, a low viscosity and a correct functionality. The binder, which is composed of a polymer, a plasticizer and a curing system, will be able to give mechanical properties in the use field (between -40 and +60 deg C). The polymer chosen to answer all those characteristics is composed of tetrahydrofuran and ethylene oxide. It is synthesised by cationic ring opening polymerisation in the presence of a diol and an adapted catalyst (BF{sub 3}OEt{sub 2}, HBF{sub 4}, SnCl{sub 4}/AT-..). First polymerizations were carried out of laboratory scale (from 30 g to 200 g). The study consists in varying the nature of catalysts the temperature, the solvent the purification methods and so on. The selected copolymer is chosen from many analysis results of the structure, particularly the average number molecular weight the hydroxyl rate, and the best alternative between a high molecular weight and a correct functionality. The behaviour of the propellant is also important because it will allow a widely scale synthesis or complementary laboratory work. A transfer has permitted to obtain a 10 kg scale. Its characteristics are the same that those of the product obtained at a laboratory scale. Propellants with polyether binder have been tested. The correct viscosity allows a high charge rate, which means energetic propellants. It also has to be noted that the binder does not crystallize. Those propellants have a good mechanistic behaviour in a large field of temperature. They also have a good behaviour at slow cook-off. The

  18. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  19. Data on the densification during sintering of binder jet printed samples made from water- and gas-atomized alloy 625 powders

    Directory of Open Access Journals (Sweden)

    Amir Mostafaei

    2017-02-01

    Full Text Available Binder jet printing (BJP is a metal additive manufacturing method that manufactures parts with complex geometry by depositing powder layer-by-layer, selectively joining particles in each layer with a polymeric binder and finally curing the binder. After the printing process, the parts still in the powder bed must be sintered to achieve full densification (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016; A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016; A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016 [1–3]. The collected data presents the characterization of the as-received gas- and water-atomized alloy 625 powders, BJP processing parameters and density of the sintered samples. The effect of sintering temperatures on the microstructure and the relative density of binder jet printed parts made from differently atomized nickel-based superalloy 625 powders are briefly compared in this paper. Detailed data can be found in the original published papers by authors in (A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, 2017 [4].

  20. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nai; TIAN ZuoJi; LENG YingYing; WANG HuiTong; SONG FuQing; MENG JianHua

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2)branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4)phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hydrocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclusions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydrocarbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram.And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion,saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  1. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  2. The addition effects of macro and nano clay on the performance of asphalt binder

    Directory of Open Access Journals (Sweden)

    M. El-Shafie

    2012-12-01

    Full Text Available The study was carried out to explore the addition effect of macro and organically modified nanoclay on the physical and mechanical properties of asphalt binders. Both macroclay and modified nanoclay were blended in an asphalt binder in various percentages (starting from 2% to 8%. The blended asphalt binders were characterized using kinematic viscosity (C.st, softening point (°C, and penetration and compared with anunmodified binder. The tensile strength of the asphalt binders was also tested as a function of clay types and content%. The results of the study indicated an increase in softening point; kinematics viscosity and decrease in binder penetration. The tensile strength of modified clay binders was enhanced at all percentages by a comparison with both macroclay and unmodified binders. The best improvements in the modified binders were obtained with 6% nanoclay.

  3. Interfacial reaction in squeeze cast SiCw/AZ91 composites with different binders

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The whisker/matrix interfaces in squeeze cast SiCw/AZ91 composites with different binders (silica binder, acid aluminum phosphate binder and without binder), were studied by transmission electron microscopy (TEM) and high resolution electron microscopy (HREM). The SiCw/AZ91 interface is very clean in the composites with no binders. For the composites with acid aluminum phosphate binders or silica binders, there exists fine discrete interfacial reaction products MgO at the interface, and a definite orientation relationship between MgO and SiCw. The interfacial reaction products MgO is unevenly distributed at different parts of the composite ingot with silica binder, and mainly distributed to the interface at the side part of the composite cylinder. While in the SiCw/AZ91 composite with acid aluminum phosphate binder, MgO particles are distributed evenly at the interface in almost all the parts of the composite ingot.

  4. Accelerated Molecular Dynamics Simulations of Reactive Hydrocarbon Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  5. Performance analysis of flexible DSSC with binder addition

    Science.gov (United States)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur

    2016-04-01

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO2 powder, butanol, and HCl were mixed for preparation of TiO2 paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO2 paste was deposited on ITO-PET plastic substrate with area of 1x1 cm2 by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO2 photoelectrode microstructures. Dyed TiO2 photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.

  6. Performance analysis of flexible DSSC with binder addition

    Energy Technology Data Exchange (ETDEWEB)

    Muliani, Lia; Hidayat, Jojo; Anggraini, Putri Nur, E-mail: putri.nur.anggraini@gmail.com [Research Center for Electronics and Telecommunications Indonesian Institute of Sciences (PPET-LIPI) Kampus LIPI, Jl. Sangkuriang, Bandung 40135 (Indonesia)

    2016-04-19

    Flexible DSSC is one of modification of DSSC based on its substrate. Operating at low temperature, flexible DSSC requires a binder to improve particles interconnection. This research was done to compare the morphology and performance of flexible DSSC that was produced with binder-added and binder-free. TiO{sub 2} powder, butanol, and HCl were mixed for preparation of TiO{sub 2} paste. Small amount of titanium isopropoxide as binder was added into the mixture. TiO{sub 2} paste was deposited on ITO-PET plastic substrate with area of 1x1 cm{sup 2} by doctor blade method. Furthermore, SEM, XRD, and BET characterization were done to analyze morphology and surface area of the TiO{sub 2} photoelectrode microstructures. Dyed TiO{sub 2} photoelectrode and platinum counter electrode were assembled and injected by electrolyte. In the last process, flexible DSSCs were illuminated by sun simulator to do J-V measurement. As a result, flexible DSSC containing binder showed higher performance with photoconversion efficiency of 0.31%.

  7. Making Polymeric Microspheres

    Science.gov (United States)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  8. Characterization of polymeric films subjected to lithium ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, Gary S., E-mail: gary.groenewold@inl.gov [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Cannon, W. Roger; Lessing, Paul A. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark [Image and Chemical Analysis Laboratory, Montana State University, Bozeman, MT 59717 (United States); Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States)

    2013-02-01

    Highlights: ► Polyethylene glycol (PEG) and paraffinic polymers were subjected to Li ion irradiation. ► Small oligomers detected in irradiated PEG by electrospray ionization (ESI) mass spectrometry. ► Radiolytic scission observed in X-ray photoelectron and electrospray ionization mass spectra. ► Radiation modified paraffinics characterized by changes in non-ionic surfactant additives. ► Results suggest that extent of radiolysis, and radiolytic pathways can be inferred. -- Abstract: Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H{sub 2}O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with H{sup ·} and OH{sup ·}. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp{sup 2} carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H{sub 2}O or a H{sub 2}O–methanol solution, and

  9. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  10. Nanocrystalline WC with non-toxic Fe-Mn binder

    Energy Technology Data Exchange (ETDEWEB)

    Siemiaszko, Dariusz [Military University of Technology, Department of Advanced Technology and Chemistry, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw (Poland); Rosinski, Marcin; Michalski, Andrzej [Warsaw University of Technology, Department of Materials Science and Engineering, Woloska 141, 02-507 Warsaw (Poland)

    2010-05-15

    Cemented carbides, based on the tungsten carbide (WC), are very popular and useful in an industry. The most important metal us as a binder in this kind of materials is cobalt. It has many advantages as a binder: very good wettability, favourable solubility with WC and thermal conductivity similar to WC. However, cost of cobalt is very high because of its low natural resources. Cobalt is not also neutral for health. It is known as an allergen and same research shown that it could cause a cancer. This paper presents results of sintering the tungsten carbides with Fe-Mn alloys as the binders. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. In silico design of smart binders to anthrax PA

    Science.gov (United States)

    Sellers, Michael; Hurley, Margaret M.

    2012-06-01

    The development of smart peptide binders requires an understanding of the fundamental mechanisms of recognition which has remained an elusive grail of the research community for decades. Recent advances in automated discovery and synthetic library science provide a wealth of information to probe fundamental details of binding and facilitate the development of improved models for a priori prediction of affinity and specificity. Here we present the modeling portion of an iterative experimental/computational study to produce high affinity peptide binders to the Protective Antigen (PA) of Bacillus anthracis. The result is a general usage, HPC-oriented, python-based toolkit based upon powerful third-party freeware, which is designed to provide a better understanding of peptide-protein interactions and ultimately predict and measure new smart peptide binder candidates. We present an improved simulation protocol with flexible peptide docking to the Anthrax Protective Antigen, reported within the context of experimental data presented in a companion work.

  12. Permeability analysis for thermal binder removal from green ceramic bodies

    Science.gov (United States)

    Yun, Jeong Woo

    2007-12-01

    The permeability of unlaminated and laminated green tapes was determined as a function of binder content for binder removed by air oxidation. The tapes are comprised of barium titanate as the dielectric, and polyvinyl butyral and dioctyl phthalate as the main compoents of the binder mixture. The flow in porous media through the tapes was analyzed in terms of models for describing Knudsen, slip, and Poiseuille flow mechanisms. The characteristic pore size was determined to be 0.5-2 mum and thus Poiseuille flow was the dominant transport mechanism contributing to the flux. The permeability was then determined from Darcy's law for flow in porous media. The permeability was also determined from micro-structural attributes in terms of the specific surface, the pore fraction, and terms to account for tortuosity and constrictions. The permeability and adhesion strength of laminated green ceramic tapes were determined as a function of lamination conditions of time, temperature, and pressure.

  13. Modified polysaccharides as alternative binders for foundry industry

    Directory of Open Access Journals (Sweden)

    K. Kaczmarska

    2016-10-01

    Full Text Available Polysaccharides constitute a wide group of important polymers with many commercial applications, for example food packaging, fibres, coatings, adhesives etc. This review is devoted to the presentation of polysaccharide application in foundry industry. In this paper the selected properties of foundry moulding sand and core sand containing modified polysaccharides as binders are presented according to foreign literature data. Also, author’s own research about effect of using moulding sand binder consisting of modified polysaccharide (modified starch or its composition with non-toxic synthetic polymers are discussed. Based on technologies taken under consideration in this paper, it could be concluded that polysaccharides are suitable as an alternative for use as binder in foundry moulding applications.

  14. Effect of crumb rubber on asphaltic binder chemistry and rheology

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Cicero de S.; Tome, Luisa G.A.; Sant' ana, Hosiberto B.; Soares, Jorge B.; Soares, Sandra A. [University Federal of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    The use of the crumb rubber (CR) from scraps tires to modify asphalt binders (AB) at high temperature can improve significantly the performance grade, but the storage stability can be influenced after the mix of AB and CR or polymer. The major concern of asphalt binder with polymer and CR blends is their lack of stability during prolonged storage at high temperatures. The tendency to phase separation under quiescent conditions appears as an important limitation for the practical use of these blends. After the RTFOT and PAV process, the binder conventional and modified was analyzed in a Fourier Transform Infrared spectrometer (FTIR) for chemical characterization. After aging in RTFOT, the AB presented a larger degradation compared to the CR of RABC and RABC commercial. So, the crumb rubber contributed to the binder stability, acting as an antioxidant in the aging process. The dynamic mechanical properties of CR modify asphalts binder before and after graft has been characterized by use of dynamic shear rheometer (DSR) or advances rheology expanded system (ARES) of Rheometric Scientific. The difference in the viscoelastic parameters between the top and the bottom sections of the tube was measured. It has been found that the added content of CR has great effect on the rheological properties of the AB and its high temperature performance. It also has been confirmed that the RABC sample showed larger storage stability compared to the sample RABC commercial observed with viscoelastic parameters. As a consequence, the use CR and aromatic oil can be considered a suitable alternative for modification of binder in pavement. (author)

  15. Influence of conductive additive on temperature susceptibility of asphalt binders

    Institute of Scientific and Technical Information of China (English)

    吴少鹏; 李波; 陈筝; 黄旭

    2008-01-01

    The effects of graphite on temperature susceptibility of asphalt binders were investigated by penetration test,Ring & Ball softening point test and viscosity test.And penetration index(IP),viscosity-temperature susceptibility(SVT),and penetration-viscosity numbers(NPV) were introduced to evaluate the effects.The results show that the penetration,softening point and viscosity of asphalt binder increase with the increase of content of graphite.This means that the addition of graphite makes asphalts stiffer.The results from IP,NPV and SVT show that temperature susceptibility is reduced by the addition of graphite.

  16. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  17. Influencing of foundry bentonite mixtures by binder activation

    Directory of Open Access Journals (Sweden)

    J. Beňo

    2015-10-01

    Full Text Available Although new moulding processes for manufacture of high quality castings have been developed and introduced into foundry practice in recent years, the green-sand moulding in bentonite mixture still remains the most widely used technology. Higher utility properties of bentonite binders are achieved through their activation. This contribution is aimed at finding a suitable activating agent. A number of sodium salts and MgO based agents has been chosen. In the framework of the experiment the swelling volume of chosen agents was tested and technological parameters of a bentonite mixture with a binder activated with the studied agents were determined.

  18. Polymeric Gas-Separation Membranes for Petroleum Refining

    Directory of Open Access Journals (Sweden)

    Yousef Alqaheem

    2017-01-01

    Full Text Available Polymeric gas-separation membranes were commercialized 30 years ago. The interest on these systems is increasing because of the simplicity of concept and low-energy consumption. In the refinery, gas separation is needed in many processes such as natural gas treatment, carbon dioxide capture, hydrogen purification, and hydrocarbons separations. In these processes, the membranes have proven to be a potential candidate to replace the current conventional methods of amine scrubbing, pressure swing adsorption, and cryogenic distillation. In this paper, applications of polymeric membranes in the refinery are discussed by reviewing current materials and commercialized units. Economical evaluation of these membranes in comparison to traditional processes is also indicated.

  19. Effects of Fiber Finish on the Performance of Asphalt Binders and Mastics

    Directory of Open Access Journals (Sweden)

    Bradley J. Putman

    2011-01-01

    Full Text Available The objective of this study was to determine the effects of finishes applied to polyester fibers on the properties of asphalt binders and mastics. Asphalt binders were mixed with finishes that were extracted from the fibers, and mastics were also made with binder and fibers (with and without finish to isolate the effects of the finish. The results indicated that crude source plays a significant role in how the fiber finish affects the binders and mastics. Additionally different finishes had different effects on binder properties. The major finding of this study is that different polyester fibers, even from the same manufacturer, may not necessarily perform the same in an asphalt mixture. It is important to use fibers that are compatible with the particular asphalt binder that is being used because of the significance of the binder source on the interaction between the finish and the binder.

  20. Comparison of efficacy of the phosphate binders nicotinic acid and sevelamer hydrochloride in hemodialysis patients

    National Research Council Canada - National Science Library

    Ahmadi, Farrokhlagha; Shamekhi, Fatemeh; Lessan-Pezeshki, Mahbob; Khatami, Mohammad Reza

    2012-01-01

    ...), and must be controlled with the use of phosphate binders. Studies comparing the effects of sevelamer and nicotinic acid, both similar non-calcium and non-aluminum phosphate binders, are not available...

  1. Effects of binders on the performance of electric double-layer capacitors of carbon nanotube electrodes

    Institute of Scientific and Technical Information of China (English)

    LI Chensha; WANG Dazhi; ZHANG Baoyou; WANG Xiaofeng; CAO Maosheng; LIANG Ji

    2005-01-01

    Polarizable electrodes of electric double layer capacitor (EDLCs) were made from carhon nanotubes. Effects of different binders, which are phenolic resin (PF) and polytetrafluoroethylene (PTFE), on the properties of polarizable electrodes are studied. Results indicate that the microstructure, pore size distribution and specific capacitance of the electrodes with PTFE binder are superior to those electrodes with PF binder after carbonization. The suitable binder (PTFE) for carbon nanotubes electrodes is proposed.

  2. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers...

  3. Oil-acrylic hybrid latexes as binders for waterborne coatings

    NARCIS (Netherlands)

    Hamersveld, van E.M.S.; Es, van J.; German, A.L.; Cuperus, F.P.; Weissenborn, P.; Hellgren, A.C.

    1999-01-01

    The combination of the characteristics of oil, or alkyd, emulsions and acrylic latexes in a waterborne binder has been the object of various studies in the past. Strategies for combining the positive properties of alkyds, e.g. autoxidative curing, gloss and penetration in wood, with the fast drying

  4. Haemodynamic and respiratory effects of an abdominal compression binder

    DEFF Research Database (Denmark)

    Toft, Mette Helene; Bülow, Jens; Simonsen, Lene

    2008-01-01

    In order to elucidate the circulatory and respiratory effects of a newly developed abdominal compression binder 25 healthy, normal weight subjects were studied. In supine position the central haemodynamics were measured and estimated with a Finapress device. Lower extremity venous haemodynamics w...

  5. 46 CFR 308.103 - Insured amounts under interim binder.

    Science.gov (United States)

    2010-10-01

    ... INSURANCE War Risk Hull and Disbursements Insurance § 308.103 Insured amounts under interim binder. (a... chapter. (b) Insurance risks. Insurance risks covered by the terms of the standard form of war risk hull... insurance additional to the war risk hull insurance provided under this subpart, and payment of claim......

  6. Evaluation of Reclamability of Molding Sands with New Inorganic Binders

    Directory of Open Access Journals (Sweden)

    I. Izdebska-Szanda

    2012-04-01

    Full Text Available One of the purposes of the application of chemically modified inorganic binders is to improve knocking out properties and the related reclamability with previously used in foundry inorganic binder (water glass, which allowing the use of ecological binders for casting non- ferrous metals. Good knocking out properties of the sands is directly related to the waste sands reclamability, which is a necessary condition of effective waste management. Reclamation of moulding and core sands is a fundamental and effective way to manage waste on site at the foundry, in accordance with the Environmental Guidelines. Therefore, studies of reclamation of waste moulding and core sands with new types of inorganic binders (developed within the framework of the project were carried out. These studies allowed to determine the degree of recovery of useful, material, what the reclaimed sand is, and the degree of its use in the production process. The article presents these results of investigation. They are a part of broader research programme executed under the project POIG.01.01.02-00- 015/09 "Advanced materials and technologies".

  7. Multimodality and Immigrant Children (Response to Marni Binder)

    Science.gov (United States)

    Campano, Gerald; Low, David

    2011-01-01

    This response to Marni Binder reflects upon two examples of (im)migrant children's artwork and challenges the dominant notion that (im)migration experiences--and their subsequent portrayals--can be fit into neat slots. The authors position multimodal composing opportunities as affording children a vital instrument for deploying their full semiotic…

  8. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  9. 40 CFR 427.30 - Applicability; description of the asbestos paper (starch binder) subcategory.

    Science.gov (United States)

    2010-07-01

    ... asbestos paper (starch binder) subcategory. 427.30 Section 427.30 Protection of Environment ENVIRONMENTAL... Asbestos Paper (Starch Binder) Subcategory § 427.30 Applicability; description of the asbestos paper (starch binder) subcategory. The provisions of this subpart are applicable to discharges resulting...

  10. PHOSPHATE BINDER THERAPY AND SERUM PHOSPHATE CONTROL FOLLOWING INITIATION OF HAEMODIALYSIS

    Directory of Open Access Journals (Sweden)

    Kimberly Farrand

    2012-06-01

    Serum P can be difficult to control following initiation of HD. Patients with elevated serum P were younger, and most had higher P binder use than the reference group. Overall, binder use was lower than in other studies of HD patients. Dietary education and higher doses of the most effective P binders may be needed to improve P management.

  11. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of

  12. Investigation of the ageing effects on phenol-urea-formaldehyde binder and alkanol amine-acid anhydride binder coated mineral fibres

    DEFF Research Database (Denmark)

    Zafar, Ashar; Schjødt-Thomsen, Jan; Sodhi, R.;

    2013-01-01

    Phenol-Urea-Formaldehyde (PUF) binder coated mineral fibres' mechanical properties have been observed to degrade during ageing at elevated temperatures and humidity, while alkanol amine-acid anhydride binder based mineral fibres exhibited better ageing properties for same duration of ageing. X......-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to identify the chemical changes occurring in the PUF binder coated mineral fibres and alkanol amine-acid anhydride binder coated mineral fibres during that ageing. The samples were aged in a climate...... of amide, methylene ether and methylene linkages between urea groups present in the PUF binder. In the case of the alkanol amine-acid anhydride binder coated mineral fibres, both XPS and ToF-SIMS techniques consistently showed that the surface chemical composition of the organic components of the alkanol...

  13. Investigation of the ageing effects on phenol-urea-formaldehyde binder and alkanol amine-acid anhydride binder coated mineral fibres

    DEFF Research Database (Denmark)

    Zafar, Ashar; Schjødt-Thomsen, Jan; Sodhi, R.

    2013-01-01

    . Principal Component Analysis (PCA) was applied on the positive and negative ToF-SIMS spectra of the PUF binder coated mineral fibres, showing a decrease in the concentration of the nitrogen containing peaks during ageing. This decrease was attributed to the depolymerisation of the binder due to hydrolysis......Phenol-Urea-Formaldehyde (PUF) binder coated mineral fibres' mechanical properties have been observed to degrade during ageing at elevated temperatures and humidity, while alkanol amine-acid anhydride binder based mineral fibres exhibited better ageing properties for same duration of ageing. X......-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to identify the chemical changes occurring in the PUF binder coated mineral fibres and alkanol amine-acid anhydride binder coated mineral fibres during that ageing. The samples were aged in a climate...

  14. ALTERNATIVE BINDERS TO BENTONITE FOR IRON ORE PELLETIZING : PART II : EFFECTS ON METALLURGICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Osman Sivrikaya

    2014-07-01

    Full Text Available This study was started to find alternative binders to bentonite and to recover the low preheated and fired pellet mechanical strengths of organic binders-bonded pellets. Bentonite is considered as a chemical impurity for pellet chemistry due to acid constituents (SiO2 and Al2O3. Especially addition of silica-alumina bearing binders is detrimental for iron ore concentrate with high acidic content. Organic binders are the most studied binders since they are free in silica. Although they yield pellets with good wet strength; they have found limited application in industry since they fail to give sufficient physical and mechanical strength to preheated and fired pellets. It is investigated that how insufficient preheated and fired pellet strengths can be improved when organic binders are used as binder. The addition of a slag bonding/strength increasing constituent (free in acidic contents into pellet feed to provide pellet strength with the use of organic binders was proposed. Addition of boron compounds such as colemanite, tincal, borax pentahydrate, boric acid together with organic binders such as CMC, starch, dextrin and some organic based binders, into magnetite and hematite pellet mixture was tested. After determining the addition of boron compounds is beneficial to recover the low pellet physical and mechanical qualities in the first part of this study, in this second part, metallurgical and chemical properties (reducibility - swelling index – microstructure – mineralogy - chemical content of pellets produced with combined binders (an organic binder plus a boron compound were presented. The metallurgical and chemical tests results showed that good quality product pellets can be produced with combined binders when compared with the bentonite-bonded pellets. Hence, the suggested combined binders can be used as binder in place of bentonite in iron ore pelletizing without compromising the pellet chemistry.

  15. Curable liquid hydrocarbon prepolymers containing hydroxyl groups and process for producing same

    Science.gov (United States)

    Rhein, R. A.; Ingham, J. D. (Inventor)

    1978-01-01

    Production of hydroxyl containing curable liquid hydrocarbon prepolymers by ozonizing a high molecular weight saturated hydrocarbon polymer such as polyisobutylene or ethylene propylene rubber is discussed. The ozonized material is reduced using reducing agents, preferably diisobutyl aluminum hydride, to form the hydroxyl containing liquid prepolymers having a substantially lower molecular weight than the parent polymer. The resulting curable liquid hydroxyl containing prepolymers can be poured into a mold and readily cured, with reactants such as toluene diisocyanate, to produce highly stable elastomers having a variety of uses such as binders for solid propellants.

  16. Effects of Fibre Additive on the High Temperature Property of Asphalt Binder

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Polyester fibre and floc xylogen fibre were used to prepare fibre-asphalt binder.An SHRP's dynamic shear rheometer (DSR) was employed to investigate the rheology charac teristics of fibre-asphalt binder, andthe flow resistance of binder was revealed by combining the rutting parameter, G * / sinδ.The results indicate that both kinds of fibres remarkably improved the high temperature pe~orrnance of asphalt binder.At the same time, the reinforcement mechanism of the fibres in the asphalt binder was also analyzed.

  17. Alkali-activated binders/geopolymer and an application to environmental engineering

    Directory of Open Access Journals (Sweden)

    Nida Chaimoon

    2014-06-01

    Full Text Available For environmental reason, new binders that can be used as Portland cement replacement materials are being needed. Recently, alkali-activated binders (AAB and geopolymer have found increasing interest. As several research reports have showed that the two new binders are likely to have high potential to be developed and become an alternative to OPC. However, confusion in the classification of both binders is still there. This paper reviews knowledge about AAB and geopolymer including historical background, reaction mechanisms and reaction products. The similarities and differences of both binders are discussed. The application to environmental engineering on hazardous waste management using stabilization/solidification is also described.

  18. Effect of modified humic acid binder on pelletisation of specularite concentrates

    Institute of Scientific and Technical Information of China (English)

    周友连; 张元波; 刘兵兵; 李光辉; 姜涛

    2015-01-01

    A modified humic acid (MHA) binder was tested as a substitute for bentonite to prepare qualified specularite pellets. The results show that there is stronger chemisorption between organic functional groups in MHA binder molecular and specularite particles, improving the green pellet strength. MHA binder has obvious effect on the strength and microstructure of preheated pellets due to the thermal decomposition of organic matters in MHA binder. Appropriately increasing preheating temperature or time can eliminate the adverse impact of organic matters on the preheated pellet strength. Compared with the bentonite pellets, the roasted pellets with MHA binder have a more compact microstructure, and the recrystallization of the Fe2O3 crystal grains is better. Consequently, under optimal conditions, 0.75%(mass fraction) MHA binder pellets have equal or better pellet strengths and contain 1.06%more total iron than 2%bentonite pellets. The testing results indicate that MHA binder is a promising and effective alternative to bentonite for the specularite pellets.

  19. Investigation of Ageing Effects on Organic Binders used for Mineral Wool Products

    DEFF Research Database (Denmark)

    Zafar, Ashar

    for the same duration of ageing. The main purpose of the present work is to examine the chemical changes occurring in the phenol-urea-formaldehyde binder based mineral fibres due to ageing, which cause deterioration of the mechanical properties of mineral wool products. This has been done using surface...... properties is the PUF binder, therefore further research work was performed to the pure PUF binder coatings to directly observe the ageing effects on the surface chemistry of the binder. High mass resolution ToFSIMS spectra of the pure PUF binder coatings confirmed that the depolymerisation of the cured......Phenol-Urea-Formaldehyde (PUF) binder based mineral wool products’ mechanical properties have been observed to degrade during ageing at elevated temperatures and humidity, while mineral wool products based on a newly developed alkanol amine-acid anhydride binder exhibited better ageing properties...

  20. Hygroscopicity -resistant mechanism of an α -starch based composite binder for dry sand molds and cores

    Directory of Open Access Journals (Sweden)

    Xia ZHOU

    2005-05-01

    Full Text Available Hygroscopicity-resistance of an α-starch based composite binder for dry sand molds (cores has been studied experimentally and theoretically. Focus is placed on the relationship between the hardening structure and humidity-resistance of the composite binder. The results show that the α-starch composite binder has good humidity-resistance due to its special complex structure. SEM observations illustrate that the composite binder consists of reticular matrix and a ball- or lump-shaped reinforcement phase, and the specific property of the binding membrane with heterogeneous structure is affected by humidity to a small extent. Based on the analyses on the interplays of different ingredients in the binder at hardening, the structure model and hygroscopicity-resistant mechanisms of the hardening composite binder were further proposed. Moreover, the reasons for good humidity-resistance of the composite binder bonded sand are well explained by the humidity-resistant mechanisms.

  1. Penetration and performance of isocyanate wood binders on selected wood species

    Directory of Open Access Journals (Sweden)

    Gruver, T. M., and

    2006-11-01

    Full Text Available The penetration and performance of polymeric diphenylmethane diisocyanate (pMDI wood binder was investigated according to three factors: substrate species (aspen, yellow-poplar, or southern yellow pine; anatomical bonding plane (radial or tangential; and moisture content (0%, 5%, or 12%. Compression shear block tests and fluorescence microscopy were used to examine bond performance and resin penetration. Statistically, each of the aforementioned factors impacted results. As moisture content increased, observed bond strengths and wood failure increased. Bond formation did not occur when the substrates were equilibrated to 0% moisture content, except for the radial bonding surfaces of pine, which did adhere. At 5 and 12% moisture contents, tangential bonding surfaces out-performed radial bonding surfaces. In terms of resin penetration, moisture content was clearly the most important variable. Little penetration was observed at 0% moisture content, while extensive resin penetration was observed at elevated moisture contents. Pine was the only wood species to exhibit resin flow through radial cells, possibly explaining the enhanced resin penetration depths observed in pine samples.

  2. Effect of Al2O3 Binder on the Precipitated Iron-Based Catalysts for Fischer-Tropsch Synthesis

    Institute of Scientific and Technical Information of China (English)

    Hai-Jun Wan; Bao-Shan Wu; Xia An; Ting-Zhen Li; Zhi-Chao Tao; Hong-Wei Xiang; Yong-Wang Li

    2007-01-01

    A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and M(o)ssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.

  3. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoqiang, E-mail: lxq_suse@sina.com [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); Hao, Junying, E-mail: jyhao@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xie, Yuntao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-08-30

    Highlights: • Evolution of nanostructure and properties of the polymeric amorphous carbon films were firstly studied. • Si doping enhanced polymerization of the hydrocarbon chains and Al doping resulted in increase in the ordered carbon clusters of polymeric amorphous carbon films. • Soft polymeric amorphous carbon films exhibited an unconventional frictional behaviors with a superior wear resistance. • The mechanical and vacuum tribological properties of the polymeric amorphous carbon films were significantly improved by Si and Al co-doping. - Abstract: Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  4. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  5. A binder phase of TiO based cermets

    Institute of Scientific and Technical Information of China (English)

    LI Qing-kui; GUAN Shao-kang; ZHONH Hui; LI Jiang; ZHONG Hai-yun

    2005-01-01

    A binder phase of TiO based cermets, a kind of imitated gold materials, was developed by adding active element Si to Fe-Cr alloy, and the related mechanisms were studied. The wettability, matching in thermodynamics and interfacial strength were investigated by the high temperature sessile drop method and element area scanning. The linear expansion coefficients of the materials were measured using TAH100 thermal analyzer. The results show that the wettability of Fe-Cr alloy on TiO are small, with a wetting angle about 90°. After adding some Si in Fe-Cr alloy, its wetting angle can be decreased to about 25°, the interfacial reactions can be prevented effectively and high interface binding can be formed. Fe-25%Cr-1.5%Si matches the thermal expansion coefficient of TiO, so it is a kind of relatively perfect binder for TiO based cermets imitated gold.

  6. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  7. Studies on organic binders with high infrared transparency*

    Institute of Scientific and Technical Information of China (English)

    Fu Cheng-Wu; Zhou Hao-Shen; Chen Ming-Qing

    2009-01-01

    This paper reports that two kinds of polymers with high infrared transparency and good mechanical and physical properties have been prepared. An internal standard method is used to evaluate the infrared transparency of the binders.The physical and mechanical properties of the binders are measured according to corresponding standards. The results show the absorbance of polymer A in 8-14 μm range is 26% that of the ethylene-vinyl acetate copolymer (EVA), and polymer B is 9% that of the EVA correspondingly. The film of polymer A shows good flexibility of above 1 mm, a hardness of grade 1, and adhesion of grade 2. The film of polymer B shows good flexibility of above 1 mm, a hardness of grade 1, and adhesion of grade 1.

  8. Characterization of low-purity clays for geopolymer binder formulation

    Science.gov (United States)

    Mostafa, Nasser Y.; Mohsen, Q.; El-maghraby, A.

    2014-06-01

    The production of geopolymer binders from low-purity clays was investigated. Three low-purity clays were calcined at 750°C for 4 h. The calcined clays were chemically activated by the alkaline solutions of NaOH and Na2SiO3. The compressive strength was measured as a function of curing time at room temperature and 85°C. The results were compared with those of a pure kaolin sample. An amorphous aluminosilicate polymer was formed in all binders at both processing temperatures. The results show that, the mechanical properties depend on the type and amount of active aluminum silicates in the starting clay material, the impurities, and the processing temperature.

  9. Characterization of low-purity clays for geopolymer binder formulation

    Institute of Scientific and Technical Information of China (English)

    Nasser Y.Mostafa; Q.Mohsen; A.El-maghraby

    2014-01-01

    The production of geopolymer binders from low-purity clays was investigated. Three low-purity clays were calcined at 750°C for 4 h. The calcined clays were chemically activated by the alkaline solutions of NaOH and Na2SiO3. The compressive strength was measured as a function of curing time at room temperature and 85°C. The results were compared with those of a pure kaolin sample. An amorphous aluminosilicate polymer was formed in all binders at both processing temperatures. The results show that, the mechanical properties depend on the type and amount of active aluminum silicates in the starting clay material, the impurities, and the processing temperature.

  10. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  11. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  12. Compressive strength and rheology of environmentally-friendly binders

    Directory of Open Access Journals (Sweden)

    Juan Manuel Lizarazo Marriaga

    2010-07-01

    Full Text Available Ordinary Portland cement production accounts for 9% of worldwide greenhouse gas emissions. This paper summarises the results of research aimed at developing environmentally-friendly binders which can be used as an alternative in civil construction, aimed at generating alternatives and sustainable materials. Mixes of the combination of granulated ground blast furnace slag, basic oxygen slag, cement kiln dust and plasterboard gypsum were used for optimising the binders, according to their compressive strength, to obtain 5 concrete mixtures made partially or completely with industrial waste. The results showed that the compressive strength of mixtures of Portland cement and industrial waste were suitable for different civil construction applications and, although mixtures formed entirely from industrial waste had a significant decrease in their compressive strength, the results sho- wed great potential for specific industrial applications. In addition to compressive strength, the rheological properties of these mixtures were determined for defining flow and workability characteristics.

