WorldWideScience

Sample records for hydrocarbon oxidation catalyzed

  1. Cobalt/N-Hydroxyphthalimide(NHPI)-Catalyzed Aerobic Oxidation of Hydrocarbons with Ionic Liquid Additive

    DEFF Research Database (Denmark)

    Mahmood, Sajid; Xu, Bao Hua; Ren, Tian Lu

    2018-01-01

    A highly efficient and solvent-free system of cobalt/NHPI-catalyzed aerobic oxidation of hydrocarbons was developed using imidazolium-based ionic liquid (IL) as an additive. These amphipathic ILs were found self-assemble at the interface between the organic hydrocarbons and the aqueous phase...... the optimum reactivity. Besides, the interfacial boundary between aqueous and organic phase composed by C2-alkylated imidazolium ILs, such as [bdmim]SbF6 and [C12dmim]SbF6, not only has ternary aggregates (hydrocarbons/IL/H2O) of higher stability but renders O2 a faster diffusion rate and higher concentration......, thereby offering a high reactivity of the protocol towards hydrocarbon oxidation....

  2. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    International Nuclear Information System (INIS)

    Tsai, T.T.; Kao, C.M.

    2009-01-01

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H 2 O 2 , BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., α-Fe 2 O 3 and α-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg -1 ), respectively, with the addition of 15% of H 2 O 2 and 100 g kg -1 of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  3. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, T.T. [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Kao, C.M., E-mail: jkao@mail.nsysu.edu.tw [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China)

    2009-10-15

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H{sub 2}O{sub 2}, BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., {alpha}-Fe{sub 2}O{sub 3} and {alpha}-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg{sup -1}), respectively, with the addition of 15% of H{sub 2}O{sub 2} and 100 g kg{sup -1} of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  4. Tryptophan Oxidative Metabolism Catalyzed by : A Thermophile Isolated from Kuwait Soil Contaminated with Petroleum Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Jassim M. Al-Hassan

    2011-01-01

    Full Text Available Tryptophan metabolism has been extensively studied in humans as well as in soil. Its metabolism takes place mainly through kynurenine pathway yielding hydroxylated, deaminated and many other products of physiological significance. However, tryptophan metabolism has not been studied in an isolated thermophilic bacterium. Geobacillus stearothermophilus is a local thermophile isolated from Kuwait desert soil contaminated with petroleum hydrocarbons. The bacterium grows well at 65 °C in 0.05 M phosphate buffer (pH 7, when supplied with organic compounds as a carbon source and has a good potential for transformation of steroids and related molecules. In the present study, we used tryptophan ethyl ester as a carbon source for the bacterium to study the catabolism of the amino acid at pH 5 and pH 7. In this endeavor, we have resolved twenty one transformation products of tryptophan by GC/LC and have identified them through their mass spectral fragmentation.

  5. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  6. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Que, Jr., Lawrence [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  7. Tuning functionality of photocatalytic materials: an infrared study on hydrocarbon oxidation

    NARCIS (Netherlands)

    Amrollahi Buky, Rezvaneh

    2016-01-01

    The focus of the research described in this thesis was on the engineering and design of effective photocatalysts able to catalyze the oxidative conversion of hydrocarbons. The prepared catalysts were synthesized by using different procedures involving sol gel precursors, and impregnation or

  8. catalyzed oxidation of some amino acids by acid bromate

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl- ... A suitable mechanism in agreement with observed kinetics has been ..... In acidic solution of potassium bromate quick .... Annual Review of Biochemistry.

  9. Graphene oxide catalyzed cis-trans isomerization of azobenzene

    Directory of Open Access Journals (Sweden)

    Dongha Shin

    2014-09-01

    Full Text Available We report the fast cis-trans isomerization of an amine-substituted azobenzene catalyzed by graphene oxide (GO, where the amine functionality facilitates the charge transfer from azobenzene to graphene oxide in contrast to non-substituted azobenzene. This catalytic effect was not observed in stilbene analogues, which strongly supports the existence of different isomerization pathways between azobenzene and stilbene. The graphene oxide catalyzed isomerization is expected to be useful as a new photoisomerization based sensing platform complementary to GO-based fluorescence quenching methods.

  10. Atmospheric oxidation of selected hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Benter, T.; Olariu, R.I.

    2002-02-01

    This work presents investigations on the gas-phase chemistry of phenol and the cresol isomers performed in a 1080 l quartz glass reactor in Wuppertal and in a large-volume outdoor photoreactor EUPHORE in Valencia, Spain. The studies aimed at clarifying the oxidation mechanisms of the reactions of these compounds with OH and NO{sub 3} radicals. Product investigations on the oxidation of phenol and the cresol isomers initiated by OH radicals were performed in the 1080 l quartz glass reactor with analyses by in situ FT-IR absorption spectroscopy. The primary focus of the investigations was on the determination of product yields. This work represents the first determination and quantification of 1,2-dihydroxybenzenes in the OH oxidation of phenolic compounds. Possible reaction pathways leading to the observed products have been elucidated. (orig.)

  11. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  12. Ruthenium-Catalyzed Aerobic Oxidation of Amines.

    Science.gov (United States)

    Ray, Ritwika; Hazari, Arijit Singha; Lahiri, Goutam Kumar; Maiti, Debabrata

    2018-01-18

    Amine oxidation is one of the fundamental reactions in organic synthesis as it leads to a variety of value-added products such as oximes, nitriles, imines, and amides among many others. These products comprise the key N-containing building blocks in the modern chemical industry, and such transformations, when achieved in the presence of molecular oxygen without using stoichiometric oxidants, are much preferred as they circumvent the production of unwanted wastes. In parallel, the versatility of ruthenium catalysts in various oxidative transformations is well-documented. Herein, this review focuses on aerobic oxidation of amines specifically by using ruthenium catalysts and highlights the major achievements in this direction and challenges that still need to be addressed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae.

    Science.gov (United States)

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J; Tittiger, Claus; Juárez, M Patricia; Mijailovsky, Sergio J; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J; Vontas, John

    2016-08-16

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of (14)C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An gambiae.

  14. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    Science.gov (United States)

    Liu, Wei; Flytzani-Stephanopoulos, Maria

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  15. A PROCESS FOR THE CATALYTIC OXIDATION OF HYDROCARBONS

    DEFF Research Database (Denmark)

    1999-01-01

    A process for producing an alcohol from a gaseous hydrocarbon, e.g. a lower alkane such as methane, via oxidative reaction of the hydrocarbon in a concentrated sulfuric acid medium in the presence of a catalyst employs an added catalyst comprising a substance selected from iodine, iodine compounds...

  16. Acid-catalyzed kinetics of indium tin oxide etching

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Hyeok; Kim, Seong-Oh; Hilton, Diana L. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); Cho, Nam-Joon, E-mail: njcho@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2014-08-28

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species.

  17. The bacterial catabolism of polycyclic aromatic hydrocarbons: Characterization of three hydratase-aldolase-catalyzed reactions

    Directory of Open Access Journals (Sweden)

    Jake A. LeVieux

    2016-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are highly toxic, pervasive environmental pollutants with mutagenic, teratogenic, and carcinogenic properties. There is interest in exploiting the nutritional capabilities of microbes to remove PAHs from various environments including those impacted by improper disposal or spills. Although there is a considerable body of literature on PAH degradation, the substrates and products for many of the enzymes have never been identified and many proposed activities have never been confirmed. This is particularly true for high molecular weight PAHs (e.g., phenanthrene, fluoranthene, and pyrene. As a result, pathways for the degradation of these compounds are proposed to follow one elucidated for naphthalene with limited experimental verification. In this pathway, ring fission produces a species that can undergo a non-enzymatic cyclization reaction. An isomerase opens the ring and catalyzes a cis to trans double bond isomerization. The resulting product is the substrate for a hydratase-aldolase, which catalyzes the addition of water to the double bond of an α,β-unsaturated ketone, followed by a retro-aldol cleavage. Initial kinetic and mechanistic studies of the hydratase-aldolase in the naphthalene pathway (designated NahE and two hydratase-aldolases in the phenanthrene pathway (PhdG and PhdJ have been completed. Crystallographic work on two of the enzymes (NahE and PhdJ provides a rudimentary picture of the mechanism and a platform for future work to identify the structural basis for catalysis and the individual specificities of these hydratase-aldolases.

  18. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  19. Silica metal-oxide vesicles catalyze comprehensive prebiotic chemistry.

    Science.gov (United States)

    Bizzarri, Bruno Mattia; Botta, Lorenzo; Pérez-Valverde, Maritza Iveth; Saladino, Raffaele; Di Mauro, Ernesto; Garcia Ruiz, Juan Manuel

    2018-03-30

    It has recently been demonstrated that mineral self-assembled structures catalyzing prebiotic chemical reactions may form in natural waters derived from serpentinization, a geological process widespread in the early stages of Earth-like planets. We have synthesized self-assembled membranes by mixing microdrops of metal solutions with alkaline silicate solutions in the presence of formamide (NH2CHO), a single carbon molecule, at 80ºC. We found that these bilayer membranes, made of amorphous silica and metal oxide-hydroxide nanocrystals, catalyze the condensation of formamide, yielding the four nucleobases of RNA, three aminoacids and several carboxylic acids in a single pot experiment. Besides manganese, iron and magnesium, two abundant elements in the earliest Earth crust that are key in serpentinization reactions, are enough to produce all these biochemical compounds. These results suggest that the transition from inorganic geochemistry to prebiotic organic chemistry is common on a universal scale and, most probably, earlier than ever thought for our planet. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quinone-Catalyzed Selective Oxidation of Organic Molecules

    Science.gov (United States)

    Wendlandt, Alison E.

    2016-01-01

    Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  1. Conversion of hydrocarbons in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Kammer Hansen, K.

    2003-01-01

    Recently, a number of papers about direct oxidation of methane and hydrocarbon in solid oxide fuel cells (SOFC) at relatively low temperatures (about 700degreesC) have been published. Even though the conversion of almost dry CH4 at 1000degreesC on ceramic anodes was demonstrated more than 10 years...

  2. Low-temperature, mineral-catalyzed air oxidation: a possible new pathway for PAH stabilization in sediments and soils.

    Science.gov (United States)

    Ghislain, Thierry; Faure, Pierre; Biache, Coralie; Michels, Raymond

    2010-11-15

    Reactivity of polycyclic aromatic hydrocarbons (PAHs) in the subsurface is of importance to environmental assessment, as they constitute a highly toxic hazard. Understanding their reactivity in the long term in natural recovering systems is thus a key issue. This article describes an experimental investigation on the air oxidation of fluoranthene (a PAH abundant in natural systems polluted by industrial coal use) at 100°C on different mineral substrates commonly found in soils and sediments (quartz sand, limestone, and clay). Results demonstrate that fluoranthene is readily oxidized in the presence of limestone and clay, leading to the formation of high molecular weight compounds and a carbonaceous residue as end product especially for clay experiments. As demonstrated elsewhere, the experimental conditions used permitted the reproduction of the geochemical pathway of organic matter observed under natural conditions. It is therefore suggested that low-temperature, mineral-catalyzed air oxidation is a mechanism relevant to the stabilization of PAHs in sediments and soils.

  3. Kinetics of catalyzed tritium oxidation in air at ambient temperature

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1980-01-01

    Tritium/air oxidation kinetic data are derived from measurements carried out with three catalysts. All experiments were carried out at room temperature - a regime that provides a severe test for catalyst effectiveness. Each catalyst consists of a high-surface-area substrate in pelletized form, onto which precious metal has been dispersed. The metal/substrate combinations investigated are: platinum/alumina, palladium/kaolin, and paladium/zeolite. Each of the dispersed-metal catalysts is extremely effective in promoting tritium oxidation in comparison with self-catalyzed atmospheric conversion; equivalent first-order rate constants are higher by roughly nine orders of magnitude. Electron-microprobe scans reveal that the dispersed metal is deposited near the outer surface of the catalyst, with metal concentration decreasing exponentially from the pellet surface. The platinum-based catalyst is more effective than the palladium catalysts on a surface-area basis by about a factor of three. Rate coefficients are determined from concentration decay following a spike injection of tritium into an air-filled enclosure processed by recirculation through an oxidation/adsorption system. The catalytic reaction is first-order in tritium concentration in the range 10 to 10 5 μCi/m 3 (4 ppt-40 ppB). Addition of hydrogen carrier gas is unnecessary. Catalytic activity for all three catalysts declines with time of exposure to air after activation, following a power-law decay with an exponent of -1/2. Reactivation with hot hydrogen gas effectively restores initial catalytic activity

  4. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  5. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III

    Indian Academy of Sciences (India)

    triazol-3-yl) formamidine (ATF) by hexacyanoferrate(III) (HCF) was studied spectrophotometrically in aqueous alkalinemedium. Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF],whereas the reaction ...

  6. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III)

    Indian Academy of Sciences (India)

    Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF], whereas ... The rate laws associated with the reaction mechanisms ... activation and thermodynamic parameters have been computed and discussed.

  7. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels

    DEFF Research Database (Denmark)

    Peterson, Andrew; Abild-Pedersen, Frank; Studt, Felix

    2010-01-01

    Density functional theory calculations explain copper's unique ability to convert CO2 into hydrocarbons, which may open up (photo-)electrochemical routes to fuels.......Density functional theory calculations explain copper's unique ability to convert CO2 into hydrocarbons, which may open up (photo-)electrochemical routes to fuels....

  8. Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation of sugar beet pectin

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2013-01-01

    Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w...... larger average particle sizes than the emulsions in which the SBP was homogenized into the emulsion system during emulsion preparation (referred as Mix B). Mix B type emulsions were stable. Enzyme catalyzed oxidative gelation of SBP helped stabilize the emulsions in Mix A. The kinetics of the enzyme...... catalyzed oxidative gelation of SBP was evaluated by small angle oscillatory measurements for horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2) catalysis, respectively. HRP catalyzed gelation rates, determined from the slopes of the increase of elastic modulus (G0) with time, were higher...

  9. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Oxygen-containing coke species in zeolite-catalyzed conversion of methanol to hydrocarbons

    KAUST Repository

    Liu, Zhaohui; Dong, Xinglong; Liu, Xin; Han, Yu

    2016-01-01

    Zeolites are the most commonly used catalysts for methanol-to-hydrocarbon (MTH) conversion. Here, we identified two oxygen-containing compounds as coke species in zeolite catalysts after MTH reactions. We investigated the possible influences

  11. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  12. Palladium-catalyzed aerobic oxidative cross-coupling of arylhydrazines with terminal alkynes.

    Science.gov (United States)

    Zhao, Yingwei; Song, Qiuling

    2015-09-04

    The palladium-catalyzed Sonogashira-type aerobic oxidative coupling of arylhydrazines with terminal alkynes via C-N bond cleavage has been developed; internal alkynes were afforded with a broad substrate scope. This reaction proceeds under copper- and base-free conditions with molecular oxygen as the sole oxidant and nitrogen and water as the only by-products.

  13. Palladium(II)-catalyzed oxidation of L-tryptophan by ...

    Indian Academy of Sciences (India)

    dium(II)] were obtained. The reaction exhibits fractional-second order kinetics with respect to [H ... compounds. Its use- fulness may be due to its unequivocal stability, water. ∗ ... metals are known to catalyze many oxidation–reduction reactions because they ... prepared by dissolving potassium hexacyanoferrate(II). (SD Fine ...

  14. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  15. Oxidative desulfurization of dibenzothiophene with hydrogen peroxide catalyzed by selenium(IV)-containing peroxotungstate.

    Science.gov (United States)

    Hu, Yiwen; He, Qihui; Zhang, Zheng; Ding, Naidong; Hu, Baixing

    2011-11-28

    With stoichiometric H(2)O(2) as oxidant, dibenzothiophene (DBT) is oxidized to its corresponding sulfone with high efficiency, catalyzed by a sub-valence heteronuclear peroxotungstate, [C(18)H(37)N(CH(3))(3)](4)[H(2)Se(IV)(3)W(6)O(34)], under mild biphase conditions and the catalyst shows remarkable selectivity of catalytic oxidation towards DBT, cinnamyl alcohol and quinoline.

  16. Mechanism of iron catalyzed oxidation of SO/sub 2/ in oxygenated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, J

    1975-01-01

    Previous experimental work concerning the iron catalyzed oxidation of SO/sub 2/ in oxygenated acid solutions failed to provide a consistent reaction mechanism and rate expression. As iron is one of the main constituents of urban atmospheric aerosols, the rate studies of heterogeneous sulphate formation in polluted city air were hampered. The present study develops a new theory for the iron catalyzed oxidation of SO/sub 2/. The resulting new rate expression is general enough to account for the results of previous experimental investigations that were performed in different ranges of SO/sub 2/ and catalyst concentrations.

  17. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    Science.gov (United States)

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  18. Nitroxide-catalyzed selective oxidation of alcohols and polysaccharides

    International Nuclear Information System (INIS)

    Ponedel'kina, I Yu; Khaibrakhmanova, E A; Odinokov, Viktor N

    2010-01-01

    The use of nitroxide radicals in the selective oxidation of alcohols is considered. Attention is focused on the oxidation of polysaccharides as a method of preparation of polyuronic acids, aldehydes and hemiacetals.

  19. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.

    Science.gov (United States)

    Forsey, Steven P; Thomson, Neil R; Barker, James F

    2010-04-01

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalenepermanganate. 2010 Elsevier Ltd. All rights reserved.

  20. Alloying Au surface with Pd reduces the intrinsic activity in catalyzing CO oxidation

    KAUST Repository

    Qian, Kun

    2016-03-30

    © 2016. Various Au-Pd/SiO2 catalysts with a fixed Au loading but different Au:Pd molar ratios were prepared via deposition-precipitation method followed by H2 reduction. The structures were characterized and the catalytic activities in CO oxidation were evaluated. The formation of Au-Pd alloy particles was identified. The Au-Pd alloy particles exhibit enhanced dispersions on SiO2 than Au particles. Charge transfer from Pd to Au within Au-Pd alloy particles. Isolated Pd atoms dominate the surface of Au-Pd alloy particles with large Au:Pd molar ratios while contiguous Pd atoms dominate the surface of Au-Pd alloy particles with small Au:Pd molar ratios. Few synergetic effect of Au-Pd alloy occurs on catalyzing CO oxidation under employed reaction conditions. Alloying Au with Pd reduces the intrinsic activity in catalyzing CO oxidation, and contiguous Pd atoms on the Au-Pd alloy particles are capable of catalyzing CO oxidation while isolated Pd atoms are not. These results advance the fundamental understandings of Au-Pd alloy surfaces in catalyzing CO oxidation.

  1. Human myeloperoxidase (MPO) and horseradish peroxidase (HRP) catalyzed oxidation of phenol

    International Nuclear Information System (INIS)

    Ross, D.; Eastmond, D.A.; Ruzo, L.O.; Smith, M.T.

    1986-01-01

    MPO-catalyzed conversion of phenolic metabolites of benzene may be involved in benzene-induced myelotoxicity. The authors have studied the metabolism and protein binding of phenol - the major metabolite of benzene - during peroxidatic oxidation. The major metabolite observed during MPO- and HRP- catalyzed oxidation was characterized as 4,4 biphenol using HPLC and combined GC-MS. When glutathione (GSH) was added to the incubation mixtures, two additional compounds were observed during HPLC analysis which were characterized as GSH-conjugates of 4,4-diphenoquinone by fast atom bombardment MS and by NMR. ESR spectroscopy showed that both MPO-and HRP-catalyzed oxidation of phenol proceeded via the generation of free radical intermediates. Using 14 C-phenol, both MPO- and HRP-catalyzed oxidations resulted in the production of species which bound covalently to boiled liver microsomal protein. The increase in binding correlated well with removal of substrate. Thus, peroxidatic oxidation of phenolic metabolites of benzene in the bone marrow may be involved in benzene-induced myelotoxicity

  2. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Forsey, S.P.; Thomson, N.R.; Barker, J.F. [University of Waterloo, Waterloo, ON (Canada). Dept. of Civil & Environmental Engineering

    2010-04-15

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene < phenanthrene < pyrene. The rate of side chain reactivity is controlled by the C-H bond strength. For the alkyl substituted benzenes an excellent correlation was observed between the reaction rate coefficients and bond dissociation energies, but for the substituted PAHs the relationship was poor. A trend was found between the reaction rate coefficients and the calculated heats of complexation indicating that significant ring oxidation occurred in addition to side chain oxidation. Clar's aromatic sextet theory was used to predict the relative stability of arenes towards ring oxidation by permanganate.

  3. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo

    2012-01-01

    A method for the preparation of NiO and Nb-NiO nanocomposites is developed, based on the slow oxidation of a nickel-rich Nb-Ni gel obtained in citric acid. The resulting materials have higher surface areas than those obtained by the classical evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7-13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1-2 nm) of a niobium-rich mixed oxide with a structure similar to that of NiNb 2O 6. Unlike bulk nickel oxides, the activity of these nanooxides for low-temperature ethane oxidative dehydrogenation (ODH) has been related to their redox properties. In addition to limiting the size of NiO crystallites, the presence of the Nb-rich phase also inhibits NiO reducibility. At Nb content >5 at.%, Nb-NiO composites are thus less active for ethane ODH but more selective, indicating that the Nb-rich phase probably covers part of the unselective, non-stoichiometric, active oxygen species of NiO. This geometric effect is supported by high-resolution transmission electron microscopy observations. The close interaction between NiO and the thin Nb-rich mixed oxide layer, combined with possible restructuration of the nanocomposite under ODH conditions, leads to significant catalyst deactivation at high Nb loadings. Hence, the most efficient ODH catalysts obtained by this method are those containing 3-4 at.% Nb, which combine high activity, selectivity, and stability. The impact of the preparation method on the structural and catalytic properties of Nb-NiO nanocomposites suggests that further improvement in NiO-catalyzed ethane ODH can be expected upon optimization of the catalyst. © 2011 Elsevier Inc. All rights reserved.

  4. Mechanistic investigation of the gold-catalyzed aerobic oxidation of alcohols

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The mechanism for the gold-catalyzed aerobic oxidation of alcohols was studied using a series of para-substituted benzyl alcohols (Hammett methodology). The competition experiments clearly show that the rate-determining step of the reaction involves the generation of a partial positive charge in ...

  5. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  6. Cu-catalyzed aerobic oxidative esterification of acetophenones with alcohols to α-ketoesters.

    Science.gov (United States)

    Xu, Xuezhao; Ding, Wen; Lin, Yuanguang; Song, Qiuling

    2015-02-06

    Copper-catalyzed aerobic oxidative esterification of acetophenones with alcohols using molecular oxygen has been developed to form a broad range of α-ketoesters in good yields. In addition to reporting scope and limitations of our new method, mechanism studies are reported that reveal that the carbonyl oxygen in the ester mainly originated from dioxygen.

