WorldWideScience

Sample records for hydrocarbon pah contamination

  1. Study of remobilization polycyclic aromatic hydrocarbons (PAHs) in contaminated matrices

    International Nuclear Information System (INIS)

    Belkessam, L.; Vessigaud, S.; Laboudigue, A.; Vessigaud, S.; Perrin-Ganier, C.; Schiavon, M.; Denys, S.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) originate from many pyrolysis processes. They are widespread environmental pollutants because some of them present toxic and genotoxic properties. In coal pyrolysis sites such as former manufactured gas plants and coke production plants, coal tar is a major source of PAHs. The management of such sites requires better understanding of the mechanisms that control release of PAHs to the biosphere. Determining total PAH concentrations is not sufficient since it does not inform about the pollutants availability to environmental processes. The fate and transport of PAHs in soil are governed by sorption and microbial processes which are well documented. Globally, enhancing retention of the compounds by a solid matrix reduces the risk of pollutant dispersion, but decreases their accessibility to microbial microflora. Conversely, the remobilization of organics from contaminated solid matrices represents a potential hazard since these pollutants can reach groundwater resources. However the available data are often obtained from laboratory experiments in which many field parameters can not be taken into account (long term, temperature, co-pollution, ageing phenomenon, heterogenous distribution of pollution). The present work focuses on the influence assessment and understanding of some of these parameters on PAHs remobilization from heavily polluted matrices in near-field conditions (industrial contaminated matrices, high contact time, ..). Results concerning effects of temperature and physical state of pollution (dispersed among the soil or condensed in small clusters or in coal tar) are presented. (authors)

  2. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  3. Enhanced Accessibility of Polycyclic Aromatic Hydrocarbons (PAHs) and Heterocyclic PAHs in Industrially Contaminated Soil after Passive Dosing of a Competitive Sorbate

    DEFF Research Database (Denmark)

    Humel, Stefan; Nørgaard Schmidt, Stine; Sumetzberger-Hasinger, Marion

    2017-01-01

    To assess the exposure to polycyclic aromatic hydrocarbons (PAHs) it is important to understand the binding mechanisms between specific soil constituents and the organic pollutant. In this study, sorptive bioaccessibility extraction (SBE) was applied to quantify the accessible PAH fraction...... in industrially contaminated soil with and without passive dosing of a competitive sorbate. SBE experiments revealed an accessible PAH fraction of 41 ± 1% (∑16 US EPA PAHs + 5 further PAHs). The passive dosing of toluene below its saturation level revealed competitive binding and resulted in an average increase.......4% PAH. We explain increased PAH desorption after addition of toluene by competitive adsorption to high-affinity sorption sites while acknowledging that toluene could additionally have increased PAH mobility within the soil matrix. Findings suggest that the presence of copollutants at contaminated sites...

  4. Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil

    CSIR Research Space (South Africa)

    Maila, MP

    2002-01-01

    Full Text Available The sensitivity of Lepidium sativum germination to polycyclic aromatic hydrocarbons (PAHs) was investigated in soil(s) artificially and historically contaminated with mixtures of PAR The level of germination of L. sativum decreased with increasing...

  5. Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation.

    Science.gov (United States)

    Afegbua, Seniyat Larai; Batty, Lesley Claire

    2018-04-27

    Polycyclic aromatic hydrocarbon (PAH)-contaminated sites have a mixture of PAH of varying concentration which may affect PAH dissipation differently to contamination with a single PAH. In this study, pot experiments investigated the impact of PAH contamination on Medicago sativa, Lolium perenne, and Festuca arundinacea biomass and PAH dissipation from soils spiked with phenanthrene (Phe), fluoranthene (Flu), and benzo[a]pyrene (B[a]P) in single and mixed treatments. Stimulatory or inhibitory effects of PAH contamination on plant biomass yields were not different for the single and mixed PAH treatments. Results showed significant effect of PAH treatments on plant growth with an increased root biomass yield for F. arundinacea in the Phe (175%) and Flu (86%) treatments and a root biomass decrease in the mixed treatment (4%). The mean residual PAHs in the planted treatments and unplanted control for the single treatments were not significantly different. B[a]P dissipation was enhanced for single and mixed treatments (71-72%) with F. arundinacea compared to the unplanted control (24-50%). On the other hand, B[a]P dissipation was inhibited with L. perenne (6%) in the single treatment and M. sativa (11%) and L. perenne (29%) in the mixed treatment. Abiotic processes had greater contribution to PAH dissipation compared to rhizodegradation in both treatments. In most cases, a stimulatory effect of PAH contamination on plant biomass yield without an enhancement of PAH dissipation was observed. Plant species among other factors affect the relative contribution of PAH dissipation mechanisms during phytoremediation. These factors determine the effectiveness and suitability of phytoremediation as a remedial strategy for PAH-contaminated sites. Further studies on impact of PAH contamination, plant selection, and rhizosphere activities on soil microbial community structure and remediation outcome are required.

  6. Reduction of polycyclic aromatic hydrocarbons (PAHs) from petroleum-contaminated soil using thermal desorption technology

    International Nuclear Information System (INIS)

    Silkebakken, D.M.; Davis, H.A.; Ghosh, S.B.; Beardsley, G.P.

    1995-01-01

    The remediation of petroleum-contaminated soil typically requires the selection of a treatment option that addresses the removal of both volatile and semi-volatile organic compounds. Volatile organic compounds (VOCs), primarily BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds, can be readily removed from the soil by a variety of well-established technologies. The semivolatile organic compounds, especially the polycyclic aromatic hydrocarbons (PAHS) that are characteristic of petroleum-contaminated soil, are not as amenable to conventional treatment. Low temperature thermal volatilization (LTTV) can be a viable treatment technology depending on the initial contaminant concentrations present and applicable cleanup objectives that must be attained. A-two-phase treatability study was conducted at 14 former underground storage tank (UST) sites to evaluate the applicability and effectiveness of LTTV for remediation of approximately 31,000 tons of PAH-contaminated soil. The PAHs of primary concern included benzo(a)anthracene, chrysene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, dibenz(a,h) anthracene, and indeno(1,2,3-cd)pyrene. During Phase 1, LTTV operational parameters were varied by trial-and-error and changes in soil treatment effectiveness were monitored. Phase B of the treatability study incorporated the appropriate treatment regime established during Phase 1 to efficiently remediate the remaining contaminated soil

  7. Polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of east coast peninsular Malaysia

    International Nuclear Information System (INIS)

    Mohd Suhaimi Elias; Abdul Khalik Wood; Zaleha Hashim; Wee Boon Siong; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Nazaratul Ashifa Abdullah Salim; Ariffin Talib

    2007-01-01

    The polycyclic hydrocarbons (PAHs) are pollutants of concern due to their persistent in the marine ecosystem, thus its can cause long-term adverse effect to the marine life. In this study the concentrations of PAHs in east coast Peninsular Malaysia sediments were determined. About ten stations along the east coast of the coastal area were selected to collect sediments sample using grab sampler. The PAHs from the sediment samples were soxhlet extracted using mixture of hexane and dichloromethane (DCM). Fractionation was done using the silica-alumina column. About 17 compounds of the PAHs were determined using the Gas Chromatography-Mass Spectrometer (GCMS model QP5050A). The Σ PAHs was found in the range between 0.26 μg/ g to 0.59 μg/ g dry weight. The data from the study signified that the main source of PAHs in the sediment of the east coast peninsular Malaysia is originated from the pyrolytic source. (author)

  8. Micellar Enhanced Ultrafiltration for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs Mixtures in Underground Contaminated Water in Oman

    Directory of Open Access Journals (Sweden)

    Mohamed Aoudia

    2011-12-01

    Full Text Available In an attempt to analyze polycyclic aromatic hydrocarbons (PAHs in diesel contaminated underground water in Oman (Rustaq, Gas chromatography-Mass spectrometry was first used to determine the different concentrations in a standard mixture containing 16 PAHs. Retention time and calibration curves were obtained for all aromatic compounds and were used to identify a given analyte as well as its concentration in the contaminated underground water. Micellar enhanced ultrafiltration (MEUF was then used to treat standard aqueous solution of PAHs at low concentration (~ 1 ppb using an edible nonionic surfactant (Tween 80. The totality of the mixture components was completely rejected. Within the experimental detection limit (± 0.01 ppb, the residual PAH concentrations were less than 0.01 ppb in accord with the allowed concentrations in drinking water. Likewise, excellent rejections of PAHs in MEUF treatment of diesel contaminated underground water at an Omani site (Rustaq were observed. The concentration of PAHs was reduced to less than 0.01 ppb, the accepted limit for the most toxic member of the PAH group (benzo(apyrene.

  9. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions.

    Science.gov (United States)

    Kuppusamy, Saranya; Thavamani, Palanisami; Venkateswarlu, Kadiyala; Lee, Yong Bok; Naidu, Ravi; Megharaj, Mallavarapu

    2017-02-01

    For more than a decade, the primary focus of environmental experts has been to adopt risk-based management approaches to cleanup PAH polluted sites that pose potentially destructive ecological consequences. This focus had led to the development of several physical, chemical, thermal and biological technologies that are widely implementable. Established remedial options available for treating PAH contaminated soils are incineration, thermal conduction, solvent extraction/soil washing, chemical oxidation, bioaugmentation, biostimulation, phytoremediation, composting/biopiles and bioreactors. Integrating physico-chemical and biological technologies is also widely practiced for better cleanup of PAH contaminated soils. Electrokinetic remediation, vermiremediation and biocatalyst assisted remediation are still at the development stage. Though several treatment methods to remediate PAH polluted soils currently exist, a comprehensive overview of all the available remediation technologies to date is necessary so that the right technology for field-level success is chosen. The objective of this review is to provide a critical overview in this respect, focusing only on the treatment options available for field soils and ignoring the spiked ones. The authors also propose the development of novel multifunctional green and sustainable systems like mixed cell culture system, biosurfactant flushing, transgenic approaches and nanoremediation in order to overcome the existing soil- contaminant- and microbial-associated technological limitations in tackling high molecular weight PAHs. The ultimate objective is to ensure the successful remediation of long-term PAH contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Chronic polyaromatic hydrocarbon (PAH contamination is a marginal driver for community diversity and prokaryotic predicted functioning in coastal sediments

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-08-01

    Full Text Available Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.

  11. Water quality concerns due to forest fires: polycyclic aromatic hydrocarbons (PAH) contamination of groundwater from mountain areas.

    Science.gov (United States)

    Mansilha, C; Carvalho, A; Guimarães, P; Espinha Marques, J

    2014-01-01

    Water quality alterations due to forest fires may considerably affect aquatic organisms and water resources. These impacts are cumulative as a result of pollutants mobilized from fires, chemicals used to fight fire, and postfire responses. Few studies have examined postfire transport into water resources of trace elements, including the polycyclic aromatic hydrocarbons (PAH), which are organic pollutants produced during combustion and are considered carcinogenic and harmful to humans. PAH are also known to adversely affect survival, growth, and reproduction of many aquatic species. This study assessed the effects of forest wildfires on groundwater from two mountain regions located in protected areas from north and central Portugal. Two campaigns to collect water samples were performed in order to measure PAH levels. Fifteen of 16 studied PAH were found in groundwater samples collected at burned areas, most of them at concentrations significantly higher than those found in control regions, indicating aquifer contamination. The total sum of PAH in burned areas ranged from 23.1to 95.1 ng/L with a median of 62.9 ng/L, which is one- to sixfold higher than the average level measured in controls (16.2 ng/L). In addition, in control samples, the levels of light PAH with two to four rings were at higher levels than heavy PAH with five or six rings, thus showing a different profile between control and burned sites. The contribution of wildfires to groundwater contamination by PAH was demonstrated, enabling a reliable assessment of the impacts on water quality and preparation of scientifically based decision criteria for postfire forest management practices.

  12. Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under in-vessel composting conditions

    International Nuclear Information System (INIS)

    Antizar-Ladislao, Blanca; Lopez-Real, Joe; Beck, Angus James

    2006-01-01

    In-vessel composting of polycyclic aromatic hydrocarbons (PAHs) present in contaminated soil from a manufactured gas plant site was investigated over 98 days using laboratory-scale in-vessel composting reactors. The composting reactors were operated at 18 different operational conditions using a 3-factor factorial design with three temperatures (T, 38 deg. C, 55 deg. C and 70 deg. C), four soil to green waste ratios (S:GW, 0.6:1, 0.7:1, 0.8:1 and 0.9:1 on a dry weight basis) and three moisture contents (MC, 40%, 60% and 80%). PAH losses followed first order kinetics reaching 0.015 day -1 at optimal operational conditions. A factor analysis of the 18 different operational conditions under investigation indicated that the optimal operational conditions for degradation of PAHs occurred at MC 60%, S:GW 0.8:1 and T 38 deg. C. Thus, it is recommended to maintain operational conditions during in-vessel composting of PAH-solid waste close to these values. - Maximum degradation of PAHs in an aged coal tar contaminated soil can be achieved using optimal operational conditions during composting

  13. Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii.

    Science.gov (United States)

    Seo, Jong-Su; Keum, Young-Soo; Harada, Renee M; Li, Qing X

    2007-07-11

    Nineteen bacterial strains were isolated from petroleum-contaminated soil in Hilo, HI, and characterized by two different spray-plated methods, turbidity test in liquid medium, and 16S rRNA gene sequence analysis. Analysis of the soil showed 13 polycyclic aromatic hydrocarbons (PAHs) in a range from 0.6 to 30 mg/kg of dry weight each and 12 PAH metabolites. Five distinct bacterial strains (C3, C4, P1-1, JS14, and JS19b1) selected from preliminary plating and turbidity tests were further tested for PAH degradation through single PAH degradation assay. Strains C3, C4, and P1-1 degraded phenanthrene (40 mg/L) completely during 7 days of incubation. Strain JS14 degraded fluoranthene (40 mg/L) completely during 10 days of incubation. Strain JS19b1 degraded 100% of phenanthrene (40 mg/L) in 7 days, 77% of fluorene (40 mg/L) in 14 days, 97% of fluoranthene (40 mg/L) in 10 days, and 100% of pyrene (40 mg/L) in 14 days. Turbidity tests showed that strains P1-1, JS14, and JS19b1 utilized several organophosphorus pesticides as growth substrate. P1-1 can degrade carbofenothion, chlorfenvinphos, diazinon, fonofos, and pirimiphos-methyl. JS14 can transform chlorfenvinphos and diazinon. JS19b1 can break down diazinon, pirimiphos-methyl, and temephos.

  14. Uptake of Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbons (PAHs) by Oryza sativa L. Grown in Soil Contaminated with Crude Oil.

    Science.gov (United States)

    Patowary, Rupshikha; Patowary, Kaustuvmani; Devi, Arundhuti; Kalita, Mohan Chandra; Deka, Suresh

    2017-01-01

    The purpose of this study was to determine whether total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) present in crude oil contaminated sites are transferred to roots, shoots and finally the grains of rice crops (Oryza sativa L.) grown in those sites. Soil was artificially contaminated with crude oil at concentrations of 0, 1000, 5000, 10,000, and 15,000 mg/kg, followed by planting of rice seedlings. After harvest, TPH in plant samples were measured, and it was determined that the uptake of TPH by the plants gradually increased as the concentration of oil in soil increased. Further, from GC-MS analysis, it was observed that PAHs including naphthalene and phenanthrene bioaccumulated in rice plant parts. Vital physico-chemical properties of soil were also altered due to crude oil contamination. Our study revealed that rice plants grown in crude oil polluted sites can uptake TPH including PAHs, thus emphasising the importance of prior investigation of soil condition before cultivation of crops.

  15. Tolerance to Polycyclic Aromatic Hydrocarbons (PAHs by filamentous fungi isolated from contaminated sediment in the Amazon region

    Directory of Open Access Journals (Sweden)

    Hilton Marcelo de Lima Souza

    2017-11-01

    Full Text Available Tolerance to Polycyclic Hydrocarbons Aromatic (PAHs is considered an important characteristic when assessing the bioremediation potential of microorganisms. Given this, the objective of this research was to assay filamentous fungi from the Amazon region, isolated from sediments with differents levels of contamination by PAHs, for tolerance to phenanthrene and pyrene. To achieve this, fungal cultures plugs (5 mm, obtained after 7 days growth, were transferred to petri dishes containing 20% Sabouraud dextrose agar medium, after surface innoculation with phenanthrene and pyrene crystals, separately. Radial mycelial growth was evaluated after 10 days at five different concentration levels for each contaminant and control group, all in triplicate for each treatment. Fungal growth and growth inhibition rates were calculated. The average growth of the colonies in each treatment was compared with one-way ANOVA, followed by a Tukey Test (p < 0,05. All fungi showed tolerant to phenanthrene and pyrene. However, Hypoxylon sp. showed the lowest growth inhibition rate and average growth rates significantly different of the other six tested species. Hypoxylon sp. has been shown to be a promising genetic resource for use in new studies of PAHs degradation.

  16. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils

    International Nuclear Information System (INIS)

    Cunliffe, Michael; Kertesz, Michael A.

    2006-01-01

    Sphingobium yanoikuyae B1 is able to degrade a range of polycyclic aromatic hydrocarbons (PAHs) and as a sphingomonad belongs to one of the dominant genera found in PAH-contaminated soils. We examined the ecological effect that soil inoculation with S. yanoikuyae B1 has on the native bacterial community in three different soils: aged PAH-contaminated soil from an industrial site, compost freshly contaminated with PAHs and un-contaminated compost. Survival of S. yanoikuyae B1 was dependent on the presence of PAHs, and the strain was unable to colonize un-contaminated compost. Inoculation with S. yanoikuyae B1 did not cause extensive changes in the native bacterial community of either soil, as assessed by denaturing gel electrophoresis, but its presence led to an increase in the population level of two other species in the aged contaminated soil community and appeared to have an antagonistic affect on several members of the contaminated compost community, indicating niche competition. - Sphingobium yanoikuyae B1 does not cause major changes in the native bacterial community while colonizing PAH-contaminated soils, but some niche competition is evident

  17. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium.

    Science.gov (United States)

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.

  18. Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs).

    Science.gov (United States)

    Liang, Xujun; Guo, Chuling; Liao, Changjun; Liu, Shasha; Wick, Lukas Y; Peng, Dan; Yi, Xiaoyun; Lu, Guining; Yin, Hua; Lin, Zhang; Dang, Zhi

    2017-06-01

    Surfactant-enhanced remediation (SER) is considered as a promising and efficient remediation approach. This review summarizes and discusses main drivers on the application of SER in removing polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and water. The effect of PAH-PAH interactions on SER efficiency is, for the first time, illustrated in an SER review. Interactions between mixed PAHs could enhance, decrease, or have no impact on surfactants' solubilization power towards PAHs, thus affecting the optimal usage of surfactants for SER. Although SER can transfer PAHs from soil/non-aqueous phase liquids to the aqueous phase, the harmful impact of PAHs still exists. To decrease the level of PAHs in SER solutions, a series of SER-based integrated cleanup technologies have been developed including surfactant-enhanced bioremediation (SEBR), surfactant-enhanced phytoremediation (SEPR) and SER-advanced oxidation processes (SER-AOPs). In this review, the general considerations and corresponding applications of the integrated cleanup technologies are summarized and discussed. Compared with SER-AOPs, SEBR and SEPR need less operation cost, yet require more treatment time. To successfully achieve the field application of surfactant-based technologies, massive production of the cost-effective green surfactants (i.e. biosurfactants) and comprehensive evaluation of the drivers and the global cost of SER-based cleanup technologies need to be performed in the future. Copyright © 2017. Published by Elsevier Ltd.

  19. Simulating the dynamics of polycyclic aromatic hydrocarbon (PAH) in contaminated soil through composting by COP-Compost model.

    Science.gov (United States)

    Zhang, Yuan; Guan, Yidong; Shi, Qi

    2015-02-01

    Organic pollutants (OPs) are potentially present in composts, and the assessment of their content and bioaccessibility in these composts is of paramount importance to minimize the risk of soil contamination and improve soil fertility. In this work, integration of the dynamics of organic carbon (OC) and OPs in an overall experimental framework is first proposed and adopted to validate the applicability of the COP-Compost model and to calibrate the model parameters on the basis of what has been achieved with the COP-Compost model. The COP-Compost model was evaluated via composting experiments containing 16 US Environmental Protection Agency (USEPA) polycyclic aromatic hydrocarbons (PAHs) and the sorption coefficient (Kd) values of two types of OP: fluorenthene (FLT) and pyrene (PHE). In our study, these compounds are used to characterize the sequential extraction and are quantified as soluble, sorbed, and non-extractable fractions. The model was calibrated, and coupling the OC and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. The results show good agreement between the simulated and experimental results describing the evolution of different organic pollutants using the OP module, as well as the coupling module. However, no clear relationship is found between the Kd and the property of organic fractions. Further estimation of parameters is still necessary to modify the insufficiency of this present research.

  20. Investigation of the impacts of ethyl lactate based Fenton treatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils.

    Science.gov (United States)

    Gan, Suyin; Yap, Chiew Lin; Ng, Hoon Kiat; Venny

    2013-11-15

    This study aims to investigate the impacts of ethyl lactate (EL) based Fenton treatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. Accumulation of oxygenated-polycyclic aromatic hydrocarbons (oxy-PAHs) was observed, but quantitative measurement on the most abundant compound 9,10-anthraquinone (ATQ) showed lower accumulation of the compound than that reported for ethanol (ET) based Fenton treatment. In general, as compared to conventional water (CW) based Fenton treatment, the EL based Fenton treatment exerted either a lower or higher negative impact on soil physicochemical properties depending on the property type and shared the main disadvantage of reduced soil pH. For revegetation, EL based Fenton treatment was most appropriately adopted for soil with native pH >/~ 6.2 in order to obtain a final soil pH >/~ 4.9 subject to the soil buffering capacity. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. DELTA-13C VALUES OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) COLLECTED FROM TWO CREOSOTE-CONTAMINATED WASTE SITES

    Science.gov (United States)

    Groundwater samples were collected from the American Creosote Works (ACW) Superfund site in Pensacola, Florida in June and September 1994. Sampling wells were located along a transect leading away from the most contaminated area. PAHs were extracted from the groundwater samples w...

  2. Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dar es Salaam, Tanzania

    International Nuclear Information System (INIS)

    Gaspare, Lydia; Machiwa, John F.; Mdachi, S.J.M.; Streck, Georg; Brack, Werner

    2009-01-01

    Surface sediment and oyster samples from the inter-tidal areas of Dar es Salaam were analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) including the 16 compounds prioritized by US-EPA using GC/MS. The total concentration of PAHs in the sediment ranged from 78 to 25,000 ng/g dry weight, while oyster concentrations ranged from 170 to 650 ng/g dry weight. Hazards due to sediment contamination were assessed using Equilibrium Partitioning Sediment Benchmarks and Threshold Effect Levels. Diagnostic indices and principle component analysis were used to identify possible sources. Interestingly, no correlation between sediment and oyster concentrations at the same sites was found. This is supported by completely different contamination patterns, suggesting different sources for both matrices. Hazard assessment revealed possible effects at six out of eight sites on the benthic communities and oyster populations. The contribution of PAH intake via oyster consumption to carcinogenic risks in humans seems to be low. - PAH contamination may pose hazards to benthos but limited risks to humans

  3. Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dar es Salaam, Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Gaspare, Lydia; Machiwa, John F. [Department of Aquatic Environment and Conservation, University of Dar es Salaam, P.O. Box 60091, Dar es Salaam (Tanzania, United Republic of); Mdachi, S.J.M. [Department of Chemistry, University of Dar es Salaam, P.O. Box 35062, Dar es Salaam (Tanzania, United Republic of); Streck, Georg [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Brack, Werner [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany)], E-mail: werner.brack@ufz.de

    2009-01-15

    Surface sediment and oyster samples from the inter-tidal areas of Dar es Salaam were analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) including the 16 compounds prioritized by US-EPA using GC/MS. The total concentration of PAHs in the sediment ranged from 78 to 25,000 ng/g dry weight, while oyster concentrations ranged from 170 to 650 ng/g dry weight. Hazards due to sediment contamination were assessed using Equilibrium Partitioning Sediment Benchmarks and Threshold Effect Levels. Diagnostic indices and principle component analysis were used to identify possible sources. Interestingly, no correlation between sediment and oyster concentrations at the same sites was found. This is supported by completely different contamination patterns, suggesting different sources for both matrices. Hazard assessment revealed possible effects at six out of eight sites on the benthic communities and oyster populations. The contribution of PAH intake via oyster consumption to carcinogenic risks in humans seems to be low. - PAH contamination may pose hazards to benthos but limited risks to humans.

  4. Multispecies and monoculture rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) from the soil

    CSIR Research Space (South Africa)

    Maila, MP

    2005-01-01

    Full Text Available In this study, the authors investigated the potential of multispecies rhizoremediation and monoculture rhizoremediation in decontaminating polycyclic aromatic hydrocarbon (PAH) contaminated soil. Plant-mediated PAH dissipation was evaluated using...

  5. Chemical and bioanalytical characterisation of PAHs in risk assessment of remediated PAH-contaminated soils.

    Science.gov (United States)

    Larsson, Maria; Hagberg, Jessika; Rotander, Anna; van Bavel, Bert; Engwall, Magnus

    2013-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in soil at former industrial areas; and in Sweden, some of the most contaminated sites are being remediated. Generic guideline values for soil use after so-called successful remediation actions of PAH-contaminated soil are based on the 16 EPA priority pollutants, which only constitute a small part of the complex cocktail of toxicants in many contaminated soils. The aim of the study was to elucidate if the actual toxicological risks of soil samples from successful remediation projects could be reflected by chemical determination of these PAHs. We compared chemical analysis (GC-MS) and bioassay analysis (H4IIE-luc) of a number of remediated PAH-contaminated soils. The H4IIE-luc bioassay is an aryl hydrocarbon (Ah) receptor-based assay that detects compounds that activate the Ah receptor, one important mechanism for PAH toxicity. Comparison of the results showed that the bioassay-determined toxicity in the remediated soil samples could only be explained to a minor extent by the concentrations of the 16 priority PAHs. The current risk assessment method for PAH-contaminated soil in use in Sweden along with other countries, based on chemical analysis of selected PAHs, is missing toxicologically relevant PAHs and other similar substances. It is therefore reasonable to include bioassays in risk assessment and in the classification of remediated PAH-contaminated soils. This could minimise environmental and human health risks and enable greater safety in subsequent reuse of remediated soils.

  6. Feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate-based Fenton treatment via parametric and kinetic studies.

    Science.gov (United States)

    Yap, Chiew Lin; Gan, Suyin; Ng, Hoon Kiat

    2015-01-01

    This study focuses on the feasibility of treating aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soils using ethyl lactate (EL)-based Fenton treatment via a combination of parametric and kinetic studies. An optimised operating condition was observed at 66.7 M H2O2 with H2O2/Fe(2+) of 40:1 for low soil organic carbon (SOC) content and mildly acidic soil (pH 6.2), and 10:1 for high SOC and very acidic soil (pH 4.4) with no soil pH adjustment. The desorption kinetic was only mildly shifted from single equilibrium to dual equilibrium of the first-order kinetic model upon ageing. Pretreatment with EL fc = 0.60 greatly reduced the mass transfer coefficient especially for the slow desorbed fraction (kslow) of high molecular weight (HMW) PAHs, largely contributed by the concentration gradient created by EL-enhanced solubility. As the major desorption obstacle was almost fully overcome by the pretreatment, the pseudo-first-order kinetic reaction rate constant of PAHs degradation of aged soils was statistically discernible from that of freshly contaminated soils but slightly reduced in high SOC and high acidity soil. Stabilisation of H2O2 by EL addition in combination with reduced Fe(2+) catalyst were able to slow the decomposition rate of H2O2 even at higher soil pH.

  7. Determination of polynuclear aromatic hydrocarbons (PAHs) in ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-11-02

    Nov 2, 2006 ... Several water bodies in the Niger Delta region of Nigeria where extensive crude oil ..... hydrocarbons (PAHs) in fish from the Red Sea Coast of Yemem. ... smoked meat products and smoke flavouring food additives. J.

  8. Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, Polycyclic Aromatic Hydrocarbons (PAHs and Polychlorinated Biphenyls (PCBs

    Directory of Open Access Journals (Sweden)

    Grazia Marina eQuero

    2015-10-01

    Full Text Available Prokaryotes in coastal sediments are fundamental players in the ecosystem functioning and regulate processes relevant in the global biogeochemical cycles. Nevertheless, knowledge on benthic microbial diversity patterns across spatial scales, or as function to anthropogenic influence, is still limited. We investigated the microbial diversity in two of the most chemically polluted sites along the coast of Italy. One site is the Po River Prodelta (Northern Adriatic Sea, which receives contaminant discharge from one of the largest rivers in Europe. The other site, the Mar Piccolo of Taranto (Ionian Sea, is a chronically-polluted area due to steel production plants, oil refineries, and intense maritime traffic. We collected sediments from 30 stations along gradients of contamination, and studied prokaryotic diversity using Illumina sequencing of amplicons of a 16S rDNA gene fragment. The main sediment variables and the concentration of eleven metals, PCBs and PAHs were measured. Chemical analyses confirmed the high contamination in both sites, with concentrations of PCBs particularly high and often exceeding the sediment guidelines. The analysis of more than 3 millions 16S rDNA sequences showed that richness decreased with higher contamination levels. Multivariate analyses showed that contaminants significantly shaped community composition. Assemblages differed significantly between the two sites, but showed wide within-site variations related with spatial gradients in the chemical contamination, and the presence of a core set of OTUs shared by the two geographically distant sites. A larger importance of PCB-degrading taxa was observed in the Mar Piccolo, suggesting their potential selection in this historically-polluted site. Our results indicate that sediment contamination by multiple contaminants significantly alter benthic prokaryotic diversity in coastal areas, and suggests considering the potential contribution of the resident microbes to

  9. Bioremediation of Polycyclic Aromatic Hydrocarbon contaminated ...

    African Journals Online (AJOL)

    This study investigates the effect of lead and chromium on the rate of bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated clay soil. Naphthalene was used as a target PAH. The soil was sterilized by heating at 120oC for one hour. 100g of the soil was contaminated with lead, chromium, nickel and mercury ...

  10. Contamination and Human Health Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Oysters After the Wu Yi San Oil Spill in Korea.

    Science.gov (United States)

    Loh, Andrew; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Kim, Moonkoo

    2017-07-01

    After the collision of the Singapore-registered oil tanker M/V Wu Yi San into the oil terminal of Yeosu, Korea on January 31, 2014, approximately 900 m 3 of oil and oil mixture were released from the ruptured pipelines. The oil affected more than 10 km of coastline along Gwangyang Bay. Emergency oil spill responses recovered bulk oil at sea and cleaned up the stranded oil on shore. As part of an emergency environmental impact assessment, region-wide monitoring of oil contamination in oyster had been conducted for 2 months. Highly elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) were detected at most of the spill affected sites. Four days after the spill, the levels of PAHs in oysters increased dramatically to 627-81,000 ng/g, the average of which was 20 times higher than those found before the spill (321-4040 ng/g). The level of PAHs in these oysters increased until 10 days after the spill and then decreased. Due to the strong tidal current and easterly winter winds, the eastern part of the Bay-the Namhae region-was heavily contaminated compared with other regions. The accumulation and depuration of spilled oil in oyster corresponded with the duration and intensity of the cleanup activities, which is the first field observation in oil spill cases. Human health risk assessments showed that benzo[a]pyrene equivalent concentrations exceeded levels of concern in the highly contaminated sites, even 60 days after the spill.

  11. Enhanced bioremediation of PAH contaminated soils from coal processing sites

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1995-01-01

    The polycyclic aromatic hydrocarbons (PAH) are a potential hazard to health due to their carcinogenic, mutagenic nature and acute toxicity and there is an imminent need for remediation of PAH contaminated soils abounding the several coke oven and town gas sites. Aerobic biological degradation of PAHs is an innovative technology and has shown high decontamination efficiencies, complete mineralization of contaminants, and is environmentally safe. The present study investigates the remediation of PAH contaminated soils achieved using Acinetobacter species and fungal strain Phanerochaete Chrysosporium. The soil used for the experiments was an industrially contaminated soil obtained from Alberta Research Council (ARC) primary cleanup facility, Alberta, Canada. Soil characterization was done using High Performance Liquid Chromatography (HPLC) to qualitatively and quantitatively determine the contaminants in the soil. Artificially contaminated soil was also used for some experiments. All the experiments were conducted under completely mixed conditions with suitable oxygen and nutrient amendments. The removal efficiency obtained for various PAHs using the two microorganisms was compared

  12. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    International Nuclear Information System (INIS)

    Haritash, A.K.; Kaushik, C.P.

    2009-01-01

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H 2 O, CO 2 (aerobic) or CH 4 (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can

  13. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    Energy Technology Data Exchange (ETDEWEB)

    Haritash, A.K., E-mail: akharitash@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India); Kaushik, C.P. [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India)

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H{sub 2}O, CO{sub 2} (aerobic) or CH{sub 4} (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions

  14. [Comparison of polycyclic aromatic hydrocarbons (PAHS) contents in bakery products].

    Science.gov (United States)

    Ciemniak, Artur; Witczak, Agata

    2010-01-01

    Polycyclic aromatic hydrocarbons are a group of well-known chemical carcinogens with a wide distribution in the environment and formed by the incomplete combustion of organic substances. PAHs have attracted most attention because of their carcinogenic potential. PAHs have been found as contaminants in different food categories such as dairy products, smoked and barbecued meat, vegetables, fruits, oils, coffee, tea, and cereals. Processing of food at high temperatures increases the amount of PAHs in the food Diet is the major source of human exposure to PAHs. The major dietary source of PAH are oils and fats, cereals products and vegetables. The aims of this study were to determine the content levels of 23 PAHs in various sorts of bread. The analytical procedure was based Soxhlet extraction with n--hexane and cleaned up in aflorisil cartridge. Chromatographic separation was performed using gas chromatography (HP 6890) coupled to mass spectrometry (HP 5973). The total concentration of PAHs was low end varied between 2.61 microg/kg to 43.4 microg/kg. Furthermore, the results revealed differences in concentrations of PAHs between rind and bread-crumb.

  15. Impacts of urbanization on surface sediment quality: evidence from polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) contaminations in the Grand Canal of China.

    Science.gov (United States)

    Hong, Youwei; Yu, Shen; Yu, Guangbin; Liu, Yi; Li, Guilin; Wang, Min

    2012-06-01

    Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient. The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis-multiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal. Ranges of PAH and PCB concentrations in surface sediments were 0.66-22 mg/kg and 0.5-93 μg/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs. PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.

  16. Polycyclic Aromatic Hydrocarbons (PAHs) Levels in Two ...

    African Journals Online (AJOL)

    Polycyclic aromatic hydrocarbons (PAHs) concentrations were measured by gas chromatography with flame ionization detector (GC/FID) in two fish species, Sardinella maderensis (Flat sardinella) and Galeoides decadactylus (Lesser African threadfin or Shine-nose or Common threadfin) from Ghanaian coastal waters and ...

  17. Ecotoxicological and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Short-Neck Clam (Paphia undulata) and Contaminated Sediments in Malacca Strait, Malaysia.

    Science.gov (United States)

    Keshavarzifard, Mehrzad; Zakaria, Mohamad Pauzi; Sharifi, Reza

    2017-10-01

    The distribution, sources, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediment and the edible tissue of short-neck clam (Paphia undulata) from mudflat ecosystem in the west coast of Malaysia were investigated. The concentrations of ∑ 16 PAHs varied from 347.05 to 6207.5 and 179.32 to 1657.5 ng g -1 in sediment and short-neck clam samples, respectively. The calculations of mean PEL quotients (mean-PELQs) showed that the ecological risk of PAHs in the sediment samples was low to moderate-high level, whereas the total health risk through ingestion and dermal contact was considerably high. The PAHs biota sediment accumulation factors data for short-neck clam were obtained in this study, indicating a preferential accumulation of lower molecular weight PAHs. The source apportionment of PAHs in sediment using positive matrix factorization model indicated that the highest contribution to the PAHs was from diesel emissions (30.38%) followed by oil and oil derivate and incomplete coal combustion (23.06%), vehicular emissions (16.43%), wood combustion (15.93%), and natural gas combustion (14.2%). A preliminary evaluation of human health risk using chronic daily intake, hazard index, benzo[a]pyrene-equivalent (BaP eq ) concentration, and the incremental lifetime cancer risk indicated that PAHs in short-neck clam would induce potential carcinogenic effects in the consumers.

  18. Sources of polyaromatic hydrocarbons (PAH); Kildebestemmelse af polyaromatiske kulbrinter (PAH)

    Energy Technology Data Exchange (ETDEWEB)

    Egsgaard, H. [Forskningscenetr Risoe, Ald. for Plantebiologi og Biokemi (DK); Larsen, E. [Forskningscenter Risoe, Ald. for Optic og Fluid Dynamik (Denmark)

    2000-03-01

    Aromatic hydrocarbons including PAH compounds are thermally and chemically very stable compounds and are formed by gasification/pyrolysis of biomass. With reference to the tar compounds present in the produced gas from updraft gasifiers the sources responsible for the formation of naphthalene and poly-aromatic hydrocarbons have been investigated. The focus has been on thermal and oxidative conversions of compounds related to the lignin building blocks. Thus, phenols, 2-methoxy-phenols and 4-substituted-2-methoxy-phenols were investigated by introducing water solutions of the compounds into a continuos flow system operating in the temperature range 600-850 deg. C. The pyrolysis products were identified by GC/MS. The tar compounds reveal a well-defined and characteristic thermal transformation. Phenol is a strong source to naphthalene and indenes while 2-methoxyphenols are sources to aromatic oxo-compounds such as cinnamaldehyde. More complex systems are sources to higer PAH compounds. Thus, oligomers of phenol and 2-methoxyphenol give dibenzofuran and oligomers of isoeugenol are important sources to acenaphthylene. It is characteristic that the simple tar compounds investigated undergo loss of CO and hereby loss of the aromatic structure. The intermediary compounds are very reactive cyclo-pentadienes entering Diels-Alder reactions. The later products are transformed to aromatic compounds. The results may facilitate the determination of optimum conditions for updraft gasifiers and hence a reduction of PAH formation. (au)

  19. Distribution Pattern of Polyaromatic Hydrocarbons (PAHs) in Soils in ...

    African Journals Online (AJOL)

    Distribution Pattern of Polyaromatic Hydrocarbons (PAHs) in Soils in the Vicinity of Fuel Stations in Abraka, Nigeria. ... (0.00191mg.kg-1). Investigation also reveals that all tested samples are contaminated, with mean values ranging between 0.000207±0.00026mg.kg-1 and 0.002123±0.00303mg.kg-1. Similarly, spearmen's ...

  20. Susceptibility of eastern oyster early life stages to road surface polycyclic aromatic hydrocarbons (PAHs).

    Science.gov (United States)

    2012-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of chemical compounds that are mostly : anthropogenic in nature, and they can become persistent organic contaminants in aquatic : ecosystems. Runoff from impervious surfaces is one of the many ways ...

  1. Bioremediation of polyaromatic hydrocarbons (PAHs using rhizosphere technology

    Directory of Open Access Journals (Sweden)

    Sandeep Bisht

    2015-03-01

    Full Text Available The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e.polyaromatic hydrocarbons (PAHs due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.

  2. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology

    Science.gov (United States)

    Bisht, Sandeep; Pandey, Piyush; Bhargava, Bhavya; Sharma, Shivesh; Kumar, Vivek; Sharma, Krishan D.

    2015-01-01

    The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective. PMID:26221084

  3. Bioremediation of PAH contaminated soil samples

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1994-01-01

    Soils contaminated with polynuclear aromatic hydrocarbons (PAHs) pose a hazard to life. The remediation of such sites can be done using physical, chemical, and biological treatment methods or a combination of them. It is of interest to study the decontamination of soil using bioremediation. The experiments were conducted using Acinetobacter (ATCC 31012) at room temperature without pH or temperature control. In the first series of experiments, contaminated soil samples obtained from Alberta Research Council were analyzed to determine the toxic contaminant and their composition in the soil. These samples were then treated using aerobic fermentation and removal efficiency for each contaminant was determined. In the second series of experiments, a single contaminant was used to prepare a synthetic soil sample. This sample of known composition was then treated using aerobic fermentation in continuously stirred flasks. In one set of flasks, contaminant was the only carbon source and in the other set, starch was an additional carbon source. In the third series of experiments, the synthetic contaminated soil sample was treated in continuously stirred flasks in the first set and in fixed bed in the second set and the removal efficiencies were compared. The removal efficiencies obtained indicated the extent of biodegradation for various contaminants, the effect of additional carbon source, and performance in fixed bed without external aeration

  4. Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health

    Science.gov (United States)

    Mahler, B.J.; Van Metre, P.C.

    2011-01-01

    Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.

  5. Influence of Air Pollution and Soil Contamination on the Contents of Polycyclic Aromatic Hydrocarbons (PAHs in Vegetables Grown in Urban Gardens of Sao Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Luís F. Amato-Lourenco

    2017-11-01

    Full Text Available Urban community gardens (UCGs have become prevalent worldwide and play a significant role in strengthening the sustainability of urban food systems. Although UCGs provide multiple benefits to society, the extent to which vegetables grown in them are contaminated by chemical compounds derived from airborne fallout or soil contamination is unclear. We evaluated the influence of both air pollution and the contamination of garden soil beds on the contents of 16 PAHs in the edible tissues of spinach and collard green. The PAH contents were quantified using gas chromatography-mass spectrometry (GC-MS-EI. The concentrations of PAHs in both the vegetables grown in the vessels and in the soil of the UCGs were <0.1 μg kg−1. The total concentrations of the 16 priority PAHs in the soil beds ranged from 132.94 to 410.50 μg kg−1. These levels were lower than those that have been reported from other urban areas. Principal Component Analysis resulted in two components indicating that traffic-derived emissions are the main sources of PAHs in the soil. The first component represented the compounds with higher molecular weights and had a moderate loading for the fine fraction of the soil (clay (0.63. The second component showed a high loading for silt (0.97, including those PAHs with lower molecular weights. Our data show that spinach and collard greens do not accumulate significant PAH concentrations on their leaves over 45-day periods, whether they are raised in controlled soil or in local beds.

  6. Improving bioremediation of PAH contaminated soils by thermal pretreatment

    NARCIS (Netherlands)

    Bonten, L.

    2001-01-01

    Numerous sites and large volumes of sediments in the Netherlands are contaminated with polycyclic aromatic hydrocarbons (PAH), which are of great concern because of their

  7. Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.

    Science.gov (United States)

    Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria

    2015-01-01

    The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values yogurts with low and high fats were compared.

  8. Contamination levels, toxicity profiles, and emission sources of polycyclic aromatic hydrocarbons (PAHs) in the soils of an emerging industrial town and its environs in the Southeastern Nigeria.

    Science.gov (United States)

    Ofomatah, Anthony C; Okoye, Chukwuma O B

    2017-11-09

    Polycyclic aromatic hydrocarbon (PAH) concentrations in Nnewi and its environs were determined. Soil samples were extracted by sonication using hexane:dichloromethane (3:1) mixture and determined by gas chromatography-flame ionization detection. The total PAHs concentrations (μg/kg) were 16.681 to 46.815, being three orders of magnitude lower than the maximum permissible level recommended by the Agency for Toxic Substances and Disease Registry (ATSDR). These concentrations followed this order: industrial ˃ farmlands ˃ commercial ˃ residential. Industrialized areas showed higher concentrations (p ˂ 0.05) than the other areas. Diagnostic ratios show that the major source of PAHs was the open burning of industrial and agricultural wastes, as shown by the occurrence of highest concentrations in the industrial areas, followed by agricultural areas. Benzo[a]pyrene equivalent values showed non-pollution and very low toxicity. Nevertheless, it was clear that industrialization has had some impact on the PAHs levels in soils and the total environment in this area and could be problematic with time, except with proper environmental management.

  9. Contamination from polycyclic aromatic hydrocarbons (PAHs) in the soil of a botanic garden localized next to a former manufacturing gas plant in Palermo (Italy)

    International Nuclear Information System (INIS)

    Orecchio, Santino

    2010-01-01

    The Botanical Garden lies within the city of Palermo, a few meters away from one of the largest unused Manufacturing Gas Plant in Sicily. The total concentrations of PAHs (23 compounds) in the soil of Botanical Garden ranged from 947 to 18,072 μg/kg. The wide range of PAH concentrations (RSD = 84%) found in the soil samples indicates heterogeneous levels of contamination in the area and this can be explained by considering the different tree distributions which prevents the homogeneous deposition of pollutants on the soil. Soils collected in the Botanical Garden generally showed the highest PAH concentrations, being almost 2-3 times higher than the concentration samples obtained in the urban reference sites and about 20 times higher than those in the rural stations. The total PAH concentrations, in the Botanical Garden soil, resulted higher than the maximum concentrations allowed by the Italian legislation for the green areas. Perylene, was found in all the stations. From a careful study of the isomeric ratios, we can hypothesize that the soils of the Botanical Garden are mainly affected by localized MGP particulate deposition, suggesting that the partitioning between organic matter and PAHs is not the dominant process in the soils with higher organic matter content.

  10. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in Hong Kong marine sediments

    International Nuclear Information System (INIS)

    Zheng, G.J.; Richardson, B.J.

    1999-01-01

    A total of 20 surficial sediment samples, obtained from Hong Kong coastal waters, were analysed for petroleum hydrocarbons (PHCs) and a suite of 15 polycyclic aromatic hydrocarbons (PAHs). The results indicate that Hong Kong coastal sediments are often seriously polluted with petroleum related hydrocarbons. This is especially so in heavily urbanised or industrialized localities, such as Kowloon Bay (Victoria Harbour), Tsing Yi North and Tolo Harbour. Petroleum hydrocarbon pollutants in marine sediments are believed to be mainly derived from the transportation of oil, shipping activities, spillages, and industrial, stormwater and waste wastewater discharge. The ratio of unresolved complex mixture (UCM) to n-alkanes, carbon preference index (CPI), and n-C 16 values indicate that the main contribution to petroleum hydrocarbon contamination is via oil and its products. Pollutant sources appear to be stable and continuing when compared with previous data. (author)

  11. Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land

    Science.gov (United States)

    Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi

    2015-04-01

    Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (pcatalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.

  12. APPLICATION OF FENTON’S REAGENT ON REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBONs (PAHs IN SPIKED SOIL

    Directory of Open Access Journals (Sweden)

    Nursiah La Nafie

    2010-06-01

    Full Text Available Problem associated with Polycyclic Aromatic Hydrocarbons (PAHs contaminated site in environmental media have received increasing attention. To resolve such problems, innovative in situ methods are urgently required. This work investigated the feasibility of using Fenton's Reagent to remediate PAHs in spiked soil. PAHs were spiked into soil to simulate contaminated soil. Fenton's Reagent (H2O2 + Fe2+ and surfactant were very efficient in destruction of PAHs including naphthalene, anthracene, fluoranthene, pyrene, and benzo(apyrene from spiked soil. It was indicated by the fact that more than 96% of PAHs were degraded in the solution and the spiked soil.   Keywords: Environmental, Fenton's Reagent, Polycyclic Aromatic Hydrocarbons, and Spiked soil.

  13. Polycyclic Aromatic Hydrocarbons (PAHs) and their Bioaccessibility in Meat: a Tool for Assessing Human Cancer Risk.

    Science.gov (United States)

    Hamidi, Elliyana Nadia; Hajeb, Parvaneh; Selamat, Jinap; Abdull Razis, Ahmad Faizal

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are primarily formed as a result of thermal treatment of food, especially barbecuing or grilling. Contamination by PAHs is due to generation by direct pyrolysis of food nutrients and deposition from smoke produced through incomplete combustion of thermal agents. PAHs are ubiquitous compounds, well-known to be carcinogenic, which can reach the food in different ways. As an important human exposure pathway of contaminants, dietary intake of PAHs is of increasing concern for assessing cancer risk in the human body. In addition, the risks associated with consumption of barbecued meat may increase if consumers use cooking practices that enhance the concentrations of contaminants and their bioaccessibility. Since total PAHs always overestimate the actual amount that is available for absorption by the body, bioaccessibility of PAHs is to be preferred. Bioaccessibility of PAHs in food is the fraction of PAHs mobilized from food matrices during gastrointestinal digestion. An in vitro human digestion model was chosen for assessing the bioaccessibility of PAHs in food as it offers a simple, rapid, low cost alternative to human and animal studies; providing insights which may not be achievable in in vivo studies. Thus, this review aimed not only to provide an overview of general aspects of PAHs such as the formation, carcinogenicity, sources, occurrence, and factors affecting PAH concentrations, but also to enhance understanding of bioaccessibility assessment using an in vitro digestion model.

  14. Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004

    International Nuclear Information System (INIS)

    Chang, K.-F.; Fang, G.-C.; Chen, J.-C.; Wu, Y.-S.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in both gaseous and particulate phases. These compounds are considered to be atmospheric contaminants and are human carcinogens. Many studies have monitored atmospheric particulate and gaseous phases of PAH in Asia over the past 5 years. This work compares and discusses different sample collection, pretreatment and analytical methods. The main PAH sources are traffic exhausts (AcPy, FL, Flu, PA, Pyr, CHR, BeP) and industrial emissions (BaP, BaA, PER, BeP, COR, CYC). PAH concentrations are highest in areas of traffic, followed by the urban sites, and lowest in rural sites. Meteorological conditions, such as temperature, wind speed and humidity, strongly affect PAH concentrations at all sampling sites. This work elucidates the characteristics, sources and distribution, and the healthy impacts of atmospheric PAH species in Asia. - This work summarizes the characteristics, sources and distribution, and the healthy impacts of atmospheric PAH species in Asia

  15. Influence of smoking parameters on the concentration of polycyclic aromatic hydrocarbons (PAHs) in Danish smoked fish

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Christensen, J. H.; Højgård, A.

    2010-01-01

    were also tested in a pilot plant study with smoked trout as a model fish. In addition to confirming that increased combustion temperatures and usage of common alder in comparison with beech increased Sigma PAH25, it was also revealed that the PAH concentration decreased in the order fish skin >> outer......A new method for the analysis of 25 polycyclic aromatic hydrocarbon (PAH) compounds in fish was developed, validated, and used for the quantification of PAHs in 180 industrially smoked fish products. The method included pressurized liquid extraction, gel-permeation chromatography (Bio-beads S-X3...... smoking, and for other fish species direct smoking leads to higher sigma PAH25 than indirect smoking. Also, the usage of common alder increases the PAH contamination compared with beech. The effects of smoking time, combustion temperatures, and two types of smoke-generating material on the Sigma PAH25...

  16. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies

    International Nuclear Information System (INIS)

    Lau, Ee Von; Gan, Suyin; Ng, Hoon Kiat; Poh, Phaik Eong

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs. -- Highlights: • The alternative and advancement in extraction agents to remove PAHs from soil using soil washing technology is summarised. • The soil regulations for PAH level in various countries are summarized for reference to researchers. • The concentration levels of PAHs in soil at present and the need for soil remediation is presented. -- The efficiency of the extraction agent plays a significant role in soil washing of PAH-contaminated soil

  17. Polycyclic Aromatic Hydrocarbon (PAH) and Oxygenated PAH (OPAH) Air–Water Exchange during the Deepwater Horizon Oil Spill

    Science.gov (United States)

    2015-01-01

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water–air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m3 and 0.3 and 27 ng/m3, respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air–water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10 000 ng/m2/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m2/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air–water chemical flux determinations with passive sampling technology. PMID:25412353

  18. Polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH (OPAH) air-water exchange during the deepwater horizon oil spill.

    Science.gov (United States)

    Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G; Hobbie, Kevin A; Smith, Brian W; Anderson, Kim A

    2015-01-06

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.

  19. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?

    Science.gov (United States)

    Samburova, Vera; Zielinska, Barbara; Khlystov, Andrey

    2017-08-15

    Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑ 88 BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑ 16EPA BaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑ 88 BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate.

  20. Phytoremediation of polycyclic aromatic hydrocarbons (PAH) by cv. Crioula: A Brazilian alfalfa cultivar.

    Science.gov (United States)

    Alves, Wilber S; Manoel, Evelin A; Santos, Noemi S; Nunes, Rosane O; Domiciano, Giselli C; Soares, Marcia R

    2018-07-03

    This work aimed to evaluate the phytoremediation capacity of the alfalfa cultivar Crioula in soils contaminated with polycyclic aromatic hydrocarbons (PAHs), primary pollutants with mutagenic and carcinogenic potential. Alfalfa was grown from seed for 40 days on soil amended with anthracene, pyrene, and phenanthrene. Soil and plant tissue was collected for biometric assay, dry mass analysis, and PAH analysis by liquid chromatography. Increased total PAH concentration was associated with decreases in plant biomass, height, and internode length. The Crioula cultivar had a satisfactory phytoremediation effect, reducing total PAH concentration (300 ppm) in the experimental soil by 85% in 20 days, and by more than 95% in 40 days. The PAH showed a tendency to be removed in the temporal order: phenanthrene before pyrene before anthracene, and the removal ratio was influenced by the initial soil concentration of each PAH.

  1. Spatial Distribution of Polycyclic Aromatic Hydrocarbon (PAH) Concentrations in Soils from Bursa, Turkey.

    Science.gov (United States)

    Karaca, Gizem

    2016-02-01

    The objectives of this study were to identify regional variations in soil polycyclic aromatic hydrocarbon (PAH) contamination in Bursa, Turkey, and to determine the distributions and sources of various PAH species and their possible sources. Surface soil samples were collected from 20 different locations. The PAH concentrations in soil samples were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAH concentrations (∑12 PAH) varied spatially between 8 and 4970 ng/g dry matter (DM). The highest concentrations were measured in soils taken from traffic+barbecue+ residential areas (4970 ng/g DM) and areas with cement (4382 ng/g DM) and iron-steel (4000 ng/g DM) factories. In addition, the amounts of ∑7 carcinogenic PAH ranged from 1 to 3684 ng/g DM, and between 5 and 74 % of the total PAHs consisted of such compounds. Overall, 4-ring PAH compounds (Fl, Pyr, BaA and Chr) were dominant in the soil samples, with 29-82 % of the ∑12 PAH consisting of 4-ring PAH compounds. The ∑12 BaPeq values ranged from 0.1 to 381.8 ng/g DM. Following an evaluation of the molecular diagnostic ratios, it was concluded that the PAH pollution in Bursa soil was related to pyrolytic sources; however, the impact of petrogenic sources should not be ignored.

  2. Effect of Smoking on Polycyclic Aromatic Hydrocarbons (PAHS ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Manage. Vol. 22 (2) 293 - 297. February 2018. Full-text Available Online at ... aromatic hydrocarbons (PAHs) were studied in raw and smoked samples of catfish (Clarias ... inferred that the smoking process generally increased the mean total PAH levels in the fish .... with 5 g of anhydrous sodium sulphate in a laboratory.

  3. Polyaromatic hydrocarbons (PAHs) levels from two industrial zones ...

    African Journals Online (AJOL)

    Polyaromatic hydrocarbons (PAHs) levels from two industrial zones (Sihwa and Banwal) located in An-san city ... PROMOTING ACCESS TO AFRICAN RESEARCH ... method (HVAS-Sibata) was employed to collect airborne PAHs in both the particulate and gas phases. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  4. Remediation technologies for treatment of PAH contaminated soil and strategies to enhance process efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J.; Alcantara, M. T.; Pazos, M.; Longo, M. A.; Sanroman, M. A.

    2009-07-01

    The presence of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in soils poses a potential threat to human health. The removal of these contaminants presents a challenge to scientists and engineers. PAHs are characterized by their palpable hydrophobic nature. Consequently, these species tend to be adsorbed on solid particulates, especially on the organic fraction of the solids. (Author)

  5. Remediation technologies for treatment of PAH contaminated soil and strategies to enhance process efficiency

    International Nuclear Information System (INIS)

    Gomez, J.; Alcantara, M. T.; Pazos, M.; Longo, M. A.; Sanroman, M. A.

    2009-01-01

    The presence of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in soils poses a potential threat to human health. The removal of these contaminants presents a challenge to scientists and engineers. PAHs are characterized by their palpable hydrophobic nature. Consequently, these species tend to be adsorbed on solid particulates, especially on the organic fraction of the solids. (Author)

  6. Review of PAH contamination in food products and their health hazards.

    Science.gov (United States)

    Bansal, Vasudha; Kim, Ki-Hyun

    2015-11-01

    Public concern over the deleterious effects of polycyclic aromatic hydrocarbons (PAHs) has grown rapidly due to recognition of their toxicity, carcinogenicity, and teratogenicity. The aim of this review is to describe the status of PAH pollution among different food types, the route of dietary intake, measures for its reduction, and legislative approaches to control PAH. To this end, a comprehensive review is outlined to evaluate the status of PAH contamination in many important food categories along with dietary recommendations. Our discussion is also extended to describe preventive measures to reduce PAH in food products to help reduce the risks associated with human intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea.

    Science.gov (United States)

    Kim, Eun Jung; Choi, Sung-Deuk; Chang, Yoon-Seok

    2011-11-01

    To investigate the influence of biomass burning on the levels of polycyclic aromatic hydrocarbons (PAHs) in soils, temporal trends and profiles of 16 US Environmental Protection Agency priority PAHs were studied in soil and ash samples collected 1, 5, and 9 months after forest fires in South Korea. The levels of PAHs in the burnt soils 1 month after the forest fires (mean, 1,200 ng/g dry weight) were comparable with those of contaminated urban soils. However, 5 and 9 months after the forest fires, these levels decreased considerably to those of general forest soils (206 and 302 ng/g, respectively). The burnt soils and ash were characterized by higher levels of light PAHs with two to four rings, reflecting direct emissions from biomass burning. Five and 9 months after the forest fires, the presence of naphthalene decreased considerably, which indicates that light PAHs were rapidly volatilized or degraded from the burnt soils. The temporal trend and pattern of PAHs clearly suggests that soils in the forest-fire region can be contaminated by PAHs directly emitted from biomass burning. However, the fire-affected soils can return to the pre-fire conditions over time through the washout and wind dissipation of the ash with high content of PAHs as well as vaporization or degradation of light PAHs.

  8. Molecular and stable carbon isotopic characterization of PAH contaminants at McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Kim, Moonkoo . E-mail moonkoo.kim@wmich.edu; Kennicutt, Mahlon C.; Qian Yaorong

    2006-01-01

    The molecular and stable carbon isotopic compositions of contaminant polycyclic aromatic hydrocarbons (PAHs) at McMurdo Station, Antarctica were analyzed in samples collected from land and sub-tidal area. PAHs in the study areas were characterized by high amounts of naphthalene and alkylated naphthalenes from petroleum products introduced by human activities in the area. Principal component analysis (PCA) of PAH composition data identified multiple sources of PAH contamination in the study area. Compositional assignments of origins were confirmed using compound specific stable carbon isotopic analysis

  9. Biomonitoring seasonal variation of urban air polycyclic aromatic hydrocarbons (PAHs) using Ficus benghalensis leaves

    International Nuclear Information System (INIS)

    Prajapati, Santosh Kumar; Tripathi, B.D.