  13. Effectiveness and cost-efficiency of phosphate binders in hemodialysis

    Directory of Open Access Journals (Sweden)

    Zsifkovits, Johannes

    2009-06-01

    Full Text Available Health political background: In 2006, the prevalence of chronic renal insufficiency in Germany was 91,718, of which 66,508 patients were on dialysis. The tendency is clearly growing. Scientific background: Chronic renal insufficiency results in a disturbance of the mineral balance. It leads to hyperphosphataemia, which is the strongest independent risk factor for mortality in renal patients. Usually, a reduction in the phosphate intake through nutrition and the amount of phosphate filtered out during dialysis are not sufficient to reduce the serum phosphate values to the recommended value. Therefore, phosphate binders are used to bind ingested phosphate in the digestive tract in order to lower the phosphate concentration in the serum. Four different groups of phosphate binders are available: calcium- and aluminium salts are the traditional therapies. Sevelamer and Lanthanum are recent developments on the market. In varying doses, all phosphate binders are able to effectively lower phosphate concentrations. However, drug therapies have achieved recommended phosphate levels in only 50 percent of patients during the last years. Research questions: How effective and efficient are the different phosphate binders in chronic renal insufficient patients? Methods: The systematic literature search yielded 1,251 abstracts. Following a two-part selection process with predefined criteria 18 publications were included in the assessment. Results: All studies evaluated conclude that serum phosphate, serum calcium and intact parathyroid hormone can be controlled effectively with all phosphate binders. Only the number of episodes of hypercalcaemia is higher when using calcium-containing phosphatebinders compared to Sevelamer and Lanthanum. Regarding the mortality rate, the cardiovascular artery calcification and bone metabolism no definite conclusions can be drawn. In any case, the amount of calcification at study start seems to be crucial for the further

  14. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  15. Optimization of propellant binders - part I: statistical methodology

    Energy Technology Data Exchange (ETDEWEB)

    Niehaus, Michael; Greeb, Olaf [Fraunhofer Institut fuer Chemische Technologie, D-76327 Pfinztal (Germany)

    2004-06-01

    The development of new propellant binder systems requires the thermodynamic calculation of physico-chemical data as well as the adaption of the mechanical properties in order to achieve a reliable innerballistic profile of the resulting propellant. However, in most cases the mechanical data may not be easily predicted due to the complex interactions between the components of the binder like the resin, the curing agent or possibly plasticizers and curing catalysts. Therefore, this study focusses on the capability of the multivariate analysis on the prediction of the E-modulus of a system comprising nitrocellulose as well as GAP, Desmodur N100 and an energetic plasticiser. Using this method, an equation has been derived which, within the regression intervall, may be used for the prediction of the E-modulus as a function of the components mentioned above. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  16. Mechanical Activation of Construction Binder Materials by Various Mills

    Science.gov (United States)

    Fediuk, R. S.

    2016-04-01

    The paper deals with the mechanical grinding down to the nano powder of construction materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of portland cement. Mechanical processes during grinding mineral materials cause, along with the increase in their surface energy, increase the Gibbs energy of powders and, respectively, their chemical activity, which also contributes to the high adhesion strength when contacting them with binders. Thus, the set of measures for mechanical activation makes better use of the weight of components filled with cement systems and adjust their properties. At relatively low cost is possible to provide a spectacular and, importantly, easily repeatable results in a production environment.

  17. POLYMERIC SURFACTANT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    P.M. Saville; J.W. White

    2001-01-01

    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  18. Effect of base bitumen composition on asphalt rubber binder properties

    OpenAIRE

    Partl, M.N.; Ould-Henia, M.; Dumont, A.-G.

    2008-01-01

    The asphalt rubber blend properties are strongly related to its base components properties. The base bitumen composition is considered as a key factor influencing the final rheological properties of asphalt rubber binder. This paper describes results from a laboratory investigation of the interaction between crumb rubber and different composition bitumen according to the wet process. The bitumen composition is determined according to the SARA decomposition approac...

  19. Structural and thermal properties of the Poly(styrene-ethyl acrylate) polymeric scintillation material for surface radioactive contamination measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Sang; Seo, Bum Kyoung; Lee, Kune Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    Emulsion polymerization is a unique chemical process widely used to produce waterborne resins with various colloidal and physicochemical properties. These emulsion polymers find a wide range of applications such as synthetic rubbers, thermoplastics, coatings, adhesives, binders, rheological modifiers, plastics pigments, standards for the calibration of instruments, polymeric supports for the purification of proteins and drug delivery system, etc. Polystyrenes are widely employed as matrices in order to dope scintillating dyes for alpha and beta radiation sensors. For example, BC-400 (Bicron Direct Saint-Gobain, MA), a polyvinyltoluene-based scintillator doped with PPO and POPOP, is the best existing plastic scintillator for alpha particle detection. Using emulsion polymerization technique described in a previous communication, experiments have been performed to investigate the detection performance with the scintillators contents. In this paper, the properties of the polymer for radioactive contaminant measurement observed under various condition of polymerization and variously EA contents.

  20. Comparative Assessment of Stabilised Polybutadiene Binder under Accelerated Ageing

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Cannaval Sbegue

    2016-04-01

    Full Text Available Polybutadiene elastomers are versatile materials, being employed at several applications from rocket propellant binder to adhesives and sealants. The elastomers derived from hydroxyl-terminated polybutadiene are usually stabilised with antioxidants to prevent degradation. In this study, a comparative assessment among 2,2’-methylene-bis (4-methyl-6-tert-butylphenol (AO2246, 2,6-di-tert-butyl-4-methylphenol (BHT, p-phenylenediamine (pPDA, and triphenylphosphine (TPP regarding stabilisation of hydroxyl-terminated polybutadiene binder under accelerated ageing (six months at 65 °C was carried out. Evaluation of antioxidants effectiveness was examined through Oxidation Induction time, sol/gel extraction, swelling and mechanical testing, dynamic mechanical analysis, and mass variation measurement. AO2246 yielded the best performance, meanwhile BHT was poorly protective. TPP acted as prooxidant, causing a severe degradation of the binder, and pPDA was not manageable to be assessed due to the lower curing degree of the resulted polyurethane.

  1. Preparation of carbon brushes with thermosetting resin binder

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon brushes with a resin binder were prepared according to an industrial process and the effects of the molding pressure, grains size and cure temperature on the properties of brush samples were discussed. The results show that the bulk density,bending strength and Rockwell hardness increase, while resistivity decreases with increasing molding pressure. Cure temperature has much more influence on the properties of brushes than molding pressure and grains size. Isothermal differential scanning calorimetry(DSC) was used to estimate the degree of cure of resin binder and a novel method of using the true density to measure the degree of cure of resin binder was presented and discussed briefly. Based on optimal process parameters carbon brushes were manufactured, durability tests for brushes were carried out on an alternate current motor and scanning electron microscope(SEM)was adopted to observe the morphology of worn surface of brushes. The results show that a luster oxide film can be formed on the surface of brushes and their service life reaches 380 h.

  2. Comparative evaluation of an experimental binder in hot-mix asphalt: correlating the predicted performance of the binder with asphalt testing

    CSIR Research Space (South Africa)

    O'Connell, Johannes S

    2014-07-01

    Full Text Available The binder is an important constituent of an asphalt mix and it affects the overall performance of the mix, especially with regards to permanent deformation and fatigue cracking. The stiffest binder available from the Chevron refinery in the Western...

  3. Polymerized and functionalized triglycerides

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  4. Waterborne Polymeric Films.

    Science.gov (United States)

    1981-02-01

    Skydrol 500B is a fire resistant hydraulic fluid available from Monsanto and which is primarily tricresyl phosphate. In most cases, the above table...Makromol. Chem. 1979, 82 149.- 23. Ger. Offen 2,804,609; (8/9/79). Bayer AG. 24. Odian, G. "Principles of Polymerization; "McGraw-Hill Book Co.: New York

  5. Application of a bio-binder as a rejuvenator for wet processed asphalt shingles in pavement construction

    OpenAIRE

    2015-01-01

    This paper investigates the merits of application of bio-binder to enhance rheological properties of asphalt binder in the presence of wet processed recycled asphalt shingles (RAS). It will further examine the performance and workability of asphalt designed with and without a specified percentage of a bio-binder produced from swine manure and RAS. Bio-binder was introduced to liquid asphalt binder modified with four different percentages of RAS; the high and low temperature properties of each...

  6. Oxygenated Derivatives of Hydrocarbons

    Science.gov (United States)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  7. Hydrocarbon Spectral Database

    Science.gov (United States)

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  8. Why is the electroanalytical performance of carbon paste electrodes involving an ionic liquid binder higher than paraffinic binders? A simulation investigation.

    Science.gov (United States)

    Ghatee, M H; Namvar, S; Zolghadr, A R; Moosavi, F

    2015-10-14

    Recently, carbon paste electrodes (CPE) fabricated using an ionic liquid (IL) binder have shown enhanced electroanalytical performance over conventional paraffinic binders. Molecular dynamics (MD) simulations of graphite mixed with ionic liquid and with paraffin binder can unravel the potential atomistic factors responsible for such enhancement. Based on an experimentally optimized binder/graphite mass ratio, which has been reported to be crucial for such a performance, comprehensive simulations (at 323 K) are performed with the ensembles involving an ionic liquid binder (1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim]PF6) and a paraffin binder (n-C20H42) mixed with graphite comprising large-size hexagonal-shaped double graphene plates. Structural analysis indicates both binders form only a monolayer on the graphite surface, covering the surface locally by IL but all-encompassing by paraffin. With charged and uncharged graphite, the IL monolayer tends to cover mainly the graphite center without approaching the edge planes. On the contrary, a monolayer of the paraffin binder covers uniformly the center, near the center, and the edge planes. Cations and anions of the IL form well-defined two dimensional pentagonal matrixes with characteristic high adsorption energy, almost 2.4 times higher than paraffin adsorption. The cation and anion coordination ability of the IL is responsible for such a local distribution. The simulation of these phenomena under experimental conditions unravels strong two-dimensional coordination properties inherent to the ionic liquid when distributed over the graphite surface. This direct MD simulation comparison of the IL properties with an organic liquid counterpart, made for the first time, can be used to explain the high electroanalytical performance (electron transfer) of CPEs involving an IL binder over paraffin binders.

  9. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  10. Plant hydrocarbon recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  11. Metabolism of Benzene, Toluene, and Xylene Hydrocarbons in Soil†

    OpenAIRE

    Tsao, C.-W.; Song, H. -G.; Bartha, R

    1998-01-01

    Enrichment cultures obtained from soil exposed to benzene, toluene, and xylene (BTX) mineralized benzene and toluene but cometabolized only xylene isomers, forming polymeric residues. This observation prompted us to investigate the metabolism of 14C-labeled BTX hydrocarbons in soil, either individually or as mixtures. BTX-supplemented soil was incubated aerobically for up to 4 weeks in a sealed system that automatically replenished any O2 consumed. The decrease in solvent vapors and the produ...

  12. Barium titanate tape properties for MLCC application using different binder systems

    Science.gov (United States)

    Yoon, Dang-Hyok

    Most of multilayer ceramic capacitor (MLCC) industries are currently using solvent-based slip systems, although water-based slips have been receiving increasing attention due to reduced health and environmental hazards. The current work focuses on two main fields to meet the challenges in MLCC processing in aqueous media. One is the comparison between water- and solvent-based slip systems using design of experiments (DOE). The other is the understanding of Ba2+ ion leaching behavior in water and its effect on tape properties. For the first part, twenty four kinds of BaTiO3 slips were investigated using three different binder systems: one solvent-based, and two water-based systems. Tape casting, sintering and characterization were conducted. Slip viscosity and tape strength of the green tape depended significantly on the binder type. It was possible to achieve a higher green density for water-based system than that for a solvent-based one. Most of the green body properties from solvent-based system depended on the ceramic powder. On the other hand, the dispersant was the most significant factor for the green body properties of two water-based systems. Sintered properties such as microstructure and dielectric permittivity for three systems depended significantly on the type of ceramic powder. An optimization was performed for each system by means of a scorecard. By choosing the optimum condition, comparable results were drawn for the water-based system compared to a solvent-based one for MLCC application. For the second part, the amount of Ba2+ ion leaching from BaTiO3 in water was determined by an EDTA titration method. The greater extent and the faster rate of Ba2+ leaching were found at the lower solution pH. The excess free barium ions expressed by means of the Ba/Ti ratio adversely affected most tape properties. To passivate BaTiO 3 surface from Ba2+ ion leaching in water, passivation agent layer (PAL) was formed by drying the slurry after adding a commercial

  13. Pharmaceutical equivalence of gabapentin tablets with various extragranular binders Pharmaceutical equivalence of gabapentin tablets with various extragranular binders

    Directory of Open Access Journals (Sweden)

    SWATI C. JAGDALE

    2010-06-01

    Full Text Available Gabapentin is a high-dose drug widely used as an oral anti-epilepticagent. Due to high crystalline and has poor compaction properties it is difficult to form tablets by direct compression. The aim of this study was to develop gabapentin tablets, pharmaceutically equivalent to the reference product Neurontin (marketed in USA. Gabapentin 800mg tablets were produced by wet granulation by keeping intragranular binder as well as its concentration constant and by changing with various extragranular binders with its concentration (A = PVPK 30, B = HPMC 15 cps, C = Kollidon VA 64, D =Klucel EXF.The tablet having no weight, thickness and hardness variation and having appropriate, friability as well as disintegration profile were coated with a 3% film coating solution .Seven formulations F1 (A in lower concentration F2 (A in higher concentration, F3 (B in lower concentration and F4 (B in higher concentration, F5 (C in lower concentration, F6 (C in higher concentration, F7 (D in lower concentration were formulated. Among them F6 demonstrated adequate hardness, friability, disintegration, uniformity of content, and total drug dissolution after 45minutes. The dissimilarity factor (f1 is 5.93 and the similarity factor (f2 is 67.85. So F6 was found to be equivalent to Neurontin.Gabapentin is widely used as an oral anti-epileptic agent. However, owing to its high crystallinity and poor compaction properties, it is difficult to form tablets of this drug by direct compression. The aim of this study was to develop gabapentin tablets, pharmaceutically equivalent to the brand-name pioneer product Neurontin® (marketed in USA. Gabapentin 800mg tablets were produced by wet granulation with a constant concentration of intragranular binder and a varying concentration of extragranular binders (A = polyvinylpyrrolidone K30, B = hydroxypropylmethylcellulose 15 cps, C = Kollidon VA64, D =Klucel EXF. The tablets that did not vary in weight, thickness or hardness and had

  14. Proton-Conducting Sulfonated Ionomers by Chemical Modification and Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller

    of hydrocarbon macromolecular architectures, PSU with postsulfonated polystyrene (PS) grafts are investigated. Here, IEC is controlled through the degree of substitution, the graft length and DS. The grafting is performed with atom transfer radical polymerization (ATRP). The third assessment is dedicated...

  15. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization

    DEFF Research Database (Denmark)

    Nguyen, Hiep Dinh; Löf, David; Hvilsted, Søren

    2016-01-01

    A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA....... This allows simple variations in the molar mass and structure of the polyester without premature gelation, thus enabling easy tailoring of the branched polyester structure. The postpolymerization crosslinking of the polyesters illustrates their potential as binders in alkyds. The formed films had good UV...... stability, very high water contact angles of up to 141° and a glass transition temperature that could be controlled through the feed composition....

  16. Bio-based alkyds by direct enzymatic bulk polymerization

    DEFF Research Database (Denmark)

    Nguyen, Hiep Dinh

    . Bio-based alkyds prepared from a combination of glycerol, and tall oil fatty acids, and azelaic acid by enzymatic polymerization show improved hydrophobicity and lower glass transition temperatures compared to an alkyd prepared from the same raw materials by a classical boiling method. The enzymatic...... to 500 grams of alkyds under inert atmosphere. This system has been used for preparation of a number of bio-based alkyds by classical cooking and provided a selection of physical properties as a function of diacid chain length. The synthesis set up was developed further to enhance reproducibility...... working on the coupling between reinforcement agents and the binder in alkyd coatings. For this purpose, two different types of silica particles were modified with rape seed oil fatty acids or tall oil fatty acids (TOFA-silica), respectively. Tests of TOFA-silica particles have demonstrated...

  17. Binder fraction reduction in non-ferrous metals concentrates briquetting process

    Directory of Open Access Journals (Sweden)

    M. Jodkowski

    2016-10-01

    Full Text Available The research results on a method of reducing the amount of binder applied during formation of metal concentrates are presented. Research was done on a model copper concentrate, which was mixed in assumed mass fraction with binder, as well as binder with addition of waste polyols. Such mixtures were formed and tested using static compressive strength, both immediately after forming and after the assumed seasoning times: 24, 96, 192 and 336 hours. The results confirm the possibility of binder dose lowering using high-efficiency system of binder dispersing with small addition of waste polyols and by homogeneous mixing of the binder with the material. In all examined cases increase in seasoning time influenced mechanical strength of the formed shapes advantageously.

  18. Briquetting of coal fines and sawdust. Part 1: binder and briquetting-parameters evaluations

    Energy Technology Data Exchange (ETDEWEB)

    D. Taulbee; D.P. Patil; Rick Q. Honaker; B.K. Parekh [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2009-01-15

    Various technical and economic aspects relating to the briquetting of fine coal with sawdust have been evaluated with the results for two segments of that study presented here: binder and briquetting-parameter evaluations. Approximately 50 potential binder formulations were subjected to a series of screening evaluations to identify three formulations that were the most cost effective for briquetting fine coal with sawdust. Two of the binders, guar gum and wheat starch, were selected as most suitable for the pulverized coal market while the third formulation, lignosulfonate/lime, was targeted for the stoker market. Following binder selection, a number of briquetting parameters including binder and sawdust concentration, sawdust type, briquetting pressure and dwell time, coal and sawdust particle size, clay content, moisture content, and cure temperature and cure time were evaluated. Briquetting pressure and dwell time have the least impact while binder and sawdust concentrations, sawdust type, and curing conditions exerted the greatest influence on briquette quality. 7 refs.

  19. Influence of Mycotoxin Binders on the Oral Bioavailability of Doxycycline in Pigs.

    Science.gov (United States)

    De Mil, Thomas; Devreese, Mathias; De Saeger, Sarah; Eeckhout, Mia; De Backer, Patrick; Croubels, Siska

    2016-03-16

    Mycotoxin binders are feed additives that aim to adsorb mycotoxins in the gastrointestinal tract of animals, making them unavailable for systemic absorption. The antimicrobial drug doxycycline (DOX) is often used in pigs and is administered through feed or drinking water; hence, DOX can come in contact with mycotoxin binders in the gastrointestinal tract. This paper describes the effect of four mycotoxin binders on the absorption of orally administered DOX in pigs. Two experiments were conducted: The first used a setup with bolus administration to fasted pigs at two different dosages of mycotoxin binder. In the second experiment, DOX and the binders were mixed in the feed at dosages recommended by the manufacturers (= field conditions). Interactions are possible between some of the mycotoxin binders dosed at 10 g/kg feed but not at 2 g/kg feed. When applying field conditions, no influences were seen on the plasma concentrations of DOX.

  20. Development of water soluble binder systems for low pressure injection molding of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, H.I.; Gunes, M. [TUBITAK-MRC Materials and Chemical Technologies Research Inst., Kocaeli (Turkey)

    2004-07-01

    Low pressure injection molding of alumina powder using a water-soluble binder system has been carried out successfully. The water-soluble based binder system consisted of poly (2-ethyl-2-oxaline), low density polyethylene and stearic acid. The critical powder loading of the binder-powder mixture was determined based on torque rheometry experiments. The rheological properties of the powder-binder mixture were investigated systematically. The binder system used provides satisfactory mixture stability, excellent mouldability and reasonably fast water leaching and thermal debinding rates. The water-soluble constituent, poly (2-ethyl-2-oxaline), was removed by leaching in convecting water at 60 C within 6 hour. The remaining binder constituents were thermally removed during heating to 450 C. Sintering of the parts was conducted at 1550 C for an hour in air. (orig.)

  1. ALTERNATIVE BINDERS TO BENTONITE FOR IRON ORE PELLETIZING: PART I: EFFECTS ON PHYSICAL AND MECHANICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Osman Sivrikaya

    2014-07-01

    Full Text Available The use of conventional bentonite binder is favorable in terms of mechanical and metallurgical pellet properties, however, because of its acid constituents bentonite is considered as impurity especially for iron ores with high acidic content. Therefore, alternative binders to bentonite have been tested. Organic binders are the most studied binders and they yield pellets with good wet strength; they fail in terms of preheated and fired pellet strengths. This study was conducted to investigate how insufficient pellet strengths can be improved when organic binders are used as binder. The addition of a low-melting temperature and slag bonding/strength increasing constituent (free in acidic contents into pellet feed was proposed. Addition of boron compounds such as colemanite, tincal, borax pentahydrate, boric acid together with organic binders such as CMC, starch, dextrin and some organic based binders, into iron oxide pellet was tested. Wet and thermally treated pellet physical-mechanical qualities (balling - moisture content - size - shape - drop number - compressive strengths - porosity - dustiness were determined. The results showed that good quality wet, dry, preheated and fired pellets can be produced with combined binders (an organic binder plus a boron compound when compared with bentonite-bonded pellets. While organic binders provided sufficient wet and dry pellet strengths, the boron compounds provided the required preheated and fired pellet strengths at even lower firing temperature. Especially, the contribution of boron compound addition is most pronounced for hematite pellets which do not have strengthening mechanism through oxidation like magnetite pellets during firing. Therefore, addition of boron compound is beneficial to recover the low physical-mechanical qualities of pellets produced with organic binders through slag bonding mechanism. Furthermore, lowering the firing temperature thanks to low-melting boron compounds will be cost

  2. Curing mechanism of flexible aqueous polymeric coatings.

    Science.gov (United States)

    Irfan, Muhammad; Ahmed, Abid Riaz; Dashevskiy, Andriy; Kolter, Karl; Bodmeier, Roland

    2017-02-25

    The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat(®) SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat(®) SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60 °C or 60 °C/75% RH for 24 h. The film formation of the aqueous dispersion of Kollicoat(®) SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60 °C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with 1) high flexibility of coating, 2) adhesion between coating and drug layer, 3) water retaining properties of the drug layer, and 4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified.

  3. Light color, low softening point hydrocarbon resins

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.L.; Hentges, S.G.

    1990-06-12

    This patent describes a hydrocarbon resin having a softening point of from 0{degrees} C to about 40{degrees} C, a Gardner color of about 7 or less, a number average molecular weight (Mn) of from about 100 to about 600, and a M{sub {ital w}}/M{sub {ital n}} ratio of from about 1.1 to about 2.7, prepared by Friedel Crafts polymerization of a hydrocarbon feed. It comprises: from about 5% to about 75% by weight of a C{sub 8} to C{sub 10} vinyl aromatic hydrocarbon stream; up to about 35% by weight of a piperylene stream; and from about 25% to about 70% by weight of a stream containing C{sub 4} to C{sub 8} monoolefin chain transfer agent of the formula RR{prime}C {double bond} CR{double prime}R triple{prime} where R and R{prime} are C{sub 1} to C{sub 5} alkyl, R{double prime} and R triple{prime} are independently selected from H and a C{sub 1} to C{sub 4} alkyl group.

  4. Environmentally-Friendly Geopolymeric Binders Made with Silica

    Science.gov (United States)

    Erdogan, S. T.

    2013-12-01

    Portland cement (PC) is the ubiquitous binding material for constructions works. It is a big contributor to global warming and climate change since its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. Recently there have been efforts to develop alternative binders with lower greenhouse gas emissions. One such class of binders is geopolymers, formed by activating natural or waste materials with suitable alkaline or acidic solutions. These binders use natural or industrial waste raw materials with a very low CO2 footprint from grinding of the starting materials, and some from the production of the activating chemicals. The total CO2 emissions from carefully formulated mixtures can be as low as 1/10th - 1/5th of those of PC concrete mixtures with comparable properties. While use of industrial wastes as raw materials is environmentally preferable, the variability of their chemical compositions over time renders their use difficult. Use of natural materials depletes resources but can have more consistent properties and can be more easily accepted. Silica sand is a natural material containing very high amounts of quartz. Silica fume is a very fine waste from silicon metal production that is mostly non-crystalline silica. This study describes the use of sodium hydroxide and sodium silicate solutions to yield mortars with mechanical properties comparable to those of portland cement mortars and with better chemical and thermal durability. Strength gain is slower than with PC mixtures at room temperature but adequate ultimate strength can be achieved with curing at slightly elevated temperatures in less than 24 h. The consistency of the chemical compositions of these materials and their abundance in several large, developing countries makes silica attractive for producing sustainable concretes with reduced carbon

  5. How to assess the efficacy of phosphate binders.

    Science.gov (United States)

    Caravaca, Francisco; Caravaca-Fontán, Fernando; Azevedo, Lilia; Luna, Enrique

    The efficacy of phosphate binders is difficult to be estimated clinically. This study analyzes the changes in serum phosphate and urinary phosphate excretion after the prescription of phosphate binders (PB) in patients with chronic kidney disease stage 4-5 pre-dialysis, and the usefulness of the ratio between total urinary phosphate and protein catabolic rate (Pu/PCR) for estimating the efficacy of PB. This retrospective observational cohort study included adult chronic kidney disease patients. Biochemical parameters were determined baseline and after 45-60 days on a low phosphate diet plus PB ("binder" subgroup=260 patients) or only with dietary advice ("control" subgroup=79 patients). Phosphate load (total urinary excretion) per unit of renal function (Pu/GFR) was the best parameter correlated with serum phosphate levels (R(2)=0.61). Mean±SD level of Pu/PCR was 8.2±2.3mg of urinary phosphate per each g of estimated protein intake. After treatment with PB, serum phosphate levels decreased by 11%, urinary phosphate 22%, protein catabolic rate 7%, and Pu/PCR 15%. In the control subgroup, Pu/PCR increased by 20%. Urinary phosphate and urea nitrogen excretion correlated strongly, both baseline and after PB or dietary advice. The proposed parameter Pu/PCR may reflect the rate of intestinal phosphate absorption, and therefore, its variations after PB prescription may be a useful tool for estimating the pharmacological efficacy of these drugs. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  6. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    Science.gov (United States)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  7. Next Generation Advanced Binder Chemistries for High Performance, Environmetally DurableThermal Control Material Systems. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative SBIR Phase I proposal will develop new binder systems through the systematic investigations to tailor required unique performance properties and...

  8. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang

    2012-11-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m -2, while SS mesh had a slightly lower power of 1680 ± 12 mW m -2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m -2 (copper) and 1480 ± 56 mW m -2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications. © 2012 Elsevier B.V.

  9. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs

    Science.gov (United States)

    Sherwood Lollar, B.; Westgate, T. D.; Ward, J. A.; Slater, G. F.; Lacrampe-Couloume, G.

    2002-04-01

    Natural hydrocarbons are largely formed by the thermal decomposition of organic matter (thermogenesis) or by microbial processes (bacteriogenesis). But the discovery of methane at an East Pacific Rise hydrothermal vent and in other crustal fluids supports the occurrence of an abiogenic source of hydrocarbons. These abiogenic hydrocarbons are generally formed by the reduction of carbon dioxide, a process which is thought to occur during magma cooling and-more commonly-in hydrothermal systems during water-rock interactions, for example involving Fischer-Tropsch reactions and the serpentinization of ultramafic rocks. Suggestions that abiogenic hydrocarbons make a significant contribution to economic hydrocarbon reservoirs have been difficult to resolve, in part owing to uncertainty in the carbon isotopic signatures for abiogenic versus thermogenic hydrocarbons. Here, using carbon and hydrogen isotope analyses of abiogenic methane and higher hydrocarbons in crystalline rocks of the Canadian shield, we show a clear distinction between abiogenic and thermogenic hydrocarbons. The progressive isotopic trends for the series of C1-C4 alkanes indicate that hydrocarbon formation occurs by way of polymerization of methane precursors. Given that these trends are not observed in the isotopic signatures of economic gas reservoirs, we can now rule out the presence of a globally significant abiogenic source of hydrocarbons.

  10. Chitosan chemical hydrogel electrode binder for direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Nurul A.; Sahai, Yogeshwar; Buchheit, Rudolph G. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH (United States)

    2011-01-15

    A novel and cost-effective electrode binder consisting of chitosan chemical hydrogel (CCH) is reported for direct borohydride fuel cells (DBFCs). The DBFCs have been assembled with Misch-metal-based AB{sub 5} alloy as anode, carbon-supported palladium (Pd/C) as cathode and polyvinyl alcohol (PVA) hydrogel membrane electrolyte (PHME) as well as Nafion {sup registered} -117 membrane electrolyte (NME) as separators. Operating in passive mode without using peristaltic pump and under ambient conditions of temperature as well as pressure, the DBFC exhibited a maximum peak power density of about 81 mW cm{sup -2}. (author)

  11. Hexacyanoferrates and bentonite as binders of radiocaesium for reindeer

    Directory of Open Access Journals (Sweden)

    Knut Hove

    1991-10-01

    Full Text Available The effects of varying doses of caesium binders (Bentonite and several forms of iron-hexacyanoferrates on radiocaesium accumulation in red blood cells and on radiocaesium transfer to urine and faeces were studied in feeding experiments with reindeer calves. The caesium binders were added to a ration of lichen (containing 9.5 kBq of 134Cs+137Cs originating from the Chernobyl accident and fed together with a pelleted reindeer feed (RF-71 for 42 days. A 50% reduction in red blood cell radiocaesium concentration was obtained with a daily dose of 1 mg/kg body weigth of ammoniumironhexacyanoferrate (AFCF and with 500 mg/kg of bentonite. Three mg/kg of AFCF or 2 g/kg of bentonite reduced both urinary excretion and RBC concentrations with more than 80%. It is concluded that iron-hexacyanoferrates, as a result of their high caesium binding capacity, are particularly useful as caesium binders for free ranging ruminants like the reindeer.Hexacynoferrater og bentonitt som bindere av radiocesium i reinAbstract in Norwegian / Sammendrag: Effekten av bentonitt og ulike typer jernhexacyanoferrater (Berlinerblått på akkumulering av radioaktivt cesium i røde blodlegemer og på utskilling av radioaktivt cesium i urin ble undersøkt i foringsforsøk med reinkalver. Cesiumbinderne ble gitt daglig sammen med lav som inneholdt 9.5 kBq 134Cs+137Cs fra Tsjernobyl ulykken, og 1 kg reinfor (RF-71 i en periode på 42 dager. En daglig dose på 1 mg/kg kroppsvekt av ammoniumjernhexacyano-ferrat (AFCF reduserte radiocesiuminnholdet i blodlegemer med 50%, mens en dose pa 500 mg/kg bentonitt var nødvendig for å oppnå samme effekt. Tre mg/kg AFCF eller 2 g/kg/bentonitt var nødvendig for å oppnå mer enn 80% reduksjon i radiocesium konsentrasjonen i blodlegemer og i radiocesium utskilling med urinen. På grunn av de små daglige mengder som kreves er jern-hexacyanoferratene spesielt velegnete som cesiumbindere for beitedyr.

  12. Nanomodified compositions based on finely dispersed binders for soil reinforcement

    Directory of Open Access Journals (Sweden)

    Alimov Lev

    2017-01-01

    Full Text Available Theoretical prerequisites on the possibility of improvement of physical and mechanical properties of soils at underground space development, their stability at different aggressive actions by means of their structure impregnation with nanomodified suspensions on the basis of especially finely dispersed mineral binders are developed. The features of influence of plasticizers on penetration ability and sedimentation stability of suspensions are revealed. Soil body reinforcement after its impregnation may achieve considerable values, which is related to the features of interaction of components of impregnating composition with extended surface of soil pore space.

  13. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    Although thraustochytrid protists are known to be of widespread occurrence in the sea, their hydrocarbon-degrading abilities have never been investigated. We isolated thraustochytrids from coastal waters and sediments of Goa coast by enriching MPN...

  14. Polymerization in emulsion microdroplet reactors

    Science.gov (United States)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  15. The curious case of zeolite-clay/binder interactions and their consequences for catalyst preparation.

    Science.gov (United States)

    Whiting, Gareth T; Chowdhury, Abhishek Dutta; Oord, Ramon; Paalanen, Pasi; Weckhuysen, Bert M

    2016-07-04

    Zeolite-based catalyst bodies are commonly employed in a range of important industrial processes. Depending on the binder and shaping method chosen, vast differences in the reactivity, selectivity and stability are obtained. Here, three highly complementary micro-spectroscopic techniques were employed to study zeolite ZSM-5-binder interactions in SiO2-, Al2O3-, SiO2 : Al2O3- (2 : 1 mix) and kaolinite-bound catalyst pellets. We establish how their preparation influences the zeolite-clay/binder interactions. Using thiophene as an acid-catalyzed staining reaction, light absorbing oligomers produced in each sample were followed. To our surprise, kaolinite decreased the overall reactivity of the sample due to the phase change of the binder, creating a hard impenetrable outer layer. Aluminum migration to the zeolite was observed when Al2O3 was selected as a binder, creating additional Brønsted acid sites, which favored the formation of ring-opened thiophene oligomers compared to the larger oligomer species produced when SiO2 was used as a binder. In the latter case, the interaction of the Si-OH groups in the binder with thiophene was revealed to have a large impact in creating such large oligomer species. Furthermore, the combination of a SiO2 : Al2O3 mix as a binder enhanced the reactivity, possibly due to the creation of additional Brønsted acid sites between the two binder components during pellet preparation. It is evident that, independent of the shaping method, the intimate contact between the zeolite and binder heavily impacts the reactivity and product selectivity, with the type of binder playing a vital role.

  16. Center for BioBased Binders and Pollution Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, Jerry [Univ. of Northern Iowa, Cedar Falls, IA (United States)

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  17. Rheological evaluation of polymer-modified asphalt binders

    Directory of Open Access Journals (Sweden)

    Mônica Romero Santos Fernandes

    2008-09-01

    Full Text Available Currently, the most used polymer for asphalt binder modification is the thermoplastic elastomer styrene butadiene styrene (SBS and aromatic oil is commonly added to the mixtures to improve their compatibly. This paper proposes the use of oil shale from sedimentary rock as a compatibilizer agent for polymer-modified asphalt binder (PMB. PMBs were produced by mixing a bitumen with a linear SBS copolymer (3.5% (w.w-1 using two oil shale contents (2 and 4% and petroleum aromatic oil to evaluate comparatively the effect of the compatibilizer agent on the SBS PMB properties. The rheological characteristics of the SBS PMBs were analyzed in a dynamic shear rheometer (DSR and the morphology accessed by fluorescence optical microscopy. The viscoelastic behavior of the samples corroborated the results for the classical properties and varied according to the sample morphology and composition. The results indicate that the aromatic and shale oils have similar effects on the microstructure, storage stability and viscoelastic behavior of the PMBs. Thus, shale oil could be successfully used as a compatibilizer agent without loss of properties or could even replace the aromatic oil. Following the Superpave methodology it was observed that the linear- and radial-SBS PMBs and linear-SBS PMB with 2% of shale oil can be used up to 70 °C, and the linear-SBS PMBs with 4% of shale oil or 2% of aromatic oil can be used only up to 64 °C.