  7. Cu-Catalyzed Asymmetric Allylic Alkylation of Phosphonates and Phosphine Oxides with Grignard Reagents

    NARCIS (Netherlands)

    Hornillos, Valentin; Perez, Manuel; Fananas-Mastral, Martin; Feringa, Ben L.

    An efficient and highly enantioselective copper-catalyzed allylic alkylation of phosphonates and phosphine oxides with Grignard reagents and Taniaphos or phosphoramidites as chiral ligands is reported. Transformation of these products leads to a variety of new phosphorus-containing chiral

  8. Enzyme catalyzed oxidative gelation of sugar beet pectin: Kinetics and rheology

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2012-01-01

    Sugar beet pectin (SBP) is a marginally utilized co-processing product from sugar production from sugar beets. In this study, the kinetics of oxidative gelation of SBP, taking place via enzyme catalyzed cross-linking of ferulic acid moieties (FA), was studied using small angle oscillatory...

  9. Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected beta-Amino Aldehydes

    NARCIS (Netherlands)

    Dong, Jiajia; Harvey, Emma C.; Fananas-Mastral, Martin; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    A general method for the preparation of N-protected beta-amino aldehydes from allylic amines or linear allylic alcohols is described. Here the Pd(II)-catalyzed oxidation of N-protected allylic amines with benzoquinone is achieved in tBuOH under ambient conditions with excellent selectivity toward

  10. Oxidation of lignin-carbohydrate complex from bamboo with hydrogen peroxide catalyzed by Co(salen

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Fei

    2014-01-01

    Full Text Available The reactivity of salen complexes toward hydrogen peroxide has been long recognized. Co(salen was tested as catalyst for the aqueous oxidation of a refractory lignin-carbohydrate complex (LCC isolated from sweet bamboo (Dendrocalamushamiltonii in the presence of hydrogen peroxide as oxidant. Co(salen catalyzed the reaction of hydrogen peroxide with LCC. From the spectra analyses, lignin units in LCC were undergoing ring-opening, side chain oxidation, demethoxylation, β-O-4 cleavage with Co(salen catalytic oxidation. The degradation was also observed in the carbohydrate of LCC. The investigation on the refractory LCC degradation catalyzed by Co(salen may be an important aspect for environmentally-oriented biomimetic bleaching in pulp and paper industry.

  11. Copper-catalyzed oxidative Heck reactions between alkyltrifluoroborates and vinyl arenes.

    Science.gov (United States)

    Liwosz, Timothy W; Chemler, Sherry R

    2013-06-21

    We report herein that potassium alkyltrifluoroborates can be utilized in oxidative Heck-type reactions with vinyl arenes. The reaction is catalyzed by a Cu(OTf)2/1,10-phenanthroline with MnO2 as the stoichiometric oxidant. In addition to the alkyl Heck, amination, esterification, and dimerization reactions of alkyltrifluoroborates are demonstrated under analogous reaction conditions. Evidence for an alkyl radical intermediate is presented.

  12. Zeolites as catalyzer to environmental control. Nitric oxide removal

    International Nuclear Information System (INIS)

    Montes, C.; Zapata N, M; Villa H, A.L.

    1995-01-01

    Zeolites and the microporous materials related to them are a class of environmental catalysts, it which are used to remove the produced gases in combustion process (as mobile sources). In this work the importance that has catalysis for environment improvement is emphasized. A review of recent progress in the use of certain zeolitic material as catalysts for nitric oxide elimination of combustion systems is presented. More used nitric oxide removal methods are presented, as well as its advantages and disadvantages. Furthermore, it is emphasized on the need of accomplishing more investigation projects on the development of an active catalyst for the decomposition of the nitric oxide in its elements (N and O)

  13. Ru(III) catalyzed permanganate oxidation of aniline at environmentally relevant pH.

    Science.gov (United States)

    Zhang, Jing; Zhang, Ying; Wang, Hui; Guan, Xiaohong

    2014-07-01

    Ru(III) was employed as catalyst for aniline oxidation by permanganate at environmentally relevant pH for the first time. Ru(III) could significantly improve the oxidation rate of aniline by 5-24 times with its concentration increasing from 2.5 to 15 μmol/L. The reaction of Ru(III) catalyzed permanganate oxidation of aniline was first-order with respect to aniline, permanganate and Ru(III), respectively. Thus the oxidation kinetics can be described by a third-order rate law. Aniline degradation by Ru(III) catalyzed permanganate oxidation was markedly influenced by pH, and the second-order rate constant (ktapp) decreased from 643.20 to 2.67 (mol/L)⁻¹sec⁻¹ with increasing pH from 4.0 to 9.0, which was possibly due to the decrease of permanganate oxidation potential with increasing pH. In both the uncatalytic and catalytic permanganate oxidation, six byproducts of aniline were identified in UPLC-MS/MS analysis. Ru(III), as an electron shuttle, was oxidized by permanganate to Ru(VI) and Ru(VII), which acted the co-oxidants for decomposition of aniline. Although Ru(III) could catalyze permanganate oxidation of aniline effectively, dosing homogeneous Ru(III) into water would lead to a second pollution. Therefore, efforts would be made to investigate the catalytic performance of supported Ru(III) toward permanganate oxidation in our future study. Copyright © 2014. Published by Elsevier B.V.

  14. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan; Caps, Valerie; Tuel, Alain

    2010-01-01

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional

  15. Aerobic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by ...

    Indian Academy of Sciences (India)

    Hydrotalcite-like compounds; cobalt porphyrin; alcohol oxidation; ... cient catalytic method for the low temperature oxy- ... nitrate,8 acetaldehyde,9 ammonium salts10 and NO2,11 ..... N, Sakurai H and Tsukuda T 2009 Effect of electronic.

  16. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode

    International Nuclear Information System (INIS)

    Yu Lin; Duan Jizhou; Zhao Wei; Huang Yanliang; Hou Baorong

    2011-01-01

    Highlights: → The sulphate-reducing bacteria (SRB) have the ability to catalyze the hydrogen evolution and oxidation on pyrolytic graphite electrode. → The SRB biofilm decreases the overpotential and electron transfer resistance by the CV and EIS detection. → The SRB biofilm can transfer electrons to the 0.24 V polarized pyrolytic graphite electrode and the maximum current is 0.035 mA, which is attributed to SRB catalyzed hydrogen oxidation. → The SRB biofilm also can obtain electron from the -0.61 V polarized PGE to catalyze the hydrogen evolution. - Abstract: Hydrogenase, an important electroactive enzyme of sulphate-reducing bacteria (SRB), has been discovered having the capacity to connect its activity to solid electrodes by catalyzing hydrogen evolution and oxidation. However, little attention has been paid to similar electroactive characteristics of SRB. In this study, the electroactivities of pyrolytic graphite electrode (PGE) coated with SRB biofilm were investigated. Two corresponding redox peaks were observed by cyclic voltammetry detection, which were related to the hydrogen evolution and oxidation. Moreover, the overpotential for the reactions decreased by about 0.2 V in the presence of the SRB biofilm. When the PGE coated with the SRB biofilm was polarized at 0.24 V (vs. SHE), an oxidation current related to the hydrogen oxidation was found. The SRB biofilm was able to obtain electrons from the -0.61 V (vs. SHE) polarized PGE to form hydrogen, and the electron transfer resistance also decreased with the formation of SRB biofilm, as measured by the non-destructive electrochemical impendence spectroscopy detection. It was concluded that the hydrogen evolution and oxidation was an important way for the electron transfer between SRB biofilm and solid electrode in anaerobic environment.

  17. Predicting Alkylate Yield and its Hydrocarbon Composition for Sulfuric Acid Catalyzed Isobutane Alkylation with Olefins Using the Method of Mathematical Modeling

    OpenAIRE

    Nurmakanova, А. Е.; Ivashkina, Elena Nikolaevna; Ivanchina, Emilia Dmitrievna; Dolganov, I. A.; Boychenko, S. S.

    2015-01-01

    The article provides the results of applied mathematical model of isobutane alkylation with olefins catalyzed by sulfuric acid to predict yield and hydrocarbon composition of alkylate caused by the changes in the feedstock composition and process parameters. It is shown that the alkylate produced from feedstock with less mass fraction of isobutane has lower octane value. Wherein the difference in composition of the feedstock contributes to antiknock index by the amount of 1.0-2.0 points.

  18. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective

    DEFF Research Database (Denmark)

    Møller, Ian Max; Rogowska-Wrzesinska, Adelina; Rao, R S P

    2011-01-01

    Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought...... to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo...... and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation...

  19. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  20. Palladium(II)-catalyzed oxidation of L-tryptophan by ...

    Indian Academy of Sciences (India)

    Initial addition of the reaction product, hexacyanoferrate(II), does not affect the rate significantly. A plausible mechanistic scheme explaining all the observed kinetic results has been proposed. The final oxidation products are identified as indole-3-acetaldehyde, ammonium ion and carbon dioxide. The rate law associated ...

  1. Oxygen-containing coke species in zeolite-catalyzed conversion of methanol to hydrocarbons

    KAUST Repository

    Liu, Zhaohui

    2016-10-06

    Zeolites are the most commonly used catalysts for methanol-to-hydrocarbon (MTH) conversion. Here, we identified two oxygen-containing compounds as coke species in zeolite catalysts after MTH reactions. We investigated the possible influences of the oxygen-containing compounds on coke formation, catalyst deactivation, product selectivity, and the induction period of the MTH reaction through a series of controlled experiments in which one of the identified compounds (2,3-dimethyl-2-cyclopenten-1-one) was co-fed with methanol over a zeolite H-ZSM-5 catalyst. Our results allow us to infer that once produced, the oxygen-containing compounds block the Brønsted acid sites by strong chemisorption and their rapid conversion to aromatics expedites the formation of coke and thus the deactivation of the catalyst. A minor effect of the production of such compounds during the MTH reaction is that the aromatic-based catalytic cycle can be slightly promoted to give higher selectivity to ethylene.

  2. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    Science.gov (United States)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  3. Base-catalyzed efficient tandem [3 + 3] and [3 + 2 + 1] annulation-aerobic oxidative benzannulations.

    Science.gov (United States)

    Diallo, Aboubacar; Zhao, Yu-Long; Wang, He; Li, Sha-Sha; Ren, Chuan-Qing; Liu, Qun

    2012-11-16

    An efficient synthesis of substituted benzenes via a base-catalyzed [3 + 3] aerobic oxidative aromatization of α,β-unsaturated carbonyl compounds with dimethyl glutaconate was reported. All the reactions were carried out under mild, metal-free conditions to afford the products in high to excellent yields with molecular oxygen as the sole oxidant and water as the sole byproduct. Furthermore, a more convenient tandem [3 + 2 + 1] aerobic oxidative aromatization reaction was developed through the in situ generation of the α,β-unsaturated carbonyl compounds from aldehydes and ketones.

  4. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Directory of Open Access Journals (Sweden)

    Cláudia M. B. Neves

    2012-01-01

    Full Text Available This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.

  5. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Claudia M.B.; Simoes, Mario M.Q.; Domingues, Fernando M.J.; Neves, M. Graca P.M.S.; Cavaleiro, Jose A.S., E-mail: msimoes@ua.pt [Dept. de Quimica, QOPNA, Universidade de Aveiro (Portugal)

    2012-07-01

    This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H{sub 2}O{sub 2}, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy. (author)

  6. Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide

    KAUST Repository

    Cheneviere, Yohan

    2010-10-20

    Gold nanoparticles deposited on inorganic supports are efficient catalysts for the oxidation of various substituted phenols (2,6-di-tert-butyl phenol and 2,3,6-trimethyl phenol) with aqueous hydrogen peroxide. By contrast to more conventional catalysts such as Ti-containing mesoporous silicas, which convert phenols to the corresponding benzoquinones, gold nanoparticles are very selective to biaryl compounds (3,3′,5,5′-tetra-tert-butyl diphenoquinone and 2,2′,3,3′,5,5′-hexamethyl-4,4′- biphenol, respectively). Products yields and selectivities depend on the solvent used, the best results being obtained in methanol with yields >98%. Au offers the possibility to completely change the selectivity in the oxidation of substituted phenols and opens interesting perspectives in the clean synthesis of biaryl compounds for pharmaceutical applications. © 2010 Elsevier B.V. All rights reserved.

  7. Process requirements of galactose oxidase catalyzed oxidation of alcohols

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; R. Birmingham, William; Rehn, Gustav

    2015-01-01

    -electron oxidants to reactivate the enzyme upon loss of the amino acid radical in its active site. In this work, the addition of catalase, single-electron oxidants, and copper ions was investigated systematically in order to find the minimum concentrations required to obtain a fully active GOase. Furthermore....... GOase was shown to be completely stable for 120 h in buffer with stirring at 25 °C, and the activity even increased 30% if the enzyme solution was also aerated in a similar experiment. The high Km for oxygen of GOase (>5 mM) relative to the solubility of oxygen in water reveals a trade-off between...... supplying oxygen at a sufficiently high rate and ensuring a high degree of enzyme utilization (i.e., ensuring the highest possible specific rate of reaction). Nevertheless, the good stability and high activity of GOase bode well for its future application as an industrial biocatalyst....

  8. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.

    Science.gov (United States)

    Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

    2012-06-20

    Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.

  9. [Effects of metal-catalyzed oxidation on the formation of advanced oxidation protein products].

    Science.gov (United States)

    Li, Li; Peng, Ai; Zhu, Kai-Yuan; Yu, Hong; Ll, Xin-Hua; Li, Chang-Bin

    2008-03-11

    To explore the relationship between metal-catalyzed oxidation (MCO) and the formation of advanced oxidation protein products (AOPPs). Specimens of human serum albumin (HSA) and pooled plasma were collected from 3 healthy volunteers and 4 uremia patients were divided into 3 groups: Group A incubated with copper sulfate solution of the concentrations of 0, 0.2, or 0.5 mmol/L, Group B, incubated with hydrogen peroxide 2 mmol/L, and Group C, incubated with copper sulfate 0.2 or 0.5 mmol/L plus hydrogen peroxide 2 mmol/L. 30 min and 24 h later the AOPP level was determined by ultraviolet visible spectrophotometry. High-performance liquid chromatography (HPLC) was used to observe the fragmentation effect on plasma proteins. Ninhydrin method was used to examine the protein fragments. The scavenging capacity of hydroxyl radical by macromolecules was measured so as to estimate the extent of damage for proteins induced by MCO. (1) The AOPP level of the HSA and plasma specimens of the uremia patients increased along with the increase of cupric ion concentration in a dose-dependent manner, especially in the presence of hydrogen peroxide (P < 0.05). (2) Aggregation of proteins was almost negligible in all groups, however, HPLC showed that cupric ion with or without hydrogen peroxide increased the fragments in the HAS specimens (with a relative molecular mass of 5000) and uremia patients' plasma proteins (with the molecular mass 7000). (3) The plasma AOPP level of the healthy volunteers was 68.2 micromol/L +/- 2.4 micromol/L, significantly lower than that of the uremia patients (158.5 micromol/L +/- 8.2 micromol/L). (4) The scavenging ability to clear hydroxyl radical by plasma proteins of the healthy volunteers was 1.38 -9.03 times as higher than that of the uremia patients. MCO contributes to the formation of AOPPs mainly through its fragmentation effect to proteins.

  10. Influence of the fuel in the nanostructure catalyzer oxides synthesis

    International Nuclear Information System (INIS)

    Zampiva, R.Y.S.; Panta, P.C.; Carlos, R.B.; Alves, A.K.; Bergmann, C.P.

    2012-01-01

    Among the techniques used in catalysts production, the solution combustion synthesis (SCS) has been increasingly applied due the possibility of producing, at low cost, highly pure and homogeneous nanostructured powders. The smaller the particle diameter, the greater the activity of the catalyst. In SCS, the size of the particles produced depends on the process variables. In order to formulate the optimal methodology for the preparation of nanostructured oxides for catalysis, it was studied the fuel-oxidant concentration ratio, and the use of glycine and polyethylene glycol with molecular weight 200 (PEG 200) as fuel in the SCS of Iron, Magnesium and Molybdenum based catalysts. The phase identification of the products was performed by x-ray diffraction (XRD). Particle size and surface area analysis were done to characterize the particles size and the samples morphology was obtained by scanning electron microscopy. Results indicated the formation of high purity nanomaterials obtained for low concentrations of fuel, and a wide variation in the nanostructure sizes depending on the concentration and type of fuel used. (author)

  11. Enzyme catalyzed oxidative cross-linking of feruloylated pectic polysaccharides from sugar beet

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz

    beet pulp as a potential starting material for production of pectin derived products which could help maintain the competitiveness of the sugar beet based industry. The overall objective of this study has been focusing on understanding the kinetics of enzyme catalyzed oxidative crosslinking......-linked by HRP catalysis in the presence of hydrogen peroxide (H2O2) to form ferulic acid dehydrodimers (diFAs). The composition of the substrate was analyzed by HPAEC, HPLC and MALDI-TOF, confirming the structural make up of the arabinan-oligosaccharide (Arabinose: 2.9- 3.4 mmol?g-1 DM; FA: 2.5-7.0 mg?g-1 DM......, identically composed, oil-in-water emulsion systems to study the effect of different methods of emulsion preparation on the emulsion stability in the presence of SBP and the kinetics of enzyme catalyzed oxidative gelation of SBP. The result shows that the different methods of emulsion preparation affect...

  12. Synthesis of Arylthiopyrimidines by Copper-catalyzed Aerobic Oxidative C-S Cross-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ok Suk; Kim, Hyeji; Sohn, Jeong-Hun [Chungnam National University, Daejeon (Korea, Republic of); Lee, Hee-Seung [KAIST, Daejeon (Korea, Republic of); Shin, Hyunik [Yonsung Fine Chemicals R and D Center, Suwon (Korea, Republic of)

    2016-02-15

    Copper-catalyzed C–S cross-coupling reactions have been considered as powerful tools in synthetic chemistry and utilized for diverse heterocycle syntheses. In the reactions, the aspects of no need of ligands has been particular advantage over other metal catalysis. We have developed a Cu-catalyzed cascade reaction for the synthesis of fully substituted 2-arylthiopyrimidines from 3,4-dihydropyrimidine-2(1H)-thiones (DHPMs) under aerobic conditions. This cascade reaction of DHPM with aryl iodide proceeds presumably via sequential tautomerization, C–S cross-coupling, and oxidative dehydrogenation (oxidation followed by elimination). Considering that DHPM substrates were easily synthesized by Biginelli three component coupling reaction of aryl aldehyde, β-ketoester, and thiourea, the present method provides a direct access toward diverse 2-arylthiopyrimidines which have been used as a prominent substructure of drug molecules.

  13. Palladium-catalyzed, asymmetric Baeyer–Villiger oxidation of prochiral cyclobutanones with PHOX ligands

    KAUST Repository

    Petersen, Kimberly S.

    2011-06-01

    Described in this report is a general method for the conversion of prochiral 3-substituted cyclobutanones to enantioenriched γ-lactones through a palladium-catalyzed Baeyer-Villiger oxidation using phosphinooxazoline ligands in up to 99% yield and 81% ee. Lactones of enantiopurity ≥93% could be obtained through a single recrystallization step. Importantly, 3,3-disubtituted cyclobutanones produced enantioenriched lactones containing a β-quaternary center. © 2011 Elsevier Ltd. All rights reserved.

  14. Kinetic Investigations on Pd(II) Catalyzed Oxidation of Some Amino ...

    African Journals Online (AJOL)

    Kinetic investigations on Pd(II) catalyzed oxidation of dl-serine and dl-threonine by acidic solution of potassium bromate in the presence of mercuric acetate, as a scavenger have been made in the temperature range of 30–45°C. The rate shows zero order kinetics in bromate [BrO3‾] and order of reaction is one with respect ...

  15. Phenol oxidation of petrol refinery wastewater catalyzed by Laccase

    International Nuclear Information System (INIS)

    Vargas, Maria Carolina; Ramirez, Nubia E.

    2002-01-01

    Laccase has been obtained through two different production systems, the first using Pleurotus ostreatus in solid-state fermentation, the second one using Trametes versicolor in submerged culture. Different substrates (by products from yeast, flour and beverage industries) have been evaluated in both systems. Maximum laccase yield with Pleurotus ostreatus (25 u/ml) was obtained in a wheat bran medium. The maximum enzyme concentration level using Trametes versicolor (25 u/ml) was achieved in a submerged system, containing 10% vinasse, 4,5% wheat bran and 0,2% molasses per liter of waste. Culture filtrate extracted from Pleurotus ostreatus was used to remove phenol from wastewater. The enzymatic treatment is effective over a wide pH and temperature range. The Laccase treatment has been successfully used to dephenolize industrial petrol refinery wastewater. The advantage of Laccase dephenolization is that this enzyme uses molecular oxygen as an oxidant

  16. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide...

  17. A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.

    Science.gov (United States)

    Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A

    2015-03-27

    The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Isotopic mixing in carbon monoxide catalyzed by zinc oxide

    International Nuclear Information System (INIS)

    Carnisio, G.; Garbassi, F.; Petrini, G.; Parravano, G.

    1978-01-01

    The rate of the isotopic mixing in CO has been studied at 300 0 C, for CO partial pressures from 6 to 100 Torr and a total pressure of 250 Torr on ZnO catalysts. Significant deviations from a first-order rate in p/sub co/ were found. The rate of oxygen exchange between ZnO and gas-phase CO was also measured and the results were employed to calculate the fraction of surface sites active for the CO isotopic mixing. Values on the order of 0.001 were found. The turnover rate and surface collision efficiency varied between 0.7 and 107 min -1 and 0.13 and 2.24 x 10 -8 , respectively. H 2 additions to CO increased the rate of isotopic mixing, whereas the rate of H 2 + D 2 was decreased by the presence of CO. The H 2 + D 2 rate was faster than that of isotopic mixing in CO, but as the ratio p/sub H 2 //p/sub co/ decreased the rates became about equal. It is argued that on ZnO samples, in which the rate of CO isotopic mixing and the rate of ZnO--CO oxygen exchange were influenced in a similar manner by the CO pressure, the isotopic mixing in CO took place via the ZnO oxygen, while oxide oxygen participation was not kinetically significant for ZnO samples in which the two reactions had different kinetics. The crucial factor controlling the path followed by the isotopic mixing in CO seems to be the surface Zn/O ratio, since a close correlation was found between the former and the reaction kinetics of the CO isotopic mixing reaction. Solid-state conditions which may vary the Zn/O surface ratio (foreign additions) are indicated. The implications of these findings to the problem of product selectivity from CO-H 2 mixtures reacting on metal oxide surfaces are discussed

  19. Cordierite-supported metal oxide for non-methane hydrocarbon oxidation in cooking oil fumes.

    Science.gov (United States)

    Huang, Yonghai; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Gao, Fengyu; Wang, Jiangen; Yang, Zhongyu

    2018-05-21

    Cooking emission is an important reason for the air quality deterioration in the metropolitan area in China. Transition metal oxide and different loading of manganese oxide supported on cordierite were prepared by incipient wetness impregnation method and were used for non-methane hydrocarbon (NMHC) oxidation in cooking oil fumes (COFs). The effects of different calcination temperature and different Mn content were also studied. The SEM photographs and CO 2 temperature-programmed desorption revealed 5 wt% Mn/cordierite had the best pore structure and the largest number of the weak and moderate basic sites so it showed the best performance for NMHC oxidation. XRD analysis exhibited 5 wt% Mn/cordierite had the best dispersion of active phase and the active phase was MnO 2 when the calcination temperature was 400℃ which were good for the catalytic oxidation of NMHC.