    2008-01-01

    Temporal and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) concentrations in leaves of Ficus benghalensis were investigated in Varanasi city (India). Leaf samples were collected from six sites from urban area of Varanasi and from a control site. PAH extraction was done by sonication in dichloromethane-acetone and quantification by GC-MS. In January total leaf PAHs concentrations at all the urban sites were twice higher as compared to other season's viz. summer and rainy. In contrast, at the control site leaf PAHs concentrations showed lower values than urban sites. The maximum concentrations of total PAHs in winter were due to the medium molecular weight PAHs which increases with respect to both low and high molecular weight PAHs. The temporal variation of medium molecular weight PAHs was similar both at the urban and remote sites. These results support biomonitoring ability of Ficus benghalensis leaves to temporal variations in PAHs contamination. - Biomonitoring PAHs in atmosphere using F. benghalensis leaves for its temporal and seasonal variation is cost effective as well as easier

  10. Phyto remediation of PAH contaminated soil

    International Nuclear Information System (INIS)

    Petruzzelli, G.; Pedron, F.; Barbafieri, M.; Cervelli, St.; Vigna Guidi, G.

    2005-01-01

    Phyto-remediation may enhance degradation of organic compounds promoting an adequate substrate for microbial growth. The aim of this work was to evaluate the efficiency of two plant species, Lupinus albus and Zea mais, in the bio-remediation of a PAH contaminated soil. This soil has been collected in a contaminated industrial area in Italy characterized by PAH concentrations up to 16000 mg/Kg. Microcosms experiments were carried out by planting Lupinus albus and Zea mais in the polluted soil; controls without plants were run separately. Growing period lasted by three months. Plants favoured PAH biodegradation by percentages of 32% with Lupinus albus and 22% with Zea mais, with respect to non vegetated microcosms. (authors)

  11. The hydrogen coverage of interstellar PAHs [Polycyclic Aromatic Hydrocarbons

    International Nuclear Information System (INIS)

    Tielens, A.G.G.M.; Allamandola, L.J.; Barker, J.R.; Cohen, M.

    1986-02-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a uv photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense uv fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments

  12. The Influence of Multiwalled Carbon Nanotubes on Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability and Toxicity to Soil Microbial Communities in Alfalfa Rhizosphere

    Science.gov (United States)

    Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...

  13. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: Synthesis through meta-analysis

    International Nuclear Information System (INIS)

    Ma Bin; He Yan; Chen Huaihai; Xu Jianming; Rengel, Zed

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread and persistent organic pollutants with high carcinogenic effect and toxicity; their behavior and fate in the soil-plant system have been widely investigated. In the present paper, meta-analysis was used to explore the interaction between plant growth and dissipation of PAHs in soil based on the large body of published literature. Plants have a promoting effect on PAH dissipation in soils. There was no difference in PAH dissipation between soils contaminated with single and mixed PAHs. However, plants had a more obvious effect on PAH dissipation in freshly-spiked soils than in long-term field-polluted soils. Additionally, a positive effect of the number of microbial populations capable of degrading PAHs was observed in the rhizosphere compared with the bulk soil. Our meta-analysis established the importance of the rhizosphere effect on PAH dissipation in variety of the soil-plant systems. - The meta-analysis provides the first quantitative evidence of the positive effect of rhizosphere processes on PAH dissipation.

  14. Impact of soil organic matter on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils

    International Nuclear Information System (INIS)

    Yang, Y.; Zhang, N.; Xue, M.; Tao, S.

    2010-01-01

    The knowledge on the distribution of hydrophobic organic contaminants in soils can provide better understanding for their fate in the environment. In the present study, the n-butanol extraction and humic fractionation were applied to investigate the impact of SOM on the distribution of polycyclic aromatic hydrocarbons (PAHs). The results indicated that 80.5%-94.8% of the target PAHs could be extracted by n-butanol and 63.1%-94.6% of PAHs were associated with fulvic acid (FA). Concentrations of un-extracted PAHs increased significantly with the increasing soil organic matter (SOM), however, such an association was absent for the extractable fractions. The results suggested that the sequestration played a critical role in the accumulation of PAHs in soils. SOM also retarded the diffusion of PAHs into the humin fractions. It implied that sequestration in SOM was critical for PAH distribution in soils, while the properties of PAH compounds also had great influences. - Soil organic matter played an important role in the distribution of PAHs in soils through sequestration.

  15. Are PAHS the Right Metric for Assessing Toxicity Related to Oils, Tars, Creosote and Similar Contaminants in Sediments?

    Science.gov (United States)

    Oils, tars, and other non-aqueous phase hydrocarbon liquids (NAPLs) are common sources of contamination in aquatic sediments, and the toxicity of such contamination has generally been attributed to component chemicals, particularly PAHs. While there is no doubt PAHs can be toxic ...

  16. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases.

    Science.gov (United States)

    Li, Xiaojun; Li, Peijun; Lin, Xin; Zhang, Chungui; Li, Qi; Gong, Zongqiang

    2008-01-15

    Microbial consortia isolated from aged oil-contaminated soil were used to degrade 16 polycyclic aromatic hydrocarbons (15.72 mgkg(-1)) in soil and slurry phases. The three microbial consortia (bacteria, fungi and bacteria-fungi complex) could degrade polycyclic aromatic hydrocarbons (PAHs), and the highest PAH removals were found in soil and slurry inoculated with fungi (50.1% and 55.4%, respectively). PAHs biodegradation in slurry was lower than in soil for bacteria and bacteria-fungi complex inoculation treatments. Degradation of three- to five-ring PAHs treated by consortia was observed in soil and slurry, and the highest degradation of individual PAHs (anthracene, fluoranthene, and benz(a)anthracene) appeared in soil (45.9-75.5%, 62-83.7% and 64.5-84.5%, respectively) and slurry (46.0-75.8%, 50.2-86.1% and 54.3-85.7%, respectively). Therefore, inoculation of microbial consortia (bacteria, fungi and bacteria-fungi complex) isolated from in situ contaminated soil to degrade PAHs could be considered as a successful method.

  17. Biodegradation of PAHs in petroleum-contaminated soil using tamarind leaves as microbial inoculums

    Directory of Open Access Journals (Sweden)

    Kanchana Juntongjin

    2007-03-01

    Full Text Available Petroleum-contaminated soil contains various hazardous materials such as aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs. This study focused on PAHs since they are potentially toxic,mutagenic, and carcinogenic. Bioremediation of PAHs was carried out by adding tamarind leaf inoculums into petroleum-contaminated soil. Tamarind and other leguminous leaves have been reported to containedseveral PAH-degrading microorganisms. To minimize the amount of leaves added, the preparation of tamarind leaf inoculums was developed by incubating tamarind leaves with a sub-sample of contaminated soil for 49 days. After that, the efficiency of tamarind leaf inoculums was tested with two soil samplescollected from a navy dockyard and railway station in Samutprakarn and Bangkok, respectively. These soil samples had different levels of petroleum contamination. Bioaugmentation treatment was carried out bymixing contaminated soil with the inoculum at the ratio of 9:1. For navy dockyard soil, the concentration of phenanthrene was decreased gradually and reached the undetectable concentration within 56 days in theinoculated soil; meanwhile 70-80% of fluoranthene and pyrene were remained at the end of treatment. For railway station soil, which had lower petroleum contamination, PAH degradation was more rapid, forexample, the concentration of phenanthrene was below detection limit after 28 days. Besides PAHs, the amounts of several hydrocarbons were also reduced after treatment. At the same time, numerousphenanthrene-degrading bacteria, which were used as representatives of PAH degraders, could be observed in both inoculated soils. However, higher numbers of bacteria were found in railway station soil, whichcorresponded with the lower amount of PAHs and higher amount of soil nutrients. The results showed that inoculum prepared from tamarind leaves could be used to degrade PAHs as well as clean-up petroleum contaminated soil.

  18. Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs in soil-Brassica chinensis system.

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    Full Text Available Farmland soil and leafy vegetables accumulate more polycyclic aromatic hydrocarbons (PAHs in suburban sites. In this study, 13 sampling areas were selected from vegetable fields in the outskirts of Xi'an, the largest city in northwestern China. The similarity of PAH composition in soil and vegetation was investigated through principal components analysis and redundancy analysis (RDA, rather than discrimination of PAH congeners from various sources. The toxic equivalent quantity of PAHs in soil ranged from 7 to 202 μg/kg d.w., with an average of 41 μg/kg d.w., which exceeded the agricultural/horticultural soil acceptance criteria for New Zealand. However, the cancer risk level posed by combined direct ingestion, dermal contact, inhalation of soil particles, and inhalation of surface soil vapor met the rigorous international criteria (1 × 10(-6. The concentration of total PAHs was (1052 ± 73 μg/kg d.w. in vegetation (mean ± standard error. The cancer risks posed by ingestion of vegetation ranged from 2×10-5 to 2 × 10(-4 with an average of 1.66 × 10(-4, which was higher than international excess lifetime risk limits for carcinogens (1 × 10(-4. The geochemical indices indicated that the PAHs in soil and vegetables were mainly from vehicle and crude oil combustion. Both the total PAHs in vegetation and bioconcentration factor for total PAHs (the ratio of total PAHs in vegetation to total PAHs in soil increased with increasing pH as well as decreasing sand in soil. The total variation in distribution of PAHs in vegetation explained by those in soil reached 98% in RDA, which was statistically significant based on Monte Carlo permutation. Common pollution source and notable effects of soil contamination on vegetation would result in highly similar distribution of PAHs in soil and vegetation.

  19. Evaluation of bio-remediation technologies for PAHs contaminated soils

    International Nuclear Information System (INIS)

    Garcia Frutos, F.J.; Diaz, J.; Rodriguez, V.; Escolano, O.; Garcia, S.; Perez, R.; Martinez, R.; Oromendia, R.

    2005-01-01

    Natural attenuation is a new concept related to polluted soil remediation. Can be understood like an 'in situ' bio-remediation process with low technical intervention. This low intervention may be in order to follow the behaviour of pollutants 'monitored natural attenuation' or include an optimisation process to improve biological remediation. The use of this technology is a fact for light hydrocarbon polluted soil, but few is known about the behaviour of polycyclic aromatic hydrocarbons (PAHs) in this process. PAHs are more recalcitrant to bio-remediation due to their physic-chemical characteristics, mainly hydrophobicity and electrochemical stability. PAHs are a kind of pollutants widely distributed in the environment, not only in the proximity of the source. This linked to the characteristics of some of them related to toxicity and mutagenicity implies its inclusion as target compounds from an environmental point of view. Their low availability, solubility and the strong tendency to bind to soil particle, especially to the organic phase affect PAHs biological mineralisation. So, if the pollutant is not available to microorganisms it can not be bio-degraded. Bioavailability can be assessed form several but complementary points of view: physico-chemical and biological. First including the term availability and the second to point out the capacity of soil microorganisms to mineralize PAHs. Availability and Bio-degradability must be determined, as well as the presence and activity of specific degraders among the soil organisms, once settled these points is necessary to study the biological requirements to optimise biodegradation kinetics of these compounds. In this work we present a study carried out on a soil, contaminated by PAHs, the study includes three main topics: bioavailability assessment (both term availability and bio-degradability), bio-remediation assessment, once optimised conditions for natural attenuation and finally a simulation of the

  20. Determination of polynuclear aromatic hydrocarbons (PAHs) in ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-11-02

    Nov 2, 2006 ... (PAHs) in selected water bodies in the Niger Delta. Chimezie Anyakora and ... production, foundries), transportation, burning (e.g. forest, straw, agriculture ..... the Red Sea Coast of Yemen (DouAbul et al., 1997), a comparable ...

  1. Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil

    International Nuclear Information System (INIS)

    Sánchez-Trujillo, M.A.; Morillo, E.; Villaverde, J.; Lacorte, S.

    2013-01-01

    The objective of the present study was to characterise the polycyclic aromatic hydrocarbons (PAHs) content of an aged contaminated soil and to propose remediation techniques using cyclodextrins (CDs). Four CDs solutions were tested as soil decontamination tool and proved more efficient in extracting PAHs than when an aqueous solution was used; especially two chemically modified CDs resulted in higher extraction percentages than natural β-CD. The highest extraction percentages were obtained for 3-ring PAHs, because of the appropriate size and shape of these compounds relative to those of the hydrophobic cavities of the CDs studied. A detailed mechanistic interpretation of the chemical modification of CDs on the extraction of the different PAHs has been performed, and connected with the role that the different hydrophobicities of the PAHs play in the extraction behaviour observed for the 16 PAHs, limiting their accessibility and the remaining risk of those PAHs not extractable by CDs. -- Highlights: ► Four cyclodextrins (CDs) solutions were tested as soil decontamination tool for PAHs. ► Extractions with CDs were higher than with electrolyte, especially with synthetic CDs. ► Extraction capacity depends on the adequate size of PAHs and CDs hydrophobic cavity. ► 2–3 ring PAHs, the more abundant in the soil, were extracted in higher percentages. ► CDs extract preferably the less hydrophobic and more potentially toxic PAHs. -- Cyclodextrin solutions are useful and interesting tools for the decontamination of soils polluted by PAHs

  2. Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Aaslyng, Margit Dall; Meinert, Lene

    2015-01-01

    Barbecuing is known to result in the formation of polycyclic aromatic hydrocarbons (PAHs). A validated method that employed pressurized liquid extraction (PLE), gel permeation chromatography (GPC) followed by solid phase extraction (SPE) on Silica and analytical determination by GC-MS was applied...

  3. Effect of smoking on Polycyclic Aromatic Hydrocarbons (PAHS ...

    African Journals Online (AJOL)

    The effects of smoking on proximate composition, energy values and concentrations of polycyclic aromatic hydrocarbons (PAHs) were studied in raw and smoked samples of catfish (Clarias gariepinus) and tilapia (Oreochromis niloticus). Crude protein was higher in the tilapia sample for both raw and smoked samples.

  4. Remediation of PAH-contaminated soil using Achromobacter sp

    International Nuclear Information System (INIS)

    Cutright, T.J.; Lee, S.

    1994-01-01

    Several technologies have the potential to effectively remediate soil contaminated with polycyclic aromatic hydrocarbons (PAHs): solvent extraction, coal-oil agloflotation, supercritical extraction, and bioremediation. Due to the cost effectiveness and in-situ treatment capabilities of bioremediation, studies were conducted to determine the efficiency of Achromobacter sp. to remediate an industrial contaminated soil sample. Specifically, the use of three different mineral salt solutions in conjunction with the Achromobacter sp. was investigated. The molecular identification of the contaminants and their respective levels after remediation were determined using a Hewlett-Packard 1050 HPLC. Preliminary results show a 92% remediation for the use of two of the mineral salt solutions after 20 days' treatment. After 8 weeks, the remediation efficiency reached 99%. Bioremediation was also critically compared to the other potential remediation technologies

  5. Ambient water quality criteria for polycyclic aromatic hydrocarbons (PAHs)

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, N.K.

    1993-08-13

    Ambient water quality criteria are established for polyaromatic hydrocarbons (PAH) in British Columbia. Major sources of PAH in the atmosphere and aquatic environments include, for the atmosphere, forest and prairie fires, agricultural burning, refuse burning, enclosed incineration, and heating and power, and for the aquatic environment, petroleum spillage, atmospheric deposition, wastewaters, surface land runoff, and biosynthesis. Details are presented of PAH and their characteristics, forms and transformations, occurrence in the environment, drinking water concerns, aquatic life concerns, wildlife concerns, livestock water supply concerns, and irrigation concerns. Application of criteria for aquatic life is discussed including phototoxic vs long term criteria, assessment of existing water quality, setting water quality objectives, and PAH levels in smoked fish. 221 refs., 5 figs., 30 tabs.

  6. Concentrations of PAHs (Polycyclicaromatic Hydrocarbons Pollutant in Sediment of The Banten Bay

    Directory of Open Access Journals (Sweden)

    Khozanah Munawir

    2018-02-01

    Full Text Available Banten Bay is end of stream for a few rivers from Banten mainland where many manufactures and petrochemical industries are built. This may give environmental pressure of water quality of the bay due to pollutant input, such as Polycyclic Aromatic Hydrocarbons (PAHs. This study is to identify those pollutants and determine their total concentration and distribution in sediments. Surface sediment samples were collected in four zones: inner coastline within the bay, middle bay, coastline off the bay and outer of the Bay in April 2016. PAH components were extracted and measured using a gas chromatography-mass spectrometry. Levels of total PAHs in sediments in inner coastline within the bay ranged between 0.381-2.654 ppm with an average of 1.288 ppm, middle of the bay ranged between 0.747-1.762 ppm with an average of 1.198 ppm, outer of the bay ranged between 0.192-1.394 ppm with an average of 0.921 ppm, and east coast of the bay ranged between 0.191-1.394 ppm and an average of 0.778 ppm. The levels of total PAH contamination is apparently lower than those of PAH threshold in sediments (i.e. 4.5 ppm. Keywords: PAHs (Polycyclic Aromatic Hydrocarbons, Banten Bay

  7. Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil.

    Science.gov (United States)

    Košnář, Zdeněk; Mercl, Filip; Tlustoš, Pavel

    2018-05-30

    A 120-day pot experiment was conducted to compare the ability of natural attenuation and phytoremediation approaches to remove polycyclic aromatic hydrocarbons (PAHs) from soil amended with PAHs-contaminated biomass fly ash. The PAH removal from ash-treated soil was compared with PAHs-spiked soil. The removal of 16 individual PAHs from soil ranged between 4.8% and 87.8% within the experiment. The natural attenuation approach led to a negligible total PAH removal. The phytoremediation was the most efficient approach for PAH removal, while the highest removal was observed in the case of ash-treated soil. The content of low molecular weight (LMW) PAHs and the total PAHs in this treatment significantly decreased (P <.05) over the whole experiment by 47.6% and 29.4%, respectively. The tested level of PAH soil contamination (~1600 µg PAH/kg soil dry weight) had no adverse effects on maize growth as well on the biomass yield. In addition, the PAHs were detected only in maize roots and their bioaccumulation factors were significantly lower than 1 suggesting negligible PAH uptake from soil by maize roots. The results showed that PAHs of ash origin were similarly susceptible to removal as spiked PAHs. The presence of maize significantly boosted the PAH removal from soil and its aboveground biomass did not represent any environmental risk. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoliang; Yuan, Miaoxin; Qian, Linbo [Zhejiang Univ., Hangzhou (China). Dept. of Environmental Science; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou (China)

    2012-10-15

    Polycyclic aromatic hydrocarbons (PAHs) are largely accumulated in soils in China. The immobilized-microorganism technique (IMT) is a potential approach for abating soil contamination with PAHs. However, few studies about the application of IMT to contaminated soil remediation were reported. Due to recalcitrance to decomposition, biochar application to soil may enhance soil carbon sequestration, but few studies on the application of biochars to remediation of contaminated soil were reported. In this study, we illustrated enhanced bioremediation of soil having a long history of PAH contamination by IMT using plant residues and biochars as carriers. Two PAH-degrading bacteria, Pseudomonas putida and an unidentified indigenous bacterium, were selected for IMT. The extractability and biodegradation of 15 PAHs in solution and an actual PAH-contaminated soil amended with immobilized-bacteria materials were investigated under different incubation periods. The effects of carriers and the molecular weight of PAHs on bioremediation efficiency were determined to illustrate their different bio-dissipation mechanisms of PAHs in soil. The IMT can considerably enhance the removal of PAHs. Carriers impose different effects on PAH bio-dissipation by amended soil with immobilized-bacteria, which can directly degrade the carrier-associated PAHs. The removal of PAHs from soil depended on PAH molecular weight and carrier types. Enhanced bio-dissipation by IMT was much stronger for 4- and 5-ring PAHs than for 3- and 6-ring ones in soil. Only P400 biochar-immobilized bacteria enhanced bio-dissipation of all PAHs in contaminated soil after a 90-day incubation. Biochar can promote bioremediation of contaminated soil as microbial carriers of IMT. It is vital to select an appropriate biochar as an immobilized carrier to stimulate biodegradation. It is feasible to use adsorption carriers with high sorptive capabilities to concentrate PAHs as well as microorganisms and thereby enhance

  9. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Bacosa, Hernando Pactao, E-mail: hernando.bacosa@utexas.edu [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373 (United States); Inoue, Chihiro [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-02-11

    Highlights: • Most bacterial consortia from tsunami sediment degraded PAH mixture and pyrene. • The consortia were dominated by known and unknown PAHs-degrading bacteria. • Dokdonella clone is a potential new species and PAH degrader from tsunami sediment. • PAH-RHDα is better than nidA gene for estimating pyrene-degraders in the consortia. • First report on the PAH degradation and PAH-degrading bacteria from tsunami sediment. - Abstract: The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.

  10. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan

    International Nuclear Information System (INIS)

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    Highlights: • Most bacterial consortia from tsunami sediment degraded PAH mixture and pyrene. • The consortia were dominated by known and unknown PAHs-degrading bacteria. • Dokdonella clone is a potential new species and PAH degrader from tsunami sediment. • PAH-RHDα is better than nidA gene for estimating pyrene-degraders in the consortia. • First report on the PAH degradation and PAH-degrading bacteria from tsunami sediment. - Abstract: The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils

  11. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs: a review

    Directory of Open Access Journals (Sweden)

    Debajyoti Ghosal

    2016-08-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed towards removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of

  12. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review

    Science.gov (United States)

    Ghosal, Debajyoti; Ghosh, Shreya; Dutta, Tapan K.; Ahn, Youngho

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main

  13. Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: An Overview

    OpenAIRE

    Norzila Othman; Mohd Irwan Juki; Norhana Hussain; Suhaimi Abdul Talib

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of priority pollutants which are present at high concentration in soils of many industrially contaminated sites. Standards and criteria for the remediation of soils contaminated with PAHs vary widely between countries. Bioremediation has gained preference as a technology for remediation contaminated sites as it is less expensive and more environmental friendly. Bioremediation utilizes microorganisms to degrade PAHs to less toxic compou...

  14. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs by a Newly Isolated Strain from Oilfield Produced Water

    Directory of Open Access Journals (Sweden)

    Yi-Bin Qi

    2017-02-01

    Full Text Available The polycyclic aromatic hydrocarbon (PAH-degrading strain Q8 was isolated from oilfield produced water. According to the analysis of a biochemical test, 16S rRNA gene, house-keeping genes and DNA–DNA hybridization, strain Q8 was assigned to a novel species of the genus Gordonia. The strain could not only grow in mineral salt medium (MM and utilize naphthalene and pyrene as its sole carbon source, but also degraded mixed naphthalene, phenanthrene, anthracene and pyrene. The degradation ratio of these four PAHs reached 100%, 95.4%, 73.8% and 53.4% respectively after being degraded by Q8 for seven days. A comparative experiment found that the PAHs degradation efficiency of Q8 is higher than that of Gordonia alkaliphila and Gordonia paraffinivorans, which have the capacities to remove PAHs. Fourier transform infrared spectra, saturate, aromatic, resin and asphaltene (SARA and gas chromatography–mass spectrometry (GC–MS analysis of crude oil degraded by Q8 were also studied. The results showed that Q8 could utilize n-alkanes and PAHs in crude oil. The relative proportions of the naphthalene series, phenanthrene series, thiophene series, fluorene series, chrysene series, C21-triaromatic steroid, pyrene, and benz(apyrene were reduced after being degraded by Q8. Gordonia sp. nov. Q8 had the capacity to remediate water and soil environments contaminated by PAHs or crude oil, and provided a feasible way for the bioremediation of PAHs and oil pollution.

  15. Polycyclic aromatic hydrocarbon contamination in stormwater detention pond sediments in coastal South Carolina.

    Science.gov (United States)

    Weinstein, John E; Crawford, Kevin D; Garner, Thomas R

    2010-03-01

    The purpose of this study was to characterize the polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of stormwater detention ponds in coastal South Carolina. Levels of the sum of PAH analytes were significantly higher in the sediments of commercial ponds compared to that of reference, golf course, low-density residential, and high-density residential ponds. Isomer ratio analysis suggested that the predominant source of PAHs were pyrogenic; however, many ponds had a PAH signature consistent with mixed uncombusted and combusted PAH sources. PAH levels in these sediments could be modeled using both pond drainage area and pond surface area. These results demonstrate that the sediment from most commercial ponds, and a few residential and golf course ponds, were moderately contaminated with PAHs. PAH levels in these contaminated ponds exceeded between 42% and 75% of the ecological screening values for individual PAH analytes established by US EPA Region IV, suggesting that they may pose a toxicological risk to wildlife.

  16. Avoidance of polycyclic aromatic hydrocarbon-contaminated sediments by the freshwater invertebrates Gammarus pulex and Asellus aquaticus

    NARCIS (Netherlands)

    Lange, de H.J.; Sperber, V.; Peeters, E.T.H.M.

    2006-01-01

    Contamination of sediments is a serious problem in most industrialized areas. Sediments are often contaminated with trace metals and organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Bioassays are often used to determine the effect of

  17. Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil

    Czech Academy of Sciences Publication Activity Database

    Borras, E.; Caminal, G.; Sarra, M.; Novotný, Čeněk

    2010-01-01

    Roč. 42, č. 12 (2010), s. 2087-2093 ISSN 0038-0717 R&D Projects: GA AV ČR IAAX00200901; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : White-rot fungi * pah * soil bacteria Subject RIV: EE - Microbiology, Virology Impact factor: 3.242, year: 2010

  18. Using slow-release permanganate candles to remediate PAH-contaminated water.

    Science.gov (United States)

    Rauscher, Lindy; Sakulthaew, Chainarong; Comfort, Steve

    2012-11-30

    Surface waters impacted by urban runoff in metropolitan areas are becoming increasingly contaminated with polycyclic aromatic hydrocarbons (PAHs). Slow-release oxidant candles (paraffin-KMnO(4)) are a relatively new technology being used to treat contaminated groundwater and could potentially be used to treat urban runoff. Given that these candles only release permanganate when submerged, the ephemeral nature of runoff events would influence when the permanganate is released for treating PAHs. Our objective was to determine if slow-release permanganate candles could be used to degrade and mineralize PAHs. Batch experiments quantified PAH degradation rates in the presence of the oxidant candles. Results showed most of the 16 PAHs tested were degraded within 2-4 h. Using (14)C-labled phenanthrene and benzo(a)pyrene, we demonstrated that the wax matrix of the candle initially adsorbs the PAH, but then releases the PAH back into solution as transformed, more water soluble products. While permanganate was unable to mineralize the PAHs (i.e., convert to CO(2)), we found that the permanganate-treated PAHs were much more biodegradable in soil microcosms. To test the concept of using candles to treat PAHs in multiple runoff events, we used a flow-through system where urban runoff water was pumped over a miniature candle in repetitive wet-dry, 24-h cycles. Results showed that the candle was robust in removing PAHs by repeatedly releasing permanganate and degrading the PAHs. These results provide proof-of-concept that permanganate candles could potentially provide a low-cost, low-maintenance approach to remediating PAH-contaminated water. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. In situ treatment of soil contaminated with PAHs and phenols

    International Nuclear Information System (INIS)

    Sresty, G.; Dev, H.; Chang, J.; Houthoofd, J.

    1992-01-01

    The wood preserving industry uses more pesticides than any other industry worldwide. The major chemicals used are creosote, pentachlorophenol, and CCA (copper, chrome and arsenate). It is reported that between 415 to 550 creosoting operations within the United States consume approximately 454,000 metric tons of creosote annually. When properly used and disposed off, creosote does not appear to significantly threaten human health. However, due to improper disposal and spillage at old facilities, creosote and other wood preserving chemicals have found their way into surface soils. Active wood preserving sites generate an estimated 840 to 1530 dry metric tons of hazardous contaminated sludge annually, which is classified as KOOL. Creosote, obtained from coal tar, contains a large number of chemical components. The three main families of compounds represented in creosote are: polycyclic aromatic hydrocarbons (PAH), phenolic, and heterocyclic compounds. Creosote is composed of approximately 85% PAHs, 10% phenolic compounds and 5% heterocyclic compounds. There are approximately a total of 17 PAHs present in creosote. The four most prominent compounds belonging to the PAH family are naphthalene, 2-methylnaphthalene, phenanthrene, and anthracene. These four compounds represent approximately 52% of the total PAHs present in creosote. There are approximately 12 different phenolic compounds present in creosote among which phenol is the most abundant, representing 20% of the total phenolics. In addition, the various isomers of cresol represent about 20% and pentachlorophenol (PCP) represents 10% of the total phenolics. There are approximately 13 different heterocyclic compounds are the most abundant, representing approximately 70% of the total heterocyclics. All of these compounds possess toxic properties and some of them, for example, PCP, when subjected to high temperature environments are suspected precursors in the formation of dioxins

  20. Generation of polycyclic aromatic hydrocarbons (PAH during woodworking operations

    Directory of Open Access Journals (Sweden)

    Evin Danisman Bruschweiler

    2012-10-01

    Full Text Available Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC. Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs. PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools.To determine if PAHs are generated from wood during common woodworking operations, PAHs concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n=30 were collected.Wood dust was generated using tree different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF, beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personnel sampler device during wood working operations. We measured 21 PAHs concentrations in wood dust samples by capillary gas chromatographic-ion trap mass spectrometric analysis (GC-MS.Total PAH concentrations in wood dust varied greatly (0.24 – 7.95 ppm with the lowest being in MDF dust and the highest in wood melamine dust. Personal exposures to PAHs observed were between 37.5-119.8 ng m-3 among workers during wood working operations.Our results suggest that PAH exposures during woodworking operation are present and hence could play a role in the mechanism of cancer induction related to wood dust exposure.

  1. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan.

    Science.gov (United States)

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Phytoremediation mechanisms for polycyclic aromatic hydrocarbons removing from contaminated soils

    Directory of Open Access Journals (Sweden)

    Alagić Slađana Č.

    2015-01-01

    Full Text Available Phytoremediation of polycyclic aromatic hydrocarbons (PAHs from soil aims to degrade them into less toxic/non toxic compounds and limit their further movement by sequestration and accumulation into the vacuoles. Lipophilic organic compounds such as PAHs are bound strongly to the epidermis of the root tissue and are rarely translocated within plant. There are no reports in the literature data of PAHs being completely mineralized by plants. There is little evidence to suggest that PAHs accumulate to significant degree in plants, but there still is a lot of evidences on the ability of various plant species (most often grasses and legumes, to degrade and dissipate these dangerous contaminants. The primary mechanism controlling the dissipation of PAHs is rhizosphere microbial degradation where microbes use PAHs molecules as carbon substrates for growth, which in final, leads to the breakdown or total mineralization of the contaminants. The process is usually augmented by the excretion of root exudates (e.g., sugars, alcohols, acids, enzymes, and the build-up of organic carbon in the soil, so the proper selection of particular plant species represents a critical management decision for PAHs phytoremediation. These facts favor the rhyzoremediation as the best solution for sites contaminated with PAHs.

  3. Bioremediation of hydrocarbon contaminated-oil field drill-cuttings ...

    African Journals Online (AJOL)

    The effectiveness of 2 bacterial isolates (Bacillus subtilis and Pseudomonas aeruginosa) in the restoration of oil-field drill-cuttings contaminated with polycyclic aromatic hydrocarbons (PAHs) was studied. A mixture of 4 kg of the drill-cuttings and 0.67 kg of top-soil were charged into triplicate plastic reactors labeled A1 to A3, ...

  4. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  5. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    International Nuclear Information System (INIS)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe 3+ > Al 3+ > Cu 2+ >> Ca 2+ > K + > Na + , which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na + -smectite and K + -smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe 3+ , Al 3+ , and Cu 2+ are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O 2 − · , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation

  6. 75 FR 8937 - Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...

    Science.gov (United States)

    2010-02-26

    ... Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures AGENCY... Aromatic Hydrocarbon (PAH) Mixtures'' (EPA/635/R-08/012A). The draft document was prepared by the National... 27, 2010. The listening session on the draft document for PAH mixtures will be held on April 7, 2010...

  7. Ca2+ promoted the low transformation efficiency of plasmid DNA exposed to PAH contaminants.

    Directory of Open Access Journals (Sweden)

    Fuxing Kang

    Full Text Available The effects of interactions between genetic materials and polycyclic aromatic hydrocarbons (PAHs on gene expression in the extracellular environment remain to be elucidated and little information is currently available on the effect of ionic strength on the transformation of plasmid DNA exposed to PAHs. Phenanthrene and pyrene were used as representative PAHs to evaluate the transformation of plasmid DNA after PAH exposure and to determine the role of Ca(2+ during the transformation. Plasmid DNA exposed to the test PAHs demonstrated low transformation efficiency. In the absence of PAHs, the transformation efficiency was 4.7 log units; however, the efficiency decreased to 3.72-3.14 log units with phenanthrene/pyrene exposures of 50 µg · L(-1. The addition of Ca(2+ enhanced the low transformation efficiency of DNA exposed to PAHs. Based on the co-sorption of Ca(2+ and phenanthrene/pyrene by DNA, we employed Fourier-transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and mass spectrometry (MS to determine the mechanisms involved in PAH-induced DNA transformation. The observed low transformation efficiency of DNA exposed to either phenanthrene or pyrene can be attributed to a broken hydrogen bond in the double helix caused by planar PAHs. Added Ca(2+ formed strong electrovalent bonds with "-POO(--" groups in the DNA, weakening the interaction between PAHs and DNA based on weak molecular forces. This decreased the damage of PAHs to hydrogen bonds in double-stranded DNA by isolating DNA molecules from PAHs and consequently enhanced the transformation efficiency of DNA exposed to PAH contaminants. The findings provide insight into the effects of anthropogenic trace PAHs on DNA transfer in natural environments.

  8. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light.

    Science.gov (United States)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-04-28

    Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe(3+)>Al(3+)>Cu(2+)>Ca(2+)>K(+)>Na(+), which is consistent with the binding energy of cation-π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation-π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na(+)-smectite and K(+)-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe(3+), Al(3+), and Cu(2+) are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2(-) , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Using slow-release permanganate candles to remediate PAH-contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, Lindy, E-mail: purplerauscher@neb.rr.com [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Sakulthaew, Chainarong, E-mail: chainarong@huskers.unl.edu [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Department of Veterinary Technology, Kasetsart University, Bangkok 10900 (Thailand); Comfort, Steve, E-mail: scomfort1@unl.edu [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer We quantified the efficacy of slow-release permanganate-paraffin candles to degrade and mineralize PAHs. Black-Right-Pointing-Pointer {sup 14}C-labeled PAHs were used to quantify both adsorption and transformation. Black-Right-Pointing-Pointer Permanganate-treated PAHs were more biodegradable in soil microcosms. Black-Right-Pointing-Pointer A flow-through candle system was used to quantify PAH removal in urban runoff. - Abstract: Surface waters impacted by urban runoff in metropolitan areas are becoming increasingly contaminated with polycyclic aromatic hydrocarbons (PAHs). Slow-release oxidant candles (paraffin-KMnO{sub 4}) are a relatively new technology being used to treat contaminated groundwater and could potentially be used to treat urban runoff. Given that these candles only release permanganate when submerged, the ephemeral nature of runoff events would influence when the permanganate is released for treating PAHs. Our objective was to determine if slow-release permanganate candles could be used to degrade and mineralize PAHs. Batch experiments quantified PAH degradation rates in the presence of the oxidant candles. Results showed most of the 16 PAHs tested were degraded within 2-4 h. Using {sup 14}C-labled phenanthrene and benzo(a)pyrene, we demonstrated that the wax matrix of the candle initially adsorbs the PAH, but then releases the PAH back into solution as transformed, more water soluble products. While permanganate was unable to mineralize the PAHs (i.e., convert to CO{sub 2}), we found that the permanganate-treated PAHs were much more biodegradable in soil microcosms. To test the concept of using candles to treat PAHs in multiple runoff events, we used a flow-through system where urban runoff water was pumped over a miniature candle in repetitive wet-dry, 24-h cycles. Results showed that the candle was robust in removing PAHs by repeatedly releasing permanganate and degrading the PAHs. These results provide

  10. Using slow-release permanganate candles to remediate PAH-contaminated water

    International Nuclear Information System (INIS)

    Rauscher, Lindy; Sakulthaew, Chainarong; Comfort, Steve

    2012-01-01

    Highlights: ► We quantified the efficacy of slow-release permanganate-paraffin candles to degrade and mineralize PAHs. ► 14 C-labeled PAHs were used to quantify both adsorption and transformation. ► Permanganate-treated PAHs were more biodegradable in soil microcosms. ► A flow-through candle system was used to quantify PAH removal in urban runoff. - Abstract: Surface waters impacted by urban runoff in metropolitan areas are becoming increasingly contaminated with polycyclic aromatic hydrocarbons (PAHs). Slow-release oxidant candles (paraffin–KMnO 4 ) are a relatively new technology being used to treat contaminated groundwater and could potentially be used to treat urban runoff. Given that these candles only release permanganate when submerged, the ephemeral nature of runoff events would influence when the permanganate is released for treating PAHs. Our objective was to determine if slow-release permanganate candles could be used to degrade and mineralize PAHs. Batch experiments quantified PAH degradation rates in the presence of the oxidant candles. Results showed most of the 16 PAHs tested were degraded within 2–4 h. Using 14 C-labled phenanthrene and benzo(a)pyrene, we demonstrated that the wax matrix of the candle initially adsorbs the PAH, but then releases the PAH back into solution as transformed, more water soluble products. While permanganate was unable to mineralize the PAHs (i.e., convert to CO 2 ), we found that the permanganate-treated PAHs were much more biodegradable in soil microcosms. To test the concept of using candles to treat PAHs in multiple runoff events, we used a flow-through system where urban runoff water was pumped over a miniature candle in repetitive wet–dry, 24-h cycles. Results showed that the candle was robust in removing PAHs by repeatedly releasing permanganate and degrading the PAHs. These results provide proof-of-concept that permanganate candles could potentially provide a low-cost, low-maintenance approach to

  11. Could the Health Decline of Prehistoric California Indians be Related to Exposure to Polycyclic Aromatic Hydrocarbons (PAHs) from Natural Bitumen?

    Science.gov (United States)

    Sholts, Sabrina B.; Erlandson, Jon M.; Gjerdrum, Thor; Westerholm, Roger

    2011-01-01

    Background: The negative health effects of polycyclic aromatic hydrocarbons (PAHs) are well established for modern human populations but have so far not been studied in prehistoric contexts. PAHs are the main component of fossil bitumen, a naturally occurring material used by past societies such as the Chumash Indians in California as an adhesive, as a waterproofing agent, and for medicinal purposes. The rich archaeological and ethnohistoric record of the coastal Chumash suggests that they were exposed to multiple uptake pathways of bituminous PAHs, including direct contact, fume inhalation, and oral uptake from contaminated water and seafood. Objectives: We investigated the possibility that PAHs from natural bitumen compromised the health of the prehistoric Chumash Indians in California. Conclusions: Exposure of the ancient Chumash Indians to toxic PAHs appears to have gradually increased across a period of 7,500 years because of an increased use of bitumen in the Chumash technology, together with a dietary shift toward PAH-contaminated marine food. Skeletal analysis indicates a concurrent population health decline that may be related to PAH uptake. However, establishing such a connection is virtually impossible without knowing the actual exposure levels experienced by these populations. Future methodological research may provide techniques for determining PAH levels in ancient skeletal material, which would open new avenues for research on the health of prehistoric populations and on the long-term effects of human PAH exposure. PMID:21596651

  12. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil.

    Science.gov (United States)

    Kuppusamy, Saranya; Thavamani, Palanisami; Megharaj, Mallavarapu; Lee, Yong Bok; Naidu, Ravi

    2016-11-01

    An isolate of Cupriavidus (strain MTS-7) was identified from a long-term PAHs and heavy metals mixed contaminated soil with the potential to biodegrade both LMW and HMW PAHs with added unique traits of acid and alkali tolerance, heavy metal tolerance, self-nutrient assimilation by N fixation and P solubilization. This strain completely degraded the model 3 (150 mg L(-1) Phe), 4 (150 mg L(-1) Pyr) and 5 (50 mg L(-1) BaP) ring PAHs in 4, 20 and 30 days, respectively. It could mineralize 90-100% of PAHs (200 mg L(-1) of Phe and Pyr) within 15 days across pH ranging from 5 to 8 and even in the presence of toxic metal contaminations. During biodegradation, the minimum inhibitory concentrations were 5 (Cu(2+)) and 3 (Cd(2+), Pb(2+), Zn(2+)) mg L(-1) of the potentially bioavailable metal ions and over 17 mg L(-1) metal levels was lethal for the microbe. Further, it could fix 217-274 μg mL(-1) of N and solubilize 79-135 μg mL(-1) of P while PAHs degradation. MTS-7 as a superior candidate could be thus used in the enhanced bioaugmentation and/or phytoremediation of long-term mixed contaminated sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Release of polyaromatic hydrocarbons from coal tar contaminated soils

    International Nuclear Information System (INIS)

    Priddy, N.D.; Lee, L.S.

    1996-01-01

    A variety of process wastes generated from manufactured gas production (MGP) have contaminated soils and groundwater at production and disposal sites. Coal tar, consisting of a complex mixture of hydrocarbons present as a nonaqueous phase liquid, makes up a large portion of MGP wastes. Of the compounds in coal tar, polyaromatic hydrocarbons (PAHs) are the major constituents of environmental concern due to their potential mutagenic and carcinogenic hazards. Characterization of the release of PAHs from the waste-soil matrix is essential to quantifying long-term environmental impacts in soils and groundwater. Currently, conservative estimates for the release of PAHs to the groundwater are made assuming equilibrium conditions and using relationships derived from artificially contaminated soils. Preliminary work suggests that aged coal tar contaminated soils have much lower rates of desorption and a greater affinity for retaining organic contaminants. To obtain better estimates of desorption rates, the release of PAHs from a coal tar soil was investigated using a flow-interruption, miscible displacement technique. Methanol/water solutions were employed to enhance PAH concentrations above limits of detection. For each methanol/water solution employed, a series of flow interrupts of varying times was invoked. Release rates from each methanol/water solution were estimated from the increase in concentration with duration of flow interruption. Aqueous-phase release rates were then estimated by extrapolation using a log-linear cosolvency model

  14. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L.

    Science.gov (United States)

    Yang, Chuanjie; Zhou, Qixing; Wei, Shuhe; Hu, Yahu; Bao, Yanyu

    2011-09-01

    A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.

  15. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.

    Science.gov (United States)

    Ewa, Błaszczyk; Danuta, Mielżyńska-Švach

    2017-08-01

    Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.

  16. Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons (PAHs) in Nansi Lake

    Science.gov (United States)

    Zhang, Guizhai; Diao, Youjiang

    2018-06-01

    Based on field data of polycyclic aromatic hydrocarbons (PAHs) in water and sediment in Nansi Lake. The concentrations and the partitioning characteristic of PAHs in the water and sediment were studied. The lgKd of high molecular weight PAHs were higher than the low molecular weight PAHs. The most of PAHs Kd values were negligible correlated with TOC, soluble salt, clay and pH of the sediment in Nansi Lake.

  17. THE INFRARED SPECTRA OF VERY LARGE IRREGULAR POLYCYCLIC AROMATIC HYDROCARBONS (PAHs): OBSERVATIONAL PROBES OF ASTRONOMICAL PAH GEOMETRY, SIZE, AND CHARGE

    International Nuclear Information System (INIS)

    Bauschlicher, Charles W.; Peeters, Els; Allamandola, Louis J.

    2009-01-01

    The mid-infrared (IR) spectra of six large, irregular polycyclic aromatic hydrocarbons (PAHs) with formulae (C 84 H 24 -C 120 H 36 ) have been computed using density functional theory (DFT). Trends in the dominant band positions and intensities are compared to those of large, compact PAHs as a function of geometry, size, and charge. Irregular edge moieties that are common in terrestrial PAHs, such as bay regions and rings with quartet hydrogens, are shown to be uncommon in astronomical PAHs. As for all PAHs comprised solely of C and H reported to date, mid-IR emission from irregular PAHs fails to produce a strong CC str band at 6.2 μm, the position characteristic of the important, class A astronomical PAH spectra. Earlier studies showed that inclusion of nitrogen within a PAH shifts this to 6.2 μm for PAH cations. Here we show that this band shifts to 6.3 μm in nitrogenated PAH anions, close to the position of the CC stretch in class B astronomical PAH spectra. Thus, nitrogenated PAHs may be important in all sources and the peak position of the CC stretch near 6.2 μm appears to directly reflect the PAH cation to anion ratio. Large irregular PAHs exhibit features at 7.8 μm but lack them near 8.6 μm. Hence, the 7.7 μm astronomical feature is produced by a mixture of small and large PAHs while the 8.6 μm band can only be produced by large compact PAHs. As with the CC str , the position and profile of these bands reflect the PAH cation to anion ratio.

  18. Assessing the polycyclic aromatic hydrocarbon (PAH) pollution of urban stormwater runoff: a dynamic modeling approach.

    Science.gov (United States)

    Zheng, Yi; Lin, Zhongrong; Li, Hao; Ge, Yan; Zhang, Wei; Ye, Youbin; Wang, Xuejun

    2014-05-15

    Urban stormwater runoff delivers a significant amount of polycyclic aromatic hydrocarbons (PAHs), mostly of atmospheric origin, to receiving water bodies. The PAH pollution of urban stormwater runoff poses serious risk to aquatic life and human health, but has been overlooked by environmental modeling and management. This study proposed a dynamic modeling approach for assessing the PAH pollution and its associated environmental risk. A variable time-step model was developed to simulate the continuous cycles of pollutant buildup and washoff. To reflect the complex interaction among different environmental media (i.e. atmosphere, dust and stormwater), the dependence of the pollution level on antecedent weather conditions was investigated and embodied in the model. Long-term simulations of the model can be efficiently performed, and probabilistic features of the pollution level and its risk can be easily determined. The applicability of this approach and its value to environmental management was demonstrated by a case study in Beijing, China. The results showed that Beijing's PAH pollution of road runoff is relatively severe, and its associated risk exhibits notable seasonal variation. The current sweeping practice is effective in mitigating the pollution, but the effectiveness is both weather-dependent and compound-dependent. The proposed modeling approach can help identify critical timing and major pollutants for monitoring, assessing and controlling efforts to be focused on. The approach is extendable to other urban areas, as well as to other contaminants with similar fate and transport as PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India.

    Science.gov (United States)

    Suman, Swapnil; Sinha, Alok; Tarafdar, Abhrajyoti

    2016-03-01

    Present study was carried out to assess and understand potential health risk and to examine the impact of vehicular traffic on the contamination status of urban traffic soils in Dhanbad City with respect to polycyclic aromatic hydrocarbons (PAHs). Eight urban traffic sites and two control/rural site surface soils were analyzed and the contents of 13 priority PAHs was determined. Total PAH concentration at traffic sites ranged from 1.019 μg g(-1) to 10.856 μg g(-1) with an average value of 3.488 μg g(-1). At control/rural site, average concentration of total PAHs was found to be 0.640 μg g(-1). PAH pattern was dominated by four- and five-ring PAHs (contributing >50% to the total PAHs) at all the eight traffic sites. On the other hand, rural soil showed a predominance of low molecular weight three-ring PAHs (contributing >30% to the total PAHs). Indeno[123-cd]pyrene/benz[ghi]perylene (IP/BgP) ratio indicated that PAH load at the traffic sites is predominated by the gasoline-driven vehicles. The ratio of Ant/(Ant+Phe) varied from 0.03 to 0.44, averaging 0.10; Fla/(Fla+Pyr) from 0.39 to 0.954, averaging 0.52; BaA/(BaA+Chry) from 0.156 to 0.60, averaging 0.44; and IP/(IP+BgP) from 0.176 to 0.811, averaging 0.286. The results indicated that vehicular emission was the major source for PAHs contamination with moderate effect of coal combustion and biomass combustion. Carcinogenic potency of PAH load in traffic soil was nearly 6.15 times higher as compared to the control/rural soil. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Distribution, origin and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan

    International Nuclear Information System (INIS)

    Chen, C.F.; Kao, C.M.; Dong, C.D.; Chen, C.W.

    2009-01-01

    The European Union and the United States Environmental Protection Agency have placed polycyclic aromatic hydrocarbons (PAHs) on a priority pollutant list because they represent the largest group of compounds that are mutagenic, carcinogenic and teratogenic and could pose potential threat to the ecological environment. There are both natural and anthropogenic sources of PAHs, and their effects can be both widespread and permanent. This study investigated the distribution of PAHs in sediments collected at the river outfalls, fishing ports, shipyards and industrial docks of Kaohsiung Harbour in Taiwan. Sediment samples from 12 locations were collected in 2006 and characterized for 17 different PAHs, organic matter and grain size. The study revealed that the contaminant sources for the PAH found at the steel industrial docks were different from the other zones of the Kaohsiung Harbour. Molecular indices suggest that coal combustion may be the possible source of PAHs in the industrial dock, while petroleum combustion may be the source in the other zones. In comparison with the sediment quality guidelines of the United States, the levels of PAHs at the industrial docs of Kaohsiung Harbour exceeded the effects range low (ERL), and could therefore cause acute biological damage. However, the lower levels of PAHs at the other zones would not cause adverse biological effects. The study suggests that industrial activities played important roles in the leaching of PAHs into the environment, and the results could help develop strategies for sediment remediation. 38 refs., 3 tabs., 4 figs

  1. Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants.

    Science.gov (United States)

    Portet-Koltalo, F; Ammami, M T; Benamar, A; Wang, H; Le Derf, F; Duclairoir-Poc, C

    2013-10-15

    Polycyclic aromatic hydrocarbons (PAHs) can be preponderant in contaminated sediments and understanding how they are sorbed in the different mineral and organic fractions of the sediment is critical for effective removal strategies. For this purpose, a mixture of seven PAHs was studied at the sediment/water interface and sorption isotherms were obtained. The influence of various factors on the sorption behavior of PAHs was evaluated, such as the nature of minerals, pH, ionic strength and amount of organic matter. Afterwards, the release of PAHs from the sediment by surfactants was investigated. The effectiveness of sodium dodecyl sulfate (SDS) was compared to natural biosurfactants, of cyclolipopeptidic type (amphisin and viscosin-like mixture), produced by two Pseudomonas fluorescens strains. The desorption of PAHs (from naphthalene to pyrene), from the highly retentive kaolinite fraction, could be favored by adding SDS or amphisin, but viscosin-like biosurfactants were only effective for 2-3 ring PAHs desorption (naphthalene to phenanthrene). Moreover, while SDS favors the release of all the target PAHs from a model sediment containing organic matter, the two biosurfactants tested were only effective to desorb the lowest molecular weight PAHs (naphthalene to fluorene). Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Microbial degradation of polycyclic aromatic hydrocarbons (PAHs). Pt. 1

    International Nuclear Information System (INIS)

    Eichler, B.; Bryniok, D.; Vorbeck, C.; Lutz, M.; Ackermann, B.; Freier-Schroeder, D.; Knackmuss, H.J.

    1992-01-01

    Productive degradation of the higher molecular PAHs benz(a)anthracene (four rings), benzo(a)pyrene and benzo(k)fluoranthene (five rings) through pure bacterial cultures is demonstrated in this paper for the first time. Consequently, a degradation potential for lower and higher molecular polycyclic aromatics up to five rings exists both in the ground of the fromer coking site and in the ground of the former gas works of Stuttgart. Further samples from contaminated soils, coking waste water and sediments showed similar results. This suggests that the bacterial flora present in the soil itself can be successfully used to clean up contaminated ground. (orig.) [de

  3. Quantification of small-scale variation in the size and composition of phenanthrene-degrader populations and PAH contaminants in traffic-impacted topsoil

    DEFF Research Database (Denmark)

    Johnsen, Anders R; Styrishave, Bjarne; Aamand, Jens

    2014-01-01

    Small-scale colocalisation of microbial polycyclic aromatic hydrocarbon (PAH) degraders and PAHs in contaminated soil is a prerequisite for efficient biodegradation of the PAHs. We therefore tested the hypothesis that phenanthrene-degrading bacteria are colocalised with PAHs at the millimetre...... densities of PAH degraders at the millimetre scale indicate that PAH persistence may not be caused by local lack of degrader cells. To the best of our knowledge, this is the first time that either MPN of pollutant degraders, qPCR of functional genes, CFU of heterotrophic micro-organisms, or the content...

  4. Potential of vetiver (vetiveria zizanioides l.) grass in removing selected pahs from diesel contaminated soil

    International Nuclear Information System (INIS)

    Nisa, W.U.; Rashid, A.

    2015-01-01

    Phytoremediation has been renowned as an encouraging technology for the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils, little is known about how plant species behave during the process of PAH phytoremediation. Therefore, the aim of this study was to investigate the effectiveness of vetiver (Vetiveria zizanioides L.) plant in PAH phytoremediation and extraction potential of Vetiveria zizanioides for selected PAHs from the diesel contaminated soil. The field soil samples were spiked with varying concentrations (0.5% and 1%) of diesel and used for pot experiment which was conducted in greenhouse. Vetiver grass was used as experimental plant. Physico-chemical analysis of soil was performed before and after the experiment. Concentration of selected PAHs i.e. phenanthrene, pyrene and benzo(a)pyrene in soil was determined using HPLC. Plant parameters such as root/shoot length and dry mass were compared after harvest. Concentrations of PAHs were also determined in plant material and in soils after harvesting. Result showed that initial concentration of phenanthrene was significantly different from final concentration in treatments in which soil was spiked with diesel. Initial and final concentration of pyrene in soil was also significantly different from each other in two treatments in which soil was spiked with 1% diesel. Pyrene concentration was significantly different in roots and shoots of plants while benzo(a)pyrene concentration in treatments in which soil was spiked with diesel was also significantly different from roots and shoots. Phenanthrene was less extracted by the plant in all the treatments and it was present in higher concentration in soil as compared to plant. Our results indicate that vetiver grass has effectively removed PAHs from soil consequently a significantly higher root and shoot uptake of PAHs was observed than control treatments. Study concludes Vetiveria zizanioides as potentially promising plant specie for the removal

  5. Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphere and myco-rhizosphere

    International Nuclear Information System (INIS)

    Leyval, C.; Beguiristain, T.; Corgie, S.; Joner, E.

    2005-01-01

    Organic pollutants such as polycyclic aromatic hydrocarbons (PAH) can reach high concentrations in soils due to man-made pollution related to industrial, agricultural or urban activities. Such concentrations can reach toxic values and create major environmental and health problems. One of the first entry point of pollutants in plant ecosystems is the rhizosphere, defined as the soil under the influence of roots. In the rhizosphere, the plant release root exudates, feeding soil microorganisms, and take up water and nutrients. Among the rhizosphere inhabitants, arbuscular mycorrhizal (AM) fungi are ubiquitous root symbiotic fungi, contributing to plant growth and plant nutrition. In PAH-polluted soils, biodegradation of PAH increases, which is attributed to increased microbial activity in the rhizosphere..We studied the contribution of the rhizosphere of mycorrhizal and non-mycorrhizal plants to the biodegradation of PAH in the rhizosphere, taking into account microbial community structure. Different experiments were performed with industrial contaminated soils and PAH-spiked soils, in pot cultures as well as compartmented devices allowing to analyze rhizosphere processes in consecutive sections as a function of distance to roots. Clover and ryegrass, inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae were used.. After different time periods, plants were harvested, biomass and mycorrhizal root colonization were estimated. Microbial Density of microbial heterotrophs and of degrading bacteria was estimated by MPN techniques in micro-plates. Microbial community structure was estimated by DNA extraction from the rhizosphere, amplification by PCR and analysed by TGGE (temperature gradient gel electrophoresis), or by PLFA (phospholipid fatty acid analysis). PAH in soil were extracted by Soxhlet and analysed by GC-MS. We showed that the concentration of PAH increased with the distance to roots (Corgie et al, 2003) and was lower in the myco

  6. Polycyclic aromatic hydrocarbons (PAHs) in Austin sediments after a ban on pavement sealers

    Energy Technology Data Exchange (ETDEWEB)

    DeMott, R.P.; Gauthier, T.D.; Wiersema, J.M.; Crenson, G. [ENVIRON International, Tampa, FL (USA)

    2010-07-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations were measured in stream sediments collected before and after a municipal ban on the use of coal-tar-based pavement sealers in Austin, Texas. Samples were collected in October 2005, prior to the ban, and again in April, 2008, approximately 2 years after the ban. Differences in total PAH concentrations between samples collected before and after the ban show no net change in PAH levels in Austin stream sediments. Results of hydrocarbon fingerprinting reveal subtle differences in PAH profiles that appear to reflect the effects of weathering rather than a change in PAH sources.

  7. Polycyclic aromatic hydrocarbons (PAHS) contamination in aquatic environments adjacent to areas of multiple uses: to whom is that environmental liability?; Contaminacao por hidrocarbonetos aromaticos policiclicos (HPAS) em ambientes aquaticos adjacentes a areas de multiplos usos: a quem corresponde esse passivo ambiental?

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marina R.D.; Mirlean, Nicolai; Machado, Maria Isabel C.S. [Fundacao Universidade Federal do Rio Grande (FURG), RS (Brazil); Caramao, Elina B. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2004-07-01

    Contamination often can be related to different activities, especially in areas with multiple uses. In these cases, studies are necessary to correctly evaluate the origin of contaminants. Polycyclic aromatic hydrocarbons (PAHs) are organic compounds that have two main sources: pyrolytic and petrogenic processes. In Rio Grande City, located at the margins of Patos Lagoon estuary, south Brazil, there are several navigation and industrial activities. This work has the objective to determinate the origins of PAHs and to evaluate the contribution of different sources to the aquatic contamination. The sampling stations were classified according to three main types: industrial effluent, sewage and runoff. We collected sediments from the bottom of effluent channels and from the respective estuarine environments. The material was sieved (0,063 mm), dried, extracted in soxhlet apparatus with methylene chloride and GC-MS analyzed. The results showed that pyrolytic compounds were predominant, indicating the contribution of diffuse sources. This type of study was successful in relating PAHs with their sources, confirming the role of urban and other industries activities in this case of contamination, superimposed to the midstream e downstream activities of petroleum industry. (author)

  8. Surfactant-enhanced bioremediation of PAH- and PCB-contaminated soils

    International Nuclear Information System (INIS)

    Ghosh, M.M.; Yeom, I.T.; Shi, Z.; Cox, C.D.; Robinson, K.G.