  18. Predictive cartography of metal binders using generative topographic mapping

    Science.gov (United States)

    Baskin, Igor I.; Solov'ev, Vitaly P.; Bagatur'yants, Alexander A.; Varnek, Alexandre

    2017-08-01

    Generative topographic mapping (GTM) approach is used to visualize the chemical space of organic molecules (L) with respect to binding a wide range of 41 different metal cations (M) and also to build predictive models for stability constants (log K) of 1:1 (M:L) complexes using "density maps," "activity landscapes," and "selectivity landscapes" techniques. A two-dimensional map describing the entire set of 2962 metal binders reveals the selectivity and promiscuity zones with respect to individual metals or groups of metals with similar chemical properties (lanthanides, transition metals, etc). The GTM-based global (for entire set) and local (for selected subsets) models demonstrate a good predictive performance in the cross-validation procedure. It is also shown that the data likelihood could be used as a definition of the applicability domain of GTM-based models. Thus, the GTM approach represents an efficient tool for the predictive cartography of metal binders, which can both visualize their chemical space and predict the affinity profile of metals for new ligands.

  19. Highly flexible binder-free core-shell nanofibrous electrode for lightweight electrochemical energy storage using recycled water bottles

    Science.gov (United States)

    Shi, HaoTian H.; Naguib, Hani E.

    2016-08-01

    The creation of a novel flexible nanocomposite fiber with conductive polymer polyaniline (PAni) coating on a polyethylene terephthalate (PET) substrate allowed for increased electrochemical performance while retaining ideal mechanical properties such as very high flexibility. Binder-free PAni-wrapped PET (PAni@PET) fiber with a core-shell structure was successfully fabricated through a novel technique. The PET nanofiber substrate was fabricated through an optimized electrospinning method, while the PAni shell was chemically polymerized onto the surface of the nanofibers. The PET substrate can be made directly from recycled PETE1 grade plastic water bottles. The resulting nanofiber with an average diameter of 121 nm ± 39 nm, with a specific surface area of 83.72 m2 g-1, led to better ionic interactions at the electrode/electrolyte interface. The PAni active layer coating was found to be 69 nm in average thickness. The specific capacitance was found to have increased dramatically from pure PAni with carbon binders. The specific capacitance was found to be 347 F g-1 at a relatively high scan rate of 10 mV s-1. The PAni/PET fiber also experienced very little degradation (4.4%) in capacitance after 1500 galvanostatic charge/discharge cycles at a specific current of 1.2 A g-1. The mesoporous structure of the PAni@PET fibrous mat also allowed for tunable capacitance by controlling the pore sizes. This novel fabrication method offers insights for the utilization of recycled PETE1 based bottles as a high performance, low cost, highly flexible supercapacitor device.

  20. Living olefin polymerization processes

    Science.gov (United States)

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  1. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  2. Effects of binders on the electrochemical performance of rechargeable magnesium batteries

    Science.gov (United States)

    Wang, Nan; NuLi, Yanna; Su, Shuojian; Yang, Jun; Wang, Jiulin

    2017-02-01

    A comparative study on the effects of different binders on the electrochemical performance of rechargeable magnesium batteries with Mo6S8 cathode is conducted for the first time. The selected binders are commercial organic-soluble polyvinylidene fluoride (PVDF), water-soluble poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), gelatin, sodium alginate (SA) and Beta-cyclodextrin (β-CD). The binders significantly affect the physical properties, thus the electrochemical performance of Mo6S8 cathode. Compared with those using traditional PVDF binder, Mo6S8 electrodes with PAA and PVA exhibit enhanced cycling stabilities and rate capabilities, which are attributed to the improved cohesion among the electrode constituents and adhesion between the electrode laminate and the current collector. In addition, the anodic stability of these binders is not only related to the chemical structure of binders, but also to the uniformity of electrode surface. SA binder shows low anodic stability duo to containing easily oxidized groups. Non-uniform electrode surface decreases the anodic stability of PVDF based Mo6S8 electrode. Gelatin can be used as a binder in the formulation of high voltage cathodes for rechargeable magnesium batteries.

  3. Setup of Columellar Height with Costal Cartilage Graft Modification in a Patient with Binder Syndrome

    Directory of Open Access Journals (Sweden)

    Şafak Uygur

    2016-03-01

    Full Text Available Binder syndrome is an uncommon disorder of unknown etiology. It is characterized by hypoplasia of the nose and maxilla and altered morphology of the associated soft tissue. We present a surgical technique for setting up the columellar height in a patient with Binder syndrome.

  4. 14 CFR 198.15 - Non-premium insurance-payment of registration binders.

    Science.gov (United States)

    2010-01-01

    ... OF TRANSPORTATION (CONTINUED) WAR RISK INSURANCE AVIATION INSURANCE § 198.15 Non-premium insurance... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Non-premium insurance-payment of...-premium insurance must be accompanied by the proper binder, payable to the FAA. A binder is not...

  5. Evaluation of bitumen-rubber asphalt manufactured from modified binder at lower viscosity

    CSIR Research Space (South Africa)

    O'Connell, Johannes S

    2010-08-01

    Full Text Available In South Africa, crumb tyre-modified bitumen commnly known as bitumen-rubber binder has viscosity limits specified by the current edition of TG1: The Use of Modified Bituminous Binders in Road Construction. As the crumb rubber is 'digested...

  6. The influence of metakaolin substitution by slag in alkali-activated inorganic binders for civil engineering

    Science.gov (United States)

    Kadlec, J.; Rieger, D.; Kovářík, T.; Novotný, P.; Franče, P.; Pola, M.

    2017-02-01

    In this study the effect of metakaolin replacement by milled blast furnace slag in alkali-activated geopolymeric binder was investigated in accordance to their rheological and mechanical properties. It was demonstrated that slag addition into the metakaolin binder can improve mechanical properties of final products. Our investigation was focused on broad interval of metakaolin substitution in the range from 100 to 40 volume per cents of metakaolin so that the volume content of solids in final binder was maintained constant. Prepared binders were activated by alkaline solution of potassium silicate with silicate module of 1.61. The particle size analyses were performed for determination of particle size distribution. The rheological properties were determined in accordance to flow properties by measurements on Ford viscosity cup and by oscillatory measurements of hardening process. For the investigation of hardening process, the strain controlled small amplitude oscillatory rheometry was used in plane-plate geometry. For determination of applied mechanical properties were binders filled by ceramic grog in the granularity range 0-1 mm. The filling was maintained constant at 275 volume per cents in accordance to ratio of solids in dry binder. The mechanical properties were investigated after 1, 7 and 28 days and microstructure was documented by scanning electron microscopy. The results indicate that slag addition have beneficial effect not only on mechanical properties of hardened binder but also on flow properties of fresh geopolymer paste and subsequent hardening kinetics of alkali-activated binders.

  7. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 1. Backing sand with the alkaline inorganic binder RUDAL

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.

  8. Investigation of binder distribution in graphite anodes for lithium-ion batteries

    Science.gov (United States)

    Müller, Marcus; Pfaffmann, Lukas; Jaiser, Stefan; Baunach, Michael; Trouillet, Vanessa; Scheiba, Frieder; Scharfer, Philip; Schabel, Wilhelm; Bauer, Werner

    2017-02-01

    Energy dispersive x-ray spectroscopy (EDS) is evaluated regarding its applicability for revealing the binder distribution in lithium-ion battery electrode films. Graphite anodes comprising carbon black and PVDF binder are subject to varying drying conditions during solvent removal in order to adjust different binder distributions; fluorine is used as a marker for the presence of PVDF. For electrodes of about 70 μm thickness the fluorine concentration is detected at the surface of the electrode film as well as at the interface between electrode film and current collector foil. It is clearly visible by EDS that increasing drying temperatures (and drying rates) result in an accumulation of binder at the surface and a corresponding depletion at the interface. It is demonstrated on the basis of ion-milled cross-sections of thick electrodes (ca. 400 μm) that a quantitative mapping of the binder distribution delivers additional information about concentration gradients in dependence of the drying parameters.

  9. Study of chloride ion transport of composite by using cement and starch as a binder

    Energy Technology Data Exchange (ETDEWEB)

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,; Reski, Nurhadi; Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are depending on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.

  10. Gratings in polymeric waveguides

    Science.gov (United States)

    Mishakov, G.; Sokolov, V.; Kocabas, A.; Aydinli, A.

    2007-04-01

    Laser-induced formation of polymer Bragg grating filters for Dense Wavelength Division Multiplexing (DWDM) applications is discussed. Acrylate monomers halogenated with both fluorine and chlorine, which possess absorption losses less than 0.25 dB/cm and wide choice of refractive indices (from 1.3 to 1.5) in the 1.5 μm telecom wavelength region were used. The monomers are highly intermixable thus permitting to adjust the refractive index of the composition within +/-0.0001. Moreover they are photocurable under UV exposure and exhibit high contrast in polymerization. These properties make halogenated acrylates very promising for fabricating polymeric waveguides and photonic circuits. Single-mode polymer waveguides were fabricated on silicon wafers using resistless contact lithography. Submicron index gratings have been written in polymer waveguides using holographic exposure with He-Cd laser beam (325 nm) through a phase mask. Both uniform and apodized gratings have been fabricated. The gratings are stable and are not erased by uniform UV exposure. The waveguide gratings possess narrowband reflection spectra in the 1.5 μm wavelength region of 0.4 nm width, nearly rectangular shape of the stopband and reflectivity R > 99%. The fabricated Bragg grating filters can be used for multiplexing/demultiplexing optical signals in high-speed DWDM optical fiber networks.

  11. STUDY ON OIL WASTEWATER TREATMENT WITH POLYMERIC REAGENTS

    Directory of Open Access Journals (Sweden)

    RODICA BUCUROIU

    2016-04-01

    Full Text Available Used the polymeric reagents in oil wastewater treatment is an effective method of eliminate hydrocarbons. The present study aims to finding reagents that lead to lowering of extractible (EXT, suspended solids (SS and chemical oxygen demand (COD of industrial wastewater from washing cars in loading ramps petroleum products. For this purpose five reagents were tested, namely: polyamines, cationic polyacrylamides, polydiallydimethyl ammonium chloride (PolyDADMAC, melamine formaldehyde polymer resin and polydicyandiamide polymer resin. Obtaining removal degrees over 80 % justifies using this method in the industrial practice.

  12. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Hiep Dinh Nguyen

    2016-10-01

    Full Text Available A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA were polymerized using an immobilized Candida antarctica lipase B (CALB and the potential for an enzymatic synthesis of alkyds was investigated. The developed method enables the use of both glycerol and also pentaerythritol (for the first time as the alcohol source and was found to be very robust. This allows simple variations in the molar mass and structure of the polyester without premature gelation, thus enabling easy tailoring of the branched polyester structure. The postpolymerization crosslinking of the polyesters illustrates their potential as binders in alkyds. The formed films had good UV stability, very high water contact angles of up to 141° and a glass transition temperature that could be controlled through the feed composition.

  13. Development of partitioning method: adsorption behavior of Sr on titanic acid pelletized with binder

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, Kenichi; Yamaguchi, Isoo; Morita, Yasuji; Yamagishi, Isao; Fujiwara, Takeshi; Kubota, Masumitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-05-01

    The adsorption behavior of Sr was examined with the titanic acid with the binder and with binderless titanic acid. Then the effect of the difference of the neutralizer was also examined. When the initial concentration of Sr was constant, distribution coefficient (Kd) increased with pH after adsorption. At pH 4, Kd decreased in order of the titanic acid neutralized with NH{sub 4}OH solution without the binder > the titanic acid neutralized with NH{sub 4}OH solution and pelletized with the binder > the titanic acid neutralized with KOH solution and pelletized with the binder. At pH 6, Kd decreased with increasing the concentration of Sr in the solution, but the decreasing tendency of Kd for each titanic acid was the same. Adsorption kinetics was examined with titanic acids neutralized with NH{sub 4}OH solution, keeping the initial concentration of Sr and the initial pH constant. It took about one hour to reach Kd of 100mL/g for the titanic acid without the binder but over 10 hours for the titanic acid pelletized with the binder. It was confirmed that by pelletizing titanic acid with the binder, Kd of Sr became small and it took very long time to reach the adsorption equilibrium. However, by sufficient conditioning with water of the titanic acid pelletized with the binder, 1) it took about half time of titanic acid without conditioning to reach Kd of 100mL/g, 2) after 24 hours mixing, Kd for the titanic acid pelletized with the binder was almost equal to that for the titanic acid without the binder, 3) apparent ion exchange capacity obtained through a column test became over about 1meq/g. (J.P.N.)

  14. Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ho; Kim, Dae Su [Chungbuk National University, Cheongju (Korea, Republic of)

    2013-10-15

    Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surface-modified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

  15. Fracture properties of concrete specimens made from alkali activated binders

    Science.gov (United States)

    Šimonová, Hana; Kucharczyková, Barbara; Topolář, Libor; Bílek, Vlastimil, Jr.; Keršner, Zbyněk

    2017-09-01

    The aim of this paper is to quantify crack initiation and other fracture properties – effective fracture toughness and specific fracture energy – of two types of concrete with an alkali activated binder. The beam specimens with a stress concentrator were tested in a three-point bending test after 28, 90, and 365 days of maturing. Records of fracture tests in the form of load versus deflection (P–d) diagrams were evaluated using effective crack model and work-of-fracture method and load versus mouth crack opening displacement (P–CMOD) diagrams were evaluated using the Double-K fracture model. The initiation of cracks during the fracture tests for all ages was also monitored by the acoustic emission method. The higher value of monitored mechanical fracture parameters of concrete with alkali activated blast furnace slag were achieved with substitution blast furnace slag by low calcium fly ash in comparison with substitution by cement kiln dust.

  16. Zeolite and bentonite as caesium binders in reindeer feed

    Directory of Open Access Journals (Sweden)

    Birgitta Åhman

    1990-09-01

    Full Text Available The effects of zeolite and bentonite on the accumulation and excretion of radiocaesium (Cs-137 in reindeer were studied in two feeding experiments. Six animals in each experiment were given lichens contaminated with radiocaesium from fallout after the Chernobyl nuclear power plant accident. In addition, they were fed pellets containing bentonite (Experiment I or zeolite (Experiment II. Two animals, controls, in each experiment received no caesium-binder. The activity concentration of radiocaesium in blood was used to evalute the radiocaesium level in the body. Faeces and urine were collected to measue the excration of radiocaesium. The animals in Experiment I were depleted of radiocaesium before the start of the experiment. After three weeks, with an intake of 17 - 18 kBq Cs-137/day, the controls had reached activity concentrations of radiocaesium in blood corresponding to 4 - 4.5 kBq Cs-137/kg in muscle. Reindeer fed 23 or 46 g of bentonite per day stabilized at values below 0.8 kfiq/kg in muscle. In Experiment II, the reindeer started with radiocaesium activity concentrations in blood corresponding to 2 - 4.5 kBq Cs-137/kg in muscle. After four weeks of feeding, with an intake at about 8.5 kBq Cs-137/day, controls had increased their radiocaesium values by an average of 40%. Reindeer receiving 25 or 50 g zeolite per day decreased with 18 and 45%, respectively. Net absorption of radiocaesium from the gastro-intestinal tract was calculated at 50 -70% in animals receiving no caesium-binder. Reindeer fed bentonite had an absorption below 10% while those fed zeolite absorbed around 35%.

  17. Pharmaceutical equivalence of metformin tablets with various binders

    Directory of Open Access Journals (Sweden)

    L. C. Block

    2009-01-01

    Full Text Available

    Metformin hydrochloride is a high-dose drug widely used as an oral anti-hyperglycemic agent. As it is highly crystalline and has poor compaction properties, it is difficult to form tablets by direct compression. The aim of this study was to develop adequate metformin tablets, pharmaceutically equivalent to the reference product, Glucophage® (marketed as Glifage® in Brazil. Metformin 500mg tablets were produced by wet granulation with various binders (A = starch, B = starch 1500®, C = PVP K30®, D = PVP K90®. The tablets were analyzed for their hardness, friability, disintegration, dissolution, content uniformity and dissolution profile (basket apparatus at 50 rpm, pH 6.8 phosphate buffer. The 4 formulations, F1 (5% A and 5% C, F2 (5% B and 5% C, F3 (10% C and F4 (5% D, demonstrated adequate uniformity of content, hardness, friability, disintegration and total drug dissolution after 30 minutes (F1, F2 and F4, and after 60 minutes (F3. The drug release time profiles fitted a Higuchi model (F1, F2 and F3, similarly to the pharmaceutical reference, or a zero order model (F4. The dissolution efficiency for all the formulations was 75%, except for F3 (45%. F1 and F2 were thus equivalent to Glifage®. Keywords: dissolution; metformin; tablet; binder; pharmaceutical equivalence

  18. RELATIVE DOSING OF PHOSPHATE BINDERS FOR EFFECTIVE MANAGEMENT OF PHOSPHATE AND PROTEIN INTAKE IN CHRONIC KIDNEY DISEASE

    Directory of Open Access Journals (Sweden)

    J Brian Copley

    2012-06-01

    The availability of binding capacity data for P binders, presents physicians with the possibility of tailoring doses of binder to a patient’s diet, facilitating sufficient intake of dietary protein while maintaining a neutral P balance. Use of high-capacity binders, such as lanthanum carbonate, would minimize the tablet burden faced by patients and this may also encourage adherence.

  19. Quantitative Hydrocarbon Surface Analysis

    Science.gov (United States)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  20. Miscellaneous hydrocarbon solvents.

    Science.gov (United States)

    Bebarta, Vikhyat; DeWitt, Christopher

    2004-08-01

    The solvents discussed in this article are common solvents not categorized as halogenated, aromatic, or botanical. The solvents discussed are categorized into two groups: hydrocarbon mixtures and single agents. The hydrocarbon mixtures discussed are Stoddard solvent, naphtha, and kerosene. The remaining solvents described are n-hexane, methyl n-butyl ketone, dimethylformamide, dimethyl sulfoxide, and butyl mercaptans. Effects common to this group of agents and their unique effects are characterized. Treatment of exposures and toxic effects of these solvents is described, and physiochemical properties and occupational exposure levels are listed.

  1. Collaborative Research: Polymeric Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Temple Univ., Philadelphia, PA (United States). College of Engineering

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamental understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.

  2. Mitigating Impacts Of Arsenic Contaminated Materials Via Two (2) Stabilization Methods Based On Polymeric And Cement Binders

    Science.gov (United States)

    The primary objective of this study was to evaluate the performance of two selected chemical stabilization and solidification (S/S) techniques to treat three types of arsenic-contaminated wastes 1) chromated copper arsenate (CCA) wood treater waste, 2) La Trinidad Mine tailings, ...

  3. Time-dependent deformation behavior of polyvinylidene fluoride binder: Implications on the mechanics of composite electrodes

    Science.gov (United States)

    Santimetaneedol, Arnuparp; Tripuraneni, Rajasekhar; Chester, Shawn A.; Nadimpalli, Siva P. V.

    2016-11-01

    The majority of existing battery models that simulate composite electrode behavior assume the binder as a linear elastic material due to lack of a thorough understanding of time-dependent mechanical behavior of binders. Here, thin films of polyvinylidene fluoride binder, prepared according to commercial battery manufacturing method, are subjected to standard monotonic, load-unload, and relaxation tests to characterize the time-dependent mechanical behavior. The strain in the binder samples is measured with the digital image correlation technique to eliminate experimental errors. The experimental data showed that for (charging/discharging) time scales of practical importance, polyvinylidene fluoride behaves more like an elastic-viscoplastic material as opposed to a visco-elastic material; based on this observation, a simple elastic-viscoplastic model, calibrated against the data is adopted to represent the deformation behavior of binder in a Si-based composite electrode; the lithiation/delithiation process of this composite was simulated at different C rates and the stress/strain behavior was monitored. It is observed that the linear elastic assumption of the binder leads to inaccurate results and the time-dependent constitutive behavior of the binder not only leads to accurate prediction of the mechanics but is an essential step towards developing advanced multi-physics models for simulating the degradation behavior of batteries.

  4. Characterization of zirconia-based slurries with different binders for titanium investment casting

    Directory of Open Access Journals (Sweden)

    Zhao Ertuan

    2012-05-01

    Full Text Available The materials and physical properties of primary slurry are crucial to the surface quality of the finished castings, especially for high reactivity titanium alloys. The aim of this study is to investigate the influence of different binders on the physical properties of primary slurry for titanium alloy investment casting. The zirconia-based slurries with different binders were evaluated by comparing the parameters: viscosity, bulk density, plate weight, suspensibility, gel velocity and strength. The results indicate that a higher viscosity of binder leads to a higher viscosity and suspensibility of slurry with the same powder/binder ratio. The retention rate and thickness of primary layer increase with an increase in the viscosity of the slurry, and a higher retention rate is associated with a thicker primary layer. The gel velocity of the slurry is correlated with the gel velocity of the binder. The green strength and the baked strength of the primary layer are determined by the properties of the binder after gel and by the production of the binder after fired, respectively.

  5. Application of Microbial Biopolymers as an Alternative Construction Binder for Earth Buildings in Underdeveloped Countries

    Directory of Open Access Journals (Sweden)

    Ilhan Chang

    2015-01-01

    Full Text Available Earth buildings are still a common type of residence for one-third of the world’s population. However, these buildings are not durable or resistant against earthquakes and floods, and this amplifies their potential harm to humans. Earthen construction without soil binders (e.g., cement is known to result in poor strength and durability performance of earth buildings. Failure to use construction binders is related to the imbalance in binder prices in different countries. In particular, the price of cement in Africa, Middle East, and Southwest Asia countries is extremely high relative to the global trend of consumer goods and accounts for the limited usage of cement in those regions. Moreover, environmental concerns regarding cement usage have recently risen due to high CO2 emissions. Meanwhile, biopolymers have been introduced as an alternative binder for soil strengthening. Previous studies and feasibility attempts in this area show that the mechanical properties (i.e., compressive strength of biopolymer mixed soil blocks (i.e, both 1% xanthan gum and 1% gellan gum satisfied the international criteria for binders used in earthen structures. Economic and market analyses have demonstrated that the biopolymer binder has high potential as a self-sufficient local construction binder for earth buildings where the usage of ordinary cement is restricted.

  6. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells

    KAUST Repository

    Ivanov, Ivan

    2017-06-02

    Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.

  7. Experimental evaluation on high temperature rheological properties of various fiber modified asphalt binders

    Institute of Scientific and Technical Information of China (English)

    陈筝; 吴少鹏; 朱祖煌; 刘杰胜

    2008-01-01

    High temperature rheological properties of fiber modified asphalt binders and impact of the type and content on such properties were studied.Three types of fiber,including polyester(PET),polyacrylonitrile(PAN) and cellulose(CEL),a control content(0%) and four levels of fiber content(2%,4%,6% and 8% by total asphalt binder mass) were used with asphalt binders.The high temperature rheological properties,consisting of complex modulus(G*) and phase angle δ,were measured using SHRP’s dynamic shear rheometer(DSR) between 46-82 ℃.Experimental results indicate that the changes of G* and tan δ of fiber modified asphalt binders with the increase of test temperature tend to slow down,and the temperature susceptibility is improved obviously compared to that of original asphalt binder.Fiber modification results in the increase of rutting parameter(G*/sin δ) at high temperatures,the decrease of temperature susceptibility,and further improved high temperature performance of asphalt binder.An excellent correlation exhibits between fiber content and high temperature performance of asphalt binder.Moreover,fiber type also has different influences on the improvement of G*/sin δ,G*/sin δ of PET and PAN fiber asphalt binders are both higher than that of CEL fiber,but G*/sin δ of CEL fiber is still higher than that of original asphalt.However,there is a critical fiber content when fibers start to interact with each other.Therefore,based on the critical fiber content and economic consideration,the optimum fiber contents for various fiber-modified asphalt binders are obtained.

  8. Shear resistance properties of TPS modified bitumen binders and asphalt mixtures

    Institute of Scientific and Technical Information of China (English)

    曹庭维; 吴少鹏; 刘聪慧; 张涛

    2008-01-01

    Shear resistance properties of the virgin bitumen and modified bitumen binders with Tafpack Super(TPS) modifier and SBS modified bitumen were discussed.Dynamic shear rheometer(DSR) was used to measure the laboratory creep data for these binders over a wide range of constant shear stresses at 20 ℃ to characterize the shear creep behaviors of all kinds of asphalt binders,and the rutting test system was used to investigate the permanent deformation of porous asphalt mixtures using the above bitumen binders for a fixed compressive stress.The shear strain rate and shear creep modulus were used to characterize the shear creep behavior of the TPS modified bitumen,and the rutting test results were used to show the consistency of porous asphalt mixtures with the bitumen binders.Results indicate that a distinction of shear creep strain can be made among different contents of TPS modified bitumen at the same stress level,where the shear creep strain-time response curve of the SBS modified bitumen binder is between the curves of the 8% TPS and 12% TPS modified bitumen binders.The shear strain rate and the shear creep modulus of the TPS modified bitumen binders are obtained to compare with those of the SBS modified bitumen binder which results in the same trend as the shear creep strain-time response curve.Permanent deformation results of all the porous asphalt mixtures from the rutting test show reasonable agreement with the findings of the shear strain rates and shear creep modulus over the range of shear stress levels.

  9. Apparatus and methods for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2016-04-26

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  10. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.

    1987-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  11. Influence of microcrystalline wax on properties of MIM multi-component wax matrix binder

    Institute of Scientific and Technical Information of China (English)

    张健; 黄伯云; 李益民; 李松林

    2002-01-01

    The properties of PW-EVA-HDPE binder with the addition of MW were studied. It shows that the addition of MW from 1% to 20%(mass fraction) causes an increase in the tensile strength and a decrease in shrinkage of the binder. After blending PW with MW, the crystallation behavior of wax base changes, which results in fine grain for the binder and more isotropic microstructure for the feedstock. The powder loading capacity increases and homogeneity of feedstock becomes better. The reason of the modification is also discussed.

  12. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    Directory of Open Access Journals (Sweden)

    Berenika Hausnerova

    2014-02-01

    Full Text Available This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  13. Burn Rate Studies on AN-Based Propellants: Effect of N-N Bonded Binders.

    Directory of Open Access Journals (Sweden)

    C. Oommen

    1996-12-01

    Full Text Available New epoxy resins having N-N bonds in their structures have been employed as binders for ammonium nitrate (AN-based propellants. The resins have been characterized by various analytical techniques. The effect of the new binders on the burn rates of AN-based compositions including the metallized systems has been examined. The overall enhancement in the burn rate, as compared to that observed with conventional binders, has been explained in terms of the combustion reactivity of the N-N bondwiththe oxidizing speciesproduced duringcombustion. Furtherincreasein burn rate canbe achieved by inclusion of magnesium metal or ammonium perchlorate into these compositions.

  14. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    Science.gov (United States)

    Mudge, David W; Johnson, David W; Hawley, Carmel M; Campbell, Scott B; Isbel, Nicole M; van Eps, Carolyn L; Petrie, James J B

    2011-05-13

    Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing concerns about the risks of

  15. The curious case of zeolite-clay/binder interactions and their consequences for catalyst preparation

    OpenAIRE

    Whiting, Gareth T.; Chowdhury, Abhishek Dutta; Oord, R. van; Paalanen, Pasi; Weckhuysen, Bert M.

    2016-01-01

    Zeolite-based catalyst bodies are commonly employed in a range of important industrial processes. Depending on the binder and shaping method chosen, vast differences in the reactivity, selectivity and stability are obtained. Here, three highly complementary micro-spectroscopic techniques were employed to study zeolite ZSM-5-binder interactions in SiO2-, Al2O3-, SiO2 : Al2O3- (2 : 1 mix) and kaolinite-bound catalyst pellets. We establish how their preparation influences the zeolite-clay/binder...

  16. Study on catalysis effect of TEPB on the curing reaction of HTPB binder system

    Science.gov (United States)

    Chang, S. J.; Tang, J.; Liu, X.; Yan, W.

    2016-07-01

    The catalysis effect of tri (exhoxyphenyl) bismuthine (TEPB) on the curing reaction of HTPB binder system was studied by using DSC method. The curing peak temperatures of the catalyst systems were measured to calculate kinetic parameters by using Kissinger and Crane methods, respectively. Two curing reaction kinetic equations were established. The results show that TEPB has high catalytic activity and can decrease the curing temperature of HTPB binder system, down to 35 °C, in which the optimum volume of TEPB is 0.5% of HTPB binder system.

  17. Influence of crumb rubber and digestion time on the asphalt rubber binders

    OpenAIRE

    Neto, Silvrano Adonias Dantas; De Farias, Márcio Muniz; Pais, Jorge C.; Pereira, Paulo A. A.; Sousa, Jorge B.

    2006-01-01

    This paper shows the results of a study about the mechanical behavior of dense graded asphalt-rubber hot mixes prepared with two different types of asphalt-rubber binders. These asphalt-rubber binders were obtained with penetration grade asphalt (AC 50/70) mixed with 21% and 25% of crumb rubber in weight. The rubber was recycled from unserviceable tires using the ambient grinding process. Hot mixes made with the conventional binder AC 50/70 were also studied for comparison. The...

  18. A Binder Viscosity Effect on the Wet-Wounded Composite Porosity in the Impregnating Bath

    Directory of Open Access Journals (Sweden)

    M. A. Komkov

    2014-01-01

    Full Text Available The aim of this work is to define experimentally an impregnation rate of VM-1 glass fibers and CBM aramid bundles with the epoxy binder EDB-10 using wet method of winding. During the impregnation process of the fibrous fillers by the liquid binder, air is displaced from the interfiber space of fiber and bundle. With the composite product winding a fiber impregnation process is short. That is why gas inclusions or pores are formed in the polymer-fiber compositeThe impregnation rate or porosity of wound material will depend directly on the binder viscosity. To reduce an epoxy binder viscosity temporarily is possible by two ways. The first is to heat a liquid epoxy composition EDB-10 to the maximum possible temperature during the winding process of the product. The second method is to dilute the binder by a solvent, such as acetone or alcohol. However, the solvent reduces its strength.The paper presents experimental data to show the volumetric content of pores in the wound composite affected only by the viscosity of the epoxy binder. Heating a binder allowed us to regulate a changing conditional viscosity of the binder in the impregnating bath for the normal conditions of impregnation. Other impacts on the impregnation and filament-winding processes, such as filler kinks, squeeze, vacuuming binder, highly tensioned winding, and others were not used.Experimentally obtained dependences of the porosity value of wound composite on the conditional viscosity of binder are nonlinear and can be used to design heaters for impregnating devices of winders. The research technique and results can be used in development of technological processes to manufacture composite structures by winding from the other reinforcing fibrous fillers and thermo-active binders.The results show that the volumetric content of pores can significantly vary within 8 - 14 % of material volume. Therefore, to reduce the number of pores in the wound composite to 1-2 %, auxiliary

  19. FTIR spectroscopy of water glass - the binder moulding modified by ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Bobrowski

    2012-10-01

    Full Text Available The subject of the paper is the determination of the infl uence of the colloidal nanoparticles of zinc oxide on the structure of sodium water glass. Nanoparticles of zinc oxide in ethanol solvent were introduced into the water glass. The modification and structural changes were determined by means of the FT-IR absorption spectra. In order to determine the kind of infl uence: binder-modifier the spectroscopic FTIR analysis of samples of a fresh binder and of a binder hardened for 24 h in the air was performed by means of the spectrometer Digilab Excalibur with a standard DTGS detector.

  20. Cirugía ortognática y rinoplastia en el síndrome de Binder Orthognathic surgery and rhinoplasty in Binder syndrome

    Directory of Open Access Journals (Sweden)

    M. Tito

    2007-04-01

    Full Text Available El síndrome de Binder es una patología caracterizada por hipoplasia nariz-maxilar, ángulo naso-frontal plano, senos frontales hipoplasicos, ausencia de la espina nasal anterior, columela corta y ángulo nasolabial agudo. El tratamiento del los pacientes con síndrome de Binder puede ser ortodóntico o quirúrgico según la gravedad de la malformación. En este trabajo hemos realizado una revision bibliográfica sobre la etiología, el diagnóstico diferential y el tratamiento de la sindrome de Binder y presentamos un caso clínico de un paciente binderiano sometido a intervención de cirugía ortognática y rinoplastia con injerto de cartílago costal para recostruir el dorso y la punta nasal.Binder syndrome is a disorder characterized by nasomaxillary hypoplasia that results in a short nose, a frontonasal angle of almost 180 degrees, hypoplasia of the frontal sinuses, an absent anterior nasal spine, a short columella and an acute nasolabial angle. The patient can be treated orthodontically or surgically depending on the seriousness of the malformation. We review the literature on the etiology, differential diagnosis and treatment of Binder syndrome. We present the case of a boy with this syndrome surgically treated with orthognatic surgery and rhinoplasty with an L-shaped rib cartilage graft.

  1. Mantle hydrocarbons: abiotic or biotic?

    Science.gov (United States)

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10.

  2. Organometallic Polymeric Conductors

    Science.gov (United States)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  3. High temperature structural, polymeric foams from high internal emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.

    1996-02-01

    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  4. Bacterial sources for phenylalkane hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, L.; Winans, R.E. [Argonne National Lab., IL (United States); Langworthy, T. [Univ. of South Dakota, Vermillion, SD (United States)

    1996-10-01

    The presence of phenylalkane hydrocarbons in geochemical samples has been the source of much controversy. Although an anthropogenic input from detergent sources always appears likely, the distribution of phenylalkane hydrocarbons in some cases far exceeding that attributed to detergent input has led to a reappraisal of this view. Indeed, recent work involving analysis of the lipid hydrocarbon extracts from extant Thermoplasma bacteria has revealed the presence of phenylalkane hydrocarbons. The presence of phenylalkane hydrocarbons in sedimentary organic matter may therefore represent potential biological markers for thermophilic bacteria.