  20. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    Science.gov (United States)

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  1. Effect of L-cysteine on the oxidation of cyclohexane catalyzed by manganeseporphyrin.

    Science.gov (United States)

    Zhou, Wei-You; Tian, Peng; Chen, Yong; He, Ming-Yang; Chen, Qun; Chen, Zai Xin

    2015-06-01

    Effect of L-cysteine as the cocatalyst on the oxidation of cyclohexane by tert-butylhydroperoxide (TBHP) catalyzed by manganese tetraphenylporphyrin (MnTPP) has been investigated. The results showed that L-cysteine could moderately improve the catalytic activity of MnTPP and significantly increase the selectivity of cyclohexanol. Different from imidazole and pyridine, the L-cysteine may perform dual roles in the catalytic oxidation of cyclohexane. Besides as the axial ligand for MnTPP, the L-cysteine could also react with cyclohexyl peroxide formed as the intermediate to produce alcohol as the main product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Palladium-Catalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes.

    Science.gov (United States)

    Gao, Yang; Gao, Yinglan; Wu, Wanqing; Jiang, Huanfeng; Yang, Xiaobo; Liu, Wenbo; Li, Chao-Jun

    2017-01-18

    We describe herein a palladium-catalyzed tandem oxidative arylation/olefination reaction of aromatic tethered alkenes/alkynes for the synthesis of dihydrobenzofurans and 2 H-chromene derivatives. This reaction features a 1,2-difunctionalization of C-C π-bond with two C-H bonds using O 2 as terminal oxidant at room temperature. The products obtained are valuable synthons and important scaffolds in biological agents and natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Transesterification of used vegetable oil catalyzed by barium oxide under simultaneous microwave and ultrasound irradiations

    International Nuclear Information System (INIS)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-01-01

    Graphical abstract: Transesterification reaction mediated by simultaneous microwave and ultrasound irradiations with barium oxide (BaO) heterogeneous catalyst. - Highlights: • Synergistic effect of simultaneous microwave/ultrasound irradiations was evaluated. • Yields were higher for the MW/US reactions compared to MW or US individually. • BaO catalyzed MW/US transesterification reaction is more environmental-friendly. • BaO catalyzed MW/US transesterification reaction provides better biodiesel yields. • Optimum power density must be identified for energy-efficient biodiesel production. - Abstract: This study presents a novel application of simultaneous microwave and ultrasound (MW/US) irradiations on transesterification of used vegetable oil catalyzed by barium oxide, heterogeneous catalyst. Experiments were conducted to study the optimum process conditions, synergistic effect of microwave and ultrasound irradiations and the effect of power density. From the process parametric optimization study, the following conditions were determined as optimum: 6:1 methanol to oil ratio, 0.75% barium oxide catalyst by wt.%, and 2 min of reaction time at a combined power output rate of 200 W (100/100 MW/US). The biodiesel yields were higher for the simultaneous MW/US mediated reactions (∼93.5%) when compared to MW (91%) and US (83.5%) irradiations individually. Additionally, the effect of power density and a discussion on the synergistic effect of the microwave and ultrasound mediated reactions were presented. A power density of 7.6 W/mL appears to be effective for MW, and MW/US irradiated reactions (94.4% and 94.7% biodiesel yields respectively), while a power density of 5.1 W/mL was appropriate for ultrasound irradiation (93.5%). This study concludes that the combined microwave and ultrasound irradiations result in a synergistic effect that reduces the heterogeneity of the transesterification reaction catalyzed by heterogeneous catalysts to enhance the biodiesel

  4. Rh(iii)-catalyzed C-H olefination of N-pentafluoroaryl benzamides using air as the sole oxidant.

    Science.gov (United States)

    Lu, Yi; Wang, Huai-Wei; Spangler, Jillian E; Chen, Kai; Cui, Pei-Pei; Zhao, Yue; Sun, Wei-Yin; Yu, Jin-Quan

    2015-03-01

    The oxidative olefination of a broad array of arenes and heteroarenes with a variety of activated and unactivated olefins has be achieved via a rhodium(iii)-catalyzed C-H activation reaction. The use of an N -pentafluorophenyl benzamide directing group is crucial for achieving catalytic turnovers in the presence of air as the sole oxidant without using a co-oxidant.

  5. Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium.

    Science.gov (United States)

    Irisa, Tatsuya; Hira, Daisuke; Furukawa, Kenji; Fujii, Takao

    2014-12-01

    The hydroxylamine oxidoreductase (HAO) from the anammox bacterium, Candidatus Kuenenia stuttgartiensis has been reported to catalyze the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO) by using bovine cytochrome c as an oxidant. In contrast, we investigated whether the HAO from anammox bacterium strain KSU-1 could catalyze the reduction of NO with reduced benzyl viologen (BVred) and the NO-releasing reagent, NOC 7. The reduction proceeded, resulting in the formation of NH2OH as a product. The oxidation rate of BVred was proportional to the concentration of BVred itself for a short period in each experiment, a situation that was termed quasi-steady state. The analyses of the states at various concentrations of HAO allowed us to determine the rate constant for the catalytic reaction, (2.85 ± 0.19) × 10(5) M(-1) s(-1), governing NO reduction by BVred and HAO, which was comparable to that reported for the HAO from the ammonium oxidizer, Nitrosomonas with reduced methyl viologen. These results suggest that the anammox HAO functions to adjust anammox by inter-conversion of NO and NH2OH depending on the redox potential of the physiological electron transfer protein in anammox bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    Science.gov (United States)

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  7. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  8. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons.

    Science.gov (United States)

    Isaacman, Gabriel; Chan, Arthur W H; Nah, Theodora; Worton, David R; Ruehl, Chris R; Wilson, Kevin R; Goldstein, Allen H

    2012-10-02

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization gas chromatography techniques. Nucleated motor oil particles are oxidized in a flow tube reactor to investigate the relative reaction rates of observed hydrocarbon classes: alkanes, cycloalkanes, bicycloalkanes, tricycloalkanes, and steranes. Oxidation of hydrocarbons in a complex aerosol is found to be efficient, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ∼20% per nonaromatic ring present. These differences in rates are expected to alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Due to this expected shift toward ring-opening reactions heterogeneous oxidation of the unreacted hydrocarbon mixture is less likely to proceed through fragmentation pathways in more oxidized particles. Based on the observed oxidation-induced changes in composition, isomer-resolved analysis has potential utility for determining the photochemical age of atmospheric particulate matter with respect to heterogeneous oxidation.

  9. Copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines: synthesis of imidazopyridine derivatives.

    Science.gov (United States)

    Yu, Jipan; Jin, Yunhe; Zhang, Hao; Yang, Xiaobo; Fu, Hua

    2013-12-02

    A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines with N-(alkylidene)-4H-1,2,4-triazol-4-amines. The procedure occurs by cleavage of the N-N bond in the N-(alkylidene)-4H-1,2,4-triazol-4-amines and activation of an aryl C-H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition-metal-catalyzed C-H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Support Effects in the Gold-Catalyzed Preferential Oxidation of CO

    KAUST Repository

    Ivanova, S.

    2010-04-08

    The study of support effects on the gold-catalyzed preferential oxidation of carbon monoxide in the presence of hydrogen (PROX reaction) is possible only with careful control of the gold particle size, which is facilitated by the application of the direct anionic exchange method. Catalytic evaluation of thermally stable gold nanoparticles, with an average size of around 3 nm on a variety of supports (alumina, titania, zirconia, or ceria), clearly shows that the influence of the support on the CO oxidation rate is of primary importance under CO+O 2 conditions and that this influence becomes secondary in the presence of hydrogen. The impact of the support surface structure on the oxidation rates, catalyst selectivity, and catalyst activation/deactivation is investigated in terms of oxygen vacancies, oxygen mobility, OH groups, and surface area on the oxidation rates, catalyst selectivity and catalyst activation/deactivation. It allows the identification of key morphological and structural features of the support to ensure high activity and selectivity in the gold-catalyzed PROX reaction. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrogen or Soot?: Partial Oxidation of High-boiling Hydrocarbon Wastes

    Czech Academy of Sciences Publication Activity Database

    Lederer, J.; Hanika, Jiří; Nečesaný, F.; Poslední, W.; Tukač, V.; Veselý, Václav

    2015-01-01

    Roč. 29, č. 1 (2015), s. 5-11 ISSN 0352-9568 Institutional support: RVO:67985858 Keywords : partial oxidation * waste * hydrocarbon Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.675, year: 2015

  12. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  13. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  14. Bench scale demonstration and conceptual engineering for DETOXSM catalyzed wet oxidation

    International Nuclear Information System (INIS)

    Moslander, J.; Bell, R.; Robertson, D.; Dhooge, P.; Goldblatt, S.

    1994-01-01

    Laboratory and bench scale studies of the DETOX SM catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals' fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes

  15. Photoassisted Oxidation of Sulfides Catalyzed by Artificial Metalloenzymes Using Water as an Oxygen Source †

    Directory of Open Access Journals (Sweden)

    Christian Herrero

    2016-12-01

    Full Text Available The Mn(TpCPP-Xln10A artificial metalloenzyme, obtained by non-covalent insertion of Mn(III-meso-tetrakis(p-carboxyphenylporphyrin [Mn(TpCPP, 1-Mn] into xylanase 10A from Streptomyces lividans (Xln10A as a host protein, was found able to catalyze the selective photo-induced oxidation of organic substrates in the presence of [RuII(bpy3]2+ as a photosensitizer and [CoIII(NH35Cl]2+ as a sacrificial electron acceptor, using water as oxygen atom source.

  16. Palladium-catalyzed C-H olefination of uracils and caffeines using molecular oxygen as the sole oxidant.

    Science.gov (United States)

    Zhang, Xinyu; Su, Lv; Qiu, Lin; Fan, Zhenwei; Zhang, Xiaofeng; Lin, Shen; Huang, Qiufeng

    2017-04-18

    The palladium-catalyzed oxidative C-H olefination of uracils or caffeines with alkenes using an atmospheric pressure of molecular oxygen as the sole oxidant has been disclosed. This novel strategy offers an efficient and environmentally friendly method to biologically important C5-alkene uracil derivatives or C8-alkene caffeine derivatives.

  17. Formation of hydroxylated polybrominated diphenyl ethers from laccase-catalyzed oxidation of bromophenols.

    Science.gov (United States)

    Lin, Kunde; Zhou, Shiyang; Chen, Xi; Ding, Jiafeng; Kong, Xiaoyan; Gan, Jay

    2015-11-01

    Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been frequently found in the marine biosphere as emerging organic contaminants. Studies to date have suggested that OH-PBDEs in marine biota are natural products. However, the mechanisms leading to the biogenesis of OH-PBDEs are still far from clear. In this study, using a laccase isolated from Trametes versicolor as the model enzyme, we explored the formation of OH-PBDEs from the laccase-catalyzed oxidation of simple bromophenols (e.g., 2,4-DBP and 2,4,6-TBP). Experiments under ambient conditions clearly showed that OH-PBDEs were produced from 2,4-DBP and 2,4,6-TBP in presence of laccase. Polybrominated compounds 2'-OH-BDE68, 2,2'-diOH-BB80, and 1,3,8-TrBDD were identified as the products from 2,4-DBP, and 2'-OH-BDE121 and 4'-OH-BDE121 from 2,4,6-TBP. The production of OH-PBDEs was likely a result of the coupling of bromophenoxy radicals, generated from the laccase-catalyzed oxidation of 2,4-DBP or 2,4,6-TBP. The transformation of bromophenols by laccase was pH-dependant, and was also influenced by enzymatic activity. In view of the abundance of 2,4-DBP and 2,4,6-TBP and the phylogenetic distribution of laccases in the environment, laccase-catalyzed conversion of bromophenols may be potentially an important route for the natural biosynthesis of OH-PBDEs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Induction of lipid peroxidation in erythrocytes during cholesterol oxidation catalyzed by cholesterol oxidase

    International Nuclear Information System (INIS)

    Kagan, V.E.; Monovich, O.; Ribarov, S.R.

    1986-01-01

    The authors study the ability of cholesterol oxidase (ChO), which catalyzes oxidation of cholesterol (Ch) to cholest-4-en-3-one and, at the same time, reduction of O 2 to H 2 O 2 , to induce the lipid peroxidation (LPO) in plasma membranes. Erythrocyte ghosts were obtained from guinea pig blood; the reaction of oxidation of Ch in the erythrocyte ghosts or in micelles with Triton X-100 was carried out in the following medium: Tris-HCl 0.2 M, pH 7.0 (at 37 C), Triton X-100 0.25%, and ChO 0.05 U/ml. At the present time ChO is often used to study the asymmetry of distribution of Ch in biomembranes and the velocity of its transbilayer migration. It is suggested that changes in membrane permeability do not take place during the reaction catalyzed by the enzyme, and no products capable of affecting flip-flop in biological are formed. Accumulation of LPO products in erythrocyte membranes discovered in this investigation under the influence of ChO compels critical re-examination of the resutls

  19. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  20. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  1. Remediation of Soil and Ground Water Contaminated with PAH using Heat and Fe(II)-EDTA Catalyzed Persulfate Oxidation

    International Nuclear Information System (INIS)

    Nadim, Farhad; Huang, Kun-Chang; Dahmani, Amine M.

    2006-01-01

    The feasibility of degrading 16 USEPA priority polycyclic aromatic (PAH) hydrocarbons (PAHs) with heat and Fe(II)-EDTA catalyzed persulfate oxidation was investigated in the laboratory. The experiments were conducted to determine the effects of temperature (i.e. 20 deg. C, 30 deg. C and 40 deg. C) and iron-chelate levels (i.e., 250 mg/L-, 375 mg/L- and 500 mg/L-Fe(II)) on the degradation of dissolved PAHs in aqueous systems, using a series of amber glass jars as the reactors that were placed on a shaker inside an incubator for temperature control. Each experiment was run in duplicate and had two controls (i.e., no persulfate in systems). Samples were collected after a reaction period of 144 hrs and measured for PAHs, pH and sodium persulfate levels. The extent of degradation of PAHs was determined by comparing the data for samples with the controls.The experimental results showed that persulfate oxidation under each of the tested conditions effectively degraded the 16 target PAHs. All of the targeted PAHs were degraded to below the instrument detection limits (∼4 μ/L) from a range of initial concentration (i.e., 5 μ/L for benzo(a)pyrene to 57 μ/L for Phenanthrene) within 144 hrs with 5 g/L of sodium persulfate at 20 deg. C, 30 deg. C and 40 deg. C. The data indicated that the persulfate oxidation was effective in degrading the PAHs and that external heat and iron catalysts might not be needed for the degradation of PAHs.The Fe(II)-EDTA catalyzed persulfate also effectively degraded PAHs in the study. In addition, the data on the variation of persulfate concentrations during the experiments indicated that Fe(II)-EDTA accelerated the consumption of persulfate ions.The obtained degradation data cannot be used to evaluate the influence of temperature and Fe(II) levels on the PAH degradation because the PAHs under each of the tested conditions were degraded to below the instrument detection limit within the first sampling point. However, these experiments have

  2. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    Science.gov (United States)

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  3. Inhibition of the Fe(III)-catalyzed dopamine oxidation by ATP and its relevance to oxidative stress in Parkinson's disease.

    Science.gov (United States)

    Jiang, Dianlu; Shi, Shuyun; Zhang, Lin; Liu, Lin; Ding, Bingrong; Zhao, Bingqing; Yagnik, Gargey; Zhou, Feimeng

    2013-09-18

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic cells, which implicates a role of dopamine (DA) in the etiology of PD. A possible DA degradation pathway is the Fe(III)-catalyzed oxidation of DA by oxygen, which produces neuronal toxins as side products. We investigated how ATP, an abundant and ubiquitous molecule in cellular milieu, affects the catalytic oxidation reaction of dopamine. For the first time, a unique, highly stable DA-Fe(III)-ATP ternary complex was formed and characterized in vitro. ATP as a ligand shifts the catecholate-Fe(III) ligand metal charge transfer (LMCT) band to a longer wavelength and the redox potentials of both DA and the Fe(III) center in the ternary complex. Remarkably, the additional ligation by ATP was found to significantly reverse the catalytic effect of the Fe(III) center on the DA oxidation. The reversal is attributed to the full occupation of the Fe(III) coordination sites by ATP and DA, which blocks O2 from accessing the Fe(III) center and its further reaction with DA. The biological relevance of this complex is strongly implicated by the identification of the ternary complex in the substantia nigra of rat brain and its attenuation of cytotoxicity of the Fe(III)-DA complex. Since ATP deficiency accompanies PD and neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) induced PD, deficiency of ATP and the resultant impairment toward the inhibition of the Fe(III)-catalyzed DA oxidation may contribute to the pathogenesis of PD. Our finding provides new insight into the pathways of DA oxidation and its relationship with synaptic activity.

  4. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    Science.gov (United States)

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral p

  5. Rh(III)-catalyzed oxidative olefination of N-(1-naphthyl)sulfonamides using activated and unactivated alkenes.

    Science.gov (United States)

    Li, Xuting; Gong, Xue; Zhao, Miao; Song, Guoyong; Deng, Jian; Li, Xingwei

    2011-11-04

    Rhodium(III)-catalyzed oxidative olefination of N-(1-naphthyl)sulfonamides has been achieved at the peri position. Three categories of olefins have been successfully applied. Activated olefins reacted to afford five-membered azacycles as a result of oxidative olefination-hydroamination. Unactivated olefins reacted to give the olefination product. 2-fold oxidative C-C and C-N coupling was achieved for allylbenzenes. © 2011 American Chemical Society

  6. Mechanistic investigation of the gold-catalyzed aerobic oxidation of aldehydes: added insight from Hammett studies and isotopic labelling experiments

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The gold-catalyzed aerobic oxidation of aldehydes proceeds through development of a partial negative charge and has a significant kinetic isotope effect (k(H)/k(D) = 2.8-2.9), which illustrates that activation of the C-H bond takes place in the rate-determining step.......The gold-catalyzed aerobic oxidation of aldehydes proceeds through development of a partial negative charge and has a significant kinetic isotope effect (k(H)/k(D) = 2.8-2.9), which illustrates that activation of the C-H bond takes place in the rate-determining step....

  7. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments

    Science.gov (United States)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.

    2011-12-01

    Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number

  8. Visible-light photoredox catalyzed synthesis of pyrroloisoquinolines via organocatalytic oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade with Rose Bengal

    Directory of Open Access Journals (Sweden)

    Carlos Vila

    2014-05-01

    Full Text Available Pyrrolo[2,1-a]isoquinoline alkaloids have been prepared via a visible light photoredox catalyzed oxidation/[3 + 2] cycloaddition/oxidative aromatization cascade using Rose Bengal as an organo-photocatalyst. A variety of pyrroloisoquinolines have been obtained in good yields under mild and metal-free reaction conditions.

  9. The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification.

    Science.gov (United States)

    Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel

    2017-12-01

    The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Oxidative Esterification of Aldehydes with Urea Hydrogen Peroxide Catalyzed by Aluminum Chloride Hexahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sin-Ae; Kim, Yoon Mi; Lee, Jong Chan [Chung-Ang University, Seoul (Korea, Republic of)

    2016-08-15

    We have developed a new, environmentally benign and highly efficient oxidative preparation of methyl esters by the reaction of various aldehydes with UHP in methanol catalyzed by readily accessible aluminum(III) chloride hexahydrate. This new greener and cost effective direct esterification method can serve as a useful alternative to existing protocols. Esters are some of the most important functional groups in organic chemistry and have been found in the sub-structure of a variety of natural products, industrial chemicals, and pharmaceuticals. Numerous methods have been reported for the preparation of various esters. In particular, this method gives low yields for both aldehydes containing electron donating substituents in aromatic rings and heterocyclic aldehydes. Therefore, development of a more general, efficient, and greener protocol for the esterification of aldehydes with readily available catalyst is still desirable.

  11. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    Science.gov (United States)

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. © 2014 Institute of Food Technologists®

  12. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    Science.gov (United States)

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  13. Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.

    Science.gov (United States)

    Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen

    2016-02-04

    A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.

  14. In situ spectroscopic investigation of the cobalt-catalyzed oxidation of lignin model compounds in ionic liquids

    NARCIS (Netherlands)

    Zakzeski, J.|info:eu-repo/dai/nl/326160256; Bruijnincx, P.C.A.|info:eu-repo/dai/nl/33799529X; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    The cobalt-catalyzed oxidation of lignin and lignin model compounds using molecular oxygen in ionic liquids proceeds readily under mild conditions, but mechanistic insight and evidence for the species involved in the catalytic cycle is lacking. In this study, a spectroscopic investigation of the

  15. Importance of Vanadium-Catalyzed Oxidation of SO2to SO3in Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Colom, Juan M.; Alzueta, María U.; Christensen, Jakob Munkholt

    2016-01-01

    Low-speed marine diesel engines are mostly operated on heavy fuel oils, which have a high content of sulfur andash, including trace amounts of vanadium, nickel, and aluminum. In particular, vanadium oxides could catalyze in-cylinderoxidation of SO2 to SO3, promoting the formation of sulfuric acid...

  16. Pd-Catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines.

    Science.gov (United States)

    Gao, Yang; Huang, Yubing; Wu, Wanqing; Huang, Kefan; Jiang, Huanfeng

    2014-08-07

    An efficient Pd-catalyzed oxidative cyclization reaction for the synthesis of functionalized indolines by direct C-H activation of acetanilide has been developed. The norbornylpalladium species formed via direct ortho C-H activation of acetanilides is supposed to be a key intermediate in this transformation.

  17. Formation of brominated phenolic contaminants from natural manganese oxides-catalyzed oxidation of phenol in the presence of Br(.).