    1995-01-01

    The role of surfactants in the desorption of soil-bound polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) was investigated. The solubilization of individual PAHs in an extract of a weathered, coal tar-contaminated soil containing a mixture of PAHs and other petroleum derivatives was found to be significantly less than that for pure compounds. Batch soil washing with Triton X-100 (a commercial, nonionic alkyl phenol ethoxylate) was found to increase the effective diffusion rate of PAHs from the contaminated soil by four orders of magnitude compared to that obtained by gas purging when the results were analyzed using a radial diffusion model. At concentrations of up to 24 times its critical micelle concentration (CMC), Triton X-100 did not seem to enhance hydrocarbon degradation in the coal tar-contaminated soil; however, the biosurfactant rhamnolipid R1, at a concentration of 50x CMC, increased the rate of mineralization of 4,4'-chlorinated biphenyl mobilized from a laboratory-contaminated soil by more than 60 times

  9. Ranking harbours in the Maritime provinces of Canada for potential to contaminate American lobster (Homarus americanus) with polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Prouse, N.J. [Department of Fisheries and Oceans, Halifax, NS (Canada). Biological Sciences Branch

    1997-05-01

    The sources of polycyclic aromatic hydrocarbon (PAH) contamination within selected harbors in the Maritime provinces of Canada were evaluated by assessing point sources, population, industrial and commercial activity, international and domestic ship traffic, and the number of commercial fishing vessels. Results showed that Sydney ranked as the highest potential for PAH contamination. Ranking of the other Maritime harbors was also presented. The lobster contamination with PAHs was reviewed.

  10. Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach.

    Science.gov (United States)

    Duan, Luchun; Naidu, Ravi; Thavamani, Palanisami; Meaklim, Jean; Megharaj, Mallavarapu

    2015-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are a family of contaminants that consist of two or more aromatic rings fused together. Soils contaminated with PAHs pose significant risk to human and ecological health. Over the last 50 years, significant research has been directed towards the cleanup of PAH-contaminated soils to background level. However, this achieved only limited success especially with high molecular weight compounds. Notably, during the last 5-10 years, the approach to remediate PAH-contaminated soils has changed considerably. A risk-based prioritization of remediation interventions has become a valuable step in the management of contaminated sites. The hydrophobicity of PAHs underlines that their phase distribution in soil is strongly influenced by factors such as soil properties and ageing of PAHs within the soil. A risk-based approach recognizes that exposure and environmental effects of PAHs are not directly related to the commonly measured total chemical concentration. Thus, a bioavailability-based assessment using a combination of chemical analysis with toxicological assays and nonexhaustive extraction technique would serve as a valuable tool in risk-based approach for remediation of PAH-contaminated soils. In this paper, the fate and availability of PAHs in contaminated soils and their relevance to risk-based management of long-term contaminated soils are reviewed. This review may serve as guidance for the use of site-specific risk-based management methods.

  11. Treatment of PAH-contaminated soil using cement-activated persulfate.

    Science.gov (United States)

    Ma, Fujun; Zhang, Qian; Wu, Bin; Peng, Changsheng; Li, Ning; Li, Fasheng; Gu, Qingbao

    2018-01-01

    In this study, a novel method for the treatment of polycyclic aromatic hydrocarbon -contaminated soil using cement-activated persulfate was developed. The removal of PAHs in soil rose with increasing initial persulfate concentration, initial Portland cement (PC) concentration, and oxidation reaction time. At an initial persulfate and PC concentration of 19.20 mmol/kg and 10% of soil weight and a reaction time of 2 h, the removal rate of PAHs reached 57.3%. Residual PAHs were mainly adsorbed within the soil granules and thus became less available. The mechanism of PC facilitating the oxidation reaction was that PC addition can increase the pH and temperature of the system. When the soil was stabilized/solidified by 10% of PC, the leaching concentration of PAHs and TOC was significantly higher than that leached from untreated soil. Persulfate oxidation decreased the leaching concentration of PAHs but increased the leaching concentration of TOC in solidification/stabilization products. The addition of activated carbon can decrease the leaching concentrations of both PAHs and TOC. Freeze-thaw durability tests revealed that the leachability of PAHs was not affected by freeze-thaw cycles. The unconfined compressive strength (UCS) of treated soil samples after 12 freeze-thaw cycles was only 49.0% of that curing for 52 days, but the UCS was still > 1 MPa. The treated soil samples can resist disintegration during the process of freeze-thaw cycles.

  12. Behaviour of polycyclic aromatic hydrocarbons (PAH) in soils under freeze-thaw cycles

    Science.gov (United States)

    Zschocke, Anne; Schönborn, Maike; Eschenbach, Annette

    2010-05-01

    The arctic region will be one of the most affected regions by climate change due to the predicted temperature rise. As a result of anthropogenic actions as mining, exploration and refining as well as atmospheric transport pollutions can be found in arctic soils. Therefore questions on the behaviour of organic contaminants in permafrost influenced soils are of high relevance. First investigations showed that permafrost can act as a semi-permeable layer for PAH (Curtosi et al., 2007). Therefore it can be assumed that global warming could result in a mobilization of PAH in these permafrost influenced soils. On the other hand a low but detectable mineralization of organic hydrocarbons by microorganisms under repeated freeze-thaw cycles was analysed (Börresen et al. 2007, Eschenbach et al. 2000). In this study the behaviour and distribution of PAH under freezing and periodically freezing and thawing were investigated in laboratory column experiments with spiked soil materials. Two soil materials which are typical for artic regions, a organic matter containing melt water sand and a well decomposed peat, were homogeneously spiked with a composite of a crude oil and the PAH anthracene and benzo(a)pyrene. After 14days preincubation time the soil material was filled in the laboratory columns (40cm high and 10 cm in diameter). Based on studies by Chuvilin et al. (2001) the impact of freezing of the upper third of the column from the surface downwards was examined. The impact of freezing was tested in two different approaches the first one with a single freezing step and the second one with a fourfold repeated cycle of freezing and thawing which takes about 6 or 7 days each. The experimental design and very first results will be shown and discussed. In some experiments with the peat a higher concentration of anthracene and benzo(a)pyrene could be detected below the freezing front in the unfrozen part of the column. Whereas the concentration of PAH had slightly decreased in

  13. Migration of polycyclic aromatic hydrocarbons (PAHs) in urban treatment sludge to the air during PAH removal applications.

    Science.gov (United States)

    Karaca, Gizem; Cindoruk, S Siddik; Tasdemir, Yücel

    2014-05-01

    In the present study, the amounts of polycylic aromatic hydrocarbons (PAHs) penetrating into air during PAH removal applications from the urban treatment sludge were investigated. The effects of the temperature, photocatalyst type, and dose on the PAH removal efficiencies and PAH evaporation were explained. The sludge samples were taken from an urban wastewater treatment plant located in the city of Bursa, with 585,000 equivalent population. The ultraviolet C (UV-C) light of 254 nm wavelength was used within the UV applications performed on a specially designed setup. Internal air of the setup was vacuumed through polyurethane foam (PUF) columns in order to collect the evaporated PAHs from the sludge during the PAH removal applications. All experiments were performed with three repetitions. The PAH concentrations were measured by gas chromatography-mass spectrometry (GC-MS). It was observed that the amounts of PAHs penetrating into the air were increased with increase of temperature, and more than 80% of PAHs migrated to the air consisted of 3-ring compounds during the UV and UV-diethylamine (DEA) experiments at 38 and 53 degrees C. It was determined that 40% decrease was ensured in sigma12 (total of 12) PAH amounts with UV application and 13% of PAHs in sludge penetrated into the air. In the UV-TiO2 applications, a maximum 80% of sigma12 PAH removal was obtained by adding 0.5% TiO2 of dry weight of sludge. The quantity of PAH penetrating into air did not exceed 15%. UV-TiO2 applications ensured high levels of PAH removal in the sludge and also reduced the quantity of PAH penetrating into the air. Within the scope of the samples added with DEA, there was no increase in PAH removal efficiencies and the penetration of PAHs into air was not decreased. In light of these data, it was concluded that UV-TiO2 application is the most suitable PAH removal alternative that restricts the convection of PAH pollution.

  14. Monitoring of polycyclic aromatic hydrocarbons (PAH) in food supplements containing botanicals and other ingredients on the Dutch market

    NARCIS (Netherlands)

    Martena, M.J.; Grutters, M.; Groot, de H.N.; Konings, E.J.M.; Rietjens, I.

    2011-01-01

    Food supplements can contain polycyclic aromatic hydrocarbons (PAH). The European Food Safety Authority (EFSA) has defined 16 priority PAH that are both genotoxic and carcinogenic and identified eight priority PAH (PAH8) or four of these (PAH4) as good indicators of the toxicity and occurrence of

  15. Ancient water bottle use and polycyclic aromatic hydrocarbon (PAH) exposure among California Indians: a prehistoric health risk assessment.

    Science.gov (United States)

    Sholts, Sabrina B; Smith, Kevin; Wallin, Cecilia; Ahmed, Trifa M; Wärmländer, Sebastian K T S

    2017-06-23

    Polycyclic aromatic hydrocarbons (PAHs) are the main toxic compounds in natural bitumen, a fossil material used by modern and ancient societies around the world. The adverse health effects of PAHs on modern humans are well established, but their health impacts on past populations are unclear. It has previously been suggested that a prehistoric health decline among the native people living on the California Channel Islands may have been related to PAH exposure. Here, we assess the potential health risks of PAH exposure from the use and manufacture of bitumen-coated water bottles by ancient California Indian societies. We replicated prehistoric bitumen-coated water bottles with traditional materials and techniques of California Indians, based on ethnographic and archaeological evidence. In order to estimate PAH exposure related to water bottle manufacture and use, we conducted controlled experiments to measure PAH contamination 1) in air during the manufacturing process and 2) in water and olive oil stored in a completed bottle for varying periods of time. Samples were analyzed with gas chromatography/mass spectrometry (GC/MS) for concentrations of the 16 PAHs identified by the US Environmental Protection Agency (EPA) as priority pollutants. Eight PAHs were detected in concentrations of 1-10 μg/m 3 in air during bottle production and 50-900 ng/L in water after 2 months of storage, ranging from two-ring (naphthalene and methylnaphthalene) to four-ring (fluoranthene) molecules. All 16 PAHs analyzed were detected in olive oil after 2 days (2 to 35 μg/kg), 2 weeks (3 to 66 μg/kg), and 2 months (5 to 140 μg/kg) of storage. For ancient California Indians, water stored in bitumen-coated water bottles was not a significant source of PAH exposure, but production of such bottles could have resulted in harmful airborne PAH exposure.

  16. Biodegradation, bioaccessibility, and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site

    DEFF Research Database (Denmark)

    Johnsen, A.R.; de Lipthay, J.R.; Reichenberg, F.

    2006-01-01

    Diffuse pollution of surface soil with polycyclic aromatic hydrocarbons (PAHs) is problematic in terms of the large areas and volumes of polluted soil. The levels and effects of diffuse PAH pollution at a motorway site were investigated. Surface soil was sampled with increasing distance from...... in the most polluted samples close to the pavement. Hydroxypropyl-beta-cyclodextrin extraction of soil PAHs, as a direct estimate of the bioaccessibility, indicated that only 1-5% of the PAHs were accessible to soil bacteria. This low bioaccessibility is suggested to be due to sorption to traffic soot...... the asphalt pavement and tested for total amounts of PAHs, amounts of bioaccessible PAHs, total bacterial populations, PAH degrader populations, the potential for mineralization of C-14-PAHs, and mutagenicity. Elevated PAH concentrations were found in the samples taken 1-8 m from the pavement. Soil sampled...

  17. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Removal of PAHs from contaminated clayey soil by means of electro-osmosis

    KAUST Repository

    Lima, Ana T.

    2011-06-01

    The removal of polycyclic aromatic hydrocarbons (PAHs) from clayey soils is an intricate task. The low porosity of compacted clayey soil hinders bacterial activity and makes convective removal by hydraulic flow impossible. Electro-osmosis is a process that has been used for the mobilization and cleanup of contaminants in clayey soils with varying successes. The present study focuses on the remediation of a contaminated peaty clay soil, located in Olst - the Netherlands, by means of electro-osmosis. The soil was originally contaminated by an asphalt production plant, active from 1903 to 1983, and presents high levels of all 16 priority PAHs indicated by the US Environmental Protection Agency (EPA). Such a long contact times of PAH with the soil (≥100 years) presents a unique study material with well established solid/liquid contaminant partitioning equilibrium, preferable to artificially spiked soil. A batch of 6 electro-osmosis laboratory experiments was carried out to study the removal of 16 PAHs through electro-osmosis. In these experiments, water and a surfactant (Tween 80) were used to enhance the PAH desorption. The electro-osmotic conductivities ranged from 2.88 × 10-10 to a substantial 1.19 × 10-7 m2 V-1 s -1 when applying a current density of 0.005-0.127 A m-2. Electro-osmosis was expected to occur towards the cathode, because of natural soil characteristics (negative zeta potential), but presented scattered directions. The use of reference electrodes proved to be very effective to the prediction of the flow direction. Finally, the addition of Tween 80 as a surfactant enhanced PAH removal up to 30% of the total PAH content of the soil in 9 days. © 2011 Elsevier B.V.

  19. Contaminants as habitat disturbers: PAH-driven drift by Andean paramo stream insects.

    Science.gov (United States)

    Araújo, Cristiano V M; Moreira-Santos, Matilde; Sousa, José P; Ochoa-Herrera, Valeria; Encalada, Andrea C; Ribeiro, Rui

    2014-10-01

    Contaminants can behave as toxicants, when toxic effects are observed in organisms, as well as habitat disturbers and fragmentors, by triggering avoidance responses and generating less- or uninhabited zones. Drift by stream insects has long been considered a mechanism to avoid contamination by moving to most favorable habitats. Given that exploration and transportation of crude oil represent a threat for surrounding ecosystems, the key goal of the present study was to assess the ability of autochthonous groups of aquatic insects from the Ecuadorian paramo streams to avoid by drift different concentrations of polycyclic aromatic hydrocarbons (PAH) contained in the soluble fraction of locally transported crude oil. In the laboratory, different groups of insects were exposed to PAH for 12h. Three different assays, which varied in taxa and origin of the organisms, concentrations of PAH (0.6-38.8µgL(-1)), and environment settings (different levels of refuge and flow) were performed. For Anomalocosmoecus palugillensis (Limnephilidae), drift was a major cause of population decline in low concentration treatments but at higher concentrations mortality dominated. PAH was highly lethal, even at lower concentrations, for Chironomidae, Grypopterygidae (Claudioperla sp.) and Hydrobiosidae (Atopsyche sp.), and, therefore, no conclusion about drift can be drawn for these insects. Contamination by PAH showed to be a threat for benthic aquatic insects from Ecuadorian paramo streams as it can cause a population decline due to avoidance by drift and mortality. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Distribution of polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in Barcelona harbour sediments and their impact on benthic communities

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Llado, Xavier [Environmental Technology Area, CTM-UPC, Avda. Bases de Manresa 1, 08240 Manresa (Spain); Gibert, Oriol [Environmental Technology Area, CTM-UPC, Avda. Bases de Manresa 1, 08240 Manresa (Spain); Marti, Vicens [Environmental Technology Area, CTM-UPC, Avda. Bases de Manresa 1, 08240 Manresa (Spain)]. E-mail: vicens.marti@upc.edu; Diez, Sergi [Environmental Chemistry Department, IIQAB-CSIC, c/Jordi Girona 18-26, 08034 Barcelona (Spain); Environmental Geology Department, ICTJA-CSIC, Lluis Sole i Sabaris, s/n, 08028 Barcelona (Spain); Romo, Javier [Environmental Service of Barcelona Harbour Authority, Carretera de la Circumval.lacio, s/n, Tram VI, Sector 6, Barcelona (Spain); Bayona, Josep Maria [Environmental Chemistry Department, IIQAB-CSIC, c/Jordi Girona 18-26, 08034 Barcelona (Spain); Pablo, Joan de [Environmental Technology Area, CTM-UPC, Avda. Bases de Manresa 1, 08240 Manresa (Spain)

    2007-09-15

    Sediments have long been recognised as a sink for many contaminants like polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT), which by virtue of their nature can strongly adsorb onto sediments affecting the benthic community inhabiting them. Using geographical information systems, this study reports and combines the results of several already existing studies along Barcelona harbour in order to assess the potential ecological impacts of these contaminants on the benthos of the harbour ecosystem. Chemical analysis indicated low to moderate contents of PAHs and high contents of TBT in sediments in Barcelona harbour. Comparison against existing sediment quality guidelines (SQGs) indicated that acutely toxic effects would not be expected for PAHs but for TBT, which represents a serious environmental threat for the benthic community. Benthos surveys revealed a deterioration of the benthic community throughout the harbour, especially in the inner port. - A possible correlation exists between TBT concentration in sediments and ecological effects on benthos in Barcelona harbour.

  1. Distribution of polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in Barcelona harbour sediments and their impact on benthic communities

    International Nuclear Information System (INIS)

    Martinez-Llado, Xavier; Gibert, Oriol; Marti, Vicens; Diez, Sergi; Romo, Javier; Bayona, Josep Maria; Pablo, Joan de

    2007-01-01

    Sediments have long been recognised as a sink for many contaminants like polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT), which by virtue of their nature can strongly adsorb onto sediments affecting the benthic community inhabiting them. Using geographical information systems, this study reports and combines the results of several already existing studies along Barcelona harbour in order to assess the potential ecological impacts of these contaminants on the benthos of the harbour ecosystem. Chemical analysis indicated low to moderate contents of PAHs and high contents of TBT in sediments in Barcelona harbour. Comparison against existing sediment quality guidelines (SQGs) indicated that acutely toxic effects would not be expected for PAHs but for TBT, which represents a serious environmental threat for the benthic community. Benthos surveys revealed a deterioration of the benthic community throughout the harbour, especially in the inner port. - A possible correlation exists between TBT concentration in sediments and ecological effects on benthos in Barcelona harbour

  2. Investigation of changes in {delta}{sup 13}C of PAHs during phytoremediation of coal tar-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mick Cooper; Cheng-Gong Sun; Margaret Smith; Harry Duncan; Colin Snape [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering

    2007-07-01

    It has been shown that phytoremediation of polyaromatic hydrocarbon (PAH) contaminated land is a useful, low cost, low maintenance method of cleaning up land at former gas and coking works. However, PAH degradation in the soil and sediment is slow, but PAHs may be degraded through properly stimulated soil micro-organisms. Here we describe a laboratory trial, employing the clover Trifolium pretense (L.)(TP), which was grown in samples of soil contaminated by fresh coal tar, and in soil heavily contaminated by PAHs, obtained from a former coking works. As the latter substrate was 'naturally' contaminated, it contained both pure PAHs and their derivatives, and was thus considered fully 'weathered', and contained recalcitrant PAH species. Conventional analytical techniques (for example, GC-MS) generally provide little information on the source of pollutants such as PAHs. Previous work has established, however, that significant differences existed in the {sup 13}C/{sup 12}C isotopic ratios between PAHs from various sources. Source apportionment of PAH contamination by stable isotope analysis is a powerful technique, but one which assumes that isotopic fractionation is not a significant factor in aged or bioaltered matrices. Phytoremediation trials described here have been utilised in order to determine whether or not any such fractionation of {sup 13}C occurs during the process. Although PAH distributions can be markedly altered by biodegradation, it has been demonstrated that, for low temperature coal tar, the carbon stable isotopic values of the parent PAHs remain fairly constant. 22 refs., 2 figs., 5 tabs.

  3. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C.; Nakamura, Jun; Tanguay, Robert L.; Aitken, Michael D.; Simonich, Staci L. Massey

    2015-01-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (pre-bioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (post-bioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, post-bioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental to xicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, post-bioremediation (p bioremediation (p bioremediation. The increased toxicity measured post-bioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase post-bioremediation. However, the increased toxicity measured post-bioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded. PMID:26200254

  4. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity.

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C; Nakamura, Jun; Tanguay, Robert L; Aitken, Michael D; Simonich, Staci L Massey

    2015-12-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (prebioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (postbioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, postbioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental toxicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, postbioremediation (p toxicity was measured in one polar soil extract fraction, postbioremediation (p soil extract fractions in embryonic zebrafish, both pre- and postbioremediation. The increased toxicity measured postbioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase postbioremediation. However, the increased toxicity measured postbioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded.

  5. Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils

    OpenAIRE

    Sivaram, Anithadevi Kenday; Logeshwaran, Panneerselvan; Subashchandrabose, Suresh R.; Lockington, Robin; Naidu, Ravi; Megharaj, Mallavarapu

    2018-01-01

    The phytoremediation technique has been demonstrated to be a viable option for the remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated sites. This study evaluated the potential applicability of plants with C3 and C4 carbon fixation pathways for the phytoremediation of recalcitrant high molecular weight (HMW) PAHs contaminated soil. A 60 and 120-day greenhouse study was conducted which showed higher degradation of HMW PAHs in soil grown with C4 plants when compared to C3 plants...

  6. PILOT-SCALE SUBCRITICAL WATER REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON- AND PESTICIDE-CONTAMINATED SOIL. (R825394)

    Science.gov (United States)

    Subcritical water (hot water under enough pressure to maintain the liquid state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were used to determine conditions f...

  7. Biological risk and pollution history of polycyclic aromatic hydrocarbons (PAHs) in Nansha mangrove, South China.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Tam, Nora F Y; Chen, Shejun; Mai, Bixian; Zhou, Xizhen; Xia, Lihua; Geng, Xinhua

    2014-08-15

    Chinese government has taken various measures to alleviate pollution caused by polycyclic aromatic hydrocarbons (PAHs) in the region of Pearl River Delta since the economic reform in 1978, but the effectiveness of these measures remains largely unknown. This study aimed to elucidate the biological risk and pollution history of PAHs by measuring the concentrations of 28 PAHs in the surface and core sediments, respectively, in Nansha mangrove. Results found that the biological risk of PAHs was low without obvious spatial variation. The PAH concentration along the depth gradient indicated that PAH pollution was stabilized since the early 1990s while the source of PAHs has gradually changed from combustion of coal to petroleum products. This implied that the mitigation measures taken by the Chinese government were effective. Compared to marine bottom sediment, we propose that using mangrove sediment can provide a more accurate and precise estimate of pollution history of PAHs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Microorganism selection and performance in bioslurry reactors treating PAH-contaminated soil.

    Science.gov (United States)

    Cassidy, D P; Hudak, A J

    2002-09-01

    A continuous-flow reactor (CSTR) and a soil slurry-sequencing batch reactor (SS-SBR) were operated in 81 vessels for 200 days to treat a soil contaminated with polycyclic aromatic hydrocarbons (PAH). Filtered slurry samples were used to quantify bulk biosurfactant concentrations and PAH emulsification. Concentrations of Corynebacterium aquaticum, Flavobacterium mizutaii, Mycobacterium gastri, Pseudomonas aeruginosa, and Pseudomonas putida were determined using fatty acid methyl ester (FAME) analysis. The CSTR and SS-SBR selected microbial consortia with markedly different surfactant-producing and PAH-degrading abilities. Biosurfactant levels in the SS-SBR reached 4 times the critical micelle concentration (CMC) that resulted in considerable emulsification of PAH. In contrast, CSTR operation resulted in nomeasurable biosurfactant production. Total PAH removal efficiency was 93% in the SS-SBR, compared with only 66% in the CSTR, and stripping of PAH was 3 times less in the SS-SBR. Reversing the mode of operation on day 100 caused a complete reversal in microbial consortia and in reactor performance by day 140. These results show that bioslurry reactor operation can be manipulated to control overall reactor performance.

  9. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    Science.gov (United States)

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.

  10. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.

    Science.gov (United States)

    Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming

    2017-02-01

    Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil

    International Nuclear Information System (INIS)

    Bengtsson, Goeran; Toerneman, Niklas; Yang Xiuhong

    2010-01-01

    Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13 C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass. - Hotspots of PAH biodegradation in a creosote contaminated soil do not coincide with hotspots of PAH concentration, microbial biomass and respiration.

  12. Biological treatment of PAH-contaminated sediments in a Sequencing Batch Reactor

    International Nuclear Information System (INIS)

    Chiavola, Agostina; Baciocchi, Renato; Gavasci, Renato

    2010-01-01

    The technical feasibility of a sequential batch process for the biological treatment of sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) was evaluated through an experimental study. A bench-scale Sediment Slurry Sequencing Batch Reactor (SS-SBR) was fed with river sediments contaminated by a PAH mixture made by fluorene, anthracene, pyrene and crysene. The process performance was evaluated under different operating conditions, obtained by modifying the influent organic load, the feed composition and the hydraulic residence time. Measurements of the Oxygen Uptake Rates (OURs) provided useful insights on the biological kinetics occurring in the SS-SBR, suggesting the minimum applied cycle time-length of 7 days could be eventually halved, as also confirmed by the trend observed in the volatile solid and total organic carbon data. The removal efficiencies gradually improved during the SS-SBR operation, achieving at the end of the study rather constant removal rates above 80% for both 3-rings PAHs (fluorene and anthracene) and 4-ring PAHs (pyrene and crysene) for an inlet total PAH concentration of 70 mg/kg as dry weight (dw).

  13. Kandungan Senyawa Polisiklik Aromatik Hidrokarbon (PAH di Teluk Jakarta (Polycyclic Aromatic Compounds Hydrocarbons (PAH Content in Jakarta Bay

    Directory of Open Access Journals (Sweden)

    Fasmi Ahmad

    2013-07-01

    , including Polycyclic Aromatic Hydrocarbons organic compounds (PAH. These organic compounds are toxic to marine life. This study determines the content of PAH in sea water and sediments in relation to marine life and to find out the source of the PAH compounds in the Bay of Jakarta. Measurement of Polycyclic Aromatic Hydrocarbon levels were carried out in March 2011. Sea water samples were taken by using a water sampler and sediment samples taken using a grab at 15 sites. PAH content were analyzed using gas chromatography–Flame Ionization Detector. The results showed that the content of PAH in seawater in the western part of Jakarta Bay > middle > east. The content of PAH in the western of Jakarta Bay ranged from 201,57 to 474,68 ppb with PAH total 1404,68 ppb, in the middle area ranged from 104,61 to 337,07 ppb with PAH total 825,63 ppb, and in the eastern part ranged from 8.72 to 115,39 ppb with PAH total 806,73 ppb. This means that seawater in the western part receives the PAH compound more than the others. However, the content of PAH in sediments in the western part < middle < eastern. This means that sediment in the western part of Jakarta Bay accumulates PAH compound less than the others areas. The content of PAH in the western part of Jakarta Bay ranged from 1.92 to 64.241 ppm with PAH total 107,931 ppm, in middle part ranged from 16.14 to 77.71 ppb with PAH total 170,61 ppm, and in the eastern part range 8,72 to 115.39 ppm with PAH total 252,25 ppm. This means that sediment in the western area of Jakarta Bay accumulates the PAH compound less than the others. Sources of PAH in seawater and sediment came from several sources namely from combustion of organic material, combustion of petroleum, and from petroleum. PAH content in seawater has passed the Threshold Limit Value stated by KMNLH for marine life and also has passed the threshold value stated the Ministry of Environment and Handbook for Sediment Quality Assessment for marine organism. Key words: Jakarta Bay

  14. An Optimised Method to Determine PAHs in a Contaminated Soil; Metodo Optimizado para la Determinacion de PAHs en un Suelo Contaminado

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Alonso, S.; Perez Pastor, R. M.; Sevillano castano, M. L.; Escolano Segovia, O.; Garcia Frutos, F. J.

    2007-07-20

    An analytical study is presented based on an optimised method to determine selected polycyclic aromatic hydrocarbons (PAHs) by High Performance Liquid Chromatography (HPLC) with fluorescence detection. The work was focused to obtain reliable measurements of PAH in a gas work contaminated soil and was performed in the frame of the project 'Assessment of natural remediation technologies for PAHs in contaminated soils' (Spanish Plan Nacional l+D+i, CTM 2004-05832-CO2-01): First assays were focused to evaluate an initial proposed procedure by sonication extraction in the contaminated soil. Afterwards to extend the efficiency and reduce solvent and time consuming of extraction procedures, the more relevant parameters that affect the extraction step were investigated. A comparison between sonication and microwave procedures was done, and the influence of sample grinding was studied. In general, both extraction techniques led on comparable results, although sonication procedure needs to be more carefully optimised. Finally, as a final application of the optimised method, the effect of particle size on relative distribution of selected PAHs in the contaminated soil was investigated. Relative abundance of more volatile PAHs showed a decreasing according to lower grain size, while relative abundance of less volatile compounds indicated an increasing of concentration levels for lower grain size. (Author) 10 refs.

  15. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    International Nuclear Information System (INIS)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-01-01

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad ® 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils

  16. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments from Khuzestan province, Iran

    DEFF Research Database (Denmark)

    Lübeck, Josephine; Poulsen, Kristoffer Gulmark; Knudsen, Sofie B.

    2016-01-01

    of polycyclic aromatic hydrocarbon (PAH) pollution. A four-component principal component analysis (PCA) model was obtained. While principal component 1 (PC1) was related to the total concentration of PAHs, the remaining PCs described three distinct sources: PC2 and PC3 collectively differentiate between...

  17. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Huang, Huagang; Li, Tingqiang; Yang, Xiaoe [Zhejiang Univ., Hangzhou (China). MOE Key Lab. of Environment Remediation and Ecosystem Health; Zhu, Zhiqiang [Zhejiang Univ., Hangzhou (China). MOE Key Lab. of Environment Remediation and Ecosystem Health; Hainan Univ., Haikou (China). College of Agriculture; He, Zhenli [Florida Univ., Port Pierce, FL (United States). Inst. of Food and Agricultural Sciences; Alva, Ashok [US Department of Agriculture, Prosser, WA (United States). Agricultural Research Service

    2012-04-15

    Purpose: Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil were reported in this study. Materials and methods: Soil slightly contaminated by Cd (0.92 mg kg{sup -1} DW) was collected from a vegetable field in Hangzhou and was spiked with two levels (0 and 6 mg kg{sup -1} DW) of Cd and three levels (0, 25, and 150 mg kg{sup -1} DW) of phenanthrene (PHE) or pyrene (PYR). A pot experiment was conducted in a greenhouse using S. alfredii with unplanted controls for 60 days. Shoot and root biomass of plants, dehydrogenase activity (DHA), and microbial biomass carbon in the soil were measured. Concentrations of Cd and PAHs in the plant and soil were determined. Results and discussion: Elevated Cd level (6.38 mg kg{sup -1} DW) increased S. alfredii growth. The presence of PAHs decreased the stimulatory effects of Cd on plant biomass and Cd concentrations in shoots in Cd spiked soil, thus decreasing Cd phytoextraction efficiency. Cadmium removal by S. alfredii after 60 days of growth varied from 5.8% to 6.7% and from 5.7% to 9.6%, in Cd unspiked and spiked soils, respectively. Removal rate of PAHs in the soil was similar with or without the plants. Removal rate of PYR decreased at the elevated Cd level in the soil. This appears to be due to a decrease in soil microbial activity. This is confirmed by a decrease in DHA, which is a good indicator of soil microbial activity. Conclusions: Our results demonstrate that S. alfredii could effectively extract Cd from Cd-contaminated soils in the presence of PHE or PYR; however, both PAHs exhibited negative effects on phytoextraction of Cd from Cd spiked soil (6.38 mg kg{sup -1} DW). S. alfredii is not suitable for remediation of PAHs. The effects of Cd and PAHs concentrations on the

  18. Large-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in multimedia over China

    Science.gov (United States)

    Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.

    2017-12-01

    In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at

  19. Distribution and origin sources of Polycyclic Aromatic Hydrocarbons (PAHs) pollution in sediment of Sarawak coastal area

    International Nuclear Information System (INIS)

    Mohd Shuhaimi Elias; Abdul Khalik Wood; Zaleha Hashim; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Nazaratul Ashifa Abdullah Salim

    2010-01-01

    Alkyl and parent Polycyclic Aromatic Hydrocarbons (PAHs) compounds in marine sediment sample collected from ten locations along Sarawak coastal areas were extracted and analyzed by using gas chromatography-mass spectrometry. The source identification of PAH pollution in marine sediment of Sarawak coastal areas were identify by ratios technique of An/ An+phen, Fl/ Fl +Py, B[a]A/ (B[a]A+Chry) and total Methyl Phen/ Phen. The total alkyl and parent PAHs concentration varies from 36.5 - 277.4 ng/ g dry weight (d.w.) with a mean concentration of 138.2 ng/ g d.w. The ratio values of PAHs pollution in marine sediment of Sarawak coastal areas are clearly indicating the PAHs pollutions are originated from petroleum (petrogenic) and petroleum combustion (pyrolytic). However, the origin sources of PAHs pollution in a few stations were uncertain due to mixing sources of PAHs. (author)

  20. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    International Nuclear Information System (INIS)

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A.; Meng, Aihong; Zhang, Yanguo; Williams, Paul T.

    2015-01-01

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock

  1. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hui [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Wu, Chunfei, E-mail: c.wu@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Onwudili, Jude A. [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Meng, Aihong [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Yanguo, E-mail: zhangyg@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  2. Functional genes reveal the intrinsic PAH biodegradation potential in creosote-contaminated groundwater following in situ biostimulation.

    Science.gov (United States)

    Nyyssönen, Mari; Kapanen, Anu; Piskonen, Reetta; Lukkari, Tuomas; Itävaara, Merja

    2009-08-01

    A small-scale functional gene array containing 15 functional gene probes targeting aliphatic and aromatic hydrocarbon biodegradation pathways was used to investigate the effect of a pilot-scale air sparging and nutrient infiltration treatment on hydrocarbon biodegradation in creosote-contaminated groundwater. Genes involved in the different phases of polycyclic aromatic hydrocarbon (PAH) biodegradation were detected with the functional gene array in the contaminant plume, thus indicating the presence of intrinsic biodegradation potential. However, the low aerobic fluorescein diacetate hydrolysis, the polymerase chain reaction (PCR) amplification of 16S rRNA genes closely similar to sulphate-reducing and denitrifying bacteria and the negligible decrease in contaminant concentrations showed that aerobic PAH biodegradation was limited in the anoxic groundwater. Increased abundance of PAH biodegradation genes was detected by functional gene array in the monitoring well located at the rear end of the biostimulated area, which indicated that air sparging and nutrient infiltration enhanced the intrinsic, aerobic PAH biodegradation. Furthermore, ten times higher naphthalene dioxygenase gene copy numbers were detected by real-time PCR in the biostimulated area, which was in good agreement with the functional gene array data. As a result, functional gene array analysis was demonstrated to provide a potential tool for evaluating the efficiency of the bioremediation treatment for enhancing hydrocarbon biodegradation in field-scale applications.

  3. Interactions between Pteris vittata L. genotypes and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) in arsenic uptake and PAH-dissipation.

    Science.gov (United States)

    Sun, Lu; Zhu, Ganghui; Liao, Xiaoyong; Yan, Xiulan

    2017-11-01

    The effects of two Pteris vittata L. accessions and a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium (Alcaligenes sp.) on arsenic (As) uptake and phenanthrene dissipation were studied. The Alcaligenes sp. survived in the rhizosphere and improved soil As bioavailability with co-exposure. However, bacterial inoculation altered Pteris vittata L. stress tolerance, and substantially affected the As distribution in the rhizosphere of the two P. vittata accessions. Bacterial inoculation was beneficial to protect the Guangxi accession against the toxic effects, and significantly increased plant As and phenanthrene removal ratios by 27.8% and 2.89%, respectively. In contrast, As removal was reduced by 29.8% in the Hunan accession, when compared with corresponding non-inoculated treatments. We conclude that plant genotype selection is critically important for successful microorganism-assisted phytoremediation of soil co-contaminated with As and PAHs, and appropriate genotype selection may enhance remediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. PAH contamination in soils adjacent to a coal-transporting facility in Tapin district, south Kalimantan, Indonesia.

    Science.gov (United States)

    Mizwar, Andy; Trihadiningrum, Yulinah

    2015-07-01

    This study was undertaken to determine the level of 16 polycyclic aromatic hydrocarbon (PAH), listed as priority pollutants by the United States Environmental Protection Agency (USEPA), in surface soils around a coal-transporting facility in the western part of South Kalimantan, Indonesia. Three composite soil samples were collected from a coal stockpile, coal-hauling road, and coal port. Identification and quantification of PAH was performed by gas chromatography-mass spectrometry. The total content of 16 USEPA-PAH ranged from 11.79 to 55.30 mg/kg with arithmetic mean value of 33.14 mg/kg and median of 32.33 mg/kg. The 16 USEPA-PAH measured levels were found to be greater compared with most of the literature values. The levels of high molecular-weight PAH (5- and 6-ring) were dominant and formed 67.77-80.69 % of the total 16 USEPA-PAH The most abundant of individual PAH are indeno[1,2,3-cd] pyrene and benzo[a]pyrene with concentration ranges of 2.11-20.56 and 1.59-17.84 mg/kg, respectively. The degree of PAH contamination and subsequent toxicity assessment suggest that the soils of the study area are highly contaminated and pose a potential health risk to humans.

  5. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils.

    Science.gov (United States)

    Usman, M; Chaudhary, A; Biache, C; Faure, P; Hanna, K

    2016-01-01

    This is the premier study designed to evaluate the impact of thermal pre-treatment on the availability of polycyclic aromatic hydrocarbons (PAHs) for successive removal by chemical oxidation. Experiments were conducted in two soils having different PAH distribution originating from former coking plant sites (Homécourt, H, and Neuves Maisons, NM) located in northeast of France. Soil samples were pre-heated at 60, 100, and 150 °C for 1 week under inert atmosphere (N2). Pre-heating resulted in slight removal of PAHs (soil samples were subjected to Fenton-like oxidation (H2O2 and magnetite) at room temperature. Chemical oxidation in soil without any pre-treatment showed almost no PAH degradation underscoring the unavailability of PAHs. However, chemical oxidation in pre-heated soils showed significant PAH degradation (19, 29, and 43% in NM soil and 31, 36, and 47% in H soil pre-treated at 60, 100, and 150 °C, respectively). No preferential removal of PAHs was observed after chemical oxidation in both soils. These results indicated the significant impact of pre-heating temperature on the availability of PAHs in contaminated soils and therefore may have strong implications in the remediation of contaminated soils especially where pollutant availability is a limiting factor.

  6. Analysis of Polycyclic Aromatic Hydrocarbons (PAHs in soils using ultrasonic agitation, heater/mini condenser tube and gaseous chromatography

    Directory of Open Access Journals (Sweden)

    Jurandir Pereira Pinto

    2006-02-01

    Full Text Available The increase in the number of gas stations in Brazil made it also possible the increase in the risk of underground waters contamination due to fuel spill. The polycyclic aromatic hydrocarbons (PAHs are petroleum-derived components and constitute a group of organic pollutants which are persistent in the environment and have highly carcinogenic capacity. In this work it was developed a PAHs analysis methodology in soils for quantifying these components, using the gaseous chromatography technique, through the optimization and validation of the chromatographic as well as the extraction, concentration and purification conditions of the PAHs. A good resolution for the sixteen PAHs was obtained, with retention times ranging from 6.1 to 43.7 minutes. The tube-heater/mini condenser system used for the solvent evaporation also showed satisfactory recovery for the naphthalene (83% as well as the extraction method by ultrasonic agitation with dichloromethane, obtaining recoveries that ranged from 74 to 104%. The analysis method proved to be appropriate for the quantification of the 16 PAHs in the evaluation of the environmental contamination in gas stations.

  7. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms.

    Science.gov (United States)

    Lu, Yan-Fei; Lu, Mang

    2015-03-21

    A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs.

    Science.gov (United States)

    Zakaria, Mohamad Pauzi; Takada, Hideshige; Tsutsumi, Shinobu; Ohno, Kei; Yamada, Junya; Kouno, Eriko; Kumata, Hidetoshi

    2002-05-01

    This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil

  9. Sphingomonas from petroleum-contaminated soils in Shenfu, China and their PAHs degradation abilities

    Directory of Open Access Journals (Sweden)

    Lisha Zhou

    2016-06-01

    Full Text Available Abstract Members of the Sphingomonas genus are often isolated from petroleum-contaminated soils due to their unique abilities to degrade polycyclic aromatic hydrocarbons (PAHs, which are important for in situ bioremediation. In this study, a combined phenotypic and genotypic approach using streptomycin-containing medium and Sphingomonas -specific PCR was developed to isolate and identify culturable Sphingomonas strains present in petroleum-contaminated soils in the Shenfu wastewater irrigation zone. Of the 15 soil samples examined, 12 soils yielded yellow streptomycin-resistant colonies. The largest number of yellow colony-forming units (CFUs could reach 105 CFUs g-1 soil. The number of yellow CFUs had a significant positive correlation (p < 0.05 with the ratio of PAHs to total petroleum hydrocarbons (TPH, indicating that Sphingomonas may play a key role in degrading the PAH fraction of the petroleum contaminants at this site. Sixty yellow colonies were selected randomly and analyzed by colony PCR using Sphingomonas -specific primers, out of which 48 isolates had PCR-positive signals. The 48 positive amplicons generated 8 distinct restriction fragment length polymorphism (RFLP patterns, and 7 out of 8 phylotypes were identified as Sphingomonas by 16S rRNA gene sequencing of the representative strains. Within these 7 Sphingomonas strains, 6 strains were capable of using fluorene as the sole carbon source, while 2 strains were phenanthrene-degrading Sphingomonas. To the best of our knowledge, this is the first report to evaluate the relationship between PAHs contamination levels and culturable Sphingomonas in environmental samples.

  10. Polycyclic aromatic hydrocarbons (PAHs) in a coal tar standard reference material - SRM 1597a updated

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Stephen A.; Poster, Dianne L.; Rimmer, Catherine A.; Schubert, Patricia; Sander, Lane C.; Schantz, Michele M. [National Institute of Standards and Technology (NIST), Analytical Chemistry Division, Gaithersburg, MD (United States); Leigh, Stefan D. [National Institute of Standards and Technology (NIST), Statistical Engineering Division, Gaithersburg, MD (United States); Moessner, Stephanie [National Institute of Standards and Technology (NIST), Analytical Chemistry Division, Gaithersburg, MD (United States); GMP/Comparator Labs, Werthenstein Chemie AG, Industrie Nord, Schachen (Switzerland)

    2010-09-15

    SRM 1597 Complex Mixture of Polycyclic Aromatic Hydrocarbons from Coal Tar, originally issued in 1987, was recently reanalyzed and reissued as SRM 1597a with 34 certified, 46 reference, and 12 information concentrations (as mass fractions) for polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic sulfur heterocycles (PASHs) including methyl-substituted PAHs and PASHs. The certified and reference concentrations (as mass fractions) were based on results of analyses of the coal tar material using multiple analytical techniques including gas chromatography/mass spectrometry on four different stationary phases and reversed-phase liquid chromatography. SRM 1597a is currently the most extensively characterized SRM for PAHs and PASHs. (orig.)

  11. Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation

    International Nuclear Information System (INIS)

    Cébron, Aurélie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Leyval, Corinne

    2013-01-01

    Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5–6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives. -- Highlights: ► Re-incorporation of soil organic extract increased 6-times the PAH availability. ► Complexity of organic contamination is the main driver of PAH availability. ► Biodegradation of PAH with less than 5-cycles increased with increasing PAH availability. ► Pseudomonas and Fusarium species are favoured when PAH availability increased. -- More than ageing, the complexity of organic contamination is the main driver of PAH availability

  12. Pollution by polycyclic aromatic hydrocarbons (PAH's) in sediments and organisms from Salina Cruz Port, Oaxaca, Mexico

    International Nuclear Information System (INIS)

    Botello, A.V.; Villanueva, S.; Diaz, G.; Pica, Y.

    1995-01-01

    The presence and levels of polycyclic aromatic hydrocarbons (PAH's) in [sediments and biota from the Port of Salina Cruz, Oaxaca; were evaluated by means of gas capillary chromatography using columns of high resolution. The results show a seasonal variability of the PAH's concentrations in sediments being higher in the port area and lower in oceanic sediments. The increase of the PAH's levels in Crassostrea iridiscens and Penaeus stylirostris is important and related to the bioaccumulation process. The presence of PAH's conformed by 4 y 5 benzene rings in these species must be noted specially because they have carcinogenic properties and their effects on the local fisheries should be considered. (Author)

  13. Decontamination of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Smith, A.J.

    1991-01-01

    This patent describes the method of treating hydrocarbon contaminated soil. It comprises forming the soil into a flowing particulate stream, forming an aqueous liquid mixture of water and treating substance that reacts with hydrocarbon to form CO 2 and water, dispersing the liquid mixture into the particulate soil stream to wet the particulate, allowing the substance to react with the wetted soil particulate to thereby form CO 2 and water, thereby the resultant soil is beneficially treated, the stream being freely projected to dwell at a level and then fall, and the dispersing includes spraying the liquid mixture into the projected stream at the dwell, the substance consisting of natural bacteria, and at a concentration level in the mixture of between 100 to 3,000 PPM of bacteria to water, the soil forming step including impacting the soil to reduce it to particles less than about 1 inches in cross dimension, and including forming the wetting particulate into a first layer on a surface to allow the substance to react

  14. Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species

    International Nuclear Information System (INIS)

    Zhang, Zhenhua; Rengel, Zed; Meney, Kathy; Pantelic, Ljiljana; Tomanovic, Radmila

    2011-01-01

    Growth and pollutant removal by emergent wetland plants may be influenced by interactions among mixed pollutants in constructed wetlands. A glasshouse experiment was conducted to investigate interactive effects of cadmium (Cd) x polynuclear aromatic hydrocarbons (PAHs) x plant treatments on growth of Juncus subsecundus, Cd and PAH removal from soil and the total number of microorganisms in soil. Growth and biomass of J. subsecundus were significantly influenced by interaction of Cd and PAHs, significantly decreasing with either Cd or PAH additions, but with the effect of Cd on plant growth being stronger than that of PAHs. The mixture of low Cd and low PAH lessened Cd toxicity to plants, resulting in improved plant growth and increased Cd accumulation in plant tissues, thus enhancing Cd removal by plants. The dissipation of PAHs in soils was significantly influenced by interactions of Cd, PAH and plant presence or absence. The total number of microorganisms in soils was significantly increased by the PAH additions. The interactive effect of Cd and PAHs on plant growth may be linked to the changes in the abundance of microorganisms in the rhizosphere, probably via a positive effect of PAH metabolites and/or phytohormones produced by microorganisms on plant growth.

  15. Polycyclic Aromatic Hydrocarbon (PAH Exposure and DNA Adduct Semi-Quantitation in Archived Human Tissues

    Directory of Open Access Journals (Sweden)

    M. Margaret Pratt

    2011-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are combustion products of organic materials, mixtures of which contain multiple known and probable human carcinogens. PAHs occur in indoor and outdoor air, as well as in char-broiled meats and fish. Human exposure to PAHs occurs by inhalation, ingestion and topical absorption, and subsequently formed metabolites are either rendered hydrophilic and excreted, or bioactivated and bound to cellular macromolecules. The formation of PAH-DNA adducts (DNA binding products, considered a necessary step in PAH-initiated carcinogenesis, has been widely studied in experimental models and has been documented in human tissues. This review describes immunohistochemistry (IHC studies, which reveal localization of PAH-DNA adducts in human tissues, and semi-quantify PAH-DNA adduct levels using the Automated Cellular Imaging System (ACIS. These studies have shown that PAH-DNA adducts concentrate in: basal and supra-basal epithelium of the esophagus, cervix and vulva; glandular epithelium of the prostate; and cytotrophoblast cells and syncitiotrophoblast knots of the placenta. The IHC photomicrographs reveal the ubiquitous nature of PAH-DNA adduct formation in human tissues as well as PAH-DNA adduct accumulation in specific, vulnerable, cell types. This semi-quantative method for PAH-DNA adduct measurement could potentially see widespread use in molecular epidemiology studies.

  16. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil.

    Science.gov (United States)

    Sawulski, Przemyslaw; Clipson, Nicholas; Doyle, Evelyn

    2014-11-01

    Development of successful bioremediation strategies for environments contaminated with recalcitrant pollutants requires in-depth knowledge of the microorganisms and microbial processes involved in degradation. The response of soil microbial communities to three polycyclic aromatic hydrocarbons, phenanthrene (3-ring), fluoranthene (4-ring) and benzo(a)pyrene (5-ring), was examined. Profiles of bacterial, archaeal and fungal communities were generated using molecular fingerprinting techniques (TRFLP, ARISA) and multivariate statistical tools were employed to interpret the effect of PAHs on community dynamics and composition. The extent and rate of PAH removal was directly related to the chemical structure, with the 5-ring PAH benzo(a)pyrene degraded more slowly than phenathrene or fluoranthene. Bacterial, archaeal and fungal communities were all significantly affected by PAH amendment, time and their interaction. Based on analysis of clone libraries, Actinobacteria appeared to dominate in fluoranthene amended soil, although they also represented a significant portion of the diversity in phenanthrene amended and unamended soils. In addition there appeared to be more γ-Proteobacteria and less Bacteroidetes in soil amended with either PAH compared to the control. The soil bacterial community clearly possessed the potential to degrade PAHs as evidenced by the abundance of PAH ring hydroxylating (PAH-RHDα) genes from both gram negative (GN) and gram positive (GP) bacteria in PAH-amended and control soils. Although the dioxygenase gene from GP bacteria was less abundant in soil than the gene associated with GN bacteria, significant (p PAH-RHDα gene were observed during phenanthrene and fluoranthene degradation, whereas there was no significant difference in the abundance of the GN PAH-RHDα gene during the course of the experiment. Few studies to-date have examined the effect of pollutants on more than one microbial community in soil. The current study provides

  17. PHOTOCHEMISTRY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COSMIC WATER ICE: THE ROLE OF PAH IONIZATION AND CONCENTRATION

    International Nuclear Information System (INIS)

    Cook, Amanda M.; Mattioda, Andrew L.; Roser, Joseph; Bregman, Jonathan; Ricca, Alessandra; Allamandola, Louis J.; Bouwman, Jordy; Linnartz, Harold

    2015-01-01

    Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H 2 O, pyrene:H 2 O, and benzo[ghi]perylene:H 2 O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H 2 O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H 2 O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts and PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) n ] and quinones [PAH(O) n ] for all PAH:H 2 O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati and Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO 2 and H 2 CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) n and PAH(O) n to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ∼2%-4% level relative to H 2 O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes

  18. PHOTOCHEMISTRY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COSMIC WATER ICE: THE ROLE OF PAH IONIZATION AND CONCENTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Amanda M.; Mattioda, Andrew L.; Roser, Joseph; Bregman, Jonathan [NASA Ames Research Center, PO Box 1, M/S 245-6, Moffett Field, CA 94035 (United States); Ricca, Alessandra; Allamandola, Louis J. [SETI Institute, 189 North Bernardo Avenue, Mountain View, CA 94043 (United States); Bouwman, Jordy [Radboud University Nijmegen, Institute for Molecules and Materials, Toernooiveld 5, 6525 ED Nijmegen (Netherlands); Linnartz, Harold [Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, PO Box 9513, NL2300 RA Leiden (Netherlands)

    2015-01-20

    Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H{sub 2}O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H{sub 2}O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts and PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) {sub n} ] and quinones [PAH(O) {sub n} ] for all PAH:H{sub 2}O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati and Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO{sub 2} and H{sub 2}CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) {sub n} and PAH(O) {sub n} to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ∼2%-4% level relative to H{sub 2}O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.

  19. A comparison of bioaugmentation and intrinsic in situ bioremediation of a PAH contaminated site

    International Nuclear Information System (INIS)

    Geddes, T.; Mortier, N.; Chaparian, M.

    1995-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most common environmental hazards, naturally occurring in petroleum and its by-products. They are encountered at nearly all UST sites, and present an impediment to the use of cost effective intrinsic in situ bioremediation due to their recalcitrant nature. Even bacteria isolated specifically for their ability to degrade PAHs in the laboratory have shown no significant degradative capabilities in the field. This is due to the unique balance that exists at every contaminated site between the microbial ecology, chemical, physical, and environmental factors. Therefore, bacteria indigenous to the site and acclimated to these environmental parameters should be well suited for use in bioaugmentation. Based on this assumption, a new and innovative approach to bioaugmentation has been developed which consists of a series of scientifically-sound, rational steps in the use of this technology. Initially, careful chemical and biological analyses of site samples are conducted using conventional analytical instrumentation and state-of-the-art microbiological, biochemical, and molecular biological techniques. Bacteria from site samples that demonstrate potential PAH degradative capability are isolated. The bacteria are then enriched in culture and re-introduced to the site with appropriate nutrients. Further, this approach encompasses the proposed guidelines for proving the efficacy of in situ bioremediation as set forth by the National Science Foundation. To demonstrate the effectiveness of this approach, data are presented here of a laboratory-scale trial of a PAH contaminated site

  20. Bioremediation of a PAH-contaminated gasworks site with the Ebiox vacuum heap system

    International Nuclear Information System (INIS)

    Eiermann, D.R.; Bolliger, R.

    1995-01-01

    A former gasworks site in the industrial city of Winterthur, Switzerland, was extremely contaminated with polycyclic aromatic hydrocarbons (PAHs); benzene, toluene, ethylbenzene, and xylenes (BTEX); phenols; ammonia; and mineral oils. Three vacuum heaps, with a total volume of 10,500 m 3 of contaminated soil, were bioremediated during 1993/94. Separating excavated soil material into different soil qualities was of particular importance because of the pathway definition of the specific soil material. Excavation of contamination took longer than 10 months, delivering continuously different contaminated soil-type material for bioremediation. Conditioning and subsequent biostimulation of the large soil volumes were the prerequisites for most advanced milieu optimization. The degradation results demonstrated the potential for successful application of bioremediation on former industrial sites. PAH-concentration reductions ranged from 75 to 83% for the soil values and from 87 to 98% for the elution values. Soil and elution target qualities were met within 6 to 12 months, depending on initial PAH-concentration and soil structure. The achieved target quality for the bioremediated soil allowed subsequent reuse as high-value backfill material for the ongoing building project

  1. Flotation of PAH contaminated dredged sludge

    NARCIS (Netherlands)

    Mulleneers, H.; Roubroeks, S.; Bruning, H.; Rulkens, W.H.; Koopal, L.K.

    2000-01-01

    The applicability of dissolved air flotation to remediate contaminated sediments of "Overschie" (Rotterdam) and "Petrol Harbor" (Amsterdam) is studied. Several flotation reagents (Diesel Fuel, Montanol, Aerophine, Aerofroth) are applied to enhance the flotation efficiency. The physical chemical

  2. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones

    Science.gov (United States)

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis. PMID:23162467

  3. Studies estimating the dermal bioavailability of polynuclear aromatic hydrocarbons from manufactured plant tar-contaminated soils

    International Nuclear Information System (INIS)

    Roy, T.A.; Krueger, A.J.; Taylor, B.B.; Mauro, D.M.; Goldstein, L.S.

    1998-01-01

    In vitro percutaneous absorption studies were performed with contaminated soils or organic extracts of contaminated soils collected at manufactured gas plant (MGP) sites. The MGP tar contaminated soils were found to contain a group of targeted polynuclear aromatic hydrocarbons (PAH) at levels ranging from 10 to 2400 mg/kg. The soil extracts contained target PAH at levels ranging from 12 000 - 34 000 mg/kg. Dermal penetration rates of target PAH from the MGP tar-contaminated soils/soil extracts were determined experimentally through human skin using 3 H-benzo(a)pyrene (BaP) as a surrogate. Results from three MGP sites showed reductions of 2-3 orders of magnitude in PAH absorption through human skin from the most contaminated soils in comparison to the soil extracts. Reduction in PAH penetration can be attributed to PAH concentration and (soil) matrix properties. PAH dermal flux values are used to determine site-specific dermally absorbed dose (DAD) and chronic daily intake (CDI) which are essential terms required to estimate risk associated with human exposure to MGP tar and MGP tar-contaminated soils. 21 refs., 4 figs., 3 tabs

  4. Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation

    International Nuclear Information System (INIS)

    Cofield, Naressa; Banks, M. Katherine; Schwab, A. Paul

    2007-01-01

    The impact of recalcitrant organic compounds on soil hydrophobicity was evaluated in contaminated soil from a manufactured gas plant site following 12 months of phytoremediation. Significant reduction in soil wetting and water retention was observed in contaminated soil compared to an uncontaminated control. Phytoremediation was effective at reducing total PAHs by 69% with corresponding changes in soil classification from extremely hydrophobic (initial sample) to moderately-strongly hydrophobic (planted) and hydrophilic-very hydrophilic (unplanted) after 12 months. The greatest reduction in soil hydrophobicity was observed in the unplanted, unfertilized treatments that had the lowest removal rate of PAHs. The presence of plants may contribute to hydrophobicity in contaminated soil. - The presence of recalcitrant hydrophobic organic pollutants may enhance soil hydrophobicity

  5. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  6. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    Science.gov (United States)

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  7. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.

    Science.gov (United States)

    Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile

    2017-04-01

    Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

  8. Quantitation of polycyclic aromatic hydrocarbons (PAH4) in cocoa and chocolate samples by an HPLC-FD method.

    Science.gov (United States)

    Raters, Marion; Matissek, Reinhard

    2014-11-05

    As a consequence of the PAH4 (sum of four different polycyclic aromatic hydrocarbons, named benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) maximum levels permitted in cocoa beans and derived products as of 2013, an high-performance liquid chromatography with fluorescence detection method (HPLC-FD) was developed and adapted to the complex cocoa butter matrix to enable a simultaneous determination of PAH4. The resulting analysis method was subsequently successfully validated. This method meets the requirements of Regulation (EU) No. 836/2011 regarding analysis methods criteria for determining PAH4 and is hence most suitable for monitoring the observance of the maximum levels applicable under Regulation (EU) No. 835/2011. Within the scope of this work, a total of 218 samples of raw cocoa, cocoa masses, and cocoa butter from several sample years (1999-2012), of various origins and treatments, as well as cocoa and chocolate products were analyzed for the occurrence of PAH4. In summary, it is noted that the current PAH contamination level of cocoa products can be deemed very slight overall.

  9. Chemometric techniques in distribution, characterisation and source apportionment of polycyclic aromatic hydrocarbons (PAHS) in aquaculture sediments in Malaysia.

    Science.gov (United States)

    Retnam, Ananthy; Zakaria, Mohamad Pauzi; Juahir, Hafizan; Aris, Ahmad Zaharin; Zali, Munirah Abdul; Kasim, Mohd Fadhil

    2013-04-15

    This study investigated polycyclic aromatic hydrocarbons (PAHs) pollution in surface sediments within aquaculture areas in Peninsular Malaysia using chemometric techniques, forensics and univariate methods. The samples were analysed using soxhlet extraction, silica gel column clean-up and gas chromatography mass spectrometry. The total PAH concentrations ranged from 20 to 1841 ng/g with a mean of 363 ng/g dw. The application of chemometric techniques enabled clustering and discrimination of the aquaculture sediments into four groups according to the contamination levels. A combination of chemometric and molecular indices was used to identify the sources of PAHs, which could be attributed to vehicle emissions, oil combustion and biomass combustion. Source apportionment using absolute principle component scores-multiple linear regression showed that the main sources of PAHs are vehicle emissions 54%, oil 37% and biomass combustion 9%. Land-based pollution from vehicle emissions is the predominant contributor of PAHs in the aquaculture sediments of Peninsular Malaysia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Chemical characterization and spatial distribution of PAHs and heavy hydrocarbons in rural sites of Campania Region, South Italy.