  5. Topological calculation of key parameters of fibre for production of foam concrete based on cement-free nanostructured binder

    Directory of Open Access Journals (Sweden)

    KHARKHARDIN Anatoly Nikolaevich

    2016-08-01

    Full Text Available Fiber reinforcement is the process of introduction of fibers of different origins into binding system to enhance strength, stress-strain behavior of products and structures. Maximal effect of reinforcing process is possible when optimal parameters (length and consumption of fibre are determined. Moreover one need to consider particle-size composition and hardening process of binding system. In this paper the critical length of natural and sinthesized fibres as well as minimally required content in cellular systems is calculated with the mathematical apparatus of structural topology. As an example the foam concrete based on cement-free nanostructured binder with basalt fibre and microreinforcing constructional polymeric fibre is studied. Fiber diameter, refined with microstructure analysis, accomplished by SEM-microscopy and experimentally determined packing density in loose and compact state are applied as input parameters. Measurement of the fibre topological characteristics with acceptable is accomplished according to material porosity and pore size. So the minimal effective fibre length taking into account homogeneous distribution in bulk of composite matrix is less of 1 mm; minimal fibre consumption is 0,2–0,5 (by wt. %. Irrational optimization leads to unreasonable cost growth of final materials as well as formation of balling inclusions that negatively affects on final performance of composite.

  6. Evaluation of Thermal Control Coatings and Polymeric Materials Exposed to Ground Simulated Atomic Oxygen and Vacuum Ultraviolet Radiation

    Science.gov (United States)

    Kamenetzky, R. R.; Vaughn, J. A.; Finckenor, M. M.; Linton, R. C.

    1995-01-01

    Numerous thermal control and polymeric samples with potential International Space Station applications were evaluated for atomic oxygen and vacuum ultraviolet radiation effects in the Princeton Plasma Physics Laboratory 5 eV Neutral Atomic Oxygen Facility and in the MSFC Atomic Oxygen Drift Tube System. Included in this study were samples of various anodized aluminum samples, ceramic paints, polymeric materials, and beta cloth, a Teflon-impregnated fiberglass cloth. Aluminum anodizations tested were black duranodic, chromic acid anodize, and sulfuric acid anodize. Paint samples consisted of an inorganic glassy black paint and Z-93 white paint made with the original PS7 binder and the new K2130 binder. Polymeric samples evaluated included bulk Halar, bulk PEEK, and silverized FEP Teflon. Aluminized and nonaluminized Chemfab 250 beta cloth were also exposed. Samples were evaluated for changes in mass, thickness, solar absorptance, and infrared emittance. In addition to material effects, an investigation was made comparing diffuse reflectance/solar absorptance measurements made using a Beckman DK2 spectroreflectometer and like measurements made using an AZ Technology-developed laboratory portable spectroreflectometer.

  7. Microbial degradation of petroleum hydrocarbons.

    Science.gov (United States)

    Varjani, Sunita J

    2017-01-01

    Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  9. Kinetics of silica polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Weres, O.; Yee, A.; Tsao, L.

    1980-05-01

    The polymerization of silicic acid in geothermal brine-like aqueous solutions to produce amorphous silica in colloidal form has been studied experimentally and theoretically. A large amount of high quality experimental data has been generated over the temperature rang 23 to 100{sup 0}C. Wide ranges of dissolved silica concentration, pH, and sodium chloride concentration were covered. The catalytic effects of fluoride and the reaction inhibiting effects of aluminum and boron were studied also. Two basic processes have been separately studied: the formation of new colloidal particles by the homogeneous nucleation process and the deposition of dissolved silica on pre-existing colloidal particles. A rigorous theory of the formation of colloidal particles of amorphous silica by homogeneous nucleation was developed. This theory employs the Lothe-Pound formalism, and is embodied in the computer code SILNUC which quantitatively models the homogeneous nucleation and growth of colloidal silica particles in more than enough detail for practical application. The theory and code were extensively used in planning the experimental work and analyzing the data produced. The code is now complete and running in its final form. It is capable of reproducing most of the experimental results to within experimental error. It is also capable of extrapolation to experimentally inaccessible conditions, i.e., high temperatures, rapidly varying temperature and pH, etc.

  10. Polymerization of anionic wormlike micelles.

    Science.gov (United States)

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  11. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  12. Surface glycosylation of polymeric membranes

    Institute of Scientific and Technical Information of China (English)

    DAI ZhengWei; WAN LingShu; XU ZhiKang

    2008-01-01

    Surface glycosylation of polymeric membranes has been inspired by the structure of natural biomembranes. It refers to that glycosyl groups are introduced onto the membrane surface by various strategies, which combine the separation function of the membrane with the biological function of the saccharides in one system. In this review, progress in the surface glycosylation of polymeric membranes is highlighted in two aspects, i.e. the glycosylation methods and the potential applications of the surface-glycosylated membranes.

  13. Chemical Characterization of Lime-Based Binders in Historic Buildings of Latvia

    Science.gov (United States)

    Kirilovica, I.; Gulbe, L.; Vitina, I.; Igaune-Blumberga, S.

    2015-11-01

    The aim of this research is to investigate the chemical composition of stone materials of several local historic buildings with a purpose of elaboration of restoration strategy, including the choice of restoration materials. Most of the examined mortars are lime- based hydraulic mortars, characteristic of the architecture of 19th/20th century. Pure aerial lime binders show reduced compatibility with historic materials, that is why lime binders with pozzolan additive (cement) are an appropriate choice for restoration. In order to examine the changes of hydraulicity (i.e. the property of binders to harden when exposed to water) of perspective restoration binders, a series of blended lime-cement mixtures were synthesized with growing content of cement (up to 10% by weight). A significant relationship between cement content and hydraulic properties has been shown.

  14. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications

    Science.gov (United States)

    Miyanaji, Hadi; Zhang, Shanshan; Lassell, Austin; Zandinejad, Amirali; Yang, Li

    2016-03-01

    Custom ceramic structures possess significant potentials in many applications such as dentistry and aerospace where extreme environments are present. Specifically, highly customized geometries with adequate performance are needed for various dental prostheses applications. This paper demonstrates the development of process and post-process parameters for a dental porcelain ceramic material using binder jetting additive manufacturing (AM). Various process parameters such as binder amount, drying power level, drying time and powder spread speed were studied experimentally for their effect on geometrical and mechanical characteristics of green parts. In addition, the effects of sintering and printing parameters on the qualities of the densified ceramic structures were also investigated experimentally. The results provide insights into the process-property relationships for the binder jetting AM process, and some of the challenges of the process that need to be further characterized for the successful adoption of the binder jetting technology in high quality ceramic fabrications are discussed.

  15. Optimum Parameters for the Formulation of Charcoal Briquettes Using Bagasse and Clay as Binder

    National Research Council Canada - National Science Library

    M.S. Rao; B.N. Chikamai; J.M. Onchieku

    2012-01-01

    ... for the formulation of charcoal briquettes for household use tosupplement wood charcoal. In this study briquettes were formulated usingcarbonized bagasse, clay as a binder and molasses as a filler...

  16. Optimum Parameters for the Formulation of Charcoal Briquettes Using Bagasse and Clay as Binder

    National Research Council Canada - National Science Library

    J.M. Onchieku; B.N. Chikamai; M.S. Rao

    2014-01-01

    ... for the formulation of charcoal briquettes for household use tosupplement wood charcoal. In this study briquettes were formulated usingcarbonized bagasse, clay as a binder and molasses as a filler...

  17. Study of Rheological Properties of Bituminous Binders in Middle and High Temperatures

    Directory of Open Access Journals (Sweden)

    Remišová Eva

    2016-05-01

    Full Text Available The bitumen binders in road pavements are exposed traffic loading effect at different climatic conditions. A resistance to these stresses depends on bitumen properties as well. The paper presents rheological properties (G*, δ, ν* determined and compared for four bituminous binders (unmodified and polymer modified bitumen at temperature 46 – 60 (80 °C and dynamic viscosity at temperature 130 – 190 °C (Brookfield viscometer. On the basis of viscosity results it is possible to set optimal production and compaction temperatures. Elastic and viscous behavior of binder in the middle temperature is determined in rheometers. The higher value of complex modulus, the stiffer bitumen binder is able to resist deformation. The greater content of elastic components (e.g. polymer in bitumen varies mainly elastic-viscous properties of primary bitumen.

  18. Tungsten carbide coatings with different binders prepared by low power plasma spray system

    Institute of Scientific and Technical Information of China (English)

    GAO Yang; M.F.Morks; FU Ying-qing

    2004-01-01

    Thermal spraying of cermet coatings is widely used for protection of machining parts against wear and corrosion. These coatings consist of WC particles in metal binders such as Co, Cr and Ni. Three kinds of WC powders with different metal binders (Co, NiCr and CoCr) were sprayed by low power plasma spray system on Al-Si-Cu alloy substrate. Fundamental aspects of sprayed cermet coatings, including (i) the effects of binder type on the coating structure, (ii) the hardness and (iii) the microstructure, were investigated. All cermet coatings have the same phase structure such as WC and W2 C. However, the intensities of these phases are different in each coating, mainly due to the difference in solidification rate in each case. Moreover, the hardness measurements are found to be different in each coating. The results show that, binder type has a significant effect on the physical and mechanical properties of the sprayed coatings.

  19. Some aspects on improvement of water resistant perfornace of gypsum binders

    Directory of Open Access Journals (Sweden)

    Fomina Ekaterina

    2016-01-01

    Full Text Available The study reports that control of water resistant and strength performance of composite binder can be accomplished by using nanostructured gypsum silicate binder and portland cement and reduction of calcium sulfate dihydrate. Formation of an arranged more dense packing in crystal matrix of binder structure can be achieved through polydispersity of nanostructured silicon component. Highly reactive silica particles participate in synthesis of microcrystalline compounds such as hydroxylellestadite and serve as nucleation sites providing an increase of surface contact area between crystal structures. Cement in the system provides conditions to synthesis of stable flat-like hydroxysulfoaluminates. Upon hydration of a binder crystals of calcium sulfate dihydrate impound to a mass of water resistant crystalhydrate new formations, type and morphology of which promotes decreasing of intercrystal porosity followed by density, strength and water resistance increase of the composite.

  20. Testing a Novel Geopolymer Binder as a Refractory Material for Rocket Plume Environments at SSC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project involved the development and testing of a new alumina-silicate based multi-purpose, cost-effective, ‘green’ cementitious binder (geopolymer)...

  1. Organically modified clays as binders of fumonisins in feedstocks.

    Science.gov (United States)

    Baglieri, Andrea; Reyneri, Amedeo; Gennari, Mara; Nègre, Michèle

    2013-01-01

    This study reports an investigation on the ability of organically modified clays to bind mycotoxins, fumonisins B1 (FB1) and B2 (FB2). Organically modified clays are commercia materials prepared from natural clays, generally montmorillonite, by exchanging the inorganic cation with an ammonium organic cation. A screening experiment conducted on 13 organically modified clays and 3 nonmodified clays, used as controls, has confirmed that the presence of an organic cation in the clay interlayer promoted the adsorption of both fumonisins. On the basis of the results of the screening test, four modified clays and a Na-montmorillonite were selected for the determination of the adsorption kinetics and isotherms. On all the tested materials adsorption took place within one hour of contact with fumonisins solutions. Adsorption isotherms have pointed out that the modified clays exhibited a higher adsorptive capacity than the unmodified clay. It was also demonstrated that, notwithstanding the reduced structural difference between FB1 and FB2, they were differently adsorbed on the modified clays. Addition of 2% modified clays to contaminated maize allowed a reduction of more than 70% and 60% of the amount of FB1and FB2 released in solution. Although in vivo experiments are required to confirm the effectiveness of the organically modified clays, these preliminary results suggest that these materials are promising as fumonisins binders.

  2. Poly(lactic acid) degradable plastics, coatings, and binders

    Energy Technology Data Exchange (ETDEWEB)

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-01-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids' being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  3. Poly(lactic acid) degradable plastics, coatings, and binders

    Energy Technology Data Exchange (ETDEWEB)

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-05-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids` being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  4. Recent developments in binder design for advanced media

    Science.gov (United States)

    Kim, K. J.; Farkas, J.; Hasman, D.; Miller, T.; Zellia, J.; Jacobs, P.

    1999-03-01

    This study is aimed to examine the technical issue, the rheological requirements, in accomplishing successful processing of the dispersion made with wetting binders to produce tapes with excellent mechanical properties. The results indicate that the dispersions made with DTPU or NTPU (new dispersing TPU for metal pigments), can be characterized using RFS 8400 and Bolin CSM. For this type of dispersion, a higher strain is required to start flow or to break the primary structure, a wider range of shear rate is needed for the structural breakdown. It also shows that the recovery time is shorter with longer time to reach a steady state that is a lower recovery compliance level. G'/ G″ cross-over point was defining the needed strain level and the strain rate for the structural breakdown. It is expected that the results of the study could be applied to define the mechanical properties of the final tape affected by various operations such as mixing/agitation, high coating speed, drying/calendering, and curing and high speed duplicating process.

  5. Quality of buffalo meat burger containing legume flours as binders.

    Science.gov (United States)

    Modi, V K; Mahendrakar, N S; Narasimha Rao, D; Sachindra, N M

    2004-01-01

    The effect of addition of different decorticated legume flours, viz., soya bean, bengal gram, green gram and black gram, on the quality of buffalo meat burger was studied. The burgers consisted of optimized quantities of roasted or unroasted legume flour, spices and common salt. Inclusion of roasted black gram flour registered the highest yield of 95.7%, lowest shrinkage of 5% and lowest fat absorption of 26.6% on frying. Protein content of 18-20% was highest in the soya flour formulation. Free fatty acid (FFA) values (as% oleic) increased from 14.3 to 17.3 in freshly prepared samples (before frying) to 16.0-19.4 in 4 m frozen (-16±2 °C) stored samples and fried samples had about 25% lower FFA values. Formulations with roasted flours registered lower thiobarbituric acid (TBA) values (mg malonaldehyde/kg sample) of 0.6-1.5 as against 0.6-2.1 for unroasted flours before frying. The burgers prepared with any of these binders were organoleptically acceptable even after storage at -16±2 °C for 4 months., However, the burger with black gram dhal (dehulled split legume) flour had better sensory quality attributes compared to other legumes.

  6. Study on the hardening mechanism of cement asphalt binder

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hydration and hardening mechanism of cement asphalt binder(CAB) was studied.The early hydration process,hydration products and paste microstructure of CAB made by Portland cement and anionic asphalt emulsion were investigated by calorimetry,X-ray diffraction,and environmental scanning electron microscopy.The early hydration process of CAB can be characterized as 5 stages similar to those of Portland cement.There is no chemical reaction detected between cement and asphalt,hence no new hydration products other than those of Portland cement are produced.The hardening of CAB begins with the hydration of cement.When the hydration of cement comes into the acceleration period and its exothermic rate comes to the maximum,the coalescence of asphalt particles in asphalt emulsion is triggered.In the hardened system of CAB,it was found that the hydration products of cement form the skeleton and are covered by the continuous asphalt film.They formed an interpenetrating network system.The emulsifiers in the asphalt emulsion may retard the hydration process of cement.

  7. Characterization of zirconia-based slurries with different binders for titanium investment casting

    OpenAIRE

    Zhao Ertuan; Kong Fantao; Chen Yanfei

    2012-01-01

    The materials and physical properties of primary slurry are crucial to the surface quality of the finished castings, especially for high reactivity titanium alloys. The aim of this study is to investigate the influence of different binders on the physical properties of primary slurry for titanium alloy investment casting. The zirconia-based slurries with different binders were evaluated by comparing the parameters: viscosity, bulk density, plate weight, suspensibility, gel velocity and streng...

  8. Water-soluble binders for MCMB carbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Courtel, Fabrice M.; Niketic, Svetlana; Duguay, Dominique; Abu-Lebdeh, Yaser; Davidson, Isobel J. [National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada)

    2011-02-15

    We have investigated the suitability of four different binders for the conventional mesocarbon microbeads (MCMBs) anode material in Li-ion batteries. Unlike the conventional polyvinylidene fluoride (PVDF), the binders were water soluble and were either cellulose based, such as the lithium and sodium salts of carboxymethyl cellulose (NaCMC, and LiCMC) and Xanthan Gum (XG), or the conjugated polymer: poly(3,4-ethylendioxythiophene) (PEDOT, a.k.a. Baytron). All binders were commercially available except LiCMC, which was synthesized and characterized by FTIR and NMR. Thermal studies of the binders by TGA and DSC showed that, in air, the binders have a broad melting event at 100-150 C, with an onset temperature for decomposition above 220 C. Li/MCMB half-cell batteries were assembled using the studied binders. Slow scan voltammograms of all cells showed characteristic lithium insertion and de-insertion peaks including that of the SEI formation which was found to be embedded into the insertion peaks during the first cycle. Cycling of the cells showed that the one containing XG binder gave the highest capacities reaching 350 mAh g{sup -1} after 100 cycles at C/12, while the others gave comparable capacities to those of the conventional binder PVDF. The rate capabilities of cells were examined and found to perform well up to the studied C/2 rate with more than 50% capacity retained. Further studies of the XG-based MCMB electrodes were performed and concluded that an optimal thickness of 300-365 {mu}m gave the highest capacities and sustained high C-rates. (author)

  9. A Review on Decomposition Deflagration of Oxidizer and Binders in Composite Solid Propellants

    Directory of Open Access Journals (Sweden)

    K. Kishore

    1979-01-01

    Full Text Available Binder and oxidizer decomposition play very significant role during the combustion of composite solid propellants. Ammonium perchlorate (AP is the practical oxidizer in composite propellant formulations. Available information on binder decomposition in general and AP decomposition in particular have been collected and reviewed from the viewpoint of their application in propellants. This review may be useful in understanding the mechanism of propellant combustion.

  10. A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing.

    OpenAIRE

    Sargent, P.; Hughes, P. N.; Rouainia, M.

    2016-01-01

    Soft alluvial soils present unfavourable conditions for engineering developments due to their poor bearing capacities and high potential for experiencing shrinkage and swelling. This paper focusses on deep dry soil mixing (DDSM), which introduces cementitious binders to soft soils via a rotating auger drill, thereby producing soil-cement columns. Ordinary Portland cement (CEM-I) is globally used across the construction industry and is the most commonly used binder for DDSM applications due to...

  11. Research of gypsum binder of phosphogypsum and dry mortar on its basis

    OpenAIRE

    Казимагомедов, Ибрагим Эмирчубанович; Дехтярюк, Ольга Игоревна

    2015-01-01

    Gypsum binder was received by the method of intensive dehydration and the influence of admixture in phosphogypsum on the hydration process of gypsum binder was researched. Phase composition of phosphogypsum before and after calcination, using XFA, IR-spectroscopy and crystal optic analysis was defined. Dry mortar for plaster of interior walls of buildings on the basis of CaSO4·0,5H2O obtained from phosphogypsum is investigated. Its advantages and physical and chemical characteristics are shown

  12. AQUEOUS STABLE FREE RADICAL POLYMERIZATION PROCESSES

    Institute of Scientific and Technical Information of China (English)

    Andrea R. Szkurhan; Michael K. Georges

    2004-01-01

    An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations,under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and suspension SFRP polymerizations is contrasted with the difficulties associated with obtaining a stable emulsion polymerization. A recently developed unique microprecipitation technique is referenced as a means of making submicron sized particles that can be used to achieve a stable emulsion SFRP process.

  13. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  14. OPTIMIZING THE COMPOSITION AND THE FEATURES OF GYPSUM BINDER PRODUCED IN A KETTLE

    Directory of Open Access Journals (Sweden)

    Pustovgar Andrey Petrovich

    2016-06-01

    Full Text Available The authors considered the gypsum binder obtained in a kettle SMA-158A in the enterprise LLC “MaykopGipsStroy”. The initial gypsum binder burnt at a temperature of 120 °Сwith the following unloading out of the kettle possessed unstable physical, mechanical and operational characteristics, that’s why the grade of gypsum binder was changed from G4-AII to G5-BII for different lots, which greatly reduced its application in the composition of dry mortars. It was stated, that instability of the features of gypsum binder is determined by the essential underburning of the system, which was characterized by residual content of calcium sulfate dihydrate in amount from 2 to 7 % by weight. In frames of the investigation the authors succeeded in raising the grade of the produced gypsum binder (from G4-5 to G6 due to optimization of the technological parameters of the burning process, as well as to stabilize the composition and features, to lay down temperature and time parameters allowing to control the technological process in order to obtain the gypsum binder with specified characteristics.

  15. Application of gelatin as a binder for the sulfur cathode in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jing [Department of Material Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing 100029 (China); Huang Yaqin [Department of Material Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing 100029 (China)], E-mail: huangyaqin9@sina.com; Wang Weikun; Yu Zhongbao; Wang Anbang; Yuan Keguo [Military Power Sources Research and Development Center, Chemical Defense Institute, 35 Huayuan North Road, Beijing 100083 (China)

    2008-10-15

    Gelatin, a natural biological macromolecule, was successfully used as a new binder in place of poly(ethylene oxide) (PEO) in the fabrication of the sulfur cathode in lithium-sulfur batteries. The structure and electrochemical performance of the two types of sulfur cathodes, with gelatin and PEO as binders, respectively, were compared in 1 M LiClO{sub 4} DME/DOL (V/V = 1/1) electrolyte. The results showed that the gelatin binder had multifunctional effects on the sulfur cathode: it not only functioned as a highly adhesive agent and an effective dispersion agent for the cathode materials, but also an electrochemically stable binder. The gelatin binder-sulfur cathode achieved a high initial capacity of 1132 mAh g{sup -1}, and remained at a reversible capacity of 408 mAh g{sup -1} after 50 cycles, all of which were better than with the PEO binder-sulfur cathode under the same conditions.

  16. Application of gelatin as a binder for the sulfur cathode in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Huang, Yaqin [Department of Material Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing 100029 (China); Wang, Weikun; Yu, Zhongbao; Wang, Anbang; Yuan, Keguo [Military Power Sources Research and Development Center, Chemical Defense Institute, 35 Huayuan North Road, Beijing 100083 (China)

    2008-10-15

    Gelatin, a natural biological macromolecule, was successfully used as a new binder in place of poly(ethylene oxide) (PEO) in the fabrication of the sulfur cathode in lithium-sulfur batteries. The structure and electrochemical performance of the two types of sulfur cathodes, with gelatin and PEO as binders, respectively, were compared in 1 M LiClO{sub 4} DME/DOL (V/V = 1/1) electrolyte. The results showed that the gelatin binder had multifunctional effects on the sulfur cathode: it not only functioned as a highly adhesive agent and an effective dispersion agent for the cathode materials, but also an electrochemically stable binder. The gelatin binder-sulfur cathode achieved a high initial capacity of 1132 mAh g{sup -1}, and remained at a reversible capacity of 408 mAh g{sup -1} after 50 cycles, all of which were better than with the PEO binder-sulfur cathode under the same conditions. (author)

  17. An improved sodium silicate binder modified by ultra-fine powder materials

    Institute of Scientific and Technical Information of China (English)

    WANG Ji-na; FAN Zi-tian; WANG Hua-fang; DONG Xuan-pu; HUANG Nai-yu

    2007-01-01

    This paper presents a new method of modifying sodium silicate binder with ultra-fine powders. The sodium silicate binder modified by ultra-fine powder A and the organic B can reduce the addition amount of the binder. The results indicate that the 24 h strength has increased by 39.9% at room temperature and the residual strength has decreased by 30.7% at 800℃, compared to the conventional sodium silicate. An available material to improve the moisture resistance was also found by adding about 2% more inorganic C, and it can increase the moist strength by 20%. In the end, the microanalyses are given to explain the modifying machanism, i. e., the ultra-fine powder A can refine the sodium silicate binder to avoid holes in the binder bond, which can increase the 24 h strength at room temperture, and can lead to more cracks in the bond after the molding sand is heated to 800℃. This is because of the stress caused by the new eutectic complex of modified sodium silicate binder.

  18. Effects of an abdominal binder and electrical stimulation on cough in patients with spinal cord injury.

    Science.gov (United States)

    Lin, K H; Lai, Y L; Wu, H D; Wang, T Q; Wang, Y H

    1998-04-01

    We explored the effect of an abdominal binder, with or without electrical stimulation, on peak expiratory flow rate (PEFR) in 12 paraplegics with complete thoracic cord (T2-T12) injury (mean age 36.0 +/- 1.5 yr) and 12 quadriplegics with complete cervical cord (C4-C8) injury (mean age 36.2 +/- 1.9 yr). The cough was assessed by measuring the PEFR during forceful expiration in a sitting position. The subjects underwent the following experimental maneuvers in a random order with a 10-minute interval between any two maneuvers: 1) voluntary coughing, 2) voluntary coughing with an abdominal binder, and 3) voluntary coughing with an abdominal binder and electrical stimulation. The electrical stimulator (50 Hz with 300 microseconds pulse width) was applied to the abdominal wall. Data were analyzed using multivariate analysis of variance for repeated measures. The abdominal binder did not significantly increase PEFR in either paraplegics or quadriplegics; the abdominal binder combined with electrical stimulation significantly increased PEFR by 15% in the paraplegics and 18% in the quadriplegics. These results indicate that electrical stimulation combined with an abdominal binder improves the cough ability in patients with cervical or thoracic spinal cord injury.

  19. Analysis of the binder yield energy test as an indicator of fatigue behaviour of asphalt mixes

    Science.gov (United States)

    O’Connell, Johan; Mturi, Georges A. J.; Komba, Julius; Du Plessis, Louw

    2017-09-01

    Empirical binder testing has increasingly failed to predict pavement performance in South Africa, with fatigue cracking being one of the major forms of premature pavement distress. In response, it has become a national aspiration to incorporate a performance related fatigue test into the binder specifications for South Africa. The Binder Yield Energy Test (BYET) was the first in a series of tests analysed for its potential to predict the fatigue performance of the binder. The test is performed with the dynamic shear rheometer, giving two key parameters, namely, yield energy and shear strain at maximum shear stress (γτmax). The objective of the investigation was to perform a rudimentary evaluation of the BYET; followed by a more in-depth investigation should the initial BYET results prove promising. The paper discusses the results generated from the BYET under eight different conditions, using six different binders. The results are then correlated with four point bending beam fatigue test results obtained from asphalt mix samples that were manufactured from the same binders. Final results indicate that the BYET is not ideal as an indicator of fatigue performance.

  20. Small things make a big difference: binder effects on the performance of Li and Na batteries.

    Science.gov (United States)

    Chou, Shu-Lei; Pan, Yuede; Wang, Jia-Zhao; Liu, Hua-Kun; Dou, Shi-Xue

    2014-10-14

    Li and Na batteries are very important as energy storage devices for electric vehicles and smart grids. It is well known that, when an electrode is analysed in detail, each of the components (the active material, the conductive carbon, the current collector and the binder) makes a portion of contribution to the battery performance in terms of specific capacity, rate capability, cycle life, etc. However, there has not yet been a review on the binder, though there are already many review papers on the active materials. Binders make up only a small part of the electrode composition, but in some cases, they play an important role in affecting the cycling stability and rate capability for Li-ion and Na-ion batteries. Poly(vinylidene difluoride) (PVDF) has been the mainstream binder, but there have been discoveries that aqueous binders can sometimes make a battery perform better, not to mention they are cheaper, greener, and easier to use for electrode fabrication. In this review, we focus on several kinds of promising electrode materials, to show how their battery performance can be affected significantly by binder materials: anode materials such as Si, Sn and transitional metal oxides; cathode materials such as LiFePO4, LiNi1/3Co1/3Mn1/3O2, LiCoO2 and sulphur.

  1. Essential work of fracture approach to fatigue grading of asphalt binders

    Science.gov (United States)

    Andriescu, Adrian

    The main objective of this thesis was to apply failure mechanics principles to the characterization of fatigue cracking of asphalt pavements and to identify the correlations between the pavement performance and the composition of binders. The essential work of fracture (EWF) method developed herein is an energy-based testing approach used for the fracture characterization of ductile materials. Developed for both binders and asphalt mixtures, the method provides fundamental parameters, such as specific essential work of fracture and critical tip opening displacement, as potential candidates for a better fatigue specification. It was shown that binders from different sources and with the same performance grade can have very different levels of fatigue susceptibility depending on their manufacturing method and hence failure properties. Also, the currently used binder loss modulus as developed by the Strategic Highway Research Program does not correlate with the newly proposed fracture mechanics based parameters. An extensive theological and ductile failure investigation on a large interval of testing conditions was performed for a group of binders that are used in the recently built test sections of Highway 655 in northern Ontario. It was found that the shift factors used in the construction of the master curves of the ductile fracture parameters differ from the shift factors of the rheological master curves. The difference was attributed to the response of the internal structure of the binder at the high strain levels that precede the failure phenomenon.

  2. Advancing the Use of Secondary Inputs in Geopolymer Binders for Sustainable Cementitious Composites: A Review

    Directory of Open Access Journals (Sweden)

    Esther Obonyo

    2011-02-01

    Full Text Available Because of concerns over the construction industry‘s heavy use of cement and the general dissatisfaction with the performance of building envelopes with respect to durability, there is a growing demand for a novel class of ―green‖ binders. Geopolymer binders have re-emerged as binders that can be used as a replacement for Portland cement given their numerous advantages over the latter including lower carbon dioxide emissions, greater chemical and thermal resistance, combined with enhanced mechanical properties at both normal and extreme exposure conditions. The paper focuses on the use of geopolymer binders in building applications. It discusses the various options for starting materials and describes key engineering properties associated with geopolymer compositions that are ideal for structural applications. Specific properties, such as compressive strength, density, pore size distribution, cumulative water absorption, and acid resistance, are comparable to the specifications for structures incorporating conventional binders. This paper presents geopolymer binders, with their three dimensional microstructure, as material for structural elements that can be used to advance the realization of sustainable building systems.

  3. Tapioca binder for porous zinc anodes electrode in zinc–air batteries

    Directory of Open Access Journals (Sweden)

    Mohamad Najmi Masri

    2015-07-01

    Full Text Available Tapioca was used as a binder for porous Zn anodes in an electrochemical zinc-air (Zn-air battery system. The tapioca binder concentrations varied to find the optimum composition. The effect of the discharge rate at 100 mA on the constant current, current–potential and current density–power density of the Zn-air battery was measured and analyzed. At concentrations of 60–80 mg cm−3, the tapioca binder exhibited the optimum discharge capability, with a specific capacity of approximately 500 mA h g−1 and a power density of 17 mW cm−2. A morphological analysis proved that at this concentration, the binder is able to provide excellent binding between the Zn powders. Moreover, the structure of Zn as the active material was not affected by the addition of tapioca as the binder, as shown by the X-ray diffraction analysis. Furthermore, the conversion of Zn into ZnO represents the full utilization of the active material, which is a good indication that tapioca can be used as the binder.

  4. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    Energy Technology Data Exchange (ETDEWEB)

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  5. Polymeric materials for neovascularization

    Science.gov (United States)

    DeVolder, Ross John

    Revascularization therapies have emerged as a promising strategy to treat various acute and chronic wounds, cardiovascular diseases, and tissue defects. It is common to either administer proangiogenic growth factors, such as vascular endothelial growth factor (VEGF), or transplant cells that endogenously express multiple proangiogenic factors. Additionally, these strategies utilize a wide variety of polymeric systems, including hydrogels and biodegradable plastics, to deliver proangiogenic factors in a sophisticated manner to maintain a sustained proangiogenic environment. Despite some impressive results in rebuilding vascular networks, it is still a challenging task to engineer mature and functional neovessels in target tissues, because of the increasing complexities involved with neovascularization applications. To resolve these challenges, this work aims to design a wide variety of proangiogenic biomaterial systems with tunable properties used for neovascularization therapies. This thesis describes the design of several biomaterial systems used for the delivery of proangiogenic factors in neovascularization therapies, including: an electrospun/electrosprayed biodegradable plastic patch used for directional blood vessel growth (Chapter 2), an alginate-g-pyrrole hydrogel system that biochemically stimulates cellular endogenous proangiogenic factor expression (Chapter 3), an enzyme-catalyzed alginate-g-pyrrole hydrogel system for VEGF delivery (Chapter 4), an enzyme-activated alginate-g-pyrrole hydrogel system with systematically controllable electrical and mechanical properties (Chapter 5), and an alginate-g-pyrrole hydrogel that enables the decoupled control of electrical conductivity and mechanical rigidity and is use to electrically stimulate cellular endogenous proangiogenic factor expression (Chapter 6). Overall, the biomaterial systems developed in this thesis will be broadly useful for improving the quality of a wide array of molecular and cellular based

  6. Hydrocarbon and HCN Condensation in the Atmosphere of Pluto

    Science.gov (United States)

    Fan, S.; Gao, P.; Limpasuvan, D. L.; Willacy, K.; Yung, Y. L.

    2016-12-01

    Observations by the New Horizons spacecraft revealed the presence of haze in the Pluto atmosphere, which have been shown by microphysical models to be likely composed of fractal aggregates originating from CH4 photolysis and subsequent polymerization of higher hydrocarbons. However, temperatures in the Pluto atmosphere are such that higher hydrocarbons, such as C2H2, C2H4, C2H6, as we well as HCN, should condense, possibly onto the fractal aggregate haze particles. This process can change their shape, as well as their optical properties. We use a modified microphysical model to investigate the characteristics of haze particles as C2 hydrocarbons and HCN condense on them during their sedimentation through the atmosphere. The composition of the particles as a function of altitude can in turn inform the interpretation of New Horizons observations. In addition, we use the condensation rates from the microphysics model to augment the photochemical model that calculates the concentrations of C2 hydrocarbons and HCN to ensure self-consistency.

  7. Stereospecific olefin polymerization catalysts

    Science.gov (United States)

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  8. Clinical pharmacokinetics of the phosphate binder lanthanum carbonate.

    Science.gov (United States)

    Damment, Stephen J P; Pennick, Michael

    2008-01-01

    Lanthanum carbonate is considered to be the most potent of a new generation of noncalcium phosphate binders used to treat hyperphosphataemia in chronic kidney disease (CKD), a condition associated with progressive bone and cardiovascular pathology and a markedly elevated risk of death. Its phosphate-binding action involves ionic binding and precipitation of insoluble complexes within the lumen of the intestine, thereby preventing absorption of dietary phosphate. While pharmacokinetics have little relevance to the efficacy of lanthanum carbonate, they are of fundamental importance when it comes to evaluating safety. When administered as lanthanum carbonate, the oral bioavailability of lanthanum is low (approximately 0.001%). The small absorbed fraction is excreted predominantly in bile, with less than 2% being eliminated by the kidneys. Predictably, therefore, plasma exposure and pharmacokinetics have been shown to be similar in healthy human volunteers and CKD stage 5 patients. With almost complete plasma protein binding, free lanthanum concentrations in patients at steady state are carbonate has a low propensity to cause systemic drug interactions due to its poor absorption. However, the higher concentrations present in the gastrointestinal tract can form chelates with some drugs, such as fluoroquinolones, and reduce their absorption. The improved understanding of the pharmacokinetics of lanthanum that has emerged in recent years has helped to explain why the myriad of calcium-like effects described in vitro for lanthanum have little if any relevance in vivo. The pharmacokinetic investigations of lanthanum carbonate formed an important part of the stringent premarketing safety assessment process and have been influential in reassuring both regulators and physicians that the agent can be used safely and effectively in this vulnerable dialysis population.