    Science.gov (United States)

    Lin, Kunde; Song, Lianghui; Zhou, Shiyang; Chen, Da; Gan, Jay

    2016-07-01

    Brominated phenolic compounds (BPCs) are a class of persistent and potentially toxic compounds ubiquitously present in the aquatic environment. However, the origin of BPCs is not clearly understood. In this study, we investigated the formation of BPCs from natural manganese oxides (MnOx)-catalyzed oxidation of phenol in the presence of Br(-). Experiments at ambient temperature clearly demonstrated that BPCs were readily produced via the oxidation of phenol by MnOx in the presence of Br(-). In the reaction of MnOx sand with 0.213 μmol/L phenol and 0.34 mmol/L Br(-) for 10 min, more than 60% of phenol and 56% of Br(-) were consumed to form BPCs. The yield of BPCs increased with increasing concentrations of phenol and Br(-). Overall, a total of 14 BPCs including simple bromophenols (4-bromophenol, 2,4-dibromophenol, and 2,4,6-tribromophenol), hydroxylated polybrominated diphenyl ethers (OH-PBDEs), and hydroxylated polybrominated biphenyls (OH-PBBs) were identified. The production of BPCs increased with increasing concentrations of Br(-) or phenol. It was deduced that Br(-) was first oxidized to form active bromine, leading to the subsequent bromination of phenol to form bromophenols. The further oxidation of bromophenols by MnOx resulted in the formation of OH-PBDEs and OH-PBBs. In view of the ubiquity of phenol, Br(-), and MnOx in the environment, MnOx-mediated oxidation may play a role on the natural production of BPCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine.

    Science.gov (United States)

    Zhu, Linli; Xu, Hui

    2014-09-01

    Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    Abstract The central thrust of this integrated experimental and computational research program was to obtain an atomistic-level understanding of the structural and dynamic factors underlying the design of catalysts for water oxidation and selective reductant-free O2-based transformations. The focus was on oxidatively robust polyoxometalate (POM) complexes in which a catalytic active site interacts with proximal metal centers in a synergistic manner. Thirty five publications in high-impact journals arose from this grant. I. Developing an oxidatively and hydrolytically stable and fast water oxidation catalyst (WOC), a central need in the production of green fuels using water as a reductant, has proven particularly challenging. During this grant period we have designed and investigated several carbon-free, molecular (homogenous), oxidatively and hydrolytically stable WOCs, including the Rb8K2[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]·25H2O (1) and [Co4(H2O)2(α-PW9O34)2]10- (2). Although complex 1 is fast, oxidatively and hydrolytically stable WOC, Ru is neither abundant nor inexpensive. Therefore, development of a stable and fast carbon-free homogenous WOC, based on earth-abundant elements became our highest priority. In 2010, we reported the first such catalyst, complex 2. This complex is substantially faster than 1 and stable under homogeneous conditions. Recently, we have extended our efforts and reported a V2-analog of the complex 2, i.e. [Co4(H2O)2(α-VW9O34)2]10- (3), which shows an even greater stability and reactivity. We succeeded in: (a) immobilizing catalysts 1 and 2 on the surface of various electrodes, and (b) elucidating the mechanism of O2 formation and release from complex 1, as well as the Mn4O4L6 “cubane” cluster. We have shown that the direct O-O bond formation is the most likely pathway for O2 formation during water oxidation catalyzed by 1. II. Oxo transfer catalysts that contain two proximal and synergistically interacting redox active metal

  20. Analysis of Oxidative Stress in Chronic Exposure to Petroleum Hydrocarbons in Karnataka, India

    Directory of Open Access Journals (Sweden)

    Suttur Malini

    2017-03-01

    Full Text Available Background:Several studies have reported the toxicological implications of inhalation of petroleum hydrocarbon fumes in animal models. But, there is certainly little or no documentation of the exposure to petroleum hydrocarbon fuel on oxidative stress levels in humans, unlike the pulmonary physiology. The present study was carried out to evaluate the effects of constituents of the hydrocarbon fuels on oxidative stress levels of the petrol fillers and tanker drivers. Methods: The study involved 165 males divided into three groups were the petrol fillers, tanker drivers and the controls. Case control data set was established wherein the control subjects are not exposed to hydrocarbon fuels with similar age. Serum samples of the subjects were collected and subjected for various biochemical assays. The enzymatic antioxidants such as superoxide dismutase, malondialdehyde a byproduct of lipid peroxidation and total antioxidant capacity of the individuals along with non-enzymatic antioxidant Vitamin A was estimated. Results: The results showed a no significant differences for age, body mass index, superoxide dismutase and levels of Malondialdehyde and total antioxidant capacity. But on the other hand, there is significant changes observed for total antioxidant capacity and vitamin A when exposed group is compared with control subject. Conclusion: It is evidential from the present study that prolonged exposure to petroleum hydrocarbon fumes leads to an increase in their oxidative stress in turn resulting broad spectrum of diseases. Hence, there is a raised need for public awareness about the health hazards in order to enable petrol attendants.

  1. Indium-Catalyzed Reductive Dithioacetalization of Carboxylic Acids with Dithiols: Scope, Limitations, and Application to Oxidative Desulfurization.

    Science.gov (United States)

    Nishino, Kota; Minato, Kohei; Miyazaki, Takahiro; Ogiwara, Yohei; Sakai, Norio

    2017-04-07

    In this study an InI 3 -TMDS (1,1,3,3-tetramethyldisiloxane) reducing system effectively catalyzed the reductive dithioacetalization of a variety of aromatic and aliphatic carboxylic acids with 1,2-ethanedithiol or 1,3-propanedithiol leading to the one-pot preparation of either 1,3-dithiolane derivatives or a 1,3-dithiane derivative. Also, the intact indium catalyst continuously catalyzed the subsequent oxidative desulfurization of an in situ formed 1,3-dithiolane derivative, which led to the preparation of the corresponding aldehydes.

  2. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    Science.gov (United States)

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  3. Upgrading of syngas hydrotreated fractionated oxidized bio-oil to transportation grade hydrocarbons

    International Nuclear Information System (INIS)

    Luo, Yan; Hassan, El Barbary; Guda, Vamshi; Wijayapala, Rangana; Steele, Philip H.

    2016-01-01

    Highlights: • Hydrotreating of fractionated oxidized bio-oil with syngas was feasible. • Hydrocarbon properties were similar with all syngas H_2/CO molar ratios except viscosity. • Syngas with H_2/CO molar ratio of (4:6) produced the highest hydrocarbon yield. • The produced hydrocarbons were in the range of gasoline, jet fuel and diesel boiling points. - Abstract: Fast pyrolysis bio-oils have the potential to replace a part of transportation fuels obtained from fossil. Bio-oil can be successfully upgraded into stable hydrocarbons (gasoline, jet fuel and diesel) through a two-stage hydrodeoxygenation process. Consumption large amount of expensive hydrogen during this process is the major hurdle for commercialization of this technology. Applying syngas in the hydrotreating step can significantly reduce the cost of the whole process and make it competitive. In this study, four different models of syngas with different H_2 concentrations (H_2/CO molar ratios = 2:8, 4:6, 6:4 and 8:2) were used for the 1st-stage hydrotreating step of oxidized fractionated bio-oil (OFB). The 2nd-stage hydrocracking step was performed on the produced organic liquid products (OLPs) by using pure H_2 gas. The effect of syngas H_2 concentrations on the yields and properties of OLPs and the 2nd-stage hydrocarbons (HCs) was investigated. Physical and chemical properties of the 2nd-stage hydrocarbons were similar regardless syngas H_2 content, with the exception of the viscosity. Syngas with H_2/CO molar ratio of 4:6 gave significantly highest HCs yield (24.8 wt.%) based on the OFB. Simulated distillation analysis proved that all 2nd-stage hydrocarbons were mixture from a wide range boiling point fuels. These results also indicated that the successful 1st-stage syngas hydrotreating step was having the potential to produce different hydrocarbons.

  4. Inducible nitric oxide synthase catalyzes ethanol oxidation to α-hydroxyethyl radical and acetaldehyde

    International Nuclear Information System (INIS)

    Porasuphatana, Supatra; Weaver, John; Rosen, Gerald M.

    2006-01-01

    The physiologic function of nitric oxide synthases, independent of the isozyme, is well established, metabolizing L-arginine to L-citrulline and nitric oxide (NO). This enzyme can also transfer electrons to O 2 , affording superoxide (O 2 · - ) and hydrogen peroxide (H 2 O 2 ). We have demonstrated that NOS1, in the presence of L-arginine, can biotransform ethanol (EtOH) to α-hydroxyethyl radical (CH 3 ·CHOH). We now report that a competent NOS2 with L-arginine can, like NOS1, oxidize EtOH to CH 3 ·CHOH. Once this free radical is formed, it is metabolized to acetaldehyde as shown by LC-ESI-MS/MS and HPLC analysis. These observations suggest that NOS2 can behave similarly to cytochrome P-450 in the catalysis of acetaldehyde formation from ethanol via the generation of α-hydroxyethyl radical when L-arginine is present

  5. Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides.

    Science.gov (United States)

    Sun, Yubing; Yang, Shubin; Zhao, Guixia; Wang, Qi; Wang, Xiangke

    2013-11-01

    Graphene has attracted increasing attention in multidisciplinary studies because of its unique physical and chemical properties. Herein, the adsorption of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene (NAP), anthracene (ANT), and pyrene (PYR), on reduced graphene oxides (rGOs) and graphene oxides (GOs) as a function of pH, humic acid (HA), and temperature were elucidated by means of a batch technique. For comparison, nonpolar and nonporous graphite were also employed in this study. The increasing of pH from 2 to 11 did not influence the adsorption of PAHs on rGOs, whereas the suppressed adsorption of NAP on rGOs was observed both in the presence of HA and under high-temperature conditions. Adsorption isotherms of PAHs on rGOs were in accordance with the Polanyi-Dubinin-Ashtahhov (PDA) model, providing evidence that pore filling and flat surface adsorption were involved. The saturated adsorbed capacities (in mmol g(-1)) of rGOs for PAHs calculated from the PDA model significantly decreased in the order of NAP>PYR>ANT, which was comparable to the results of theoretical calculations. The pore-filling mechanism dominates the adsorption of NAP on rGOs, but the adsorption mechanisms of ANT and PYR on rGOs are flat surface adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nitrile-assisted oxidation over oxidative-annulation: Pd-catalyzed α,β-dehydrogenation of α-cinnamyl β-keto nitriles.

    Science.gov (United States)

    Nallagonda, Rajender; Reddy, Reddy Rajasekhar; Ghorai, Prasanta

    2017-09-13

    A palladium-catalyzed oxidation reaction is disclosed where the nitrile functionality on the substrate simply changes the course of the reaction. Our previous finding showed that using the Pd(ii)-catalyst in the presence of benzoquinone as an oxidant, 2-cinnamyl-1,3-dicarbonyls provides functionalized furans via oxidative cyclization. When a nitrile group is replaced with one of the carbonyl functionalities of the same substrate, the oxidative cyclization was completely suppressed; instead, the oxidation at the α,β-position occurred to provide α,β,γ,δ-diene containing β-keto nitriles.

  7. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo; Ould-Chikh, Samy; Anjum, Dalaver Hussain; Sun, Miao; Biausque, Gregory; Basset, Jean-Marie; Caps, Valerie

    2012-01-01

    evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7-13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1-2 nm) of a niobium-rich mixed oxide with a structure similar

  8. Microwave Catalytic Oxidation of Hydrocarbons in Aqueous Solutions

    National Research Council Canada - National Science Library

    Cha, Chang

    2003-01-01

    .... A sufficient amount of experimental work has been completed evaluating the performance of the microwave catalytic oxidation process and determining the effect of different operating parameters...

  9. Partial Oxidation of High-Boiling Hydrocarbon Mixtures in the Pilot Unit

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Lederer, J.; Nečesaný, F.; Poslední, W.; Tukač, V.; Veselý, Václav

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1701-1706 ISSN 0366-6352 Institutional support: RVO:67985858 Keywords : partial oxidation * high-boiling hydrocarbons * pilot plant Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 1.468, year: 2014

  10. Solution mining and heating by oxidation for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Stegemeier, George Leo

    2009-06-23

    A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

  11. An investigation of molybdenum and molybdenum oxide catalyzed hydrocarbon formation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tysoe, W.T.

    1995-09-01

    The document is divided into: experiments on model catalysts at high pressure, reaction studies on metallic Mo, surface chemistry experiments (metallic surfaces in ultrahigh vacuum; Mo(CO){sub 6} adsorption on alumina), and theoretical calculations.

  12. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    Science.gov (United States)

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  13. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    Science.gov (United States)

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Hydrous Ferric Oxides in Sediment Catalyze Formation of Reactive Oxygen Species during Sulfide Oxidation

    Directory of Open Access Journals (Sweden)

    Sarah A. Murphy

    2016-11-01

    Full Text Available Abstract: This article describes the formation of reactive oxygen species as a result of the oxidation of dissolved sulfide by Fe(III-containing sediments suspended in oxygenated seawater over the pH range 7.00 and 8.25. Sediment samples were obtained from across the coastal littoral zone in South Carolina, US, at locations from the beach edge to the forested edge of a Spartina dominated estuarine salt marsh and suspended in aerated seawater. Reactive oxygen species (superoxide and hydrogen peroxide production was initiated in sediment suspensions by the addition of sodium bisulfide. The subsequent loss of HS-, formation of Fe(II (as indicated by Ferrozine, and superoxide and hydrogen peroxide were monitored over time. The concentration of superoxide rose from the baseline and then persisted at an apparent steady state concentration of approximately 500 nanomolar at pH 8.25 and 200 nanomolar at pH 7.00 respectively until >97% hydrogen sulfide was consumed. Measured superoxide was used to predict hydrogen peroxide yield based on superoxide dismutation. Dismutation alone quantitatively predicted hydrogen peroxide formation at pH 8.25 but over predicted hydrogen peroxide formation at pH 7 by a factor of approximately 102. Experiments conducted with episodic spikes of added hydrogen peroxide indicated rapid hydrogen peroxide consumption could account for its apparent low instantaneous yield, presumably the result of its reaction with Fe(II species, polysulfides or bisulfite. All sediment samples were characterized for total Fe, Cu, Mn, Ni, Co and hydrous ferric oxide by acid extraction followed by mass spectrometric or spectroscopic characterization. Sediments with the highest loadings of hydrous ferric oxide were the only sediments that produced significant dissolved Fe(II species or ROS as a result of sulfide exposure.

  15. Nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst GaSbNiPOx (1:3:1.5:1 atomic ratios of the elements) was studied by comparing the rate of this reaction at 550/sup 0/C and 5Vertical Bar3< by vol propane/6Vertical Bar3< ammonia/18.6Vertical Bar3< oxygen/70.4Vertical Bar3< helium reactant mixture with that of isobutane ammoxidation to methacrylonitrile under the same conditions, at low (Vertical Bar3; 20Vertical Bar3<) conversions that prevent secondary oxidation of the products. Both the over-all hydrocarbon conversion rate and that of nitrile formation were higher for propane, suggesting that the reactions proceed via the respective carbanions (probably primary carbanions), rather than carbocations or uncharged radicals.

  16. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  17. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  18. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    Science.gov (United States)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  19. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    International Nuclear Information System (INIS)

    Huanosta-Gutiérrez, T.; Dantas, Renato F.; Ramírez-Zamora, R.M.; Esplugas, S.

    2012-01-01

    Highlights: ► We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. ► The copper slag was effective to remove organic pollutants (phenol) from water. ► During experimentation, Cu and Fe leaching were not higher than the acceptable levels. ► Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments promoted biodegradability increment of the contaminated water. ► The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H 2 O 2 (slag/H 2 O 2 ) and H 2 O 2 /UV (slag/H 2 O 2 /UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD 5 /TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  20. Rh(III) -Catalyzed C-H Olefination of Benzoic Acids under Mild Conditions using Oxygen as the Sole Oxidant.

    Science.gov (United States)

    Jiang, Quandi; Zhu, Changlei; Zhao, Huaiqing; Su, Weiping

    2016-02-04

    Phthalide skeletons have been synthesized for the first time through a Rh(III) -catalyzed C-H olefination of benzoic acids under mild conditions using oxygen as the sole oxidant. Aromatic acids bearing a variety of functional groups could react with diverse alkenes to afford the desired cyclized lactones or uncyclized alkenylarenes in moderate-to-excellent yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Regioselective C2 Oxidative Olefination of Indoles and Pyrroles through Cationic Rhodium(III)-Catalyzed C-H Bond Activation.

    Science.gov (United States)

    Li, Bin; Ma, Jianfeng; Xie, Weijia; Song, Haibin; Xu, Shansheng; Wang, Baiquan

    2013-09-02

    Be economic with your atoms! An efficient Rh-catalyzed oxidative olefination of indoles and pyrroles with broad substrate scope and tolerance is reported. The catalytic reaction proceeds with excellent regio- and stereoselectivity. The directing group N,N-dimethylcarbamoyl was crucial for the reaction and could be removed easily. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Non-oxidative conversion of methane into higher hydrocarbons over ...

    Indian Academy of Sciences (India)

    SOURABH MISHRA

    2017-09-27

    Sep 27, 2017 ... ... in the Design and Development of Catalysts and their Applications ... of methane (natural gas) into transportable chemicals ... molybdenum (Mo) catalyst under non-oxidative condi- ... Micromeritics ASAP 2010 apparatus at liquid nitrogen tem- ... fixed-bed tubular reactor (500 mm length & 15 mm ID) at.

  3. Non-oxidative conversion of methane into higher hydrocarbons over ...

    Indian Academy of Sciences (India)

    SOURABH MISHRA

    2017-09-27

    Sep 27, 2017 ... (Syn-gas, CO+H2) formation via steam reforming, dry reforming or partial oxidation of methane ... Micromeritics ASAP 2010 apparatus at liquid nitrogen tem- perature. Nitrogen (N2) was the adsorbate ... some runs were carried out in triplicate and mass balance for all the runs was measured. Runs with a ...

  4. Heterogeneous inhibition of the liquid phase oxidation of hydrocarbons by molybdenum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tavadyan, L.A.; Karapetyan, A.P.; Madatovyan, V.M.

    1988-05-01

    The heterogeneous action of molybdenum compounds: MoB, MoSe/sub 2/, MoSi/sub 2/, Mo/sub 2/C, MoO/sub 3/, Mo on the oxidation of n-decane, ethylbenzene, and nonene-1 has been investigated. A parameter representing the inhibiting effect of the heterogeneous catalyst was calculated theoretically. It was found that NoB, MoSe/sub 2/, and MoSi/sub 2/ inhibited the oxidation of n-decane at 408 K while the remaining heterogeneous contacts catalyzed it. A critical phenomenon was detected in the inhibition by MoSi/sub 2/. All the molybdenum compounds investigated inhibited the oxidation of ethylbenzene at 393 K owing to the formation of phenol by catalytic decomposition of the hydroperoxide. The liquid phase oxidation autoinhibited by phenol is described theoretically.

  5. Low temperature oxidation of hydrocarbons using an electrochemical reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide

    conversion was a complex function of multiple variables: the microstructure of the backbone, the polarization resistance of the electrodes, both at OCV and under polarization, the electrical and morphological properties of the infiltrated material and the specific reaction conditions like the propene......This study investigated the use of a ceramic porous electrochemical reactor for the deep oxidation of propene. Two electrode composites, La0.85Sr0.15MnO3±d/Ce0.9Gd0.1O1.95 (LSM/CGO) and La0.85Sr0.15FeMnO3/Ce0.9Gd0.1O1.95 (LSF/CGO), were produced in a 5 single cells stacked configuration and used...... prolonged polarization was able to partially counteract the instability of the infiltrated Ce0.9Gd0.1O1.95. This project demonstrated the possibility to enhance the oxidation of propene by polarization in a porous ceramic reactor. The infiltration of different active materials helped to increase...

  6. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Huanosta-Gutierrez, T. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Dantas, Renato F., E-mail: falcao@angel.qui.ub.es [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Ramirez-Zamora, R.M. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Esplugas, S. [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. Black-Right-Pointing-Pointer The copper slag was effective to remove organic pollutants (phenol) from water. Black-Right-Pointing-Pointer During experimentation, Cu and Fe leaching were not higher than the acceptable levels. Black-Right-Pointing-Pointer Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments promoted biodegradability increment of the contaminated water. Black-Right-Pointing-Pointer The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H{sub 2}O{sub 2} (slag/H{sub 2}O{sub 2}) and H{sub 2}O{sub 2}/UV (slag/H{sub 2}O{sub 2}/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD{sub 5}/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  7. Production of reduction gases: partial oxidation of hydrocarbons and coal

    Energy Technology Data Exchange (ETDEWEB)

    Tippmer, K

    1976-04-01

    After some general remarks on reduction gas and quality demands, the Texaco process of partial oxidation with scrubbing is dealt with. A comparison of current iron-sponge techniques shows that a heat demand below 3 M kcal/t Fe should be envisaged, which means that heavy fuel oil or coal should be used. The special features of oxygen generation, coal processing, demands made on fuel oil, gasoline, and natural gas, gas generation, soot recovery, hydrogen sulphide-carbon dioxide scrubbing, system Benfield HP process, recycle-carbon dioxide scrubbing, auxiliary steam system, gas preheating, recycle gas cooling and compression, process data and heat balances for natural gas (one-heat system) and heating fuel oil or naphtha (two-heat system) are given.

  8. Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde

    Directory of Open Access Journals (Sweden)

    Ioannis Metaxas

    2017-12-01

    Full Text Available A simple method for the synthesis of formate esters and formamides is presented based on the Au/TiO2-catalyzed aerobic oxidative coupling between alcohols or amines and formaldehyde. The suitable form of formaldehyde is paraformaldehyde, as cyclic trimeric 1,3,5-trioxane is inactive. The reaction proceeds via the formation of an intermediate hemiacetal or hemiaminal, respectively, followed by the Au nanoparticle-catalyzed aerobic oxidation of the intermediate. Typically, the oxidative coupling between formaldehyde (2 equiv and amines occurs quantitatively at room temperature within 4 h, and there is no need to add a base as in analogous coupling reactions. The oxidative coupling between formaldehyde (typically 3 equiv and alcohols is unprecedented and occurs more slowly, yet in good to excellent yields and selectivity. Minor side-products (2–12% from the acetalization of formaldehyde by the alcohol are also formed. The catalyst is recyclable and can be reused after a simple filtration in five consecutive runs with a small loss of activity.

  9. Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation

    Science.gov (United States)

    Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong

    2003-05-01

    Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.

  10. N-oxide as a traceless oxidizing directing group: mild rhodium(III)-catalyzed C-H olefination for the synthesis of ortho-alkenylated tertiary anilines.