    Science.gov (United States)

    Monaco, D; Riccio, A; Chianese, E; Adamo, P; Di Rosa, S; Fagnano, M

    2015-10-01

    In this paper, the behaviour and distribution patterns of heavy hydrocarbons and several polycyclic aromatic hydrocarbon (PAH) priority pollutants, as listed by the US Environmental Protection Agency, were evaluated in 891 soil samples. The samples were collected in three expected polluted rural sites in Campania (southern Italy) as part of the LIFE11 ECOREMED project, funded by the European Commission, to test innovative agriculture-based soil restoration techniques. These sites have been selected because they have been used for the temporary storage of urban and building waste (Teverola), subject to illicit dumping of unknown material (Trentola-Ducenta), or suspected to be polluted by metals due to agricultural practices (Giugliano). Chemical analysis of soil samples allowed the baseline pollution levels to be determined prior to any intervention. It was found that these areas can be considered contaminated for residential use, in accordance with Italian environmental law (Law Decree 152/2006). Statistical analysis applied to the data proved that average mean concentrations of heavy hydrocarbons could be as high as 140 mg/kg of dry soil with peaks of 700 mg/kg of dry soil, for the Trentola-Ducenta site; the median concentration of analytical results for hydrocarbon (HC) concentration for the Trentola-Ducenta and Giugliano sites was 63 and 73.4 mg/kg dry soil, respectively; for Teverola, the median level was 35 mg/kg dry soil. Some PAHs (usually benzo(a)pyrene) also exceeded the maximum allowed level in all sites. From the principal component analysis applied to PAH concentrations, it emerged that pollutants can be supposed to derive from a single source for the three sites. Diagnostic ratios calculated to determine possible PAH sources suggest petroleum combustion or disposal practice. Our sampling protocol also showed large dishomogeneity in soil pollutant spatial distribution, even at a scale as small as 3.3 m, indicating that variability could emerge at very

  11. A complete re-assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Saguenay Fjord (Quebec)

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, E.; Cote, N.; Curtosi, A.; St-Louis, R. [Quebec Univ., Rimouski, PQ (Canada). Institut des Sciences de la Mer de Rimouski

    2003-07-01

    The sediments in the Saguenay Fjord and the Baie des HaHa were contaminated during the 1960s and 1970s. A study was conducted in the Spring of 2002 to obtain new data on the spatio-temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in the sediments. Five sediment cores were sampled from different areas of the Fjord and analyzed for their PAH content by gas chromatography/mass spectrometry. Total PAHs were reported for the first 28 cm of each core. The mean concentration in the surface layer was 310 ng/g with a maximum value of 460 ng/g found in the North Arm of the Fjord. The lowest value of 227 ng/g was found in the Baie des HaHa. Surface values were between 10 and 30 times lower than those reported in samples from a 1982 study. The maximum PAH values were found in layers between 15 and 28 cm in depth, suggesting a slow burying process of the highly contaminated sediments.

  12. Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Xiamen, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jinping [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Guangdong Environmental Monitoring Centre, Guangzhou 510308 (China); Zhang, Fuwang; Xu, Lingling [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jinsheng, E-mail: jschen@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Xu, Ya [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)

    2011-11-15

    An intensive sampling program was conducted from October 2008 to September 2009 at the five different environmental sites in Xiamen, Fujian Province, to study the spatial and temporal characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) in the gaseous and particulate phase, respectively. The PAHs concentrations at different sites were quite distinct during four seasons. The average concentrations of PAHs in winter were about 8.4 times higher than those in spring, and the concentrations of background were 0.56 times lower than those of industrial area. In addition, the higher temperature in summer affected the particle/gas partitioning of PAHs and led to the higher concentrations of gaseous PAHs. Diagnostic ratios of PAHs, which were employed to indicate the primary sources of PAHs in Xiamen, showed that the traffic vehicle exhaust was the largest contributor and the primary source for PAHs in Xiamen, especially in urban area; while the stationary combustion processes, such as petrochemical factories and power plants, were mainly responsible for PAHs sources in the industrial areas. The health risk of PAHs in the particulate phase was higher than those of the gaseous phase at the five sampling sites. The average toxic equivalent (BaP{sub eq}) of the benzo[a]pyrene values for PAHs were 0.14, 0.32, 1.38 and 3.59 ng m{sup -3} in spring, summer, autumn and winter, respectively. Furthermore, the results of average BaP{sub eq} in all four seasons indicated that the health risks of particulate PAHs were higher than those of the gaseous PAHs at different sampling sites.

  13. Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe3+-montmorillonite surface under visible light: Degradation kinetics, mechanism, and toxicity assessments.

    Science.gov (United States)

    Zhao, Song; Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Wang, Chuanyi

    2017-10-01

    Photochemical behavior of various polycyclic aromatic hydrocarbons (PAHs) on Fe 3+ -modified montmorillonite was explored to determine their potential kinetics, pathways, and mechanism under visible light. Depending on the type of PAH molecules, the transformation rate follows the order of benzo[a]pyrene ≈ anthracene > benzo[a]anthracene > phenanthrene. Quantum simulation results confirm the crucial role of "cation-π" interaction between Fe 3+ and PAHs on their transformation kinetics. Primary intermediates, including quinones, ring-opening products and benzene derivatives, were identified by gas chromatography-mass spectrometer (GC-MS), and the possible photodegradation pathway of benzo[a]pyrene was proposed. Meanwhile, radical intermediates, such as reactive oxygen species (ROS) and free organic radicals, were detected by electron paramagnetic resonance (EPR) technique. The photolysis of selected PAHs, such as anthracene and benzo[a]pyrene, on clay surface firstly occurs by electron transfer from PAHs to Fe 3+ -montmorillonite, followed by degradation involving photo-induced ROS such as ·OH and ·O 2 - . To investigate the acute toxicity of photolysis products, the Microtox ® toxicity test was performed during the photodegradation processes of various PAHs. As a result, the photo-irradiation initially induces increased toxicity by generating reactive intermediates, such as free organic radicals, and then the toxicity gradually decreases with increasing of reaction time. Overall, the present study provides useful information to understand the fate and photo-transformation of PAHs in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Relationship between atmospheric pollution in the residential area and concentrations of polycyclic aromatic hydrocarbons (PAHs) in human breast milk.

    Science.gov (United States)

    Pulkrabova, Jana; Stupak, Michal; Svarcova, Andrea; Rossner, Pavel; Rossnerova, Andrea; Ambroz, Antonin; Sram, Radim; Hajslova, Jana

    2016-08-15

    Human milk is an important source of beneficial nutrients and antibodies for newborns and infants and, under certain circumstances, its analysis may provide information on mothers' and infants' exposure to various contaminants. In the presented study, we have introduced the new analytical approach for analysis of 24 highly occurring polycyclic aromatic hydrocarbons (PAHs) in this indicator matrix. The sample preparation procedure is based on an ethyl acetate extraction of milk; the transfer of analytes into an organic layer is enhanced by addition of inorganic salts, i.e. sodium chloride and magnesium sulphate. Following the clean-up of a crude extract on silica SPE columns, gas chromatography coupled to triple quadrupole mass spectrometry is used for PAH identification and quantitation. The average recoveries of targeted PAHs from spiked samples were in the range of 68-110% with repeatabilities below 30% and method quantitation limits ranging from 0.03 to 0.3ng/g lipid weight. This newly validated method was successfully applied for analyses of 324 human milk samples collected from nonsmoking women during two sampling periods (summer and winter) in two residential areas in the Czech Republic differing in atmospheric pollution by PAHs. From 24 targeted analytes 17 were detected at least in one sample. Phenantherene, fluoranthrene, pyrene and fluorene were the most abundant compounds found at average concentration of 13.81, 1.80, 0.86, and 2.01ng/g lipid weight respectively. Comparing the data from two sampling periods, in both areas higher concentrations were measured in samples collected during winter. Also in the highly industrialized locality with heavily contaminated air PAH amounts in milk were higher than in the control locality. These first data on PAH concentrations in human milk collected in the Czech Republic are comparable with measurements for nonsmoking women reported earlier in the United States but significantly lower than results from China, Turkey

  15. Polycyclic Aromatic Hydrocarbons (PAHs) Content in Cattle Hides ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: Scrap rubber tyre is used as fuel for singeing animal carcasses in third world countries despite the fact that it can .... test method and the quantification of the PAH analytes using ... waste, SW-846 methods) with some modifications.

  16. Recent Advances in Laboratory Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons: PAHs in the Far Infrared

    Science.gov (United States)

    Mattioda, Andrew L.; Ricca, Alessandra; Tucker, Jonathan; Boersma, Christiaan; Bauschlicher, Charles, Jr.; Allamandola, Louis J.

    2010-01-01

    Over 25 years of observations and laboratory work have shown that the mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 microns, which originate in free polycyclic aromatic hydrocarbon (PAH) molecules. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (FIR) and emission from these FIR features should be present in astronomical sources showing the Mid-IR PAH bands. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview recent advances in the laboratory spectroscopy of PAHs, Highlighting the FIR spectroscopy along with some quantum calculations.

  17. Landfill leachate as a source of polycyclic aromatic hydrocarbons (PAHs) to Malaysian waters

    OpenAIRE

    Zakaria, Mohamad Pauzi; Geik, Kho Hiaw; Lee, Wong Yoon; Hayet, Razahidi

    2005-01-01

    Organic chemicals of environmental concern are those with known or potentially deleterious effects on natural resources and humans. These compounds are referred to as micro-organic pollutants. Polycylic aromatic hydrocarbons (PAHs) are one of the most important classes of anthropogenic micro-organic pollutants that have long been the interest of environmental chemists. This concern arises primarily from the fact that a small fraction of the PAHs generated and released to environment has been ...

  18. Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Zhang, Jie; Huang, Huagang; Li, Tingqiang; Yang, Xiaoe [Zhejiang Univ., Hangzhou (China). MOE Key Laboratory of Environment Remediation and Ecosystem Health; Zhu, Zhiqiang [Zhejiang Univ., Hangzhou (China). MOE Key Laboratory of Environment Remediation and Ecosystem Health; Hainan Univ., Haikou (China). College of Agriculture; He, Zehnli [Florida Univ., Fort Pierce (United States). Indian River Research and Education Center; Alva, Ashok [U.S. Department of Agriculture, Prosser, WA (United States). Agricultural Research Service

    2012-08-15

    Purpose: A major challenge to phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for enhanced phytoextraction of cadmium (Cd) by Sedum alfredii and dissipation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by application of pig manure vermicompost (PMVC). Materials and methods: Soil contaminated by Cd (5.53 mg kg{sup -1} DW) was spiked with phenanthrene, anthracene, and pyrene together (250 mg kg{sup -1} DW for each PAH). A pot experiment was conducted in a greenhouse with four treatments: (1) soil without plants and PMVC (Control), (2) soil planted with S. alfredii (Plant), (3) soil amended with PMVC at 5 % (w/w) (PMVC), and (4) treatment 2 + 3 (Plant + PMVC). After 90 days, shoot and root biomass of plants, Cd concentrations in plant and soil, and PAH concentrations in soil were determined. Abundance of PAH degraders in soil, soil bacterial community structure and diversity, and soil enzyme activities and microbial biomass carbon were measured. Results and discussion: Application of PMVC to co-contaminated soil increased the shoot and root dry biomass of S. alfredii by 2.27- and 3.93-fold, respectively, and simultaneously increased Cd phytoextraction without inhibiting soil microbial population and enzyme activities. The highest dissipation rate of PAHs was observed in Plant + PMVC treatment. However, neither S. alfredii nor PMVC enhanced PAH dissipation when applied separately. Abundance of PAH degraders in soil was not significantly related to PAH dissipation rate. Plant + PMVC treatment significantly influenced the bacterial community structure. Enhanced PAH dissipation in the Plant + PMVC treatment could be due to the improvement of plant root growth, which may result in increased root exudates, and subsequently change bacterial community structure to be favorable for PAH dissipation. Conclusions: This

  19. Biodegradation Of Polycyclic Aromatic Hydrocarbons In Petroleum Oil Contaminating The Environment

    International Nuclear Information System (INIS)

    Partila, A.M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in urban atmospheres (Chen et al., 2013). PAHs enter the environment via incomplete combustion of fossil fuels and accidental leakage of petroleum products, and as components of products such as creosote (Muckian et al., 2009). Due to PAHs carcinogenic activity, they have been included in the European Union (EU) and the Environmental Protection Agency (EPA) priority pollutant lists. Human exposure to PAHs occurs in three ways, inhalation, dermal contact and consumption of contaminated foods, which account for 88-98% of such contamination; in other words, diet is the major source of human exposure to these contaminants (Rey-Salgueiro et al., 2008). Both the World Health Organization and the UK Expert Panel on Air Quality Standards (EPAQS) have considered benzo(a)pyrene (BaP) as a marker of the carcinogenic potency of the polycyclic aromatic hydrocarbons (PAH) mixture (Delgado-Saborit et al., 2011). Polycyclic aromatic and heavier aliphatic hydrocarbons, which have a stable recalcitrant molecular structure, exhibit high hydrophobicity and low aqueous solubility, are not readily removed from soil through leaching and volatilization (Brassington et al., 2007). The hydrophobicity of PAHs limits desorption to the aqueous phase (Donlon et al., 2002). Six main ways of dissipation, i.e. disappearance, are recognized in the environment: volatilization, photooxidation, Aim of the Work chemical oxidation, sorption, leaching and biodegradation. Microbial degradation is considered to be the main process involved in the dissipation of PAH (Yuan et al., 2002). Thus, more and more research interests are turning to the biodegradation of PAHs. Some microorganisms can utilize PAHs as a source of carbon and energy so that PAHs can be degraded to carbon dioxide and water, or transformed to other nontoxic or low-toxic substances (Perelo, 2010). Compared with other physical and chemical methods such as combustion

  20. 'Mussel Watch' and chemical contamination of the coasts by polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAH) enter the coastal marine environment from three general categories of sources; pyrogenic, petrogenic (or petroleum), and natural diagenesis. PAH from different sources appear to have differential biological availability related to how the PAH are sorbed, trapped, or chemically bound to particulate matter, including soot. Experience to date with bivalve sentinel organism, or 'Mussel Watch', monitoring programs indicates that these programs can provide a reasonable general assessment of the status and trends of biologically available PAH in coastal ecosystems. As fossil fuel use increases in developing countries, it is important that programs such as the International Mussel Watch Program provide assessments of the status and trends of PAH contamination of coastal ecosystems of these countries. (author)

  1. Polycyclic Aromatic Hydrocarbon (pah) In The Bulk Precipitation of The Seine Estuary, France

    Science.gov (United States)

    Motelay-Massei, A.; Ollivon, D.; Garban, B.; Chevreuil, M.

    The evolution of industry and the rising of population have resulted in deep changes in the quality of the environment. Nowadays much more often the attention of analysts is focused on the presence of organic pollutants in precipitation, such as polycyclic aromatic hydrocarbons or pesticides. Atmospheric inputs play a significant role in semivolatile chemicals cycling and alter so the hydrological cycle. PAHs are semi- volatile organic contaminants of great environmental concern because of their car- cinogenic properties. PAHs are produced primarily during incomplete combustion of fossil fuels and wood. Major sources of PAHs to urban atmosphere include au- tomobile traffic, home heating, municipal incinerators and industrial emissions. De- spite their production in urban and industrial sites, PAHs occur at high concentra- tions in rural areas due to their persistence and ability to be transported over long distances. The aim of this investigation was to obtain information about occurrence of organic trace components in precipitation in the Seine Estuary. It was also of in- terest to investigate the spatial and temporal variability of PAHs in the bulk (wet and dry) deposition occurring in the estuary region and to estimate PAH deposition flux on watershed (urban, industrial or rural). Precipitation samples were collected at four locations in the Seine Estuary: the first is an industrial site (Le Havre), two are urban sites (Rouen, representative of urban area influenced by heavy traffic and Notre-Dame de Gravenchon, near from an industrial center) and the last one is ru- ral (Evreux). Each of the sites is located close to a meteorological station. Sam- pling is performed weekly since March 2001. In our analytical conditions, "total PAH" includes 15 compounds: naphthalene (NAP), acenaphtene (ACE), phenanthrene (PHE), anthracene (ANT), fluoranthene (FTH), pyrene (PYR), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (Bk

  2. Dynamics and role of sphingomonas/mycobacterium populations during bio-remediation of weathered PAH-contaminated soils

    International Nuclear Information System (INIS)

    Bastiaens, L.; Ryngaert, A.; Leys, N.; Van Houtven, D.; Gemoets, J.; Goethals, L.; Springael, D.

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are major soil pollutants in many industrialized countries. During the last decades, a diversity of PAH-degrading micro-organisms has been isolated, suggesting possibilities for bio-remediation. However, biodegradation of PAHs in contaminated soils is not always successful. The low bio-availability of the PAHs is the major problem, especially in weathered soils. In these soils a tightly sorbed PAH-fraction is present which is in general hardly accessible for microorganisms. In order to bio-remedy PAHs also in weathered soils, stimulation of bacteria which have special strategies to access sorbed organics may be a solution. Sphingomonas and Mycobacterium strains may represent such bacteria as (I) they are often isolated as PAH degraders, (II) they are ubiquitously present in PAH-contaminated soils, and (III) they display features which might promote bioavailability. Lab- and pilot-scale experiments were set up in order (A) to study the dynamics of indigenous Sphingomonas and Mycobacterium populations during bio-remediation, and (B) to evaluate their role in the biodegradation of the less bio-available PAH-fraction during treatment of an historic PAH polluted soil. The soil was treated under natural soil moisture conditions and slurry conditions. The experimental set-ups ranged from 2 g lab-scale test to pilot experiments in 1 ton bio-piles and dry solid reactors (50 kg 70% dry matter soil). Different additives were evaluated for stimulation of the Sphingomonas and Mycobacterium population as a strategy to improve bio-remediation of PAHs. The evolution of this microbial population was followed using culture-independent general and genus-specific PCR-based detection methods targeting the 16S rRNA genes of the eu-bacterial community, Mycobacterium or the Sphingomonas populations, respectively. During the different bio-remediation experiments that were conducted, the Mycobacterium population remained very stable, only minor

  3. Dynamics and role of sphingomonas/mycobacterium populations during bio-remediation of weathered PAH-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bastiaens, L.; Ryngaert, A.; Leys, N.; Van Houtven, D.; Gemoets, J. [Flemish Institute for Technological Research-Vito, Mol (Belgium); Goethals, L. [ENVISAN, Aalst, (Belgium); Springael, D. [Catholic University of Leuven-KUL, Leuven (Belgium)

    2005-07-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are major soil pollutants in many industrialized countries. During the last decades, a diversity of PAH-degrading micro-organisms has been isolated, suggesting possibilities for bio-remediation. However, biodegradation of PAHs in contaminated soils is not always successful. The low bio-availability of the PAHs is the major problem, especially in weathered soils. In these soils a tightly sorbed PAH-fraction is present which is in general hardly accessible for microorganisms. In order to bio-remedy PAHs also in weathered soils, stimulation of bacteria which have special strategies to access sorbed organics may be a solution. Sphingomonas and Mycobacterium strains may represent such bacteria as (I) they are often isolated as PAH degraders, (II) they are ubiquitously present in PAH-contaminated soils, and (III) they display features which might promote bioavailability. Lab- and pilot-scale experiments were set up in order (A) to study the dynamics of indigenous Sphingomonas and Mycobacterium populations during bio-remediation, and (B) to evaluate their role in the biodegradation of the less bio-available PAH-fraction during treatment of an historic PAH polluted soil. The soil was treated under natural soil moisture conditions and slurry conditions. The experimental set-ups ranged from 2 g lab-scale test to pilot experiments in 1 ton bio-piles and dry solid reactors (50 kg 70% dry matter soil). Different additives were evaluated for stimulation of the Sphingomonas and Mycobacterium population as a strategy to improve bio-remediation of PAHs. The evolution of this microbial population was followed using culture-independent general and genus-specific PCR-based detection methods targeting the 16S rRNA genes of the eu-bacterial community, Mycobacterium or the Sphingomonas populations, respectively. During the different bio-remediation experiments that were conducted, the Mycobacterium population remained very stable, only minor

  4. Source apportionment of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Palm Beach County, Florida.

    Science.gov (United States)

    Afshar-Mohajer, Nima; Wilson, Christina; Wu, Chang-Yu; Stormer, James E

    2016-04-01

    Due to concerns about adverse health effects associated with inhalation of atmospheric polycyclic aromatic hydrocarbons (PAHs), 30 ambient air samples were obtained at an air quality monitoring station in Palm Beach County, Florida, from March 2013 to March 2014. The ambient PAH concentration measurements and fractional emission rates of known sources were incorporated into a chemical mass balance model, CMB8.2, developed by EPA, to apportion contributions of three major PAH sources including preharvest sugarcane burning, mobile vehicles, and wildland fires. Strong association between the number of benzene rings and source contribution was found, and mobile vehicles were identified to be the prevailing source (contribution≥56%) for the observed PAHs concentration with lower molecular weights (four or fewer benzene rings) throughout the year. Preharvest sugarcane burning was the primary contributing source for PAHs with relatively higher molecular weights (five or more benzene rings) during the sugarcane burning season (from October to May of the next year). Source contribution of wildland fires varied among PAH compounds but was consistently lower than for sugarcane burning during the sugarcane harvest season. Determining the major sources responsible for ground-level PAHs serves as a tool to improving management strategies for PAH emitting sources and a step toward better protection of the health of residents in terms of exposure to PAHs. The results obtain insight into temporal dominance of PAH polluting sources for those residential areas located near sugarcane burning facilities and have implications beyond Palm Beach County, in areas with high concerns of PAHs and their linked sources. Source apportionment of atmospheric polycyclic hydrocarbons (PAHs) in Palm Beach County, Florida, meant to estimate contributions of major sources in PAH concentrations measured at Belle Glade City of Palm Beach County. Number of benzene rings was found to be the key parameter

  5. A directional passive air sampler for monitoring polycyclic aromatic hydrocarbons (PAHs) in air mass

    International Nuclear Information System (INIS)

    Tao, S.; Liu, Y.N.; Lang, C.; Wang, W.T.; Yuan, H.S.; Zhang, D.Y.; Qiu, W.X.; Liu, J.M.; Liu, Z.G.; Liu, S.Z.; Yi, R.; Ji, M.; Liu, X.X.

    2008-01-01

    A passive air sampler was developed for collecting polycyclic aromatic hydrocarbons (PAHs) in air mass from various directions. The airflow velocity within the sampler was assessed for its responses to ambient wind speed and direction. The sampler was examined for trapped particles, evaluated quantitatively for influence of airflow velocity and temperature on PAH uptake, examined for PAH uptake kinetics, calibrated against active sampling, and finally tested in the field. The airflow volume passing the sampler was linearly proportional to ambient wind speed and sensitive to wind direction. The uptake rate for an individual PAH was a function of airflow velocity, temperature and the octanol-air partitioning coefficient of the PAH. For all PAHs with more than two rings, the passive sampler operated in a linear uptake phase for three weeks. Different PAH concentrations were obtained in air masses from different directions in the field test. - A novel directional passive air sampler was developed and tested for monitoring PAHs in air masses from different directions

  6. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions.

    Science.gov (United States)

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T

    2015-02-01

    The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial sludges in the ambient air conditions: automotive industry.

    Science.gov (United States)

    Karaca, Gizem; Tasdemir, Yucel

    2013-01-01

    Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.

  8. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M.; Ortega-Calvo, J.J.

    2005-01-01

    contain were analyzed by gas chromatography method. Four bioassays were used to measure toxicity during bio-remediation of soil contaminated by petroleum hydrocarbons: Microtox(R) test, SOSchromotest, lettuce seed germination and sheep red blood cell (RBS) hemolysis assay. Rhizosphere remediation was found to be effective for removal of polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPHs) from soil with the use of alfalfa inoculated by the Pseudomonas stutzeri MEV-S1 strain (RU 2228952 patent) and oats inoculated by the Pseudomonas alcaligenes MEV strain (RU 2228953 patent) in vegetation and field experiments. The reduction of the TPH and PAH concentrations in soil was accompanied by the reduction of integral toxicity and genotoxicity, evaluated by bio-testing. It is conceivable, therefore, that a possible way to optimize petroleum hydrocarbons phyto-remediation is the use of selected plants and microbial inoculants with specific chemotactic affinities and bio-surfactant production. The proposed technology for soil bio-remediation with the use of integrated plant-microbial system is ecologically and toxicologically safe and economically attractive

  9. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M. [Research Centre for Toxicology and Hygienic Regulation of Biopreparations, Moscow region (Russian Federation); Ortega-Calvo, J.J. [Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla (Spain)

    2005-07-01

    contain were analyzed by gas chromatography method. Four bioassays were used to measure toxicity during bio-remediation of soil contaminated by petroleum hydrocarbons: Microtox(R) test, SOSchromotest, lettuce seed germination and sheep red blood cell (RBS) hemolysis assay. Rhizosphere remediation was found to be effective for removal of polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPHs) from soil with the use of alfalfa inoculated by the Pseudomonas stutzeri MEV-S1 strain (RU 2228952 patent) and oats inoculated by the Pseudomonas alcaligenes MEV strain (RU 2228953 patent) in vegetation and field experiments. The reduction of the TPH and PAH concentrations in soil was accompanied by the reduction of integral toxicity and genotoxicity, evaluated by bio-testing. It is conceivable, therefore, that a possible way to optimize petroleum hydrocarbons phyto-remediation is the use of selected plants and microbial inoculants with specific chemotactic affinities and bio-surfactant production. The proposed technology for soil bio-remediation with the use of integrated plant-microbial system is ecologically and toxicologically safe and economically attractive.

  10. Effects of PAH-Contaminated Soil on Rhizosphere Microbial Communities

    DEFF Research Database (Denmark)

    Pritchina, Olga; Ely, Cairn; Smets, Barth F.

    2011-01-01

    Bacterial associations with plant roots are thought to contribute to the success of phytoremediation. We tested the effect of addition of a polycyclic aromatic hydrocarbon contaminated soil on the structure of the rhizosphere microbial communities of wheat (Triticum aestivum), lettuce (Lactuca...

  11. Study and optimization of the biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) and Poly-chloro-biphenyls (PCBs) during the anaerobic and aerobic digestion of long-term contaminated urban sludge; Etude et optimisation de la biodegradation d'hydrocarbures aromatiques polycycliques (HAPs) et de polychlorobiphenyls (PCBs) au cours de la digestion anaerobie et aerobie de boues urbaines contaminees

    Energy Technology Data Exchange (ETDEWEB)

    Trably, E.

    2002-12-15

    This study deals with the behavior of PAHs and PCBs during anaerobic and aerobic digestion of long-term contaminated sludge. Initially, an analytical method of 13 PAHs in sludge was developed to PAH-monitoring in laboratory-scaled bioreactors. For this, the method was optimized and validated for its high accuracy and its high reproducibility. In order to estimate precisely the PAH and PCB biological removal performances of each reactor, it was also proposed a method of analysis of the results based on mass balance. Therefore, it was observed for the first time significant PAHs removal under methanogenic conditions. It was also shown that PAH and PCB removals were limited by the mass transfer kinetics and particularly by the reduction of solids. The anaerobic and aerobic processes were then optimized by improving the PAH diffusion with the enhancement of reactor temperature and with the addition of surfactants and solvent, such as methanol. It was highlighted the great fragility of the methanogenic ecosystems and, on the opposite, the strong potential of the aerobic ecosystem for PAHs biodegradation. Indeed, some aerobic processes were successful in decontaminating sludge significantly (at 45 deg. C or in the presence of methanol). Lastly, the PAH biodegradation was characterized partly by the monitoring of {sup 14}C-radiolabelled compounds and by the molecular identification of the methanogenic archaea species. It was suggested that some archaea microorganisms were implied in PAHs biodegradation under strict anaerobic methanogenic conditions. (author)

  12. Biomonitoring, status and source risk assessment of polycyclic aromatic hydrocarbons (PAHs) using honeybees, pine tree leaves, and propolis.

    Science.gov (United States)

    Kargar, Navid; Matin, Golnar; Matin, Amir Abbas; Buyukisik, Hasan Baha

    2017-11-01

    In this study, to identify and quantify the sources of airborne polycyclic aromatic hydrocarbons (PAHs), we gathered honeybee, pine tree leaf, and propolis samples to serve as bioindicators from five stations in the village of "Bozkoy" in the Aliaga industrial district of Izmir (Turkey) during April-May 2014. The PAH concentrations which measured by gas chromatography (GC) varied from 261.18 to 553.33 μg kg -1 dry weight (dw) in honeybee samples, 138.57-853.67 μg kg -1 dw in pine leaf samples, and 798.61-2905.53 μg kg -1 dw in propolis samples. The total PAH concentrations can be ranked as follows: propolis > pine leaves > honeybees. The ring sequence pattern was 5 > 3 > 6 > 4 > 2 for honeybees, 5 > 3 > 4 > 6 > 2 for pine leaves, and 5 > 4 > 6 > 3 > 2 for propolis. The diagnostic ratios [fluoranthene/fluoranthene + pyrene], [indeno(1,2,3-c,d)pyrene/indeno(1,2,3-c,d)pyrene + benzo(g,h,i)perylene], and [benzo(a)anthracene/benzo(a)anthracene + chrysene] indicate coal and biomass combustion to be the dominant PAH source in the study area. In biomonitoring studies of airborne PAHs based on honeybees, fluoranthene is considered to be a characteristic PAH compound. Distribution maps with different numbers of PAH rings among the sampling sites show the advantages of honeybee samples as indicators due to the honeybee's provision of a broader range of information with respect to heavier pollutants that are typically not in the gas or suspended phase for long periods of time. Our correlation, factor analysis, and principal components analysis (PCA) results indicate potential sources of PAH pollution in pine leaves and honeybees from airborne emissions, but we found propolis to be contaminated by PAHs due to the replacement of herbal sources of resins with synthetic gummy substances from paving materials (e.g., asphalt and tar leaks). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Desorption and bioremediation of hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Gray, M.R.

    1998-01-01

    A study was conducted in which the extent and pattern of contaminant biodegradation during bioremediation of four industrially-contaminated soils were examined to determine which factors control the ultimate extent of biodegradation and which limit the success of biological treatment. It was noted that although bioremediation is inexpensive and has low environmental impact, it often fails to completely remove the hydrocarbons in soils because of the complex interactions between contaminants, the soil environment, and the active microorganisms. In this study, the competency of the microorganisms in the soil to degrade the contaminants was examined. The equilibrium partitioning of the contaminants between the soil and the aqueous phase was also examined along with the transport of contaminants out of soil particles. The role of diffusion of compounds in the soil and the importance of direct contact between microorganisms and the hydrocarbons was determined. Methods for selecting suitable sites for biological treatment were also described

  14. Gas-phase polynuclear aromatic hydrocarbons (PAH) in vehicle exhaust: A method for collection and analysis

    International Nuclear Information System (INIS)

    Seigl, W.O.; Chladek, E.

    1990-01-01

    Gas-phase polynuclear aromatic hydrocarbons (PAH) are emitted at low levels in vehicle exhaust compared to other hydrocarbon emissions. A method has been developed involving the trapping of gas phase emissions on Tenax, a macrorecticular porous polymer, followed by thermal desorption onto a capillary gas chromatography column. Gas chromatography/mass spectrometry (GC/MS) was used for the chemical analysis. A detection limit of 0.05 ng was achieved for several gas-phase PAH. This high sensitivity enables the speciation and quantitation of gas-phase PAH collected from a dilution tube during standard driving (test) cycles. The method was demonstrated for the analysis of 9 PAH in the exhaust from a 1987 vehicle (with and without catalyst) during the hot start transient phase of the EPA urban dynamometer driving schedule. The PAH measured include naphthalene, 2-methyl- and 1-methylnaphthalene, biphenyl, fluorene, phenanthrene, anthracene, fluoranthene and pyrene. The four most abundant PAH observed are naphthalene, 2-methyl and 1-methylnaphthalene, and biphenyl, in that order

  15. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix.

    Science.gov (United States)

    Liu, Rui; Xiao, Nan; Wei, Shuhe; Zhao, Lixing; An, Jing

    2014-03-01

    The rhizosphere effect of a special phytoremediating species known as Fire Phoenix on the degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated, including changes of the enzymatic activity and microbial communities in rhizosphere soil. The study showed that the degradation rate of Σ8PAHs by Fire Phoenix was up to 99.40% after a 150-day culture. The activity of dehydrogenase (DHO), peroxidase (POD) and catalase (CAT) increased greatly, especially after a 60-day culture, followed by a gradual reduction with an increase in the planting time. The activity of these enzymes was strongly correlated to the higher degradation performance of Fire Phoenix growing in PAH-contaminated soils, although it was also affected by the basic characteristics of the plant species itself, such as the excessive, fibrous root systems, strong disease resistance, drought resistance, heat resistance, and resistance to barren soil. The activity of polyphenoloxidase (PPO) decreased during the whole growing period in this study, and the degradation rate of Σ8PAHs in the rhizosphere soil after having planted Fire Phoenix plants had a significant (R(2)=0.947) negative correlation with the change in the activity of PPO. Using an analysis of the microbial communities, the results indicated that the structure of microorganisms in the rhizosphere soil could be changed by planting Fire Phoenix plants, namely, there was an increase in microbial diversity compared with the unplanted soil. In addition, the primary advantage of Fire Phoenix was to promote the growth of flora genus Gordonia sp. as the major bacteria that can effectively degrade PAHs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  16. Elimination and accumulation of polycyclic aromatic hydrocarbons (PAHs) in urban stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Istenič, Daria; Arias, Carlos Alberto; Matamoros, Victor

    2011-01-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of seven wet detention ponds receiving urban stormwater were investigated. The ponds comprised traditional wet detention ponds with a permanent wet volume and a storage volume as well as ponds that were expanded...

  17. Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments: beneficial reuse

    NARCIS (Netherlands)

    Harmsen, J.; Rulkens, W.H.; Sims, R.C.; Rijtema, P.E.; Zweers, A.J.

    2007-01-01

    When applying landfarming for the remediation of contaminated soil and sediment, a fraction of the soil-bound contaminant is rapidly degraded; however, a residual concentration may remain, which slowly degrades. Degradation of polycyclic aromatic hydrocarbons (PAHs) and mineral oil can be described

  18. Sorption of polycyclic aromatic hydrocarbons (PAH) during the filtration of water samples

    International Nuclear Information System (INIS)

    Herbert, M.; Schueth, C.; Pyka, W.

    1992-01-01

    Filtration experiments were preformed for three selected polycyclic aromatic hydrocarbons (PAH-Fluorene, Fluoranthene and Benz(b)-fluoranthene) dissolved in water by varying filter materials, filter-pore sizes and filter equipment. The rate of recovery of PAH depended on the materials and methods applied. Organic filter materials showed a by far stronger sorption than inorganic materials. The losses for organic filters increased up to 100% with decreasing pore-size. The percentage loss was observed to increase with increasing octanol-water distribution coefficient (K OW ). Saturation tests revealed that the amount of water, necessary to saturate the filtration apparatus with and without filter-paper, also increased with the K OW . For BBF several liters would be necessary for saturation. It can be concluded, that the filtration of water samples, analysed for PAH, can lead to considerable errors in the analytical results, particularly for those PAH with log K OW larger than 5. (orig.)

  19. Pollution and pollution tolerance in the case of polycyclic aromatic hydrocarbons (PAH); Belastung durch Polyzyklische aromatische Kohlenwasserstoffe (PAK)

    Energy Technology Data Exchange (ETDEWEB)

    Renger, M.; Mekiffer, B. [Technische Univ. Berlin (Germany). Inst. fuer Oekologie-Bodenkunde

    1997-12-31

    The purpose of the present follow-up project was to examine the contamination with polycyclic aromatic hydrocarbons (PAH) of different anthropogenic urban soils including clay soils containing demolition waste, household waste, ash, and residues from a coking plant. A further task was to analyse, or infer from other part-projects, standard soil parameters such as organic carbon content, pH, and anion levels in order to clarify any relationships between PAH contamination and the more easily determinable soil characteristics. Furthermore, the sorption behaviour for PAH of selected anthropogenic urban soils was to be characterised by means of batch experiments. [Deutsch] Im Rahmen des Anschlussvorhabens sollte die Kontamination von anthropogenen Stadtboeden- darunter Truemmerschutt-, Hausmuell-, Asche- sowie Kokereilehmboden- durch polyzyklische aromatische Kohlenwasserstoffe (PAK) untersucht werden. Zusaetzlich sollten die bodenkundlichen Standardparameter Corg, pH-Wert, Anionengehalte und KAKpot analysiert bzw. von den anderen Teilvorhaben uebernommen werden, um Zusammenhaenge zwischen der PAK-Kontamination und relativ leicht zu bestimmenden bodenkundlichen Kennwerten klaeren zu koennen. Das Sorptionsverhalten ausgewaehlter anthropogener Stadtboeden fuer PAK sollte durch Batchversuche charakterisiert werden. (orig./SR)

  20. Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products.

    Science.gov (United States)

    Bansal, Vasudha; Kumar, Pawan; Kwon, Eilhann E; Kim, Ki-Hyun

    2017-10-13

    There is a growing need for accurate detection of trace-level PAHs in food products due to the numerous detrimental effects caused by their contamination (e.g., toxicity, carcinogenicity, and teratogenicity). This review aims to discuss the up-to-date knowledge on the measurement techniques available for PAHs contained in food or its related products. This article aims to provide a comprehensive outline on the measurement techniques of PAHs in food to help reduce their deleterious impacts on human health based on the accurate quantification. The main part of this review is dedicated to the opportunities and practical options for the treatment of various food samples and for accurate quantification of PAHs contained in those samples. Basic information regarding all available analytical measurement techniques for PAHs in food samples is also evaluated with respect to their performance in terms of quality assurance.

  1. Concentrations, input prediction and probabilistic biological risk assessment of polycyclic aromatic hydrocarbons (PAHs) along Gujarat coastline.

    Science.gov (United States)

    Gosai, Haren B; Sachaniya, Bhumi K; Dudhagara, Dushyant R; Rajpara, Rahul K; Dave, Bharti P

    2018-04-01

    A comprehensive investigation was conducted in order to assess the levels of PAHs, their input prediction and potential risks to bacterial abundance and human health along Gujarat coastline. A total of 40 sediment samples were collected at quarterly intervals within a year from two contaminated sites-Alang-Sosiya Shipbreaking Yard (ASSBRY) and Navlakhi Port (NAV), situated at Gulf of Khambhat and Gulf of Kutch, respectively. The concentration of ΣPAHs ranged from 408.00 to 54240.45 ng g -1  dw, indicating heavy pollution of PAHs at both the contaminated sites. Furthermore, isomeric ratios and principal component analysis have revealed that inputs of PAHs at both contaminated sites were mixed-pyrogenic and petrogenic. Pearson co-relation test and regression analysis have disclosed Nap, Acel and Phe as major predictors for bacterial abundance at both contaminated sites. Significantly, cancer risk assessment of the PAHs has been exercised based on incremental lifetime cancer risks. Overall, index of cancer risk of PAHs for ASSBRY and NAV ranged from 4.11 × 10 -6 -2.11 × 10 -5 and 9.08 × 10 -6 -4.50 × 10 -3 indicating higher cancer risk at NAV compared to ASSBRY. The present findings provide baseline information that may help in developing advanced bioremediation and bioleaching strategies to minimize biological risk.

  2. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Bhabananda; Sarkar, Binoy [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Mandal, Asit [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Division of Soil Biology, Indian Institute of Soil Science, Bhopal, Madhya Pradesh (India); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-11-15

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad{sup ®} 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  3. Mutagenic hazards of complex polycyclic aromatic hydrocarbon mixtures in contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, C.L.; Lambert, A.B.; Lundstedt, S.; Tysklind, M.; White, P.A. [Health Canada, Ottawa, ON (Canada). Safe Environment Program

    2008-04-15

    The objective of the present study was to evaluate hazard/risk assessment methods for complex environmental mixtures that involve a targeted, priority chemical approach based on the cumulative hazard/risk of known mixture components or analyses of sufficiently similar mixtures. Ten polycyclic aromatic hydrocarbon (PAH)-contaminated soils were separated into nonpolar and semipolar fractions, and both fractions elicited positive responses on the Salmonella reverse mutation assay. Targeted and nontargeted methods of hazard prediction routinely overestimated mutagenic activities for the nonpolar soil fractions, suggesting nonadditive interactions of PAHs in complex mixtures. This suggests that current risk assessment methods for complex mixtures may provide conservative estimates regarding soils contaminated with priority PAHs alone. Significant underestimations of total risk, however, will be obtained if the soils also contain unidentified PAHs as well as polycyclic aromatic compounds and related compounds that contribute to the total mutagenic activity. Furthermore, estimates of excess lifetime cancer risk associated with the nondietary ingestion of the PAH-contaminated soils studied here indicate that a traditional risk assessment model based on identified priority PAHs and an assumption of additivity generally underestimates the risk associated with the nonpolar soil fractions (in comparison to bioassay-derived risk estimates). Additional cancer risk may be associated with the more polar compounds that also are found at these contaminated sites and that rarely are included in the standard risk assessment methodology.

  4. Infrared absorption and emission characteristics of interstellar PAHs [Polycyclic Aromatic Hydrocarbon

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm -1 (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs

  5. Infrared absorption and emission characteristics of interstellar PAHs (Polycyclic Aromatic Hydrocarbon)

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm/sup -1/ (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs.

  6. Exposure Assessment of Polycyclic Aromatic Hydrocarbon (PAHs) in Childcare Centers of Muang, Nakhon Ratchasima

    Science.gov (United States)

    Jitlada, C.; Pentamwa, P.

    2018-03-01

    This study aims to characterize airborne polycyclic aromatic hydrocarbons (PAHs) as of particulate and vapor phases variation. The samples were collected from the childcare centers where divided into urban and rural areas in Nakhon Ratchasima Province of Thailand. The airborne samples were collected from five childcare centers during the dry season in the year 2017. The PAHs species were determined by the gas chromatography and mass spectroscopy (GS/MS) method. Results show that the total concentrations of PAHs were higher than vapor phase that both similar in urban area and rural area. The dominant PAHs compounds of both urban and rural areas were benzo(a)pyrene, benzo(a,h)anthracene and indeno(1,2,3-cd)pyrene, respectively. Furthermore, the concentrations of PAHs in municipality (urban) childcare centers were higher than rural childcare centers area of Nakhon Ratchasima province. The risks associated with exposure to PAHs were evaluated using the TEF approach. The estimated value of lifetime lung cancer risks children in urban were significantly (p < 0.05) 2 times of children in rural, thus demonstrating that exposure to PAHs at levels found at urban site may be cause potential health risks.

  7. Distribution Pattern of Polyaromatic Hydrocarbons (PAHs) in Soils in ...

    African Journals Online (AJOL)

    Michael Horsfall

    result in mild toxic effects or mortality depending upon exposure. ... are done through underground tanks and pipes respectively. .... to high vapour pressure and Henry's law constant of .... hydrocarbons in motor vehicle fuels and exhaust.

  8. Optimizing contaminant desorption and bioavailability in dense slurry systems. 2. PAH bioavailability and rates of degradation.

    Science.gov (United States)

    Kim, Han S; Weber, Walter J

    2005-04-01

    The effects of mechanical mixing on rates of polycyclic aromatic hydrocarbon (PAH) biodegradation in dense geosorbent slurry (67% solids content, w/w) systems were evaluated using laboratory-scale intermittently mixed batch bioreactors. A PAH-contaminated soil and a phenanthrene-sorbed mineral sorbent (alpha-Al2O3) were respectively employed as slurry solids in aerobic and anaerobic biodegradation studies. Both slurries exhibited a characteristic behavior of pseudoplastic non-Newtonian fluids, and the impeller revolution rate and its diameter had dramatic impacts on power and torque requirements in their laminar flow mixing. Rates of phenanthrene biodegradation were markedly enhanced by relatively low-level auger mixing under both aerobic and anaerobic (denitrifying) conditions. Parameters for empirical models correlating biodegradation rate coefficient (k(b)) values to the degree of mixing were similar to those for correlations between mass transfer (desorption) rate coefficient (k(r)) values for rapidly desorbing fractions of soil organic matter and degree of mixing reported in a companion study, supporting a conclusion that performance-efficient and cost-effective enhancements of PAH mass transfer (desorption) and its biodegradation processes can be achieved by the introduction of optimal levels of reactor-scale mechanical mixing.

  9. Dry Deposition of Polycyclic Aromatic Hydrocarbons (PAHs) at a Suburban Site in Beijing, China

    Science.gov (United States)

    Zhang, Xincheng; Wang, Weiyu; Zhu, Xianlei

    2017-04-01

    A great amount of polycyclic aromatic hydrocarbons (PAHs) have been generated by industrial production, waste incineration and landfill, traffic and road dust etc. They are emitted into atmosphere and afterwards enter into water body and soil through deposition, resulting in wide distribution of PAHs in environment. However, the dry deposition of PAHs from atmosphere has not been well studied, especially in the aspects of its characteristics, environmental and health effects, sources and mechanism. This study measured PAHs dry deposition in the northwest suburban area of Beijing. Dry deposition samples (i.e. dustfall samples) were collected at the sampling site located in China University of Petroleum - Beijing in 2012-2016. And PAHs in the samples were determined by GC/MS. The dry deposition flux of 16 US EPA priority PAHsPAH16) was 2.58 μg/(m^2·d), which was lower than those in other regions of North China. Its seasonal variability was more significant than annual variability (p spring > autumn > summer. The amount of ΣPAH16 removed from the atmosphere by dry deposition process accounted for only 1.2% of their emissions, indicating that the atmosphere self-purification capacity was quite limited and emission reduction measures would play a key role in controlling PAHs air pollution. However, PAHs dry deposition would deteriorate soil quality since the content of ΣPAH16 in dustfall was 1-2 orders of magnitude higher than that in soil in the same area. Dermal exposure resulting from PAHs dry deposition was not the major route. The sources of PAHs dry deposition varied with seasons. The profile and specific ratios of PAHs showed that in winter, domestic coal combustion was the main source of PAHs with the contribution up to 77%; in spring and summer, the impact of coal combustion decreased and the contribution of vehicle exhaust increased to 30% - 45%; in fall, in addition to coal combustion and vehicle exhaust, the impact of biomass burning was observed

  10. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China.

    Science.gov (United States)

    Li, J; Zhang, G; Li, X D; Qi, S H; Liu, G Q; Peng, X Z

    2006-02-15

    Mega-cities are large sources of air pollution on a regional base. Differences in energy structures, geographical settings and regional climate features lead to a large variety of air pollution sources from place to place. To understand the seasonality of air pollution sources is critical to precise emission inventories and a sound protection of human health. Based on a year-round dataset, the sources of PAHs in the air of Guangzhou were drawn by principal factor analysis (PCA) in combination with diagnostic ratios, and the seasonality of these sources were analyzed by PCA/MLR (multiple linear regressions) and discussed. The average total gaseous and particulate PAHs concentrations were 313 and 23.7 ng m(-3), respectively, with a higher concentration of vapor PAHs in summer and particulate PAHs in winter. In addition to vehicle exhaust, which contributed 69% of the particulate PAHs, coal combustion was still an important source and contributed 31% of the particulate PAHs. Relatively constant contribution from coal combustion was found through the year, implying that coal combustion in power plants was not a seasonally dependent source. Evaporation from contaminated ground may be an important source of light PAHs in summer, providing an average contribution of 68% to the total PAHs in this study. By comparing the PAH concentrations and meteorological parameters, we found that higher concentrations of particulate PAHs in winter resulted from enhanced vehicle exhaust under low temperature and accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. It is suggested that the typical subtropical monsoon climate in South China, cool and dry in winter, hot and humid in summer, may play a key role in controlling the source seasonality (by enhancing vehicle exhaust in winter, ground evaporation in summer), and hence the ambient concentrations of PAHs in the air.

  11. Mobile sources of polycyclic aromatic hydrocarbons (PAH) and nitro-PAH: Results of samples collected in a roadway tunnel

    International Nuclear Information System (INIS)

    Benner, B.A. Jr.; Gordon, G.E.; Wise, S.A.

    1987-01-01

    A recent review article emphasized the need for further characterizations of the carbonaceous fraction of mobile source emissions, particularly with the impending removal of lead alkyl octane boosters and bromine-containing lead scavengers from regular leaded gasolines. The lead and bromine emitted from the combustion of these fuels have been used as tracers of mobile source emissions for a number of years. Single vehicle emission studies have shed light on the relationship between engine operating parameters and the chemical characteristics of the emissions but they are not suitable for use in source apportionment studies which require emission data from a large number of different vehicles. Air particulate samples collected near a busy highway or in a roadway tunnel would be more appropriate for use in estimating the mobile source contribution of organic compounds to a region. Suspended particle samples collected in a heavily-travelled roadway tunnel (Baltimore Harbor Tunnel, Baltimore, Maryland) were characterized for polycyclic aromatic hydrocarbons (PAH) and some nitro-PAH by gas and liquid chromatographic techniques. These samples included those collected on Teflon filters and on glass fiber filters for investigating any differences in samples collected on an inert (Teflon) and more reactive (glass-fiber) medium. All samples collected on Teflon were backed-up with polyurethane foam plugs (PUF) which trapped any inherent vapor-phase PAH as well as any compounds ''blown-off'' the particles during collection

  12. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  13. Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Man, Yu Bon [School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 311300 (China); State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Kang, Yuan [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Higher Education Mega Center, Guangzhou 510006 (China); Wang, Hong Sheng [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Lau, Winifred; Li, Hui; Sun, Xiao Lin [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Giesy, John P. [Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR (China); Chow, Ka Lai [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Wong, Ming Hung, E-mail: mhwong@hkbu.edu.hk [School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 311300 (China); State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China)

    2013-10-15

    Highlights: ► High levels of soil organic matter in soils render PAHs more resistant to degradation. ► Open burning site contain high concentrations of PAHs in Hong Kong. ► Car dismantling workshop can increase potential cancer risk on human. -- Abstract: The aim of this study was to evaluate soils from 12 different land use types on human cancer risks, with the main focus being on human cancer risks related to polycyclic aromatic hydrocarbons (PAHs). Fifty-five locations were selected to represent 12 different types of land use (electronic waste dismantling workshop (EW (DW)); open burning site (OBS); car dismantling workshop (CDW) etc.). The total concentrations of 16 PAHs in terms of total burden and their bioaccessibility were analysed using GC/MS. The PAHs concentrations were subsequently used to establish cancer risks in humans via three exposure pathways, namely, accident ingestion of soil, dermal contact soil and inhalation of soil particles. When the 95th centile values of total PAH concentrations were used to derive ingestion and dermal cancer risk probabilities on humans, the CDW land use type indicated a moderate potential for cancerous development (244 × 10{sup −6} and 209 × 10{sup −6}, respectively). Bioaccessible PAHs content in soil samples from CDW (3.60 × 10{sup −6}) were also classified as low cancer risk. CDW soil possessed a higher carcinogenic risk based on PAH concentrations. Bioremediation is recommended to treat the contaminated soil.

  14. Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Man, Yu Bon; Kang, Yuan; Wang, Hong Sheng; Lau, Winifred; Li, Hui; Sun, Xiao Lin; Giesy, John P.; Chow, Ka Lai; Wong, Ming Hung

    2013-01-01

    Highlights: ► High levels of soil organic matter in soils render PAHs more resistant to degradation. ► Open burning site contain high concentrations of PAHs in Hong Kong. ► Car dismantling workshop can increase potential cancer risk on human. -- Abstract: The aim of this study was to evaluate soils from 12 different land use types on human cancer risks, with the main focus being on human cancer risks related to polycyclic aromatic hydrocarbons (PAHs). Fifty-five locations were selected to represent 12 different types of land use (electronic waste dismantling workshop (EW (DW)); open burning site (OBS); car dismantling workshop (CDW) etc.). The total concentrations of 16 PAHs in terms of total burden and their bioaccessibility were analysed using GC/MS. The PAHs concentrations were subsequently used to establish cancer risks in humans via three exposure pathways, namely, accident ingestion of soil, dermal contact soil and inhalation of soil particles. When the 95th centile values of total PAH concentrations were used to derive ingestion and dermal cancer risk probabilities on humans, the CDW land use type indicated a moderate potential for cancerous development (244 × 10 −6 and 209 × 10 −6 , respectively). Bioaccessible PAHs content in soil samples from CDW (3.60 × 10 −6 ) were also classified as low cancer risk. CDW soil possessed a higher carcinogenic risk based on PAH concentrations. Bioremediation is recommended to treat the contaminated soil

  15. PAHs contamination in urban soils from Lisbon: spatial variability and potential risks

    Science.gov (United States)

    Cachada, Anabela; Pereira, Ruth; Ferreira da Silva, Eduardo; Duarte, Armando

    2015-04-01

    Polycyclic Aromatic hydrocarbons (PAHs) can become major contaminants in urban and industrial areas, due to the existence of a plethora of diffuse and point sources. Particularly diffuse pollution, which is normally characterized by continuous and long-term emission of contaminants below risk levels, can be a major problem in urban areas. Since PAHs are persistent and tend to accumulate in soils, levels are often above the recommended guidelines indicating that ecological functions of soils may be affected. Moreover, due to the lipophilic nature, hydrophobicity and low chemical and biological degradation rates of PAHs, which leads to their bioconcentration and bioamplification, they may reach toxicological relevant concentrations in organisms. The importance and interest of studying this group of contaminants is magnified due to their carcinogenic, mutagenic and endocrine disrupting effects. In this study, a risk assessment framework has been followed in order to evaluate the potential hazards posed by the presence of PAHs in Lisbon urban soils. Hence, the first step consisted in screening the total concentrations of PAHs followed by the calculation of risks based on existing models. Considering these models several samples were identified as representing a potential risk when comparing with the guidelines for soil protection. Moreover, it was found that for 38% of samples more than 50% of species can be potentially affected by the mixture of PAHs. The use of geostatistical methods allowed to visualize the predicted distribution of PAHs in Lisbon area and identify the areas where possible risk to the environment are likely occurring However, it is known that total concentration may not allow a direct prediction of environmental risk, since in general only a fraction of total concentration is available for partitioning between soil and solution and thus to be uptake or transformed by organisms (bioacessible or bioavailable) or to be leached to groundwater. The

  16. Polycyclic aromatic hydrocarbons (PAHs in the atmospheres of two French alpine valleys: sources and temporal patterns

    Directory of Open Access Journals (Sweden)

    N. Marchand

    2004-01-01

    Full Text Available Alpine valleys represent some of the most important crossroads for international heavy-duty traffic in Europe, but the full impact of this traffic on air quality is not known due to a lack of data concerning these complex systems. As part of the program "Pollution des Vallées Alpines" (POVA, we performed two sampling surveys of polycyclic aromatic hydrocarbons (PAHs in two sensitive valleys: the Chamonix and Maurienne Valleys, between France and Italy. Sampling campaigns were performed during the summer of 2000 and the winter of 2001, with both periods taking place during the closure of the "Tunnel du Mont-Blanc". The first objective of this paper is to describe the relations between PAH concentrations, external parameters (sampling site localization, meteorological parameters, sources, and aerosol characteristics, including its carbonaceous fraction (OC and EC. The second objective is to study the capacity of PAH profiles to accurately distinguish the different emission sources. Temporal evolution of the relative concentration of an individual PAH (CHR and the PAH groups BghiP+COR and BbF+BkF is studied in order to differentiate wood combustion, gasoline, and diesel emissions, respectively. The results show that the total particulate PAH concentrations were higher in the Chamonix valley during both seasons, despite the cessation of international traffic. Seasonal cycles, with higher concentrations in winter, are also stronger in this valley. During winter, particulate PAH concentration can reach very high levels (up to 155 ng.m-3 in this valley during cold anticyclonic periods. The examination of sources shows the impact during summer of heavy-duty traffic in the Maurienne valley and of gasoline vehicles in the Chamonix valley. During winter, Chamonix is characterized by the strong influence of wood combustion in residential fireplaces, even if the temporal evolution of specific PAH ratios are difficult to interpret. Information on sources

  17. Sediment-porewater partition of polycyclic aromatic hydrocarbons (PAHs) from Lanzhou Reach of Yellow River, China

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yong [Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Xu Jian, E-mail: xujian@nankai.edu.cn [Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Wang Ping; Sun Hongwen; Dai Shugui [Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2009-06-15

    Pollution of polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment has drawn much attention around the world. The occurrence of 16 priority PAHs in the sediments and corresponding porewaters in Lanzhou Reach of Yellow River, China, and their partitioning behavior between the two phases were investigated. The results demonstrated that the total PAH levels in the sediments were positively correlated with the sediment clay contents (R{sup 2} = 0.756). Concentrations of total PAHs in porewaters ranged from 48.2 to 206 {mu}g/L, and indeno[1,2,3-cd]pyrene (InP) was the most abundant compound measured in the porewater samples with a mean value of 42.9 {mu}g/L. The compositions of PAHs in porewaters were dominated by their compositions in the sediment samples. The in situ organic carbon normalized partition coefficients (logK{sub oc}{sup '}) of the PAHs between sediments and porewaters were significantly correlated with their octanol-water partition coefficients (log K{sub ow}) when log K{sub ow} values were less than 5.5 (naphthalene (Nap) excluded). logK{sub oc}{sup '} values of 14 PAHs were lower than those predicted by the Karickhoff relationship. This discrepancy was largest for InP, dibenzo[a,h]anthracene (DBA), and benzo[ghi]perylene (BgP). The results in present study showed the tendency of PAHs release from sediment to porewater, indicating that PAHs sequestered in the sediments may be a pollution source to aquatic ecosystem.

  18. Distribution and fate of polycyclic aromatic hydrocarbons (PAHs in recent sediments from the Gulf of Gdańsk (SE Baltic

    Directory of Open Access Journals (Sweden)

    Ludwik Lubecki

    2010-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs were determined in recent (0-10 cm sediments from the Gulf of Gdańsk during 2003-07 andcorrelated with environmental parameters. Located in the south-eastern part of the Baltic and receiving the waters of the River Wisła(Vistula, this area of negligible tides and strong anthropogenic stress, highly eutrophic as a consequence, is an exceptionalmodel basin for studying the fate of hydrophobic organic contaminants introduced to the sea. Environmental conditions determine thedistribution and composition patterns of parent PAHs in Gulf of Gdańsk sediments. PAHs were associated mainly with fine particlesediments, rich in organic carbon, with hypoxia/anoxia near the bottom. The highest PAH contents were found in the Gdańsk Deep(ca 110 m, where the mean concentration of Σ12PAHs was ~3600 ng g-1, and no distinct temporal trend was observed.Lighter PAHs were found to be depleted in deeper regions. It was estimated that the Wisła discharges ~50% of the total PAH load deposited in recent Gulf sediments.