  9. Effect of DNA groove binder distamycin A upon chromatin structure.

    Directory of Open Access Journals (Sweden)

    Parijat Majumder

    Full Text Available BACKGROUND: Distamycin A is a prototype minor groove binder, which binds to B-form DNA, preferentially at A/T rich sites. Extensive work in the past few decades has characterized the binding at the level of double stranded DNA. However, effect of the same on physiological DNA, i.e. DNA complexed in chromatin, has not been well studied. Here we elucidate from a structural perspective, the interaction of distamycin with soluble chromatin, isolated from Sprague-Dawley rat. METHODOLOGY/PRINCIPAL FINDINGS: Chromatin is a hierarchical assemblage of DNA and protein. Therefore, in order to characterize the interaction of the same with distamycin, we have classified the system into various levels, according to the requirements of the method adopted, and the information to be obtained. Isothermal titration calorimetry has been employed to characterize the binding at the levels of chromatin, chromatosome and chromosomal DNA. Thermodynamic parameters obtained thereof, identify enthalpy as the driving force for the association, with comparable binding affinity and free energy for chromatin and chromosomal DNA. Reaction enthalpies at different temperatures were utilized to evaluate the change in specific heat capacity (ΔCp, which, in turn, indicated a possible binding associated structural change. Ligand induced structural alterations have been monitored by two complementary methods--dynamic light scattering, and transmission electron microscopy. They indicate compaction of chromatin. Using transmission electron microscopy, we have visualized the effect of distamycin upon chromatin architecture at di- and trinucleosome levels. Our results elucidate the simultaneous involvement of linker bending and internucleosomal angle contraction in compaction process induced by distamycin. CONCLUSIONS/SIGNIFICANCE: We summarize here, for the first time, the thermodynamic parameters for the interaction of distamycin with soluble chromatin, and elucidate its effect on

  10. Mechanically controlled radical polymerization initiated by ultrasound

    Science.gov (United States)

    Mohapatra, Hemakesh; Kleiman, Maya; Esser-Kahn, Aaron Palmer

    2017-02-01

    In polymer chemistry, mechanical energy degrades polymeric chains. In contrast, in nature, mechanical energy is often used to create new polymers. This mechanically stimulated growth is a key component of the robustness of biological materials. A synthetic system in which mechanical force initiates polymerization will provide similar robustness in polymeric materials. Here we show a polymerization of acrylate monomers initiated and controlled by mechanical energy provided by ultrasonic agitation. The activator for an atom-transfer radical polymerization is generated using piezochemical reduction of a Cu(II) precursor complex, which thus converts a mechanical activation of piezoelectric particles to the synthesis of a new material. This polymerization reaction has some characteristics of controlled radical polymerization, such as narrow molecular-weight distribution and linear dependence of the polymeric chain length on the time of mechanical activation. This new method of controlled radical polymerization complements the existing methods to synthesize commercially useful well-defined polymers.

  11. Description of adsorption equilibrium of PAHs on hypercrosslinked polymeric adsorbent using Polanyi potential theory

    Institute of Scientific and Technical Information of China (English)

    LONG Chao; LI AiMin; HU DaBo; LIU FuQiang; ZHANG QuanXing

    2008-01-01

    In this research, static adsorption of three polycyclic aromatic hydrocarbons (PAHs), naphthalene, acenaphthene, and fluorene, from aqueous solutions onto hypercrosslinked polymeric adsorbent within the temperature range of 288-308 K is investigated. Several isotherm equations are correlated with the equilibrium data, and the experimental data is found to fit the Polanyi-Dubinin-Manes model best within the entire range of concentrations, providing evidence that pore-filling is the dominating sorption mechanism for PAHs. The study shows that the molecular size of adsorbates has distinct in-fluence on adsorption capacity of hypercrosslinked polymeric adsorbent for the PAHs; the larger the adsorbate molecular size, the lower the adsorption equilibrium capacity. Based on the Polanyi-Dubinin-Manes model, the molecular size of adsorbates was introduced to adjust the adsorbate molar volume. Plots of qv vs. (σε/Vs) are collapsed to a single correlation curve for different adsorbates on hypercrosslinked polymeric resin.

  12. Evolution of microstructure and dimension of as-molded parts during thermal removal process of wax-based MIM binder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The evolution of the microstructure and the dimension of as-molded parts were studied on the basis of the thermogravimetric analysis of wax-based MIM binder. The results show that the binder removal speeds are different in different temperature ranges during binder removal process. The evolution of the microstructure of as-molded parts during binder removal process clearly showed the initiation and formation of connected pore structure, which is the removal channel of the binder. The as-molded parts almost continuously shrank through binder removal process, except an expansion stage during 320~440  ℃, which is the dissolution expansion effect due to the dissolution of VPW in the polymer melt.

  13. The effect of crumb rubber particle size to the optimum binder content for open graded friction course.

    Science.gov (United States)

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.

  14. [Use of the aluminum phosphate-binders in hemodialysis in the ultrapure water era].

    Science.gov (United States)

    Arenas, Maria D; Malek, T; Gil, M T; Moledous, A; Núñez, C; Alvarez-Ude, F

    2008-01-01

    Aluminium binder has been ill-advised, but his use remain applicable in the clinique practice in very seleccionated and particular patients. The repercussion of prolonged treatment with low doses of aluminium phosphate-binders in haemodialysis was studied. The haemodialysis unit had a double osmosis inverse and the aluminium levels in haemodialysis liquid was less than 2 micrograms/liter. 41 patients of the 295 on haemodialysis received aluminium phosphate-binders since the 2005 January to the 2007 November. The mean time of treatment was 17.8 months, and the doses was 3.9 tablets day (mean of 463 grams in the studied period). The association of low doses of aluminium phosphate-binders permitted a better control of phosphorus (6.8 to 4.8 mg/dl; p<0.0001), with a reduction of the others phosphate-binders: sevelamer (10.4 a 8 tablets/day; p<0.0001) and calcium phosphate-binders (4.6 to 3.1 tablets/day; p<0.0001). The serum aluminium increased after the aluminium treatment (6.8 to 13.8 mcg/l; p<0.0001), and no toxicity indirect signs were observed on CMV, haemoglobin, none PTH. Five patients (12.1%) reached aluminium serum levels higher 20 mcg/l, and none reached the 40 mcg/l. The aluminium phosphate-binders were effective, economical and, now, with an apparent better security profile than in a previous time, but it is very important to be careful with this use and to follow a vigilance strict on patients and haemodialysis liquid.

  15. Comparison of the activities of binder-added and binder-free Mo/HZSM-5 catalysts in methane dehydroaromatization at 1073 K in periodic CH4-H2 switch operation mode

    Institute of Scientific and Technical Information of China (English)

    Yuebing Xu; Hongtao Ma; Yo Yamamoto; Yoshizo Suzuki; Zhanguo Zhang

    2012-01-01

    Three industry-supplied,well-shaped Mo/HZSM-5 catalysts,two binder-added and one binder-free,were tested for the first time in methane dehydroaromatization to benzene at 1073 K and 10000 mL/(g.h) in periodic CH4-H2 switch operation mode,and their catalytic performances were compared with those of three self-prepared,binder-free powder Mo/HZSM-5 catalysts.XRD,27Al NMR,SEM,BET and NH3-TPD characterizations of all the catalysts show that the zeolites in the two binder-added catalysts are comparable to those in the three binder-free powder catalysts in crystallinity,crystal size,micropore volume and Br(¢)nsted acidity.The test results,on the other hand,show that the catalytic performances of the two binder-added catalysts are worse than those of the four binder-free catalysts on both catalyst mass and zeolite mass bases.Then,TPO and BET measurements of all spent samples were conducted to get a deep insight into the negative effects of binder addition,and the results suggest that the binder additives functioned mainly to enhance the polyaromatization of formed aromatics to coke on their external surfaces and consequently lower the benzene formation activity and selectivity of the catalyst.

  16. Supramolecular Polymeric Materials Containing Cyclodextrins.

    Science.gov (United States)

    Nakahata, Masaki; Takashima, Yoshinori; Harada, Akira

    2017-01-01

    Smart design of polymeric materials may lead to intelligent materials exhibiting unique functional properties. Looking at nature, living systems use specific and reversible intermolecular interactions in realizing complex functions. Hence reversible bonds based on selective molecular recognition can impart artificial materials with unique functional properties. This review mainly focuses on supramolecular polymeric materials based on cyclodextrin-based host-guest interactions. Polymeric materials using molecular recognition at polymer main chain, side chain, and termini are described. Polymers carrying host and guest residues exhibit unique properties such as: 1) formation of macroscopic self-assembly of polymer gels carrying host and guest residues; 2) stimuli-responsive self-healing properties due to the reversible nature of host-guest interactions; and 3) macroscopic motion of artificial muscle cross-linked by host-guest interaction controlled by external stimuli. An overview of recent developments in this new frontier between materials science and life science is given.

  17. Process for converting hydrocarbon oils and catalyst for use in such a process

    Energy Technology Data Exchange (ETDEWEB)

    Huizinga, T.; Schaper, H.; Hoek, A.

    1990-05-08

    This invention is directed at increasing the utilization of residual oil found in currently available crude oil feedstocks. The process of the invention is particularly suitable for hydrocracking, and comprises contacting a hydrocarbon oil in the presence of hydrogen with a hydrocracking catalyst. Suitable feedstocks include tar oils, vacuum gas oil, deasphalted oils, long and short residues, catalytically cracked cycle oils, thermally cracked gas oils, and synthetic crudes, or combinations of various such oils. Suitable process conditions comprise temperatures from 200 to 500{degree}C, hydrogen pressures up to 300 bar, space velocities of 0.1-10 kg feed per liter of catalyst per hour, and gas/feed ratios of 100-5000 Nl/kg feed. The catalyst used in the process comprises zeolite Y particles, with an average size in the range of 0.8 to 5.0 mm, and a unit cell size preferably from 24.19 to 24.35 {angstrom}. Preference is given to zeolite Y having a silica/alumina molar ratio of 8-15. The zeolite is combined with a hydrogenation component of a Group VI and/or VIII metal, preferably nickel and tungsten. Alumina is the preferred binder. The catalyst contains 60-85% zeolite and 15-40% binder, based on the total amount of zeolite and binder. The products of the process include gaseous material (in general C1-4 hydrocarbons), naphtha, and a middle distillate fraction. Experiments are described to illustrate the preparation of catalysts and the process of the invention. 1 tab.

  18. UV-polymerized butyl methacrylate monoliths with embedded carboxylic single-walled carbon nanotubes for CEC applications.

    Science.gov (United States)

    Navarro-Pascual-Ahuir, María; Lucena, Rafael; Cárdenas, Soledad; Ramis-Ramos, Guillermo; Valcárcel, Miguel; Herrero-Martínez, José Manuel

    2014-10-01

    The preparation of polymeric monoliths with embedded carboxy-modified single-walled carbon nanotubes (c-SWNTs) and their use for capillary electrochromatography (CEC) is described. Carbon nanotube composites were obtained by preparing a polymerization mixture in the presence of increasing c-SWNT concentrations, followed by UV initiation. The novel stationary phases were studied by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Using short UV-polymerization times, the optimized porogenic solvent (a binary mixture of 1,4-butanediol and 2-propanol) gave rise to polymeric beds with homogenously dispersed embedded c-SWNTs. The CEC features of these monoliths were evaluated using polycyclic aromatic hydrocarbons (PAHs), non-steroidal anti-inflammatory drugs (NSAIDs) and chiral compounds. The monolith prepared in the presence of c-SWNTs showed enhanced resolution of the text mixtures, including a remarkable capability to separate enantiomers.

  19. Influence of fluoropolymer binders on the electrochemical performance of C-LiFePO4 based cathodes

    OpenAIRE

    A. Goren; Costa, C M; Silva, Maria Manuela; Lanceros-Méndez, S.

    2016-01-01

    The polymer binder plays a relevant role in the performance of battery electrodes. This work proposes poly(vinylidene fluoride-co-trifluoroethylene), PVDF-TrFE, as a polymer binder for C-LiFePO4 based cathodes and investigates its effect in the electrochemical properties of the cathodes. Morphological, electrical, swelling and electrochemical properties were investigated for this polymer binder and the results were compared with the ones from two other fluoropolymers, poly(v...

  20. Surface glycosylation of polymeric membranes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Surface glycosylation of polymeric membranes has been inspired by the structure of natural biomem-branes. It refers to that glycosyl groups are introduced onto the membrane surface by various strate-gies, which combine the separation function of the membrane with the biological function of the sac-charides in one system. In this review, progress in the surface glycosylation of polymeric membranes is highlighted in two aspects, i.e. the glycosylation methods and the potential applications of the sur-face-glycosylated membranes.

  1. On-demand photoinitiated polymerization

    Science.gov (United States)

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  2. Evaluation of strength-enhancing factors of a ductile binder in direct compression of sodium bicarbonate and calcium carbonate powders.

    Science.gov (United States)

    Mattsson, S; Nyström, C

    2000-03-01

    This study evaluated the effectiveness of a ductile binder in direct compression of sodium bicarbonate and calcium carbonate powders. Properties associated with both the binder and the compound were studied. The addition of binder materials, such as polyethylene glycols (PEGs) of differing molecular weights or microcrystalline cellulose, generally resulted in an increase in the axial tensile strength of the corresponding compacts. The increase in tablet strength was generally greater with the PEGs than with microcrystalline cellulose. The results indicate that the improvement in tablet strength caused by the binder is dependent on properties of both the binder and the compound. By utilising different methods it was established that the fracture during tablet strength testing mainly occurred around the compound particles. As a consequence of this, it appears that the ability of the binder to fill the voids between the compound particles is a determinative factor for increasing tablet strength. The binder appeared to have less effect when added to compounds that fragmented during compaction. Characteristics of the binder resulting in the greatest decrease in porosity, and thus the greatest increase in the tensile strength of the compound, included a high degree of plastic deformation with a limited elastic component and a small particle size. Obviously, the amount of binder added to the mixture also affected the results.

  3. Adhesive Bonding and Self-Curing Characteristics of α-Starch Based Composite Binder for Green Sand Mould/Core

    Institute of Scientific and Technical Information of China (English)

    Xia ZHOU; Jinzong YANG; Guohui QU

    2004-01-01

    Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and theories of the binder at room temperature were proposed according to the interactions between various compositions. Thus,the reasons for the binder to have excellent combination properties and unique adhesive bonding and self-curing characteristics were explained by these theories successfully. And the theories are of great directive importance to design and development of composite binder for green sand mould/core.

  4. Strength loss in MA-MOX green pellets from radiation damage to binders

    Science.gov (United States)

    Lessing, Paul A.; Cannon, W. Roger; Egeland, Gerald W.; Zuck, Larry D.; Jewell, James K.; Akers, Douglas W.; Groenewold, Gary S.

    2013-06-01

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt.% PuO2, 3 wt.% AmO2 and 2 wt.% NpO2 was studied as a function of storage time, after mixing with the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA-MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed that strength degradation was more rapid in pellets containing 1.0 wt.% Carbowax PEG 8000 compared to those containing only 0.2 wt.%, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 days period. It was suggested that the styrene portion present in the Duramax B1022 copolymer provided the radiation resistance.

  5. Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Lessing; W.R. Cannon; Gerald W. Egeland; Larry D. Zuck; James K. Jewell; Douglas W. Akers; Gary S. Groenewold

    2013-06-01

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.

  6. Strength loss in MA-MOX green pellets from radiation damage to binders

    Energy Technology Data Exchange (ETDEWEB)

    Lessing, Paul A. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cannon, W. Roger, E-mail: wrogercannon@gmail.com [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Egeland, Gerald W.; Zuck, Larry D.; Jewell, James K.; Akers, Douglas W.; Groenewold, Gary S. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2013-06-15

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO{sub 2}, 20 wt.% PuO{sub 2}, 3 wt.% AmO{sub 2} and 2 wt.% NpO{sub 2} was studied as a function of storage time, after mixing with the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and styrene–acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 with MA-MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed that strength degradation was more rapid in pellets containing 1.0 wt.% Carbowax PEG 8000 compared to those containing only 0.2 wt.%, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 days period. It was suggested that the styrene portion present in the Duramax B1022 copolymer provided the radiation resistance.

  7. Evaluation of the rheological behavior of asphaltic binder modified with zeolite material

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, E.M. da; Sant' ana, Hosiberto B.; Soares, Sandra A.; Soares, Jorge B. [Federal University of Ceara, Fortaleza, CE (Brazil)

    2008-07-01

    Several new processes have been developed to reduce mixing and compaction temperatures of hot mix asphalt without sacrificing the quality of the resulting pavement. One of these processes utilizes the zeolite, a crystalline hydrated aluminum silicate. A laboratory study was conducted to determine the applicability of zeolite to improve the rheological and chemical behavior of an asphaltic binder. The synthetic asphaltic binder was produced with different zeolite contents (0,1; 0.3; and 0.5% w/w) by wet process. The rheological and chemical behavior was verified by Dynamic Shear Rheometer and Infrared Spectroscopy, respectively. The zeolite's chemical composition and morphology was studied by Dispersive X-ray Spectroscopy (EDX). Additionally, the scanning electron microscope (SEM) was utilized to establish the zeolite elemental composition. The results showed that investigated zeolite was classified as a sodium aluminum silicate and it was able to modify the rheological properties of the neat asphalt binder. The G*/sin{delta} parameter was affected by the zeolite presence, indicating better performance for the binders with zeolite. The results show that synthetic binders can partly replicate the rheological properties of conventional AB. Comparable complex modulus values was obtained. No significant difference was found in viscoelastic response, given by the phase angles as a function of both temperature and frequency. (author)

  8. Physical and Combustion Characteristics of Briquettes Made from Water Hyacinth and Phytoplankton Scum as Binder

    Directory of Open Access Journals (Sweden)

    R. M. Davies

    2013-01-01

    Full Text Available The study investigated the potential of water hyacinths and phytoplankton scum, an aquatic weed, as binder for production of fuel briquettes. It also evaluated some physical and combustion characteristics. The water hyacinths were manually harvested, cleaned, sun-dried, and milled to particle sizes distribution ranging from <0.25 to 4.75 mm using hammer mill. The water hyacinth grinds and binder (phytoplankton scum at 10% (B1, 20% (B2, 30% (B3, 40% (B4, and 50% (B5 by weight of each feedstock were fed into a steel cylindrical die of dimension 14.3 cm height and 4.7 cm diameter and compressed by hydraulic press at pressure 20 MPa with dwell time of 45 seconds. Data were analysed using analysis of variance and descriptive statistics. Initial bulk density of uncompressed mixture of water hyacinth and phytoplankton scum at different binder levels varied between 113.86 ± 3.75 (B1 and 156.93 ± 4.82 kg/m3 (B5. Compressed and relaxed densities of water hyacinth briquettes at different binder proportions showed significant difference . Durability of the briquettes improved with increased binder proportion. Phytoplankton scum improved the mechanical handling characteristics of the briquettes. It could be concluded that production of water hyacinth briquettes is feasible, cheaper, and environmentally friendly and that they compete favourably with other agricultural products.

  9. Influence of Cellulosic Binders on Sensitivity and Combustion Behaviour of B-KNO3 Ignition System

    Directory of Open Access Journals (Sweden)

    Varsha Bhingarkar

    2006-07-01

    Full Text Available Boron-potassium nitrate (B-KNO3-based compositions have been used as an effective ignitersystem for solid rocket propellants. A systematic study was undertaken to generate exhaustivedata on B-KNO3 (25:65-based ignition systems with cellulosic binders, viz., nitrocellulose, ethylcellulose and plasticised ethyl cellulose. In addition, detailed investigations were carried outwith PEC as binder by varying its concentration from 2-10 per cent in the same system. Theexperimental compositions (B-KNO3: binder were evaluated by closed-vessel firing, thermalanalysis, sensitivity, mechanical properties and cal-val determination. The binders significantlyinfluenced the sensitivity and combustion behaviour of B-KNO3 compositions. The compositionwith nitrocellulose as binder produced high flame temperature and cal-val as compared to ethylcellulose and plasticised ethyl cellulose-based compositions. The data indicated that thecalculated flame temperature for all compositions was in the range 2716 K to 2957 K. As theplasticised ethyl cellulose content increased from 2 per cent to 10 per cent, the maximum pressureincreased with decrease in heat of combustion.

  10. Rheological and thermal performance of newly developed binder systems for ceramic injection molding

    Science.gov (United States)

    Hausnerova, Berenika; Kasparkova, Vera; Hnatkova, Eva

    2016-05-01

    In a novel binder system, carnauba wax was considered to replace the synthetic backbone polymers (polyolefins) enhancing the environmental sustainability of Ceramic Injection Molding (CIM) technology. The paper presents comparison of the rheological performance and thermal behavior of the aluminum oxide CIM feedstocks based on a binder containing carnauba wax with those consisting of a commercial binder. Further, acrawax (N, N'-Ethylene Bis-stearamide) has been considered as another possible substitute of polyolefins. For both proposed substitutes there is a significant reduction in viscosity, and in case of carnauba wax based feedstock also in processing temperature, which is essential for injection molding of reactive powders. Thermal characterization comprised analyses of single neat binders, their mixtures and mixtures with aluminum oxide. The presence of powder lowered melting temperatures of all tested binders except of polyolefin. Further depression in melting point of poly(ethylene glycol) is observed in combination with polyolefin in the presence of powder, and it is related to changes in size of the crystalline domains.

  11. Influence of binder droplet dimension on granulation rate during fluidized bed granulation.

    Science.gov (United States)

    Fujiwara, Maya; Dohi, Masafumi; Otsuka, Tomoko; Yamashita, Kazunari; Sako, Kazuhiro

    2013-01-01

    Here, we statistically identified the critical factor of the granulation rate during the fluidized bed granulation process. Lactose was selected as the excipient and was granulated with several binders, including hydroxypropyl cellulose, hydroxypropyl methyl cellulose, and polyvinylpyrrolidone. The viscosity, density, and surface tension of the binder solution, contact angle, and the work done during adhesion and cohesion between the binder and lactose, mist diameter, Stokes number, and the dimension of the droplet were considered. The Stokes number was defined as the ratio of the inertial force to the viscous-damping force of a particle. We confirmed that droplet diameter after adhesion had the highest correlation coefficient with the granulation rate constant in our investigated parameters. Partial least squares regression revealed two critical principal components of the granulation rate: one relating to the droplet dimension, which is composed of mist diameter and diameter and thickness of the droplet after adhesion of the binder to the lactose surface; and the other relating to wettability, which involves the work done during adhesion and cohesion, surface tension, and the thickness of the droplet after adhesion of the binder to the lactose surface.

  12. Influence of solidification accelerators on structure formation of anhydrite-containing binders

    Energy Technology Data Exchange (ETDEWEB)

    Anikanova, L., E-mail: alasmit@mail.ru; Volkova, O., E-mail: v.olga.nikitina@gmail.com; Kudyakov, A.; Sarkisov, Y.; Tolstov, D. [Tomsk State University of Architecture and Building, 2 Solyanaya sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    The article presents results of scientific analysis of chemical additives influence on acid fluoride binder. It was found that the influence of sulfate nature additives on the process of hydration and solidification of the binder is similar to influence of additives on indissoluble anhydrite. Additives with SO{sub 4}{sup 2−} anion NO{sup −} are more efficient. The mentioned additives according to accelerating effect belong to the following succession: K{sub 2}SO{sub 4} > Na{sub 2}SO{sub 4} > FeSO{sub 4} > MgSO{sub 4}. Facilitation of the process of hydration and solidification of the binder, increase in density and durability of the binder (32 MPa) is to the greatest extent achieved with the introduction of 2% sodium sulfate additive of the binder’s mass into the composition of the binder along with the ultrasonic treatment of water solution. Directed crystal formation process with healing of porous structure by new growths presented as calcium sulfate dehydrate and hydroglauberite provides positive effect.

  13. Control of binder viscosity and hygroscopicity on particle aggregation efficiency

    Science.gov (United States)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Delmelle, Pierre; Dingwell, Donald B.

    2016-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be

  14. Thermophysical Properties of Hydrocarbon Mixtures

    Science.gov (United States)

    SRD 4 NIST Thermophysical Properties of Hydrocarbon Mixtures (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  15. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein

  16. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting

  17. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  18. The Viscosity of Polymeric Fluids.

    Science.gov (United States)

    Perrin, J. E.; Martin, G. C.

    1983-01-01

    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  19. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Feijen, J.

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  20. Buckling of polymerized monomolecular films

    Science.gov (United States)

    Bourdieu, L.; Daillant, J.; Chatenay, D.; Braslau, A.; Colson, D.

    1994-03-01

    The buckling of a two-dimensional polymer network at the air-water interface has been evidenced by grazing incidence x-ray scattering. A comprehensive description of the inhomogeneous octadecyltrichlorosilane polymerized film was obtained by atomic force microscopy and x-ray scattering measurements. The buckling occurs with a characteristic wavelength ~=10 μm.

  1. Novel polymeric materials from triglycerides

    Science.gov (United States)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  2. Fixed-bed Adsorption Characteristics of Chlorinated Hydrocarbon Vapors onto Hydrophobic Hypercrosslinked Polymeric Resin%疏水性超高交联吸附树脂对氯代烃蒸气的固定床吸附特性研究

    Institute of Scientific and Technical Information of China (English)

    于伟华; 刘鹏; 龙超; 陶为华

    2011-01-01

    The dynamic adsorption of trichloroethylene(TCE),1,2-dichloroethane(DCE) and trichloromethane(TCM) vapors onto hydrophobic hypercrosslinked polymeric resin(LC-1) were investigated using the fixed-bed adsorption method.The results indicated that the breakthrough time decreased and the height of mass transfer zone increased with the elevated initial concentration,gas flow rate and adsorption temperature.The gas flow rate had the wost significant influence on breakthrough time and height of mass transfer zone among the three factors.In addition,a simple semi-empirical mathematic model developed by Yoon and Nelson was applied to investigate the breakthrough behavior,and all correlation coefficients R2 were greater than 0.994.%采用固定床吸附法研究了三氯乙烯(TCE)、1,2-二氯乙烷(DCE)和三氯甲烷(TCM)共3种氯代烃类蒸气在疏水性超高交联吸附树脂LC-1上的动态吸附行为.结果表明,TCE、DCE和TCM蒸气的初始浓度、气体流速和吸附温度均会影响动态吸附过程,随着初始浓度、气体流速和吸附温度的增大,穿透时间变短,传质区长度增大,其中气体流速的影响最大;采用半经验数学模型Yoon-Nelson模型对吸附穿透实验数据进行拟合,拟合相关性系数R2≥0.994.

  3. Polymeric amines and biomedical uses thereof

    NARCIS (Netherlands)

    Broekhuis, Antonius; Zhang, Youchum; Picchioni, Francesco; Roks, Antonius

    2010-01-01

    The invention relates to the field of polymers and biomedical applications thereof. In particular, it relates to the use of polymeric amines derived from alternating polyketones.Provided is the use of a polymeric amine for modulating or supporting cellular behavior, said polymeric amine being an alt

  4. THE POLYMERIZATION OF AROMATIC AND HETEROCYCLIC DINITRILES

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhitang

    1988-01-01

    This review is a concise survey about the works in our laboratory on the polymerization of aromatic and heterocyclic dinitriles, including the polymerization kinetics and mechanism, synthesis of heterocyclic dinitriles, the structure of polymers, and the correlation between the structures of dinitriles and polymerization rates and thermal performances of polymers.

  5. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  6. Effect of Tar-resin Binder on Properties of MgO-C Monolithic Refractories

    Institute of Scientific and Technical Information of China (English)

    Hady EFENDY; Wan Mohd.Farid BIN WAN MOHAMAD

    2010-01-01

    Based on the newly developed bonding system,a new generation of carbon-bonded MgO-C monolithic refractories product with low toxic potential has been developed.Results of an on-going investigation on properties of MgO-C monolithic refractories with tar-resin as binder are presented.Furthermore,the binder is an extremely strong carbon bonding.Further significant advantages of this system are high oxidation resistance of the highly-ordered carbon structure and the excellent stress-absorbing structure.To improve the strength and erosion resistance,and to decrease evaporation during heating,a preliminary treated tar-resin with higher melting temperature and lower content of volatile component was investigated.The binder specimens were treated at 800 ℃ and the mechanical properties of MgO-C refractories specimens treated at 200,400,and 1 200 ℃ were determined.

  7. The role of the binder phase in the WC-Co sintering

    Directory of Open Access Journals (Sweden)

    Silva A.G.P. da

    2001-01-01

    Full Text Available The sintering of hardmetal in the solid state is studied. The influence of the WC particle size on the sintering kinetics, the role of the binder phase in the densification process and how sintering depends on the heating conditions are investigated. It is observed that alloys with different WC particle size show quite different structural evolution during sintering, although the densification mechanisms are the same. This is explained by the formation of agglomerates of WC and Co. Hardmetal alloys can sinter very rapidly when high heating rates are used, since rapid heating accelerates the binder spreading and the formation of WC-Co agglomerates. The binder phase (Co spreads on the WC particles initially as a thin layer. Subsequently, more Co spreads on this layer and WC-Co agglomerates are formed.

  8. STRUCTURE AND PROPERTIES OF COMPOSITE MATERIAL BASED ON GYPSUM BINDER AND CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    CHUMAK Anastasia Gennadievna

    2013-04-01

    Full Text Available The aim of this work is to carry out a number of studies in the area of nanomodi­fication of gypsum binder matrix and to investigate the influence of multilayer carbon nanotubes on the structure, physical and mechanical properties of obtained compos­ites. The study of the gypsum binders structure formation mechanisms with the use of nanoadditives makes it possible to control the production processes of gypsum materi­als and articles with the given set of properties. The main tasks of the binder nanomodification are: even distribution of carbon nanostructures over the whole volume of material and provision of stability for the nanodimensional modifier during production process of the construction composite.

  9. Springback Control With Variable Binder Force — Experiments And FEA Simulation

    Science.gov (United States)

    Du, Changqing; Wu, Jin; Militisky, Marcio; Principe, James; Garnett, Mark; Zhang, Li

    2004-06-01

    Side-wall-curl is a springback phenomena in typical automotive structural components, such as channel like rails and cross members. Minimizing or eliminating the side-wall-curl is one of the major challenges in stamping production. This challenge is exasperated when the component is formed from advanced high strength steels (AHSS). In this study a standard three-piece draw die is used, in a series of experimental tests, to form a stamping with a hat-shaped section from dual phase 590 (DP590). During the forming stroke, the binder force is varied to evaluate its influence on side-wall-curl. FEA springback simulations for two types of experiments with varied binder forces are also performed. The binder force profiles for several sheet materials are discussed and the correlation between the simulation results and the actual part measurements are illustrated.

  10. Studying asphalt binder fatigue pattern by using a dynamic shear rheometer

    Directory of Open Access Journals (Sweden)

    Oscar Javier Reyes Ortiz

    2011-01-01

    Full Text Available This article was aimed at determining fatigue test results regarding different types of binder when using a dynamic shear rheometer (DSR. The tests were carried out in stress conditions at 20ºC. The stress input signal was a constant amplitude, 1.59 Hz frequency sine wave. Asphalt binders B-13/22, B-40/50, B-60/70, B-80/00, B-150/200 and BM-3c (modified asphalt were studied. The test measured strain, complex modulus (G*, dissipated energy and dissipated energy ratio (DER with the number of cycles. Strain criteria were used for determining binder fatigue failure (DER. Failure was defined as the point at which (DER dropped 10% after peaking. Laws of asphalt fatigue were obtained from the strain and failure cycle results.

  11. Chloride accelerated test: influence of silica fume, water/binder ratio and concrete cover thickness

    Directory of Open Access Journals (Sweden)

    E. Pereira

    Full Text Available In developed countries like the UK, France, Italy and Germany, it is estimated that spending on maintenance and repair is practically the same as investment in new constructions. Therefore, this paper aims to study different ways of interfering in the corrosion kinetic using an accelerated corrosion test - CAIM, that simulates the chloride attack. The three variables are: concrete cover thickness, use of silica fume and the water/binder ratio. It was found, by analysis of variance of the weight loss of the steel bars and chloride content in the concrete cover thickness, there is significant influence of the three variables. Also, the results indicate that the addition of silica fume is the path to improve the corrosion protection of low water/binder ratio concretes (like 0.4 and elevation of the concrete cover thickness is the most effective solution to increase protection of high water/binder ratio concrete (above 0.5.

  12. Development of a Polyuretbane Binder System Giving a 'Knottable' Composite Solid Propellant

    Directory of Open Access Journals (Sweden)

    E. Devadoss

    1985-01-01

    Full Text Available Polyurethane propellants, which constitute one of the 'work-horse' binder systems in modern solid rocketry are easily amenable for tailoring the mechanical properties in terms of variations in the molecular structure of the backbone polyols, the isocyanates and stoichiometry of the reactants. The paper deals with studies in developing an advanced binder system based on poly (oxy propylene glycol and toluene-di-isocyanate, which is capable of accommodating high solids loading and conceding elongatlon at maximum stress, of more than 125 per cent. The gum-stock properties of the binder are related with those of a low molecular weight version and the results are explained based on the network theory of condensation polymers.

  13. Effect of Hydration Aging and Water Binder Ratio on Microstructure and Mechanical Properties of Sprayed Concrete

    Institute of Scientific and Technical Information of China (English)

    NIU Ditao; WANG Jiabin; WANG Yan

    2015-01-01

    In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test specimens were investigated. The phase composition, mass percentage of ettringite and portland in hydration production and microstructure were characterized by X-ray diffraction (XRD), thermo gravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscopy (SEM), respectively. The experimental results showed that changes in phase composition was more signiifcant than those of water-binder ratio. With hydration aging and water-binder ratio increased, the mass percentage of ettringite and portland was decreased from 4.42%, 1.49% to 3.31%, 1.35%, respectively and the microstructure of paste was signiifcantly compacted. Likewise, the mechanical properties including cubic compressive strength and splitting tensile strength were rised obviously.

  14. The estimation of ability to reclame of moduling sands with biopolymer binders

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-04-01

    Full Text Available Applied up till now organic binding materials, on the basis of synthetic resins are characterised by good technological properties, but cause high emission of harmful substances. That’s why contemporary scientific researches are leading to progressive replacing the binders obtained from petrochemical materials with polymer biocomposites coming from renewable resources. Increasing concern of aliphatic polyesters such as polylactide, polycaprolactone, poly(hydroxyalkanoates and aliphatic-aromatic polyesters is caused by the possibility of using them for producing many biodegradable products. In that context it is important to expand the researches connected to using biopolymers as moulding sands binders. Contemporary authors’ papers were focused on technological properties and harmfulness for the environment of this ecological moulding sands. TThis article takes into consideration the ability to reclamation of moulding sands with biopolymer binders.