    Science.gov (United States)

    Huang, Xiaolei; Huang, Jingsheng; Du, Chenglong; Zhang, Xingyi; Song, Feijie; You, Jingsong

    2013-12-02

    Double role: A traceless directing group also acts as an internal oxidant in a novel Rh(III) -catalyzed protocol developed for the synthesis of ortho-alkenylated tertiary anilines. A five-membered cyclometalated Rh(III) complex is proposed as a plausible intermediate and confirmed by X-ray crystallographic analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Interaction of oxides of nitrogen and aromatic hydrocarbons under simulated atmospheric conditions

    International Nuclear Information System (INIS)

    Obrien, R.J.; Green, P.J.; Doty, R.A.; Vanderzanden, J.W.; Easton, R.R.; Irwin, R.P.

    1979-01-01

    The reactions of nitrogen oxides with aromatic hydrocarbons under simulated atmospheric conditions are investigated. Gaseous reaction products formed when toluene is irradiated under simulated atmospheric conditions in the presence of nitrogen oxides were analyzed by gas chromatography. Reaction products detected include acetylene, water, acetaldehyde, acetone, toluene, benzaldehyde, ortho-, meta- and para-cresol, benzyl nitrate and meta- and para-nitrotoluene. Reaction mechanisms yielding the various products are illustrated. The assumption that all the nitrogen oxides observed to be lost from the reaction products can be accounted for by nitric acid formation in the absence of ozone formation is verified by a model in which the hydroxyl radical is assumed to be the only means of removing toluene. Under conditions in which ozone is formed, nitrogen oxide loss is accounted for by ozone formation in addition to nitric acid formation

  12. Mixed conducting materials for partial oxidation of hydrocarbons

    Directory of Open Access Journals (Sweden)

    Frade, J. R.

    2004-06-01

    Full Text Available Thermodynamic calculations with additional conditions for the conservation of carbon and hydrogen were used to predict the gas composition obtained by partial oxidation of methane as a function of oxygen partial pressure and temperature; this was used to assess the stability and oxygen permeability requirements of mixed conducting membrane materials proposed for this purpose. A re-examination of known mixed conductors shows that most materials with highest permeability still fail to fulfil the requirements of stability under reducing conditions. Other materials possess sufficient stability but their oxygen permeability is insufficient. Different approaches were thus used to attempt to overcome those limitations, including changes in composition in the A and B site positions of ABO3 perovskites, and tests of materials with different structure types. Promising results were obtained mainly for some materials with perovskite or related K2NiF4-type structures. Limited stability of the most promising materials shows that one should rely mainly on kinetic limitations in the permeate side to protect the mixed conductor from severe reducing conditions.

    Se han usado cálculos termodinámicos con condiciones adicionales para la conservación del carbono e hidrógeno para predecir la composición del gas obtenido mediante la oxidación parcial del metano en función de la presión parcial de oxígeno y de la temperatura; esto se ha usado para asegurar los requerimientos de estabilidad y permeabilidad al oxígeno de los materiales conductores mixtos empleados como membrana para este propósito. Un nuevo exámen de los conductores mixtos conocidos muestra que la mayoría de los materiales con la mayor permeabilidad todavía fallan en el cumplimiento de los requerimientos de estabilidad bajo condiciones reductoras. Otros materiales poseen suficiente estabilidad, pero su permeabilidad al oxígeno es insuficiente. Por ello se han empleado diferentes

  13. Oxidation reactions catalyzed by cobalt ions in a photocatalytic system based on solutions of lecit hin vesicles

    International Nuclear Information System (INIS)

    Tsvetkov, I.M.; Lymar, S.V.; Parmon, V.N.; Zamaraev, V.I.

    1986-01-01

    The features of the light-induced transfer of electrons through the membranes of lecithin vesicles with an electron carrier, viz., cetyl viologen, incorporated in the lipid bilayer have been studied with the use of the water-soluble trisbipyridyl complex of ruthenium (II) as a photocatalyst. It has been shown that additions of cobalt ions to the systems just indicated are capable of catalyzing the oxidation processes of organic compounds (most probably, of lecithin), the role of the oxidizing agent being played by Ru(bpy) 3 3+ , which forms upon the transfer of an electron to the acceptor Fe(CN) 6 3- through the lipid membrane The possibility of the utilization of the photocatalytic oxidation of water to oxygen under the action of visible light has been discussed

  14. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  15. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  16. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yuefei [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Kong, Deyang [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042 (China); Lu, Junhe, E-mail: jhlu@njau.edu.cn [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-08-05

    Highlights: • Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A. • Phenolic moiety was the reactive site for sulfate radical attack. • Pathways include β-scission, oxidation, debromination and coupling reactions. • Brominated disinfection by-products were found during TBBPA degradation. • Humic acid inhibited TBBPA degradation but promoted DBPs formation. - Abstract: Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO{sub 4}{sup ·−}) with TBBPA was determined to be 5.27 × 10{sup 10} M{sup −1} s{sup −1}. Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO{sub 4}{sup ·−}. Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6–10 h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health.

  17. Four-Wire Impedance Spectroscopy on Planar Zeolite/Chromium Oxide Based Hydrocarbon Gas Sensors

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2007-11-01

    Full Text Available Impedometric zeolite hydrocarbon sensors with a chromium oxide intermediatelayer show a very promising behavior with respect to sensitivity and selectivity. Theunderlying physico-chemical mechanism is under investigation at the moment. In order toverify that the effect occurs at the electrode and that zeolite bulk properties remain almostunaffected by hydrocarbons, a special planar setup was designed, which is very close to realsensor devices. It allows for conducting four-wire impedance spectroscopy as well as two-wire impedance spectroscopy. Using this setup, it could be clearly demonstrated that thesensing effect can be ascribed to an electrode impedance. Furthermore, by combining two-and four-wire impedance measurements at only one single frequency, the interference of thevolume impedance can be suppressed and an easy signal evaluation is possible, withouttaking impedance data at different frequencies.

  18. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    Science.gov (United States)

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  19. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: feasibility and comparison with common oxidants.

    Science.gov (United States)

    Yen, Chia-Hsien; Chen, Ku-Fan; Kao, Chih-Ming; Liang, Shu-Hao; Chen, Ting-Yu

    2011-02-28

    In this study, batch experiments were conducted to evaluate the feasibility of petroleum-hydrocarbon contaminated soil remediation using persulfate oxidation. Various controlling factors including different persulfate and ferrous ion concentrations, different oxidants (persulfate, hydrogen peroxide, and permanganate), and different contaminants (diesel and fuel oil) were considered. Results show that persulfate oxidation is capable of treating diesel and fuel oil contaminated soil. Higher persulfate and ferrous ion concentrations resulted in higher diesel degrading rates within the applied persulfate/ferrous ion molar ratios. A two-stage diesel degradation was observed in the batch experiments. In addition, treatment of diesel-contaminated soil using in situ metal mineral activation under ambient temperature (e.g., 25°C) may be a feasible option for site remediation. Results also reveal that persulfate anions could persist in the system for more than five months. Thus, sequential injections of ferrous ion to generate sulfate free radicals might be a feasible way to enhance contaminant oxidation. Diesel oxidation efficiency and rates by the three oxidants followed the sequence of hydrogen peroxide>permanganate>persulfate in the limited timeframes. Results of this study indicate that the application of persulfate oxidation is a feasible method to treat soil contaminated by diesel and fuel oil. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Synthesis of extended polycyclic aromatic hydrocarbons by oxidative tandem spirocyclization and 1,2-aryl migration

    Science.gov (United States)

    Zhang, Xuan; Xu, Zhanqiang; Si, Weili; Oniwa, Kazuaki; Bao, Ming; Yamamoto, Yoshinori; Jin, Tienan

    2017-04-01

    The extended polycyclic aromatic hydrocarbons (PAHs) have received significant interdisciplinary attention due to their semiconducting applications in diverse organic electronics as well as intriguing structural interests of well-defined graphene segments. Herein, a highly efficient oxidative spirocyclization and 1,2-aryl migration tandem synthetic method for the construction of extended polyaromatic hydrocarbons (PAHs) has been developed. The CuCl-catalyst/PhCO3 tBu or DDQ oxidation system in the presence of trifluoroacetic acid enables the selective single-electron oxidation to take place preferentially at the more electron-rich alkene moiety of o-biphenylyl-substituted methylenefluorenes, giving rise to the subsequent tandem process. A variety of structurally diverse extended PAHs including functionalized dibenzo[g,p]chrysenes, benzo[f]naphtho[1,2-s]picene, hexabenzo[a,c,fg,j,l,op]tetracene, tetrabenzo[a,c,f,m]phenanthro[9,10-k]tetraphene, tetrabenzo[a,c,f,k]phenanthro[9,10-m]tetraphene, tetrabenzo[a,c,f,o]phenanthro[9,10-m]picene and S-type helicene have been readily synthesized.

  1. Low temperature removal of surface oxides and hydrocarbons from Ge(100) using atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M., E-mail: m.walker@warwick.ac.uk; Tedder, M.S.; Palmer, J.D.; Mudd, J.J.; McConville, C.F.

    2016-08-30

    Highlights: • Preparation of a clean, well-ordered Ge(100) surface with atomic hydrogen. • Surface oxide layers removed by AHC at room temperature, but not hydrocarbons. • Increasing surface temperature during AHC dramatically improves efficiency. • AHC with the surface heated to 250 °C led to a near complete removal of contaminants. • (2 × 1) LEED pattern from IBA and AHC indicates asymmetric dimer reconstruction. - Abstract: Germanium is a group IV semiconductor with many current and potential applications in the modern semiconductor industry. Key to expanding the use of Ge is a reliable method for the removal of surface contamination, including oxides which are naturally formed during the exposure of Ge thin films to atmospheric conditions. A process for achieving this task at lower temperatures would be highly advantageous, where the underlying device architecture will not diffuse through the Ge film while also avoiding electronic damage induced by ion irradiation. Atomic hydrogen cleaning (AHC) offers a low-temperature, damage-free alternative to the common ion bombardment and annealing (IBA) technique which is widely employed. In this work, we demonstrate with X-ray photoelectron spectroscopy (XPS) that the AHC method is effective in removing surface oxides and hydrocarbons, yielding an almost completely clean surface when the AHC is conducted at a temperature of 250 °C. We compare the post-AHC cleanliness and (2 × 1) low energy electron diffraction (LEED) pattern to that obtained via IBA, where the sample is annealed at 600 °C. We also demonstrate that the combination of a sample temperature of 250 °C and atomic H dosing is required to clean the surface. Lower temperatures prove less effective in removal of the oxide layer and hydrocarbons, whilst annealing in ultra-high vacuum conditions only removes weakly bound hydrocarbons. Finally, we examine the subsequent H-termination of an IBA-cleaned sample using XPS, LEED and ultraviolet

  2. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes

    International Nuclear Information System (INIS)

    Bokoch, Michael P.; Devadoss, Anando; Palencsar, Mariela S.; Burgess, James D.

    2004-01-01

    Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 μM. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 μM for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented

  3. Amidines for versatile ruthenium(II)-catalyzed oxidative C-H activations with internal alkynes and acrylates.

    Science.gov (United States)

    Li, Jie; John, Michael; Ackermann, Lutz

    2014-04-25

    Cationic ruthenium complexes derived from KPF6 or AgOAc enabled efficient oxidative CH functionalizations on aryl and heteroaryl amidines. Thus, oxidative annulations of diversely decorated internal alkynes provided expedient access to 1-aminoisoquinolines, while catalyzed C-H activations with substituted acrylates gave rise to structurally novel 1-iminoisoindolines. The powerful ruthenium(II) catalysts displayed a remarkably high site-, regio- and, chemoselectivity. Therefore, the catalytic system proved tolerant of a variety of important electrophilic functional groups. Detailed mechanistic studies provided strong support for the cationic ruthenium(II) catalysts to operate by a facile, reversible C-H activation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gold nanoparticle catalyzed oxidation of alcohols - From biomass to commodity chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Christensen, Claus H.

    2007-01-01

    and glycerol are rich in alcohol functionalities. Thus, a key step in utilizing these resources lies in the conversion of this functional group. Benign oxidations involving oxygen as the stoichiometric oxidant are important from both an environmental and economical perspective. Recently, it has become clear...... that supported gold nanoparticles are highly active catalysts for oxidizing alcohols and aldehydes using oxygen as the oxidant. This perspective will focus on the use of gold nanoparticles in the oxidation of renewables....

  5. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    Science.gov (United States)

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  6. Novel Oxidative Desulfurization of a Model Fuel with H2O2 Catalyzed by AlPMo12O40 under Phase Transfer Catalyst-Free Conditions

    OpenAIRE

    José da Silva, Márcio; Faria dos Santos, Lidiane

    2013-01-01

    A novel process was developed for oxidative desulfurization (ODS) in the absence of a phase transfer catalyst (PTC) using only Keggin heteropolyacids and their aluminum salts as catalysts. Reactions were performed in biphasic mixtures of isooctane/acetonitrile, with dibenzothiophene (DBT) as a model sulfur compound and hydrogen peroxide as the oxidant. Remarkably, only the AlPMo12O40-catalyzed reactions resulted in complete oxidation of DBT into DBT sulfone, which was totally extracted by ace...

  7. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  8. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

    Science.gov (United States)

    Tao, Zhimin; Raffel, Ryan A.; Souid, Abdul-Kader; Goodisman, Jerry

    2009-01-01

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 ± 0.7) ×104 M−1s−1 at 37°C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37°C and well above unity at 25°C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s−1 and 0.090 s−1 respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain. PMID:19348778

  9. 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines

    International Nuclear Information System (INIS)

    Lee, J.S.; Jacobsen, N.E.; Ortiz de Montellano, P.R.

    1988-01-01

    Rat liver microsomal cytochrome P-450 oxidizes the 4-methyl, 4-ethyl (DDEP), and 4-isopropyl derivatives of 3,5-bis(carbethoxy)-2,6-dimethyl-1,4,-dihydropyridine to mixtures of the corresponding 4-alkyl and 4-dealkyl pyridines. A fraction of the total microsomal enzyme is destroyed in the process. The 4-dealkyl to 4-alkyl pyridine metabolite ratio, the extent of cytochrome P-450 destruction, and the rate of spin-trapped radical accumulation are correlated in a linear inverse manner with the homolytic or heterolytic bond energies of the 4-alkyl groups of the 4-alkyl-1,4-dihydropyridines. No isotope effects are observed on the pyridine matabolite ratio, the destruction of cytochrome P-450, or the formation of ethyl radicals when [4- 2 H]DDEP is used instead of DDEP. N-Methyl- and N-ethyl-DDEP undergo N-dealkylation rather than aromatization but N-phenyl-DDEP is oxidized to a mixture of the 4-ethyl and 4-deethyl N-phenylpyridinium metabolites. In contrast to the absence of an isotope effect in the oxidation of DDEP, the 4-deethyl to 4-ethyl N-phenylpyridinium metabolite ratio increases 6-fold when N-phenyl[4- 2 H]DDEP is used. The results support the hypothesis that cytochrome P-450 catalyzes the oxidation of dihydropyridines to radical cations and show that the radical cations decay to nonradical products by multiple, substituent-dependent, mechanisms

  10. Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products

    Energy Technology Data Exchange (ETDEWEB)

    Achyuthan, Komandoor; Adams, Paul; Simmons, Blake; Singh, Anup

    2011-07-13

    Lignin composition (monolignol types of coniferyl, sinapyl or p-coumaryl alcohol) is causally related to biomass recalcitrance. We describe multiwavelength (220, 228, 240, 250, 260, 290, 295, 300, 310 or 320 nm) absorption spectroscopy of coniferyl alcohol and its laccase- or peroxidase-catalyzed products during real time kinetic, pseudo-kinetic and endpoint analyses, in optical turn on or turn off modes, under acidic or basic conditions. Reactions in microwell plates and 100 mu L volumes demonstrated assay miniaturization and high throughput screening capabilities. Bathochromic and hypsochromic shifts along with hyperchromicity or hypochromicity accompanied enzymatic oxidations by laccase or peroxidase. The limits of detection and quantitation of coniferyl alcohol averaged 2.4 and 7.1 mu M respectively, with linear trend lines over 3 to 4 orders of magnitude. Coniferyl alcohol oxidation was evident within 10 minutes or with 0.01 mu g/mL laccase and 2 minutes or 0.001 mu g/mL peroxidase. Detection limit improved to 1.0 mu M coniferyl alcohol with Km of 978.7 +/- 150.7 mu M when examined at 260 nm following 30 minutes oxidation with 1.0 mu g/mL laccase. Our assays utilized the intrinsic spectroscopic properties of coniferyl alcohol or its oxidation products for enabling detection, without requiring chemical synthesis or modification of the substrate or product(s). These studies facilitate lignin compositional analyses and augment pretreatment strategies for reducing biomass recalcitrance.

  11. Method of preparing and utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream

    Science.gov (United States)

    Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel

    2013-07-16

    The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.

  12. Optimization of operating conditions in oxidation of dibenzothiophene in the light hydrocarbon model

    Directory of Open Access Journals (Sweden)

    Akbari Azam

    2014-01-01

    Full Text Available In this research, the effects of process variables on the efficiency and mechanism of dibenzothiophene oxidation in formicacid/H2O2 system for deep desulfurization of a light hydrocarbon model were systematically studied by statistical modelling and optimization using response surface methodology and implementing the central composite design. A quadratic regression model was developed to predict the yield of sulfur oxidation as the model response. The model indicated that temperature was the most significant effective factor and suggested an important interaction between temperature and H2O2/sulfur ratio; at temperatures above 56°C, more excess oxidant was necessary because of instability of active peroxo intermediates and loss of H2O2 due to thermal decomposition. In contrast, the water hindrance effect of H2O2 aqueous solution in desulfurization progress was more significant at temperatures bellow 56°C. In the optimization process, minimizing H2O2/sulfur ratio and catalyst consumption for maximum yield of desulfurization was economically considerable. The optimal condition was obtained at temperature of 57 °C, H2O2/sulfur ratio of 2.5 mol/mol and catalyst dosage of 0.82 mL in 50 mL solution of DBT in n-hexane leading to a maximum oxidation yield of 95% after 1 hour reaction. Good agreement between predicted and experimental results (less than 4% error was found.

  13. Preparation of Biocolorant and Eco-Dyeing Derived from Polyphenols Based on Laccase-Catalyzed Oxidative Polymerization

    Directory of Open Access Journals (Sweden)

    Fubang Wang

    2018-02-01

    Full Text Available Natural products have been believed to be a promising source to obtain ecological dyes and pigments. Plant polyphenol is a kind of significant natural compound, and tea provides a rich source of polyphenols. In this study, biocolorant derived from phenolic compounds was generated based on laccase-catalyzed oxidative polymerization, and eco-dyeing of silk and wool fabrics with pigments derived from tea was investigated under the influence of pH variation. This work demonstrated that the dyeing property was better under acidic conditions compared to alkalinity, and fixation rate was the best when pH value was 3. Furthermore, breaking strength of dyed fabrics sharply reduced under the condition of pH 11. Eventually, the dyeing method was an eco-friendly process, which was based on bioconversion, and no mordant was added during the process of dyeing.

  14. Luminescent chemical waves in the Cu(II)-catalyzed oscillatory oxidation of SCN- ions with hydrogen peroxide.

    Science.gov (United States)

    Pekala, Katarzyna; Jurczakowski, Rafał; Lewera, Adam; Orlik, Marek

    2007-05-10

    The oscillatory oxidation of thiocyanate ions with hydrogen peroxide, catalyzed by Cu2+ ions in alkaline media, was so far observed as occurring simultaneously in the entire space of the batch or flow reactor. We performed this reaction for the first time in the thin-layer reactor and observed the spatiotemporal course of the above process, in the presence of luminol as the chemiluminescent indicator. A series of luminescent patterns periodically starting from the random reaction center and spreading throughout the entire solution layer was reported. For a batch-stirred system, the bursts of luminescence were found to correlate with the steep decreases of the oscillating Pt electrode potential. These novel results open possibilities for further experimental and theoretical investigations of those spatiotemporal patterns, including studies of the mechanism of this chemically complex process.

  15. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  16. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation

    KAUST Repository

    Quinet, Elodie

    2009-12-10

    The kinetics of CO oxidation, H2 oxidation and preferential CO oxidation (PrOx) over Au/Al2O3 catalysts have been investigated. The catalysts with the smallest particles (∼2 nm) are the most active for all three reactions. As previously observed, the presence of H2 greatly promotes CO oxidation, which becomes faster than CO-free H2 oxidation at low temperature. From these results and on the basis of previous works, we propose a complete PrOx mechanism. The reaction involves Au-OOH, Au-OH and Au-H intermediates, also involved in H2 oxidation, and benefits from the presence of low-coordination sites. © 2009 Elsevier Inc. All rights reserved.

  17. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation

    KAUST Repository

    Quinet, Elodie; Piccolo, Laurent; Morfin, Franck; Avenier, Priscilla; Diehl, Fabrice; Caps, Valerie; Rousset, Jean Luc

    2009-01-01

    The kinetics of CO oxidation, H2 oxidation and preferential CO oxidation (PrOx) over Au/Al2O3 catalysts have been investigated. The catalysts with the smallest particles (∼2 nm) are the most active for all three reactions. As previously observed, the presence of H2 greatly promotes CO oxidation, which becomes faster than CO-free H2 oxidation at low temperature. From these results and on the basis of previous works, we propose a complete PrOx mechanism. The reaction involves Au-OOH, Au-OH and Au-H intermediates, also involved in H2 oxidation, and benefits from the presence of low-coordination sites. © 2009 Elsevier Inc. All rights reserved.

  18. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems

    International Nuclear Information System (INIS)

    Zhan, Guoqiang; Zhang, Lixia; Tao, Yong; Wang, Yujian; Zhu, Xiaoyu; Li, Daping

    2014-01-01

    In this paper we report ammonia oxidation to nitrogen gas using microbes as biocatalyst on the anode, with polarized electrode (+600 mV vs. Ag/AgCl) as electron acceptor. In batch experiments, the maximal rate of ammonia-N oxidation by the mixed culture was ∼ 60 mg L −1 d −1 , and nitrogen gas was the main products in anode compartment. Cyclic voltammetry for testing the electroactivity of the anodic biofilms revealed that an oxidation peak appeared at +600 mV (vs. Ag/AgCl), whereas the electrode without biofilms didn’t appear oxidation peak, indicating that the bioanode had good electroactivities for ammonia oxidation. Microbial community analysis of 16S rRNA genes based on high throughput sequencing indicated that the combination of the dominant genera of Nitrosomonas, Comamonas and Paracocus could be important for the electron transfer from ammonia oxidation to anode

  19. Biomimetic oxidation of piperine and piplartine catalyzed by iron(III) and manganese(III) porphyrins.

    Science.gov (United States)

    Schaab, Estela Hanauer; Crotti, Antonio Eduardo Miller; Iamamoto, Yassuko; Kato, Massuo Jorge; Lotufo, Letícia Veras Costa; Lopes, Norberto Peporine

    2010-01-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimetize various reactions of cytochrome P450 enzymes systems in the oxidation of drugs and natural products. The oxidation of piperine and piplartine by iodosylbenzene using iron(III) and manganese(III) porphyrins yielded mono- and dihydroxylated products, respectively. Piplartine showed to be a more reactive substrate towards the catalysts tested. The structures of the oxidation products were proposed based on electrospray ionization tandem mass spectrometry.