  19. Identification of petroleum hydrocarbons using a reduced number of PAHs selected by Procrustes rotation.

    Science.gov (United States)

    Fernández-Varela, R; Andrade, J M; Muniategui, S; Prada, D; Ramírez-Villalobos, F

    2010-04-01

    Identifying petroleum-related products released into the environment is a complex and difficult task. To achieve this, polycyclic aromatic hydrocarbons (PAHs) are of outstanding importance nowadays. Despite traditional quantitative fingerprinting uses straightforward univariate statistical analyses to differentiate among oils and to assess their sources, a multivariate strategy based on Procrustes rotation (PR) was applied in this paper. The aim of PR is to select a reduced subset of PAHs still capable of performing a satisfactory identification of petroleum-related hydrocarbons. PR selected two subsets of three (C(2)-naphthalene, C(2)-dibenzothiophene and C(2)-phenanthrene) and five (C(1)-decahidronaphthalene, naphthalene, C(2)-phenanthrene, C(3)-phenanthrene and C(2)-fluoranthene) PAHs for each of the two datasets studied here. The classification abilities of each subset of PAHs were tested using principal components analysis, hierarchical cluster analysis and Kohonen neural networks and it was demonstrated that they unraveled the same patterns as the overall set of PAHs. (c) 2009 Elsevier Ltd. All rights reserved.

  20. Relationship between polycyclic aromatic hydrocarbons (PAHs) and particle size in dated core sediments in Lake Lianhuan, Northeast China

    International Nuclear Information System (INIS)

    Sun, Li; Zang, Shuying

    2013-01-01

    Atmospheric particle associated with pyrogenic polycyclic aromatic hydrocarbons (PAHs) poses serious threats to human health by inhalation exposure, especially in semiarid areas. Hence, the distributions of PAHs and particle size in two core sediments collected from Lake Lianhuan, Northeast China were studied. The sediments were dated radiometrically, and particle size distribution and PAH concentration were evaluated and potential human health risk was assessed. From 1980 to 2007, the dominant PAHs in the two cores were 2- and 3-ring PAHs, and the concentrations of 3–6 ring PAHs gradually increased from the early 1990s. Diagnostic ratios indicated that pyrogenic PAHs were the main sources of PAHs which changed over time from combustions of wood and coal to liquid fossil fuel sources. Fine particles ( 125 μm were found. Future research should focus on the seven carcinogenic pyrogenic PAHs due to a rapidly increasing trend since 1995 based on the assessment of toxic equivalency factors. - Highlights: • PAHs and particle size in core sediments were used to evaluate the role of eolian particles in delivering pyrogenic PAHs. • Changes of PAH sources closely followed local historical socioeconomic development since 1980s. • Changes of particulate sources from eolian to lacustrine reflected the evolving history of the lake. • Significant correlations between pyrogenic PAHs and eolian particles indicated potential risk from inhalation exposure. • Petroleum source PAHs are likely to stick to coarse particles and accumulate in lake sediments by surface runoff

  1. Polycyclic Aromatic Hydrocarbons (PAHs) Mediate Transcriptional Activation of the ATP Binding Cassette Transporter ABCB6 Gene via the Aryl Hydrocarbon Receptor (AhR)*

    Science.gov (United States)

    Chavan, Hemantkumar; Krishnamurthy, Partha

    2012-01-01

    Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics. PMID:22761424

  2. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars.

    Science.gov (United States)

    Zielińska, Anna; Oleszczuk, Patryk

    2016-06-01

    The aim of this study was to evaluate the effect of sewage sludge pyrolysis on freely dissolved (Cfree) polycyclic aromatic hydrocarbon (PAH) contents in biochars. Four sewage sludges with varying properties and PAH contents were pyrolysed at temperatures of 500 °C, 600 °C or 700 °C. Cfree PAH contents were determined using polyoxymethylene (POM). The contents of Cfree PAHs in the sludges ranged from 262 to 294 ng L(-1). Sewage sludge-derived biochars have from 2.3- to 3.4-times lower Cfree PAH contents comparing to corresponding sewage sludges. The Cfree PAH contents in the biochars ranged between 81 ng L(-1) and 126 ng L(-1). As regards agricultural use of biochar, the lower contents of Cfree PAHs in the biochars compared to the sewage sludges makes biochar a safer material than sewage sludge in terms of PAH contents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Enhanced thermal conduction -- An alternative solution for removing a broad range of hydrocarbons from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bova, J.C.

    1999-07-01

    This paper presents an overview of Enhanced Thermal Conduction (ETC), an ex-situ soil remediation process. A review of a practical demonstration of this process which was conducted by Woodward-Clyde Consultants to determine the capability of the technology for remediating soils from gasworks sites that have been contaminated with petroleum hydrocarbons, polynuclear hydrocarbons (PAHs) and cyanide is also presented in this paper. Projections for using this process to treat soils contaminated with other hazardous materials such as TCE PCE and PCB's are discussed as well.

  4. Rapid collection, detection, and assessment of environmental polycyclic aromatic hydrocarbons (PAHs)

    International Nuclear Information System (INIS)

    Johnson, T.; Huckins, J.; Petty, J.; Butorin, A.

    1995-01-01

    PAHs, an important class of environmental chemical contaminants found primarily in petroleum and coal products, frequently are the most numerous and ubiquitous organic pollutants recovered in sediment residues. PAHs are considered hazardous in water and soil because many are acutely toxic and have the potential for genotoxic activity. Selected EPA priority pollutants (2, 3, 4, and 5-ring PAHs) and complex PAH mixtures (crude oil, gasoline, and recycled motor oil) were collected and concentrated from water and sediment with semipermeable polymeric membrane devices (SPMDs) that contain a thin film of triolein. Analytes were extracted from the SPMDs by dialysis in hexane or directly by rinsing with acetone DMSO, concentrated in the carrier solvent DMSO, and detected with the luminescent bacterial assays Microtox reg-sign and Mutatox reg-sign. High SPMD-water concentration factors of PAHs appeared to correspond closely to the occurrence of PAHs in sediments previously reported in the literature; for example, pyrene had the highest SPMD concentration factor and was the most commonly found PAH in sediment residues. Mutatox reg-sign with rat hepatic S9 activation detected all PAHs tested. The PAH's molecular weight and number of rings appeared to directly influence acute toxicity (EC50, microg/mL); for example, two-ring naphthalene had an EC50 value of 0.78 whereas five-ring benzo(a)pyrene had an EC50 value of 15.0, about a twenty-fold difference, Microtox reg-sign and Mutatox reg-sign, in combination with SPMDs were able to rapidly (< 24h) assess the bioavailability, toxicity, and genotoxicity of these environmental PAHs

  5. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil

    Energy Technology Data Exchange (ETDEWEB)

    Zakia D. Parrish; M. Katherine Banks; A. Paul Schwab [Connecticut Agricultural Experiment Station, New Haven, CT (United States). Department of Soil and Water

    2005-09-15

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs. The lability of sorbed contaminants is modified by the presence of plants. Remediation coupled with plant treatment can change the bioavailability of contaminants in soil.

  6. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Zakia D. [Department of Soil and Water, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511 (United States); Banks, M. Katherine [School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States)]. E-mail: kbanks@ecn.purdue.edu; Schwab, A. Paul [Department of Agronomy, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054 (United States)

    2005-09-15

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs. - The lability of sorbed contaminants is modified by the presence of plants. Remediation coupled with plant treatment can change the bioavailability of contaminants in soil.

  7. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil

    International Nuclear Information System (INIS)

    Parrish, Zakia D.; Banks, M. Katherine; Schwab, A. Paul

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs. - The lability of sorbed contaminants is modified by the presence of plants. Remediation coupled with plant treatment can change the bioavailability of contaminants in soil

  8. Polycyclic Aromatic Hydrocarbons (PAHs) Content in Cattle Hides ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Vol. 21 (6) 1105-1110. Full-text Available Online at www.ajol.info and ... Keywords: Cattle hide, meat, tyre, singeing, hydrocarbons ... on the substance used as fuel for meat processing. .... through the centrifuge at 200 rpm for 5 min. The.

  9. Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau.

    Science.gov (United States)

    Yang, Ruiqiang; Xie, Ting; Li, An; Yang, Handong; Turner, Simon; Wu, Guangjian; Jing, Chuanyong

    2016-07-01

    Sediment cores from five lakes across the Tibetan Plateau were used as natural archives to study the time trends of polycyclic aromatic hydrocarbons (PAHs). The depositional flux of PAHs generally showed an increasing trend from the deeper layers towards the upper layer sediments. The fluxes of PAHs were low with little variability before the 1950s, and then gradually increased to the late 1980s, with a faster increasing rate after the 1990s. This temporal pattern is clearly different compared with those remote lakes across the European mountains when PAHs started to decrease during the period 1960s-1980s. The difference of the temporal trend was attributed to differences in the economic development stages and energy structure between these regions. PAHs are dominated by the lighter 2&3-ring homologues with the averaged percentage over 87%, while it is notable that the percentage of heavier 4-6 ring PAHs generally increased in recent years, which suggests the contribution of local high-temperature combustion sources becoming more predominant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Characterization of polycyclic aromatic hydrocarbons (PAH's) present in sampled cooked food

    International Nuclear Information System (INIS)

    Palm Naa-Dedei, L.M.

    2010-07-01

    The study was conducted to determine the levels of Polycyclic Aromatic Hydrocarbons in the following traditionally prepared food: smoked and grilled Scomba japonicus, grilled meat (khebab) and bread sampled from some Ghanaian markets. By way of preparation of traditional food, some food comes into direct contact with smoke or extremely high temperature which are potential sources of Polycyclic Aromatic Hydrocarbon generation. Levels of 20 individual Polycyclic Aromatic Hydrocarbons including acenaphthene, acenaphtyelene, anthanthrene, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(e)pyrene, benzo(ghi)perylene, benzo(j)fluoranthene, benzo(k)fluoranthene, chrysene, cyclopenta(cd)pyrene, dibenzo(ah)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene and pyrene were determined in 11 smoked and 5 grilled fish, 4 grilled pieces of meat and 3 loaves of baked bread using gas chromatographic techniques with flame ionization detector. Benzo(a)pyrene, which is one of the few PAH for which a legal limit exists in different types of food matrices and other high molecular weight PAHs suspected to be carcinogenic have been detected in high concentrations in most samples. Bread samples gave mean polycyclic aromatic hydrocarbon concentrations of up to 20.39 μg/kg while khebab samples gave mean polycyclicaromatic hydrocarbon concentrations of up to 67.61 μg/kg. There was positive correlation of 0.987 between levels of polycyclic aromatic hydrocarbon concentrations in khebab samples from locations Osu and Atomic down. There was a positive correlation in the concentrations of the high molecular weight PAHs in all smoked fishes from four locations with values between 0.954 and 0.999 for the correlation between any two groups. The polycyclic aromatic hydrocarbon concentration determined in smoked fish samples deceased in terms of location according to the order Winneba > Madina > Chorkor > Ada.

  11. The use of polynuclear aromatic hydrocarbon (PAH) alkyl homologues in determining petroleum source identification and weathering

    International Nuclear Information System (INIS)

    Brown, J.S.; Boehm, P.D.; Sauer, T.C.; Wong, W.M.C.

    1993-01-01

    Techniques utilizing double ratio plots of selected polynuclear aromatic hydrocarbon (PAH) alkyl homologues were used to identify and distinguish crude oils and refined petroleum products from each other and to distinguish petroleum sources in complex pollutant regimes. Petroleum samples were fractionated by high performance liquid chromatography (HPLC) into saturated and aromatic (PAH) hydrocarbon fractions. The saturated hydrocarbon fractions were then analyzed by gas chromatography/flame ionization detection (GC/FID) to obtain a resolved/unresolved alkane fingerprint of each oil. The aromatic fractions of the oils were analyzed by gas chromatography/mass spectrometry (GC/MS) for PAH and selected alkyl homologues. Comparisons of the saturated hydrocarbon fingerprints indicated that some oils were indistinguishable based on the alkane fingerprint alone. Another double ratio plot of the alkyl chrysenes and alkyl dibenzothiophenes was effective in establishing the weathering of oil in environmental samples which were processed using the same analytical techniques, since the dibenzothiophenes are degraded more rapidly than the chrysenes. The application of selected ratios in oil spill source identification in complex environmental samples from Suisin Bay California and Boston Harbor are discussed. The use of ratios to measure the extent of weathering in oil spill samples from Prince William Sound and the Gulf of Alaska is examined

  12. Identification of anthraquinone-degrading bacteria in soil contaminated with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rodgers-Vieira, Elyse A; Zhang, Zhenfa; Adrion, Alden C; Gold, Avram; Aitken, Michael D

    2015-06-01

    Quinones and other oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are toxic and/or genotoxic compounds observed to be cocontaminants at PAH-contaminated sites, but their formation and fate in contaminated environmental systems have not been well studied. Anthracene-9,10-dione (anthraquinone) has been found in most PAH-contaminated soils and sediments that have been analyzed for oxy-PAHs. However, little is known about the biodegradation of oxy-PAHs, and no bacterial isolates have been described that are capable of growing on or degrading anthraquinone. PAH-degrading Mycobacterium spp. are the only organisms that have been investigated to date for metabolism of a PAH quinone, 4,5-pyrenequinone. We utilized DNA-based stable-isotope probing (SIP) with [U-(13)C]anthraquinone to identify bacteria associated with anthraquinone degradation in PAH-contaminated soil from a former manufactured-gas plant site both before and after treatment in a laboratory-scale bioreactor. SIP with [U-(13)C]anthracene was also performed to assess whether bacteria capable of growing on anthracene are the same as those identified to grow on anthraquinone. Organisms closely related to Sphingomonas were the most predominant among the organisms associated with anthraquinone degradation in bioreactor-treated soil, while organisms in the genus Phenylobacterium comprised the majority of anthraquinone degraders in the untreated soil. Bacteria associated with anthracene degradation differed from those responsible for anthraquinone degradation. These results suggest that Sphingomonas and Phenylobacterium species are associated with anthraquinone degradation and that anthracene-degrading organisms may not possess mechanisms to grow on anthraquinone. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Health risk assessment and dietary exposure of polycyclic aromatic hydrocarbons (PAHs), lead and cadmium from bread consumed in Nigeria.

    Science.gov (United States)

    Udowelle, Nnaemeka Arinze; Igweze, Zelinjo Nkeiruka; Asomugha, Rose Ngozi; Orisakwe, Orish Ebere

    A risk assessment and dietary exposure to polycyclic aromatic hydrocarbons (PAHs), lead and cadmium from bread, a common food consumed in Nigeria. Sixty samples of bread were collected from different types of bakeries where the heat is generated by wood (42 samples) or by electricity (18 samples) from twenty bakeries located in Gusau Zamfara (B1- B14) and Port Harcourt Rivers States (B15-B20) in Nigeria. PAHs in bread were determined by gas chromatography. Lead and cadmium were determined using atomic absorption spectrophotometry. Non-carcinogenic PAHs pyrene (13.72 μg/kg) and genotoxic PAHs (PAH8), benzo[a]anthracene (9.13 μg/ kg) were at the highest concentrations. Total benzo[a]pyrene concentration of 6.7 μg/kg was detected in 100% of tested samples. Dietary intake of total PAHs ranged between 0.004-0.063 μg/kg bw. day-1 (children), 0.002-0.028 μg/kg day-1 (adolescents), 0.01-0.017 μg/kg day-1 (male), 0.002-0.027 μg/kg day-1 (female), and 0.002-0.025 μg/kg day-1 (seniors). The Target Hazard Quotient (THQ) for Pb and Cd were below 1. Lead ranged from 0.01-0.071 mg/kg with 10.85 and 100% of bread samples violating the permissible limit set by USEPA, WHO and EU respectively. Cadmium ranged from 0.01-0.03 mg/kg, with all bread samples below the permissible limits as set by US EPA, JECFA and EU. The daily intake of Pb and Cd ranged from 0.03-0.23 μg/kg bw day-1 and 0.033-0.36 μg/kg bw day-1 respectively. Incremental lifetime cancer risk (ILCR) was 3.8 x 10-7. The levels of these contaminants in bread if not controlled might present a possible route of exposure to heavy metals and PAHs additional to the body burden from other sources.

  14. Occurrence of polycyclic aromatic hydrocarbons (PAHs in beached plastic pellets from Mumbai coast, India

    Directory of Open Access Journals (Sweden)

    HB Jayasiri

    2014-06-01

    Full Text Available PAHs are a class of ubiquitous pollutants which consist of two or more fused benzene rings in various arrangements. A number of PAH compounds are known carcinogens and bioaccumulate and biomagnify. These compounds originate naturally as well as anthropogenically through oil spills, incineration of waste and combustion of fossil fuels and wood. The environmental consequence of Plastic pellets is the sorption organic pollutants on their surface from the sea surface microlayer (SML where the hydrophobic contaminants are known to be enriched. The plastic pellets were collected along the recent high tide line from four beaches of Mumbai coast bimonthly during May 2011 - March 2012. A total of 72 pools of plastic pellets were extracted, fractionated and analysed by Gas Chromatograph coupled to a mass spectrometer to evaluate the extent and sources of 16 PAHs. The mean ΣPAH concentration in pellets was 9202.30±114.89 ng g-1 with a wide range (35.4-46191.58 ng g-1. The concentration of fluorene was found to be the highest (1606.30±251.54 ng g-1 followed by anthracene, chrysene and phenanthrene. The ΣPAH concentration was significantly varied among months and there was no significant difference among sites at  p=0.05. The 2-3 aromatic ring compounds accounted for 60% of the total PAHs in pellets of Mumbai coast while 4 rings and 5-6 rings compounds accounted for 26 and 14%, respectively. The ratio of low and high molecular weight PAHs indicated that the contamination by petrogenic sources was predominant over the pyrogenic ones in plastic pellets suggesting oil pollution in coastal area of Mumbai.Keywords: plastic pellets, PAHs, Mumbai, sources

  15. Adsorption of Polycyclic Aromatic Hydrocarbons (PAHS from Aqueous Solutions on Different Sorbents

    Directory of Open Access Journals (Sweden)

    Smol Marzena

    2014-12-01

    Full Text Available This paper presents the results of the possibility and effectiveness of PAHs removal from a model aqueous solution, during the sorption on the selected sorbents. Six PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene listed by EPA for the analysis in the environmental samples were determined. Model aqueous solution was prepared with RESTEK 610 mix PAHs standard. After the sorption process, decrease in the concentration of individual hydrocarbons was observed. The removal percentage was dependent on the type of sorbent (quartz sand, mineral sorbent, activated carbon. The highest efficiency (98.1% was observed for activated carbon.. The results shows that the sorption processes can be used in aqueous solutions treatment procedures.

  16. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry

    Science.gov (United States)

    Lung, Shih-Chun Candice; Liu, Chun-Hu

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are ubiquitous in the environment. Some of them are probable carcinogens and some are source markers. This work presents an ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) method for simultaneous analysis of 20 PAHs and nine nitro-PAHs. These compounds are separated in 15 minutes in the positive mode and 11 minutes in the negative mode, one half of GC/MS analysis time. Two pairs of precursor/product ions are offered, which is essential for confirmation. This method separates and quantifies benzo[a]pyrene (the most toxic PAHs) and non-priority benzo[e]pyrene (isomers, little toxicity) to avoid overestimation of toxin levels, demonstrating its importance for health-related researches. With 0.5% 2,4-difluoroanisole in chlorobenzene as the dopant, limits of detection of PAHs except acenaphthylene and those of nitro-PAHs except 2-nitrofluoranthene are below 10 pg and 3 pg, respectively, mostly lower than or comparable to those reported using LC-related systems. The responses were linear over two orders of magnitude with fairly good accuracy and precision. Certified reference materials and real aerosol samples were analyzed to demonstrate its applicability. This fast, sensitive, and reliable method is the first UHPLC-APPI-MS/MS method capable of simultaneously analyzing 29 environmentally and toxicologically important PAHs and nitro-PAHs. PMID:26265155

  17. Ranking harbours in the maritime provinces of Canada for potential to contaminate American lobster (Homarus americanus) with polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Prouse, N.J.

    1994-01-01

    Polycyclic aromatic hydrocarbons (PAHs) comprise a suite of contaminants that enter the marine environment through a variety of natural and anthropogenic sources. PAHs, including carcinogenic compounds, bioaccumulate in the tissues of exposed American lobsters (Homarus americanus). High PAH concentrations in lobster tissues necessitated the closure of the lobster fishery in the South Arm of Sydney Harbour, Nova Scotia, in 1982. A study was conducted to assess harbors in Nova Scotia, New Brunswick, and Prince Edward Island to determine if there might be a reason for concern about PAH contamination of lobsters. Adjacent commercial and industrial activity, harbor uses, the surrounding population, and PAH point sources were evaluated for each harbor selected for study. Areas of lobster fishing and the number of permanent lobster holding facilities within each harbor were also determined. Harbors were then ranked according to their potential for PAH contamination. Point sources for PAHs within these harbors included petroleum and coal products plants, oil refineries, chemical plants, coal-fired generating stations, and fuel combustion in land vehicles and ships. After Sydney, the harbors with the highest potential for PAH contamination were determined to be Halifax, Saint John, Pictou, and Port Hawkesbury Ship Harbour. 60 refs., 15 figs., 7 tabs.

  18. Implications of Bioremediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soils for Human Health and Cancer Risk

    Energy Technology Data Exchange (ETDEWEB)

    Davie-Martin, Cleo L. [Department; Department; Stratton, Kelly G. [Pacific Northwest; Teeguarden, Justin G. [Pacific Northwest; Waters, Katrina M. [Pacific Northwest; Simonich, Staci L. Massey [Department; Department

    2017-08-09

    Background: Bioremediation uses microorganisms to degrade polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Its success is largely evaluated through targeted analysis of PAH concentrations in soil and cancer risk (exposure) estimates. However, bioremediation often fails to significantly degrade the most carcinogenic PAHs and can initiate formation of more polar metabolites, some of which may be more toxic. Objectives: We aimed to investigate whether the cancer risk associated with PAH-contaminated soils was reduced post-bioremediation and to identify the most effective bioremediation strategies for degrading the carcinogenic and high molecular weight (≥MW302) PAHs. Methods: Pre- and post-bioremediation concentrations of eight B2 group carcinogenic PAHs in soils were collated from the literature and used to calculate excess lifetime cancer risks (ELCR) for adult populations exposed via non-dietary ingestion, per current U.S. Environmental Protection Agency (USEPA) recommendations. Due to the nature of the collated data (reported as mean concentrations ± standard deviations pre- and post-bioremediation), we used simulation methods to reconstruct the datasets and enable statistical comparison of ELCR values pre- and post-bioremediation. Additionally, we measured MW302 PAHs in a contaminated soil prior to and following treatment in an aerobic bioreactor and examined their contributions to cancer risk. Results: 120 of 158 treated soils (76%) exhibited a statistically significant reduction in cancer risk following bioremediation; however, 67% (106/158) of soils had post-bioremediation ELCR values over 10 fold higher than the USEPA health-based ‘acceptable’ risk level. Composting treatments were most effective at biodegrading PAHs in soils and reducing the ELCR. MW302 PAHs were not significantly degraded during bioremediation and dibenzo(a,l)pyrene, alone, contributed an additional 35% to the cancer risk associated with the eight B2 group PAHs in the

  19. Gas-particle distributions, sources and health effects of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in Venice aerosols.

    Science.gov (United States)

    Gregoris, Elena; Argiriadis, Elena; Vecchiato, Marco; Zambon, Stefano; De Pieri, Silvia; Donateo, Antonio; Contini, Daniele; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2014-04-01

    Air samples were collected in Venice during summer 2009 and 2012 to measure gas and particulate concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs). PCB-11, considered a marker for non-Aroclor contamination of the environment, was found for the first time in the Venetian lagoon and in Europe. An investigation on sources has been conducted, evidencing traffic as the major source of PAHs, whereas PCBs have a similar composition to Aroclor 1248 and 1254; in 2009 a release of PCN-42 has been hypothesized. Toxicological evaluation by TCA and TEQ methods, conducted for the first time in Venice air samples, identified BaP, PCB-126 and PCB-169 as the most important contributors to the total carcinogenic activity of PAHs and the total dioxin-like activity of PCBs and PCNs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Joner, Erik J. [Laboratoire des Interactions Microorganismes-Mineraux-Matiere Organique dans les Sols (LIMOS), Universite H. Poincare Nancy 1, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy (France)]. E-mail: erik.joner@jordforsk.no; Leyval, Corinne [Laboratoire des Interactions Microorganismes-Mineraux-Matiere Organique dans les Sols (LIMOS), Universite H. Poincare Nancy 1, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy (France); Colpaert, Jan V. [Centre for Environmental Sciences, Environmental Biology Group, Hasselt University, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium)

    2006-07-15

    Exploitation of mycorrhizas to enhance phytoremediation of organic pollutants has received attention recently due to their positive effects on establishment of plants in polluted soils. Some evidence exist that ectomycorrhizas enhance the degradation of pollutants of low recalcitrance, while less easily degradable polyaromatic molecules have been degraded only by some of these fungi in vitro. Natural polyaromatic (humic) substances are degraded more slowly in soil where ectomycorrhizal fungi are present, thus phytoremediation of recalcitrant pollutants may not benefit from the presence of these fungi. Using a soil spiked with three polycyclic aromatic hydrocarbons (PAHs) and an industrially polluted soil (1 g kg{sup -1} of {sigma}12 PAHs), we show that the ectomycorrhizal fungus Suillus bovinus, forming hydrophobic mycelium in soil that would easily enter into contact with hydrophobic pollutants, impedes rather than promotes PAH degradation. This result is likely to be a nutrient depletion effect caused by fungal scavenging of mineral nutrients. - The ectomycorrhizal fungus S. bovinus impeded degradation of PAHs in soil, probably due to its negative effect on the availability of mineral nutrients of more potent PAH degraders.

  1. Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas: Implications for anthropogenic impacts.

    Science.gov (United States)

    Tang, Guowen; Liu, Mengyang; Zhou, Qian; He, Haixia; Chen, Kai; Zhang, Haibo; Hu, Jiahui; Huang, Qinghui; Luo, Yongming; Ke, Hongwei; Chen, Bin; Xu, Xiangrong; Cai, Minggang

    2018-09-01

    Microplastics and polycyclic aromatic hydrocarbons (PAHs) were investigated to study the influence of human activities and to find their possible relationship on the coastal environments, where the coastal areas around Xiamen are undergoing intensive processes of industrialization and urbanization in the southeast China. The abundance of microplastics in Xiamen coastal areas was 103 to 2017particles/m 3 in surface seawater and 76 to 333 particles/kg in sediments. Concentrations of dissolved PAHs varied from 18.1 to 248ng/L in surface seawater. The abundances of microplastics from the Western Harbor in surface seawater and sediments were higher than those from other areas. Foams were dominated in surface seawater samples, however, no foams were found in sediments samples. The microscope selection and FTIR analysis suggested that polyethylene (PE) and polypropylene (PP) were dominant microplastics. The cluster analysis results demonstrated that fibers and granules had the similar sources, and films had considerably correlation with all types of PAHs (3 or 4-ring PAHs and alkylated PAHs). Plastic film mulch from agriculture practice might be a potential source of microplastics in study areas. Results of our study support that river runoff, watershed area, population and urbanization rate influence the distribution of microplastics in estuarine surface water, and the prevalence of microplastic pollution calls for monitoring microplastics at a national scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere

    International Nuclear Information System (INIS)

    Joner, Erik J.; Leyval, Corinne; Colpaert, Jan V.

    2006-01-01

    Exploitation of mycorrhizas to enhance phytoremediation of organic pollutants has received attention recently due to their positive effects on establishment of plants in polluted soils. Some evidence exist that ectomycorrhizas enhance the degradation of pollutants of low recalcitrance, while less easily degradable polyaromatic molecules have been degraded only by some of these fungi in vitro. Natural polyaromatic (humic) substances are degraded more slowly in soil where ectomycorrhizal fungi are present, thus phytoremediation of recalcitrant pollutants may not benefit from the presence of these fungi. Using a soil spiked with three polycyclic aromatic hydrocarbons (PAHs) and an industrially polluted soil (1 g kg -1 of Σ12 PAHs), we show that the ectomycorrhizal fungus Suillus bovinus, forming hydrophobic mycelium in soil that would easily enter into contact with hydrophobic pollutants, impedes rather than promotes PAH degradation. This result is likely to be a nutrient depletion effect caused by fungal scavenging of mineral nutrients. - The ectomycorrhizal fungus S. bovinus impeded degradation of PAHs in soil, probably due to its negative effect on the availability of mineral nutrients of more potent PAH degraders

  3. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil

    International Nuclear Information System (INIS)

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-01-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. - Highlights: • Phytoremediation of aged-hydrocarbon polluted soils may be improved using arbuscular mycorrhizal fungi. • Inoculation of wheat with R. irregularis improved dissipation of PAH and alkanes. • Dissipation resulted from adsorption and bioaccumulation in wheat and mainly from biodegradation in soil. • Biodegradation was due to a stimulation of rhizosphere bacteria and an induction of root peroxidase. - Inoculation of wheat by an arbuscular mycorrhizal fungus improves biodegradation of alkanes and polycyclic aromatic hydrocarbons in an aged-contaminated

  4. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    Science.gov (United States)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  5. Investigating hydrocarbon contamination using ground penetrating radar

    International Nuclear Information System (INIS)

    Roest, P.B. van der; Brasser, D.J.S.; Wagebaert, A.P.J.; Stam, P.H.

    1996-01-01

    The increasing costs of remediating contaminated sites has stimulated research for cost reducing techniques in soil investigation and clean-up techniques. Under the traditional approach soil borings and groundwater wells are used to investigate contaminated soil. These are useful tools to determine the amount and characteristics of the contamination, but they are inefficient and costly in providing information on the location and extent of contamination as they only give information on one point. This often leads to uncertainty in estimating clean-up costs or, even worse, to unsuccessful clean-ups. MAP Environmental Research has developed a technology using Ground Penetrating Radar (GPR) in combination with in-house developed software to locate and define the extent of hydrocarbon contamination. With this technology, the quality of site investigation is increased while costs are reduced. Since 1994 MAP has been improving its technology and has applied it to over 100 projects, which all have been checked afterwards by conventional drilling. This paper gives some general characteristics of the method and presents a case study. The emphasis of this paper lies on the practical application of GPR to hydrocarbon contamination detection

  6. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Shi, Z.; Tao, S.; Pan, B.; Fan, W.; He, X.C.; Zuo, Q.; Wu, S.P.; Li, B.G.; Cao, J.; Liu, W.X.; Xu, F.L.; Wang, X.J.; Shen, W.R.; Wong, P.K.

    2005-01-01

    Tianjin urban/industrial complex is highly polluted by some persistent organic pollutants. In this study, the levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were tested in sediment, water, and suspended particulate matter (SPM) samples in 10 rivers in Tianjin. The total concentration of 16 PAHs varied from 0.787 to 1943 μg/g dry weight in sediment, from 45.81 to 1272 ng/L in water, and from 0.938 to 64.2 μg/g dry weight in SPM. The levels of PAHs in these media are high in comparison with values reported from other river and marine systems. Variability of total concentrations of PAHs in sediment, water, and SPM from nine different rivers is consistent with each other. No obvious trends of total PAHs concentration variations were found between upstream and downstream sediment, water, and SPM samples for most rivers, which indicate local inputs and disturbances along these rivers. The spatial distributions of three-phase PAHs are very similar to each other, and they are also similar to those found in topsoil. However, their chemical profiles are significantly different from that of topsoil. The change of profiles is consistent with the different aqueous transport capability of 16 PAHs. Low molecular weight PAHs predomination suggests a relatively recent local source and coal combustion source of PAHs in the study area. - Coal combustion is suggested as a recent local source of PAHs in this area

  7. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China

    Energy Technology Data Exchange (ETDEWEB)

    Luo, X.J.; Mai, B.X.; Yang, Q.S.; Fu, J.M.; Sheng, G.Y.; Wang, Z.S. [Chinese Academy of Science, Guangzhou (China)

    2004-06-01

    Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were measured in suspended particles and dissolved phase from the Baiertang water column and the Macao water column samples as collected from the Guangzhou channel of the Pearl River and the Macao harbor, where the sediments were heavily contaminated with organic pollutants. Total OCPs concentration varies from 23.4 to 61.7 ng/l in Baiertang water column and from 25.2 to 67.8 ng/l in Macao column, while total PAHs concentration varies from 987.1 to 2878.5 ng/l in the Baiertang water column and from 944.0 to 6654.6 ng/l in the Macao column. The vertical distribution profiles of pollutants and the partition of pollutants between particles and dissolved phases indicate that the sediments in Baiertang act as an important source of selected pollutants, and the pollutants in water of this region were mainly originated from the release and re-suspension of contaminants residing in the sediments. The sediments in Macao harbor act as a reservoir for organochlorine pesticides, such as DDTs mainly introduced by river inflow from Xijiang and PAHs input by brackish water from the Lingdingyang estuary. Combustion of fossil fuels and petroleum input are the main sources of PAHs in the Macao water column, while combustion of fossil fuels and coal is responsible for the PAHs in the Baiertang water column.

  8. Environmental assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Santander Bay, Northern Spain.

    Science.gov (United States)

    Viguri, J; Verde, J; Irabien, A

    2002-07-01

    Samples of intertidal surface sediments (0-2 cm) were collected in 17 stations of the Santander Bay, Cantabric Sea, Northern Spain. The concentrations of polycyclic aromatic hydrocarbons (PAHs), 16, were analysed by HPLC and MS detection. Surface sediments show a good linear correlation among the parameters of the experimental organic matter evaluation, where total carbon (TC) and loss on ignition (LOI) are approximately 2.5 and 5 times total organic carbon (TOC). A wide range of TOC from 0.08% to 4.1%, and a broad distribution of the sum of sigma16PAHs, from 0.02 to 344.6 microg/g d.w., which can be correlated by an exponential equation to the TOC, has been identified. A qualitative relationship may be established between the industrial input along the rivers and the concentration of sigma6PAHs in the sediments of the estuaries: Boo estuary (8404-4631 microg/g OC), Solia-San Salvador estuaries (305-113 microg/g OC) and Cubas estuary (31-32 microg/g OC). This work shows a dramatic change in the spatial distribution in the concentration of PAHs of intertidal surface sediments. The left edge of the Bay has the main traffic around the city and the major source of PAHs is from combustion processes and estuarine inputs, leading to medium values of PAHs in the sediments; the right edge of the Bay has much lesser anthropogenic activities leading to lower values of PAHs in sediments. The distribution of individual PAHs in sediments varies widely depending on their structure and molecular weight; the 4-6 ring aromatics predominate in polluted sediments due to their higher persistence. The isomer ratio does not allow any clear identification of the PAHs origin. Environmental evaluation according to Dutch guidelines and consensus sediment quality guidelines based on ecotoxicological data leads to the same conclusion, sediments in the Santander Bay show a very different environmental quality depending on the spatial position from heavily polluted/medium effects to non

  9. In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingming; Fu, Dengqiang; Teng, Ying; Shen, Yuanyuan; Luo, Yongming; Li, Zhengao [Chinese Academy of Sciences, Nanjing (China). Key Laboratory of Soil Environment and Pollution Remediation; Christie, Peter [Agri-Food and Biosciences Institute, Belfast (United Kingdom). Agri-Environment Branch

    2011-09-15

    Purpose: A 7-month field experiment was conducted to investigate the polycyclic aromatic hydrocarbon (PAH) remediation potential of two plant species and changes in counts of soil PAH-degrading bacteria and microbial activity. Materials and methods: Alfalfa and tall fescue were grown in monoculture and intercropped for 7 months in contaminated field soil. Soil and plant samples were analyzed for PAHs. Plant biomass, densities of PAH-degradation soil bacteria, soil microbial biomass C and N, enzyme activities, and the physiological profile of the soil microbial community were determined. Results and discussion: Average removal percentage of total PAHs in intercropping (30.5%) was significantly higher than in monoculture (19.9%) or unplanted soil (-0.6%). About 7.5% of 3-ring, 12.3% of 4-ring, and 17.2% of 5(+6)-ring PAHs were removed from the soil by alfalfa, with corresponding values of 25.1%, 10.4%, and 30.1% for tall fescue. Intercropping significantly enhanced the remediation efficiency. About 18.9% of 3-ring, 30.9% of 4-ring, and 33.4% of 5(+6)-ring PAHs were removed by the intercropping system. Higher counts of soil culturable PAH-degrading bacteria and elevated microbial biomass and enzyme activities were found after intercropping. Soil from intercropping showed significantly higher (p < 0.05) average well-color development obtained by the BIOLOG Ecoplate assay and Shannon-Weaver index compared with monoculture. Conclusions: Cropping promoted the dissipation of soil PAHs. Tall fescue gave greater removal of soil PAHs than alfalfa, and intercropping was more effective than monoculture. Intercropping of alfalfa and tall fescue may be a promising in situ bioremediation strategy for PAH-contaminated soils. (orig.)

  10. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria

    DEFF Research Database (Denmark)

    Johnsen, Anders R.; Schmidt, Stine; Hybholdt, Trine K.

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil...... with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in numbers...... of culturable phenanthrene-, pyrene-, and fluoranthene degraders and a 160-fold increase in copy numbers of the mycobacterial PAH dioxygenase gene pdo1. A nonpolluted microcosm primed with bioremediated soil showed a high rate of survival of the introduced degrader community during the 112 days of incubation...

  11. Monitoring of polycyclic aromatic hydrocarbons (PAH) in food supplements containing botanicals and other ingredients on the Dutch market.

    Science.gov (United States)

    Martena, M J; Grutters, M M P; De Groot, H N; Konings, E J M; Rietjens, I M C M

    2011-01-01

    Food supplements can contain polycyclic aromatic hydrocarbons (PAH). The European Food Safety Authority (EFSA) has defined 16 priority PAH that are both genotoxic and carcinogenic and identified eight priority PAH (PAH8) or four of these (PAH4) as good indicators of the toxicity and occurrence of PAH in food. The current study aimed to determine benzo[a]pyrene and other EFSA priority PAH in different categories of food supplements containing botanicals and other ingredients. From 2003 to 2008, benzo[a]pyrene exceeded the limit of quantification (LOQ) in 553 (44%) of 1258 supplements with a lower-bound mean of 3.37 µg kg(-1). In 2008 and 2009, benzo[a]pyrene and 12 other EFSA priority PAH were determined in 333 food supplements. Benzo[a]pyrene exceeded the LOQ in 210 (63%) food supplements with a lower-bound mean of 5.26 µg kg(-1). Lower-bound mean levels for PAH4 and PAH8(-indeno[1,2,3-cd]pyrene) were 33.5 and 40.5 µg kg(-1), respectively. Supplements containing resveratrol, Ginkgo biloba, St. John's wort and propolis showed relatively high PAH4 levels in 2008 and 2009. Before 2008, supplements with these ingredients and also dong quai, green tea or valerian contained relatively high benzo[a]pyrene levels. On average, PAH4 intake resulting from food supplement use will be at the lower end of the range of contributions of main food groups to PAH4 exposure, although individual food supplements can contribute significantly to PAH4 exposure. Regular control of EFSA indicator PAH levels in food supplements may prove a way forward to reduce further the intake of PAH from food.

  12. Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation.

    Science.gov (United States)

    Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-09-01

    Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.

  13. Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Deary, Michael E., E-mail: michael.deary@northumbria.ac.uk [Department of Geography,Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Ekumankama, Chinedu C. [Department of Geography,Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Cummings, Stephen P. [Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom)

    2016-04-15

    Highlights: • 40 week study of the biodegradation of 16 US EPA priority PAHs in a soil with high organic matter. • Effects of cadmium, lead and mercury co-contaminants studied. • Novel kinetic approach developed. • Biodegradation of lower molecular weight PAHs relatively unaffected by Cd or Pb. • Soil organic matter plays a key role in the PAH removal mechanism. - Abstract: We report on the results of a 40 week study in which the biodegradation of 16 US EPA polycyclic aromatic hydrocarbons (PAHs) was followed in microcosms containing soil of high organic carbon content (11%) in the presence and absence of lead and cadmium co-contaminants. The total spiked PAH concentration was 2166 mg/kg. Mercury amendment was also made to give an abiotic control. A novel kinetic model has been developed to explain the observed biphasic nature of PAH degradation. The model assumes that PAHs are distributed across soil phases of varying degrees of bioaccessibility. The results of the analysis suggest that overall percentage PAH loss is dependent on the respective rates at which the PAHs (a) are biodegraded by soil microorganisms in pore water and bioaccessible soil phases and (b) migrate from bioaccessible to non-bioaccessible soil phases. In addition, migration of PAHs to non-bioaccessible and non-Soxhlet-extractable soil phases associated with the humin pores gives rise to an apparent removal process. The presence of metal co-contaminants shows a concentration dependent inhibition of the biological degradation processes that results in a reduction in overall degradation. Lead appears to have a marginally greater inhibitory effect than cadmium.

  14. Dynamic Effects of Biochar on the Bacterial Community Structure in Soil Contaminated with Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Song, Yang; Bian, Yongrong; Wang, Fang; Xu, Min; Ni, Ni; Yang, Xinglun; Gu, Chenggang; Jiang, Xin

    2017-08-16

    Amending soil with biochar is an effective soil remediation strategy for organic contaminants. This study investigated the dynamic effects of wheat straw biochar on the bacterial community structure during remediation by high-throughput sequencing. The wheat straw biochar amended into the soil significantly reduced the bioavailability and toxicity of polycyclic aromatic hydrocarbons (PAHs). Biochar amendment helped to maintain the bacterial diversity in the PAH-contaminated soil. The relationship between the immobilization of PAHs and the soil bacterial diversity fit a quadratic model. Before week 12 of the incubation, the incubation time was the main factor contributing to the changes in the soil bacterial community structure. However, biochar greatly affected the bacterial community structure after 12 weeks of amendment, and the effects were dependent upon the biochar type. Amendment with biochar mainly facilitated the growth of rare bacterial genera (relative abundance of 0.01-1%) in the studied soil. Therefore, the application of wheat straw biochar into PAH-contaminated soil can reduce the environmental risks of PAHs and benefit the soil microbial ecology.

  15. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study

    International Nuclear Information System (INIS)

    Viglianti, Christophe; Hanna, Khalil; Brauer, Christine de; Germain, Patrick

    2006-01-01

    The removal of polycyclic aromatic hydrocarbons (PAHs) from soil using water as flushing agent is relatively ineffective due to their low aqueous solubility. However, addition of cyclodextrin (CD) in washing solutions has been shown to increase the removal efficiency several times. Herein are investigated the effectiveness of cyclodextrin to remove PAH occurring in industrially aged-contaminated soil. β-Cyclodextrin (BCD), hydroxypropyl-β-cyclodextrin (HPCD) and methyl-β-cyclodextrin (MCD) solutions were used for soil flushing in column test to evaluate some influent parameters that can significantly increase the removal efficiency. The process parameters chosen were CD concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant and almost linear effect on PAH removal from the contaminated soil, except the temperature where no significant enhancement in PAH extraction was observed for temperature range from 5 to 35 o C. The PAHs extraction enhancement factor compared to water was about 200. - An innovative method using a biodegradable and non-toxic flushing agent for the depollution of industrially aged-contaminated soil

  16. Estimating release of polycyclic aromatic hydrocarbons from coal-tar contaminated soil at manufactured gas plant sites. Final report

    International Nuclear Information System (INIS)

    Lee, L.S.

    1998-04-01

    One of EPRI's goals regarding the environmental behavior of organic substances consists of developing information and predictive tools to estimate the release potential of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils at manufactured gas (MGP) plant sites. A proper assessment of the distribution of contaminants under equilibrium conditions and the potential for mass-transfer constraints is essential in evaluating the environmental risks of contaminants in the subsurface at MGP sites and for selecting remediation options. The results of this research provide insights into estimating maximum release concentrations of PAHs from MGP soils that have been contaminated by direct contact with the tar or through years of contact with contaminated groundwater. Attention is also given to evaluating the use of water-miscible cosolvents for estimating aqueous phase concentrations, and assessing the role of mass-transfer constraints in the release of PAHs from MGP site soils

  17. Remediation of Soil and Ground Water Contaminated with PAH using Heat and Fe(II)-EDTA Catalyzed Persulfate Oxidation

    International Nuclear Information System (INIS)

    Nadim, Farhad; Huang, Kun-Chang; Dahmani, Amine M.

    2006-01-01

    The feasibility of degrading 16 USEPA priority polycyclic aromatic (PAH) hydrocarbons (PAHs) with heat and Fe(II)-EDTA catalyzed persulfate oxidation was investigated in the laboratory. The experiments were conducted to determine the effects of temperature (i.e. 20 deg. C, 30 deg. C and 40 deg. C) and iron-chelate levels (i.e., 250 mg/L-, 375 mg/L- and 500 mg/L-Fe(II)) on the degradation of dissolved PAHs in aqueous systems, using a series of amber glass jars as the reactors that were placed on a shaker inside an incubator for temperature control. Each experiment was run in duplicate and had two controls (i.e., no persulfate in systems). Samples were collected after a reaction period of 144 hrs and measured for PAHs, pH and sodium persulfate levels. The extent of degradation of PAHs was determined by comparing the data for samples with the controls.The experimental results showed that persulfate oxidation under each of the tested conditions effectively degraded the 16 target PAHs. All of the targeted PAHs were degraded to below the instrument detection limits (∼4 μ/L) from a range of initial concentration (i.e., 5 μ/L for benzo(a)pyrene to 57 μ/L for Phenanthrene) within 144 hrs with 5 g/L of sodium persulfate at 20 deg. C, 30 deg. C and 40 deg. C. The data indicated that the persulfate oxidation was effective in degrading the PAHs and that external heat and iron catalysts might not be needed for the degradation of PAHs.The Fe(II)-EDTA catalyzed persulfate also effectively degraded PAHs in the study. In addition, the data on the variation of persulfate concentrations during the experiments indicated that Fe(II)-EDTA accelerated the consumption of persulfate ions.The obtained degradation data cannot be used to evaluate the influence of temperature and Fe(II) levels on the PAH degradation because the PAHs under each of the tested conditions were degraded to below the instrument detection limit within the first sampling point. However, these experiments have

  18. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil.

    Science.gov (United States)

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-06-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Development of a screening method for the determination of total polynuclear aromatic hydrocarbons (PAH) in water and wastewater

    International Nuclear Information System (INIS)

    Riggin, R.; Strup, P.; Billets, S.

    1983-01-01

    Polynuclear aromatic hydrocarbons (PAHs) represent an important class of organic compounds from an environmental standpoint, due to known human carcinogenicity of some members. Consequently, there is a great need for monitoring the PAH concentration of a variety of media, including water and industrial wastewater. Recently, the United States Environmental Protection Agency (U.S. EPA) developed a sensitive analytical method, designated Test Method 610, for the determination of priority pollutant PAHs in aqueous industrial discharges. This method employs reversed phase high performance liquid chromatography (HPLC) with ultraviolet (UV) and fluorescence detection to determine all sixteen priority pollutant PAHs in a single chromatographic separation

  20. Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lors, C.; Ryngaert, A.; Perie, F.; Diels, L.; Damidot, D. [University of Lille, Lille (France)

    2010-11-15

    The monitoring of a windrow treatment applied to soil contaminated by mostly 2, 3- and 4-ring PAHs produced by coal tar distillation was performed by following the evolution of both PAH concentration and the bacterial community. Total and PAH-degrading bacterial community structures were followed by 165 rRNA PCR-DGGE in parallel with quantification by bacterial counts and 16 PAH measurements. Six months of biological treatment led to a strong decrease in 2-, 3- and 4-ring PAH concentrations (98, 97 and 82%, respectively). This result was associated with the activity of bacterial PAH-degraders belonging mainly to the Gamma proteobacteria, in particular the Enterobacteria and Pseudomonas genera which were detected over the course of the treatment. This group was considered to be a good bioindicator to determine the potential PAH biodegradation of contaminated soil. Conversely other species like the Beta proteobacteria were detected after 3 months when 2-, 3- and 4-ring PAHs were almost completely degraded. Thus presence of the Beta proteobacteria group could be considered a good candidate indicator to estimate the endpoint of biotreatment of this type of PAH contaminated soil.

  1. Source characterization and exposure modeling of gas-phase polycyclic aromatic hydrocarbon (PAH) concentrations in Southern California

    Science.gov (United States)

    Masri, Shahir; Li, Lianfa; Dang, Andy; Chung, Judith H.; Chen, Jiu-Chiuan; Fan, Zhi-Hua (Tina); Wu, Jun

    2018-03-01

    Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.

  2. Accumulation of policyclic aromatic hydrocarbons (PAHs) in surface litter and soils in four forests in the United States

    Science.gov (United States)

    Obrist, D.; Perlinger, J. A.; Zielinska, B.

    2014-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants originating from the incomplete combustion of organic material, both from natural or anthropogenic sources. Once emitted, they can be transported across thousands of kilometers impacting remote environments. Here, we characterize the distribution of 23 PAHs and 9 oxygenated PAHs (Σ32PAH) in litter and soils in four remote forests in the United States. Concentrations of Σ32PAH in fresh surface litter (Oi layers) showed very low levels in three of the four forests (mixed coniferous forest in Maine, deciduous blue oak forest in California, and a coniferous forest in Washington State), with PAHs levels much lower than those reported in previous studies from Europe. The analysis showed that PAHs represented a mix of regional background sources. Highest PAH levels were observed in a coniferous forest floor in Florida, attributable to frequent prescribed burning of understory vegetation at this site, and supported by high contributions of retene (>7%; compared to atmospheric deposition. Within mineral soils, Σ32PAH:OC ratios increased with depth (Ah horizons: 750±198 ng g-1; B horizons: 1,202±97 ng g-1), indicating that vertical transfer in mineral soils leads to significant accumulation of PAH in subsoils. ΣPAH:OC increases observed in deeper soil layers may be attributed to slower mineralization rates of PAHs compared to OC, plus vertical transport as indicated by preferential enrichment of PAHs with low Kow (i.e., more water-soluble PAHs). Finally, percentage of potentially biologically produced PAH (Σ Naph+Phen+Pery) were low and consistent across the litter/soil horizons, suggesting that biological production is minor or absent at our sites.

  3. Evaluation of Macronet polymeric adsorbents for removal of PAHs from contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Valderrama, C.; Gamisans, X.; Lao, C.; Farran, A.; Cortina, J.L.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) represent the largest group of compounds that are mutagenic, carcinogenic, and teratogenic and are included in the priority pollutants lists. Despite their widespread distributions, PAHs can be ultimately deposited and persisted in bed sediments in the aquatic system. This is due largely to the fact that most PAHs sorb strongly to sediments because of their high hydrophobicity, and are resistant to bacterial degradation under anoxic environment. When environmental conditions become favourable PAHs will be released to the overlying water as a long-term source and pose potential threat to water quality and aquatic ecosystem via bioaccumulation in food chains. Faced with these problems adsorption processes are one of the alternatives for PAHs retention. The adsorption of hydrophobic organic contaminants from aqueous phases generally increases with decreasing solubility of the compound and increasing organic carbon content of the aquifer solids. Natural materials with high organic carbon content such as coals or bituminous shales cause significant retardation of organic contaminants from groundwater. Such materials with high sorption capacities have been postulated and used for passive removal of hydrophobic contaminants in groundwater such as PAHs. Much more efficient is adsorption onto activated carbon, which is already a well-established technology for ex situ treatment of drinking water, polluted groundwater or waste water. One major advantages lies in the fact that the persistent compounds are removed from the ground water rather then being converted to still potentially dangerous metabolites as those generated by oxidation or reductive steps. One of the biggest disadvantages of the adsorption processes is the need to dispose or regenerate the adsorbent. In the case of activated carbon, it needs thermal desorption of the sorbed pollutants and thermal activation of the adsorbent. One of the possibilities to overcome this

  4. Compound-specific radiocarbon analysis of polycyclic aromatic hydrocarbons (PAHs) in sediments from an urban reservoir

    International Nuclear Information System (INIS)

    Kanke, Hirohide; Uchida, Masao; Okuda, Tomoaki; Yoneda, Minoru; Takada, Hideshige; Shibata, Yasuyuki; Morita, Masatoshi

    2004-01-01

    A quantitative apportionment of polycyclic aromatic hydrocarbons (PAHs) derived from fossil fuel combustion ( 14 C-free) and biomass burning (contemporary 14 C) was carried out using a recently developed compound-specific radiocarbon analysis (CSRA) method for a sediment core from an urban reservoir located in the central Tokyo metropolitan area, Japan. The 14 C abundance of PAHs in the sediments was measured by accelerator mass spectrometry (AMS) after extraction and purification by three types of column chromatography, by high performance liquid chromatography (HPLC), and, subsequently, by a preparative capillary gas chromatography (PCGC) system. This method yielded a sufficient quantity of pure compounds and allowed a high degree of confidence in the determination of 14 C. The fraction modern values (f M ) of individual PAHs (phenanthrene, alkylphenanthrenes, fluoranthene, pyrene and benz[a]anthracene) in the sediments ranged from 0.06 to 0.21. These results suggest that sedimentary PAHs (those compounds mentioned above) were derived mostly from fossil fuel combustion. Three sectioned-downcore profiles (∼40 cm) of the 14 C abundance in phenanthrene and alkylphenanthrenes showed a decreasing trend with depth, that was anti-correlated with the trend of ΣPAHs concentration. The f M values of phenanthrene were also larger than those of alkylphenanthrenes in each section of the core. This result indicates that phenanthrene received a greater contribution from biomass burning than alkylphenanthrenes throughout the core. This finding highlights the method used here as an useful approach to elucidate the source and origin of PAHs in the environment

  5. Sustainable treatment of hydrocarbon-contaminated industrial land

    OpenAIRE

    Cunningham, Colin John

    2012-01-01

    Land contamination by petroleum hydrocarbons is a widespread and global environmental pollution issue from recovery and refining of crude oil and the ubiquitous use of hydrocarbons in industrial processes and applications. Sustainable treatment of hydrocarbon-contaminated industrial land was considered with reference to seven published works on contaminated railway land including the track ballast, crude oil wastes and contaminated refinery soils. A methodology was developed...

  6. Biodegradation of polycyclic aromatic hydrocarbons (PAH) from crude oil in sandy-beach microcosms

    International Nuclear Information System (INIS)

    Lepo, J.E.; Cripe, C.R.

    2000-01-01

    Experiments were conducted using triplicate microcosm chambers for each treatment of a simulated oil spill on a beach. The treatments were sterile control, 10 ppm of a rhamnolipid biosurfactant added to the seawater and bi-weekly inoculation of the microcosms with two marine bacteria that produce biosurfactants but degrade only n-alkanes. The results showed that raw seawater cycled through the microcosms over a 30-day period led to a substantial depletion of fluorene, phenanthrene, and other polyaromatic hydrocarbons (PAH). It was not possible to detect PAH in pooled test system effluents. The oiled-beach microcosms were run with sterile synthetic seawater to differentiate between wash out and degradation. Depletion of n-alkanes was noticed in the systems inoculated with the alkane-degrading microbes and virtually all the aromatic analytes were recoverable from the oiled sand. The other two treatments permitted the recovery of all the analytes (PAH or alkanes). Under aerobic conditions, the biodegradation by microorganisms indigenous to natural seawater supported that lower molecular weight PAH were substantially depleted, but not the n-alkanes under similar conditions. 16 refs., 4 tabs., 1 fig

  7. Using quantitative structure-activity relationships (QSAR) to predict toxic endpoints for polycyclic aromatic hydrocarbons (PAH).

    Science.gov (United States)

    Bruce, Erica D; Autenrieth, Robin L; Burghardt, Robert C; Donnelly, K C; McDonald, Thomas J

    2008-01-01

    Quantitative structure-activity relationships (QSAR) offer a reliable, cost-effective alternative to the time, money, and animal lives necessary to determine chemical toxicity by traditional methods. Additionally, humans are exposed to tens of thousands of chemicals in their lifetimes, necessitating the determination of chemical toxicity and screening for those posing the greatest risk to human health. This study developed models to predict toxic endpoints for three bioassays specific to several stages of carcinogenesis. The ethoxyresorufin O-deethylase assay (EROD), the Salmonella/microsome assay, and a gap junction intercellular communication (GJIC) assay were chosen for their ability to measure toxic endpoints specific to activation-, induction-, and promotion-related effects of polycyclic aromatic hydrocarbons (PAH). Shape-electronic, spatial, information content, and topological descriptors proved to be important descriptors in predicting the toxicity of PAH in these bioassays. Bioassay-based toxic equivalency factors (TEF(B)) were developed for several PAH using the quantitative structure-toxicity relationships (QSTR) developed. Predicting toxicity for a specific PAH compound, such as a bioassay-based potential potency (PP(B)) or a TEF(B), is possible by combining the predicted behavior from the QSTR models. These toxicity estimates may then be incorporated into a risk assessment for compounds that lack toxicity data. Accurate toxicity predictions are made by examining each type of endpoint important to the process of carcinogenicity, and a clearer understanding between composition and toxicity can be obtained.

  8. Quantitative Analysis of Polycyclic Aromatic Hydrocarbons (PAHs Cited by the United States Food and Drug Administration

    Directory of Open Access Journals (Sweden)

    Guthery W

    2014-12-01

    Full Text Available The yields of 16 polycyclic aromatic hydrocarbons (PAHs were determined from cigarette mainstream smoke condensate extracts using Gas Chromatography- Tandem Mass Spectrometry (GC-MS/MS. The method has been validated for ISO and Health Canada Intense (HCI smoking protocols. Quantifiable levels (ISO means 0.16 to 365 ng/cig; HCI means 0.33 to 1595 ng/cig; n = 30 of 15 PAHs were found in the Kentucky reference cigarette K3R4F. The coefficient of variance (CV was derived from ten determinations each run in triplicate. The CV range was 8.7% to 24.8% (ISO and 6.6% to 24.3% (HCI. The limit of detection (LOD based on empirical precision was ≤ 0.06 ng/cig (ISO and ≤ 0.20 ng/cig (HCI for all components except naphthalene (2.89 and 9.62 ng/cig, respectively. The yields from 5 unspecified branded cigarettes (Samples A-E and 2 other reference cigarettes, K1R5F and the CORESTA monitor CM7, were determined under ISO smoking conditions. The same 15 PAHs were detected as in the K3R4F; however, cigarettes with lower yields of total particulate matter (TPM were found to contain significantly less PAHs. One component was measured below the limit of quantification (LOQ in Sample E and 2 components were < LOQ in the K1R5F.