  15. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  16. On the measurement of surface tension in binders used for moulding sands

    Directory of Open Access Journals (Sweden)

    B. Hutera

    2008-07-01

    Full Text Available The surface tension of foundry binders is a very important parameter affecting the properties of a sand-binder system. Combined with other parameters, its value determines an outcome of the process of moulding sand preparation and the mechanical properties of the ready moulding composition. The problem of how to measure the surface tension of binders used in preparation of moulding sands is discussed only occasionally. Indirectly, the surface tension is characterised by the value of a contact angle, but it never means that these two parameters can be considered identical. Numerous methods are available and used at present to measure the surface tension, among others, the capillary rise method, the spinning drop method, the sessile drop method, the pendant drop method, the method of pulled out ring (or plate, or frame. There is also a rich variety of devices offered with different measuring methods. The devices are modern and represent a high level of the technical skill and art. Unfortunately, also their price is high. It is, however, possible to obtain the reliable results of the surface tension measurement using relatively simple methods, viz. the stalagmometric method and the capillary rise method. What is necessary are proper conditions of the measurement, directly related with the specific properties of binders. The present paper gives examples of the results obtained during measurement of the surface tension of some selected binders. Attention was drawn to the methods of taking measurements, and the obtained results were discussed and analysed. The possibilities of detemining the surface tension of the examined binders from the results of the contact angle measurements using the “sessile drop” and “pendant drop” methods were outlined.

  17. Application of microwave energy for curing of molding sands containing oil binders

    Directory of Open Access Journals (Sweden)

    M. Stachowicz

    2008-07-01

    Full Text Available This works presents the results of studies concerning possibility of application of microwave heating in the curing process of molding sands containing oil binders. Molding sands prepared with three kinds of binders, that is oils C, DL and Retanol, have been subject to experiments. The sands have been dried with two methods: in a microwave chamber of 750W power and, for comparison, with classical method at the temperature of 200°C for 120 minutes. Tensile and bending strength of the samples have been determined after cooling down. It has been found that microwave drying in the low-power device used for experiments is effective only in case of molding sand prepared with addition of DL binder. The temperature of heated, even up to 32 minutes in a microwave chamber, blocks prepared from the remaining two masses, was insufficient to initiate binding process. The undertaken attempts of binder modification and introduction of additives intensifying microwave heating process allowed for achievement of satisfactory results. It has been found that power of the heating device is the main factor determining efficiency of microwave curing of molding sands containing oil binders. An additional experiment has been conducted on a laboratory workstation allowing for microwave heating of small mass samples with a high output power of magnetron concentrated in a small substrate volume. It has been observed that microwave drying process of molding sands was of dynamic character over a short period of time, not exceeding 120 seconds, thus assuring efficient curing of the sands containing the used oil binders. Therefore, application of devices of properly high microwave output power allows for efficient drying of oil molding sands, while simultaneously assuring the possibility to reduce time and energy consumption necessary for production of foundry cores of proper functional characteristics.

  18. Effect of coal tar pitch modified by sulfur as a binder on the mechanical and tribological properties of bronze-impregnated carbon-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang Huijun [School of Physics and Nuclear Energy Engineering, Beijing University of Aeronautics and Astronautics, No. 37, Xue Yuan Road, Hai Dian District, Beijing 100191 (China); Luo Ruiying, E-mail: ryluo@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beijing University of Aeronautics and Astronautics, No. 37, Xue Yuan Road, Hai Dian District, Beijing 100191 (China)

    2011-03-15

    Research highlights: {yields} Sulfur addition increased the softening point and carbon yield of coal tar pitch. {yields} The mechanical properties of the composites reached a maximum at 7 wt. % of sulfur. {yields} The friction coefficient rose monotonously with increasing the content of sulfur. {yields} The wear rate of the composites reached a minimum at 7 wt. % of sulfur. {yields} The wear mechanism of composites was adhesive wear, abrasive wear and oxidative wear. - Abstract: Bronze-impregnated carbon-matrix composites were prepared through compression molding, carbonization and impregnation. The mechanism of sulfuration was studied, and the effect of coal tar pitch modified by sulfur as a binder on the mechanical and tribological properties of composites was investigated by varying the content of sulfur. The results showed that the sulfur addition increased the softening point, carbon yield and C/H atomic ratio of coal tar pitch but decreased the toluene solubility and quinoline solubility due to the dehydrogenating polymerization of pitch molecules. The micro-hardness, bending strength and compressive strength of the composites were enhanced by increasing the mass percentage of sulfur and reached a maximum of 160 HV, 132.82 MPa and 293 MPa at 7 wt. % of sulfur, respectively. However, both the hardness and strength of the composites decreased as the content of sulfur increased beyond 7 wt. %. The friction coefficient value of composites increased monotonously, but the wear rate decreased with increasing sulfur content; subsequently, the wear rate reached a minimum of 3.045 x 10{sup -7} mm{sup 3}/Nm at 7 wt. % of sulfur and then ascended. The wear mechanisms of the composites were adhesive wear, abrasive wear and oxidative wear. However, adhesive wear and oxidative wear occurred slightly for the composites with the binder modified by sulfur.

  19. EVALUATION OF MORINGA OLEIFERA GUM AS A BINDER IN TABLET FORMULATION

    OpenAIRE

    Patil Basawaraj S; Soodam Srinivas R.; Kulkarni Upendra; Korwar Prakassh G.

    2010-01-01

    Various plant gums have been used as binders in tablet formulations. But still finding novel binder for the manufacture of tablets, in pharmaceutical industry. The Moringa oleifera gum was found its binding property. In the present study Moringa oleifera gum was employed as a binding agent in Chloroquine phosphate tablets at concentrations of 4.0, 6.0 and 8.0 % w/w, in comparison with potato starch. The properties of Moringa oleifera gum were evaluated for angle of repose, bulk density, tappe...

  20. Guanidine based vehicle/binders for use with oxides, metals and ceramics

    Science.gov (United States)

    Philipp, Warren H. (Inventor); Weitch, Lisa C. (Inventor); Jaskowiak, Martha H. (Inventor)

    1995-01-01

    The use of guanidine salts of organic fatty acids (guanidine soaps) as vehicles and binders for coating substrate surfaces is disclosed. Being completely organic, the guanidine soaps can be burned off leaving no undesirable residue. Of special interest is the use of guanidine 2-ethyl hexanoate as the vehicle and binder for coating problematic surfaces such as in coating alumina fibers with platinum or zirconia. For this application the guanidine soap is used as a melt. For other applications the guanidine soap may be used in a solution with a variety of solvents, the solution containing chlorometalates or powdered metals, refractories or ceramics.

  1. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  2. ISRO Polyol - The Versatile Binder for Composite Solid Propellants for Launch Vehicles and Missiles

    Directory of Open Access Journals (Sweden)

    V. N. Krishnamurthy

    1987-01-01

    Full Text Available A family of propellants based on a low cost hydroxy terminated binder has been developed and proved in large size motors. It can meet the requirements of Apogee motors as well as large boosters. The system offers advantages comparable with HTPB propellants in terms of high ballistic performance, stringent mechanical properties, ease and reliability of cure even at ambient conditions and high storage stability. The near-Newtonian flow behaviour, simplicity and processing characteristics of this saturated binder propellant are particularly note-worthy.

  3. Study on Heat Hardening Mechanism of Starch Composite Binder for Sand Mold (Core) by IR Spectra

    Institute of Scientific and Technical Information of China (English)

    Xia ZHOU; Jinzong YANG; Qin GAO; Guohui QU

    2001-01-01

    The heat hardening mechanism of starch composite binder for sand mold (core) was studied by way of IR spectra. It is thought that the bonding strength of molding sand is mainly depended on the strength of the adhesive membrane itself. During heating the binder at certain temperature between 160~200℃ for one hour, a special composite structure is formed because of the interactions between different components, thus, it has higher low-temperature drying strength,better humidity resistance and higher high-temperature strength.

  4. VISCOSITY AND BINDER COMPOSITION EFFECTS ON TYROSINASE-BASED CARBON PASTE ELECTRODE FOR DETECTION OF PHENOL AND CATECHOL

    Science.gov (United States)

    The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wid...

  5. Effects of Nanosilica on Compressive Strength and Durability Properties of Concrete with Different Water to Binder Ratios

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2016-01-01

    Full Text Available The effects of the addition of different nanosilica dosages (0.5%, 1%, and 1.5% with respect to cement on compressive strength and durability properties of concrete with water/binder ratios 0.65, 0.55, and 0.5 were investigated. Water sorptivity, apparent chloride diffusion coefficient, electrical resistivity, and carbonation coefficient of concrete were measured. The results showed that compressive strength significantly improved in case of water/binder = 0.65, while for water/binder = 0.5 no change was found. Increasing nanosilica content, the water sorptivity decreased only for water/binder = 0.55. The addition of 0.5% nanosilica decreased the apparent chloride diffusion coefficient for water/binder = 0.65 and 0.55; however, higher nanosilica dosages did not decrease it with respect to reference value. The resistivity was elevated by 0.5% nanosilica for all water/binder ratios and by 1.5% nanosilica only for water/binder = 0.5. The carbonation coefficient was not notably affected by increasing nanosilica dosages and even adverse effect was observed for water/binder = 0.65. Further information of microstructure was also provided through characterization techniques such as X-ray diffraction, thermal gravimetric analysis, mercury intrusion porosimetry, and scanning electron microscopy. The effectiveness of a certain nanosilica dosage addition into lower strength mixes was more noticeable, while, for the higher strength mix, the effectiveness was less.

  6. First Observation of the Blending Zone Morphology at the Interface of Reclaimed Asphalt Binder and Virgin Bitumen

    NARCIS (Netherlands)

    Nahar, S.N.; Mohajeri, M.; Schmets, A.J.M.; Scarpas, T.; Van de Ven, M.F.C.; Schitter, G.

    2013-01-01

    One of the challenges in designing recycled asphalt mixtures with a high amount of RAP is to estimate the blending degree between RAP binder and the added virgin bitumen. The extent of blending is crucial in this case as asphalt concrete response is influenced by the final binder properties. This pa

  7. Low toxicity binder systems for tape cast Ce0.9Gd0.1O1.95 laminates

    DEFF Research Database (Denmark)

    Klemensø, Trine; Menon, Mohan; Ramousse, Severine

    2010-01-01

    Conventional binder systems for tape casting contain toxic phthalate plasticizers and butanone (MEK) as part of the solvent. The effects of exchanging the phthalate with a non-toxic alternative, and butanone with ethanol, were studied on laminates of high-green density CGO (Ce0.9Gd0.1O1.95) tapes....... Samples were prepared with a binder system containing DBP (dibutyl phthalate) plasticizer and MEK solvent, and with a binder system based on a non-toxic non-phthalate plasticizer and ethanol. In both systems, the weight ratio of plasticizer to the PVB (polyvinyl butyral) binder was varied between 0.......4 and 0.7. Substitution to the less toxic binder system had no adverse impacts on the microstructure. In fact, denser packing and improved homogeneity were observed with the non-phthalate-based system at ratio 0.5 indicating improved dispersion in this system. The denser packing also coincided...

  8. A facile approach to derive binder protective film on high voltage spinel cathode materials against high temperature degradation

    Science.gov (United States)

    Chou, Wei-Yu; Jin, Yi-Chun; Duh, Jenq-Gong; Lu, Cheng-Zhang; Liao, Shih-Chieh

    2015-11-01

    The electrochemical performance of spinel LiNi0.5Mn1.5O4 cathode combined with different binders at elevated temperature is firstly investigated. The water soluble binder, such as sodium carboxymethyl cellulose (CMC) and sodium alginate (SA), is compared with the polyvinylidene difluoride (PVdF) binder used in non-aqueous process. The aqueous process can meet the need of Li-ion battery industry due to environmental-friendly and cost effectiveness by replacing toxic organic solvent, such as N-methyl-pyrrolidone (NMP). In this study, a significantly improved high temperature cycling performance is successfully obtained as compared to the traditional PVdF binder. The aqueous binder can serve as a protective film which inhibits the serious Ni and Mn dissolution especially at elevated temperature. Our result demonstrates a facile approach to solve the problem of capacity fading for high voltage spinel cathodes.

  9. Design of a novel system allowing the selection of an adequate binder for solidification/stabilization of wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pera, J.; Thevenin, G.; Chabannet, M. [INSA de Lyon, Villeurbanne (France)

    1997-10-01

    Literature review shows that there is a lack of complete and consistent data on waste-binder interactions. Few links exist between research on the Solidification/Stabilization (S/S) mechanisms and the formulation of binders for immobilization. Therefore, a twofold program was developed allowing both to be done in parallel. This protocol had two targets: understanding the mechanisms involved in the S/S of heavy metals for each type of binder and rating the binder capacity for fixing heavy metals. The experimental procedure relies on two substrates: (1) the study of suspensions by means of conductimetry, XRD, FTIR, DTA, SEM-EDXA, ICP, ion chromatography, and colorimetry; and (2) the study of pure pastes for leaching tests and microstructural characterization (XRD, FTIR, DTA, SEM-EDXA). Results confirm whether the pollutant modifies the hydration or not, give access to the extent of binder stabilization without taking into account the solidification part, and elucidate the mechanisms involved.

  10. In Vitro Adsorption and in Vivo Pharmacokinetic Interaction between Doxycycline and Frequently Used Mycotoxin Binders in Broiler Chickens.

    Science.gov (United States)

    De Mil, Thomas; Devreese, Mathias; Broekaert, Nathan; Fraeyman, Sophie; De Backer, Patrick; Croubels, Siska

    2015-05-06

    Mycotoxin binders are readily mixed in feeds to prevent uptake of mycotoxins by the animal. Concerns were raised for nonspecific binding with orally administered veterinary drugs by the European Food Safety Authority in 2010. This paper describes the screening for in vitro adsorption of doxycycline-a broad-spectrum tetracycline antibiotic-to six different binders that were able to bind >75% of the doxycycline. Next, an in vivo pharmacokinetic interaction study of doxycycline with two of the binders, which demonstrated significant in vitro binding, was performed in broiler chickens using an oral bolus model. It was shown that two montmorillonite-based binders were able to lower the area under the plasma concentration-time curve of doxycycline by >60% compared to the control group. These results may indicate a possible risk for reduced efficacy of doxycycline when used concomitantly with montmorillonite-based mycotoxin binders.

  11. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Wenjun; Wang, Feijun; Wang, Jianquan

    2014-10-13

    Novel water-based binder CMC-Li is synthesized using cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and CMC-Li as a water-soluble binder are investigated. CMC-Li is a novel lithium-ion binder. Compare with conventional poly(vinylidene fluoride) (PVDF) binder, and the battery with CMC-Li as the binder retained 97.8% of initial reversible capacity after 200 cycles at 176 mAh g(-1), which is beyond the theoretical specific capacity of LFP. Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, follow closely by that using PVDF binder. The batteries have good electrochemical property, outstanding pollution-free and excellent stability.

  12. SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.Benhamou

    2004-01-01

    Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.

  13. Magnetic properties of polymerized diphenyloctatetrayne

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, Miriam F.; Jimenez-Solomon, Maria F.; Ortega, Alejandra; Escudero, Roberto [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Ciudad Universitaria, Mexico DF 04510 (Mexico); Munoz, Eduardo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Ciudad Universitaria, Mexico DF 01000 (Mexico); Maekawa, Yasunari; Koshikawa, Hiroshi [High Performance Polymer Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Ogawa, Takeshi, E-mail: ogawa@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Ciudad Universitaria, Mexico DF 04510 (Mexico)

    2012-10-15

    A new type of metal-free ferromagnetic carbon material was obtained by thermal polymerization and electron beam irradiation of diphenyloctatetrayne (DPOT). The isothermal magnetic measurements showed hysteresis loops indicating weak but intrinsic ferromagnetism with Curie temperatures of around 600 K. Electron spin resonance spectroscopy showed that the material contained stable free radicals in the range of 10{sup 17}-10{sup 20} radicals g{sup -1} depending on the polymerization process. The ferromagnetism should be due to high radical concentration although no correlation was observed between them. It was shown that an amorphous ferromagnetic carbon could be obtained from a simple crystalline solid by heating at moderate temperatures. Highlights: Black-Right-Pointing-Pointer Diphenyloctatetrayne as a precursor for carbon with high radical concentration. Black-Right-Pointing-Pointer The carbon material consists of sp{sup 2} configuration. Black-Right-Pointing-Pointer A weak intrinsic metal-free ferromagnetism was observed for the carbon products.

  14. Synthesis and characterization of hydrophobically modified polymeric betaines

    Directory of Open Access Journals (Sweden)

    Alexey Shakhvorostov

    2015-09-01

    Full Text Available Polymeric betaines containing long alkyl chains C12H25, C14H29, C16H33 and C18H37 were synthesized by Michael addition reaction of alkylaminocrotonates and methacrylic acid (MAA. They were characterized by FTIR, 13C NMR, DSC, DLS, GPC, cryo-TEM, viscometry and zeta-potential measurements. The polymers were fully soluble in DMF, THF and DMSO, partially dissolved in aromatic hydrocarbons (benzene, toluene, o-xylene and formed colloid solutions in aqueous KOH. In aqueous KOH and DMSO solutions, hydrophobically modified polymeric betaines behaved as polyelectrolytes. The average hydrodynamic size and zeta potential of diluted aqueous solutions of hydrophobic polybetainess containing dodecyl-, tetradecyl-, hexadecyl-, and octadecyl groups were studied as a function of pH. Anomalous low values of the isoelectric point (IEP of amphoteric macromolecules were found to be in the range of pH 2.7-3.4. According to DLS data, the average size of macromolecules tends to decrease with dilution. Zeta-potential of amphoteric macromolecules in aqueous solution is much higher than that in DMSO. The cryo-TEM results revealed that in both aqueous KOH and DMSO media, the micron- and nanosized vesicles existed. The structural organization of vesicles in water and DMSO is discussed. The wax inhibition effect of hydrophobic polybetaines at a decrease of the pour point temperatures of high paraffinic oils was better in comparison with commercial available ethylene-vinylacetate copolymers (EVA.

  15. Detonation behavior of emulsion explosives sensitized with polymeric microballoons

    Science.gov (United States)

    Mendes, Ricardo; Ribeiro, José; Plaksin, Igor; Campos, José

    2013-06-01

    The differences between the detonation behavior of ammonium nitrate based emulsion explosive sensitized with polymeric or with glass microballoons is presented and discussed. Expancel® are hollow polymeric microballoons that contain a hydrocarbon gas. The mean particle size of those particles is 30 μm and their wall thickness is about 0.1 μm. The detonation velocity and the failure diameter of the emulsion explosive sensitized with different amounts of these particles were measured, in cylindrical charges, by ionization pins and optical fibers. The detonation velocity of emulsion explosives shows a non-monotonic evolution with the density with the maximum being reached far below the maximum density. The detonation fails when the density approaches the one of the matrix. The failure diameter increases with increasing density. For low densities the detonation velocity is almost independent of the charge diameter and it is close to the values predict by BKW EoS. The effect of the nature and size of the microballoons on the detonation front curvature and failure diameter was also determined.

  16. Polymeric Microspheres for Medical Applications

    Directory of Open Access Journals (Sweden)

    Ketie Saralidze

    2010-06-01

    Full Text Available Synthetic polymeric microspheres find application in a wide range of medical applications. Among other applications, microspheres are being used as bulking agents, embolic- or drug-delivery particles. The exact composition of the spheres varies with the application and therefore a large array of materials has been used to produce microspheres. In this review, the relation between microsphere synthesis and application is discussed for a number of microspheres that are used for different treatment strategies.

  17. Hydrocarbon Leak Detection Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT is proposing the development of a sensor to detect the presence of hydrocarbons in turbopump Inter-Propellant Seals (IPS). The purpose of the IPS is to prevent...

  18. Growth of hydrocarbon utilizing microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Mavinkurve, S.

    Two isolates from marine mud having broad spectrum hydrocarbon utilizing profile were identified as Arthrobacter simplex and Candida tropicalis.Both the organisms grew exponentially on crude oil. The cell yield of the organisms was influenced...

  19. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  20. Electrochemical decomposition of chlorinated hydrocarbons

    OpenAIRE

    McGee, Gerard Anthony

    1993-01-01

    This work involves the characterisation of the electrochemical decomposition of chlorinated hydrocarbons. A variety of methods were employed involving the use of catalytic reagents to enhance the rate at which chlorinated organic compounds are reduced. The first reagent used was oxygen which was electrochemically reduced to superoxide in nonaqueous solvents. Superoxide is a reactive intermediate and decomposes chlorinated hydrocarbons. However it was found that since the rate of reaction betw...

  1. Aliphatic hydrocarbons of the fungi.

    Science.gov (United States)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  2. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  3. In Vitro and In Vivo Assessment of Humic Acid as an Aflatoxin Binder in Broiler Chickens

    National Research Council Canada - National Science Library

    van Rensburg, C. Jansen; Van Rensburg, C. E. J; Van Ryssen, J. B. J; Casey, N. H; Rottinghaus, G. E

    2006-01-01

    ..., and 11.9 mg of AFB1/g of oxihumate at pH 3, 5, and 7, respectively, were calculated. The in vivo efficacy of oxihumate as an aflatoxin binder in male broiler chickens exposed to aflatoxin-contaminated feed from 7 to 42 d of age was also assessed...

  4. Polyols as filler-binders for disintegrating tablets prepared by direct compaction

    NARCIS (Netherlands)

    Bolhuis, Gerad K.; Rexwinkel, Erik G.; Zuurman, Klaas

    2009-01-01

    Background: Although polyols are frequently used as tablet excipients in lozenges, chewing tablets, and orodisperse tablets, special directly compressible (DC) forms are recommended as filler-binder in common disintegrating tablets. Aim: In this article, DC types of isomalt, lactitol, mannitol, sorb

  5. Utilization of Cellulose from Luffa cylindrica Fiber as Binder in Acetaminophen Tablets

    Directory of Open Access Journals (Sweden)

    John Carlo O. Macuja

    2015-01-01

    Full Text Available Cellulose is an important pharmaceutical excipient. This study aimed to produce cellulose from the fiber of Luffa cylindrica as an effective binder in the formulation of acetaminophen tablets. This study was divided into three phases, namely, (I preparation of cellulose from Luffa cylindrica, (II determination of the powder properties of the LC-cellulose, and (III production and evaluation of acetaminophen of the tablets produced using LC-cellulose as binder. The percentage yield of LC-cellulose was 61%. The values of the powder properties of LC-cellulose produced show fair and passable flow properties and are within the specifications of a powdered pharmaceutical excipient. The mean tablet hardness and disintegration time of the LC-cellulose tablets have a significant difference in the mean tablet hardness and disintegration time of the tablets without binder; thus the cellulose produced improved the suitability of acetaminophen in the dry compression process. However, the tablet properties of the tablets produced using LC-cellulose as binder do not conform to the specifications of the US pharmacopeia; thus the study of additional methods and excipients is recommended.

  6. Use of Deep Peat-Processing Products for Hydrophobic Modification of Gypsum Binder

    Directory of Open Access Journals (Sweden)

    Misnikov Oleg

    2017-01-01

    Full Text Available The article deals with the issue of gypsum binder quality reduction during its storage and transportation. The study provides the main methods to protect gypsum from unauthorized exposure to moisture and water vapor. The author proposes hydrophobic modification as a perspective method for the preservation of gypsum activity and its water absorption reduction. The substantiation of cement hydrophobization with the bitumen released during peat thermolysis is provided. The author proposes to use this method in the technology of gypsum binder production. The basic idea is to combine the hydrophobization process with the calcination of calcium sulfate dehydrate. This is facilitated by temperature ranges used for dehydration of natural gypsum and the initial stage of thermal decomposition of the organic matter of peat. The author defined experimentally an optimal concentration of the organic component in gypsum binder. After adding 0.5-1% of the peat additive, the gypsum plaster preserved its grade strength and increased its storage time without caking and hydration, also under adverse conditions. The proposed method is adapted to the technological processes presently used in the production and doesn’t require changing any equipment. The price of mineral raw materials and semi-finished products of peat are approximately equal which reduces the probability of increasing of the cost of hydrophobically modified gypsum binder.

  7. Towards an Accurate Stress Dependant Time & Frequency Domain VE Response Model for Bituminous Binders

    NARCIS (Netherlands)

    Woldekidan, M.F.; Huurman, M.; Pronk, A.C.

    2010-01-01

    Linear viscoelastic properties of bituminous binders for short loading times are analyzed using dynamic mechanical analysis methods. Dynamic Shear Rheometer (DSR) test with parallel plate (PP) configuration is widely used for this purpose. Due to the complex stress distribution over the cross-sectio

  8. High-performance binders with reduced autogenous shrinkage on the basis of fine cement

    Energy Technology Data Exchange (ETDEWEB)

    Martschuk, V. [Inst. of the Cement Industry, Dusseldorf (Germany)

    2001-07-01

    A study on the hydration of portland cement was presented. The paper presented special features of the chemical shrinkage of cement paste at high and low water-cement ratios. It also described the effect of silica fume on the deformation behaviour of cement paste, as well as on the behaviour of hardened binder paste at water-binder ratios of 0.40 and 0.25. High performance concrete has a high density and a tendency to chemically shrink because of its low water-cement ratio. The study showed that the autogenous shrinkage increases if silica fume is added. Theoretical calculations were performed and showed that the typical addition of silica fume results in an increase in total porosity, and therefore, to the deterioration of the packing density of the binder mixture. The specific surface area of the dry powder is also increased. It was concluded that replacing cement by optimized fine cements improves the theoretical packing density in binders. The hardened cement paste studies showed that this makes a cement that is denser with less tendency to shrink. 7 refs., 3 tabs., 8 figs.

  9. Abdominal binders may reduce pain and improve physical function after major abdominal surgery - a systematic review

    DEFF Research Database (Denmark)

    Rothman, Josephine Philip; Gunnarsson, Ulf; Bisgaard, Thue

    2014-01-01

    . The PubMed, EMBASE and Cochrane databases were searched for studies on the use of abdominal binders after abdominal surgery or abdominoplasty. All types of clinical studies were included. Two independent assessors evaluated the scientific quality of the studies. The primary outcomes were pain, seroma...

  10. The curious case of zeolite-clay/binder interactions and their consequences for catalyst preparation

    NARCIS (Netherlands)

    Whiting, Gareth T; Chowdhury, Abhishek Dutta|info:eu-repo/dai/nl/412438003; Oord, R.; Paalanen, Pasi|info:eu-repo/dai/nl/370602013; Weckhuysen, Bert M|info:eu-repo/dai/nl/285484397

    2016-01-01

    Zeolite-based catalyst bodies are commonly employed in a range of important industrial processes. Depending on the binder and shaping method chosen, vast differences in the reactivity, selectivity and stability are obtained. Here, three highly complementary micro-spectroscopic techniques were

  11. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Lambertin, D.; Lahalle, H.; Antonucci, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Cannes, C.; Delpech, S. [Institut de Physique Nucléaire, CNRS, Univ. Paris-Sud 11, 91406 Orsay Cedex (France)

    2014-10-15

    Highlights: • Binders capable of reducing the pore solution pH compared with Portland cements are reviewed. • The binders are then tested against aluminum corrosion. • Corrosion of aluminum metal is minimal with magnesium phosphate cement. • The H{sub 2} release can be reduced still further by adding LiNO{sub 3} to the mixing solution. • Electrochemical characterizations show that aluminum tends to a passive state. - Abstract: In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  12. Towards an Accurate Stress Dependant Time & Frequency Domain VE Response Model for Bituminous Binders

    NARCIS (Netherlands)

    Woldekidan, M.F.; Huurman, M.; Pronk, A.C.

    2010-01-01

    Linear viscoelastic properties of bituminous binders for short loading times are analyzed using dynamic mechanical analysis methods. Dynamic Shear Rheometer (DSR) test with parallel plate (PP) configuration is widely used for this purpose. Due to the complex stress distribution over the cross-sectio

  13. Creep recovery behaviour of bituminous binders - relevance to permanent deformation of asphalt pavements

    CSIR Research Space (South Africa)

    Mturi, GAJ

    2012-05-01

    Full Text Available different modifiers has expanded the range of PMBs to select from when designing pavements in order to avoid pavement deformation. The new binder selection criterion using the Multiple Stress Creep and Recovery (MSCR) protocol as per ASTM D7405 is meant...

  14. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    Science.gov (United States)

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed.

  15. Interactions between TiAl alloy and AZC/AMT binder systems in investment casting

    Directory of Open Access Journals (Sweden)

    Yi Jia

    2015-11-01

    Full Text Available In this work, two kinds of binders, Ammonium Zirconium Carbonate (AZC and Ammonium Metatungstate (AMT hydrate, and three kinds of powders (ZrO2, Al2O3 and Y2O3 were mixed to fabricate six kinds of face coating systems. The thermal behaviors of the AZC and AMT dried binders were investigated by TG-DTA, and the phase transformation of the two binders was determined by XRD. Monoclinic ZrO2 phase was formed from AZC at 620 °C and WO3 at 700 °C, and the phase transformation was completed at lower than 1000 °C in both binders, and therefore, the sintering temperature for the molds was selected at 950 °C. The interaction between the ceramic molds with different face coatings and the Ti-48Al-2Cr-2Nb alloy during investment casting was studied. Results showed no α-case reaction in the TiAl-mold reaction, and the AMT + Y2O3 face coating appeared to be the best choice for investment casting of TiAl alloys under the experimental conditions.

  16. Biobased adhesives, gums, emulsions and binders: current trends and future prospects

    Science.gov (United States)

    Biopolymers derived from renewable resources are an emerging class of advanced materials that offer many useful properties for a wide range of food and non-food applications. Current state of the art in research and development of renewable polymers as adhesives, gums, binders and emulsions will be ...

  17. Preparation of Granular Red Mud Adsorbent using Different Binders by Microwave Pore - Making and Activation Method

    Science.gov (United States)

    Le, Thiquynhxuan; Wang, Hanrui; Ju, Shaohua; Peng, Jinhui; Zhou, Liexing; Wang, Shixing; Yin, Shaohua; Liu, Chao

    2016-04-01

    In this work, microwave energy is used for preparing a granular red mud (GRM) adsorbent made of red mud with different binders, such as starch, sodium silicate and cement. The effects of the preparation parameters, such as binder type, binder addition ratio, microwave heating temperature, microwave power and holding time, on the absorption property of GRM are investigated. The BET surface area, strength, pore structure, XRD and SEM of the GRM absorbent are analyzed. The results show that the microwave roasting has a good effect on pore-making of GRM, especially when using organic binder. Both the BET surface area and the strength of GRM obtained by microwave heating are significantly higher than that by conventional heating. The optimum conditions are obtained as follows: 6:100 (w/w) of starch to red mud ratio, microwave roasting with a power of 2.6 kW at 500℃ for holding time of 30 min. The BET surface area, pore volume and average pore diameter of GRM prepared at the optimum conditions are 15.58 m2/g, 0.0337 cm3/g and 3.1693 A0, respectively.

  18. Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Kuckova, Stepanka; Hynek, Radovan; Kodicek, Milan

    2007-05-01

    Proper identification of proteinaceous binders in artworks is essential for specification of the painting technique and thus also for selection of the restoration method; moreover, it might be helpful for the authentication of the artwork. This paper is concerned with the optimisation of analysis of the proteinaceous binders contained in the colour layers of artworks. Within this study, we worked out a method for the preparation and analysis of solid samples from artworks using tryptic cleavage and subsequent analysis of the acquired peptide mixture by matrix-assisted laser desorption/ionisation time of flight mass spectrometry. To make this approach rational and efficient, we created a database of commonly used binders (egg yolk, egg white, casein, milk, curd, whey, gelatine, and various types of animal glues); certain peaks in the mass spectra of these binders, formed by rich protein mixtures, were matched to amino acid sequences of the individual proteins that were found in the Internet database ExPASy; their cleavage was simulated by the program Mass-2.0-alpha4. The method developed was tested on model samples of ground layers prepared by an independent laboratory and then successfully applied to a real sample originating from a painting by Edvard Munch.

  19. Iron-based phosphate binders--a new element in management of hyperphosphatemia.

    Science.gov (United States)

    Pai, Amy Barton; Jang, Soo Min; Wegrzyn, Nicole

    2016-01-01

    Management of serum phosphorus in patients with chronic kidney disease remains a significant clinical challenge. A pivotal component of the clinical approach to maintaining serum phosphorus concentrations towards the normal range is the use of phosphate binding agents in addition to comprehensive dietary counseling. The available agents work similarly by capitalizing on a cation within the agent to bind negatively charged phosphorus, forming an insoluble complex and reducing ingested phosphorus absorption. Despite several effective options for phosphate binder therapies, patient adherence remains an issue, mainly due to adverse effect profiles and large daily pill burdens. Two new iron-based phosphate binder therapies have recently become available in the United States, sucroferric oxyhydroxide and ferric citrate. These agents have both been shown to effectively reduce serum phosphorus comparably to widely used calcium-based binders and sevelamer salts. The two new iron-based binders differ substantially with regard to phosphate binding chemistry and iron absorption profiles. Their place in therapy is still evolving and the impact of pill burden, gastrointestinal adverse effect profiles, potential cost reduction of anemia therapies and physiologic effects of long-term iron exposure need to be further evaluated.

  20. QSAR classification of estrogen receptor binders and pre-screening of potential pleiotropic EDCs.

    Science.gov (United States)

    Li, J; Gramatica, P

    2010-10-01

    Endocrine disrupting chemicals (EDCs) are suspected of posing serious threats to human and wildlife health through a variety of mechanisms, these being mainly receptor-mediated modes of action. It is reported that some EDCs exhibit dual activities as estrogen receptor (ER) and androgen receptor (AR) binders. Indeed, such compounds can affect the normal endocrine system through a dual complex mechanism, so steps should be taken not only to identify them a priori from their chemical structure, but also to prioritize them for experimental tests in order to reduce and even forbid their usage. To date, very few EDCs with dual activities have been identified. The present research uses QSARs, to investigate what, so far, is the largest and most heterogeneous ER binder data set (combined METI and EDKB databases). New predictive classification models were derived using different modelling methods and a consensus approach, and these were used to virtually screen a large AR binder data set after strict validation. As a result, 46 AR antagonists were predicted from their chemical structure to also have potential ER binding activities, i.e. pleiotropic EDCs. In addition, 48 not yet recognized ER binders were in silico identified, which increases the number of potential EDCs that are substances of very high concern (SVHC) in REACH. Thus, the proposed screening models, based only on structure information, have the main aim to prioritize experimental tests for the highlighted compounds with potential estrogenic activities and also to design safer alternatives.