  20. Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to β-Azido Alcohols.

    Science.gov (United States)

    Sun, Xiang; Li, Xinyao; Song, Song; Zhu, Yuchao; Liang, Yu-Feng; Jiao, Ning

    2015-05-13

    An efficient Mn-catalyzed aerobic oxidative hydroxyazidation of olefins for synthesis of β-azido alcohols has been developed. The aerobic oxidative generation of azido radical employing air as the terminal oxidant is disclosed as the key process for this transformation. The reaction is appreciated by its broad substrate scope, inexpensive Mn-catalyst, high efficiency, easy operation under air, and mild conditions at room temperature. This chemistry provides a novel approach to high value-added β-azido alcohols, which are useful precursors of aziridines, β-amino alcohols, and other important N- and O-containing heterocyclic compounds. This chemistry also provides an unexpected approach to azido substituted cyclic peroxy alcohol esters. A DFT calculation indicates that Mn catalyst plays key dual roles as an efficient catalyst for the generation of azido radical and a stabilizer for peroxyl radical intermediate. Further calculation reasonably explains the proposed mechanism for the control of C-C bond cleavage or for the formation of β-azido alcohols.

  1. Preparation of deuterated heterocyclic five-membered ring compounds (furan, thiophene, pyrrole, and derivatives) by base-catalyzed hydrogen isotope exchange with deuterium oxide

    International Nuclear Information System (INIS)

    Heinrich, K.H.; Herrmann, M.; Moebius, G.; Sprinz, H.

    1984-01-01

    Several deuterated heterocyclic compounds of the type of furan,thiophene and pyrrole were prepared by base-catalyzed proton exchange with deuterium oxide at temperatures above 423 K in a closed system. The determination of deuterium and its distribution within the molecules was carried out by mass spectrometry and 1 H nmr spectrometry. (author)

  2. Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle

    Directory of Open Access Journals (Sweden)

    Maria Cristina Collivignarelli

    2018-06-01

    Full Text Available The aim of this experimental study was to assess the feasibility of using a wet oxidation (WO process for treating fine soil with a high level of total petroleum hydrocarbons (TPHs. Two samples of soil were spiked with two different contaminants (motor oil, and motor oil + diesel. The samples were subjected to a WO bench plant test, where the effect of the main process parameters (i.e., temperature and reaction time on the removal of TPHs was investigated. Results show that the WO process is effective for the decontamination of hydrocarbons, and a strong reduction (>85% can be obtained with the typical working conditions of a full-scale plant (temperature = 250 °C, reaction time = 30 min. The solid residue resulting from the WO process was characterized in order to evaluate the recovery options. In terms of chemical characterization, the contents of the pollutants comply with the Italian regulations for commercial and industrial site use. Moreover, the results of the leaching test suggested that these residues could be reused for ceramic and brick manufacturing processes.

  3. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Østberg, M.

    2004-01-01

    Conversion of methane to higher hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and soot was investigated under fuel-rich conditions in a laminar flow reactor. The effects of stoichiometry, dilution, and water vapor addition were studied at temperatures between 1073 and 1823 K. A chemical...... kinetic mechanism was established for methane oxidation, with emphasis on formation of higher hydrocarbons and PAH. A submodel for soot formation was adopted from the work of Frenklach and co-workers without changes. Modeling predictions showed good agreement with experimental results. Reactants, stable...... decrease with increasing addition of water vapor. The effect is described qualitatively by the reaction mechanism. The enhanced oxidation of acetylene is attributed to higher levels of hydroxyl radicals, formed from the reaction between the water vapor and hydrogen atoms....

  4. Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Woodley, John

    2009-01-01

    The aerobic oxidation of 5-hydroxymethylfurfural, a versatile biomass-derived chemical, is examined in water with a titania-supported gold-nanoparticle catalyst at ambient temperature (30 degrees C). The selectivity of the reaction towords 2,5-furandicarboxylic acid and the intermediate oxidation...

  5. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase

    International Nuclear Information System (INIS)

    Lyubimov, Artem Y.; Chen, Lin; Sampson, Nicole S.; Vrielink, Alice

    2009-01-01

    The importance of active-site electrostatics for oxidative and reductive half-reactions in a redox flavoenzyme (cholesterol oxidase) have been investigated by a combination of biochemistry and atomic resolution crystallography. A detailed examination of active-site dynamics demonstrates that the oxidation of substrate and the re-oxidation of the flavin cofactor by molecular oxygen are linked by a single active-site asparagine. Cholesterol oxidase is a flavoenzyme that catalyzes the oxidation and isomerization of 3β-hydroxysteroids. Structural and mutagenesis studies have shown that Asn485 plays a key role in substrate oxidation. The side chain makes an NH⋯π interaction with the reduced form of the flavin cofactor. A N485D mutant was constructed to further test the role of the amide group in catalysis. The mutation resulted in a 1800-fold drop in the overall k cat . Atomic resolution structures were determined for both the N485L and N485D mutants. The structure of the N485D mutant enzyme (at 1.0 Å resolution) reveals significant perturbations in the active site. As predicted, Asp485 is oriented away from the flavin moiety, such that any stabilizing interaction with the reduced flavin is abolished. Met122 and Glu361 form unusual hydrogen bonds to the functional group of Asp485 and are displaced from the positions they occupy in the wild-type active site. The overall effect is to disrupt the stabilization of the reduced FAD cofactor during catalysis. Furthermore, a narrow transient channel that is shown to form when the wild-type Asn485 forms the NH⋯π interaction with FAD and that has been proposed to function as an access route of molecular oxygen, is not observed in either of the mutant structures, suggesting that the dynamics of the active site are altered

  6. Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Jensen, Søren Højgaard

    2012-01-01

    A promising way to store wind and solar electricity is by electrolysis of H2O and CO2 using solid oxide electrolysis cells (SOECs) to produce synthetic hydrocarbon fuels that can be used in existing fuel infrastructure. Pressurized operation decreases the cell internal resistance and enables...... improved system efficiency, potentially lowering the fuel production cost significantly. In this paper, we present a thermodynamic analysis of synthetic methane and dimethyl ether (DME) production using pressurized SOECs, in order to determine feasible operating conditions for producing the desired......, and outlet gas composition. For methane production, low temperature and high pressure operation could improve the system efficiency, but might lead to a higher capital cost. For DME production, high pressure SOEC operation necessitates higher operating temperature in order to avoid carbon formation at higher...

  7. Model studies in hydrocarbon oxidation. Progress report, April 1--November 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, G.

    1993-12-31

    The research performed during the period 1 April--31 November 1993 has centered on an investigation of the chemistry of molecular terminal oxo complexes. In the long term, it is hoped that this research will provide results that are relevant to systems concerned with hydrocarbon oxidation. The authors have also carried studies of transition metal complexes that contain terminal sulfido, selenido and tellurido ligands, since a knowledge of the chemistry of the heavier congeners of this group will help provide a more complete understanding of the chemistry of transition metal oxo complexes. Furthermore, the chemistry of the metal sulfido derivatives will be directly related to hydrodesulfurization, an extremely important industrial process, for which transition metal-sulfido derivatives, e.g. MoS{sub 2}, are active catalysts.

  8. Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase

    International Nuclear Information System (INIS)

    Wang, Y.; Liu, C.S.; Li, F.B.; Liu, C.P.; Liang, J.B.

    2009-01-01

    To better understand the photodegradation of polycyclic aromatic hydrocarbons (PAH) in solid phase in natural environment, laboratory experiments were conducted to study the influencing factors, kinetics and intermediate compound of pyrene photodegradation by iron oxides. The results showed that the pyrene photodegradation rate followed the order of α-FeOOH > α-Fe 2 O 3 > γ-Fe 2 O 3 > γ-FeOOH at the same reaction conditions. Lower dosage of α-FeOOH and higher light intensity increased the photodegradation rate of pyrene. Iron oxides and oxalic acid can set up a photo-Fenton-like system without additional H 2 O 2 in solid phase to enhance the photodegradation of pyrene under UV irradiation. All reaction followed the first-order reaction kinetics. The half-life (t 1/2 ) of pyrene in the system showed the higher efficiencies of using iron oxide as photocatalyst to degrade pyrene. Intermediate compound pyreno was found during photodegradation reactions by gas chromatography-mass spectrometry (GC-MS). The photodegradation efficiency for PAHs in this photo-Fenton-like system was also confirmed by using the contaminated soil samples. This work provides some useful information to understand the remediation of PAHs contaminated soils by photochemical techniques under practical condition

  9. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.

    Science.gov (United States)

    Pham, A Ninh; Waite, T David

    2014-08-01

    Spontaneous oxidation of dopamine (DA) and the resultant formation of free radical species within dopamine neurons of the substantia nigra (SN) is thought to bestow a considerable oxidative load upon these neurons and may contribute to their vulnerability to degeneration in Parkinson's disease (PD). An understanding of DA oxidation under physiological conditions is thus critical to understanding the relatively selective vulnerability of these dopaminergic neurons in PD and may support the development of novel neuro-protective approaches for this disorder. In this study, the oxidation of dopamine (0.2-10μM) was investigated both in the absence and the presence of copper (0.01-0.4μM), a redox active metal that is present at considerable concentrations in the SN, over a range of background chloride concentrations (0.01-0.7M), different oxygen concentrations and at physiological pH7.4. DA was observed to oxidize extremely slowly in the absence of copper and at moderate rates only in the presence of copper but without chloride. The oxidation of DA however was significantly enhanced in the presence of both copper and chloride with the rate of DA oxidation greatest at intermediate chloride concentrations (0.05-0.2M). The variability of the catalytic effect of Cu(II) on DA oxidation at different chloride concentrations can be explained and successfully modeled by appropriate consideration of the reaction of Cu(II) species with DA and the conversion of Cu(I) to Cu(II) through oxygenation. This model suggests that the speciation of Cu(II) and Cu(I) is critically important to the kinetics of DA oxidation and thus the vulnerability to degradation of dopaminergic neuron in the brain milieu. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto

    2016-06-10

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  11. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto; Menendez Rodriguez, Gabriel; Bellachioma, Gianfranco; Zuccaccia, Cristiano; Poater, Albert; Cavallo, Luigi; Macchioni, Alceo

    2016-01-01

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  12. o-Naphthoquinone-Catalyzed Aerobic Oxidation of Amines to (Ket)imines: A Modular Catalyst Approach.

    Science.gov (United States)

    Goriya, Yogesh; Kim, Hun Young; Oh, Kyungsoo

    2016-10-07

    A modular aerobic oxidation of amines to imines has been achieved using an ortho-naphthoquinone (o-NQ) catalyst. The cooperative catalyst system of o-NQ and Cu(OAc) 2 enabled the formation of homocoupled imines from benzylamines, while the presence of TFA helped the formation of cross-coupled imines in excellent yields. The current mild aerobic oxidation protocol could also be applied to the oxidation of secondary amines to imines or ketimines with the help of cocatalyst, Ag 2 CO 3 , with excellent yields.

  13. Water oxidation catalyzed by molecular di- and nonanuclear Fe complexes: importance of a proper ligand framework.

    Science.gov (United States)

    Das, Biswanath; Lee, Bao-Lin; Karlsson, Erik A; Åkermark, Torbjörn; Shatskiy, Andrey; Demeshko, Serhiy; Liao, Rong-Zhen; Laine, Tanja M; Haukka, Matti; Zeglio, Erica; Abdel-Magied, Ahmed F; Siegbahn, Per E M; Meyer, Franc; Kärkäs, Markus D; Johnston, Eric V; Nordlander, Ebbe; Åkermark, Björn

    2016-09-14

    The synthesis of two molecular iron complexes, a dinuclear iron(iii,iii) complex and a nonanuclear iron complex, based on the dinucleating ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) is described. The two iron complexes were found to drive the oxidation of water by the one-electron oxidant [Ru(bpy)3](3+).

  14. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  15. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products

    Energy Technology Data Exchange (ETDEWEB)

    Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin; Seravalli, Javier; Cho, Uhn-Soo; Banerjee, Ruma (Michigan-Med); (UNL)

    2017-02-17

    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.

  16. Complementation of biotransformations with chemical C-H oxidation: copper-catalyzed oxidation of tertiary amines in complex pharmaceuticals.

    Science.gov (United States)

    Genovino, Julien; Lütz, Stephan; Sames, Dalibor; Touré, B Barry

    2013-08-21

    The isolation, quantitation, and characterization of drug metabolites in biological fluids remain challenging. Rapid access to oxidized drugs could facilitate metabolite identification and enable early pharmacology and toxicity studies. Herein, we compared biotransformations to classical and new chemical C-H oxidation methods using oxcarbazepine, naproxen, and an early compound hit (phthalazine 1). These studies illustrated the low preparative efficacy of biotransformations and the inability of chemical methods to oxidize complex pharmaceuticals. We also disclose an aerobic catalytic protocole (CuI/air) to oxidize tertiary amines and benzylic CH's in drugs. The reaction tolerates a broad range of functionalities and displays a high level of chemoselectivity, which is not generally explained by the strength of the C-H bonds but by the individual structural chemotype. This study represents a first step toward establishing a chemical toolkit (chemotransformations) that can selectively oxidize C-H bonds in complex pharmaceuticals and rapidly deliver drug metabolites.

  17. Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase.

    Science.gov (United States)

    Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei

    2015-11-28

    Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is

  18. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klobukowski, Erik [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and

  19. Demonstration test and evaluation of Ultraviolet/Ultraviolet Catalyzed Peroxide Oxidation for Groundwater Remediation at Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    1994-03-01

    We demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure trademark process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H 2 O 2 into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure trademark process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another. Although the perox-pure trademark process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure trademark process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the highest concentration organic (TCA) was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system. The demonstration at K-25 included tests with (1) the commercial PSI system, (2) the new UV lamp-based system and (3) the commercial PSI and new UV lamp systems in series

  20. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Wang, Shunyao; Ye, Jianhuai; Soong, Ronald; Wu, Bing; Yu, Legeng; Simpson, André J.; Chan, Arthur W. H.

    2018-03-01

    Owing to the complex nature and dynamic behaviors of secondary organic aerosol (SOA), its ability to cause oxidative stress (known as oxidative potential, or OP) and adverse health outcomes remains poorly understood. In this work, we probed the linkages between the chemical composition of SOA and its OP, and investigated impacts from various SOA evolution pathways, including atmospheric oligomerization, heterogeneous oxidation, and mixing with metal. SOA formed from photooxidation of the two most common polycyclic aromatic hydrocarbons (naphthalene and phenanthrene) were studied as model systems. OP was evaluated using the dithiothreitol (DTT) assay. The oligomer-rich fraction separated by liquid chromatography dominates DTT activity in both SOA systems (52 ± 10 % for naphthalene SOA (NSOA), and 56 ± 5 % for phenanthrene SOA (PSOA)). Heterogeneous ozonolysis of NSOA was found to enhance its OP, which is consistent with the trend observed in selected individual oxidation products. DTT activities from redox-active organic compounds and metals were found to be not additive. When mixing with highly redox-active metal (Cu), OP of the mixture decreased significantly for 1,2-naphthoquinone (42 ± 7 %), 2,3-dihydroxynaphthalene (35 ± 1 %), NSOA (50 ± 6 %), and PSOA (43 ± 4 %). Evidence from proton nuclear magnetic resonance (1H NMR) spectroscopy illustrates that such OP reduction upon mixing can be ascribed to metal-organic binding interactions. Our results highlight the role of aerosol chemical composition under atmospheric aging processes in determining the OP of SOA, which is needed for more accurate and explicit prediction of the toxicological impacts from particulate matter.

  1. RESULTS OF COPPER CATALYZED PEROXIDE OXIDATION (CCPO) OF TANK 48H SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Pareizs, J.; Newell, J.; Fondeur, F.; Nash, C.; White, T.; Fink, S.

    2012-08-14

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. The following observations were made with respect to the major processing variables investigated. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. Testing with simulated slurries continues. Current testing is examining lower copper concentrations, refined peroxide addition rates, and alternate acidification methods. A revision of this report will provide updated findings with emphasis on defining recommended conditions for similar tests with actual waste samples.

  2. Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels

    Directory of Open Access Journals (Sweden)

    H. Jiang

    2017-08-01

    Full Text Available When hydrocarbons (HCs are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs. These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t =  30 min of dithiothreitol (DTTt, a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2–5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC ∕ NOx ratio from 30 to 5. The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm was determined over an extended period of reaction time (t =  2 h to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC ∕ NOx ratio: 5–36 ppbC ppb−1 applied in

  3. Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels

    Science.gov (United States)

    Jiang, Huanhuan; Jang, Myoseon; Yu, Zechen

    2017-08-01

    When hydrocarbons (HCs) are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs). These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes) and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs) to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t = 30 min) of dithiothreitol (DTTt), a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2-5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC / NOx ratio from 30 to 5). The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm) was determined over an extended period of reaction time (t = 2 h) to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC / NOx ratio: 5-36 ppbC ppb-1) applied in this study, the amount of organic hydroperoxides was

  4. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Copper(I)/TEMPO Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air

    Science.gov (United States)

    Hoover, Jessica M.; Steves, Janelle E.; Stahl, Shannon S.

    2012-01-01

    This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective CuI/TEMPO catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, while the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 – 26 h. PMID:22635108

  6. Oxidation of Phenol by Hydrogen Peroxide Catalyzed by Metal-Containing Poly(amidoxime Grafted Starch

    Directory of Open Access Journals (Sweden)

    Hany El-Hamshary

    2011-11-01

    Full Text Available Polyamidoxime chelating resin was obtained from polyacrylonitrile (PAN grafted starch. The nitrile groups of the starch-grafted polyacrylonitrile (St-g-PAN were converted into amidoximes by reaction with hydroxylamine under basic conditions. The synthesized graft copolymer and polyamidoxime were characterized by FTIR, TGA and elemental microanalysis. Metal chelation of the polyamidoxime resin with iron, copper and zinc has been studied. The produced metal-polyamidoxime polymer complexes were used as catalysts for the oxidation of phenol using H2O2 as oxidizing agent. The oxidation of phenol depends on the central metal ion present in the polyamidoxime complex. Reuse of M-polyamidoxime catalyst/H2O2 system showed a slight decrease in catalytic activities for all M-polyamidoxime catalysts.

  7. The effect of oxidation on the enzyme-catalyzed hydrolytic biodegradation of poly(urethane)s.

    Science.gov (United States)

    Labow, Rosalind S; Tang, Yiwen; McCloskey, Christopher B; Santerre, J Paul

    2002-01-01

    Although the biodegradation of polyurethanes (PU) by oxidative and hydrolytic agents has been studied extensively, few investigations have reported on the combination of their effects. Since neutrophils (PMN) arrive at an implanted device first and release HOCl, followed by monocyte-derived macrophages (MDM) which have potent esterase activities and oxidants of their own, the combined effect of oxidative and hydrolytic degradation on radiolabeled polycarbonate-polyurethanes (PCNU)s was investigated and compared to that of a polyester-PU (PESU) and a polyether-PU (PEU). The PCNUs were synthesized with PCN (MW = 1,000), and butanediol (14C-BD) and one of two diisocyanates, hexane-1,6-diisocyanate (14C-HDI) or methylene bis-p-phenyl diisocyanate (MDI). The PESU and PEU were synthesized using toluene-diisocyanate (14C-TDI), with polycaprolactone and polytetramethylene oxide as soft segments respectively, and ethylene diamine as the chain extender. The effect of pre-treatment with 0.1 mM HOC1 for 1 week on the HDI-based PCNUs and both TDI-based PUs resulted in a significant inhibition of radiolabel release (RR) elicited by cholesterol esterase (CE), when compared to buffer alone, whereas the MDI-based PCNU showed a small but significant increase. When PMN were activated on the HDI-based PCNU surface with phorbol myristate acetate (PMA), HOCl was released for 3 h, and was almost completely abolished by sodium azide (AZ). Simultaneously, the PMN-elicited RR, shown previously to be due to the esterolytic cleavage by serine proteases, was inhibited approximately 75% by PMA-activation of the cells, but significantly increased relative to the latter when AZ was added. Both in vitro oxidation by HOCl and the release of HOCI by PMN were associated with the inhibition of RR and suggest perturbations between oxidative and hydrolytic mechanisms of biodegradation.

  8. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.

    Science.gov (United States)

    Kim, Jinho; Stahl, Shannon S

    2013-07-05

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4'- t Bu 2 bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N -oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction.

  9. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature

    OpenAIRE

    Kim, Jinho; Stahl, Shannon S.

    2013-01-01

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4′-tBu2bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N-oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst...

  10. Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons.

    Science.gov (United States)

    Garcia-Costa, Alicia L; Lopez-Perela, Lucia; Xu, Xiyan; Zazo, Juan A; Rodriguez, Juan J; Casas, Jose A

    2018-05-21

    This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B), toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X, 0.94 mM; and N, 0.78 mM) was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C, pH 0  = 3, AC at 1 g L -1 , and H 2 O 2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps: (i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPO with AC as catalyst appears a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.

  11. 1,4-Diamino-2-butanone, a wide-spectrum microbicide, yields reactive species by metal-catalyzed oxidation.

    Science.gov (United States)

    Soares, Chrislaine O; Alves, Maria Julia M; Bechara, Etelvino J H

    2011-06-15

    The α-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB's cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37°C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other α-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml-1) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(•), and those with α-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(•) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 μM) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Carbon Support Surface Effects in the Gold-Catalyzed Oxidation of 5-Hydroxymethylfurfural

    NARCIS (Netherlands)

    Donoeva, Baira; Masoud, Nazila; De Jongh, Petra E.

    2017-01-01

    Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid is an important transformation for the production of bio-based polymers. Carbon-supported gold catalysts hold great promise for this transformation. Here we demonstrate that the activity, selectivity, and stability of the

  13. A Phase Transfer Catalyzed Permanganate Oxidation: Preparation of Vanillin from Isoeugenol Acetate.

    Science.gov (United States)

    Lampman, Gary M.; Sharpe, Steven D.