  9. Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Anping Peng

    Full Text Available The distributions of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. grown in soils contaminated with different levels of polycyclic aromatic hydrocarbons (PAHs were investigated with polymerase chain reaction followed by denaturing gradient gel electrophoresis technology (PCR-DGGE and cultivation methods. Twelve types of PAHs, at concentrations varying from 0.16 to 180 mg·kg(-1, were observed in the roots and shoots of the two plants. The total PAH concentrations in Alopecurus aequalis Sobol obtained from three different PAH-contaminated stations were 184, 197, and 304 mg·kg(-1, and the total PAH concentrations in Oxalis corniculata L. were 251, 346, and 600 mg·kg(-1, respectively. The PCR-DGGE results showed that the endophytic bacterial communities in the roots and shoots of the two plants were quite different, although most bacteria belonged to Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. A total of 68 endophytic bacterial strains were isolated from different tissues of the two plants and classified into three phyla: Firmicutes, Proteobacteria and Bacteroidetes. In both plants, Bacillus spp. and Pseudomonas spp. were the dominant cultivable populations. With an increase in the PAH pollution level, the diversity and distribution of endophytic bacteria in the two plants changed correspondingly, and the number of cultivable endophytic bacterial strains decreased rapidly. Testing of the isolated endophytic bacteria for tolerance to each type of PAH showed that most isolates could grow well on Luria-Bertani media in the presence of different PAHs, and some isolates were able to grow rapidly on a mineral salt medium with a single PAH as the sole carbon and energy source, indicating that these strains may have the potential to degrade PAHs in plants. This research provides the first insight into the characteristics of endophytic bacterial populations under different PAH pollution levels and provides a

  10. Activity and functional diversity of microbial communities in long-term hydrocarbon and heavy metal contaminated soils

    Directory of Open Access Journals (Sweden)

    Markowicz Anna

    2016-12-01

    Full Text Available The impacts of long-term polycyclic aromatic hydrocarbons (PAHs and heavy metal pollution on soil microbial communities functioning were studied in soils taken from an old coke plant. The concentrations of PAHs in the tested soils ranged from 171 to 2137 mg kg-1. From the group of tested heavy metals, concentrations of lead were found to be the highest, ranging from 57 to 3478 mg kg-1, while zinc concentrations varied from 247 to 704 mg kg-1 and nickel from 10 to 666 mg kg-1. High dehydrogenase, acid and alkaline phosphatase activities were observed in the most contaminated soil. This may indicate bacterial adaptation to long-term heavy metal and hydrocarbon contamination. However, the Community Level Physiological Profiles (CLPPs analysis showed that the microbial functional diversity was reduced and influenced to a higher extent by some metals (Pb, Ni, moisture and conductivity than by PAHs.

  11. Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting

    International Nuclear Information System (INIS)

    Antizar-Ladislao, Blanca; Lopez-Real, Joseph; Beck, Angus J.

    2005-01-01

    The biodegradation of 16 polycyclic aromatic hydrocarbons (PAHs), listed as priority pollutants by the USEPA, present in a coal-tar-contaminated soil from a former manufactured gas plant site was investigated using laboratory-scale in-vessel composting reactors to determine the suitability of this approach as a bioremediation technology. Preliminary investigations were conducted over 16 weeks to determine the optimum soil composting temperature (38, 55 and 70 deg. C). Three tests were performed; firstly, soil was composted with green-waste, with a moisture content of 60%. Secondly, microbial activity was HgCl 2 -inhibited in the soil green-waste mixture with a moisture content of 60%, to evaluate abiotic losses, while in the third experiment only soil was incubated at the three different temperatures. PAHs and microbial populations were monitored. PAHs were lost from all treatments with 38 deg. C being the optimum temperature for both PAH removal and microbial activity. Calculated activation energy values (E a ) for total PAHs suggested that the main loss mechanism in the soil-green waste reactors was biological, whereas in the soil reactors it was chemical. Total PAH losses in the soil-green waste composting mixtures were by pseudo-first order kinetics at 38 deg. C (k = 0.013 day -1 , R 2 = 0.95), 55 deg. C (k = 0.010 day -1 , R 2 = 0.76) and at 70 deg. C (k = 0.009 day -1 , R 2 = 0.73)

  12. Urinary polycyclic aromatic hydrocarbons as a biomarker of exposure to PAHs in air: a pilot study among pregnant women.

    Science.gov (United States)

    Nethery, Elizabeth; Wheeler, Amanda J; Fisher, Mandy; Sjödin, Andreas; Li, Zheng; Romanoff, Lovisa C; Foster, Warren; Arbuckle, Tye E

    2012-01-01

    Recent studies have linked increased polycyclic aromatic hydrocarbons (PAHs) in air and adverse fetal health outcomes. Urinary PAH metabolites are of interest for exposure assessment if they can predict PAHs in air. We investigated exposure to PAHs by collecting air and urine samples among pregnant women pre-selected as living in "high" (downtown and close to steel mills, n=9) and "low" (suburban, n=10) exposure areas. We analyzed first-morning urine voids from all 3 trimesters of pregnancy for urinary PAH metabolites and compared these to personal air PAH/PM(2.5)/NO(2)/NO(X) samples collected in the 3rd trimester. We also evaluated activities and home characteristics, geographic indicators and outdoor central site PM(2.5)/NO(2)/NO(X) (all trimesters). Personal air exposures to the lighter molecular weight (MW) PAHs were linked to indoor sources (candles and incense), whereas the heavier PAHs were related to outdoor sources. Geometric means of all personal air measurements were higher in the "high" exposure group. We suggest that centrally monitored heavier MW PAHs could be used to predict personal exposures for heavier PAHs only. Urine metabolites were only directly correlated with their parent air PAHs for phenanthrene (Pearson's r=0.31-0.45) and fluorene (r=0.37-0.58). Predictive models suggest that specific metabolites (3-hydroyxyfluorene and 3-hydroxyphenanthrene) may be related to their parent air PAH exposures. The metabolite 2-hydroxynaphthalene was linked to smoking and the metabolite 1-hydroxypyrene was linked to dietary exposures. For researchers interested in predicting exposure to airborne lighter MW PAHs using urinary PAH metabolites, we propose that hydroxyfluorene and hydroxyphenanthrene metabolites be considered.

  13. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P gas chromatography-mass spectrometer (GC-MS) analysis. The concentration of Benzo[a]Pyrene, BaP (EU and National limit value: 1 ng m-3 in PM10), varied from 0.065 ng m-3 during autumn time to 0.872 ng m-3 in spring time (NA01) and from 0.120 ng m-3 during autumn time to 1.48 ng m-3 of winter time (NA02) with four overshoots. In NA02 the trend of Σ12 PAHs was comparable to NA01 but were observed higher values than NA01. In fact, the mean concentration of Σ12 PAHs, in urban-traffic site was generally 2 times greater than in urban-background site in all the campaigns. PAHs with 5 and 6 ring, many of which are suspected carcinogens or genotoxic agents, (i.e Benzo[a]Pyrene, Indeno[1,2,3-cd]Pyrene, Benzo[b]Fluoranthene, Benzo[k]Fluoranthene and Benzo[g,h,i]Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ

  14. Polycyclic Aromatic Hydrocarbons (PAHs in the atmosphere of the Baltic Sea Region

    Directory of Open Access Journals (Sweden)

    Julia Gaffke

    2016-03-01

    Full Text Available The paper presents a review of publications on the concentrations of polycyclic aromatic hydrocarbons in the atmosphere of the Baltic Sea Region (BSR. It indicates the main emission sources of these substances, related to anthropogenic activity. These include incomplete combustion of fuels in engines on land and from marine transportation, as well as the burning of coal in the community sector. High PAH concentrations in the air are also related to increased industrial activity in urban areas. In the Baltic Sea Region, Germany and Poland have been determined to be responsible for the greatest proportion of PAH emissions. However, the highest number of exceedances of the accepted annual norm for benzo(apyrene concentrations was recorded in Poland.

  15. [Compositions and residual properties of petroleum hydrocarbon in contaminated soil of the oilfields].

    Science.gov (United States)

    Hu, Di; Li, Chuan; Dong, Qian-Qian; Li, Li-Ming; Li, Guang-He

    2014-01-01

    The aims of this study were to determine the compositions and residual properties of petroleum hydrocarbon in soil, as well as to identify the source and weathering degree of the pollution. A total of 5 producing wells in Gudao and Hekou oil producing region of Shengli oilfields were analyzed. More than 50 individual target compounds including straight-and branched-chain alkanes( n-alkanes, pristine and phytane) and polycyclic aromatic hydrocarbons (PAHs) in soil samples and crude oil were determined by gas chromatography-mass spectrometry (GC-MS). The percentages of chain alkanes and PAHs in total solvent extractable matters(TSEM) of soil samples were both much lower than those in the crude oil samples. The compositions of petroleum hydrocarbon in soil samples differed from those in crude oil, which indicated the n-alkanes with carbon numbers contaminated soils, the relationship between the index and petroleum hydrocarbon compounds was analyzed using principal component analysis (PCA). The results showed that the n-alkanes with carbon numbers > 33 and the PAHs with rings between 3 and 5 were much harder to degrade. PCA of 4 indexes for source identification revealed more than 50% of the soil samples were polluted by crude oil, which needs more attention during remediation.

  16. [Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in water and in Karst underground river catchment].

    Science.gov (United States)

    Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng

    2014-10-01

    Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.

  17. Copaiba oleoresin: evaluation of the presence of polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Wilson Gomes da Silva

    2010-09-01

    Full Text Available The copaiba oleoresin extracted by perforating the tree-trunk found in the Amazonian forest has been used by the native indigenous communities to treat several diseases and also as fuel for lighting and for the motorboats plying the region's rivers. Currently, the oleoresin is mostly employed as a traditional remedy, mainly for the treatment of tonsillitis and as an anti-inflammatory and healing agent in oil and capsule forms, and is also used in several industry sectors. Due to its use in oral form, especially as a traditional remedy, an analysis of the presence of polycyclic aromatic hydrocarbons (PAHs as contaminants in the oleoresin was performed. PAHs are substances formed by two or more benzoic rings and found in the atmosphere as a residue from incomplete combustion of petroleum derivatives and industrial activities. These substances are found everywhere on land and water, and as a consequence can also be found in vegetables and foodstuffs in general. The use of products contaminated with these substances can compromise human and animal life. This study was performed on oleoresin from different areas or regions in the Amazon, using the HPLC methodology with fluorescence detection. The samples analyzed revealed different concentrations of these compounds.O óleo-resina de copaíba que é extraído mediante a perfuração do tronco da árvore que se encontra em forma nativa na floresta amazônica já era empregado pelas comunidades indígenas para a cura de várias doenças e, também, como combustível em iluminação e para o funcionamento de motores de barcos que trafegavam pelos rios da região. Hoje, é largamente empregado na medicina popular, principalmente para o tratamento de amigdalite e como antiinflamatório e cicatrizante na forma de óleo e em cápsulas, sendo utilizado, também, em vários setores da indústria. Devido ao seu uso na forma oral, principalmente na medicina popular, realizou-se um trabalho para avaliar a presen

  18. [Characteristics and sources of particulate polycyclic aromatic hydrocarbons (PAHs) during haze period in Guangzhou].

    Science.gov (United States)

    Duan, Jing-Chun; Tan, Ji-Hua; Sheng, Guo-Ying; Fu, Jia-Mo

    2009-06-15

    PM10 (particulates matter with aerodynamic diameter Guangzhou city between March 2002 and June 2003. Polycyclic aromatic hydrocarbons (PAHs) were studied during haze and non-haze periods in both summer and winter. PAHs pollution was serious in haze period compared with that in non-haze period, especially in winter. Compared with non-haze period, Phe, Ant, Flu, Pyr, BaA, Chr, IcdP, DahA and BghiP were more abundant in haze period in summer, and BaF, BeP, BaP, Pery, IcdP, DahA and BghiP were more abundant in haze period in winter. The BEQ values were 3.5 ng x m(-3), 3.35 ng x m(-3), 1.43 ng x m(-3) and 13.0 ng x m(-3) in non-haze in summer, in haze in summer, in non-haze in winter and in haze in winter, respectively. The BEQ values in non-haze in summer, in haze in summer and in non-haze in winter in Guangzhou (average: 2.76 ng x m(-3)) were relatively low in Chinese cities, and comparable with oversea cities. However, the BEQ value in haze in winter was relatively high in Chinese cities. It indicated that haze in winter would impair human health seriously. The diagnostic ratios suggested gasoline and diesel vehicle emission were main sources of PAHs in summer, and diesel vehicle and coal combustion emission were main sources of PAHs in winter; PAHs may come from both local sources and long-range transportation in non-haze in winter.

  19. Seasonal Variations and Sources of Airborne Polycyclic Aromatic Hydrocarbons (PAHs in Chengdu, China

    Directory of Open Access Journals (Sweden)

    Ju Yang

    2018-02-01

    Full Text Available The concentrations of polycyclic aromatic hydrocarbons (PAHs in the air of Chengdu, a southwest city of China, were determined from March 2015 to February 2016. Here, two diagnostic ratios (DR were determined and a principal component analysis/multiple linear regression (PCA/MLR analysis was performed to identify the sources of PAHs during the four seasons. The gaseous and particle phase samples were analyzed separately. The sampled air had a gas-to particle ratio of 4.21, and between 18.7% and 31.3% of the total detected PAHs were found in the particulate phase. The total concentration of all 16-PAHs combined (gas + particles varied from 176.94 in summer to 458.95 ng·m−3 in winter, with a mean of 300.35 ± 176.6 ng·m−3. In the gas phase, phenanthrene(Phe was found at the highest concentrations in all four seasons, while benzo[b]fluoranthene(BbF and (in winter chrysene(Chr were the highest in the particle phase. The DR of Fluroanthene (Flua/(Flua + Pyrene (Pyr was higher in the gas phase than in the particle phase, while the Indeno[1,2,3-cd]pyrene(IcdP/(IcdP + Benzo[ghi]perylene (BghiP ratio was more variable in the gas than that in the particle phase. The main sources for both phases were a mixture of liquid fossil fuel combustion and the burning of biomass and coal, with clear seasonal variation. Principal Component Analysis/Multiple Linear Regression (PCA/MLR analysis identified the main PAH sources as coal burning (52% with motor vehicle exhaust and coke (48% in spring; coal (52%, coke (21%, and motor vehicle exhaust (27% in summer; coal (47%, vehicle exhaust (34%, and coke (19% in autumn; and coal (58% and vehicle exhaust (42% in winter.

  20. Relationship between polycyclic aromatic hydrocarbons (PAHs) and particle size in dated core sediments in Lake Lianhuan, Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li; Zang, Shuying, E-mail: zsy6311@163.com

    2013-09-01

    Atmospheric particle associated with pyrogenic polycyclic aromatic hydrocarbons (PAHs) poses serious threats to human health by inhalation exposure, especially in semiarid areas. Hence, the distributions of PAHs and particle size in two core sediments collected from Lake Lianhuan, Northeast China were studied. The sediments were dated radiometrically, and particle size distribution and PAH concentration were evaluated and potential human health risk was assessed. From 1980 to 2007, the dominant PAHs in the two cores were 2- and 3-ring PAHs, and the concentrations of 3–6 ring PAHs gradually increased from the early 1990s. Diagnostic ratios indicated that pyrogenic PAHs were the main sources of PAHs which changed over time from combustions of wood and coal to liquid fossil fuel sources. Fine particles (< 65 μm) were the predominant particle size (56–97%). Lacustrine source (with the peak towards 200–400 μm) and eolian sources derived from short (2.0–10 and 30–65 μm) and long (0.4–1.0 μm) distance suspension were indentified from frequency distribution pattern of particle size. Significant correlations between 3–6 ring PAHs (especially carcinogenic 5–6 ring PAHs) and 10–35 μm particulate fractions indicated that eolian particles played an important role in adsorbing pyrogenic PAHs. Petroleum source of PAHs was only identified during the 1980s in one core sediments, in which positive correlations between 2-ring PAHs and particulate fractions of > 125 μm were found. Future research should focus on the seven carcinogenic pyrogenic PAHs due to a rapidly increasing trend since 1995 based on the assessment of toxic equivalency factors. - Highlights: • PAHs and particle size in core sediments were used to evaluate the role of eolian particles in delivering pyrogenic PAHs. • Changes of PAH sources closely followed local historical socioeconomic development since 1980s. • Changes of particulate sources from eolian to lacustrine reflected the

  1. Long-term assessment of natural attenuation: statistical approach on soils with aged PAH contamination.

    Science.gov (United States)

    Ouvrard, Stéphanie; Chenot, Elodie-Denise; Masfaraud, Jean-François; Schwartz, Christophe

    2013-07-01

    Natural attenuation processes valorization for PAH-contaminated soil remediation has gained increasing interest from site owners. A misunderstanding of this method and a small amount of data available does not encourage its development. However, monitored natural attenuation (MNA) offers a valuable, cheaper and environmentally friendly alternative to more classical options such as physico-chemical treatments (e.g., chemical oxidation, thermal desorption). The present work proposes the results obtained during a long-term natural attenuation assessment of historically contaminated industrial soils under real climatic conditions. This study was performed after a 10 year natural attenuation period on 60 off-ground lysimeters filled with contaminated soils from different former industrial sites (coking industry, manufactured gas plants) whose initial concentration of PAH varied between 380 and 2,077 mg kg(-1). The analysed parameters included leached water characterization, soil PAH concentrations, evaluation of vegetation cover quality and quantity. Results showed a good efficiency of the PAH dissipation and limited transfer of contaminants to the environment. It also highlighted the importance of the fine soil fractions in controlling PAH reactivity. PAH dissipation through water leaching was limited and did not present a significant risk for the environment. This PAH water concentration appeared however as a good indicator of overall dissipation rate, thereby illustrating the importance of pollutant availability in predicting its degradation potential.

  2. Occurrence and distribution of Polycyclic aromatic hydrocarbons (PAHs) in seawater, sediments and corals from Hainan Island, China.

    Science.gov (United States)

    Xiang, Nan; Jiang, Chunxia; Yang, Tinghan; Li, Ping; Wang, Haihua; Xie, Yanli; Li, Sennan; Zhou, Hailong; Diao, Xiaoping

    2018-05-15

    The levels of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were investigated in corals, ambient seawater and sediments of Hainan Island, China, using gas chromatography - mass spectrometry (GC-MS). The total PAHs (∑PAHs) concentrations ranged from 273.79 to 407.82ng/L in seawater. Besides, the concentrations of ∑PAHs in corals 333.88-727.03ng/g dw) were markedly (P corals. The highest concentration of ∑PAHs was detected at site S2 in Pavona decussate, which also bore the highest ∑PAHs levels in both seawater and sediments. The massive corals were more enriched with PAHs than the branching corals. Although 2 and 3-ring PAHs were predominant and accounted for 69.27-80.46% of the ∑PAHs in corals and ambient environment, the levels of high molecular weight (HMW) PAHs (4-6 ring) in corals also demonstrated their potential dangers for corals and organisms around coral reefs. Biota-sediment accumulation factor (BSAF) refers to an index of the pollutant absorbed by aquatic organisms from the surrounding sediments. The poor correlation between log BSAF and log K ow (hydrophobicity) indicated that PAHs in corals maybe not bioaccumulate from the ambient sediments but through pathways like absorbing from seawater, symbiosis, and feeding. Based on our data, long-term ecological monitoring in typical coral reef ecosystems combined with ecotoxicological tests of PAHs on corals is necessary to determine the impacts of PAHs on coral reefs. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification

    Science.gov (United States)

    Cheng, Chen; Bi, Chunjuan; Wang, Dongqi; Yu, Zhongjie; Chen, Zhenlou

    2018-03-01

    This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L-1 and were correlated with temperature ( P<0.05). Dry deposition of PAHs concentrations ranged from 3.60-92.15 mg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m-2·d-1 and 4.06 mg·m-2·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.

  4. Polycyclic aromatic hydrocarbons pollution effect on soil biological activity in the anthropogenic contaminated area

    Science.gov (United States)

    Batukaev, Abdulmalik; Sushkova, Svetlana; Minkina, Tatiana; Antonenko, Elena; Salamova, Anzhelika; Gimp, Alina; Deryabkina, Irina

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most significant environmental contaminants with mutagenic and carcinogenic properties to all living organisms. The changes in microbial community structure in technogenic polluted soil may be used as tools for predicting and monitoring natural degradation and for search the most effective and appropriate pathways of bioremediation. The present study is aimed to research the biological activity of the soil in the emission zone of Novocherkassk Power station (NPs) (Russia) polluted by PAHs in 2015. The NPs is one of the largest thermal power stations in the south of Russia burning low-quality coal appurtenant the enterprises of I hazardous class. Monitoring plots were located on virgin or no-till fallow areas and not subject to the sanitary-protection zone of the NPs. Soil samples were taken from a depth of 0- to 20-cm, because the major part of PAHs are accumulated in the surface soil layer. The soils of the plots mainly include Chernozems Calcic (plots 1, 4, 5, 7, 9 and 10), Phaeozems Haplic (plots 3, 6, 8 and 11) Fluvisols Umbric (plots 2 and 12). In the soil of 12 monitoring plots located around NPs there were determined the main enzymes, abundance of soil bacteria and 17 priority PAHs. PAHs extraction from soil was performed by new developed ecologically clean method of subcritical water extraction without organic solvents (Sushkova et al., 2015). The level of PAHs around NPs is high at the nearest to factory monitoring plots situated at distance 1,0-1,2 km and reaches from 1600,1±14,7 up to 373,6±7,1 mkg/kg in the 20-cm soil layer. Gradually decrease of PAHs contamination is observed while increasing the distance from the NPs. The level of highmolecular PAHs (4-6 aromatic rings) exceeds the level of lowmolecular (2-3 aromatic rings) PAHs in all monitoring plots situated though the prevailing wind direction from NPs. The close correlations were found between PAHs content and biological activity parameters

  5. Polycyclic aromatic hydrocarbons (PAHs), their transfer into and dislocation within soil; Eintraege von polyzyklischen aromatischen Kohlenwasserstoffen (PAH) und ihre Verlagerung im Boden

    Energy Technology Data Exchange (ETDEWEB)

    Duerbeck, H W; Niehaus, R; Mueller, U; Bueker, I [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Angewandte Physikalische Chemie

    1998-12-31

    In order to assess the terrestrial hazard potential of polycyclic aromatic hydrocarbons (PAHs), it is vital to investigate their nuisance concentrations and deposition to soil and plants as well as their dislocation in soil. This was the object of the first part of the research programme ``Locational evaluation of chemical soil pollution``, conducted by the national research institutions. It was headed ``Analysis of exposure`` and comprised the following individual contributions: 1. Integrated long-term measurements of polycyclic aromatic hydrocarbons in soil air at ground level (FZJ), 2. Determination of PAH nuisance concentrations at the Scheyern experimental station as well as at the motorway by-passing Munich to the east (A 99), near Kirchheim (GSF), 3. Investigations regarding PAH exposure via the air pathway and inclusion of acquired data in substance flows made up for the east-German dry zone (Bad Lauchstaedt), (UFZ), 4. Simulation of PAH concentration and deposition in south-western Germany (FZK). (orig./SR) [Deutsch] Zur Abschaetzung des Gefaehrdungspotentials von Polycyclischen Aromatischen Kohlenwasserstoffen (PAK) im terrestrischen Bereich sind daher Untersuchungen ueber die Immissionskonzentrationen und die Deposition auf Boeden und Pflanzen sowie ueber ihre Verlagerung im Boden von essentieller Bedeutung. Die Bearbeitung dieser Thematik erfolgte im Teilbereich I `Eintragsanalyse` des AGF-Programms `Standortgerechte Bewertung chemischer Bodenbelastungen` mit folgenden Einzelbeitraegen: 1. Integrierende Langzeitmessung von Polycyclischen Aromatischen Kohlenwasserstoffen in bodennaher Luft, (FZJ) 2. Bestimmung der PAH-Immissionskonzentrationen am Versuchsgut Scheyern sowie an der oestlichen Autobahnumgehung von Muenchen (A 99) bei Kirchheim, (GSF) 3. Untersuchungen zum Eintrag von PAH ueber den Luftpfad und Einbeziehung der Daten in Stoffkreislaeufe im Mitteldeutschen Trockengebiet (Bad Lauchstaedt), (UFZ) 4. Simulation der PAH-Konzentration und

  6. Polycyclic aromatic hydrocarbons (PAHs), their transfer into and dislocation within soil; Eintraege von polyzyklischen aromatischen Kohlenwasserstoffen (PAH) und ihre Verlagerung im Boden

    Energy Technology Data Exchange (ETDEWEB)

    Duerbeck, H.W.; Niehaus, R.; Mueller, U.; Bueker, I. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Angewandte Physikalische Chemie

    1997-12-31

    In order to assess the terrestrial hazard potential of polycyclic aromatic hydrocarbons (PAHs), it is vital to investigate their nuisance concentrations and deposition to soil and plants as well as their dislocation in soil. This was the object of the first part of the research programme ``Locational evaluation of chemical soil pollution``, conducted by the national research institutions. It was headed ``Analysis of exposure`` and comprised the following individual contributions: 1. Integrated long-term measurements of polycyclic aromatic hydrocarbons in soil air at ground level (FZJ), 2. Determination of PAH nuisance concentrations at the Scheyern experimental station as well as at the motorway by-passing Munich to the east (A 99), near Kirchheim (GSF), 3. Investigations regarding PAH exposure via the air pathway and inclusion of acquired data in substance flows made up for the east-German dry zone (Bad Lauchstaedt), (UFZ), 4. Simulation of PAH concentration and deposition in south-western Germany (FZK). (orig./SR) [Deutsch] Zur Abschaetzung des Gefaehrdungspotentials von Polycyclischen Aromatischen Kohlenwasserstoffen (PAK) im terrestrischen Bereich sind daher Untersuchungen ueber die Immissionskonzentrationen und die Deposition auf Boeden und Pflanzen sowie ueber ihre Verlagerung im Boden von essentieller Bedeutung. Die Bearbeitung dieser Thematik erfolgte im Teilbereich I `Eintragsanalyse` des AGF-Programms `Standortgerechte Bewertung chemischer Bodenbelastungen` mit folgenden Einzelbeitraegen: 1. Integrierende Langzeitmessung von Polycyclischen Aromatischen Kohlenwasserstoffen in bodennaher Luft, (FZJ) 2. Bestimmung der PAH-Immissionskonzentrationen am Versuchsgut Scheyern sowie an der oestlichen Autobahnumgehung von Muenchen (A 99) bei Kirchheim, (GSF) 3. Untersuchungen zum Eintrag von PAH ueber den Luftpfad und Einbeziehung der Daten in Stoffkreislaeufe im Mitteldeutschen Trockengebiet (Bad Lauchstaedt), (UFZ) 4. Simulation der PAH-Konzentration und

  7. In situ electro-osmotic cleanup of tar contaminated soil—Removal of polycyclic aromatic hydrocarbons

    KAUST Repository

    Lima, Ana T.

    2012-12-01

    An in situ electro-osmosis experiment was set up in a tar contaminated clay soil in Olst, the Netherlands, at the site of a former asphalt factory. The main goal of this experiment was to remove polycyclic aromatic hydrocarbons (PAHs) from the contaminated clay layer by applying an electric gradient of 12 V m-1 across the soil over an electrode distance of 1 m. With the movement of water by electro-osmosis and the addition of a non-ionic surfactant (Tween 80), the non-polar PAHs were dragged along by convection and removed from the fine soil fraction. Soil samples were taken at the start and after 159 days at the end of the experiment. Water at the electrode wells was sampled regularly during the course of the experiment. The results reflect the heterogeneity of the soil characteristics and show the PAH concentrations within the experimental set up. After first having been released into the anolyte solution due to extraction by Tween 80 and subsequent diffusion, PAH concentrations increased significantly in the electrode reservoirs at the cathode side after 90 days of experiment. Although more detailed statistical analysis is necessary to quantify the efficiency of the remediation, it can be concluded that the use of electro-osmosis together with a non-ionic surfactant is a feasible technique to mobilize non-polar organic contaminants in clayey soils. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

  8. Fenton oxidation to remediate PAHs in contaminated soils: A critical review of major limitations and counter-strategies.

    Science.gov (United States)

    Usman, M; Hanna, K; Haderlein, S

    2016-11-01

    Fenton oxidation constitutes a viable remediation strategy to remove polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. This review is intended to illustrate major limitations associated with this process like acidification, PAH unavailability, and deterioration of soil quality along with associated factors, followed by a critical description of various developments to overcome these constraints. Considering the limitation that its optimal pH is around 3, traditional Fenton treatment could be costly, impractical in soil due to the high buffering capacity of soils and associated hazardous effects. Use of various chelating agents (organic or inorganic) allowed oxidation at circumneutral pH but factors like higher oxidant demand, cost and toxicity should be considered. Another alternative is the use of iron minerals that can catalyze Fenton-like oxidation over a wide range of pH, but mobility of these particles in soils (i.e. saturated and unsaturated zones) should be investigated prior to in-situ applications. The PAH-unavailability is the crucial limitation hindering their effective degradation. Research data is compiled describing various strategies to address this issue like the use of availability enhancement agents, extraction or thermal pretreatment. Last section of this review is devoted to describe the effects of various developments in Fenton treatment onto soil quality and native microbiota. Finally, research gaps are discussed to suggest future directions in context of applying Fenton oxidation to remediate contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Assessment of polycyclic aromatic hydrocarbons (PAHs) pollution in soil of suburban areas in Tianjin, China.

    Science.gov (United States)

    Lv, Jungang; Shi, Rongguang; Cai, Yanming; Liu, Yong

    2010-07-01

    Soil contamination with polycyclic aromatic hydrocarbons is an increasing problem and has aroused more and more concern in many countries, including China. In this study, representative soil samples (n = 87) of suburban areas in Tianjin (Xiqing, Dongli, Jinnan, Beichen) were evaluated for 16 polycyclic aromatic hydrocarbons. Surface soil samples were air-dried and sieved. Microwave assisted extraction was used for polycyclic aromatic hydrocarbons preparation prior to analysis with gas chromatography-mass spectrometry. The total concentrations of tested polycyclic aromatic hydrocarbons in Xiqing, Dongli, Jinnan, Beichen ranged in 58.5-2,748.3, 36.1-6,734.7, 58.5-4,502.5, 29.7-852.5 ng/g and the averages of total concentration of polycyclic aromatic hydrocarbons were 600.5, 933.6, 640.8, 257.3 ng/g, respectively. Spatial variation of polycyclic aromatic hydrocarbons in soil was illustrated; Pollution status and comparison to other cities were also investigated. Serious polycyclic aromatic hydrocarbons soil pollution was found in Dongli district, on the contrary, Bap in most sites in Beichen did not exceed relative standards and most sites in Beichen should be classified as non-contaminated soil. Principal component analysis was used to identify the possible sources of different districts. It turned out that coal combustion still was the most important sources in three districts except Beichen. Coking, traffic, cooking, biomass combustion also accounted for polycyclic aromatic hydrocarbons pollution to certain extent in different districts. These data can be further used to assess the health risk associated with soils polluted with polycyclic aromatic hydrocarbons and help local government find proper way to reduce polycyclic aromatic hydrocarbons pollution in soils.

  10. Polycyclic aromatic hydrocarbons (PAHs in indoor dusts of Guizhou, southwest of China: status, sources and potential human health risk.

    Directory of Open Access Journals (Sweden)

    Qin Yang

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs were analyzed for 136 indoor dust samples collected from Guizhou province, southwest of China. The ∑18PAHs concentrations ranged from 2.18 μg•g-1 to 14.20 μg•g-1 with the mean value of 6.78 μg•g-1. The highest Σ18PAHs concentration was found in dust samples from orefields, followed by city, town and village. Moreover, the mean concentration of Σ18PAHs in indoor dust was at least 10% higher than that of outdoors. The 4-6 rings PAHs, contributing more than 70% of ∑18PAHs, were the dominant species. PAHs ratios, principal component analysis with multiple linear regression (PCA-MLR and hierarchical clustering analysis (HCA were applied to evaluate the possible sources. Two major origins of PAHs in indoor dust were identified as vehicle emissions and coal combustion. The mean incremental lifetime cancer risk (ILCR due to human exposure to indoor dust PAHs in city, town, village and orefield of Guizhou province, China was 6.14×10-6, 5.00×10-6, 3.08×10-6, 6.02×10-6 for children and 5.92×10-6, 4.83×10-6, 2.97×10-6, 5.81×10-6 for adults, respectively.

  11. Modelling Chemical Patterns of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in the Iberian Peninsula

    Science.gov (United States)

    Ratola, Nuno; Jiménez-Guerrero, Pedro

    2013-04-01

    Semi-volatile organic compounds (SVOCs) such as PBDEs, PCBs, organochlorine pesticides (OCPs) or PAHs, are widespread and generated in a multitude of anthropogenic (and natural for PAHs) processes and although they are found in the environment at low concentrations, possess an extraordinary carcinogenic capacity (Baussant et al., 2001) and high ecotoxicity due to their persistence in different matrices (air, soil, water, living organisms). In particular, PAHs are originated by combustion processes or release from fossil fuels and can be transported in the atmosphere over long distances in gaseous or particulate matter (Baek et al., 1991). The establishment of strategies for sampling and chemical transport modelling of SVOCs in the atmosphere aiming the definition and validation of the spatial, temporal and chemical transport patterns of contaminants can be achieved by an integrated system of third-generation models that represent the current state of knowledge in air quality modelling and experimental data collected in field campaigns. This has implications in the fields of meteorology, atmospheric chemistry and even climate change. In this case, an extensive database already obtained on levels of atmospheric PAHs from biomonitoring schemes in the Iberian Peninsula fuelled the establishment of the first models of behaviour for PAHs. The modelling system WRF+CHIMERE was implemented with high spatial and temporal resolution to the Iberian Peninsula in this first task (9 km for the Iberian Peninsula, 3 km to Portugal, 1 hour), using PAHs atmospheric levels collected over a year-long sampling scheme comprising 4 campaigns (one per season) in over 30 sites. Daily information on meteorological parameters such as air temperature, humidity, rainfall or wind speed and direction was collected from the weather stations closest to the sampling sites. Diagnosis and forecasts of these meteorological variables using MM5 or WRF were used to feed a chemistry transport model

  12. Biodegradation of PAHs by fungi in contaminated-soil containing ...

    African Journals Online (AJOL)

    PAH) benzo(a)anthracene, benzo(a) fluoranthene, benzo(a) pyrene, chrysene and phenanthrene in a soil that was sterilized and inoculated with the nonligninolytic fungi, Fusarium flocciferum and Trichoderma spp. and the ligninolytic fungi, ...

  13. Groundwater contamination by polycyclic aromatic hydrocarbon due to diesel spill from a telecom base station in a Nigerian City: assessment of human health risk exposure.

    Science.gov (United States)

    Ugochukwu, Uzochukwu Cornelius; Ochonogor, Alfred

    2018-03-26

    Diesel pollution of groundwater poses great threat to public health, mainly as a result of the constituent polycyclic aromatic hydrocarbons (PAHs). In this study, the human health risk exposure to polycyclic aromatic hydrocarbons (PAHs) in diesel contaminated groundwater used by several families at Ring Road, Jos, Nigeria (as caused by diesel spill from a telecom base station) was assessed. Prior to the groundwater being treated, the residents were using the water after scooping off the visible diesel sheen for purposes of cooking, washing, and bathing. Until this study, it is not clear whether the groundwater contamination had resulted in sub-chronic exposure of the residents using the water to polycyclic aromatic hydrocarbons (PAHs) to the extent of the PAHs posing a health risk. The diesel contaminated groundwater and uncontaminated nearby groundwater (control) were collected and analyzed for PAHs using gas chromatography-mass spectrometry (GC-MS). The dosage of the dermal and oral ingestion entry routes of PAHs was determined. The estimation of the non-carcinogenic health risk was via hazard quotients (HQ) and the associated hazard index (HI), while the estimation of the carcinogenic health risk was via lifetime cancer risks (LCR) and the associated risk index (RI). Obtained results indicate that the exposure of the residents to the PAHs may have made them susceptible to the risk of non-carcinogenic health effects of benzo(a)pyrene and the carcinogenic health effects of benzo(a)anthracene and benzo(a)pyrene.

  14. Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly spiked and long-term field-contaminated soils.

    Science.gov (United States)

    Wei, Ran; Ni, Jinzhi; Li, Xiaoyan; Chen, Weifeng; Yang, Yusheng

    2017-03-01

    Pot experiments were used to compare the dissipation and phytoremediation effect of alfalfa (Medicago sativa L.) for polycyclic aromatic hydrocarbons (PAHs) in a freshly spiked soil and two field-contaminated soils with different soil organic carbon (SOC) contents (Anthrosols, 1.41% SOC; Phaeozems, 8.51% SOC). In spiked soils, the dissipation rates of phenanthrene and pyrene were greater than 99.5 and 94.3%, respectively, in planted treatments and 95.0 and 84.5%, respectively, in unplanted treatments. In field-contaminated Anthrosols, there were limited but significant reductions of 10.2 and 15.4% of total PAHs in unplanted and planted treatments, respectively. In field-contaminated Phaeozems, there were no significant reductions of total PAHs in either unplanted or planted treatments. A phytoremediation effect was observed for the spiked soils and the Anthrosols, but not for the Phaeozems. The results indicated that laboratory tests with spiked soils cannot reflect the real state of field-contaminated soils. Phytoremediation efficiency of PAHs in field-contaminated soils was mainly determined by the content of SOC. Phytoremediation alone has no effect on the removal of PAHs in field-contaminated soils with high SOC content.

  15. Repair of DNA damage induced by anthanthrene, a polycyclic aromatic hydrocarbon (PAH) without bay or fjord regions

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Johannessen, Christian; Rasmussen, Lene Juel

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants, formed during incomplete burning of coal, oil and gas. Several PAHs have carcinogenic and mutagenic potencies, but these compounds must be activated in order to exert their mutagenic effects. One of the principal pathways...... proposed for metabolic activation of PAHs involves the cytochrome P450 enzymes. The DNA damaging potential of cytochrome P450-activated PAHs is generally associated with their bay and fjord regions, and the DNA repair response of PAHs containing such regions has been thoroughly studied. However, little...... in response to DNA damage induced by cytochrome P450-activated anthanthrene. In cell extracts, functional nucleotide excision repair (NER) and mismatch repair (MMR) activities were necessary to trigger a response to anthanthrene metabolite-induced DNA damage. In cell cultures, NER was responsible...

  16. The Role of Human Aldo-Keto Reductases (AKRs in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH-catechols and PAH o-Quinones

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2012-11-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAH are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quiniones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis.

  17. Biological detoxification of a hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Fabbri, F.; Lucchese, G.; Nardella, A.

    2005-01-01

    The soil quality of an industrial site chronically contaminated by 39000 mg/kg of oil was detrimentally affected. Soil treatments by bio-pile and land-farming resulted in a reduction of the level of contamination exceeding 90% of the original values, but without reaching regulatory limits. However, the bio-remediation treatments dramatically reduced the mobility of the contaminants and, accordingly, microbial tests clearly indicate that the soil quality improved to acceptable levels, similar to those typically observed in unaltered soils. Hydrocarbon mobility was estimated by the use of water and mild extractants (methanol and sodium dodecyl sulphate) to leach the contaminants from the soil; soil quality was evaluated by comparing the values of selected microbial and enzymatic parameters of the treated soil samples to reference values determined for natural soils. Microbial assessments included: measurement of the nitrification potential, dehydrogenase activity, measures of respiration and lipase activity, microbial counts (MPN on rich media) and Microtox TM assays of the water elutriate. Dermal absorption potential was evaluated using absorption on C 18 disks

  18. Oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: Patterns, relation to PAHs and vertical distribution

    International Nuclear Information System (INIS)

    Musa Bandowe, Benjamin A.; Sobocka, Jaroslava; Wilcke, Wolfgang

    2011-01-01

    We determined concentrations, sources, and vertical distribution of OPAHs and PAHs in soils of Bratislava. The Σ14 OPAHs concentrations in surface soil horizons ranged 88-2692 ng g -1 and those of Σ34 PAHs 842-244,870 ng g -1 . The concentrations of the Σ9 carbonyl-OPAHs (r = 0.92, p = 0.0001) and the Σ5 hydroxyl-OPAHs (r = 0.73, p = 0.01) correlated significantly with Σ34 PAHs concentrations indicating the close association of OPAHs with parent-PAHs. OPAHs were quantitatively dominated by 9-fluorenone, 9,10-anthraquinone, 1-indanone and benzo[a]anthracene-7,12-dione. At several sites, individual carbonyl-OPAHs had higher concentrations than parent PAHs. The concentration ratios of several OPAHs to their parent-PAHs and contribution of the more soluble OPAHs (1-indanone and 9-fluorenone) to Σ14 OPAHs concentrations increased with soil depth suggesting that OPAHs were faster vertically transported in the study soils by leaching than PAHs which was supported by the correlation of subsoil:surface soil ratios of OPAH concentrations at several sites with K OW . - Research highlights: → Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are closely associated with PAHs in all studied urban soils. → The concentrations of OPAHs in urban soils of Bratislava are similar as in other European and North American cities. → Concentrations of OPAHs are frequently higher than those of the corresponding parent-PAHs. → For 2-hydroxybenzaldehyde, 1-naphthaldehyde, 2-biphenylcarboxaldehyde and 1,8-naphthalic anhydride there are indications for abiotic or biological production. → The OPAHs are faster vertically transported in soils than their parent-PAHs. - OPAHs and PAHs in urban soils are closely associated but OPAHs are faster translocated than PAHs.

  19. Polycyclic aromatic hydrocarbons (PAHs) in continental shelf sediment of China: Implications for anthropogenic influences on coastal marine environment

    International Nuclear Information System (INIS)

    Liu Liangying; Wang Jizhong; Wei Gaoling; Guan Yufeng; Zeng, Eddy Y.

    2012-01-01

    Sediments collected from the continental shelf of China, embracing Yellow Sea, inner shelf of the East China Sea (ECS), and the South China Sea (SCS), were analyzed for polycyclic aromatic hydrocarbons (PAHs). The concentrations of anthropogenic PAHs (Σ 18 PAH) were 27–224 ng/g dry weight, with an average of 82 ng/g. Sedimentary PAHs in the continental shelf off China were mainly derived from mixed residues of biomass, coal, and petroleum combustion. Fluvial transport and atmospheric deposition mainly accounted for sediment PAHs in the ECS inner shelf and Yellow Sea (and the SCS), respectively. Furthermore, statistically higher levels of Σ 18 PAH (28–224 ng/g; mean 110 ng/g) in the Yellow Sea sediment than in the SCS sediment (28–109 ng/g; mean 58 ng/g) were probably resulted from higher PAH emissions from coke industry and domestic coal combustion in North China than in South China. - Highlights: ► Coal and biomass combustion was the main origin of PAHs in coastal marine sediment of China. ► Fluvial transport was the main mode for transporting PAHs to the East China Sea inner shelf. ► Atmospheric deposition largely accounted for sediment PAHs in Yellow Sea and the South China Sea. ► Regional energy use pattern in China was responsible for the spatial distribution of PAHs in coastal marine sediment. - Sources, compositions and spatial distributions of PAHs in continental shelf sediments off China are analyzed to estimate anthropogenic influences.

  20. Identifying carcinogenic activity of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) through electronic and topological indices

    CERN Document Server

    Braga, R S; Barone, P M V B

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of planar molecules, abundant in urban environment, which can induce chemical carcinogenesis. Their carcinogenic power varies in a large range, from very strong carcinogens to inactive ones. In a previous study, we proposed a methodology to identify the PAHs carcinogenic activity exploring electronic and topological indices. In the present work, we show that it is possible to simplify that methodology and expand its applicability to include methylated PAHs compounds. Using very simple rules, we can predict their carcinogenic activity with high accuracy (approx 89%).

  1. Lead and polycyclic aromatic hydrocarbons (PAHs) in surface soil from day care centres in the city of Bergen, Norway

    International Nuclear Information System (INIS)

    Haugland, Toril; Ottesen, Rolf Tore; Volden, Tore

    2008-01-01

    Surface soil (0-2 cm) quality in 87 day care centres in the city of Bergen, Norway has been studied. Approximately 45% of the day care centres contained Pb and PAH values above recommended action levels. There are clear variations between different areas of the city. The old central part of the city hosts most of the contaminated day care centres. In suburban areas most of the day care centres have Pb and PAH concentrations below action levels. City fires, gas work emission, lead-based paint, and traffic are probably important anthropogenic contamination sources, together with uncontrolled transportation of soil from contaminated to clean areas. Geological or other natural sources are probably not an important contributor to the high levels of lead and PAH. - Surface soil in 45% of the studied day care centres was contaminated by lead and PAH

  2. Distribution and health risks of polycyclic aromatic hydrocarbons (PAHs) in smoke aerosols from burning of selected garden wastes

    International Nuclear Information System (INIS)

    Hui, Tay Joo; Seng, Tan Hock; Mohd Radzi Abas; Norhayati Mohd Tahir

    2008-01-01

    A study has been carried out to characterize polycyclic aromatic hydrocarbons emitted from the burning of five types of typical garden wastes viz, Bachang, Mango, Jackfruit, Jambu Air litter fall and a type of Grass. The samples were burned to the ember and respective smoke aerosols emitted during the burning period were sampled using high volume filtration on a pre-cleaned glass fibre filters. Polycyclic aromatic hydrocarbons (PAHs) were extracted using dichloromethane-methanol (3:1) as solvent and the extracts fractionated on silica-alumina column. Detection and quantification of PAHs compounds were carried out using GC-MS. Results indicated that burning resulted in the formation of significant amount of PAHs compounds in all samples; total PAHs compounds emitted were in the range of 0.41 to 42.2 μg/ m 3 . The major PAHs compound exhibited in all smoke samples were three to four rings PAHs (example fluoranthene and pyrene) with lesser amount of five to six rings (example benzo(a)pyrene and benzo(g,h,i) perylene) and two rings PAHs (example acenaphthylene). The BaP equivalency results showed that the potential health risk from these garden wastes smoke were very significant; total BaP equivalency values were in the range of 5.60 E+04 pg/ m 3 - 4.98 E+06 pg/ m 3 with Jambu Air smoke exhibited the highest potential health risk. (author)

  3. Human health risk due to consumption of vegetables contaminated with carcinogenic polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sardar [Chinese Academy of Sciences, Xiamen (China). Inst. of Urban Environment; Peshawar Univ. (Pakistan). Dept. of Environmental Science; Cao, Qing [Chinese Academy of Sciences, Beijing (China). Research Center for Eco-Environemntal Sciences

    2012-02-15

    Polycyclic aromatic hydrocarbons (PAH) are persistent, toxic, and carcinogenic contaminants present in soil ecosystem globally. These pollutants are gradually accumulating in wastewater-irrigated soils and lead to the contamination of vegetables. Food chain contamination with PAH is considered as one of the major pathways for human exposure. This study was aimed to investigate the concentrations of PAH in soils and vegetables collected from wastewater-irrigated fields from metropolitan areas of Beijing, China. Origin of PAH, daily intake, and health risks of PAH through consumption of contaminated vegetables were studied. Soil samples were collected from the upper horizon (0-20 cm) of both wastewater-irrigated and reference sites and sieved (<2 mm mesh) and then followed by freeze-drying at -50 C and 123 {+-} 2 Pa. Standing vegetables were also collected from the same sites used for soil sampling and divided into roots and shoots, thoroughly washed with deionized water, and freeze-dried. PAH were extracted using the Soxhlet method with 200 mL DCM for 24 h, and the extracts were cleaned with silica adsorption chromatography prepared with silica gel, alumina, and capped with anhydrous sodium. The final concentrated extracts (soil and vegetable) were analyzed using gas chromatography-mass spectrometry (Agilent 6890). Bioaccumulation factors, daily intake of PAH, and carcinogenicity of PAH were calculated by different statistical equations. Results indicate that the soils and grown vegetables were contaminated with all possible carcinogenic PAH (declared by USEPA 2002) except indeno[1,2,3-c,d]pyrene. The highest concentration (242.9 {mu}g kg{sup -1}) was found for benzo(k)fluoranthene (BkF), while lowest (79.12 {mu}g kg{sup -1}) for benzo[a]pyrene (BaP). The emission sources of PAH were both pyrogenic and petrogenic in nature. However, the total concentrations of PAH were lower than the permissible limits set by different countries like Canada, Denmark and Germany

  4. Removal of PAHs from contaminated calyey soil by means of electro-osmosis

    NARCIS (Netherlands)

    Lima, A.T.; Kleingeld, P.J.; Heister, K.; Loch, J.P.G.

    2011-01-01

    The removal of polycyclic aromatic hydrocarbons (PAHs) from clayey soils is an intricate task. The low porosity of compacted clayey soil hinders bacterial activity and makes convective removal by hydraulic flow impossible. Electro-osmosis is a process that has been used for the mobilization and

  5. Laboratory investigations on the distribution of polycyclic aromatic hydrocarbons (PAH) under watersaturated conditions

    International Nuclear Information System (INIS)

    Herbert, M.

    1993-01-01

    With static batch-sorption experiments the sorption behaviour of Fluoranthene and Acenaphthelene was analysed. It showed that the sorption of PAH depends on the concentration and does not show a linear relationship throughout the concentration ranges. The sorption of PAH is for the most part dependent on the amount of organic material. The type of organic matter has an influence on the sorption behaviour, so that young organic material adsorbs less than older organic material. The desorption behaviour of Fluoranthene was analysed with batch-desorption experiments. In order to determine the influence of the time needed to adjust the previous sorption equilibrium, long-term experiments in batch-vessels were made in addition. The desorption is mainly determined by the time needed for adjusting sorption equilibrium and less determined by the type of the isothermes. A part of the PAH is delivered very slowly and in very low concentrations according to the speed of the reverse diffusion in the coarser sample material. If the desorption is purely controlled by diffusive processes, this can lead to a very fast reduction of the contaminant's concentration in water to a very small amount, without a decisive reduction of the contaminant's concentration in the solid phase. (orig.) [de

  6. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.

    Science.gov (United States)

    Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne

    2015-09-01

    The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the

  7. PAHs underfoot: Contaminated dust from coal-tar sealcoated pavement is widespread in the United States

    Science.gov (United States)

    Van Metre, P.C.; Mahler, B.J.; Wilson, J.T.

    2009-01-01

    We reported in 2005 that runoff from parking lots treated with coal-tar-based sealcoat was a major source of polycyclic aromatic hydrocarbons (PAHs) to streams in Austin, Texas. Here we present new data from nine U. S. cities that show nationwide patterns in concentrations of PAHs associated with sealcoat Dust was swept from parking lots in six cities in the central and eastern U. S., where coal-tar-based sealcoat dominates use, and three cities in the western U. S., where asphalt-based sealcoat dominates use. For six central and eastern cities, median ?? PAH concentrations in dust from sealcoated and unsealcoated pavement are 2200 and 27 mg/kg, respectively. For three western cities, median ?? PAH concentrations in dust from sealcoated and unsealcoated pavement are similar and very low (2. 1 and 0. 8 mg/kg, respectively). Lakes in the central and eastern cities where pavement was sampled have bottom sediments with higher PAH concentrations than do those in the western cities relative to degree of urbanization. Bottom-sediment PAH assemblages are similar to those of sealcoated pavement dust regionally, implicating coal-tar-based sealcoat as a PAH source to the central and eastern lakes. Concentrations of benzo[a]pyrene in dust from coal-tar sealcoated pavement and adjacent soils greatly exceed generic soil screening levels, suggesting that research on human-health risk is warranted.

  8. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure, antioxidant levels and behavioral development of children ages 6-9.

    Science.gov (United States)

    Genkinger, Jeanine M; Stigter, Laura; Jedrychowski, Wieslaw; Huang, Tzu-Jung; Wang, Shuang; Roen, Emily L; Majewska, Renata; Kieltyka, Agnieszka; Mroz, Elzbieta; Perera, Frederica P

    2015-07-01

    Prenatal polycyclic aromatic hydrocarbon (PAH) exposure has been shown to increase DNA adduct levels and to affect neurodevelopment. Micronutrients may modify the adverse effect of PAH on neurodevelopment. Thus, we examined if micronutrient concentrations modified the association between PAH exposure and neurodevelopmental outcomes. 151 children from a birth cohort who had micronutrient concentrations measured in cord blood and completed the Child Behavioral Checklist (CBCL), between the ages of 6 and 9 years, were evaluated. Prenatal airborne PAH exposure was measured by personal air monitoring. The betas and 95% CI for the associations of antioxidant concentrations and PAH exposure with each of the outcomes of CBCL raw score and dichotomized standardized T-score (based on clinical cutpoints) were estimated, respectively, by multivariable poisson and logistic models. Children below the median for alpha-tocopherol and gamma-tocopherol concentrations, compared to those above, were more likely to have thought problems, aggressive behavior and externalizing problems (pPAH in relation to CBCL symptoms (e.g., internalizing and externalizing problems, pPAH exposure. Future research to confirm these findings are warranted given the importance of identifying modifiable factors for reducing harmful PAH effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Regional modelling of polycyclic aromatic hydrocarbons: WRF-Chem-PAH model development and East Asia case studies

    Science.gov (United States)

    Mu, Qing; Lammel, Gerhard; Gencarelli, Christian N.; Hedgecock, Ian M.; Chen, Ying; Přibylová, Petra; Teich, Monique; Zhang, Yuxuan; Zheng, Guangjie; van Pinxteren, Dominik; Zhang, Qiang; Herrmann, Hartmut; Shiraiwa, Manabu; Spichtinger, Peter; Su, Hang; Pöschl, Ulrich; Cheng, Yafang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants, with increasing emissions in pace with economic development in East Asia, but their distribution and fate in the atmosphere are not yet well understood. We extended the regional atmospheric chemistry model WRF-Chem (Weather Research Forecast model with Chemistry module) to comprehensively study the atmospheric distribution and the fate of low-concentration, slowly degrading semivolatile compounds. The WRF-Chem-PAH model reflects the state-of-the-art understanding of current PAHs studies with several new or updated features. It was applied for PAHs covering a wide range of volatility and hydrophobicity, i.e. phenanthrene, chrysene and benzo[a]pyrene, in East Asia. Temporally highly resolved PAH concentrations and particulate mass fractions were evaluated against observations. The WRF-Chem-PAH model is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions. Sensitivity study shows that the heterogeneous reaction with ozone and the homogeneous reaction with the nitrate radical significantly influence the fate and distributions of PAHs. The methods to implement new species and to correct the transport problems can be applied to other newly implemented species in WRF-Chem.

  10. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    International Nuclear Information System (INIS)

    Bourgeault, A.; Gourlay-Francé, C.

    2013-01-01

    The suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng g dry wt −1 , reached 2654, 3972 and 3727 ng g −1 at the end of exposure in the three sampling points taken through the river. The respective SPMD-available concentrations of TPAHs reached 9, 52 and 34 ng L −1 . Results showed seasonal variations of total PAH concentrations in the mussels, characterized by a decrease during spawning. The non-achievement of steady state concentration that was observed in mussels may be accounted for by the temporal variation of environmental concentrations. Thus, a bioaccumulation model based on kinetic rather than simple equilibrium partitioning was found to be more appropriate to describe PAH content in mussels. Moreover, biodynamic kinetic modeling proved useful to better understand the uptake and loss processes of pyrene. It clearly shows that these processes are markedly influenced by the biological state of the zebra mussels. The most realistic hypothesis is that the temporal variation of the biodynamic parameters may originate from a decrease of the mussels' metabolization of PAHs during spawning. Since SPMD passive samplers cannot integrate such biological factors, they are poor predictors of PAH bioavailability in mussels. - Highlights: • PAH contamination was monitored by deploying mussels and SPMDs over 11 months along the Seine River. • 5–6 ring PAHs which could not be quantified in spot samples, were measured in SPMDs. • PAH concentrations in the mussels decreased during spawning. • Temporal variation of bioaccumulated PAH may originate from a decrease of the mussels' metabolism during spawning. • Biodynamic model was allowed to explain the bioaccumulation

  11. Monitoring PAH contamination in water: Comparison of biological and physico-chemical tools

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeault, A., E-mail: bourgeault@ensil.unilim.fr; Gourlay-Francé, C.

    2013-06-01

    The suitability of biological methods and chemical-based passive samplers to determine exposure to PAHs was tested by deploying zebra mussels and SPMDs along the Seine River over 11 months. The concentration of 13 PAHs was analyzed every month in both water and mussels. The sum of the PAH concentrations in mussels, initially at 299 ng g{sub dry} {sub wt}{sup −1}, reached 2654, 3972 and 3727 ng g{sup −1} at the end of exposure in the three sampling points taken through the river. The respective SPMD-available concentrations of TPAHs reached 9, 52 and 34 ng L{sup −1}. Results showed seasonal variations of total PAH concentrations in the mussels, characterized by a decrease during spawning. The non-achievement of steady state concentration that was observed in mussels may be accounted for by the temporal variation of environmental concentrations. Thus, a bioaccumulation model based on kinetic rather than simple equilibrium partitioning was found to be more appropriate to describe PAH content in mussels. Moreover, biodynamic kinetic modeling proved useful to better understand the uptake and loss processes of pyrene. It clearly shows that these processes are markedly influenced by the biological state of the zebra mussels. The most realistic hypothesis is that the temporal variation of the biodynamic parameters may originate from a decrease of the mussels' metabolization of PAHs during spawning. Since SPMD passive samplers cannot integrate such biological factors, they are poor predictors of PAH bioavailability in mussels. - Highlights: • PAH contamination was monitored by deploying mussels and SPMDs over 11 months along the Seine River. • 5–6 ring PAHs which could not be quantified in spot samples, were measured in SPMDs. • PAH concentrations in the mussels decreased during spawning. • Temporal variation of bioaccumulated PAH may originate from a decrease of the mussels' metabolism during spawning. • Biodynamic model was allowed to explain

  12. Algal tests with soil suspensions and elutriates: A comparative evaluation for PAH contaminated soils

    DEFF Research Database (Denmark)

    Baun, Anders; Justesen, Kasper Bo; Nyholm, Niels

    2002-01-01

    An algal growth inhibition test procedure with soil suspensions is proposed and evaluated for PAH-contaminated soil. The growth rate reduction of the standard freshwater green alga Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum) was used as the toxicity endpoint......, and was quantified by measuring the fluorescence of solvent-extracted algal pigments. No growth rate reduction was detected for soil contents up to 20 g/l testing five non-contaminated Danish soils. Comparative testing with PAH-contaminated soil elutriates and soil suspensions showed that the suspensions had...

  13. Black tattoos entail substantial uptake of genotoxicpolycyclic aromatic hydrocarbons (PAH) in human skin and regional lymph nodes.