  1. Incinerated sewage sludge ash as alternative binder in cement-based materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Goltermann, Per; Hodicky, Kamil

    2013-01-01

    it can minimize the need of ash landfill disposal. The objective of this study is to show potential use of incinerated sewage sludge ash (ISSA), an industrial byproduct, as possible binder in cement-based materials. Chemical and mechanical characteristics are presented and compared with results obtained...

  2. Conductivity Enhancement of Binder-Based Graphene Inks by Photonic Annealing and Subsequent Compression Rolling

    NARCIS (Netherlands)

    Arapov, K.; Bex, G.; Hendriks, R.; Rubingh, E.; Abbel, R.; de With, G.; Friedrich, H.

    2016-01-01

    This paper describes a combination of photonic annealing and compression rolling to improve the conductive properties of printed binder-based graphene inks. High-density light pulses result in temperatures up to 500 °C that along with a decrease of resistivity lead to layer expansion. The structural

  3. Mimosa pudica seed mucilage: isolation; characterization and evaluation as tablet disintegrant and binder.

    Science.gov (United States)

    Ahuja, Munish; Kumar, Ashok; Yadav, Parvinder; Singh, Kuldeep

    2013-06-01

    In the present study Mimosa pudica seed mucilage was isolated, characterized and evaluated as tablet binder and disintegrant. Several properties of mucilage like high swelling index and gelling nature prompted us to explore its applications as disintegrating and binding agent. Disintegrant properties were evaluated by formulating directly compressed hydrochlorothiazide tablets containing 1%-10% (w/w) of seed mucilage as disintegrant and compared with the standard disintegrants. The disintegration time of mucilage containing tablets was found to be in the order of 3%>1%>5%>7.5%>10%. On comparative evaluation with standard disintegrants, it was observed that the order of disintegration of tablets was Ac-Di-SolMimosa mucilage at 6%, 8%, and 10% (w/w) concentration as the binder and compared with tablets prepared using PVP-K25 (1.7%, w/w) and acacia (6.8%, w/w) as the binder. Mimosa mucilage at 10% (w/w) concentration provided tablets with adequate hardness and friability. In conclusion, M. pudica seed mucilage is a potential tablet disintegrant and binder. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Conductivity Enhancement of Binder-Based Graphene Inks by Photonic Annealing and Subsequent Compression Rolling

    NARCIS (Netherlands)

    Arapov, K.; Bex, G.; Hendriks, R.; Rubingh, E.; Abbel, R.; de With, G.; Friedrich, H.

    2016-01-01

    This paper describes a combination of photonic annealing and compression rolling to improve the conductive properties of printed binder-based graphene inks. High-density light pulses result in temperatures up to 500 °C that along with a decrease of resistivity lead to layer expansion. The structural

  5. HYDROCARBONS RESERVES IN VENEZUELA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Cruz, D.J.

    2007-07-01

    Venezuela is an important player in the energy world, because of its hydrocarbons reserves. The process for calculating oil and associated gas reserves is described bearing in mind that 90% of the gas reserves of Venezuela are associated to oil. Likewise, an analysis is made of the oil reserves figures from 1975 to 2003. Reference is also made to inconsistencies found by international experts and the explanations offered in this respect by the Ministry of Energy and Petroleum (MENPET) and Petroleos de Venezuela (PDVSA) regarding the changes that took place in the 1980s. In turn, Hubbert's Law is explained to determine peak production of conventional oil that a reservoir or field will reach, as well as its relationship with remaining reserves. Emphasis is placed on the interest of the United Nations on this topic. The reserves of associated gas are presented along with their relationship with the different crude oils that are produced and with injected gas, as well as with respect to the possible changes that would take place in the latter if oil reserves are revised. Some recommendations are submitted so that the MENPET starts preparing the pertinent policies ruling reserves. (auth)

  6. Evaluation of hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Cashman, P.H.; Trexler, J.H. Jr. [Univ. of Nevada, Reno, NV (United States)

    1992-09-30

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the {open_quotes}Eleana Formation{close_quotes} are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock.

  7. Binder characterisation of mortars used at different ages in the San Lorenzo church in Milan

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Luca, E-mail: luca.bertolini@polimi.it; Carsana, Maddalena, E-mail: maddalena.carsana@polimi.it; Gastaldi, Matteo, E-mail: matteo.gastaldi@polimi.it; Lollini, Federica, E-mail: federica.lollini@polimi.it; Redaelli, Elena, E-mail: elena.redaelli@polimi.it

    2013-06-15

    The paper describes a study on the mortars of the basilica of San Lorenzo in Milan, which was carried out to support an archaeological study aimed at dating and documenting the construction techniques used throughout the centuries. The church, which was founded between the 4th and 5th century, at the end of the period when Milan was the capital of the Roman Empire, was subjected in time to extensions, collapses and reconstructions that lasted until the Renaissance period and even later on. Thanks to the good state of conservation, San Lorenzo church is a collection of materials and construction techniques throughout a period of more than a millennium. Mortars were investigated in order to compare the binders used for structural elements built in different historical ages. From an archaeological study, samples of mortars attributed to the late Roman period, the Middle Ages and the Renaissance were available. The binder of each sample was separated by the aggregates and it was characterised on the basis of X-ray diffraction analysis, thermogravimetric analysis and scanning electron microscopy. Constituents of the binder were identified and their origin is discussed in order to investigate if they could be attributed to the original composition of the binder or to possible alteration in time due to atmospheric pollution. Results show that, even though the binder is mainly based on magnesian lime, there are significant differences in the microstructure of the binding matrix used in mortars ascribed to the different historical periods. In the Roman period, in correspondence of the structural elements that required higher strength, also hydraulic cocciopesto mortars were detected. Gypsum was found in most samples, which was maybe added intentionally. - Highlights: • Binders of mortars of San Lorenzo church in Milan were investigated. • Roman, Middle Ages and Renaissance samples were studied by XRD, TG and SEM. • Magnesian-lime binders containing silico

  8. Cold in-place recycling characterization framework for single or multiple component binder systems

    Science.gov (United States)

    Cox, Benjamin C.

    Cold in-place recycling (CIR) is a pavement rehabilitation technique which has gained momentum in recent years. This momentum is due partly to its economic and sustainability characteristics, which has led to CIR market expansion. When pavement network deterioration is considered alongside increasing material costs, it is not beyond reason to expect demands on CIR to continue to increase. Historically, single component binder (SCB) systems, those with one stabilization binder (or two if the secondary binder dosage is 1% or less), have dominated the CIR market and could be considered the general state of practice. Common stabilization binders are either bituminous or cementitious. Two example SCB systems would be: 1) 3% portland cement, or 2) 3% asphalt emulsion with 1% hydrated lime. While traditional SCB systems have demonstrated positive economic and sustainability impacts, this dissertation focuses on multiple component binder (MCB) systems (bituminous and cementitious combined) which exhibit the potential to provide better overall economics and performance. Use of MCBs has the potential to alleviate SCB issues to some extent (e.g. cracking with cementitious SCBs, rutting with bituminous SCBs). Furthermore, to fairly represent both binders in an MCB system a universal design method which can accommodate multiple binder types is needed. The main objectives of this dissertation are to develop a universal CIR design framework and, using this framework, characterize multiple SCB and MCB systems. Approximately 1500 CIR specimens were tested herein along with approximately 300 asphalt concrete specimens which serve as a reference data set for CIR characterization. A case study of a high-traffic Mississippi CIR project which included cement SCB and emulsion SCB sections is also presented to support laboratory efforts. Individual components needed to comprise a universal design framework, such as curing protocols, were developed. SCB and MCB characterization indicated

  9. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    Science.gov (United States)

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

  10. Phage display-derived binders able to distinguish Listeria monocytogenes from other Listeria species.

    Directory of Open Access Journals (Sweden)

    Josephine Morton

    Full Text Available The objective of this study was to produce phage display-derived binders with the ability to distinguish Listeria monocytogenes from other Listeria spp., which may have potential utility to enhance detection of Listeria monocytogenes. To obtain binders with the desired binding specificity a series of surface and solution phage-display biopannings were performed. Initially, three rounds of surface biopanning against gamma-irradiated L. monocytogenes serovar 4b cells were performed followed by an additional surface biopanning round against L. monocytogenes 4b which included prior subtraction biopanning against gamma-irradiated L. innocua cells. In an attempt to further enhance binder specificity for L. monocytogenes 4b two rounds of solution biopanning were performed, both rounds included initial subtraction solution biopanning against L. innocua. Subsequent evaluations were performed on the phage clones by phage binding ELISA. All phage clones tested from the second round of solution biopanning had higher specificity for L. monocytogenes 4b than for L. innocua and three other foodborne pathogens (Salmonella spp., Escherichia coli and Campylobacter jejuni. Further evaluation with five other Listeria spp. revealed that one phage clone in particular, expressing peptide GRIADLPPLKPN, was highly specific for L. monocytogenes with at least 43-fold more binding capability to L. monocytogenes 4b than to any other Listeria sp. This proof-of-principle study demonstrates how a combination of surface, solution and subtractive biopanning was used to maximise binder specificity. L. monocytogenes-specific binders were obtained which could have potential application in novel detection tests for L. monocytogenes, benefiting both the food and medical industries.

  11. Mechanical strength development of mortars containing volcanic scoria-based binders with different fineness

    Directory of Open Access Journals (Sweden)

    Aref M. al-Swaidani

    2016-06-01

    Full Text Available The benefits of using natural pozzolan as cement replacement are often associated with shortcomings such as the need to moist-curing for longer time and a reduction of strength at early ages. The objective of the study is to investigate the influence of binder fineness on the mechanical strength development of scoria-based binder mortars. In the study, mortar specimens have been produced with four types of binder: one plain Portland cement (control and three scoria-based binders with three replacement levels: 25%, 30% and 35%, respectively. All scoria-based binders have been inter-ground into four different Blaine fineness: 2400, 3200, 4200 and 5100 cm2/g. The development of the compressive and flexural tensile strength of all mortar specimens with curing time has been investigated. The effects of the Blaine fineness of the scoria-based blended cement on the compressive and flexural strengths of mortar have been evaluated at curing ages of 2, 7, 28 and 90 days, respectively. Particle size distribution measured by a laser diffractometer has been considered in the study. Test results revealed that there is a decrease in strength with increasing amounts of scoria. In addition, there was found an increase in strength with increasing the Blaine fineness values. No direct relationship between Blaine and particle size distribution was observed. Effects of Blaine fineness on some physical properties of blended cements such as water demand, setting times and soundness have also been investigated. Further, an estimation equation for strength development incorporating the effects of fineness measured either by Blaine or by particle size distribution has been derived by the authors.

  12. Phage display-derived binders able to distinguish Listeria monocytogenes from other Listeria species.

    Science.gov (United States)

    Morton, Josephine; Karoonuthaisiri, Nitsara; Charlermroj, Ratthaphol; Stewart, Linda D; Elliott, Christopher T; Grant, Irene R

    2013-01-01

    The objective of this study was to produce phage display-derived binders with the ability to distinguish Listeria monocytogenes from other Listeria spp., which may have potential utility to enhance detection of Listeria monocytogenes. To obtain binders with the desired binding specificity a series of surface and solution phage-display biopannings were performed. Initially, three rounds of surface biopanning against gamma-irradiated L. monocytogenes serovar 4b cells were performed followed by an additional surface biopanning round against L. monocytogenes 4b which included prior subtraction biopanning against gamma-irradiated L. innocua cells. In an attempt to further enhance binder specificity for L. monocytogenes 4b two rounds of solution biopanning were performed, both rounds included initial subtraction solution biopanning against L. innocua. Subsequent evaluations were performed on the phage clones by phage binding ELISA. All phage clones tested from the second round of solution biopanning had higher specificity for L. monocytogenes 4b than for L. innocua and three other foodborne pathogens (Salmonella spp., Escherichia coli and Campylobacter jejuni). Further evaluation with five other Listeria spp. revealed that one phage clone in particular, expressing peptide GRIADLPPLKPN, was highly specific for L. monocytogenes with at least 43-fold more binding capability to L. monocytogenes 4b than to any other Listeria sp. This proof-of-principle study demonstrates how a combination of surface, solution and subtractive biopanning was used to maximise binder specificity. L. monocytogenes-specific binders were obtained which could have potential application in novel detection tests for L. monocytogenes, benefiting both the food and medical industries.

  13. A review of binders used in cemented paste tailings for underground and surface disposal practices.

    Science.gov (United States)

    Tariq, Amjad; Yanful, Ernest K

    2013-12-15

    Increased public awareness of environmental issues coupled with increasingly stringent environmental regulations pertaining to the disposal of sulphidic mine waste necessitates the mining industry to adopt more competent and efficient approaches to manage acid rock drainage. Cemented paste tailings (CPT) is an innovative form of amalgamated material currently available to the mining industry in developed countries. It is made usually from mill tailings mingled with a small amount of binder (customarily Portland cement) and water. The high cost associated with production and haulage of ordinary Portland cement and its alleged average performance as a sole binder in the long term (due to vulnerability to internal sulphate attack) have prompted users to appraise less expensive and technically efficient substitutes for mine tailings paste formulations. Generally, these binders include but are not limited to sulphate resistant cements, and/or as a partial replacement for Portland cement by artificial pozzolans, natural pozzolans, calcium sulphate substances and sodium silicates. The approach to designing environmentally efficient CPT is to ensure long-term stability and effective control over environmental contaminants through the use of composite binder systems with enhanced engineering properties to cater for inherit deficiencies in the individual constituents. The alkaline pore solution created by high free calcium rich cement kiln dust (CKD) (byproduct of cement manufacturing) is capable of disintegrating the solid glassy network of artificial pozzolans to produce reactive silicate and aluminate species when attacked by (OH(-)) ions. The augmented pozzolanic reactivity of CKD-slag and CKD-fly ash systems may produce resilient CPT. Since cemented paste comprising mine tailings and binders is a relatively new technology, a review of the binding materials used in such formulations and their performance evaluation in mechanical fill behaviour was considered pertinent in

  14. Polymerization rate and mechanism of ultrasonically initiated emulsion polymerization of n-butyl acrylate.

    Science.gov (United States)

    Xia, Hesheng; Wang, Qi; Liao, Yongqin; Xu, Xi; Baxter, Steven M; Slone, Robert V; Wu, Shuguang; Swift, Graham; Westmoreland, David G

    2002-07-01

    The factors affecting the induction period and polymerization rate in ultrasonically initiated emulsion polymerization of n-butyl acrylate (BA) were investigated. The induction period takes only an instant in ultrasonically initiated emulsion polymerization of BA without any added initiator by enhancing the N2 flow rate. Increasing temperature, power output and SDS concentration, decreasing the monomer concentration results in further decreasing induction period and enhanced polymerization rate. Under optimized reaction conditions the conversion of BA reaches 92% in 11 min. The polymerization rate can be controlled by varying reaction parameters. The apparatus of ultrasonically initiated semi-continuous and continuous emulsion polymerization were set up and the feasibility was first studied. Based on the experimental results, a free radical polymerization mechanism for ultrasonically initiated emulsion polymerization was proposed, including the sources of the radicals, the process of radical formation, the locus of polymerization and the polymerization process. Compared with conventional emulsion polymerization, where the radicals come from thermal decomposition of a chemical initiator, ultrasonically initiated emulsion polymerization has attractive features such as no need for a chemical initiator, lower reaction temperature, faster polymerization rate, and higher molecular weight of the polymer prepared.

  15. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  16. Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration

    Science.gov (United States)

    De Mil, Thomas; Devreese, Mathias; De Baere, Siegrid; Van Ranst, Eric; Eeckhout, Mia; De Backer, Patrick; Croubels, Siska

    2015-01-01

    The aim of this study was to characterize 27 feed additives marketed as mycotoxin binders and to screen them for their in vitro zearalenone (ZEN) adsorption. Firstly, 27 mycotoxin binders, commercially available in Belgium and The Netherlands, were selected and characterized. Characterization was comprised of X-ray diffraction (XRD) profiling of the mineral content and d-spacing, determination of the cation exchange capacity (CEC) and the exchangeable base cations, acidity, mineral fraction, relative humidity (RH) and swelling volume. Secondly, an in vitro screening experiment was performed to evaluate the adsorption of a single concentration of ZEN in a ZEN:binder ratio of 1:20,000. The free concentration of ZEN was measured after 4 h of incubation with each of the 27 mycotoxin binders at a pH of 2.5, 6.5 and 8.0. A significant correlation between the free concentration of ZEN and both the d-spacing and mineral fraction of the mycotoxin binders was seen at the three pH levels. A low free concentration of ZEN was demonstrated using binders containing mixed-layered smectites and binders containing humic acids. PMID:25568976

  17. Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration

    Directory of Open Access Journals (Sweden)

    Thomas De Mil

    2015-01-01

    Full Text Available The aim of this study was to characterize 27 feed additives marketed as mycotoxin binders and to screen them for their in vitro zearalenone (ZEN adsorption. Firstly, 27 mycotoxin binders, commercially available in Belgium and The Netherlands, were selected and characterized. Characterization was comprised of X-ray diffraction (XRD profiling of the mineral content and d-spacing, determination of the cation exchange capacity (CEC and the exchangeable base cations, acidity, mineral fraction, relative humidity (RH and swelling volume. Secondly, an in vitro screening experiment was performed to evaluate the adsorption of a single concentration of ZEN in a ZEN:binder ratio of 1:20,000. The free concentration of ZEN was measured after 4 h of incubation with each of the 27 mycotoxin binders at a pH of 2.5, 6.5 and 8.0. A significant correlation between the free concentration of ZEN and both the d-spacing and mineral fraction of the mycotoxin binders was seen at the three pH levels. A low free concentration of ZEN was demonstrated using binders containing mixed-layered smectites and binders containing humic acids.

  18. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    Directory of Open Access Journals (Sweden)

    Uğur GÖKMEN

    2016-02-01

    Full Text Available In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG based and can be dissolved in water, were used. Polypropylene was used as binder and steric acid was used as lubricant for both binder systems as skeleton binder. Dry binder system were mixed for 30 min in a three dimensional Turbola. Capillary rheometer was used to characterize the rheological properties of feed stocks at 150-200 °C and a pressures of 0.165-2.069 MPa. Powder loading capacity of PEG and PW based feed stocks were found to be %55 and %61 respectively. The lowest viscosity of PEG and PW based feed stocks were found to be 304.707 Pa.s and 48.857 Pa.s respectively.Keywords: PIM, Binder, Rheological properties

  19. Influence of binder composition on the rheological behavior of injection-molded microsized SiC suspensions

    Institute of Scientific and Technical Information of China (English)

    Shubin Ren; Xinbo He; Xuanhui Qu; Islam S. Humail; Yanping Wei

    2008-01-01

    The influence of four kinds of binders consisting of paraffin wax (PW), random-polypropylene (RPP), high-density poly-ethylene (HDPE), and stearic acid (SA) on the theological behavior of injection-molded SiC feedstocks was investigated over a tem-perature range of 150℃ to 180℃ and a shear rate range of 4 s-1 to 1259 s-1. The results showed that all the feedstocks exhibited pseudoplastic flow behavior. The wax-based binder of multipolymer components (PW-RPP-HDPE) exhibited better comprehensive rheological properties compared with the binder of monopolymer components (PW-RPP or PW-HDPE). The addition of 5wt% SA to the binder could reduce the viscosity of the feedstock but enhance the rbeological stability by improving the wettability between the binder and the SiC powder. The binder of 65wt% PW + 15wt% HDPE + 15wt% RPP + 5wt% SA was found to be a better binder for microsized SiC injection molding.

  20. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments

    Science.gov (United States)

    Abrajano, T. A., Jr.; Yan, B.; O'Malley, V.

    2003-12-01

    compounds were introduced to shallow environments through forest fires and natural coking of crude oil ( Ballentine et al., 1996; O'Malley et al., 1997). The full development of natural microbial enzymatic systems that can utilize HMW hydrocarbons as carbon or energy source attests to the antiquity of hydrocarbon dispersal processes in the environment. The environmental concern is, therefore, primarily due to the rate and spatial scale by which petroleum products are released in modern times, particularly with respect to the environmental sensitivity of some ecosystems to these releases ( Schwarzenbach et al., 1993; Eganhouse, 1997; NRC, 2002).Crude oil is produced by diagenetic and thermal maturation of terrestrial and marine plant and animal materials in source rocks and petroleum reservoirs. Most of the petroleum in use today is produced by thermal and bacterial decomposition of phytoplankton material that once lived near the surface of the world's ocean, lake, and river waters (Tissot and Welte, 1984). Terrestrially derived organic matter can be regionally significant, and is the second major contributor to the worldwide oil inventory ( Tissot and Welte, 1984; Peters and Moldowan, 1993; Engel and Macko, 1993). The existing theories hold that the organic matter present in crude oil consists of unconverted original biopolymers and new compounds polymerized by reactions promoted by time and increasing temperature in deep geologic formations. The resulting oil can migrate from source to reservoir rocks where the new geochemical conditions may again lead to further transformation of the petrogenic compounds. Any subsequent changes in reservoir conditions brought about by uplift, interaction with aqueous fluids, or even direct human intervention (e.g., drilling, water washing) likewise could alter the geochemical makeup of the petrogenic compounds. Much of our understanding of environmental sources and fate of hydrocarbon compounds in shallow environments indeed borrowed from

  1. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  2. PHOTOSENSITIVITY OF CERIC ION INITIATED ACRYLAMIDE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    DONG Jianhua; QIU Kunyuan; FENG Xinde

    1992-01-01

    Polymerization of acrylamide initiated by ceric ammonium nitrate alone has been studied in aqueous medium. The effects of UV light irradiation on the initial rates of polymerization, the activation energy and on the polymer molecular weights have been investigated. Compared with that in the dark, the rate of polymerization under UV light was accelerated to eleven times higher, and the overall activation energy was lowered markedly.

  3. Injection Molding of Titanium Alloy Implant For Biomedical Application Using Novel Binder System Based on Palm Oil Derivatives

    Directory of Open Access Journals (Sweden)

    R. Ibrahim

    2010-01-01

    Full Text Available Problem statement: Titanium alloy (Ti6Al4V has been widely used as an implant for biomedical application. In this study, the implant had been fabricated using high technology of Powder Injection Molding (PIM process due to the cost effective technique for producing small, complex and precision parts in high volume compared with conventional method through machining. Approach: Through PIM, the binder system is one of the most important criteria in order to successfully fabricate the implants. Even though, the binder system is a temporary, but failure in the selection and removal of the binder system will affect on the final properties of the sintered parts. Therefore, the binder system based on palm oil derivative which is palm stearin had been formulated and developed to replace the conventional binder system. Results: The rheological studies of the mixture between the powder and binders system had been determined properly in order to be successful during injection into injection molding machine. After molding, the binder held the particles in place. The binder system had to be removed completely through debinding step. During debinding step, solvent debinding and thermal pyrolysis had been used to remove completely of the binder system. The debound part was then sintered to give the required physical and mechanical properties. The in vitro biocompatibility also was tested using Neutral Red (NR and mouse fibroblast cell lines L-929 for the direct contact assay. Conclusion: The results showed that the properties of the final sintered parts fulfill the Standard Metal Powder Industries Federation (MPIF 35 for PIM parts except for tensile strength and elongation due to the formation of titanium carbide. The in vitro biocompatibility on the extraction using mouse fibroblast cell line L-929 by means of NR assays showed non toxic for the sintered specimen titanium alloy parts.

  4. Directional Growth of Polymeric Nanowires

    Science.gov (United States)

    Thapa, Prem; Flanders, Bret

    2009-03-01

    This work establishes an innovative electrochemical approach to the template free growth of conducting polypyrrole and polythiophene wires. These polymeric wires exhibit a knobby structure, but persistent growth in a given direction up to 30 μm in length. A long-range component of the applied voltage signal defines the growth-path. Moreover, the presence of this component enables the growth of amorphous nanowires with wire-like geometries. Such wires are employed in a non-invasive methodology for attaining strong mechanical attachments to live cells. This capability is of potential use in the electro-mechanical probing of cell physiological processes.

  5. Marketing NASA Langley Polymeric Materials

    Science.gov (United States)

    Flynn, Diane M.

    1995-01-01

    A marketing tool was created to expand the knowledge of LaRC developed polymeric materials, in order to facilitate the technology transfer process and increase technology commercialization awareness among a non-technical audience. The created brochure features four materials, LaRC-CP, LaRC-RP46, LaRC-SI, and LaRC-IA, and highlights their competitive strengths in potential commercial applications. Excellent opportunities exist in the $40 million per year microelectronics market and the $6 billion adhesives market. It is hoped that the created brochure will generate inquiries regarding the use of the above materials in markets such as these.

  6. Charge transport in polymeric transistors

    Directory of Open Access Journals (Sweden)

    Alberto Salleo

    2007-03-01

    Full Text Available Polymeric semiconductors have attracted much attention because of their possible use as active materials in printed electronics. Thin-film transistors (TFTs are a convenient tool for studying charge-transport physics in conjugated polymers. Two families of materials are reviewed here: fluorene copolymers and polythiophenes. Because charge transport is highly anisotropic in molecular conductors, the electrical properties of conjugated polymers are strongly dependent on microstructure. Molecular weight, polydispersity, and regioregularity all affect morphology and charge-transport in these materials. Charge transport models based on microstructure are instrumental in identifying the electrical bottlenecks in these materials.

  7. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  8. Randomized Clinical Trial on the postoperative use of an abdominal binder after laparoscopic umbilical and epigastric hernia repair

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Olsen, B H; Rosenberg, J;

    2015-01-01

    -reducing effect of an abdominal binder in patients undergoing laparoscopic umbilical or epigastric hernia repair. METHODS: Based on power analysis, a minimum of 54 patients undergoing laparoscopic umbilical and epigastric hernia repair were to be included. Patients were randomized to abdominal binders vs......PURPOSE: Application of an abdominal binder is often part of a standard postoperative regimen after ventral hernia repair to reduce pain and seroma formation. However, there is lack of evidence of the clinical effects. The aim of the present study was to investigate the pain- and seroma...

  9. Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells.

    Science.gov (United States)

    Chen, Shuiliang; Chen, Yu; He, Guanghua; He, Shuijian; Schröder, Uwe; Hou, Haoqing

    2012-04-15

    In this communication, we report a binder-free oxygen reduction cathode for microbial fuel cells. The binder-free cathode is prepared by growth of nitrogen-doped carbon nanofibers (NCNFs) on stainless steel mesh (SSM) via simple pyrolysis of pyridine. The interaction force between NCNFs and SSM surface is very strong which is able to tolerate water flush. The NCNFs/SSM cathode shows high and stable electrocatalytic activity for oxygen reduction reaction, which is comparable to that of Pt/SSM and ferricyanide cathode. This study proposes a promising low-cost binder-free cathode for microbial fuel cells.

  10. Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries

    Science.gov (United States)

    Yoo, Jung-Keun; Jeon, Jaebeom; Kang, Kisuk; Jung, Yeon Sik

    2017-03-01

    Recently, investigation of Si-based anode materials for rechargeable battery applications garnered much interest due to its exceptionally high capacity. High-capacity Si anode ( 4,200 mAhg-1) is highly desirable for the replacement of conventional graphite anode (acidity of the slurry and has a profound effect on the cell performance using Si anode. The enhanced cycle performance of Si nanoparticles obtained by treating the binder at pH 4 can be explained by its strong interaction between the binder and Si surface and current collector, and also rigidity of binder by cross-linking.

  11. Method for the Accelerated Testing of the Durability of a Construction Binder using the Arrhenius Approach

    Science.gov (United States)

    Fridrichová, Marcela; Dvořák, Karel; Gazdič, Dominik

    2016-03-01

    The single most reliable indicator of a material's durability is its performance in long-term tests, which cannot always be carried out due to a limited time budget. The second option is to perform some kind of accelerated durability tests. The aim of the work described in this article was to develop a method for the accelerated durability testing of binders. It was decided that the Arrhenius equation approach and the theory of chemical reaction kinetics would be applied in this case. The degradation process has been simplified to a single quantifiable parameter, which became compressive strength. A model hydraulic binder based on fluidised bed combustion ash (FBC ash) was chosen as the test subject for the development of the method. The model binder and its hydration products were tested by high-temperature X-ray diffraction analysis. The main hydration product of this binder was ettringite. Due to the thermodynamic instability of this mineral, it was possible to verify the proposed method via long term testing. In order to accelerate the chemical reactions in the binder, four combinations of two temperatures (65 and 85°C) and two different relative humidities (14 and 100%) were used. The upper temperature limit was chosen because of the results of the high-temperature x-ray testing of the ettringite's decomposition. The calculation formulae for the accelerated durability tests were derived on the basis of data regarding the decrease in compressive strength under the conditions imposed by the four above-mentioned combinations. The mineralogical composition of the binder after degradation was also described. The final degradation product was gypsum under dry conditions and monosulphate under wet conditions. The validity of the method and formula was subsequently verified by means of long-term testing. A very good correspondence between the calculated and real values was achieved. The deviation of these values did not exceed 5 %. The designed and verified method

  12. Investigation of carbonate rocks appropriate for the production of natural hydraulic lime binders

    Science.gov (United States)

    Triantafyllou, George; Panagopoulos, George; Manoutsoglou, Emmanouil; Christidis, George; Přikryl, Richard

    2014-05-01

    Cement industry is facing growing challenges in conserving materials and conforming to the demanding environmental standards. Therefore, there is great interest in the development, investigation and use of binders alternatives to Portland cement. Natural hydraulic lime (NHL) binders have become nowadays materials with high added value, due to their advantages in various construction applications. Some of them include compatibility, suitability, workability and the versatility in applications. NHL binders are made from limestones which contain sufficient argillaceous or siliceous components fired at relatively low temperatures, with reduction to powder by slaking with or without grinding. This study is focused in developing technology for small-scale production of cementitious binders, combining the knowledge and experience of geologists and mineral resources engineers. The first step of investigation includes field techniques to the study the lithology, texture and sedimentary structure of Neogene carbonate sediments, from various basins of Crete Island, Greece and the construction of 3D geological models, in order to determine the deposits of each different geological formation. Sampling of appropriate quantity of raw materials is crucial for the investigation. Petrographic studies on the basis of the study of grain type, grain size, types of porosity and depositional texture, are necessary to classify effectively industrial mineral raw materials for this kind of application. Laboratory tests should also include the study of mineralogical and chemical composition of the bulk raw materials, as well as the content of insoluble limestone impurities, thus determining the amount of active clay and silica components required to produce binders of different degree of hydraulicity. Firing of the samples in various temperatures and time conditions, followed by X-ray diffraction analysis and slaking rate tests of the produced binders, is essential to insure the

  13. Effect of Polymerization Condition on Particle Size Distribution in St/BA/MAA Emulsion Polymerization Process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A series of St/BA/MAA emulsion polymerizations was carried out. By using PCS (photon correlation spectroscopy), the particle size distribution(PSD) of the whole St/BA/MAA emulsion polymerization process was gotten easily and quickly. The effect of polymerization condition on PSD in St/BA/MAA emulsion process was discussed.

  14. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.

    1993-01-01

    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  15. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    Science.gov (United States)

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  16. Isolation and functional characterization of hydrocarbon emulsifying and solubilizing factors produced by a Pseudomonas species

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, P.G.; Banuah, J.N.; Bhagat, S.D.; Pathak, M.G.; Singh, H.D.

    1983-02-01

    Pseudomonas PG-1 cultivated on pristane produced in good amount a heat-stable polymeric substance which showed strong hydrocarbon emulsifying and solubilizing properties. The substance was isolated in crude form and was found to contain 34% protein, 16% carbohydrate, and 40% lipid. The hydrocarbon solubilizing activity of the isolate was strongly inhibited by EDTA but the chelating agent had no effect on the hydrocarbon emulsifying activity. Both activities of the isolate were strongly inhibited by chymotrypsin treatment indicating the importance of the protein moiety for its activity. Hydrocarbon solubilization by the isolate showed a certain degree of specificity to pristane in modest agitation generally used in microbial cultivation, but this specificity was lost by vigorous agitation in a Waring blender. It was proposed that in the first case, solubilization was effected by a solubilizing factor specific to pristane, whereas in the latter ease, nonspecific solubilization occurred due to the action of the emulsifying factor. The rate of pristane solubilization by heat-treated culture broth under the conditions of agitation used in cultivation (rotary shaker, 120 rpm) was found to be ca. 750 mg L/sup -1/h/sup -1/ which was much larger than the maximal pristane uptake rate of 170 mg L/sup -1/h/sup -1/ observed during microbial growth on the substrate. It was concluded that hydrocarbon solubilization could satisfactorily account for the substrate uptake and growth.

  17. Electrochemical Polymerization of Methylene Green

    Institute of Scientific and Technical Information of China (English)

    ZHU,Hong-Ping; MU,Shao-Lin

    2001-01-01

    The electrochemical polymerization of methylene green has been carried out using cyclic voltammetry. The electrolytic so lution consisted of 4 × 10-3 mol/L methylene green, 0.1 mol/L NaNO3 and 1 × 10-2 mol/L sodium tetraborate with pH 11.0. The temperature for polymerization is controlled at 60℃. The scan potential is set between -0.2 and 1.2 V (vs. Ag/AgCl with saturated KCl solution). There are an anodic peak and a cathodic peak on the cyclic voltammogram of poly(methylene green) at pH≤3.8. Both peak potentials shift towards nega tive potentials with increasing pH value, and their peak cur rents decrease with increasing pH value. Poly(methylene green) has a good electrochemical activity and stability in aqueous solutions with pH ≤ 3.8. The UV-Visible spectrum and FTIR spectrum of poly (methylene green) are different from those of methylene green.

  18. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands for time and skilled technical personnel, HVTs are currently used in only a few research laboratories worldwide. Instead, most researchers in this filed are attracted to more facile Schlenk techniques. The basic principle of this technique followed in all laboratories is substantially the same, i.e. the use of alternate vacuum and inert gas atmosphere in glass apparatus for the purification/charging of monomer, solvents, additives, and for the manipulation of air-sensitive compounds such as alkyl metal initiators, organometallic or organic catalysts. However, it is executed quite differently in each research group in terms of the structure of Schlenk apparatus (manifolds, connections, purification/storage flasks, reactors, etc.), the use of small supplementary devices (soft tubing, cannulas, stopcocks, etc.) and experimental procedures. The operational methods are partly purpose-oriented while also featured by a high flexibility, which makes it impossible to describe in detail each specific one. In this chapter we will briefly exemplify the application of Schlenk techniques for anionic polymerization by describing the performance of a few experiments from our own work.