    1983-01-01

    Background information, laboratory procedures, and results are provided for the preparation of vanillin from isoeugenol acetate. Reaction scheme used to prepare the vanillin and a table indicating the different oxidation experiments carried out on isoeugenol or isoeugenol acetate are also provided. (JN)

  14. CO oxidation catalyzed by ag nanoparticles supported on SnO/CeO2

    KAUST Repository

    Khan, Inayatali; Sajid, Nida K M; Badshah, Amin; Wattoo, Muhammad Hamid Sarwar; Anjum, Dalaver H.; Nadeem, Muhammad Amtiaz

    2015-01-01

    by the XRD technique due to sintering inside the 3D array channels of CeO2 during the calcination process. The Ag-Sn/CeO2 (4%) catalyst was the most efficient and exhibited 100% CO oxidation at 100 °C due to small particle size and strong electronic

  15. Solvent and temperature effects on the platinum-catalyzed oxidative coupling of 1-naphthols

    CSIR Research Space (South Africa)

    Maphoru, MV

    2015-08-01

    Full Text Available one-pot two-step oxidation of 1-naphthols to the diones (e.g. 81 % from 4-methoxy-1- naphthol). In most other solvents (reflux) naphthoquinones are observed as byproducts. In an attempt to optimize the yield of menadione, 30.5 % was obtained in boiling...

  16. Green Synthesis of Carvenone by Montmorillonite-Catalyzed Isomerization of 1,2-Limonene Oxide

    DEFF Research Database (Denmark)

    Nguyen, Thao-Tran Thi; Chau, Duy-Khiem Nguyen; Duus, Fritz

    2013-01-01

    Montmorillonite was considered as a good heterogeneous catalyst for the isomerization of 1,2-limonene oxide into car-venone under solvent-free condition. Both conventional heating and green activations were tested in this research. The microwave-assisted isomerization afforded carvenone in high...

  17. Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes.

    Science.gov (United States)

    Zeng, Wei; Wu, Wanqing; Jiang, Huanfeng; Huang, Liangbin; Sun, Yadong; Chen, Zhengwang; Li, Xianwei

    2013-07-28

    Regioselective synthesis of polysubstituted benzofurans using a copper catalyst and molecular oxygen from phenols and alkynes in a one-pot procedure has been reported. The transformation consists of a sequential nucleophilic addition of phenols to alkynes and oxidative cyclization. A wide variety of phenols and alkynes can be used in the same manner.

  18. Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations

    DEFF Research Database (Denmark)

    Rehn, Gustav; Pedersen, Asbjørn Toftgaard; Woodley, John

    2016-01-01

    alcohol dehydrogenases. However, their effective use requires an effective regeneration of the oxidized nicotinamide cofactor (NAD(P)+), which is critical for the economic feasibility of the process. NAD(P)H oxidase is an enzyme class of particular interest for this cofactor regeneration since it enables...

  19. Heterogeneous oxidative desulfurization of diesel fuel catalyzed by mesoporous polyoxometallate-based polymeric hybrid.

    Science.gov (United States)

    Yang, Huawei; Jiang, Bin; Sun, Yongli; Zhang, Luhong; Huang, Zhaohe; Sun, Zhaoning; Yang, Na

    2017-07-05

    In this work, the simple preparation of novel polymer supported polyoxometallates (POMs) catalysts has been reported. Soluble task-specific cross-linked poly (ionic liquid) (PIL) was prepared with N,​N-​dimethyl-​dodecyl-​(4-​vinylbenzyl) ammonium chloride and divinylbenzene as co-monomers. The as-prepared cationic PILs were assembled with different commercial POMs to form the interlinked mesoporous catalysts, and the formation mechanism was provided. The catalytic oxidation activities of the catalysts were closely related to the formation pathway of their corresponding peroxide active species. The catalyst with H 2 W 12 O 42 10- as counterion, which exhibited the best activity in the oxidation of benzothiophene (BT) and dibenzothiophene (DBT) to sulfones in model oil with hydrogen peroxide (H 2 O 2 , 30wt%) as oxidant, was characterized by different techniques and systematically studied for its sulfur removal performance. As for the oxidative desulfurization of a real diesel, it was observed that almost all of the original sulfur compounds could be completely converted, and the catalyst could be reused for at least eight cycles without noticeable changes in both catalytic activity and chemical structure. In the end, a catalytic mechanism was put forward with the assistant of Raman analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor

    NARCIS (Netherlands)

    Rebrov, E.V.; Croon, de M.H.J.M.; Schouten, J.C.

    2002-01-01

    The ammonia oxidation reaction on supported polycrystalline platinum catalyst was investigated in an aluminum-based microreactor. An extensive set of reactions was included in the chemical reactor modeling to facilitate the construction of a kinetic model capable of satisfactory predictions for a

  1. The effect of Au on TiO2 catalyzed selective photocatalytic oxidation of cyclohexane

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Savenije, Tom J.; Moulijn, Jacob A.; Mul, Guido

    2011-01-01

    Gold does not induce visible light activity of anatase Hombikat UV100 in the selective photo-oxidation of cyclohexane, as can be concluded from in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) measurements. Extremely small conductance values measured at 530 nm in Time

  2. Efficient Aerobic Oxidation of Cyclohexane to KA Oil Catalyzed by Pt ...

    Indian Academy of Sciences (India)

    127, No. 7, July 2015, pp. 1167–1172. c Indian Academy of Sciences. ... The catalyst was used for the partial oxidation of cyclohexane in a Parr type reactor. It was found that Pt-Sn supported on MWCNTs can act as an efficient catalyst for the partial ... version ratio with high selectivity for KA oil in a liquid ... These gases.

  3. Anaerobic Nitroxide-Catalyzed Oxidation of Alcohols Using the NO+/NO center dot Redox Pair

    Czech Academy of Sciences Publication Activity Database

    Holan, Martin; Jahn, Ullrich

    2014-01-01

    Roč. 16, č. 1 (2014), s. 58-61 ISSN 1523-7060 R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : oxidation * nitroxides * aldehydes * alcohols * ketones * alkyl nitrites Subject RIV: CC - Organic Chemistry Impact factor: 6.364, year: 2014

  4. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    International Nuclear Information System (INIS)

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-01-01

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  5. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin [Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Li, Lih-Ann, E-mail: lihann@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China)

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  6. Hydrocarbon fuel processing of micro solid oxide fuel cell systems[Dissertation 17455

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, M. J.

    2007-07-01

    The scope of this thesis is the numerical and experimental investigation of the fuel processing of a micro solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The goal is to enhance the overall system efficiency by optimization of the reforming process in the steady state and the improvement of the start-up process. Micro SOFC are a potential alternative to the currently used batteries in portable devices. Liquid butane in a cartridge could be the energy source. This dissertation is focused on the fuel processing of the system, namely the reforming and post-combusting processes. The reformer converts the hydrocarbon fuel to a hydrogen rich gas that can be utilized by the SOFC. The post-combustor depletes the toxic and/or explosive gases before leaving the exhaust. Chapter One presents a short introduction to the field of hydrocarbon fuel processing in micro solid oxide fuel cell systems, the next three chapters deal with computational modeling of the transport phenomena inside a micro-reformer, which leads to a better understanding of the chemistry and the physics therein, hence progress in the design and operation parameters. The experimental part (i.e. Chapter Five) of this thesis focuses on the feasibility of a novel hybrid start-up method of a fuel cell system that employs existing components as an additional heat source. In Chapter Two the effect of wall heat conduction on the syngas (hydrogen and carbon monoxide) production of a micro-reformer, representing micro-fabricated channels or monoliths, is investigated. Methane is used as a model hydrocarbon fuel since its heterogeneous reaction path on rhodium is known and validated. The simulations demonstrate that the axial wall conduction strongly influences the performance of the micro-reformer and should not be neglected without a careful a priori investigation of its impact. Methane conversion and hydrogen yield are strongly dependent of the wall inner surface temperature, which is influenced by the

  7. Oxidative kinetic resolution of racemic alcohols catalyzed by chiral ferrocenyloxazolinylphosphine-ruthenium complexes.

    Science.gov (United States)

    Nishibayashi, Yoshiaki; Yamauchi, Akiyoshi; Onodera, Gen; Uemura, Sakae

    2003-07-25

    Oxidative kinetic resolution of racemic secondary alcohols by using acetone as a hydrogen acceptor in the presence of a catalytic amount of [RuCl(2)(PPh(3))(ferrocenyloxazolinylphosphine)] (2) proceeds effectively to recover the corresponding alcohols in high yields with an excellent enantioselectivity. When 1-indanol is employed as a racemic alcohol, the oxidation proceeds quite smoothly even in the presence of 0.0025 mol % of the catalyst 2 to give an optically active 1-indanol in good yield with high enantioselectivity (up to 94% ee), where turnover frequency (TOF) exceeds 80,000 h(-1). From a practical viewpoint, the kinetic resolution is investigated in a large scale, optically pure (S)-1-indanol (75 g, 56% yield, >99% ee) being obtained from racemic 1-indanol (134 g) by employing this kinetic resolution method twice.

  8. Alkylselenite-catalyzed Oxidative Carbonylation of Amines: Density Functional Theory Study

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sun; Kim, Hoon Sik; Cheong, Minserk [Kyung Hee Univ., Seoul (Korea, Republic of)

    2012-11-15

    Ureas and carbamates have been conventionally produced by the reaction of amines with phosgene. However, phosgenation processes raise severe environmental concerns, which are attributed to the toxicity of phosgene and the formation of corrosive hydrogen chloride as a co-product. The considerable industrial interest in replacing current phosgene-based processes prompted several methods using non-phosgene routes including carbonylation of amines or nitro compounds and carbomethoxylation of amines with dialkylcarbonates. Among these, catalytic oxidative carbonylation of an amine in the presence of alcohol has been studied most extensively. Catalytic systems based on precious metals such as Rh and Pd are commonly used for this purpose, but most of these catalytic systems suffer from either low reactivity or severe reaction conditions such as high temperature and pressures. In conclusion, the facile change of selenium oxidation state by CO and O{sub 2} might be the main reason for the activity of the selenium catalyst for this reaction.

  9. Alkylselenite-catalyzed Oxidative Carbonylation of Amines: Density Functional Theory Study

    International Nuclear Information System (INIS)

    Hwang, Sun; Kim, Hoon Sik; Cheong, Minserk

    2012-01-01

    Ureas and carbamates have been conventionally produced by the reaction of amines with phosgene. However, phosgenation processes raise severe environmental concerns, which are attributed to the toxicity of phosgene and the formation of corrosive hydrogen chloride as a co-product. The considerable industrial interest in replacing current phosgene-based processes prompted several methods using non-phosgene routes including carbonylation of amines or nitro compounds and carbomethoxylation of amines with dialkylcarbonates. Among these, catalytic oxidative carbonylation of an amine in the presence of alcohol has been studied most extensively. Catalytic systems based on precious metals such as Rh and Pd are commonly used for this purpose, but most of these catalytic systems suffer from either low reactivity or severe reaction conditions such as high temperature and pressures. In conclusion, the facile change of selenium oxidation state by CO and O 2 might be the main reason for the activity of the selenium catalyst for this reaction

  10. Solvent-Free Selective Oxidation of Toluene with O2 Catalyzed by Metal Cation Modified LDHs and Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-01-01

    Full Text Available A series of metal cation modified layered-double hydroxides (LDHs and mixed oxides were prepared and used to be the selective oxidation of toluene with O2. The results revealed that the modified LDHs exhibited much higher catalytic performance than their parent LDH and the modified mixed oxides. Moreover, the metal cations were also found to play important roles in the catalytic performance and stabilities of modified catalysts. Under the optimal reaction conditions, the highest toluene conversion reached 8.7% with 97.5% of the selectivity to benzyldehyde; moreover, the catalytic performance remained after nine catalytic runs. In addition, the reaction probably involved a free-radical mechanism.

  11. Early events in copper-ion catalyzed oxidation of α-synuclein

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Leinisch, Fabian; Sahin, Cagla

    2018-01-01

    -synuclein modification using six different molar ratios of Cu2+/H2O2/protein and Cu2+/H2O2/ascorbate/protein resulting in mild to moderate extents of oxidation. For a Cu2+/H2O2/protein molar ratio of 2.3:7.8:1 only low levels of carbonyls were detected (0.078 carbonyls per protein), whereas a molar ratio of 4...

  12. CO oxidation catalyzed by Pt-embedded graphene: A first-principles investigation

    KAUST Repository

    Liu, Xin; Sui, Yanhui; Duan, Ting; Meng, Changong; Han, Yu

    2014-01-01

    We addressed the potential catalytic role of Pt-embedded graphene in CO oxidation by first-principles-based calculations. We showed that the combination of highly reactive Pt atoms and defects over graphene makes the Pt-embedded graphene a superior mono-dispersed atomic catalyst for CO oxidation. The binding energy of a single Pt atom onto monovacancy defects is up to -7.10 eV, which not only ensures the high stability of the embedded Pt atom, but also vigorously excludes the possibility of diffusion and aggregation of embedded Pt atoms. This strong interfacial interaction also tunes the energy level of Pt-d states for the activation of O2, and promotes the formation and dissociation of the peroxide-like intermediate. The catalytic cycle of CO oxidation is initiated through the Langmuir-Hinshelwood mechanism, with the formation of a peroxide-like intermediate by the coadsorbed CO and O2, by the dissociation of which the CO2 molecule and an adsorbed O atom are formed. Then, another gaseous CO will react with the remnant O atom and make the embedded Pt atom available for the subsequent reaction. The calculated energy barriers for the formation and dissociation of the peroxide-like intermediate are as low as 0.33 and 0.15 eV, respectively, while that for the regeneration of the embedded Pt atom is 0.46 eV, indicating the potential high catalytic performance of Pt-embedded graphene for low temperature CO oxidation.

  13. Pd2+ and Cu2+ catalyzed oxidative cross-coupling of mercaptoacetylenes and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Henke, Adam; Šrogl, Jiří

    2011-01-01

    Roč. 47, č. 14 (2011), s. 4282-4284 ISSN 1359-7345 R&D Projects: GA ČR GA203/08/1318 Grant - others:AV ČR(CZ) M200550908 Institutional research plan: CEZ:AV0Z40550506 Keywords : mercaptoacetylenes * oxidative cross - coupling * Cu/Pd catalysis Subject RIV: CC - Organic Chemistry Impact factor: 6.169, year: 2011

  14. Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines.

    Science.gov (United States)

    Zultanski, Susan L; Zhao, Jingyi; Stahl, Shannon S

    2016-05-25

    A modular Cu/ABNO catalyst system has been identified that enables efficient aerobic oxidative coupling of alcohols and amines to amides. All four permutations of benzylic/aliphatic alcohols and primary/secondary amines are viable in this reaction, enabling broad access to secondary and tertiary amides. The reactions exhibit excellent functional group compatibility and are complete within 30 min-3 h at rt. All components of the catalyst system are commercially available.

  15. Mechanism of Water Oxidation Catalyzed by a Dinuclear Ruthenium Complex Bridged by Anthraquinone

    Directory of Open Access Journals (Sweden)

    Tohru Wada

    2017-02-01

    Full Text Available We synthesized 1,8-bis(2,2′:6′,2″-terpyrid-4′-ylanthraquinone (btpyaq as a new dimerizing ligand and determined its single crystal structure by X-ray analysis. The dinuclear Ruthenium complex [Ru2(µ-Cl(bpy2(btpyaq](BF43 ([3](BF43, bpy = 2,2′-bipyridine was used as a catalyst for water oxidation to oxygen with (NH42[Ce(NO36] as the oxidant (turnover numbers = 248. The initial reaction rate of oxygen evolution was directly proportional to the concentration of the catalyst and independent of the oxidant concentration. The cyclic voltammogram of [3](BF43 in water at pH 1.3 showed an irreversible catalytic current above +1.6 V (vs. SCE, with two quasi-reversible waves and one irreversible wave at E1/2 = +0.62, +0.82 V, and Epa = +1.13 V, respectively. UV-vis and Raman spectra of [3](BF43 with controlled-potential electrolysis at +1.40 V revealed that [Ru(IV=O O=Ru(IV]4+ is stable under electrolysis conditions. [Ru(III, Ru(II] species are recovered after dissociation of an oxygen molecule from the active species in the catalytic cycle. These results clearly indicate that an O–O bond is formed via [Ru(V=O O=Ru(IV]5+.

  16. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.

    Science.gov (United States)

    Seki, Miharu; Oikawa, Jun-ichi; Taguchi, Taro; Ohnuki, Toshihiko; Muramatsu, Yasuyuki; Sakamoto, Kazunori; Amachi, Seigo

    2013-01-02

    Laccase oxidizes iodide to molecular iodine or hypoiodous acid, both of which are easily incorporated into natural soil organic matter. In this study, iodide sorption and laccase activity in 2 types of Japanese soil were determined under various experimental conditions to evaluate possible involvement of this enzyme in the sorption of iodide. Batch sorption experiment using radioactive iodide tracer ((125)I(-)) revealed that the sorption was significantly inhibited by autoclaving (121 °C, 40 min), heat treatment (80 and 100 °C, 10 min), γ-irradiation (30 kGy), N(2) gas flushing, and addition of reducing agents and general laccase inhibitors (KCN and NaN(3)). Interestingly, very similar tendency of inhibition was observed in soil laccase activity, which was determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as a substrate. The partition coefficient (K(d): mL g(-1)) for iodide and specific activity of laccase in soils (Unit g(-1)) showed significant positive correlation in both soil samples. Addition of a bacterial laccase with an iodide-oxidizing activity to the soils strongly enhanced the sorption of iodide. Furthermore, the enzyme addition partially restored iodide sorption capacity of the autoclaved soil samples. These results suggest that microbial laccase is involved in iodide sorption on soils through the oxidation of iodide.

  17. Biochemistry and Ecology of Novel Cytochromes Catalyzing Fe(II) Oxidation by an Acidophilic Microbial Community

    Science.gov (United States)

    Singer, S. W.; Jeans, C. J.; Thelen, M. P.; Verberkmoes, N. C.; Hettich, R. C.; Chan, C. S.; Banfield, J. F.

    2007-12-01

    An acidophilic microbial community found in the Richmond Mine at Iron Mountain, CA forms abundant biofilms in extremely acidic (pHindicated that several variants of Cyt579 were present in Leptospirillum strains. Intact protein MS analysis identified the dominant variants in each biofilm and documented multiple N-terminal cleavage sites for Cyt579. By combining biochemical, geochemical and microbiological data, we established that the sequence variation and N-terminal processing of Cyt579 are selected by ecological conditions. In addition to the soluble Cyt579, the second cytochrome appears as a much larger protein complex of ~210 kDa predominant in the biofilm membrane fraction, and has an alpha-band absorption at 572 nm. The 60 kDa cytochrome subunit, Cyt572, resides in the outer membrane of LeptoII, and readily oxidizes Fe(II) at low pH (0.95 - 3.0). Several genes encoding Cyt572 were localized within a recombination hotspot between two strains of LeptoII, causing a large range of variation in the sequences. Genomic sequencing and MS proteomic studies established that the variants were also selected by ecological conditions. A general mechanistic model for Fe(II) oxidation has been developed from these studies. Initial Fe(II) oxidation by Cyt572 occurs at the outer membrane. Cyt572 then transfers electrons to Cyt579, perhaps representing an initial step in energy flow to the biofilm community. Amino acid variations and post-translational modifications of these unique cytochromes may represent fine-tuning of function in response to local environmental conditions.

  18. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes.

    Science.gov (United States)

    Tejirian, Ani; Xu, Feng

    2010-12-01

    Enzymatic lignocellulose hydrolysis plays a key role in microbially driven carbon cycling and energy conversion and holds promise for bio-based energy and chemical industries. Cellulases (key lignocellulose-active enzymes) are prone to interference from various noncellulosic substances (e.g., metal ions). During natural cellulolysis, these substances may arise from other microbial activities or abiotic events, and during industrial cellulolysis, they may be derived from biomass feedstocks or upstream treatments. Knowledge about cellulolysis-inhibiting reactions is of importance for the microbiology of natural biomass degradation and the development of biomass conversion technology. Different metal ions, including those native to microbial activity or employed for biomass pretreatments, are often tested for enzymatic cellulolysis. Only a few metal ions act as inhibitors of cellulases, which include ferrous and ferric ions as well as cupric ion. In this study, we showed inhibition by ferrous/ferric ions as part of a more general effect from oxidative (or redox-active) metal ions and their complexes. The correlation between inhibition and oxidation potential indicated the oxidative nature of the inhibition, and the dependence on air established the catalytic role that iron ions played in mediating the dioxygen inhibition of cellulolysis. Individual cellulases showed different susceptibilities to inhibition. It is likely that the inhibition exerted its effect more on cellulose than on cellulase. Strong iron ion chelators and polyethylene glycols could mitigate the inhibition. Potential microbiological and industrial implications of the observed effect of redox-active metal ions on enzymatic cellulolysis, as well as the prevention and mitigation of this effect in industrial biomass conversion, are discussed.

  19. Copper-Catalyzed Eglinton Oxidative Homocoupling of Terminal Alkynes: A Computational Study

    Directory of Open Access Journals (Sweden)

    Jesús Jover

    2015-01-01

    Full Text Available The copper(II acetate mediated oxidative homocoupling of terminal alkynes, namely, the Eglinton coupling, has been studied with DFT methods. The mechanism of the whole reaction has been modeled using phenylacetylene as substrate. The obtained results indicate that, in contrast to some classical proposals, the reaction does not involve the formation of free alkynyl radicals and proceeds by the dimerization of copper(II alkynyl complexes followed by a bimetallic reductive elimination. The calculations demonstrate that the rate limiting-step of the reaction is the alkyne deprotonation and that more acidic substrates provide faster reactions, in agreement with the experimental observations.

  20. Palladium catalyzed direct oxidation of benzene with molecular oxygen to phenol

    International Nuclear Information System (INIS)

    Jintoku, Tetsuro; Takaki, Ken; Fujiwara, Yuzo; Fuchita, Yoshio; Hiraki, Katsuma.

    1990-01-01

    Direct phenol synthesis from benzene is currently one of the most important problems in modern chemistry. We have reported new phenol synthesis from benzene and O 2 via direct activation of a C-H aromatic bond by the Pd(OAc) 2 /phenanthroline catalyst system. The evidence for direct oxidation of benzene by O 2 was obtained using 18 O and 2 H isotopes. The mechanism was proposed on the basis of these results and the reactions of Ph-Pd σ complex intermediates. (author)

  1. "Nanorust"-catalyzed benign oxidation of amines for selective synthesis of nitriles.