    Science.gov (United States)

    Lehner, Karin; Santarelli, Francesco; Vasold, Rudolf; Penning, Randolph; Sidoroff, Alexis; König, Burkhard; Landthaler, Michael; Bäumler, Wolfgang

    2014-01-01

    Hundreds of millions of people worldwide have tattoos, which predominantly contain black inks consisting of soot products like Carbon Black or polycyclic aromatic hydrocarbons (PAH). We recently found up to 200 μg/g of PAH in commercial black inks. After skin tattooing, a substantial part of the ink and PAH should be transported to other anatomical sites like the regional lymph nodes. To allow a first estimation of health risk, we aimed to extract and quantify the amount of PAH in black tattooed skin and the regional lymph nodes of pre-existing tattoos. Firstly, we established an extraction method by using HPLC-DAD technology that enables the quantification of PAH concentrations in human tissue. After that, 16 specimens of human tattooed skin and corresponding regional lymph nodes were included in the study. All skin specimen and lymph nodes appeared deep black. The specimens were digested and tested for 20 different PAH at the same time.PAH were found in twelve of the 16 tattooed skin specimens and in eleven regional lymph nodes. The PAH concentration ranged from 0.1-0.6 μg/cm2 in the tattooed skin and 0.1-11.8 μg/g in the lymph nodes. Two major conclusions can be drawn from the present results. Firstly, PAH in black inks stay partially in skin or can be found in the regional lymph nodes. Secondly, the major part of tattooed PAH had disappeared from skin or might be found in other organs than skin and lymph nodes. Thus, beside inhalation and ingestion, tattooing has proven to be an additional, direct and effective route of PAH uptake into the human body.

  14. Black tattoos entail substantial uptake of genotoxicpolycyclic aromatic hydrocarbons (PAH in human skin and regional lymph nodes.

    Directory of Open Access Journals (Sweden)

    Karin Lehner

    Full Text Available Hundreds of millions of people worldwide have tattoos, which predominantly contain black inks consisting of soot products like Carbon Black or polycyclic aromatic hydrocarbons (PAH. We recently found up to 200 μg/g of PAH in commercial black inks. After skin tattooing, a substantial part of the ink and PAH should be transported to other anatomical sites like the regional lymph nodes. To allow a first estimation of health risk, we aimed to extract and quantify the amount of PAH in black tattooed skin and the regional lymph nodes of pre-existing tattoos. Firstly, we established an extraction method by using HPLC-DAD technology that enables the quantification of PAH concentrations in human tissue. After that, 16 specimens of human tattooed skin and corresponding regional lymph nodes were included in the study. All skin specimen and lymph nodes appeared deep black. The specimens were digested and tested for 20 different PAH at the same time.PAH were found in twelve of the 16 tattooed skin specimens and in eleven regional lymph nodes. The PAH concentration ranged from 0.1-0.6 μg/cm2 in the tattooed skin and 0.1-11.8 μg/g in the lymph nodes. Two major conclusions can be drawn from the present results. Firstly, PAH in black inks stay partially in skin or can be found in the regional lymph nodes. Secondly, the major part of tattooed PAH had disappeared from skin or might be found in other organs than skin and lymph nodes. Thus, beside inhalation and ingestion, tattooing has proven to be an additional, direct and effective route of PAH uptake into the human body.

  15. Black Tattoos Entail Substantial Uptake of Genotoxicpolycyclic Aromatic Hydrocarbons (PAH) in Human Skin and Regional Lymph Nodes

    Science.gov (United States)

    Lehner, Karin; Santarelli, Francesco; Vasold, Rudolf; Penning, Randolph; Sidoroff, Alexis; König, Burkhard; Landthaler, Michael; Bäumler, Wolfgang

    2014-01-01

    Hundreds of millions of people worldwide have tattoos, which predominantly contain black inks consisting of soot products like Carbon Black or polycyclic aromatic hydrocarbons (PAH). We recently found up to 200 μg/g of PAH in commercial black inks. After skin tattooing, a substantial part of the ink and PAH should be transported to other anatomical sites like the regional lymph nodes. To allow a first estimation of health risk, we aimed to extract and quantify the amount of PAH in black tattooed skin and the regional lymph nodes of pre-existing tattoos. Firstly, we established an extraction method by using HPLC – DAD technology that enables the quantification of PAH concentrations in human tissue. After that, 16 specimens of human tattooed skin and corresponding regional lymph nodes were included in the study. All skin specimen and lymph nodes appeared deep black. The specimens were digested and tested for 20 different PAH at the same time.PAH were found in twelve of the 16 tattooed skin specimens and in eleven regional lymph nodes. The PAH concentration ranged from 0.1–0.6 μg/cm2 in the tattooed skin and 0.1–11.8 μg/g in the lymph nodes. Two major conclusions can be drawn from the present results. Firstly, PAH in black inks stay partially in skin or can be found in the regional lymph nodes. Secondly, the major part of tattooed PAH had disappeared from skin or might be found in other organs than skin and lymph nodes. Thus, beside inhalation and ingestion, tattooing has proven to be an additional, direct and effective route of PAH uptake into the human body. PMID:24670978

  16. Bioremediation in soil contaminated with hydrocarbons in Colombia.

    OpenAIRE

    María Alejandra Trujillo Toro; Juan Fernando Ramírez Quirama

    2012-01-01

    This study analyzes bioremediation processes of hydrocarbon contaminated soils in Colombia as a sustainable alternative to the deterioration of environmental quality by hydrocarbon spillage. According to national and international environmental law, all waste contaminated with hydrocarbons is considered dangerous waste, and therefore it cannot be released in the ground, water or be incinerated. Such legislation has motivated companies around the world to implement treatment processes for cont...

  17. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U...... and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  18. Chlorinated hydrocarbon contaminants in arctic marine mammals.

    Science.gov (United States)

    Norstrom, R J; Muir, D C

    1994-09-16

    By 1976, the presence of chlorinated hydrocarbon contaminants (CHCs) had been demonstrated in fur seal (Callorhinus ursinus), ringed seal (Phoca hispida), hooded seal (Cystophora cristata), bearded seal (Erignathus barbatus), walrus (Obdobenus rosmarus divergens), beluga (Delphinapterus leucas), porpoise (Phocoena phocoena) and polar bear (Ursus maritimus) in various parts of the Arctic. In spite of this early interest, very little subsequent research on contaminants in Arctic marine mammals was undertaken until the mid-1980s. Since that time, there has been an explosion of interest, resulting in a much expanded data base on contaminants in Arctic marine mammals. Except in the Russian Arctic, data have now been obtained on the temporospatial distribution of PCBs and other contaminants in ringed seal, beluga and polar bear. Contaminants in narwhal (Monodon monoceros) have also now been measured. On a fat weight basis, the sum of DDT-related compounds (S-DDT) and PCB levels are lowest in walrus (Polar bears have similar levels of PCBs as cetaceans (1-10 micrograms/g), but with a much simpler congener pattern. DDE levels are lowest in polar bear, indicating rapid metabolism. Effects of age and sex on residue levels are found for all species where this was measured. Among cetaceans and ringed seal, sexually mature females have lower levels than males due to lactation. Although PCB levels in adult male polar bears are about twice as high as females, there is only a trivial age effect in either sex apart from an initial decrease from birth to sexual maturity (age 0-5). Comparison of levels of S-DDT and PCBs in Arctic beluga and ringed seal with those in beluga in the Gulf of St. Lawrence and ringed seal in the Baltic Sea, indicate that overall contamination of the Arctic marine ecosystem is 10-50 times less than the most highly contaminated areas in the northern hemisphere temperate latitude marine environment. Geographic distribution of residue levels in polar bears

  19. Bioremediation of PAHs contaminated river sediment by an integrated approach with sequential injection of co-substrate and electron acceptor: Lab-scale study

    International Nuclear Information System (INIS)

    Liu, Tongzhou; Zhang, Zhen; Dong, Wenyi; Wu, Xiaojing; Wang, Hongjie

    2017-01-01

    In this study, the feasibility of employing an integrated bioremediation approach in contaminated river sediment was evaluated. Sequential addition of co-substrate (acetate) and electron acceptor (NO 3 − ) in a two-phase treatment was capable of effectively removing polycyclic aromatic hydrocarbons (PAHs) in river sediment. The residual concentration of total PAHs decreased to far below effect range low (ERL) value within 91 days of incubation, at which concentration it could rarely pose biological impairment. The biodegradation of high molecular weight PAHs were found to be mainly occurred in the sediment treated with co-substrates (i.e. acetate or methanol), in which acetate was found to be more suitable for PAHs degradation. The role of co-substrates in influencing PAHs biodegradation was tentatively discussed herein. Additionally, the sediment odorous problem and blackish appearance were intensively addressed by NO 3 − injection. The results of this study demonstrated that integrating two or more approaches/processes would be a helpful option in sediment remediation. It can lead to a more effective remediation performance, handle multiple contamination issues, as well as mitigate environmental risks caused by one of the single methods. - Highlights: • Sequential addition of acetate and NO 3 − removed PAHs and mitigated sediment odor. • Acetate is a suitable co-substrate used for PAHs degradation in river sediment. • NO 3 − Injection was effective for sediment odor and blackish appearance mitigation. • Integrated method is suggested in complicated real case with multi-remedial target. - Sequential addition of co-substrate and electron acceptor was capable of effectively removing PAHs and addressing sediment odorous problem and blackish appearance.

  20. Distribution of particle-phase hydrocarbons, PAHs and OCPs in Tianjin, China

    Science.gov (United States)

    Wu, Shui-Ping; Tao, Shu; Zhang, Zhi-Huan; Lan, Tian; Zuo, Qian

    Aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were determined in the total suspended particles (TSP) collected from 13 different locations in Tianjin, China, where intensive coal burning for domestic heating in winter takes place and a large quantity of pesticides had been produced and applied. Carbon preference index (CPI), carbon number maximum (C max) of n-alkane and plant wax index (%wax C n) indicate that n-alkanes come from both biogenic and petrogenic sources, and biogenic source contributes more n-alkanes in autumn than in winter. Petroleum biomarkers as indicators of petrogenic source such as hopanes and steranes were also detected in both seasons' samples. The sum of 16 PAH concentrations (∑PAH) ranged from 69.3 to 2170 ng m -3 in winter and from 7.01 to 40.0 ng m -3 in autumn. Seasonal variations were mainly attributed to the difference in coal combustion emission and meteorological conditions. The results of a source diagnostic analysis suggest that PAHs in TSP mainly come from coal combustion. Seven OCPs (four hexachlorohexanes (HCHs) and three dichlorodipheny-trichloroethane and metabolites (DDTs)) were detected in most samples. Concentrations of the sum of α-, β-, δ- and γ-HCH (∑HCH) and the sum of p, p'-DDT, p, p'-DDD and p, p'-DDE (∑DDT) in autumn varied in the ranges of 0.002-0.9 ng m -3 and 0.025-2.21 ng m -3 with the average±standard deviation values of 0.127±0.241 ng m -3 and 0.239±0.546 ng m -3, respectively. In winter, ∑HCH and ∑DDT in TSP ranged from 0.071 to 5.35 ng m -3 and from 0.416 to 3.14 ng m -3 with the average±standard deviation values 1.05±1.88 ng m -3 and 0.839±0.713 ng m -3, respectively. Both of the illegal application of technical HCH and DDT and the volatilization from topsoil contributed to the particle-phase contents of HCHs and DDTs in the atmosphere.

  1. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China.

    Science.gov (United States)

    Luo, Xiaojun; Mai, Bixian; Yang, Qingshu; Fu, Jiamo; Sheng, Guoying; Wang, Zhishi

    2004-06-01

    Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were measured in suspended particles and dissolved phase from the Baiertang water column and the Macao water column samples as collected from the Guangzhou channel of the Pearl River and the Macao harbor, where the sediments were heavily contaminated with organic pollutants. Total OCPs concentration varies from 23.4 to 61.7 ng/l in Baiertang water column and from 25.2 to 67.8 ng/l in Macao column, while total PAHs concentration varies from 987.1 to 2878.5 ng/l in the Baiertang water column and from 944.0 to 6654.6 ng/l in the Macao column. The vertical distribution profiles of pollutants and the partition of pollutants between particles and dissolved phases indicate that the sediments in Baiertang act as an important source of selected pollutants, and the pollutants in water of this region were mainly originated from the release and re-suspension of contaminants residing in the sediments. The sediments in Macao harbor act as a reservoir for organochlorine pesticides, such as DDTs mainly introduced by river inflow from Xijiang and PAHs input by brackish water from the Lingdingyang estuary. Combustion of fossil fuels and petroleum input are the main sources of PAHs in the Macao water column, while combustion of fossil fuels and coal is responsible for the PAHs in the Baiertang water column. The ratios of DDT/(DDD+DDE) for the Macao water column samples demonstrate that such chemicals were input into this region in recent times.

  2. Possible impacts of Hg and PAH contamination on benthic foraminiferal assemblages: An example from the Sicilian coast, central Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Di Leonardo, Rossella [Dipartimento di Chimica e Fisica della Terra ed Applicazioni alle Georisorse e ai Rischi Naturali (CFTA), Universita di Palermo, Via Archirafi 36, 90123 Palermo (Italy); Bellanca, Adriana [Dipartimento di Chimica e Fisica della Terra ed Applicazioni alle Georisorse e ai Rischi Naturali (CFTA), Universita di Palermo, Via Archirafi 36, 90123 Palermo (Italy)], E-mail: bellanca@unipa.it; Capotondi, Lucilla [ISMAR-CNR, Marine Geology Section, Via Gobetti 101, 40129 Bologna (Italy); Cundy, Andrew [School of the Environment, University of Brighton, Moulsecoomb, Brighton, BN2 4GJ (United Kingdom); Neri, Rodolfo [Dipartimento di Chimica e Fisica della Terra ed Applicazioni alle Georisorse e ai Rischi Naturali (CFTA), Universita di Palermo, Via Archirafi 36, 90123 Palermo (Italy)

    2007-12-15

    The Palermo and Augusta urban/industrial areas (Sicily) are examples of contaminated coastal environments with a relatively high influx of unregulated industrial and domestic effluents. Three sediment box-cores were collected offshore of these urban/industrial areas in water depths of 60-150 m during two cruises (summers 2003/2004), dated by {sup 210}Pb and {sup 137}Cs, and analysed for total mercury concentration and total polycyclic aromatic hydrocarbon (PAH) concentration. Benthic foraminiferal assemblages were also examined (in terms of their distribution and morphology) to assess the potential use of benthic foraminifera as bioindicators of pollutant input and environmental change in these Mediterranean shelf environments. The Hg and PAHs vs depth profiles show a clear increase in concentration with decreasing depth. Most of the sediments are highly enriched in mercury and show concentrations more than 20 times the background mercury value estimated for sediments from the Sicily Strait. The Hg and PAH concentrations appear to be potentially hazardous, grossly exceeding national and international regulatory guidelines. A reduction in abundance of benthic foraminifera, increasing percentages of tests with various morphological deformities, and the dominance of opportunistic species in more recent sediments can be correlated to anthropogenic impact.

  3. Possible impacts of Hg and PAH contamination on benthic foraminiferal assemblages: An example from the Sicilian coast, central Mediterranean

    International Nuclear Information System (INIS)

    Di Leonardo, Rossella; Bellanca, Adriana; Capotondi, Lucilla; Cundy, Andrew; Neri, Rodolfo

    2007-01-01

    The Palermo and Augusta urban/industrial areas (Sicily) are examples of contaminated coastal environments with a relatively high influx of unregulated industrial and domestic effluents. Three sediment box-cores were collected offshore of these urban/industrial areas in water depths of 60-150 m during two cruises (summers 2003/2004), dated by 210 Pb and 137 Cs, and analysed for total mercury concentration and total polycyclic aromatic hydrocarbon (PAH) concentration. Benthic foraminiferal assemblages were also examined (in terms of their distribution and morphology) to assess the potential use of benthic foraminifera as bioindicators of pollutant input and environmental change in these Mediterranean shelf environments. The Hg and PAHs vs depth profiles show a clear increase in concentration with decreasing depth. Most of the sediments are highly enriched in mercury and show concentrations more than 20 times the background mercury value estimated for sediments from the Sicily Strait. The Hg and PAH concentrations appear to be potentially hazardous, grossly exceeding national and international regulatory guidelines. A reduction in abundance of benthic foraminifera, increasing percentages of tests with various morphological deformities, and the dominance of opportunistic species in more recent sediments can be correlated to anthropogenic impact

  4. Isolation and Characterization of Three and Four Ring Pahs Degrading Bacteria from Contaminated Sites, Ankleshwar, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Jignasha G. Patel

    2015-02-01

    Full Text Available Polycyclic aromatic hydrocarbon (PAH-degrading bacteria were isolated from prolong contaminated Amalakhadi sediment and crude oil polluted soil Telva, near Ankleshwar Gujarat India. Organisms were treated with two-model PAHs compound Anthracene (ANT, and Pyrene (PYR as the sole source of carbon and energy. Identification of the isolates was carried out based on their morphological and partial 16S rRNA gene sequences, which revealed that the isolates belong to two main bacterial groups: gram-negative pseudomonas indoxyladons and gram-positive, spore-forming group, Bacillus benzoevorans. GC-MS based degradation study demonstrated that P. indoxyladons efficiently degrade 98% of ANT and PYR by 93.2 % when treated with 250 mg L-1. However, B. benzoevorans could tolerate to 200 mg L-1of PYR. Thus, the findings of the study provide novel bacterial sp. having different capacity to degrade model PAHs compounds and further could be utilized for the standardization of bioremediation protocols for ex situ and in situ studies in aquatic as well as terrestrial ecosystem.DOI: http://dx.doi.org/10.3126/ije.v4i1.12184International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, Page: 130-140  

  5. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites

    Directory of Open Access Journals (Sweden)

    Kaustuvmani Patowary

    2016-07-01

    Full Text Available The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia towards total petroleum hydrocarbons (TPH with special emphasis to poly aromatic hydrocarbons (PAHs were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples 5 isolates, namely KS2, PG1, PG5, R1 and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1 and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and Bacillus cereus R2 (identified by 16s rRNA sequencing has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of total petroleum hydrocarbon (TPH after five weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared and GCMS (Gas chromatography-mass spectrometer analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  6. Unique problems of hydrocarbon contamination for ports

    International Nuclear Information System (INIS)

    Rice, D.W.

    1991-01-01

    Since the early 1900s, port facilities in the United States have been involved in the import and export of petroleum products. The WORLDPORT L.A. is a 7,000 acre land and water area that is administered by the Department of The City of Los Angeles under a tidelands grant from the State of California for the purposes of commerce, navigation, and fisheries. Over half of the oil-refining of California lies within 20 miles of WORLDPORT L.A. It is therefore not surprising that the port is a major hub for the handling of crude oil and petroleum products, including gasoline, aviation gas/jet fuel, and marine fuels. This paper reports that it is also not surprising that port facilities, given their long history of handling petroleum products, contain areas where soils and groundwater are contaminated with hydrocarbons. This contamination is localized but can be extensive. Petroleum and petrochemical products are handled at terminal facilities that are leased to oil companies

  7. Development of a Relative Potency Factor (Rpf) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft)

    Science.gov (United States)

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of polycyclic aromatic hydrocarbon (PAH) mixtures that when finalized will appear on the Integrated Risk Information System (IRIS) database. ...

  8. Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks.

    Science.gov (United States)

    Brown, Andrew S; Brown, Richard J C; Coleman, Peter J; Conolly, Christopher; Sweetman, Andrew J; Jones, Kevin C; Butterfield, David M; Sarantaridis, Dimitris; Donovan, Brian J; Roberts, Ian

    2013-06-01

    The impact of human activities on the health of the population and of the wider environment has prompted action to monitor the presence of toxic compounds in the atmosphere. Toxic organic micropollutants (TOMPs) are some of the most insidious and persistent of these pollutants. Since 1991 the United Kingdom has operated nationwide air quality networks to assess the presence of TOMPs, including polycyclic aromatic hydrocarbons (PAHs), in ambient air. The data produced in 2010 marked 20 years of nationwide PAH monitoring. This paper marks this milestone by providing a novel and critical review of the data produced since nationwide monitoring began up to the end of 2011 (the latest year for which published data is available), discussing how the networks performing this monitoring has evolved, and elucidating trends in the concentrations of the PAHs measured. The current challenges in the area and a forward look to the future of air quality monitoring for PAHs are also discussed briefly.

  9. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils.

    Science.gov (United States)

    Wang, Congying; Wang, Ziyu; Li, Zengbo; Ahmad, Riaz

    2017-02-01

    A two-liquid-phase system (TLPS), which consisted of soil slurry and silicone oil, was employed to extract polycyclic aromatic hydrocarbons (PAHs) in four long-term contaminated soils in order to assess the bioavailability of PAHs. Extraction kinetics of six PAHs viz. phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, benzo(a)pyrene, dibenzo(a,h)anthrancene were selected to investigate as they covered the susceptible and recalcitrant PAHs in soil. A parallel experiments were also carried out on the microbial degradation of these PAHs in soil with and without biostimulation (by adding (NH 4 ) 2 HPO 4 ). The rapidly desorbed fraction of fluoranthene, as indicated by the two-fraction model, was found the highest, ranging from 21.4% to 37.4%, whereas dibenzo(a,h)anthrancene was the lowest, ranging from 8.9% to 20.5%. The rapid desorption of selected PAHs was found to be finished within 24 h. The rapidly desorbed fraction of PAHs investigated using TLPS, was significantly correlated (R 2  = 0.95) with that degraded by microorganisms in biostimulation treatment. This suggested that the TLPS-assisted extraction could be a promising technique in determining the bioavailability of aged PAHs in contaminated soils. It also suggested that applying sufficient nutrients in bioremediation of field contaminated soils is crucial. Further work is required to test its application to more hydrophobic organic pollutants in long-term contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Bioremediation of PAHs contaminated river sediment by an integrated approach with sequential injection of co-substrate and electron acceptor: Lab-scale study.

    Science.gov (United States)

    Liu, Tongzhou; Zhang, Zhen; Dong, Wenyi; Wu, Xiaojing; Wang, Hongjie

    2017-11-01

    In this study, the feasibility of employing an integrated bioremediation approach in contaminated river sediment was evaluated. Sequential addition of co-substrate (acetate) and electron acceptor (NO 3 - ) in a two-phase treatment was capable of effectively removing polycyclic aromatic hydrocarbons (PAHs) in river sediment. The residual concentration of total PAHs decreased to far below effect range low (ERL) value within 91 days of incubation, at which concentration it could rarely pose biological impairment. The biodegradation of high molecular weight PAHs were found to be mainly occurred in the sediment treated with co-substrates (i.e. acetate or methanol), in which acetate was found to be more suitable for PAHs degradation. The role of co-substrates in influencing PAHs biodegradation was tentatively discussed herein. Additionally, the sediment odorous problem and blackish appearance were intensively addressed by NO 3 - injection. The results of this study demonstrated that integrating two or more approaches/processes would be a helpful option in sediment remediation. It can lead to a more effective remediation performance, handle multiple contamination issues, as well as mitigate environmental risks caused by one of the single methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water

    Science.gov (United States)

    Huckins, J.N.; Petty, J.D.; Orazio, C.E.; Lebo, J.A.; Clark, R.C.; Gibson, V.L.; Gala, W.R.; Echols, K.R.

    1999-01-01

    The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (R(s)s; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery- corrected R(s) values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity- turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (K(ow)); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD R(s) values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects (10, 18, and 26 ??C) on Rs values appeared to be complex but were relatively small.The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (Rss; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery-corrected Rs values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by

  12. Effects of soil organic matter on the development of the microbial polycyclic aromatic hydrocarbons (PAHs) degradation potentials

    International Nuclear Information System (INIS)

    Yang, Y.; Zhang, N.; Xue, M.; Lu, S.T.; Tao, S.

    2011-01-01

    The microbial activity in soils was a critical factor governing the degradation of organic micro-pollutants. The present study was conducted to analyze the effects of soil organic matter on the development of degradation potentials for polycyclic aromatic hydrocarbons (PAHs). Most of the degradation kinetics for PAHs by the indigenous microorganisms developed in soils can be fitted with the Logistic growth models. The microbial activities were relatively lower in the soils with the lowest and highest organic matter content, which were likely due to the nutrition limit and PAH sequestration. The microbial activities developed in humic acid (HA) were much higher than those developed in humin, which was demonstrated to be able to sequester organic pollutants stronger. The results suggested that the nutrition support and sequestration were the two major mechanisms, that soil organic matter influenced the development of microbial PAHs degradation potentials. - Research highlights: → PAH degradation kinetics obey Logistic model. → Degradation potentials depend on soil organic carbon content. → Humin inhibits the development of PAH degradation activity. → Nutrition support and sequestration regulate microbial degradation capacity. - Soil organic matter regulated PAH degradation potentials through nutrition support and sequestration.

  13. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution

    Science.gov (United States)

    ZHU, XIANLEI; FAN, ZHIHUA (TINA); WU, XIANGMEI; JUNG, KYUNG HWA; OHMAN-STRICKLAND, PAMELA; BONANNO, LINDA J.; LIOY, PAUL J.

    2014-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ~1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44–96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution. PMID:21364704

  14. Determination of Polycyclic Aromatic Hydrocarbons (PAHs in Persian Gulf and its Biodegradability Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Parvin Nahid

    2005-11-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are the main pollutants in oil pollution. PAHs accumulation in aqueous phase causes some aquatic and human diseases Biodegradation methods of PAHs removal were studied using flasks and a reactor. Standard sampling was performed from polluted areas in Persian Gulf and samples were analyzed. COD, TOC, PAHs and heavy metals were determined. Results Showed that, Emam Hassan (EM, Deilam and Shaghab were most polluted areas (PAHs equals 9.8, 4.2, 2.7ppm respectively and samples from the dept showed more pollution than from the surface. For the biological treatment, most active species of bacteria were isolated from the soil of the polluted stations. Most of them are among Pseudomonas, gram and catalazet+. Rotating biological contactor packed (RBCp by providing high acclimation time for the microbial mass, found very suitable process for removal of PHAs. The pure bacterial culture from EM showed, 80% removal efficiency for naphthalene. As the biodegradation of PAHs take a long time, RBCp reactor was selected and the ability of mixed culture in removal of pollutants was studied. The bioreactor was run in two stages. The acclimatization stage took place in 30 days and evaluation of bioreactor in terms of effluent COD concentration and MLSS with initial COD influent of 600 mg/l was operated. COD and PAHs removal of 73 and 66 percent were found respectively while the influent COD was 1200 mg/l.

  15. Polycyclic aromatic hydrocarbons (PAHs) in continental shelf sediment of China: implications for anthropogenic influences on coastal marine environment.

    Science.gov (United States)

    Liu, Liang-Ying; Wang, Ji-Zhong; Wei, Gao-Ling; Guan, Yu-Feng; Zeng, Eddy Y

    2012-08-01

    Sediments collected from the continental shelf of China, embracing Yellow Sea, inner shelf of the East China Sea (ECS), and the South China Sea (SCS), were analyzed for polycyclic aromatic hydrocarbons (PAHs). The concentrations of anthropogenic PAHs (Σ(18)PAH) were 27-224 ng/g dry weight, with an average of 82 ng/g. Sedimentary PAHs in the continental shelf off China were mainly derived from mixed residues of biomass, coal, and petroleum combustion. Fluvial transport and atmospheric deposition mainly accounted for sediment PAHs in the ECS inner shelf and Yellow Sea (and the SCS), respectively. Furthermore, statistically higher levels of Σ(18)PAH (28-224 ng/g; mean 110 ng/g) in the Yellow Sea sediment than in the SCS sediment (28-109 ng/g; mean 58 ng/g) were probably resulted from higher PAH emissions from coke industry and domestic coal combustion in North China than in South China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Abundances of polycyclic aromatic hydrocarbons (PAHs) in 14 chinese and american coals and their relation to coal rank and weathering

    Science.gov (United States)

    Wang, R.; Liu, Gaisheng; Zhang, Jiahua; Chou, C.-L.; Liu, J.

    2010-01-01

    The abundances of 16 polycyclic aromatic hydrocarbons (PAHs) on the priority list of the United States Environmental Protection Agency (U.S. EPA) have been determined in 14 Chinese and American coals. The ranks of the samples range from lignite, bituminous coal, anthracite, to natural coke. Soxhlet extraction was conducted on each coal for 48 h. The extract was analyzed on a gas chromatograph-mass spectrometer (GC-MS). The results show that the total PAH content ranged from 0.31 to 57.6 ??g/g of coal (on a dry basis). It varied with coal rank and is highest in the maturity range of bituminous coal rank. High-molecular-weight (HMW) PAHs are predominant in low-rank coals, but low-molecular-weight (LMW) PAHs are predominant in high-rank coals. The low-sulfur coals have a higher PAH content than high-sulfur coals. It may be explained by an increasing connection between disulfide bonds and PAHs in high-sulfur coal. In addition, it leads us to conclude that the PAH content of coals may be related to the depositional environment. ?? 2010 American Chemical Society.

  17. Exposure to polycyclic aromatic hydrocarbons (PAHs), mutagenic aldehydes and particulate matter during pan frying of beefsteak.

    Science.gov (United States)

    Sjaastad, Ann Kristin; Jørgensen, Rikke Bramming; Svendsen, Kristin

    2010-04-01

    Cooking with gas or electric stoves produces fumes, especially during frying, that contain a range of harmful and potentially mutagenic compounds as well as high levels of fine and ultrafine particles. The aim of this study was to see if polycyclic aromatic hydrocarbons (PAHs) and higher mutagenic aldehydes which were collected in the breathing zone of the cook, could be detected in fumes from the frying of beefsteak. The frying was performed in a model kitchen in conditions similar to those in a Western European restaurant kitchen. The levels of PAHs (16 EPA standard) and higher aldehydes (trans,trans-2,4-decadienal, 2,4-decadienal, trans-trans-2,4-nonadienal, trans-2-decenal, cis-2-decenal, trans-2-undecenal, 2-undecenal) were measured during frying on an electric or gas stove with margarine or soya bean oil as the frying fat. The number concentration of particles electric stove causes increased occupational exposure to some of the components in cooking fumes which may cause adverse health effects.

  18. Remediation of soils contaminated by PAHs using a sequential method: desorption with surfactant-electro-chemical degradation

    International Nuclear Information System (INIS)

    Alcantara, M. T.; Gomez, J.; Pazos, M.; Longo, M. A.; Sanroman, M. A.

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) cause a high environmental impact when released into the environment. Many PAHs can have detrimental effects on both the flora and fauna of affected habitats through uptake and accumulation in food chains, and in some instances, pose serious health problems and/or genetic defects in humans. (Author)

  19. Remediation of soils contaminated by PAHs using a sequential method: desorption with surfactant-electro-chemical degradation

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara, M. T.; Gomez, J.; Pazos, M.; Longo, M. A.; Sanroman, M. A.

    2009-07-01

    Polycyclic aromatic hydrocarbons (PAHs) cause a high environmental impact when released into the environment. Many PAHs can have detrimental effects on both the flora and fauna of affected habitats through uptake and accumulation in food chains, and in some instances, pose serious health problems and/or genetic defects in humans. (Author)

  20. Concentrations of polycyclic aromatic hydrocarbons (PAHs) and azaarenes in runoff from coal-tar- and asphalt-sealcoated pavement

    International Nuclear Information System (INIS)

    Mahler, Barbara J.; Van Metre, Peter C.; Foreman, William T.

    2014-01-01

    Coal-tar-based sealcoat, used extensively on parking lots and driveways in North America, is a potent source of PAHs. We investigated how concentrations and assemblages of PAHs and azaarenes in runoff from pavement newly sealed with coal-tar-based (CT) or asphalt-based (AS) sealcoat changed over time. Samples of simulated runoff were collected from pavement 5 h to 111 d following application of AS or CT sealcoat. Concentrations of the sum of 16 PAHs (median concentrations of 328 and 35 μg/L for CT and AS runoff, respectively) in runoff varied relatively little, but rapid decreases in concentrations of azaarenes and low molecular weight PAHs were offset by increases in high molecular weight PAHs. The results demonstrate that runoff from CT-sealcoated pavement, in particular, continues to contain elevated concentrations of PAHs long after a 24-h curing time, with implications for the fate, transport, and ecotoxicological effects of contaminants in runoff from CT-sealcoated pavement. - Highlights: • We compare PAH and azaarene concentrations in runoff from coal-tar- and asphalt-sealed pavement. • Concentrations in coal-tar-sealcoat runoff greatly exceeded those in asphalt-sealcoat runoff. • Decreases in azaarenes and LMW PAHs were offset by increases in HMW PAHs. • PAH concentrations in coal-tar-sealcoat runoff remained high for months after application. - Concentrations of PAHs in runoff from pavement with coal-tar-based sealcoat continue to be elevated for at least 3 months following sealcoat application

  1. POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATION LEVELS IN COLLECTED SAMPLES FROM VICINITY OF A HIGHWAY

    Directory of Open Access Journals (Sweden)

    S. V. Samimi ، R. Akbari Rad ، F. Ghanizadeh

    2009-01-01

    Full Text Available Tehran as the biggest city of Iran with a population of more than 10 millions has potentially high pollutant exposures of gas oil and gasoline combustion from vehicles that are commuting in the highways every day. The vehicle exhausts contain polycyclic aromatic hydrocarbons, which are produced by incomplete combustion and can be directly deposited in the environment. In the present study, the presence of polycyclic aromatic hydrocarbons contamination in the collected samples of a western highway in Tehran was investigated. The studied location was a busy highway in Tehran. High performance liquid chromatography equipped with florescence detector was used for determination of polycyclic aromatic hydrocarbons concentrations in the studied samples. Total concentration of the ten studied polycyclic aromatic hydrocarbons compounds ranged from 11107 to 24342 ng/g dry weight in the dust samples and increased from 164 to 2886 ng/g dry weight in the soil samples taken from 300 m and middle of the highway, respectively. Also the average of Σ PAHs was 1759 ng/L in the water samples of pools in parks near the highway. The obtained results indicated that polycyclic aromatic hydrocarbons contamination levels were very high in the vicinity of the highway.

  2. Process for in-situ biodegradation of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Ely, D.L.; Heffner, D.A.

    1991-01-01

    This patent describes an in situ process for biodegrading hydrocarbons by drawing oxygen into an undisturbed hydrocarbon contaminated zone in a fluid permeable soil. It comprises: establishing a borehole extending from the earth's surface through a hydrocarbon contaminated zone having hydrocarbon degrading microbes therein; lining the borehole with a fluid impermeable liner coaxially spaced and sealingly connected to the inside surface of the borehole and extending from the earth's surface to the hydrocarbon-contaminated zone; the liner including a fluid permeable portion extending from the lower end thereof and through at least a portion of the hydrocarbon contaminated zone, fluidly connecting a source of negative pressure to the fluid impermeable line; evacuating gas from the borehole through the fluid permeable portion of the liner at a rate sufficient to draw air from the earth's surface into the hydrocarbon containing zone; and adjusting the flow rate of the evacuated gas so that the amount of hydrocarbon biodegradation therein is within 50% of the maximum hydrocarbon biodegradation rate as detected by the volume of carbon dioxide in the evacuated gas

  3. Applying no-depletion equilibrium sampling and full-depletion bioaccessibility extraction to 35 historically polycyclic aromatic hydrocarbon contaminated soils

    DEFF Research Database (Denmark)

    Bartolomé, Nora; Hilber, Isabel; Sosa, Dayana

    2018-01-01

    Assessing the bioaccessibility of organic pollutants in contaminated soils is considered a complement to measurements of total concentrations in risk assessment and legislation. Consequently, methods for its quantification require validation with historically contaminated soils. In this study, 35...... with polyoxymethylene was used to determine freely dissolved concentrations (Cfree) of polycyclic aromatic hydrocarbons (PAHs), while sorptive bioaccessibility extraction (SBE) with silicone rods was used to determine the bioaccessible PAH concentrations (Cbioacc) of these soils. The organic carbon partition...... Capacity Ratio (SCR); particularly for soils with very high KD. The source of contamination determined bioaccessible fractions (fbioacc). The smallest fbioacc were obtained with skeet soils (15%), followed by the pyrogenically influenced soils, rural soils, and finally, the petrogenically contaminated soil...

  4. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar.

    Science.gov (United States)

    Xiong, Bijing; Zhang, Youchi; Hou, Yanwei; Arp, Hans Peter H; Reid, Brian J; Cai, Chao

    2017-09-01

    The inoculation of rice straw biochar with PAH-degrading Mycobacterium gilvum (1.27 × 10 11  ± 1.24 × 10 10  cell g -1 ), and the subsequent amendment of this composite material to PAHs contaminated (677 mg kg -1 ) coke plant soil, was conducted in order to investigate if would enhance PAHs biodegradation in soils. The microbe-biochar composite showed superior degradation capacity for phenanthrene, fluoranthene and pyrene. Phenanthrene loss in the microbe-biochar composite, free cell alone and biochar alone treatments was, respectively, 62.6 ± 3.2%, 47.3 ± 4.1% and non-significant (P > 0.05); whereas for fluoranthene loss it was 52.1 ± 2.3%; non-significant (P > 0.05) and non-significant (P > 0.05); and for pyrene loss it was 62.1 ± 0.9%; 19.7 ± 6.5% and 13.5 ± 2.8%. It was hypothesized that the improved remediation was underpinned by i) biochar enhanced mass transfer of PAHs from the soil to the carbonaceous biochar "sink", and ii) the subsequent degradation of the PAHs by the immobilized M. gilvum. To test this mechanism, a surfactant (Brij 30; 20 mg g -1 soil), was added to impede PAHs mass transfer to biochar and sorption. The surfactant increased solution phase PAH concentrations and significantly (P < 0.05) reduced PAH degradation in the biochar immobilized M. gilvum treatments; indicating the enhanced degradation occurred between the immobilized M. gilvum and biochar sorbed PAHs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Measurements of gas and particle polycyclic aromatic hydrocarbons (PAHs) in air at urban, rural and near-roadway sites

    Science.gov (United States)

    Pratt, G. C.; Herbrandson, C.; Krause, M. J.; Schmitt, C.; Lippert, C. J.; McMahon, C. R.; Ellickson, K. M.

    2018-04-01

    We measured polycyclic aromatic hydrocarbons (PAHs) in gas and particle phases over two years using high volume samplers equipped with quartz fiber filters and XAD-4 at a rural site, an urban site, and a site adjacent to a heavily trafficked roadway. Overall results were generally as expected, in that concentrations increased from rural to urban to near-roadway sites, and PAHs with high vapor pressures (liquid subcooled, PoL) and low octanol-air partition coefficients (Koa) were mainly in the gas phase, while those with low PoL and high Koa were predominantly in the particle phase. Intermediate PAHs existed in both phases with the phase distribution following a seasonal pattern of higher gas phase concentrations in summer due to temperature effects. The overall pattern of phase distribution was consistent with PAH properties and ambient conditions and was similar at all three sites. The particle-bound fraction (ϕ) was well-described empirically by nonlinear regressions with log Koa and log PoL as predictors. Adsorption and absorption models underestimated the particle-bound fraction for most PAHs. The dual aerosol-air/soot-air model generally represented the gas-particle partitioning better than the other models across all PAHs, but there was a tendency to underestimate the range in the particle-bound fraction seen in measurements. There was a statistically insignificant tendency for higher PAHs in the particle phase at the near roadway site, and one piece of evidence that PAHs may be enriched on ultrafine particles at the near roadway site. Understanding the phase and particle size distributions of PAHs in highly polluted, high exposure microenvironments near traffic sources will help shed light on potential health effects.

  7. Modeling personal particle-bound polycyclic aromatic hydrocarbon (pb-pah) exposure in human subjects in Southern California.

    Science.gov (United States)

    Wu, Jun; Tjoa, Thomas; Li, Lianfa; Jaimes, Guillermo; Delfino, Ralph J

    2012-07-11

    Exposure to polycyclic aromatic hydrocarbon (PAH) has been linked to various adverse health outcomes. Personal PAH exposures are usually measured by personal monitoring or biomarkers, which are costly and impractical for a large population. Modeling is a cost-effective alternative to characterize personal PAH exposure although challenges exist because the PAH exposure can be highly variable between locations and individuals in non-occupational settings. In this study we developed models to estimate personal inhalation exposures to particle-bound PAH (PB-PAH) using data from global positioning system (GPS) time-activity tracking data, traffic activity, and questionnaire information. We conducted real-time (1-min interval) personal PB-PAH exposure sampling coupled with GPS tracking in 28 non-smoking women for one to three sessions and one to nine days each session from August 2009 to November 2010 in Los Angeles and Orange Counties, California. Each subject filled out a baseline questionnaire and environmental and behavior questionnaires on their typical activities in the previous three months. A validated model was used to classify major time-activity patterns (indoor, in-vehicle, and other) based on the raw GPS data. Multiple-linear regression and mixed effect models were developed to estimate averaged daily and subject-level PB-PAH exposures. The covariates we examined included day of week and time of day, GPS-based time-activity and GPS speed, traffic- and roadway-related parameters, meteorological variables (i.e. temperature, wind speed, relative humidity), and socio-demographic variables and occupational exposures from the questionnaire. We measured personal PB-PAH exposures for 180 days with more than 6 h of valid data on each day. The adjusted R2 of the model was 0.58 for personal daily exposures, 0.61 for subject-level personal exposures, and 0.75 for subject-level micro-environmental exposures. The amount of time in vehicle (averaging 4.5% of total

  8. Biological impact of polycyclic aromatic hydrocarbons (PAH) on european eel Definition and validation of bio-marker useful in situ; Impact biologique des hydrocarbures aromatiques polycycliques (HAP) sur l'anguille europeenne. Definition et validation de biomarqueurs in situ

    Energy Technology Data Exchange (ETDEWEB)

    Buet, A.

    2002-02-15

    In the natural environment, especially in aquatic ecosystems, the presence of polycyclic aromatic hydrocarbons (PAH) can have deleterious effects. The aim of this project was to assess the biological impact of PAH on the European eel (Anguilla anguilla) and to define a series of bio-markers useful in situ. The originality of this field study comes from the variety of the considered factors and the choice of a protected site. Bio-markers validation requires the knowledge of normal variations of the selected parameters. Therefore, the first objective of our study was to assess the effects of natural factors on the eco-physiological characteristics of an eel population collected from the National Reserve of Camargue. Bio-metric and metabolic parameters were measured as well as enzymatic markers of contamination: biotransformation activities (EROD, GST, UDPHT), oxidative stress activities (CAT, SOD, GPx, SeGPx) and membrane activities (ATPases, AChE). The temporal evolutions and the nutritional state influenced significantly the answer of these indicators of contamination in the studied population. On the other hand, the effect of sexual maturity and parasitism by the nematode Anguillicola crassus was reduced. After confirming a local atmospheric contribution in PAH, we tried to understand the accumulation patterns of these compounds within organisms and organs. Therefore, the analysis of PAH were performed on the bile, the liver and the muscle samples of European eels. Whatever the season, the sampling site, the sexual maturity and the sanitary state of eels, the PAH tissue contamination was general but fluctuating. The localization of the contamination gives information about its persistence. Chronologically, bile accumulation reflects a recent intoxication, whereas the liver gives a medium-term contamination image and the muscle impregnation represents a longer-term storage. The PAH concentrated in fat tissues but these concentrations were not systematically

  9. Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils?

    Science.gov (United States)

    Davin, Marie; Starren, Amandine; Deleu, Magali; Lognay, Georges; Colinet, Gilles; Fauconnier, Marie-Laure

    2018-03-01

    Polycyclic aromatic hydrocarbons (PAH) are persistent organic compounds of major concern that tend to accumulate in the environment, threatening ecosystems and health. Brownfields represent an important tank for PAHs and require remediation. Researches to develop bioremediation and phytoremediation techniques are being conducted as alternatives to environmentally aggressive, expensive and often disruptive soil remediation strategies. The objectives of the present study were to investigate the potential of saponins (natural surfactants) as extracting agents and as bioremediation enhancers on an aged-contaminated soil. Two experiments were conducted on a brownfield soil containing 15 PAHs. In a first experiment, soil samples were extracted with saponins solutions (0; 1; 2; 4 and 8 g.L -1 ). In a second experiment conducted in microcosms (28 °C), soil samples were incubated for 14 or 28 days in presence of saponins (0; 2.5 and 5 mg g -1 ). CO 2 emissions were monitored throughout the experiment. After the incubation, dehydrogenase activity was measured as an indicator of microbiological activity and residual PAHs were determined. In both experiments PAHs were determined using High-Performance Liquid Chromatography and Fluorimetric Detection. The 4 g.L -1 saponins solution extracted significantly more acenaphtene, fluorene, phenanthrene, anthracene, and pyrene than water. PAHs remediation was not enhanced in presence of saponins compared to control samples after 28 days. However CO 2 emissions and dehydrogenase activities were significantly more important in presence of saponins, suggesting no toxic effect of these surfactants towards soil microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Challenges encountered in hydrocarbon contaminated soil cleanup

    International Nuclear Information System (INIS)

    Lazzarettro, A.C.

    1991-01-01

    Much of the author's experience relating to the cleanup of hydrocarbon contaminated soils has been garnered from serving the city of Santa Fe Springs, California as a redevelopment consultant and project manager. In this paper, the author's comments will be centered on that community. To set the stage the author believes it might be helpful to relate some of the history and background of Santa Fe Springs (SFS). The community was first founded as an agricultural settlement in the latter part of the nineteenth century, with virtually all of the farms and ranches either planted in orchards or engaged in raising cattle and livestock. The Southern Pacific Railroad had a line running through the area primarily to serve the needs of the ranchers and farmers. The community at the time was known as Fulton Wells in honor of a large hotel complex which had been erected around a well-known mineral spring touted for its curative value. The local population had been aware for some time of the presence of brackish water in shallow wells and of the peculiar odor which permeated much of the surrounding area

  11. [Investigation of heavy metal and polycyclic aromatic hydrocarbons contamination in street dusts in urban Beijing].

    Science.gov (United States)

    Xiang, Li; Li, Ying-Xia; Shi, Jiang-Hong; Liu, Jing-Ling

    2010-01-01

    This paper investigated the contamination levels of heavy metal and polycyclic aromatic hydrocarbons (PAHs) in street dusts in different functional areas in urban Beijing. Results show that the mean concentrations of Cd, Hg, Cr, Cu, Ni, Pb and Zn in street dusts in Beijing are 710 ng/g, 307 ng/g, 85.0 microg/g, 78.3 microg/g, 41.1 microg/g, 69.6 microg/g and 248.5 microg/g, respectively, which are significantly lower than those in most cities around the world and Shenyang, Shanghai in China. The mean concentration of Sigma 16PAHs in street dusts in Beijing is 0.398 microg/g, which is also lower than those of Handan, Tianjin and Shanghai. Non-parametric Friedman test demonstrates significant differences of heavy metal contents on street dusts from different functional zones. Street dusts in residential area and parks have lower heavy metal and PAHs concentrations than the street dusts from areas of high traffic density. The concentrations of heavy metals follow the order Zn > Cr > Cu > Pb > Ni > Cd > Hg, which is consistent with the situation in other cities around the world. The geoaccumulation index analysis shows that street dust in urban Beijing is moderately polluted by Cd, Zn and Cu, little polluted by Cr and Pb and practically unpolluted by Ni. The contamination levels of Sigma 16PAHs on street dusts vary greatly in different functional zones with parks little polluted, residential areas moderately to strongly polluted and traffic related areas strongly polluted to extremely polluted. Mass loading of heavy metals and PAHs is largely associated with street dusts of size range < 300 microm. Therefore, the urban sweeping vehicles should update the dust sweeping devices to remove not only the fine particle but also the coarser particles.

  12. Analysis of Polycyclic Aromatic Hydrocarbon (PAH Mixtures Using Diffusion-Ordered NMR Spectroscopy and Adsorption by Powdered Activated Carbon and Biochar

    Directory of Open Access Journals (Sweden)

    Dong An

    2018-03-01

    Full Text Available Analysis of polycyclic aromatic hydrocarbons (PAHs in air and water sources is a key part of environmental chemistry research, since most PAHs are well known to be associated with negative health impacts on humans. This study explores an approach for analyzing PAH mixtures with advanced nuclear magnetic resonance (NMR spectroscopic techniques including high-resolution one-dimensional (1D NMR spectroscopy and diffusion-ordered NMR spectroscopy (DOSY NMR. With this method, different kinds of PAHs can be detected and differentiated from a mixture with high resolution. The adsorption process of PAH mixtures by PAC and biochar was studied to understand the mechanism and assess the method.

  13. PAHs underfoot: contaminated dust from coal-tar sealcoated pavement is widespread in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Van Metre; Barbara J. Mahler; Jennifer T. Wilson [U.S. Geological Survey, Austin, TX (USA)

    2009-01-15

    We reported in 2005 that runoff from parking lots treated with coal-tar-based sealcoat was a major source of polycyclic aromatic hydrocarbons (PAHs) to streams in Austin, Texas. Here we present new data from nine U.S. cities that show nationwide patterns in concentrations of {Sigma}PAHs associated with sealcoat. Dust was swept from parking lots in six cities in the central and eastern U.S., where coal-tar-based sealcoat dominates use, and three cities in the western U.S., where asphalt-based sealcoat dominates use. For six central and eastern cities, median SPAH concentrations in dust from sealcoated and unsealcoated pavement are 2200 and 27 mg/kg, respectively. For three western cities, median SPAH concentrations in dust from sealcoated and unsealcoated pavement are similar and very low (2.1 and 0.8 mg/kg, respectively). Lakes in the central and eastern cities where pavement was sampled have bottom sediments with higher PAH concentrations than do those in the western cities relative to degree of urbanization. Bottom-sediment PAH assemblages are similar to those of sealcoated pavement dust regionally, implicating coal-tar-based sealcoat as a PAH source to the central and eastern lakes. Concentrations of benzo(a)pyrene in dust from coal-tar sealcoated pavement and adjacent soils greatly exceed generic soil screening levels, suggesting that research on human-health risk is warranted. 30 refs., 4 figs., 2 tabs.

  14. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium.

    Science.gov (United States)

    Ren, Cheng-Gang; Kong, Cun-Cui; Bian, Bian; Liu, Wei; Li, Yan; Luo, Yong-Ming; Xie, Zhi-Hong

    2017-09-02

    Greenhouse experiment was conducted to evaluate the potential effectiveness of a legume (Sesbania cannabina), arbuscular mycorrhizal fungi (AMF) (Glomus mosseae), and rhizobia (Ensifer sp.) symbiosis for remediation of Polycyclic aromatic hydrocarbons (PAHs) in spiked soil. AMF and rhizobia had a beneficial impact on each other in the triple symbiosis. AMF and/or rhizobia significantly increased plant biomass and PAHs accumulation in plants. The highest PAHs dissipation was observed in plant + AMF + rhizobia treated soil, in which >97 and 85-87% of phenanthrene and pyrene, respectively, had been degraded, whereas 81-85 and 72-75% had been degraded in plant-treated soil. During the experiment, a relatively large amount of water-soluble phenolic compounds was detected in soils of AMF and/or rhizobia treatment. It matches well with the high microbial activity and soil enzymes activity. These results suggest that the mutual interactions in the triple symbiosis enhanced PAHs degradation via stimulating both microbial development and soil enzyme activity. The mutual interactions between rhizobia and AMF help to improve phytoremediation efficiency of PAHs by S. cannabina.

  15. Application of radiocarbon analysis and receptor modeling to the source apportionment of PAHs (polycyclic aromatic hydrocarbons) in the atmosphere

    International Nuclear Information System (INIS)

    Sheffield, A.E.

    1988-01-01

    The radiocarbon tracer technique was used to demonstrate that polycyclic aromatic hydrocarbons (PAHs) can be used for quantitative receptor modeling of air pollution. Fine-particle samples were collected during December, 1985, in Albuquerque, NM. Motor vehicles (fossil) and residential wood combustion (RWC, modern) were the major PAH-sources. For each sample, the PAH-fraction was solvent-extracted, isolated by liquid chromatography, and analyzed by GC-FID and GC-MS. The PAH-fractions from sixteen samples were analyzed for 14 C by Accelerator Mass Spectrometry. Radiocarbon data were used to calculate the relative RWC contribution (f RWC ) for samples analyzed for 14 C. Normalized concentrations of a prospective motor vehicle tracer, benzo(ghi)perylene (BGP) had a strong, negative correlation with f RWC . Normalized BGP concentrations were used to apportion sources for samples not analyzed for 14 C. Multiple Linear Regression (MLR) vs. ADCS and BGP was used to estimate source profiles for use in Target Factor Analysis (TFA). Profiles predicted by TFA were used in Chemical Mass Balances (CMBs). For non-volatile, stable PAHs, agreement between observed and predicted concentrations was excellent. The worst fits were observed for the most volatile PAHs and for coronene. The total RWC contributions predicted by CMBs correlated well with the radiocarbon data

  16. Petroleum Hydrocarbons Contamination Profile of Ochani Stream in ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: Petroleum hydrocarbon contamination profile, heavy metals and .... potential conduits for oil and water migrating from the ... by Gas Chromatography: Soil / sediment / sludge ..... fractions contained in the dump pits) which have.

  17. Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants.

    Science.gov (United States)

    Gerner, Nadine V; Cailleaud, Kevin; Bassères, Anne; Liess, Matthias; Beketov, Mikhail A

    2017-11-01

    Hydrocarbons have an utmost economical importance but may also cause substantial ecological impacts due to accidents or inadequate transportation and use. Currently, freshwater biomonitoring methods lack an indicator that can unequivocally reflect the impacts caused by hydrocarbons while being independent from effects of other stressors. The aim of the present study was to develop a sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants, which can be used in hydrocarbon-specific bioindicators. We employed the Relative Sensitivity method and developed the sensitivity ranking S hydrocarbons based on literature ecotoxicological data supplemented with rapid and mesocosm test results. A first validation of the sensitivity ranking based on an earlier field study has been conducted and revealed the S hydrocarbons ranking to be promising for application in sensitivity based indicators. Thus, the first results indicate that the ranking can serve as the core component of future hydrocarbon-specific and sensitivity trait based bioindicators.

  18. Bioremediation of PAH-contaminated soil with fungi - from laboratory to field scale

    Czech Academy of Sciences Publication Activity Database

    Winquist, E.; Björklöf, K.; Schultz, E.; Räsänen, M.; Salonen, K.; Anasonye, F.; Cajthaml, Tomáš; Steffen, K.; Jorgensen, K.S.; Tuomela, M.

    2014-01-01

    Roč. 86, č. 2 (2014), s. 238-247 ISSN 0964-8305 R&D Projects: GA TA ČR TE01020218 Institutional support: RVO:61388971 Keywords : bioremediation * contaminated soil * PAH * field scale Subject RIV: EE - Microbiology, Virology Impact factor: 2.131, year: 2014

  19. Preliminary study of phytoremediation of brownfield soil contaminated by PAHs

    Czech Academy of Sciences Publication Activity Database

    Petrová, Šárka; Rezek, Jan; Soudek, Petr; Vaněk, Tomáš

    599-600, DEC 1 (2017), s. 572-580 ISSN 0048-9697 Institutional support: RVO:61389030 Keywords : Brownfield * Energy plants * Phytoremediation * Polyaromatic hydrocarbon s Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Bioremediation, diagnostic biotechnologies (DNA chips and biosensing devices) in environmental management Impact factor: 4.900, year: 2016

  20. Biodegradation, bioaccessibility, and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site

    DEFF Research Database (Denmark)

    Johnsen, A.R.; de Lipthay, J.R.; Reichenberg, F.

    2006-01-01

    the asphalt pavement and tested for total amounts of PAHs, amounts of bioaccessible PAHs, total bacterial populations, PAH degrader populations, the potential for mineralization of C-14-PAHs, and mutagenicity. Elevated PAH concentrations were found in the samples taken 1-8 m from the pavement. Soil sampled...... in the most polluted samples close to the pavement. Hydroxypropyl-beta-cyclodextrin extraction of soil PAHs, as a direct estimate of the bioaccessibility, indicated that only 1-5% of the PAHs were accessible to soil bacteria. This low bioaccessibility is suggested to be due to sorption to traffic soot...... particles. The increased PAH level close to the pavement was reflected in slightly increased mutagenic activity (1 m, 0.32 +/- 0.08 revertants g(-1) soil; background/24 m: 0.08 +/- 0.04), determined by the Salmonella/microsome assay of total extractable PAHs activated by liver enzymes. The potential...

  1. Distribution of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Pulau Tinggi, Johor

    Science.gov (United States)

    Razak, Ezzati Sulhi Abdul; Halim, Izzyan Syazwani Abdul; Ali, Masni Mohd

    2016-11-01

    Surface sediments samples were collected at 11 stations around the Pulau Tinggi, Johor in September 2015. A total of 15 PAHs were determined and quantified by gas chromatography coupled with mass spectrometry (GC-MS). The total PAH concentrations of surface sediments from Pulau Tinggi ranged from 39.61 ng/g to 149.2 ng/g and they were classified as being in low to moderate pollution range. Individual PAH analysis showed that two and three rings PAHs were the most frequently detected isomers and accounted for 22 - 46% of the total PAH concentrations. The sources of PAHs were evaluated by employing diagnostic ratiosof specific PAH compounds.PAH ratios analysis showed a prevalence of pyrogenic PAH origin at most of the stations with exception of only a few stations.

  2. Development and validation of analytical methodology for determination of polycyclic aromatic hydrocarbons (PAHS) in sediments. Assesment of Pedroso Park dam, Santo Andre, SP

    International Nuclear Information System (INIS)

    Brito, Carlos Fernando de

    2009-01-01

    The polycyclic aromatic hydrocarbons (PAHs), by being considered persistent contaminants, by their ubiquity in the environment and by the recognition of their genotoxicity, have stimulated research activities in order to determine and evaluate their sources, transport, processing, biological effects and accumulation in compartments of aquatic and terrestrial ecosystems. In this work, the matrix studied was sediment collected at Pedroso Park's dam at Santo Andre, SP. The analytical technique employed was liquid chromatography in reverse phase with a UV/Vis detector. Statistics treatment of the data was established during the process of developing the methodology for which there was reliable results. The steps involved were evaluated using the concept of Validation of Chemical Testing. The parameters selected for the analytical validation were selectivity, linearity, Working Range, Sensitivity, Accuracy, Precision, Limit of Detection, Limit of quantification and robustness. These parameters showed satisfactory results, allowing the application of the methodology, and is a simple method that allows the minimization of contamination and loss of compounds by over-handling. For the PAHs tested were no found positive results, above the limit of detection, in any of the samples collected in the first phase. But, at the second collection, were found small changes mainly acenaphthylene, fluorene and benzo[a]anthracene. Although the area is preserved, it is possible to realize little signs of contamination. (author)

  3. Phytoremediation of heavy metals and hydrocarbon contaminated soils; Phytoremediation des sols contamines aux metaux lourds et aux hydrocarbures recalcitrants

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, R.; Chateauneuf, G.; Sura, C. [Inspec-Sol Inc., Montreal, PQ (Canada); Labrecque, M.; Galipeau, C. [Jardin botanique de Montreal, Montreal, PQ (Canada). Institut de Recherche en Biologie Vegetale; Greer, C.; Delisle, S.; Roy, S.; Labelle, S. [National Research Council of Canada, Montreal, PQ (Canada). Inst. for Research in Biotechnology

    2003-07-01

    Phytoremediation is a technology that uses plants to decontaminate soils and underground water. Inspec-Sol, a company located in Montreal, Quebec, conducted a two-year study to evaluate the decontamination capabilities of this technology. Trials in greenhouses and field studies at the Pitt Park along the Lachine Canal were conducted. The soils chosen for the studies were soils with concentrations of polycyclic aromatic hydrocarbons (PAH) and heavy metals (lead, copper, zinc) higher than those prescribed for the safe utilization of soils. The trials identified the three plant species (Salix viminalis, Brassica juncea, and Festuca arundinacea) which had the best characteristics for phytoremediation. Controlled experiments were performed to optimize the technology to achieve the maximum extraction of contaminant. It was concluded that phytoremediation has potential for the remediation of urban soils contaminated with organic and inorganic pollutants.