  19. Anionic clusters in dusty hydrocarbon and silane plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hollenstein, C.; Schwarzenbach, W.; Howling, A.A.; Courteille, C.; Dorier, J.L.; Sansonnens, L. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1995-10-01

    Measurements of anions and cations are reported for hydrocarbon and silane rf capacitive glow discharges. Series of anions were observed by quadrupole mass spectrometry using power-modulated plasmas and their structures are interpreted from the form of the mass spectra. Various experiments in silane plasmas show that anion confinement results in particles and conversely, anion de-trapping can inhibit particle formation. In contrast, the polymerized neutral flux magnitudes, mass spectra and dynamics are independent of the powder formation. Powder is known to form readily in deposition plasmas containing electronegative free radicals, and the general role of anions in particle formation is discussed in the light of these experiments. (author) 6 figs., 21 refs.

  20. Synthesis of binder-like molecules covalently linked to silicon nanoparticles and application as anode material for lithium-ion batteries without the use of electrolyte additives

    Science.gov (United States)

    Assresahegn, Birhanu Desalegn; Bélanger, Daniel

    2017-03-01

    A chemically modified silicon anode is prepared for application as anode in lithium-ion batteries by covalent attachment of polyacrylic acid to enable self-adhesion between the active material particles. The polyacrylic acid polymer is formed by atom transfer radical polymerization using 1-(bromoethyl)benzene initiator groups initially bonded to a hydrogenated silicon surface. The grafting of 1-(bromoethyl)benzene and polyacrylic acid is confirmed by various material characterization techniques. The electrochemical performance of the silicon anodes is also evaluated by galvanostatic cycling. The chemically modified composite silicon anode (with active material loading of 0.9-1 mg cm-2) showed a significantly improved performance in terms of: gravimetric capacitance (more than 2000 mAh g-1) after 300 cycles and 80% capacity retention with an average 99.6% Coulombic efficiency at a current density of 0.34 A g-1. However, the unmodified electrode cycled 75 times in the same conditions only retains 46% of its initial capacity with an average 95.1% Coulombic efficiency. The new composite Si electrode performs better at high charge/discharge rate and allows the use of larger proportion of the active material by reducing the amount of binder. It is noteworthy that these composite silicon electrodes are tested without the use of expensive electrolyte additives.

  1. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang; Dali; Devlin, David; Barbero, Robert S.; Carrera, Martin E.; Colling, Craig W.

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  2. POLYMERIC NANOPARTICLES FROM SUPERCRITICAL CO2 MICROEMULSION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Wei-jun Ye; Jason S. Keiper; Joseph M. DeSimone

    2006-01-01

    Herein, we reported the microemulsion polymerization in supercritical carbon dioxide. With the aid of an anionic phosphate fluorosurfactant (bis-[2-(F-hexyl)ethyl]phosphate sodium), water-soluble/CO2-insoluble acryloxyethyltrimethyl ammonium chloride monomer and N,N'-methylene-bisacrylamide cross-linker were solubilized into CO2 continuous phase via the formation of water-in-CO2 (w/c) microemulsion water pools. Initiated by a CO2-soluble initiator, 2,2'-azo-bisisobutyronitrile (AIBN), cross-linked poly(acryloxyethyltrimethyl ammonium chloride) particles were produced and stabilized in these w/c internal water pools. Nano-sized particles with sizes less than 20 nm in diameter and narrow particle size distributions were obtained.

  3. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    Science.gov (United States)

    2007-11-02

    and hydrocarbon blends in our various combustion systems, with emphasis on the effects of elevated pressure using our pressurized flow reactor ( PFR ...facility. Detailed experimental data were generated from the PFR for use in associated kinetic modeling work. We continued to develop and extend both

  4. Instrumentation for studying binder burnout in an immobilized plutonium ceramic wasteform

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M; Pugh, D; Herman, C

    2000-04-21

    The Plutonium Immobilization Program produces a ceramic wasteform that utilizes organic binders. Several techniques and instruments were developed to study binder burnout on full size ceramic samples in a production environment. This approach provides a method for developing process parameters on production scale to optimize throughput, product quality, offgas behavior, and plant emissions. These instruments allow for offgas analysis, large-scale TGA, product quality observation, and thermal modeling. Using these tools, results from lab-scale techniques such as laser dilametry studies and traditional TGA/DTA analysis can be integrated. Often, the sintering step of a ceramification process is the limiting process step that controls the production throughput. Therefore, optimization of sintering behavior is important for overall process success. Furthermore, the capabilities of this instrumentation allows better understanding of plant emissions of key gases: volatile organic compounds (VOCs), volatile inorganics including some halide compounds, NO{sub x}, SO{sub x}, carbon dioxide, and carbon monoxide.

  5. Literature review and binder and coal selection for research studies on coal agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G.; Kuby, O.A.; Girimont, J.A.; peterson, C.A.; Saller, E.

    1982-02-26

    This report discusses the results of a literature survey on coal agglomeration and the approaches that were employed in selecting binders and coals to be studied in a process development program currently being performed for the Department of Energy. The survey is the first step toward the development of a useful process for the agglomeration of coal fines for use in a fixed-bed gasifier. Literature was found and reviewed on the effects of coal composition and physical properties, on agglomeration techniques and operating variables, on binders or additives to promote agglomeration, on pretreatment techniques on agglomerate feedstocks and post-treatment techniques on formed agglomerates, and on test results obtained by researchers in the past using various additives, treatments and agglomeration techniques. Much of this information did not deal directly with agglomerates for fixed-bed gasifiers, but the reported observations and results could be extrapolated to give useful guidelines for research plans. Conclusions and plans for further work are presented.

  6. Abdominal binders may reduce pain and improve physical function after major abdominal surgery - a systematic review

    DEFF Research Database (Denmark)

    Rothman, Josephine Philip; Gunnarsson, Ulf; Bisgaard, Thue

    2014-01-01

    INTRODUCTION: Evidence for the effect of post-operative abdominal binders on post-operative pain, seroma formation, physical function, pulmonary function and increased intra-abdominal pressure among patients after surgery remains largely un-investigated. METHODS: A systematic review was conducted....... The PubMed, EMBASE and Cochrane databases were searched for studies on the use of abdominal binders after abdominal surgery or abdominoplasty. All types of clinical studies were included. Two independent assessors evaluated the scientific quality of the studies. The primary outcomes were pain, seroma...... to reduce seroma formation after laparoscopic ventral herniotomy and a non-significant reduction in pain. Physical function was improved, whereas evidence supports a beneficial effect on psychological distress after open abdominal surgery. Evidence also supports that intra-abdominal pressure increases...

  7. Enabling aqueous binders for lithium battery cathodes - Carbon coating of aluminum current collector

    Science.gov (United States)

    Doberdò, Italo; Löffler, Nicholas; Laszczynski, Nina; Cericola, Dario; Penazzi, Nerino; Bodoardo, Silvia; Kim, Guk-Tae; Passerini, Stefano

    2014-02-01

    In this manuscript a novel approach to enable aqueous binders for lithium ion battery (LIB) cathodes is reported. Producing LiNi1/3Mn1/3Co1/3O2 (NMC) electrodes using sodium-carboxymethylcellulose (CMC) as a binder and water as a solvent, in fact, results in serious aluminum corrosion during electrode manufacturing due to the high pH of the slurry. In order to prevent the direct contact of the corrosive slurry with aluminum foil, the latter is first coated with a thin carbon layer. The CMC-based electrodes formed on carbon coated aluminum foil show enhanced performance than those made using unprotected aluminum instead. In particular, electrodes using protected aluminum foil are able to deliver a capacity of 126 mAh g-1 at 1C rate, which is rather close to that delivered by polyvinylidene-di-fluoride (PVdF)-based electrode having the same composition.

  8. LiFePO 4 water-soluble binder electrode for Li-ion batteries

    Science.gov (United States)

    Guerfi, A.; Kaneko, M.; Petitclerc, M.; Mori, M.; Zaghib, K.

    A new water-soluble elastomer from ZEON Corp. was evaluated as binder with LiFePO 4 cathode material in Li-ion batteries. The mechanical characteristic of this cathode was compared to that with PVdF-based cathode binder. The elastomer-based cathode shows high flexibility with good adhesion. The electrochemical performance was also evaluated and compared to PVdF-based cathodes at 25 and at 60 °C. A lower irreversible capacity loss was obtained with the elastomer-based cathode, however, aging at 60 °C shows a comparable cycle life to that observed with PVdF-based cathodes. The LiFePO 4-WSB at high rate shows a good performance with 120 mAh g -1 at 10 C rate at 60 °C.

  9. LiFePO{sub 4} water-soluble binder electrode for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Guerfi, A.; Petitclerc, M.; Zaghib, K. [Institut de Recherche d' Hydro-Quebec, 1800 Lionel-Boulet, Varennes, Que. J3X 1S1 (Canada); Kaneko, M.; Mori, M. [ZEON Corporation, R and D Center, 1-2-1 Yako, Kawasaki, Kanagawa 210-9507 (Japan)

    2007-01-01

    A new water-soluble elastomer from ZEON Corp. was evaluated as binder with LiFePO{sub 4} cathode material in Li-ion batteries. The mechanical characteristic of this cathode was compared to that with PVdF-based cathode binder. The elastomer-based cathode shows high flexibility with good adhesion. The electrochemical performance was also evaluated and compared to PVdF-based cathodes at 25 and at 60{sup o}C. A lower irreversible capacity loss was obtained with the elastomer-based cathode, however, aging at 60{sup o}C shows a comparable cycle life to that observed with PVdF-based cathodes. The LiFePO{sub 4}-WSB at high rate shows a good performance with 120mAhg{sup -1} at 10C rate at 60{sup o}C. (author)

  10. Complexity of chromatin folding is captured by the strings and binders switch model.

    Science.gov (United States)

    Barbieri, Mariano; Chotalia, Mita; Fraser, James; Lavitas, Liron-Mark; Dostie, Josée; Pombo, Ana; Nicodemi, Mario

    2012-10-02

    Chromatin has a complex spatial organization in the cell nucleus that serves vital functional purposes. A variety of chromatin folding conformations has been detected by single-cell imaging and chromosome conformation capture-based approaches. However, a unified quantitative framework describing spatial chromatin organization is still lacking. Here, we explore the "strings and binders switch" model to explain the origin and variety of chromatin behaviors that coexist and dynamically change within living cells. This simple polymer model recapitulates the scaling properties of chromatin folding reported experimentally in different cellular systems, the fractal state of chromatin, the processes of domain formation, and looping out. Additionally, the strings and binders switch model reproduces the recently proposed "fractal-globule" model, but only as one of many possible transient conformations.

  11. Binder-Jet Printing of Fine Stainless Steel Powder with Varied Final Density

    Science.gov (United States)

    Ziaee, Mohsen; Tridas, Eric M.; Crane, Nathan B.

    2017-03-01

    Binder jetting is an additive manufacturing process that produces weak porous parts that are strengthened through sintering and/or infiltration. This article reports on two different methods of preparing fine 316 stainless steel powder and their impact on the final sintered density and dimensions relative to direct printing into space holder to increase porosity. Sintered density and sintering shrinkage of agglomerate material are shown to vary with the density of the spread powder bed. Nevertheless, with added nylon, the shrinkage correlates with the shrinkage of the base steel powder, whereas the density depends on the quantity of the nylon. Thus, it is possible to create varied sintered density with compatible shrinkage levels—a key step toward creating binder-jetting systems with spatially controlled porosity.

  12. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes

    Science.gov (United States)

    Mazouzi, D.; Karkar, Z.; Reale Hernandez, C.; Jimenez Manero, P.; Guyomard, D.; Roué, L.; Lestriez, B.

    2015-04-01

    In this review we try to shed a comprehensive understanding on the influence of the different parameters of the formulation of silicon-based composite electrode on its cyclability, i.e. the binder, the conductive additives, the current collector, the electrode porosity and solid loading, in view of a more rational assessment of the relevancy of these parameters for the battery technology. The reasons of the better efficiency of carboxymethyl cellulose and alternative new binders than PVdF are first addressed into details. The critical effects of the active mass loading and porosity on the cyclability are highlighted. Then the influence of the conductive additive type and current collector texture are discussed. Putting everything together shows that it is required to meticulously optimize all the different scales of the composite electrode to hopefully raise the performance of silicon-based electrode above that of graphite commercial ones.

  13. Using the organic-mineral binder for molybdenum concentrate granulation in metallurgy

    Directory of Open Access Journals (Sweden)

    Farhod Yusupov

    2015-06-01

    Full Text Available When we use the traditional composition of the batch mixture in the production of cinder, the proportion of Mo in the granules is reduced to 4% (Table 1. In addition, it is known that the presence of kaolin in cinder makes difficult sublimating rhenium oxide and impairs its commodity indices such as the fullness of ammonia leaching, Au and Ag extraction from a cake. To improve these technical and economic indicators was an idea to replace, completely or partially, kaolin with organic binder to be burned at a sintering of Mo-concentrate and causing no dilution of the product. The purpose of our study is to develop such a binder for JSC "Almalyk GMK" with the specific requirements. It should not contain any "technological poisons" (such as phosphates adversely affecting the redistribution of cinder: leaching, sorption of Mo (VI ions, hydrogen reduction to metal, sintering rods.

  14. The Influence of Benzoyl Peroxide on Gelation Rate of Silica Binder for Precision Casting

    Directory of Open Access Journals (Sweden)

    M. Nadolski

    2013-04-01

    Full Text Available Substituting of ethyl silicate with ecologic sols of colloidal silica in the investment casting technology, resulting from the increased demands concerning environmental protection, caused the prolongation of production cycle for precision castings produced in multi-layer thin-walled ceramic shell moulds. Modification of Sizol 030 binder with benzoyl peroxide, proposed in the paper, was aimed at restriction of time needed for realization of a single layer of the shell mould, and by the same, of such a mould as a whole. Examination of kinetics of the drying process were held for the layers made of prepared moulding material and the influence of binder modification on the mould curing time was determined.

  15. Influence of surface modified nano silica on alkyd binder before and after accelerated weathering

    DEFF Research Database (Denmark)

    Nikolic, Miroslav; Nguyen, Hiep Dinh; Daugaard, Anders Egede

    2016-01-01

    Introduction of nano fillers in exterior wood coatings is not straight forward. Influence on aging of polymer binder needs to be taken into account along with possible benefits that nano fillers can provide immediately after application. This study shows the influence of two differently modified...... hydrophobic nano silica on an alkyd binder for exterior wood coatings. One month after application, the highest strength and energy required to break the films was obtained with addition of 3% disilazane modified silica. Changes in tensile properties were accompanied with a small increase in glass transition...... temperature. However, the highest stability upon accelerated weathering, measured by ATR-IR and DMA, was for nano composites with the highest amount of nano filler. The reasons for the observed changes are discussed together with the appearance of a feature that is possibly a secondary relaxation of alkyd...

  16. Evaluation of Trapa bispinosa Roxb. starch as pharmaceutical binder in solid dosage form

    Institute of Scientific and Technical Information of China (English)

    Akhilesh V Singh; Anudwipa Singh; Lila K Nath; Nihar R Pani

    2011-01-01

    Objective: To evaluate binding efficiency of Trapa bispinosa Roxb. starch (TBS) in diclofenac sodium tablets. Methods: Diclofenac sodium tablets were prepared using wet granulation method. The starch paste in different concentrations (5%-15% w/w) was evaluated for optimized binder concentration. Preformulation study of the drug with TBS and different excipients were also analyzed using fourier transform infrared spectroscopy (FTIR) and isothermal stress testing (IST). Results: Preformulation study of the drug, water chestnut starch and different excipients showed no interaction or, drug degradation in FTIR and IST, respectively. The tablets were evaluated for hardness, friability, drug content, disintegration and dissolution studies, and all the parameters were found within the official specifications. Conclusions: The results reveal that this starch has potential to be used as binder at industrial scale in pharmaceutical solid dosage form development.

  17. The Influence of Benzoyl Peroxide on Gelation Rate of Silica Binder for Precision Casting

    Directory of Open Access Journals (Sweden)

    Nadolski M.

    2013-06-01

    Full Text Available Substituting of ethyl silicate with ecologic sols of colloidal silica in the investment casting technology, resulting from the increased demands concerning environmental protection, caused the prolongation of production cycle for precision castings produced in multi-layer thin-walled ceramic shell moulds. Modification of Sizol 030 binder with benzoyl peroxide, proposed in the paper, was aimed at restriction of time needed for realization of a single layer of the shell mould, and by the same, of such a mould as a whole. Examination of kinetics of the drying process were held for the layers made of prepared moulding material and the influence of binder modification on the mould curing time was determined.

  18. Studies on Some Nitramine based Low Vulnerability Ammunition Propellants with Cellulose Acetate as a Binder

    Directory of Open Access Journals (Sweden)

    A.G.A. Pillai

    1996-04-01

    Full Text Available Several formulations of propellants based on RDX as an energetic solid ingredients and cellulose acetate (CA as a binder were processed using either dioctyl pthalate(DOP or tracetin(TA as plastisizer and a small amount of nitrocellulose(NC. The Performance of these propellants was evaluated on the basis of closed vessel firing data. The vulnerability aspects of these formulations were compared with those of conventional picrite propellant, NQ on the basis of their ignition temperatures and sensitivity to friction and impact. Triacetin was found to be better plasticizer than DOP for CA binder. Some RDX/CA/TA/NC/-based propellants were found to have energy levels comparable with NQ propellant and had less sensitivity to heat, impact and friction, and therefore have the potential for being used as low-vulnerability ammunition propellants for gun applications.

  19. Prediction of crosslink density of solid propellant binders. [curing of elastomers

    Science.gov (United States)

    Marsh, H. E., Jr.

    1976-01-01

    A quantitative theory is outlined which allows calculation of crosslink density of solid propellant binders from a small number of predetermined parameters such as the binder composition, the functionality distributions of the ingredients, and the extent of the curing reaction. The parameter which is partly dependent on process conditions is the extent of reaction. The proposed theoretical model is verified by independent measurement of effective chain concentration and sol and gel fractions in simple compositions prepared from model compounds. The model is shown to correlate tensile data with composition in the case of urethane-cured polyether and certain solid propellants. A formula for the branching coefficient is provided according to which if one knows the functionality distributions of the ingredients and the corresponding equivalent weights and can measure or predict the extent of reaction, he can calculate the branching coefficient of such a system for any desired composition.

  20. Distribution of binder in granules produced by means of twin screw granulation.

    Science.gov (United States)

    Fonteyne, Margot; Fussell, Andrew Luke; Vercruysse, Jurgen; Vervaet, Chris; Remon, Jean Paul; Strachan, Clare; Rades, Thomas; De Beer, Thomas

    2014-02-28

    According to the quality by design principle processes may not remain black-boxes and full process understanding is required. The granule size distribution of granules produced via twin screw granulation is often found to be bimodal. The aim of this study was to gain a better understanding of binder distribution within granules produced via twin screw granulation in order to investigate if an inhomogeneous spread of binder is causing this bimodal size distribution. Theophylline-lactose-polyvinylpyrrolidone K30 (PVP) (30-67.5-2.5%, w/w) was used as a model formulation. The intra-granular distribution of PVP was evaluated by means of hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy. For the evaluated formulation, no PVP rich zones were detected when applying a lateral spatial resolution of 0.5 μm, indicating that PVP is homogenously distributed within the granules.

  1. Concrete containing ternary blended binders: Resistance to chloride ingress and carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.R.; Dhir, R.K.; Magee, B.J. [Univ. of Dundee (United Kingdom). Dept. of Civil Engineering

    1997-06-01

    This study examined the chloride and carbonation durability performance of concrete containing ternary blended binders in comparison to PC and binary PC/PFA concrete of equivalent standard 28 day cube strengths of 20, 40 and 60 N/mm{sup 2}. In addition, the nature of the near surface pore structure of the concrete has been inferred from its initial surface absorption. It has been shown that the chloride resistance of all the ternary binder concrete (TBC) is significantly higher than corresponding PC and PC/PFA mixes. On the other hand, however, under worst case conditions it was found that after 30 weeks accelerated exposure, carbonation depths were generally greater in the TBC mixes. The degree to which this occurred was found to relate to the amount of PC replaced.

  2. Investigations of the Quality of The Reclaim of Spent Moulding Sands with Organic Binders

    Directory of Open Access Journals (Sweden)

    Dańko R.

    2012-09-01

    Full Text Available Modern investigation methods and equipment for the quality estimation of the moulding sands matrices with organic binders, in their circulation process, are presented in the paper. These methods, utilising the special equipment combined with the authors investigation methods developed in the Faculty of Foundry Engineering, AGH the University of Science and Technology, allow for the better estimation of the matrix quality. Moulding sands systems with organic binders require an in-depth approach to factors deciding on the matrix technological suitability as well as on their environmental impact. Into modern methods allowing for the better assessment of the matrix quality belongs the grain size analysis of the reclaimed material performed by means of the laser diffraction and also the estimation of the moulding sand gas evolution rate and identification of the emitted gases and their BTEX group gases content, since they are specially hazardous from the point of view of the Occupational Safety and Health.

  3. Synthesis and methane storage of binder-free porous graphene monoliths

    Institute of Scientific and Technical Information of China (English)

    Guoqing Ning; Hao Wang; Xiaoxin Zhang; Chenggen Xu; Guangjin Chen; Jinsen Gao

    2013-01-01

    Nanomesh graphene (NMG) obtained by template chemical vapor deposition was used to synthesize the binder-free graphene monoliths by simple tablet pressing.The stacking manner of the NMG sheets was crucial to the cohesion interaction between the graphene sheets,only the NMG materials with a loosely stacking manner could be pressed into binder-free monoliths.At the tableting pressure of 2-8 MPa,both the bulk densities and the specific surface areas of the monoliths keep nearly constant as the tableting pressure increases,indicating that the NMG monoliths have obvious elasticity and a porous structure due to the large corrugations and the mesh structures of the graphene sheets.As a result,an extraordinary methane storage capacity of 236 (v/v) at 9MPa was obtained in the graphene monolith prepared by tableting at 4 MPa.

  4. A mathematical model for mechanically-induced deterioration of the binder in lithium-ion electrodes

    CERN Document Server

    Foster, Jamie M; Richardson, Giles; Protas, Bartosz

    2016-01-01

    This study is concerned with modeling detrimental deformations of the binder phase within lithium-ion batteries that occur during cell assembly and usage. A two-dimensional poroviscoelastic model for the mechanical behavior of porous electrodes is formulated and posed on a geometry corresponding to a thin rectangular electrode, with a regular square array of microscopic circular electrode particles, stuck to a rigid base formed by the current collector. Deformation is forced both by (i) electrolyte absorption driven binder swelling, and; (ii) cyclic growth and shrinkage of electrode particles as the battery is charged and discharged. The governing equations are upscaled in order to obtain macroscopic effective-medium equations. A solution to these equations is obtained, in the asymptotic limit that the height of the rectangular electrode is much smaller than its width, that shows the macroscopic deformation is one-dimensional. The confinement of macroscopic deformations to one dimension is used to obtain boun...

  5. Total Petroleum Hydrocarbons (TPH): ToxFAQs

    Science.gov (United States)

    ... a state: This map displays locations where Total Petroleum Hydrocarbons (TPH) is known to be present. On ... I get more information? ToxFAQs TM for Total Petroleum Hydrocarbons (TPH) ( Hidrocarburos Totales de Petróleo (TPH) ) August ...

  6. The use of bentonite and zeolite as caesium-binders in feed to reindeer - experiences from Sweden

    Directory of Open Access Journals (Sweden)

    Birgitta Åhman

    1990-09-01

    Full Text Available Feeding is used in Sweden to lower radiocaesium levels in reindeer before slaughter. In feeds used for this purpose, bentonite is added as a caesium-binder to prevent absorption of radiocaesium, since the animals usually have som access to contaminated pasture in their corrals. Bentonite is efficient as a caesium-binder but increases water consumption and excretion of urine. Zeolite has been used as a caesium-binder to reindeer in a few experiments. The effect, however, has been inferior to that of bentonite. It seems that zeolite, mixed in feeds, loose some of its effect as the feed is stored. The need of a caesium-binder is demonstrated by results from practical feeding of reindeer where radiocaesium levels have not decreased as expected when feed without bentonite has been used.

  7. Factors associated with serum fetuin-A concentrations after long-term use of different phosphate binders in hemodialysis patients

    National Research Council Canada - National Science Library

    Lin, Hsin-Hung; Liou, Hung-Hsiang; Wu, Ming-Shiou; Huang, Chiu-Ching

    2016-01-01

    Fetuin-A is known as a circulating inhibitor of vascular calcification. Factors associated with serum fetuin-A concentrations after long-term use of different phosphate binders in hemodialysis patients is still uncertain...

  8. Lanthanum carbonate vs conventional phosphate binders for the treatment of hyperphosphatemia in maintenance hemodialysis patients: a meta-analysis

    Institute of Scientific and Technical Information of China (English)

    张晓娟

    2013-01-01

    Objective To assess the effect and safety of lanthanum carbonate vs conventional phosphate binders for hyperphosphatemia in patients undergoing maintenance hemodialysis.Methods According to the collaborative search strategy,MEDLINE (1996 to 2012.12) ,EBCO

  9. Experimental and modeling study of fluidized bed granulation: Effect of binder flow rate and fluidizing air velocity

    Directory of Open Access Journals (Sweden)

    U. Vengateson

    2016-12-01

    Full Text Available Fluidized bed granulation is a widely used technique of producing granules in pharmaceutical, food, detergent, and fertilizer industries. In this study, fluidized bed granulation of two powders – wheat flour and rice powder – with water as binder is studied experimentally and by modeling. The effects of two process parameters – binder flow rate, fluidizing air velocity – are determined. Experimental results show that increasing the binder flow rate favors the formation of bigger granules while increasing fluidizing air velocity leads to a decrease in average granule diameter. Population balance model with suitable form of coalescence kernel (β has been used to describe the granule growth. Later, this kernel is linked with process parameters – binder flow rate and fluidizing air velocity.

  10. Technological and ecological studies of moulding sands with new inorganic binders for casting of non-ferrous metal alloys

    Directory of Open Access Journals (Sweden)

    I. Izdebska-Szanda

    2011-01-01

    Full Text Available The article presents the results of studies which form a part of broader research programme executed under the project POIG.01.01.02-00-015/09 "Advanced materials and technologies".In a concise manner, the results of studies on the effect of chemical modification of inorganic binders on the technological properties ofmoulding sands containing these binders were presented.Special attention was paid to the effect of modification of inorganic binders on their thermal destruction behaviour in the range of pouringtemperatures of the non-ferrous metals and their alloys.Also the results of comparative studies of the thermal emission of toxic gases and odours from moulding sands with new inorganic andorganic binders were discussed.

  11. Fibroblast Growth Factor 23 in Hemodialysis Patients: Effects of Phosphate Binder, Calcitriol and Calcium Concentration in the Dialysate

    National Research Council Canada - National Science Library

    Cancela, Ana L.E; Oliveira, Rodrigo B; Graciolli, Fabiana G; dos Reis, Luciene M; Barreto, Fellype; Barreto, Daniela V; Cuppari, Lilian; Jorgetti, Vanda; Carvalho, Aluizio B; Canziani, Maria Eugênia; Moysés, Rosa M.A

    ...: In this post-hoc analysis of a randomized clinical trial, phosphate binders and calcitriol were washed out of 72 hemodialysis patients who were then submitted to bone biopsy, coronary tomography...

  12. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Hassager, Ole; Kristensen, Susanne Brogaard; Larsen, Johannes Ruben

    1999-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric material is described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney...

  13. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole

    1999-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric materialis described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney...

  14. Black curves and creep behaviour of crumb rubber modified binders containing warm mix asphalt additives

    Science.gov (United States)

    Gallego, Juan; Rodríguez-Alloza, Ana María; Giuliani, Felice

    2016-08-01

    Warm mix asphalt (WMA) is a new research topic in the field of road pavement materials. This technology allows lower energy consumption and greenhouse gas (GHG) emissions by reducing compaction and placement temperatures of the asphalt mixtures. However, this technology is still under study, and the influence of the WMA additives has yet to be investigated thoroughly and clearly identified, especially in the case of crumb rubber modified (CRM) binders.

  15. The Influence of Polymer Binders on the Performance of Cathodes for Lithium-Ion Batteries

    OpenAIRE

    Barsykov, V; V. Khomenko

    2001-01-01

    A systematic electrochemical investigation is performed to study the effect of polyvinylidene difluoride (PVDF) based polymer binders on the performance of different cathodes for lithium-ion batteries in ionic liquid (IL) based electrolytes. Electrochemical tests indicate that the nature of PVDF effects significantly on cathode stability in IL based electrolytes. The copolymer such as hexafluoropropylene (HFP) plays a significant role in the interfacial resistance. Application of PVDF-HFP bi...

  16. Binder model system to be used for determination of prepolymer functionality

    Science.gov (United States)

    Martinelli, F. J.; Hodgkin, J. H.

    1971-01-01

    Development of a method for determining the functionality distribution of prepolymers used for rocket binders is discussed. Research has been concerned with accurately determining the gel point of a model polyester system containing a single trifunctional crosslinker, and the application of these methods to more complicated model systems containing a second trifunctional crosslinker, monofunctional ingredients, or a higher functionality crosslinker. Correlations of observed with theoretical gel points for these systems would allow the methods to be applied directly to prepolymers.

  17. A comparative study of phosphate binders in patients with end stage kidney disease undergoing hemodialysis.

    Science.gov (United States)

    Prajapati, Viken A; Galani, Varsha J; Shah, Pankaj R

    2014-05-01

    In the present study, a comparative evaluation of the effects of calcium acetate, calcium carbonate, sevelamer hydrochloride and lanthanum carbonate was carried out in 120 patients with end stage kidney disease (ESKD) undergoing hemodialysis. Biochemical parameters, like serum phosphorous, serum calcium and serum alkaline phosphatase level and intact parathyroid hormone level, were measured. A statistically significant reduction in serum phosphorous, serum calcium, calcium × phosphorous and serum alkaline phosphatase level were observed with all phosphate binders during 3 months of treatment. Reduction in serum phosphorous were observed with calcium acetate (1.5 mg/dL), calcium carbonate (1.3 mg/dL), sevelamer hydrochloride (2.1 mg/dL) and lanthanum carbonate (1.79 mg/dL). The reduction of serum alkaline phosphatase was observed more commonly with sevelamer (107.37 IU/L) and lanthanum (104.33 IU/L) treatments than with calcium acetate (93.9 IU/L) and calcium carbonate (86.57 IU/L). There was no statistically significant change in serum calcium observed with sevelamer and lanthanum treatments, while calcium-based phosphate binders caused a significant rise in the serum calcium level. Serum intact parathyroid hormone level was significantly reduced with all phosphate binder treatments. This decline was highest with sevelamer and lowest with calcium carbonate. All treatments were well tolerated and safety profiles were consistent with previous reports in hemodialysis patients. It is concluded that all phosphate binders are safe and effective for the treatment of hyperphosphatemia in patients with ESKD undergoing hemodialysis. However, sevelamer hydrochloride seems to be superior among all with lowering incidence of hypercalcemia.

  18. Structural change of the porous sulfur cathode using gelatin as a binder during discharge and charge

    Energy Technology Data Exchange (ETDEWEB)

    Wang You [Department of Material Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing 100029 (China); Huang Yaqin [Department of Material Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing 100029 (China)], E-mail: huangyaqin9@sina.com; Wang Weikun [Military Power Sources Research and Development Center, Chemical Defense Institute, 35 Huayuan North Road, Beijing 100083 (China); Huang Chongjun [Department of Material Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing 100029 (China); Yu Zhongbao; Zhang, Hao [Military Power Sources Research and Development Center, Chemical Defense Institute, 35 Huayuan North Road, Beijing 100083 (China); Sun Jing [Department of Material Science and Engineering, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, Beijing 100029 (China); Wang Anbang; Yuan Keguo [Military Power Sources Research and Development Center, Chemical Defense Institute, 35 Huayuan North Road, Beijing 100083 (China)

    2009-06-30

    The structural change of the porous sulfur cathode using gelatin as a binder was studied by means of scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The original sulfur cathode exhibited a homogenous distribution of sulfur, carbon and pores. During the discharge process, the pores and elemental sulfur disappeared gradually. However, those changes were reversed and elemental sulfur was reformed after the charge process, which improved the electrochemical performance of lithium-sulfur batteries.

  19. Low-CO2 Acid-Base Binders Made with Fly Ash

    Science.gov (United States)

    Erdogan, S. T.

    2016-12-01

    Portland cement (PC) is the ubiquitous binding material for constructions works in urban areas. It is, however, responsible for 5-10 % of all anthropogenic CO2 emissions, nearly half of which arise from the decomposition of calcareous raw materials, and the other half from kiln fuel combustion and cement clinker grinding operations. As such, PC production contributes to global warming and climate change. Lately, efforts to develop alternative binders with lower greenhouse gas emissions have gained interest. An important class of such binders is geopolymers, typically formed by activating natural or waste materials with suitable alkaline solutions. These binders can have very low CO2 emissions from grinding of the starting materials, and some from the production of the activating chemical but the total CO2 emissions can be as low as 1/5th - 1/10th of those of PC concrete mixtures with comparable properties. Less commonly researched, acidic activating chemicals can also be used with powder materials to produce pastes that can set and harden into durable solids. One such powder is fly ash from coal-burning power plants. This ash is mostly stockpiled and can be an environmental hazard such as exacerbating air pollution in cities. This study investigates the chemical activation of fly ashes from Turkey using solutions of acids such as orthophosphoric acid. Amorphous and crystalline reaction products are observed to form, yielding a strong binder that sets much more rapidly than PC-based mixtures or alkali-activated geopolymers. As the change in the rheological properties and mechanical properties of these pastes can be balanced by combining different ashes, as well as by adjusting solution properties, they can offer environmental, energetic, and economical advantages over conventional PC-based mixtures.

  20. Complexity of chromatin folding is captured by the strings and binders switch model

    OpenAIRE

    Barbieri, Mariano; Chotalia, Mita; Fraser, James; Lavitas, Liron-Mark; Dostie, Josée; Pombo, Ana; Nicodemi, Mario

    2012-01-01

    Chromatin has a complex spatial organization in the cell nucleus that serves vital functional purposes. A variety of chromatin folding conformations has been detected by single-cell imaging and chromosome conformation capture-based approaches. However, a unified quantitative framework describing spatial chromatin organization is still lacking. Here, we explore the “strings and binders switch” model to explain the origin and variety of chromatin behaviors that coexist and dynamically change wi...