  4. THE CHARGE STATE OF POLYCYCLIC AROMATIC HYDROCARBONS ACROSS REFLECTION NEBULAE: PAH CHARGE BALANCE AND CALIBRATION

    International Nuclear Information System (INIS)

    Boersma, C.; Bregman, J.; Allamandola, L. J.

    2016-01-01

    Low-resolution Spitzer spectral map data (>1700 spectra) of ten reflection nebulae (RNe) fields are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The PAH emission is broken down into PAH charge state using a database fitting approach. Here, the physics of the PAH emission process is taken into account and uses target appropriate parameters, e.g., a stellar radiation model for the exciting star. The breakdown results are combined with results derived using the traditional PAH band strength approach, which interprets particular PAH band strength ratios as proxies for the PAH charge state, e.g., the 6.2/11.2 μ m PAH band strength ratio. These are successfully calibrated against their database equivalent; the PAH ionized fraction ( f i ). The PAH ionized fraction is converted into the PAH ionization parameter, which relates the PAH ionized fraction to the strength of the radiation field, gas temperature and electron density. The behavior of the 12.7 μ m PAH band is evaluated as a tracer for PAH ionization and erosion. The plot of the 8.6 versus 11.2 μ m PAH band strength for the northwest photo-dominated region (PDR) in NGC 7023 is shown to be a robust diagnostic template for the PAH ionized fraction. Remarkably, most of the other RNe fall within the limits set by NGC 7023. Finally, PAH spectroscopic templates are constructed and verified as principal components. Template spectra derived from NGC 7023 and NGC 2023 compare extremely well with each other, with those derived for NGC 7023 successfully reproducing the PAH emission observed from NGC 2023.

  5. THE CHARGE STATE OF POLYCYCLIC AROMATIC HYDROCARBONS ACROSS REFLECTION NEBULAE: PAH CHARGE BALANCE AND CALIBRATION

    Energy Technology Data Exchange (ETDEWEB)

    Boersma, C.; Bregman, J.; Allamandola, L. J., E-mail: Christiaan.Boersma@nasa.gov [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-0001 (United States)

    2016-11-20

    Low-resolution Spitzer spectral map data (>1700 spectra) of ten reflection nebulae (RNe) fields are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The PAH emission is broken down into PAH charge state using a database fitting approach. Here, the physics of the PAH emission process is taken into account and uses target appropriate parameters, e.g., a stellar radiation model for the exciting star. The breakdown results are combined with results derived using the traditional PAH band strength approach, which interprets particular PAH band strength ratios as proxies for the PAH charge state, e.g., the 6.2/11.2 μ m PAH band strength ratio. These are successfully calibrated against their database equivalent; the PAH ionized fraction ( f {sub i} ). The PAH ionized fraction is converted into the PAH ionization parameter, which relates the PAH ionized fraction to the strength of the radiation field, gas temperature and electron density. The behavior of the 12.7 μ m PAH band is evaluated as a tracer for PAH ionization and erosion. The plot of the 8.6 versus 11.2 μ m PAH band strength for the northwest photo-dominated region (PDR) in NGC 7023 is shown to be a robust diagnostic template for the PAH ionized fraction. Remarkably, most of the other RNe fall within the limits set by NGC 7023. Finally, PAH spectroscopic templates are constructed and verified as principal components. Template spectra derived from NGC 7023 and NGC 2023 compare extremely well with each other, with those derived for NGC 7023 successfully reproducing the PAH emission observed from NGC 2023.

  6. Simple Bioremediation Treatments for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs) from the Polluted Desert Soil of Kuwait

    International Nuclear Information System (INIS)

    Al-Gounaim, Marzooq Yousuf; Abu-Shady, Abdulsatar

    2004-01-01

    A soil microcosm test was designed to evaluate the influence of mixing polluted desert soil with clay soil (which is used as an amendment material and for immobilization of bacterial cells) on the biodegradation of petroleum polycyclic aromatic hydrocarbons (PAHs). Residual PAHs in this type of polluted soil were quantified by using GC analysis. At the begining of experiment 16 PAHs were resolved, of which the mutagenic and carcinogenic compounds flouranthene and pyrene were more frequent than the otherPAHs (14% and 12.4% respectively). Results of total PAH biodegradation show that mixing this polluted desert soil with clay soil or its water extract stimulated the biodegradation of 85.8%-89.1% of these compounds. This is contrast to 61.7%-75.5% in the absence of clay soil. Moreover when the mixed bacterial culture was immobilized in this clay soil 94.4% of total of total PAHs were degraded. On the other hand, the free cells of mixed culture succeeded to remove only 75.5% of these compounds. In this study the six-ranged PAHs were completely degraded in the presence of clay soil. A particularly notable distinction between the immobilized culture (T3) and other treatment in this biodegradation study is the greater efficiency of the immobilized culture to degrade the individuals of the 16 PAHs, especially the carcinogenic compounds: flouranthene, pyrene, chrysene, benzo(a) pyrene and dibenzo (a,h) anthracene. These results lead to the conclusion that mixing the polluted desert soil with clay soil and/or its water extract seems to be a simple cost effective bioremediation method. (author)

  7. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    Science.gov (United States)

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Study of polycyclic aromatic hydrocarbon contamination of major rivers in the Czech Republic using biliary metabolite in chub, Leuciscus cephalus L.

    Science.gov (United States)

    Blahova, Jana; Leontovycova, Drahomira; Kodes, Vit; Svobodova, Zdenka

    2013-05-01

    The aim of the present study was to evaluate polycyclic aromatic hydrocarbon (PAH) contamination of the major rivers in the Czech Republic using 1-hydroxypyrene (1-OHP) content in chub bile as a biomarker. The highest concentration of 1-OHP was found in the Otava River at Topělec (80.5 ng mg protein(-1)); the lowest content of 1-OHP was found in the Vltava at Zelčín (9.6 ng mg protein(-1)). At all sites, bottom sediment samples were collected and analyzed for PAH content. The PAH content ranged between 1.2 and 15.2 mg kg dry mass(-1) at all sites. Statistically significant positive correlations (p < 0.05) between biliary 1-OHP and sediment PAH content were found. Correlation coefficients for total and individual priority PAHs ranged from 0.63 to 0.77.

  9. Heavy metal effects on the biodegradation of fluorene by Sphingobacterium sp. KM-02 isolated from PAHs-contaminated mine soil

    Science.gov (United States)

    Nam, I.; Chon, C.; Jung, K.; Kim, J.

    2012-12-01

    Polycyclic aromatic hydrocarbon compounds (PAHs) are widely distributed in the environment and occur ubiquitously in fossil fuels as well as in products of incomplete combustion and are known to be strongly toxic, often with carcinogenic and mutagenic properties. Fluorene is one of the 16 PAHs included in the list of priority pollutants of the Environmental Protection Agency. The fluorene-degrading bacterial strain Sphingobacterium sp. KM-02 was isolated from PAHs-contaminated soil near an abandoned mine impacted area by selective enrichment techniques. Fluorene added to the Sphingobacterium sp. KM-02 culture as sole carbon and energy source was 78.4% removed within 120 h. A fluorene degradation pathway is tentatively proposed based on mass spectrometric identification of the metabolic intermediates 9-fluorenone, 4-hydroxy-9-fluorenone, and 8-hydroxy-3,4-benzocoumarin. Further the ability of Sphingobacterium sp. KM-02 to bioremediate 100 mg/kg fluorene in mine soil was examined by composting under laboratory conditions. Treatment of microcosm soil with the strain KM-02 for 20 days resulted in a 65.6% reduction in total amounts. These results demonstrate that Sphingobacterium sp. KM-02 could potentially be used in the bioremediation of fluorene from contaminated soil. Mine impacted area comprises considerable amounts of heavy metals such as cadmium, lead, mercury, arsenic, and copper. Although some of these metals are necessary for biological life, excessive quantities often result in the inhibition of essential biological reactions via numerous pathways. A number of reports collectively show that various metals, such as Al, Co, Ni, Cu, Zn, Pb, and Hg at a range of concentrations have adverse effects on the degradation of organic compounds. However, at present there is only limited information on the effect of individual heavy metals on the biological degradation of polyaromatic hydrocarbons (PAHs) including fluorene. Moreover, heavy metal effects were not

  10. Biochemical and Physical Characterization of Petroleum Hydrocarbon Contaminated Soils in Tehran

    Directory of Open Access Journals (Sweden)

    Mehrdad Cheraghi

    2015-07-01

    Full Text Available    Contamination of soil was investigated in this study from the Tehran Oil refining Co. of Iran. Fifteen soil samples were collected at several points in the Azimabad, 15 km south of Tehran City, Iran. Samples were collected at depths of 0–30 cm. Control sampleswere prepared to determinebackgroundlevels ofsoil contaminationwithpetroleumhydrocarbonsfor comparison with contaminatedsites. Total petroleum hydrocarbon (TPH and poly-aromatic hydrocarbons (PAH concentrations varied from 101334.0–101367.1 and 25321.1–25876.6 mg kg-1 respectively. The results elevated levels of TPH and PAH contents when compared with the control sample. Soil acidity (low pH of 5.3–5.9 and low electrical conductivity provided evidence of reduced metabolic activities on the affected site.Microbialgrowthrates for bacteria and fungi expressed as colony forming units were 2.62×109 and 4.14×106CFU/g soil, respectively for the contaminated and 5.76×109 and 6.83×106CFU/g soil, for the control treatments respectively. These drastic changes can have impact on the nutrient cycle and prevents the absorption of nutrients by plant root sand lead to a reduction in yield. 

  11. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation.

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D

    2012-10-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5-100 mg dry soil cm(-2)), temperature (20-40°C), and soil moisture content (2-40%) over periods up to 16d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D.

    2012-01-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5 to 100 mg dry soil/cm2), temperature (20 °C to 40 °C), and soil moisture content (2% to 40%) over periods up to 16 d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. PMID:22704210

  13. Response of core microbial consortia to hydrocarbon contaminations in coastal sediment habitats

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-10-01

    Full Text Available Traditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of life (i.e. Bacteria, Archaea and Eukarya using 454 pyrosequencing data of the 16S rRNA and 18S rRNA genes from chronically impacted and pristine sediments, along the coasts of the Mediterranean Sea (Gulf of Lion, Vermillion coast, Corsica, Bizerte lagoon and Lebanon and the French Atlantic Ocean (Bay of Biscay and English Channel. Our approach provided a robust ecological framework for the partition of the taxa abundance distribution into 859 core OTUs and 6629 satellite OTUs. OTUs forming the core microbial community showed the highest sensitivity to changes in environmental and contaminant variations, with salinity, latitude, temperature, particle size distribution, total organic carbon (TOC and PAH concentrations as main drivers of community assembly. The core communities were dominated by Gammaproteobacteria and Deltaproteobacteria for Bacteria, by Thaumarchaeota, Bathyarchaeota and Thermoplasmata for Archaea and Metazoa and Dinoflagellata for Eukarya. In order to find associations among microorganisms, we generated a co-occurrence network in which PAHs were found to impact significantly the potential predator – prey relationship in one microbial consortium composed of ciliates and Actinobacteria. Comparison of network topological properties between contaminated and non-contaminated samples showed substantial differences in the structure of the network and indicated a higher vulnerability to environmental perturbations in the contaminated sediments.

  14. Polycyclic aromatic hydrocarbon contamination of American lobster, Homarus americanus, in the proximity of a coal-coking plant

    Energy Technology Data Exchange (ETDEWEB)

    Uthe, J F; Musial, C J

    1986-11-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental contaminants resulting predominantly from anthropogenic pyrolytic and combustion processes. In addition to the usual methods of aerial and aqueous transport to the coastal marine environment substantial amounts of PAH are added through the use of products such as creosote, coal tar and coal tar pitch as preservative and antifouling agents in the marine environment. Many PAH compounds are known carcinogenic agents and are rapidly taken up by fish and shellfish from water. Therefore as human foodstuffs many of these shellfish species warrant monitoring for PAH. A study of PAH in lobster tissues has been carried out using lobsters captured in Sydney harbour, Nova Scotia, Canada. Two coal-coking ovens on the shore have discharged their liquid effluents into the harbour. Lobsters from this area were sampled in 1982 and 1984. This paper presents the materials and methods used in the sampling, the results and discussion of them. The results confirmed the ability of lobsters to accumulate extremely high amounts of PAH in their tissues. 14 references.

  15. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil.

    Science.gov (United States)

    Zhang, Yueyong; Wang, Xin; Li, Xiaojing; Cheng, Lijuan; Wan, Lili; Zhou, Qixing

    2015-02-01

    With the aim of in situ bioremediation of soil contaminated by hydrocarbons, anodes arranged with two different ways (horizontal or vertical) were compared in microbial fuel cells (MFCs). Charge outputs as high as 833 and 762C were achieved in reactors with anodes horizontally arranged (HA) and vertically arranged (VA). Up to 12.5 % of the total petroleum hydrocarbon (TPH) was removed in HA after 135 days, which was 50.6 % higher than that in VA (8.3 %) and 95.3 % higher than that in the disconnected control (6.4 %). Hydrocarbon fingerprint analysis showed that the degradation rates of both alkanes and polycyclic aromatic hydrocarbons (PAHs) in HA were higher than those in VA. Lower mass transport resistance in the HA than that of the VA seems to result in more power and more TPH degradation. Soil pH was increased from 8.26 to 9.12 in HA and from 8.26 to 8.64 in VA, whereas the conductivity was decreased from 1.99 to 1.54 mS/cm in HA and from 1.99 to 1.46 mS/cm in VA accompanied with the removal of TPH. Considering both enhanced biodegradation of hydrocarbon and generation of charge in HA, the MFC with anodes horizontally arranged is a promising configuration for future applications.

  16. Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and Major and Trace Elements in Simulated Rainfall Runoff from Parking Lots, Austin, Texas, 2003

    National Research Council Canada - National Science Library

    Mahler, Barbara J; Van Metre, Peter C; Wilson, Jennifer T

    2004-01-01

    Samples of creek bed sediment collected near seal-coated parking lots in Austin, Texas, by the City of Austin during 2001-02 had unusually elevated concentrations of polycyclic aromatic hydrocarbons (PAHs...

  17. Impact of fresh organic matter incorporation on PAH fate in a contaminated industrial soil

    Energy Technology Data Exchange (ETDEWEB)

    Pernot, Audrey [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy, F-54506 (France); CNRS, LIEC, UMR 7360, Vandoeuvre-lès-Nancy, F-54506 (France); Ouvrard, Stéphanie, E-mail: stephanie.ouvrard@univ-lorraine.fr [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); Leglize, Pierre [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); Watteau, Françoise [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); CNRS, UMS 3562, Vandoeuvre-lès-Nancy, F-54501 (France); Derrien, Delphine [INRA, BEF, UR 1138, Centre Nancy-Lorraine, Champenoux, F-54280 (France); and others

    2014-11-01

    The impacts of fresh organic matter (OM) incorporation in an industrial PAH-contaminated soil on its structure and contaminant concentrations (available and total) were monitored. A control soil and a soil amended with the equivalent of 10 years maize residue input were incubated in laboratory-controlled conditions over 15 months. The structure of the amended soil showed an aggregation process trend which is attributable to (i) the enhanced microbial activity resulting from fresh OM input itself and (ii) the fresh OM and its degradation products. Initially the added organic matter was evenly distributed among all granulodensimetric fractions, and then rapidly degraded in the sand fraction, while stabilizing and accumulating in the silts. PAH degradation remained slight, despite the enhanced microbial biomass activity, which was similar to kinetics of the turnover rate of OM in an uncontaminated soil. The silts stabilized the anthropogenic OM and associated PAH. The addition of fresh OM tended to contribute to this stabilization process. Thus, in a context of plant growth on this soil two opposing processes might occur: rhizodegradation of the available contaminant and enhanced stabilization of the less available fraction due to carbon input. - Highlights: • Fresh OM input in an industrial soil leads to aggregation. • TC and δ{sup 13}C increase in fine silts. • Fine silts store both the natural and anthropogenic OM. • PAH concentration and availability are not impacted by an addition of OM.

  18. Impact of fresh organic matter incorporation on PAH fate in a contaminated industrial soil

    International Nuclear Information System (INIS)

    Pernot, Audrey; Ouvrard, Stéphanie; Leglize, Pierre; Watteau, Françoise; Derrien, Delphine

    2014-01-01

    The impacts of fresh organic matter (OM) incorporation in an industrial PAH-contaminated soil on its structure and contaminant concentrations (available and total) were monitored. A control soil and a soil amended with the equivalent of 10 years maize residue input were incubated in laboratory-controlled conditions over 15 months. The structure of the amended soil showed an aggregation process trend which is attributable to (i) the enhanced microbial activity resulting from fresh OM input itself and (ii) the fresh OM and its degradation products. Initially the added organic matter was evenly distributed among all granulodensimetric fractions, and then rapidly degraded in the sand fraction, while stabilizing and accumulating in the silts. PAH degradation remained slight, despite the enhanced microbial biomass activity, which was similar to kinetics of the turnover rate of OM in an uncontaminated soil. The silts stabilized the anthropogenic OM and associated PAH. The addition of fresh OM tended to contribute to this stabilization process. Thus, in a context of plant growth on this soil two opposing processes might occur: rhizodegradation of the available contaminant and enhanced stabilization of the less available fraction due to carbon input. - Highlights: • Fresh OM input in an industrial soil leads to aggregation. • TC and δ 13 C increase in fine silts. • Fine silts store both the natural and anthropogenic OM. • PAH concentration and availability are not impacted by an addition of OM

  19. Determination of the deposition of polycyclic aromatic hydrocarbons (PAHs) to soil at Scheyern and Kirchheim near Munich; Bestimmung der Eintraege von polyzyklischen aromatischen Kohlenwasserstoffen (PAHs) an den Standorten Scheyern und Kirchheim bei Muenchen

    Energy Technology Data Exchange (ETDEWEB)

    Krainz, A; Wiedenmann, M; Maguhn, J [GSF-Forschungszentrum fuer Umwelt und Gesundheit Neuherberg (Germany). Inst. fuer Oekologische Chemie

    1998-12-31

    Task force 1, ``Analysis of the exposure of soils``, carried out comprehensive and site-specific measurements of the transfer of environmental chemicals into soil by means of the example of s-triazines and polycyclic aromatic hydrocarbons (PAHs). This work was in four parts: a: Determination of PAH nuisance concentrations in selected sites (Juelich, Scheyern, Bad Lauchstaedt); b: Measurement of wet deposition, development and use of methods for the determination of dry deposition; c: Statements regarding large-area PAH transfer into soil in Germany; d: Modelling of the rates of dry deposition. (orig.) [Deutsch] Aufgabe der Arbeitsgruppe 1 `Belastungsanalyse von Boeden`: Flaechendeckende sowie standortbezogene Erfassung der Eintraege von Umweltchemikalien am Beispiel der s-Triazine und PAHs. a: Bestimmung der Immissionskonzentrationen von PAHs an den Schwerpunktstandorten (Juelich, Scheyern, Bad Lauchstaedt) b: Messung der Nassen Deposition, Entwicklung und Anwendung von Methoden zur Bestimmung der Trockenen Deposition c: Aussagen ueber flaechendeckende Eintraege von PAHs in der Bundesrepublik d: Modellierung der Trockendepositionsraten. (orig.)

  20. Determination of the deposition of polycyclic aromatic hydrocarbons (PAHs) to soil at Scheyern and Kirchheim near Munich; Bestimmung der Eintraege von polyzyklischen aromatischen Kohlenwasserstoffen (PAHs) an den Standorten Scheyern und Kirchheim bei Muenchen

    Energy Technology Data Exchange (ETDEWEB)

    Krainz, A.; Wiedenmann, M.; Maguhn, J. [GSF-Forschungszentrum fuer Umwelt und Gesundheit Neuherberg (Germany). Inst. fuer Oekologische Chemie

    1997-12-31

    Task force 1, ``Analysis of the exposure of soils``, carried out comprehensive and site-specific measurements of the transfer of environmental chemicals into soil by means of the example of s-triazines and polycyclic aromatic hydrocarbons (PAHs). This work was in four parts: a: Determination of PAH nuisance concentrations in selected sites (Juelich, Scheyern, Bad Lauchstaedt); b: Measurement of wet deposition, development and use of methods for the determination of dry deposition; c: Statements regarding large-area PAH transfer into soil in Germany; d: Modelling of the rates of dry deposition. (orig.) [Deutsch] Aufgabe der Arbeitsgruppe 1 `Belastungsanalyse von Boeden`: Flaechendeckende sowie standortbezogene Erfassung der Eintraege von Umweltchemikalien am Beispiel der s-Triazine und PAHs. a: Bestimmung der Immissionskonzentrationen von PAHs an den Schwerpunktstandorten (Juelich, Scheyern, Bad Lauchstaedt) b: Messung der Nassen Deposition, Entwicklung und Anwendung von Methoden zur Bestimmung der Trockenen Deposition c: Aussagen ueber flaechendeckende Eintraege von PAHs in der Bundesrepublik d: Modellierung der Trockendepositionsraten. (orig.)

  1. Enhanced degradation activity by endophytic bacteria of plants growing in hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, L.; Germida, J.J. [Saskatchewan Univ., Saskatoon, SK (Canada); Greer, C.W. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2006-07-01

    The feasibility of using phytoremediation for cleaning soils contaminated with petroleum hydrocarbons was discussed. Petroleum hydrocarbons are problematic because of their toxicity, mobility and persistence in the environment. Appropriate clean-up methods are needed, given that 60 per cent of Canada's contaminated sites contain these compounds. Phytoremediation is an in situ biotechnology in which plants are used to facilitate contaminant removal. The approach relies on a synergistic relationship between plants and their root-associated microbial communities. Previous studies on phytoremediation have focussed on rhizosphere communities. However, it is believed that endophytic microbes may also play a vital role in organic contaminant degradation. This study investigated the structural and functional dynamics of both rhizosphere and endophytic microbial communities of plants from a phytoremediation field site in south-eastern Saskatchewan. The former flare pit contains up to 10,000 ppm of F3 to F4 hydrocarbon fractions. Root samples were collected from tall wheatgrass, wild rye, saltmeadow grass, perennial ryegrass, and alfalfa. Culture-based and culture-independent methods were used to evaluate the microbial communities associated with these roots. Most probable number assays showed that the rhizosphere communities contained more n-hexadecane, diesel fuel, and PAH degraders. However, mineralization assays with 14C labelled n-hexadecane, naphthalene, and phenanthrene showed that endophytic communities had more degradation activities per standardized initial degrader populations. Total community DNA samples taken from bulk, rhizosphere, and endophytic samples, were analyzed by denaturing gradient gel electrophoresis. It was shown that specific bacteria increased in endophytic communities compared to rhizosphere communities. It was suggested plants may possibly recruit specific bacteria in response to hydrocarbon contamination, thereby increasing degradation

  2. Native oxy-PAHs, N-PACs, and PAHs in historically contaminated soils from Sweden, Belgium, and France: their soil-porewater partitioning behavior, bioaccumulation in Enchytraeus crypticus, and bioavailability.

    Science.gov (United States)

    Arp, Hans Peter H; Lundstedt, Staffan; Josefsson, Sarah; Cornelissen, Gerard; Enell, Anja; Allard, Ann-Sofie; Kleja, Dan Berggren

    2014-10-07

    Soil quality standards are based on partitioning and toxicity data for laboratory-spiked reference soils, instead of real world, historically contaminated soils, which would be more representative. Here 21 diverse historically contaminated soils from Sweden, Belgium, and France were obtained, and the soil-porewater partitioning along with the bioaccumulation in exposed worms (Enchytraeus crypticus) of native polycyclic aromatic compounds (PACs) were quantified. The native PACs investigated were polycyclic aromatic hydrocarbons (PAHs) and, for the first time to be included in such a study, oxygenated-PAHs (oxy-PAHs) and nitrogen containing heterocyclic PACs (N-PACs). The passive sampler polyoxymethylene (POM) was used to measure the equilibrium freely dissolved porewater concentration, Cpw, of all PACs. The obtained organic carbon normalized partitioning coefficients, KTOC, show that sorption of these native PACs is much stronger than observed in laboratory-spiked soils (typically by factors 10 to 100), which has been reported previously for PAHs but here for the first time for oxy-PAHs and N-PACs. A recently developed KTOC model for historically contaminated sediments predicted the 597 unique, native KTOC values in this study within a factor 30 for 100% of the data and a factor 3 for 58% of the data, without calibration. This model assumes that TOC in pyrogenic-impacted areas sorbs similarly to coal tar, rather than octanol as typically assumed. Black carbon (BC) inclusive partitioning models exhibited substantially poorer performance. Regarding bioaccumulation, Cpw combined with liposome-water partition coefficients corresponded better with measured worm lipid concentrations, Clipid (within a factor 10 for 85% of all PACs and soils), than Cpw combined with octanol-water partition coefficients (within a factor 10 for 76% of all PACs and soils). E. crypticus mortality and reproducibility were also quantified. No enhanced mortality was observed in the 21 historically

  3. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-08-01

    Full Text Available Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P1 (Stenotrophomonas sp. and P3 (Pseudomonas sp., which degraded more than 90% of phenanthrene (PHE within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP, PHE, fluorene (FLR, pyrene (PYR, and benzo(apyrene (B(aP as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P1 degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(aP, and strain P3 degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(aP. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days. Compared with strain P1, strain P3 has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.

  4. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China.

    Science.gov (United States)

    Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and ESL at 78.1% of the soil sampling stations, and could induce biological effects in mammals. The Bapeq concentrations posed a potential carcinogenic risk to humans. Further risk management and control of soil PAHs in these agricultural soils is required to ensure the safety of the biocoenosis and human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Microbial responses to polycyclic aromatic hydrocarbon contamination in temporary river sediments: Experimental insights.

    Science.gov (United States)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Capri, Silvio; Casella, Patrizia; Fazi, Stefano; Marxsen, Juergen; Patrolecco, Luisa

    2016-01-15

    Temporary rivers are characterized by dry-wet phases and represent an important water resource in semi-arid regions worldwide. The fate and effect of contaminants have not been firmly established in temporary rivers such as in other aquatic environments. In this study, we assessed the effects of sediment amendment with Polycyclic Aromatic Hydrocarbons (PAHs) on benthic microbial communities. Experimental microcosms containing natural (Control) and amended sediments (2 and 20 mg PAHs kg(-1) were incubated for 28 days. The PAH concentrations in sediments were monitored weekly together with microbial community structural (biomass and phylogenetic composition by TGGE and CARD-FISH) and functional parameters (ATP concentration, community respiration rate, bacterial carbon production rate, extracellular enzyme activities). The concentration of the PAH isomers did not change significantly with the exception of phenanthrene. No changes were observed in the TGGE profiles, whereas the occurrence of Alpha- and Beta-Proteobacteria was significantly affected by the treatments. In the amended sediments, the rates of carbon production were stimulated together with aminopeptidase enzyme activity. The community respiration rates showed values significantly lower than the Control after 1 day from the amendment then recovering the Control values during the incubation. A negative trend between the respiration rates and ATP concentration was observed only in the amended sediments. This result indicates a potential toxic effect on the oxidative phosphorylation processes. The impoverishment of the energetic resources that follows the PAH impact may act as a domino on the flux of energy from prokaryotes to the upper level of the trophic chain, with the potential to alter the temporary river functioning.

  6. Polycyclic aromatic hydrocarbons (PAHs) in a large South American industrial coastal area (Santos Estuary, Southeastern Brazil): Sources and depositional history

    International Nuclear Information System (INIS)

    Martins, Cesar C.; Bicego, Marcia C.; Mahiques, Michel M.; Figueira, Rubens C.L.; Tessler, Moyses G.; Montone, Rosalinda C.

    2011-01-01

    Highlights: → In early 1980s, Santos Estuary became known as one of the worst polluted in the world. → PAHs levels were similar to the values reported for marine sediments worldwide. → PAHs analyses indicated multiple sources of these compounds (oil and pyrolitic origin). → The decline of oil consumption due to the world oil crisis (late 1970s) was shown. → The input of organic pollutants is a historical problem for the Santos Estuary. - Abstract: Located in southeastern Brazil, the Santos Estuary has the most important industrial and urban population area of South America. Since the 1950's, increased urbanization and industrialization near the estuary margins has caused the degradation of mangroves and has increased the discharge of sewage and industrial effluents. The main objectives of this work were to determine the concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) in sediment cores in order to investigate the input of these substances in the last 50 years. The PAHs analyses indicated multiple sources of these compounds (oil and pyrolitic origin), basically anthropogenic contributions from biomass, coal and fossil fuels combustion. The distribution of PAHs in the cores was associated with the formation and development of Cubatao industrial complex and the Santos harbour, waste disposal, world oil crisis and the pollution control program, which results in the decrease of organic pollutants input in this area.

  7. An Integrated Approach to Assess Exposure and Health-Risk from Polycyclic Aromatic Hydrocarbons (PAHs in a Fastener Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Hsin-I Hsu

    2014-09-01

    Full Text Available An integrated approach was developed to assess exposure and health-risk from polycyclic aromatic hydrocarbons (PAHs contained in oil mists in a fastener manufacturing industry. One previously developed model and one new model were adopted for predicting oil mist exposure concentrations emitted from metal work fluid (MWF and PAHs contained in MWF by using the fastener production rate (Pr and cumulative fastener production rate (CPr as predictors, respectively. By applying the annual Pr and CPr records to the above two models, long-term workplace PAH exposure concentrations were predicted. In addition, true exposure data was also collected from the field. The predicted and measured concentrations respectively served as the prior and likelihood distributions in the Bayesian decision analysis (BDA, and the resultant posterior distributions were used to determine the long-term exposure and health-risks posed on workers. Results show that long term exposures to PAHs would result in a 3.1%, 96.7%, and 73.4% chance of exceeding the PEL-TWA (0.2 mg/m3, action level (0.1 mg/m3, and acceptable health risk (10−3, respectively. In conclusion, preventive measures should be taken immediately to reduce workers’ PAH exposures.

  8. Diurnal variation, vertical distribution and source apportionment of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in Chiang-Mai, Thailand.

    Science.gov (United States)

    Pongpiachan, Siwatt

    2013-01-01

    Diurnal variation of particulate polycyclic aromatic hydrocarbons (PAHs) was investigated by collecting PM10 at three different sampling altitudes using high buildings in the city center of Chiang-Mai, Thailand, during the relatively cold period in late February 2008. At site-1 (12 m above ground level), B[a]P concentrations ranged from 30.3 -1,673 pg m-3 with an average of 506±477 pg m-3, contributing on average, 8.09±8.69% to ?PAHs. Ind and B[b]F concentrations varied from 54.6 to 4,579 pg m-3 and from 80.7 to 2,292 pg m-3 with the highest average of 1,187±1,058 pg m-3 and 963±656 pg m-3, contributing on average, 19.0±19.3% and 15.4±12.0% to ?PAHs, respectively. Morning maxima were predominantly detected in all observatory sites, which can be described by typical diurnal variations of traffic flow in Chiang-Mai City, showing a morning peak between 6 AM. and 9 AM. Despite the fact that most monitoring sites might be subjected to specific-site impacts, it could be seen that PAH profiles in Site-1 and Site-2 were astonishingly homogeneous. The lack of differences suggests that the source signatures of several PAHs become less distinct possibly due to the impacts of traffic and cooking emissions from ground level.

  9. Modified Dispersive Liquid-Liquid Micro Extraction Using Green Solvent for Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Vegetable Samples

    International Nuclear Information System (INIS)

    Kin, C.M.; Shing, W.L.

    2016-01-01

    According to International Agency for Research on Cancer (IARC), most of Polycyclic Aromatic Hydrocarbons (PAHs) known as genotoxic human carcinogen and mutagenic. PAHs represent as poorly degradable pollutants that exist in soils, sediments, surface water and atmosphere. A simple, rapid and sensitive extraction method termed modified Dispersive Liquid-Liquid Micro extraction (DLLME) using green solvent was developed to determine PAHs in vegetable samples namely radish, cabbage and cucumber prior to Gas Chromatography Flame Ionization Detection (GC-FID). The extraction method is based on replacing chlorinated organic extraction solvent in the conventional DLLME with low toxic solvent, 1-bromo-3-methylbutane without using dispersive solvent. Several experimental factors such as type and volume of extraction solvents, extraction time, confirmation of 12 PAHs by GC-MS, recovery percentages on vegetable samples and the comparative analysis with conventional DLLME were carried out. Both DLLME were successfully extracted 12 types of PAHs. In modified DLLME, the recoveries of the analytes obtained were in a range of 72.72 - 88.07 % with RSD value below 7.5 % which is comparable to the conventional DLLME. The use of microliter of low toxic extraction solvent without addition of dispersive solvent caused the method is economic and environmental friendly which is fulfill the current requirement, green chemistry based analytical method. (author)

  10. Analyses of polycyclic aromatic hydrocarbon (PAH) and chiral-PAH analogues-methyl-β-cyclodextrin guest-host inclusion complexes by fluorescence spectrophotometry and multivariate regression analysis.

    Science.gov (United States)

    Greene, LaVana; Elzey, Brianda; Franklin, Mariah; Fakayode, Sayo O

    2017-03-05

    The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (K b ), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated K b and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10 -7 M for anthracene and 3.48×10 -8 M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized

  11. Concentrations of polycyclic aromatic hydrocarbons (PAHs) and azaarenes in runoff from coal-tar- and asphalt-sealcoated pavement.

    Science.gov (United States)

    Mahler, Barbara J; Van Metre, Peter C; Foreman, William T

    2014-05-01

    Coal-tar-based sealcoat, used extensively on parking lots and driveways in North America, is a potent source of PAHs. We investigated how concentrations and assemblages of PAHs and azaarenes in runoff from pavement newly sealed with coal-tar-based (CT) or asphalt-based (AS) sealcoat changed over time. Samples of simulated runoff were collected from pavement 5 h to 111 d following application of AS or CT sealcoat. Concentrations of the sum of 16 PAHs (median concentrations of 328 and 35 μg/L for CT and AS runoff, respectively) in runoff varied relatively little, but rapid decreases in concentrations of azaarenes and low molecular weight PAHs were offset by increases in high molecular weight PAHs. The results demonstrate that runoff from CT-sealcoated pavement, in particular, continues to contain elevated concentrations of PAHs long after a 24-h curing time, with implications for the fate, transport, and ecotoxicological effects of contaminants in runoff from CT-sealcoated pavement. Published by Elsevier Ltd.

  12. Concentrations of polycyclic aromatic hydrocarbons (PAHs) and azaarenes in runoff from coal-tar- and asphalt-sealcoated pavement

    Science.gov (United States)

    Mahler, Barbara J.; Van Metre, Peter C.; Foreman, William T.

    2014-01-01

    Coal-tar-based sealcoat, used extensively on parking lots and driveways in North America, is a potent source of PAHs. We investigated how concentrations and assemblages of PAHs and azaarenes in runoff from pavement newly sealed with coal-tar-based (CT) or asphalt-based (AS) sealcoat changed over time. Samples of simulated runoff were collected from pavement 5 h to 111 d following application of AS or CT sealcoat. Concentrations of the sum of 16 PAHs (median concentrations of 328 and 35 μg/L for CT and AS runoff, respectively) in runoff varied relatively little, but rapid decreases in concentrations of azaarenes and low molecular weight PAHs were offset by increases in high molecular weight PAHs. The results demonstrate that runoff from CT-sealcoated pavement, in particular, continues to contain elevated concentrations of PAHs long after a 24-h curing time, with implications for the fate, transport, and ecotoxicological effects of contaminants in runoff from CT-sealcoated pavement.

  13. Minimizing the Health Risks from Hydrocarbon Contaminated Soils by Using Electric Field-Based Treatment for Soil Remediation

    Directory of Open Access Journals (Sweden)

    Irina Aura Istrate

    2018-01-01

    Full Text Available The present work addresses the assessment of human health risk from soil contaminated with total petroleum hydrocarbons (TPHs due to crude oil pollution, with a particular focus on the polycyclic aromatic hydrocarbon (PAH group of carcinogenic and toxic substances. Given that the measured risk for human health exceeded the accepted level, the study considered an electrochemical remediation method. The laboratory-scale experiments were conducted by using an electric field-based treatment as a possible solution for the remediation of contaminated soil. After 20 days of treatment, while the voltage applied was 15 V (specific voltage of 1 V/cm, the hydrocarbon content was significantly reduced. The parameters measured to determine the overall remediation efficiency were pH, redox potential, ionic strength, soil characteristics, voltage gradient, and zeta potential. The remediation degree observed during the experiments was around 50% for TPHs and 46% for PAHs. The applied remediation method resulted in significant removal efficiency of the tested contaminants from the soil. Consequently, the human health risk assessment for the new degree of contaminants in the soil was achieved. This data demonstrated to what extent the application of the remediation applied technology ensured an acceptable risk under the same exposure conditions for the industrial workers.

  14. Interspecies and spatial trends in polycyclic aromatic hydrocarbons (PAHs) in Atlantic and Mediterranean pelagic seabirds

    International Nuclear Information System (INIS)

    Roscales, Jose L.; Gonzalez-Solis, Jacob; Calabuig, Pascual; Jimenez, Begona

    2011-01-01

    PAHs were analyzed in the liver of 5 species of pelagic seabirds (Procellariiformes) from the northeast Atlantic and the Mediterranean. The main objective was to assess the trophic and geographic trends of PAHs in seabirds to evaluate their suitability as bioindicators of chronic marine pollution by these compounds. Although higher levels of PAHs have been described in the Mediterranean compared to other oceanic regions, we did not find significant spatial patterns and observed only minor effects of the geographic origin on seabird PAHs. However, we found significant higher PAH levels in petrel compared to shearwater species, which could be related to differences in their exploitation of mesopelagic and epipelagic resources, respectively, and the vertical dynamic of PAHs in the water column. Overall, although this study enhances the need of multi-species approaches to show a more comprehensive evaluation of marine pollution, seabirds emerged as poor indicators of pelagic chronic PAH levels. - Highlights: → PAHs in pelagic seabirds show specific inter-species patterns related to trophic ecology. → Geographic origin shows a minor effect over PAH levels in pelagic seabirds. → Pelagic seabirds seem to be poor indicators of chronic PAH levels. - PAH levels in Atlantic and Mediterranean pelagic seabirds show specific inter-species patterns related to trophic ecology but a minor influence of their geographic origin.

  15. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    International Nuclear Information System (INIS)

    Ligaray, Mayzonee; Baek, Sang Soo; Kwon, Hye-Ok; Choi, Sung-Deuk; Cho, Kyung Hwa

    2016-01-01

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  16. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    Energy Technology Data Exchange (ETDEWEB)

    Ligaray, Mayzonee; Baek, Sang Soo [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Kwon, Hye-Ok [Disaster Scientific Investigation Division, National Disaster Management Research Institute, 365 Jongga-ro Jung-gu, Ulsan 44538 (Korea, Republic of); Choi, Sung-Deuk, E-mail: sdchoi@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Cho, Kyung Hwa, E-mail: khcho@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of)

    2016-12-15

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  17. PROPERTIES OF POLYCYCLIC AROMATIC HYDROCARBONS IN THE NORTHWEST PHOTON DOMINATED REGION OF NGC 7023. III. QUANTIFYING THE TRADITIONAL PROXY FOR PAH CHARGE AND ASSESSING ITS ROLE

    Energy Technology Data Exchange (ETDEWEB)

    Boersma, C.; Bregman, J.; Allamandola, L. J., E-mail: Christiaan.Boersma@nasa.gov [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-0001 (United States)

    2015-06-10

    Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer/IRS spectral map of the northwest photon dominated region (PDR) in NGC 7023 is analyzed. Here, results from fitting the 5.2–14.5 μm spectrum at each pixel using exclusively PAH spectra from the NASA Ames PAH IR Spectroscopic Database (www.astrochem.org/pahdb/) and observed PAH band strength ratios, determined after isolating the PAH bands, are combined. This enables the first quantitative and spectrally consistent calibration of PAH charge proxies. Calibration is straightforward because the 6.2/11.2 μm PAH band strength ratio varies linearly with the ionized fraction (PAH ionization parameter) as determined from the intrinsic properties of the individual PAHs comprising the database. This, in turn, can be related to the local radiation field, electron density, and temperature. From these relations diagnostic templates are developed to deduce the PAH ionization fraction and astronomical environment in other objects. The commonly used 7.7/11.2 μm PAH band strength ratio fails as a charge proxy over a significant fraction of the nebula. The 11.2/12.7 μm PAH band strength ratio, commonly used as a PAH erosion indicator, is revealed to be a better tracer for PAH charge across NGC 7023. Attempting to calibrate the 12.7/11.2 μm PAH band strength ratio against the PAH hydrogen adjacency ratio (duo+trio)/solo is, unexpectedly, anti-correlated. This work both validates and extends the results from Paper I and Paper II.

  18. Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soils of different land uses in Erbil metropolis, Kurdistan Region, Iraq.

    Science.gov (United States)

    Amjadian, Keyvan; Sacchi, Elisa; Rastegari Mehr, Meisam

    2016-11-01

    Urban soil contamination is a growing concern for the potential health impact on the increasing number of people living in these areas. In this study, the concentration, the distribution, the contamination levels, and the role of land use were investigated in Erbil metropolis, the capital of Iraqi Kurdistan. A total of 74 soil samples were collected, treated, and analyzed for their physicochemical properties, and for 7 heavy metals (As, Cd, Cr, Cu, Fe, Pb, and Zn) and 16 PAH contents. High concentrations, especially of Cd, Cu Pb, and Zn, were found. The Geoaccumulation index (I geo ), along with correlation coefficients and principal component analysis (PCA) showed that Cd, Cu, Pb, and Zn have similar behaviors and spatial distribution patterns. Heavy traffic density mainly contributed to the high concentrations of these metals. The total concentration of ∑PAHs ranged from 24.26 to 6129.14 ng/g with a mean of 2296.1 ng/g. The PAH pattern was dominated by 4- and 5-ring PAHs, while diagnostic ratios and PCA indicated that the main sources of PAHs were pyrogenic. The toxic equivalent (TEQ) values ranged from 3.26 to 362.84 ng/g, with higher values in central parts of the city. A statistically significant difference in As, Cd, Cu, Pb, Zn, and ∑PAH concentrations between different land uses was observed. The highest As concentrations were found in agricultural areas while roadside, commercial, and industrial areas had the highest Cd, Cu, Pb, Zn, and ∑PAH contents.

  19. An innovative method for the solidification/stabilization of PAHs-contaminated soil using sulfonated oil.

    Science.gov (United States)

    Ma, Fujun; Wu, Bin; Zhang, Qian; Cui, Deshan; Liu, Qingbing; Peng, Changsheng; Li, Fasheng; Gu, Qingbao

    2018-02-15

    Stabilization/solidification (S/S) has been successfully employed in many superfund sites contaminated with organic materials. However, this method's long-term effectiveness has not been fully evaluated and the increase in soil volume following treatment is unfavorable to follow-up disposal. The present study developed a novel method for the S/S of PAHs-contaminated soil with the facilitation of sulfonated oil (SO). Adding SO significantly improved the unconfined compressive strength (UCS) values of Portland cement and activated carbon (PC-AC) treated soil samples, and the UCS values of the soil sample treated with 0.02% of SO were up to 2.3 times higher than without SO addition. When the soil was treated with PC-AC-SO, the PAHs leaching concentrations were 14%-25% of that in leachates of the control soil, and high molecular weight PAHs including benzo(a)pyrene were rarely leached. Freeze/thaw durability tests reveal that the leachability of PAHs was not influenced by freeze-thaw cycles. The UCS values of PC-AC-SO treated soil samples were 2.2-3.4 times greater than those of PC-AC treated soil samples after 12 freeze-thaw cycles. The PC-AC-SO treated soils resist disintegration better when compared to the PC-AC treated soils. The SEM micrographs reveal that the soils' compactness was significantly improved when treated with SO. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Chemical fingerprinting of hydrocarbon-contamination in soil.

    Science.gov (United States)

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  1. Bioremediation in soil contaminated with hydrocarbons in Colombia.

    Directory of Open Access Journals (Sweden)

    María Alejandra Trujillo Toro

    2012-10-01

    Full Text Available This study analyzes bioremediation processes of hydrocarbon contaminated soils in Colombia as a sustainable alternative to the deterioration of environmental quality by hydrocarbon spillage. According to national and international environmental law, all waste contaminated with hydrocarbons is considered dangerous waste, and therefore it cannot be released in the ground, water or be incinerated. Such legislation has motivated companies around the world to implement treatment processes for contaminated soils. Within Colombia, oil companies have been implementing the bioremediation of hydrocarbon contaminated soils in order to manage the waste coming from activities of oil drilling, refinement, transport and distribution.These practices must be considered viable for their ease of implementation, their low overhead costs, and for the benefits they provide towards environmental quality. Among the positive impacts that these practices have generated, it may consider the following: a solution for the problem of hydrocarbon contaminated soils, alternatives for the ultimate disposal of said waste without affecting ground, water or air resources, the low cost of the operation, and the technical experience of sustainable development which can continue to be implemented in companies dealing with dangerous waste.

  2. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site

    International Nuclear Information System (INIS)

    Lu, Zhe; Zeng, Fangang; Xue, Nandong; Li, Fasheng

    2012-01-01

    The occurrence and the distribution of 16 USEPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) were investigated in two alluvial sandy soil profiles and in their four sizes of organo-mineral particles ( 200 μm coarse sand) beside a typical oil sludge storage site in eastern China. PAHs were mainly enriched in the surface soil (0–20 cm) and the concentrations declined in deeper soils, from 3.68 to 0.128 μg/g in profile 1 and 10.8 to 0.143 μg/g in profile 2 (dry wt.). The PAHs in the upper soil layers of this study site mainly came from combustion pollution, whereas in the lower soil layers petroleum contamination became the major source of PAHs. The content of different sized organo-mineral particles of this alluvial sandy soil decreased in the following order: fine sand > coarse sand > silt > clay. X-ray diffraction (XRD) results showed that all the different sized soil fractions of this study site were dominated by quartz, calcite and feldspar. The particle surface became smoother with size increasing as shown by scanning electron microscope (SEM) images. PAH concentrations varied largely in different sized soil fractions. The highest PAH concentration was associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. Soil organic matter (SOM) content, mineral composition and particle surface characteristics were suggested as three main factors affecting the distribution of PAHs in different sized organo-mineral particles. This study will help to understand the distribution and transport characteristics of PAHs in soil profiles at petroleum-contaminated sites. -- Highlights: ► PAH concentrations varied largely in different sized fractions. ► The highest PAH concentrations were associated with clay and decreased in the order: clay > silt > coarse sand > fine sand. ► Soil organic matter (SOM) is an important factor to dominate the distribution of PAHs in this study site.

  3. Effect of fuel composition on poly aromatic hydrocarbons in particulate matter from DI diesel engine; Particulate chu no PAH ni oyobosu nenryo sosei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Tatani, T; Yoshida, H; Takizawa, H; Miyoshi, K; Ikebe, H [COSMO Research Institute, Tokyo (Japan)

    1997-10-01

    The effect of fuel composition on poly aromatic hydrocarbons (PAH) in particulate matter from DI diesel engine was investigated by using deeply desulfurized fuel and model fuel which properties are not interrelated. It was found that the deeply desulfurized fuel have effect on reducing PAH emissions. Furthermore, it was suggested that poly aromatics in the fuel affect PAH emissions and the influence of tri-aromatics in the fuel was promoted by the coexistence of mono-aromatics or naphthene. PAH formation scheme from each fuel component was proposed by chemical thermodynamic data. 4 refs., 8 figs., 3 tabs.

  4. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil

    International Nuclear Information System (INIS)

    Serrano, Antonio; Gallego, Mercedes; Gonzalez, Jose Luis; Tejada, Manuel

    2008-01-01

    A diesel fuel spill at a concentration of 1 L m -2 soil was simulated on a 12 m 2 plot of agricultural land, and natural attenuation of aliphatic hydrocarbons was monitored over a period of 400 days following the spill after which the aliphatic hydrocarbon concentrations were found to be below the legal contamination threshold for soil. The main fraction of these compounds (95%) remained at the surface layer (0-10 cm). Shortly after the spill (viz. between days 0 and 18), evaporation was the main origin of the dramatic decrease in pollutant concentrations in the soil. Thereafter, soil microorganisms used aliphatic hydrocarbons as sources of carbon and energy, as confirmed by the degradation ratios found. Soil quality indicators, soil microbial biomass and dehydrogenase activity, regained their original levels about 200 days after the spill. - The effect of aliphatic hydrocarbons contamination on soil quality was monitored over a period of 400 days after a Diesel fuel spill

  5. DETECTIONS OF WATER ICE, HYDROCARBONS, AND 3.3 μm PAH IN z ∼ 2 ULIRGs

    International Nuclear Information System (INIS)

    Sajina, Anna; Spoon, Henrik; Yan Lin; Imanishi, Masatoshi; Fadda, Dario; Elitzur, Moshe

    2009-01-01

    We present the first detections of the 3 μm water ice and 3.4 μm amorphous hydrocarbon (HAC) absorption features in z ∼ 2 ULIRGs. These are based on deep rest-frame 2-8 μm Spitzer Infrared Spectrograph spectra of 11 sources selected for their appreciable silicate absorption. The HAC-to-silicate ratio for our z ∼ 2 sources is typically higher by a factor of 2-5 than that observed in the Milky Way. This HAC 'excess' suggests compact nuclei with steep temperature gradients as opposed to predominantly host obscuration. Beside the above molecular absorption features, we detect the 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission feature in one of our sources with three more individual spectra showing evidence for it. Stacking analysis suggests that water ice, hydrocarbons, and PAH are likely present in the bulk of this sample even when not individually detected. The most unexpected result of our study is the lack of clear detections of the 4.67 μm CO gas absorption feature. Only three of the sources show tentative signs of this feature at significantly lower levels than has been observed in local ULIRGs. Overall we find that the closest local analogs to our sources, in terms of 3-4 μm color, HAC-to-silicate and ice-to-silicate ratios, as well as low PAH equivalent widths, are sources dominated by deeply obscured nuclei. Such sources form only a small fraction of ULIRGs locally and are commonly believed to be dominated by buried active galactic nuclei (AGNs). Our sample suggests that, in an absolute number, such buried AGNs are at least an order of magnitude more common at z ∼ 2 than today. The presence of PAH suggests that significant levels of star formation are present even if the obscured AGNs typically dominate the power budget.

  6. Integrated assessment of PAH contamination in the Czech Rivers using a combination of chemical and biological monitoring.

    Science.gov (United States)

    Blahova, Jana; Divisova, Lenka; Kodes, Vit; Leontovycova, Drahomira; Mach, Samuel; Ocelka, Tomas; Svobodova, Zdenka

    2014-01-01

    This study investigated polycyclic aromatic hydrocarbons (PAH) pollution of selected rivers in the Czech Republic. Integrated evaluation was carried out using combination of chemical and biological monitoring, in which we measured content of 1-hydroxypyrene (1-OHP) in chub bile and priority PAH in water samples obtained by exposing the semipermeable membrane devices at each location. The concentrations of 1-OHP in bile samples and sum of priority PAH in water sampler ranged from 6.8 ng mg protein(-1) to 106.6 ng mg protein(-1) and from 5.2 ng L(-1) to 173.9 ng L(-1), respectively. The highest levels of biliary metabolite and PAH in water were measured at the Odra River (the Bohumín site), which is located in relatively heavily industrialized and polluted region. Statistically significant positive correlation between biliary 1-OHP and sum of PAH in water was also obtained (P < 0.01, r s = 0.806).

  7. Cleaning of contaminated soils with hydrocarbons by biocell; Saneamiento de suelos contaminados con hidrocarburos mediante biopilas

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe-Arguelles, R.; Flores-Torres, C; Chavez-Lopez, C.; Roldan-Martin, A [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2002-03-01

    In 1990 the Instituto de Ingenieria de la UNAM, initiated an evaluation through the soil and groundwater sampling and a risk health assessment in a Mexican refinery. An extended area was found contaminated with hydrocarbons. This area requires a soil remediation, taking into account that some zones present more than 30 000 mg/kg of Total Petroleum Hydrocarbons (TPH). Biopile system was recommended as the best remediation method to diminish TPG and some poliaromathic hydrocarbons (PAH). Therefore an experimental biopile of 30 m3 was constructed with contaminated soil. After 22 weeks, results show more than 80 % of TPH and PAH remotion. [Spanish] El grupo de saneamiento de suelos y acuiferos del Instituto de Ingenieria de la UNAM, inicio en 1999 la evaluacion de la contaminacion del subsuelo de una refineria en una zona costera del pais, mediante el muestreo de 425 puntos a 1.5 m de profundidad y con el analisis de los siguientes parametros: hidrocarburos totales del petroleo (HTP), hidrocarburo poliaromaticos (HAP), diesel, gasolina, metilterbutileter (MTBE) y los metales hierro, vanadio, zinc, cadmio, cromo y plomo. Asimismo, se lleva a cabo una evaluacion de riesgo a la salud a fin de determinar los niveles de limpieza de las areas contaminadas. Una vez realizado el estudio se propuso probar a nivel piloto dos tecnicas de saneamiento para las areas contaminadas con valores superiores a 30 000 mg/Kg de http, o bien, para las zonas en donde la evaluacion de riesgo a la salud indica la existencia de riesgo para uno o mas compuestos. Las tecnicas propuesta son biopilas y lavado de suelos con surfactantes. En este trabajo se presenta la prueba piloto con biopilas, de la cual se obtuvo una eficiencia de remocion de http del 80 porciento con cinco meses de operacion. Se muestra las partes de una biopila y se dan los resultados de la biopila experimental en la refineria Francisco I. Madero.

  8. Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons.

    Science.gov (United States)

    Vidonish, Julia E; Zygourakis, Kyriacos; Masiello, Caroline A; Gao, Xiaodong; Mathieu, Jacques; Alvarez, Pedro J J

    2016-03-01

    Pyrolysis of contaminated soils at 420 °C converted recalcitrant heavy hydrocarbons into "char" (a carbonaceous material similar to petroleum coke) and enhanced soil fertility. Pyrolytic treatment reduced total petroleum hydrocarbons (TPH) to below regulatory standards (typically hydrocarbons (PAHs) was not observed, with post-pyrolysis levels well below applicable standards. Plant growth studies showed a higher biomass production of Arabidopsis thaliana and Lactuca sativa (Simpson black-seeded lettuce) (80-900% heavier) in pyrolyzed soils than in contaminated or incinerated soils. Elemental analysis showed that pyrolyzed soils contained more carbon than incinerated soils (1.4-3.2% versus 0.3-0.4%). The stark color differences between pyrolyzed and incinerated soils suggest that the carbonaceous material produced via pyrolysis was dispersed in the form of a layer coating the soil particles. Overall, these results suggest that soil pyrolysis could be a viable thermal treatment to quickly remediate soils impacted by weathered oil while improving soil fertility, potentially enhancing revegetation.

  9. Source identification of Polycyclic Aromatic Hydrocarbons (PAHs in the urban environment of İstanbul

    Directory of Open Access Journals (Sweden)

    Günay Kural

    2018-04-01

    Full Text Available In this study, İstanbul-Tuzla Region atmosphere is selected as the working area because of this region contains shipyards and shipyard-related side product industries. To examine the PAHs as atmospheric inputs, 46 ambient air samples were collected in Tuzla region of Istanbul, Turkey at 2010. The sample collection was carried out as monthly. Additionally, the volume of the air was drawn and meteorological data recorded. The PAH concentrations were classified as hot and cold season samples. Due to the particle-bond character of PAHs and condensation in cold, the high concentrations were encountered in winter months. Monthly average total PAH concentrations fluctuated between 7.4 ng m-3 (in March-0.05 ng m-3 (in August. The concentrations of total PAHs in cold season were almost hundred times higher than those in hot season. The fossil fuel (gasoline and diesel fuel combustion was found to be the main source of PAHs.

  10. Distribution and Source of Sedimentary Polycyclic Aromatic Hydrocarbon (PAHs in River Sediment of Jakarta

    Directory of Open Access Journals (Sweden)

    Rinawati Rinawati

    2017-11-01

    Full Text Available In this study, the distribution and source identification of sedimentary PAHs from 13 rivers running through Jakarta City were investigated. Freeze-dried sediment samples were extracted by pressurized fluid extraction and purified by two-step of column chromatography. PAHs were identified and quantified by gas chromatography-mass spectrometry (GC-MS. High concentrations of PAHs, ranging from 1992 to 17635 ng/g-dw, were observed at all sampling locations. Ratios of alkylated PAHs to parent PAHs exhibited both petrogenic and pyrogenic signatures with predominantly petrogenic inputs. High hopanne concentrations (4238-40375 ng/g dry sediment supported the petrogenic input to Jakarta’s rivers. The high concentration of PAHs is indicator for organic micropollutant in the aquatic urban environment in Jakarta that may have the potential to cause adverse effect to the environment.

  11. Phytoremediation of Soils Contaminated by Chlorinnated Hydrocarbons

    Science.gov (United States)

    Cho, C.; Sung, K.; Corapcioglu, M.

    2001-12-01

    In recent years, the possible use of deep rooted plants for phytoremediation of soil contaminants has been offered as a potential alternative for waste management, particularly for in situ remediation of large volumes of contaminated soils. Major objectives of this study are to evaluate the effectiveness of a warm season grass (Eastern Gamagrass) and a cool season prairie grass (Annual Ryegrass) in the phytoremediation of the soil contaminated with volatile organic compounds e.g., trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,1-trichloroethane (TCA) and to determine the main mechanisms of target contaminant dissipation. The preliminary tests and laboratory scale tests were conducted to identify the main mechanisms for phytoremediation of the target contaminants, and to apply the technique in green house application under field conditions. The results of microcosm and bioreactor experiments showed that volatilization can be the dominant pathway of the target contaminant mass losses in soils. Toxicity tests, conducted in nutrient solution in the growth room, and in the greenhouse, showed that both Eastern gamagrass and Annual ryegrass could grow without harmful effects at up to 400 ppm each of all three contaminants together. Preliminary greenhouse experimentw were conducted with the 1.5 m long and 0.3 m diameter PVC columns. Soil gas concentrations monitored and microbial biomass in bulk and rhizosphere soil, root properties, and contaminant concentration in soil after 100 days were analyzed. The results showed that the soil gas concentration of contaminants has rapidly decreased especially in the upper soil and the contaminant concentraitons in soil were also significantly decreased to 0.024, 0.228, and 0.002 of C/Co for TCE, PCE and TCA, respectively. Significant plant effects were not found however showed contaminant loss through volatilization and plant contamination by air.