    Science.gov (United States)

    Jagadeesh, Rajenahally V; Junge, Henrik; Beller, Matthias

    2015-01-01

    Organic nitriles constitute key precursors and central intermediates in organic synthesis. In addition, nitriles represent a versatile motif found in numerous medicinally and biologically important compounds. Generally, these nitriles are synthesized by traditional cyanation procedures using toxic cyanides. Herein, we report the selective and environmentally benign oxidative conversion of primary amines for the synthesis of structurally diverse aromatic, aliphatic and heterocyclic nitriles using a reusable "nanorust" (nanoscale Fe2 O3 )-based catalysts applying molecular oxygen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Results Of Copper Catalyzed Peroxide Oxidation (CCPO) Of Tank 48H Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B.; Pareizs, J. M.; Newell, J. D.; Fondeur, F. F.; Nash, C. A.; White, T. L.; Fink, S. D.

    2012-12-13

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. A processing temperature of 50°C as part of an overall set of conditions appears to provide a viable TPB destruction time on the order of 4 days. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. The data in this report suggests 100-250 mg/L as a minimum. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. An addition rate of 0.4 mL/hour, scaled to the full vessel, is suggested for the process. SRNL recommends that for pH adjustment, an acid addition rate 42 mL/hour, scaled to the full vessel, is used. This is the same addition rate used in the testing. Even though the TPB and phenylborates can be destroyed in a relative short time period, the residual organics will take longer to degrade to <10 mg/L. Low level leaching on titanium occurred, however, the typical concentrations of released titanium are very low (~40 mg/L or less). A small amount of leaching under these conditions is not

  3. Enzyme-Catalyzed Oxidation of 17β-Estradiol Using Immobilized Laccase from Trametes versicolor

    Science.gov (United States)

    Cardinal-Watkins, Chantale; Nicell, Jim A.

    2011-01-01

    Many natural and synthetic estrogens are amenable to oxidation through the catalytic action of oxidative enzymes such as the fungal laccase Trametes versicolor. This study focused on characterizing the conversion of estradiol (E2) using laccase that had been immobilized by covalent bonding onto silica beads contained in a bench-scale continuous-flow packed bed reactor. Conversion of E2 accomplished in the reactor declined when the temperature of the system was changed from room temperature to just above freezing at pH 5 as a result of a reduced rate of reaction rather than inactivation of the enzyme. Similarly, conversion increased when the system was brought to warmer temperatures. E2 conversion increased when the pH of the influent to the immobilized laccase reactor was changed from pH 7 to pH 5, but longer-term experiments showed that the enzyme is more stable at pH 7. Results also showed that the immobilized laccase maintained its activity when treating a constant supply of aqueous E2 at a low mean residence time over a 12-hour period and when treating a constant supply of aqueous E2 at a high mean residence time over a period of 9 days. PMID:21869925

  4. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid

    International Nuclear Information System (INIS)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui

    2014-01-01

    Three types of TiO 2 were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO 2 was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO 2 achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO 2 , H 2 O 2 , and [Bmim]BF 4 ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H 2 O 2 and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO 2 could reach 96.6%, which was apparently superior to a system with anatase TiO 2 (23.6%) or with anatase - rutile TiO 2 (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity

  5. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO{sub 2} in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenshuai; Xu, Yehai; Li, Huaming; Dai, Bilian; Xu, Hui; Wang, Chao; Chao, Yanhong; Liu, Hui [Jiangsu University, Zhenjiang (China)

    2014-02-15

    Three types of TiO{sub 2} were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO{sub 2} was successfully obtained at 100 .deg. C. The results indicated that amorphous TiO{sub 2} achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 .deg. C) with three catalysts. The system contained amorphous TiO{sub 2}, H{sub 2}O{sub 2}, and [Bmim]BF{sub 4} ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H{sub 2}O{sub 2} and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO{sub 2} could reach 96.6%, which was apparently superior to a system with anatase TiO{sub 2} (23.6%) or with anatase - rutile TiO{sub 2} (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity.

  6. CO oxidation catalyzed by ag nanoparticles supported on SnO/CeO2

    KAUST Repository

    Khan, Inayatali

    2015-01-01

    Ag-Sn/CeO2 catalysts were synthesized by the co-precipitation method with different Ag-Sn wt.% loadings and were tested for the oxidation of CO. The catalysts were characterized by powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED) techniques. UV-Vis measurements were carried out to elucidate the ionic states of the silver particles, and the temperature-programmed reduction (TPR) technique was employed to check the reduction temperature of the catalyst supported on CeO2. There are peaks for silver crystallites in the X-ray diffraction patterns and the presence of SnO was not well evidenced by the XRD technique due to sintering inside the 3D array channels of CeO2 during the calcination process. The Ag-Sn/CeO2 (4%) catalyst was the most efficient and exhibited 100% CO oxidation at 100 °C due to small particle size and strong electronic interaction with the SnO/CeO2 support. © 2015 Sociedade Brasileira de Química.

  7. Modeling chemical kinetics of avocado oil ethanolysis catalyzed by solid glycerol-enriched calcium oxide

    International Nuclear Information System (INIS)

    Avhad, M.R.; Sánchez, M.; Bouaid, A.; Martínez, M.; Aracil, J.; Marchetti, J.M.

    2016-01-01

    Highlights: • Raw materials for biodiesel production can be obtained from the natural resources. • The glycerol-enriched CaO catalyst was tested for the ethanolysis of avocado oil. • CaO synthesized through the thermal treatment of Mytilus Galloprovincialis shells. • The ethanol-adsorption step controlled the overall ethanolysis process. • The physico-chemical properties of avocado oil and FAEEs is presented. - Abstract: The catalytic activity of glycerol-enriched calcium oxide for the alcoholysis reaction between avocado oil and ethanol was investigated. The calcium oxide was derived from Mytilus Galloprovincialis shells. This study systematically examined the influence of temperature, ethanol-to-oil molar ratio, and the catalyst amount on the variation in the concentration of triacylglycerols and biodiesel with reaction time. The interaction between the reaction variables (ethanol-to-oil molar ratio and catalyst amount), their influence on the ethanolysis process, and the optimum variables affecting the process were determined through the response surface methodology. A previously developed mathematical model was applied for the current ethanolysis process, and the model parameters were determined. The ethanolysis reaction occurred between the surface chemisorbed ethoxide ions and oil molecules in the liquid phase, while, the overall process was controlled by the ethanol-adsorption step. The physico-chemical properties of biodiesel, produced using potassium methoxide catalyst, were additionally measured.

  8. Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway

    Directory of Open Access Journals (Sweden)

    Syuichi Itahashi

    2018-04-01

    Full Text Available We refined the aqueous-phase sulfate (SO42− production in the state-of-the-art Community Multiscale Air Quality (CMAQ model during the Japanese model inter-comparison project, known as Japan’s Study for Reference Air Quality Modeling (J-STREAM. In Japan, SO42− is the major component of PM2.5, and CMAQ reproduces the observed seasonal variation of SO42− with the summer maxima and winter minima. However, CMAQ underestimates the concentration during winter over Japan. Based on a review of the current modeling system, we identified a possible reason as being the inadequate aqueous-phase SO42− production by Fe- and Mn-catalyzed O2 oxidation. This is because these trace metals are not properly included in the Asian emission inventories. Fe and Mn observations over Japan showed that the model concentrations based on the latest Japanese emission inventory were substantially underestimated. Thus, we conducted sensitivity simulations where the modeled Fe and Mn concentrations were adjusted to the observed levels, the Fe and Mn solubilities were increased, and the oxidation rate constant was revised. Adjusting the concentration increased the SO42− concentration during winter, as did increasing the solubilities and revising the rate constant to consider pH dependencies. Statistical analysis showed that these sensitivity simulations improved model performance. The approach adopted in this study can partly improve model performance in terms of the underestimation of SO42− concentration during winter. From our findings, we demonstrated the importance of developing and evaluating trace metal emission inventories in Asia.

  9. Fish proteins as targets of ferrous-catalyzed oxidation: identification of protein carbonyls by fluorescent labeling on two-dimensional gels and MALDI-TOF/TOF mass spectrometry.

    Science.gov (United States)

    Pazos, Manuel; da Rocha, Angela Pereira; Roepstorff, Peter; Rogowska-Wrzesinska, Adelina

    2011-07-27

    Protein oxidation in fish meat is considered to affect negatively the muscle texture. An important source of free radicals taking part in this process is Fenton's reaction dependent on ferrous ions present in the tissue. The aim of this study was to investigate the susceptibility of cod muscle proteins in sarcoplasmic and myofibril fractions to in vitro metal-catalyzed oxidation and to point out protein candidates that might play a major role in the deterioration of fish quality. Extracted control proteins and proteins subjected to free radicals generated by Fe(II)/ascorbate mixture were labeled with fluorescein-5-thiosemicarbazide (FTSC) to tag carbonyl groups and separated by two-dimensional gel electrophoresis. Consecutive visualization of protein carbonyl levels by capturing the FTSC signal and total protein levels by capturing the SyproRuby staining signal allowed us to quantify the relative change in protein carbonyl levels corrected for changes in protein content. Proteins were identified using MALDI-TOF/TOF mass spectrometry and homology-based searches. The results show that freshly extracted cod muscle proteins exhibit a detectable carbonylation background and that the incubation with Fe(II)/ascorbate triggers a further oxidation of both sarcoplasmic and myofibril proteins. Different proteins exhibited various degrees of sensitivity to oxidation processes. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), nucleoside diphosphate kinase B (NDK), triosephosphate isomerase, phosphoglycerate mutase, lactate dehydrogenase, creatine kinase, and enolase were the sarcoplasmic proteins most vulnerable to ferrous-catalyzed oxidation. Moreover, NDK, phosphoglycerate mutase, and GAPDH were identified in several spots differing by their pI, and those forms showed different susceptibilities to metal-catalyzed oxidation, indicating that post-translational modifications may change the resistance of proteins to oxidative damage. The Fe(II)/ascorbate treatment significantly

  10. Enhanced removal of aqueous acetaminophen by a laccase-catalyzed oxidative coupling reaction under a dual-pH optimization strategy.

    Science.gov (United States)

    Wang, Kaidong; Huang, Ke; Jiang, Guoqiang

    2018-03-01

    Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. (E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation.

    Science.gov (United States)

    Shi, Renyi; Zhang, Hua; Lu, Lijun; Gan, Pei; Sha, Yuchen; Zhang, Heng; Liu, Qiang; Beller, Matthias; Lei, Aiwen

    2015-02-21

    A novel Pd/Cu-catalyzed chemoselective aerobic oxidative N-dealkylation/carbonylation reaction has been developed. Tertiary amines are utilized as a "reservoir" of "active" secondary amines in this transformation, which inhibits the formation of undesired by-products and the deactivation of the catalysts. This protocol allows for an efficient and straightforward construction of synthetically useful and bioactive (E)-α,β-unsaturated amide derivatives from easily available tertiary amines, olefins and CO.

  12. Tandem Rh-Catalyzed Oxidative C-H Olefination and Cyclization of Enantiomerically Enriched Benzo-1,3-Sulfamidates: Stereoselective Synthesis of trans-1,3-Disubstituted Isoindolines.

    Science.gov (United States)

    Achary, Raghavendra; Jung, In-A; Lee, Hyeon-Kyu

    2018-04-06

    A tandem process, involving Rh(III)-catalyzed oxidative C-H olefination of enantiomerically enriched 4-aryl-benzo-1,3-sulfamidates and subsequent intramolecular aza-Michael cyclization has been developed. The reaction produces trans-benzosulfamidate-fused-1,3-disubstituted isoindolines as major products, in which the configurational integrity of the stereogenic center in the starting material is preserved. Further transformations of the benzosulfamidate-fused-1,3-disubstituted isoindolines are described.

  13. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.

    Science.gov (United States)

    Wang, Jun; Chen, Zaiming; Chen, Baoliang

    2014-05-06

    The adsorption of naphthalene, phenanthrene, and pyrene onto graphene (GNS) and graphene oxide (GO) nanosheets was investigated to probe the potential adsorptive sites and molecular mechanisms. The microstructure and morphology of GNS and GO were characterized by elemental analysis, XPS, FTIR, Raman, SEM, and TEM. Graphene displayed high affinity to the polycyclic aromatic hydrocarbons (PAHs), whereas GO adsorption was significantly reduced after oxygen-containing groups were attached to GNS surfaces. An unexpected peak was found in the curve of adsorption coefficients (Kd) with the PAH equilibrium concentrations. The hydrophobic properties and molecular sizes of the PAHs affected the adsorption of G and GO. The high affinities of the PAHs to GNS are dominated by π-π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS surfaces. In contrast, the adsorptive sites of GO changed to the carboxyl groups attaching to the edges of GO because the groove regions disappeared and the polar nanosheet surfaces limited the π-π interactions. The TEM and SEM images initially revealed that after loading with PAH, the conformation and aggregation of GNS and GO nanosheets dramatically changed, which explained the observations that the potential adsorption sites of GNS and GO were unusually altered during the adsorption process.

  14. Multi-metallic oxides as catalysts for light alcohols and hydrocarbons from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Miguel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Diaz, L; Galindo, H de J; Dominguez, J. M; Salmon, Manuel [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1999-08-01

    A series of Cu-Co-Cr oxides doped with alkaline metals (M), were prepared by the coprecipitation method with metal nitrates (Cu{sup I}I, CO{sup I}I, CR{sup I}II) and (M{sub 2})CO{sub 3} in aqueous solution. The calcined products were used as catalysts for the Fisher-Tropsch synthesis in a stainless-steel fixed bed microreactor. The material was characterized by x-ray diffraction, and the specific surface area, pore size and nitrogen adsorption-desorption properties were also determined. The alkaline metals favored the methanol synthesis and prevent the dehydration reactions whereas the hydrocarbon formation is independent to these metals. [Spanish] Una serie de oxidos Cu-Co-Cr soportados con metales alcalinos (M), fueron preparados por el metodo con nitratos metalicos (Cu{sup I}I, CO{sup I}I, CR{sup I}II) y (M{sub 2})CO{sub 3} en soluciones acuosas. Los productos calcinados fueron usados como catalizadores para la sintesis de Fisher-tropsch en la superficie fija de un microreactor de acero inoxidable. El material fue caracterizado por difraccion de rayos X y el area de superficie especifica, el tamano de poro y propiedades de absorcion-desorcion de nitrogeno fueron determinadas. Los metales alcalinos favorecieron la sintesis de metanol y previnieron las reacciones de deshidratacion, mientras que la formacion de hidrocarburos es independiente de estos metales.

  15. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    Science.gov (United States)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  16. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air

    Science.gov (United States)

    Hanson, Susan Kloek; Silks, Louis A; Wu, Ruilian

    2013-08-27

    The invention concerns processes for oxidizing an alcohol to produce a carbonyl compound. The processes comprise contacting the alcohol with (i) a gaseous mixture comprising oxygen; and (ii) an amine compound in the presence of a catalyst, having the formula: ##STR00001## where each of R.sup.1-R.sup.12 are independently H, alkyl, aryl, CF.sub.3, halogen, OR.sup.13, SO.sub.3R.sup.14, C(O)R.sup.15, CONR.sup.16R.sup.17 or CO.sub.2R.sup.18; each of R.sup.13-R.sup.18 is independently alkyl or aryl; and Z is alkl or aryl.

  17. CORONA-INDUCED PHOTOXIDATION OF ALCOHOLS AND HYDROCARBONS OVER TIO2 IN THE ABSENCE OF A UV LIGHT SOURCE - A NOVEL AND ENVIRONMENTALLY FRIENDLY METHOD FOR OXIDATION

    Science.gov (United States)

    Corona-induced photooxidation is a novel oxidation methodology for the efficient oxidation of alcohols and hydrocarbons utilizing the advantage of both the high oxidizing power of ozone formed in the reactor as well as the photooxidation capability of the UV light generated durin...

  18. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peñ a, Gerardo D.J.; Alrefaai, Mhd Maher; Yang, Seung Yeon; Raj, Abhijeet; Brito, Joaquin L.; Stephen, Samuel; Anjana, Tharalekshmy; Pillai, Vinu; Al Shoaibi, Ahmed; Chung, Suk-Ho

    2016-01-01

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  19. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot

    KAUST Repository

    Guerrero Peña, Gerardo D.J.

    2016-07-23

    The substituted and unsubstituted aromatic hydrocarbons, present in transportation fuels such as gasoline and diesel, are thought to be responsible for most of the soot particles produced during their combustion. However, the effects of the substituted alkyl groups on the aromatic hydrocarbons on their sooting tendencies, and on the physical and chemical properties of soot produced from them are not well understood. In this work, the effect of the presence of methyl groups on aromatic hydrocarbons on their sooting propensity, and on the oxidative reactivity, morphology, and chemical composition of soot generated from them in diffusion flames is studied using benzene, toluene, and m-xylene as fuels. Several experimental techniques including high resolution transmission electron microscopy and X-ray diffraction are used to identify the morphological changes in soot, whereas the elemental and thermo-gravimetric analyses, electron energy loss spectroscopy, and Fourier transform infrared spectroscopy are used to study the changes in its chemical properties and reactivity. The activation energies for soot oxidation are calculated at different conversion levels, and a trend in the reactivity of soots from benzene, toluene and m-xylene is reported. It is observed that the sizes of primary particles and graphene-like sheets, and the concentrations of aliphatics and oxygenated groups in soot particles decreased with the addition of methyl group(s) on the aromatic ring. The physicochemical changes in soot are found to support the oxidative reactivity trends. © 2016 The Combustion Institute

  20. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  1. Oxidative desulfurization of fuels catalyzed by Fenton-like ionic liquids at room temperature.

    Science.gov (United States)

    Jiang, Yunqing; Zhu, Wenshuai; Li, Huaming; Yin, Sheng; Liu, Hua; Xie, Qingjie

    2011-03-21

    Oxidation of the sulfur-containing compounds benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been studied in a desulfurization system composed of model oil, hydrogen peroxide, and different types of ionic liquids [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3), [(C(8)H(17))(3)CH(3)N]Cl/CuCl(2), [(C(8)H(17))(3)CH(3)N]Cl/ZnCl(2), [(C(8)H(17))(3)CH(3)N]Cl/SnCl(2), [(C(4)H(9))(3)CH(3)N]Cl/FeCl(3), [C(10)H(21)(CH(3))(3)N]Cl/FeCl(3), [(C(10)H(21))(2)(CH(3))(2)N]Cl/FeCl(3). Deep desulfurization is achieved in the Fenton-like ionic liquid [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) at 25 °C for 1 h. The desulfurization of DBT reaches 97.9%, in consuming very low amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) (only 0.702 mmol). The reaction conditions, for example, the amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) or H(2)O(2), the temperature, and the molar ratio of FeCl(3) to [(C(8)H(17))(3)CH(3)N]Cl, are investigated for this system. The oxidation reactivity of the different sulfur-containing compounds is found to decrease in the order of DBT>BT>4,6-DMDBT. The desulfurization system can be recycled six times without significant decrease in activity. The sulfur level of FCC gasoline could be reduced from 360 ppm to 110 ppm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars.

    Science.gov (United States)

    Marlow, Jeffrey J; Larowe, Douglas E; Ehlmann, Bethany L; Amend, Jan P; Orphan, Victoria J

    2014-04-01

    This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2 partial pressures. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was constructed to examine how environmentally relevant parameters such as advection velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath the surface and in surface exposures of eroded ancient terrains.

  3. Kinetics and mechanism of OsOsub(4) catalyzed oxidation of chalcones by Cesub(4) in aqueous acetic sulfuric acid media

    International Nuclear Information System (INIS)

    Srinivasulu, P.V.; Adinarayana, M.; Sethuram, B.; Rao, T.N.

    1985-01-01

    Kinetics of OsOsub(4) catalyzed oxidation of chalcones by Cesup(4+) was studied in aqueous acetic-sulfuric acid medium in the temperature range 313 to 338 K. The order in oxidant is zero while the order with respect to substrate and catalyst are each fractional. The rate of the reaction decreased with increase in percentage of acetic acid while [Hsup(+)] had practically no effect on the rate. The rates of various substituted chalcones are given. A mechanism in which formation of a cyclic ester between chalcone and OsOsub(4) in a fast step followed by its decomposition in a rate-determining step is envisaged. (author)

  4. Iron-catalyzed oxidative biaryl cross-couplings via mixed diaryl titanates: significant influence of the order of combining aryl Grignard reagents with titanate.

    Science.gov (United States)

    Liu, Kun Ming; Wei, Juan; Duan, Xin Fang

    2015-03-18

    The mixed diaryl titanates were used for the first time to modify the reactivity of two aryl Grignard reagents. Two titanate intermediates, Ar[Ar'Ti(OR)3]MgX and Ar'[ArTi(OR)3]MgX, formed via alternating the sequence of combining Grignard reagents with ClTi(OR)3 showed a significant reactivity difference. Taking advantage of such different reactivity, two highly structurally similar aryl groups could be facilely assembled through iron-catalyzed oxidative cross-couplings using oxygen as the oxidant.

  5. Identification and characterization of epoxide hydrolase activity of polycyclic aromatic hydrocarbon-degrading bacteria for biocatalytic resolution of racemic styrene oxide and styrene oxide derivatives.

    Science.gov (United States)

    Woo, Jung-Hee; Kwon, Tae-Hyung; Kim, Jun-Tae; Kim, Choong-Gon; Lee, Eun Yeol

    2013-04-01

    A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.

  6. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing ▿ †

    Science.gov (United States)

    Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.

    2010-01-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448

  7. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

    Science.gov (United States)

    Redmond, Molly C; Valentine, David L; Sessions, Alex L

    2010-10-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.

  8. A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation.

    Science.gov (United States)

    Zhang, Liming

    2014-03-18

    For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C-H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The

  9. A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation

    Science.gov (United States)

    2015-01-01

    For the past dozen years, homogeneous gold catalysis has evolved from a little known topic in organic synthesis to a fully blown research field of significant importance to synthetic practitioners, due to its novel reactivities and reaction modes. Cationic gold(I) complexes are powerful soft Lewis acids that can activate alkynes and allenes toward efficient attack by nucleophiles, leading to the generation of alkenyl gold intermediates. Some of the most versatile aspects of gold catalysis involve the generation of gold carbene intermediates, which occurs through the approach of an electrophile to the distal end of the alkenyl gold moiety, and their diverse transformations thereafter. On the other hand, α-oxo metal carbene/carbenoids are highly versatile intermediates in organic synthesis and can undergo various synthetically challenging yet highly valuable transformations such as C–H insertion, ylide formation, and cyclopropanation reactions. Metal-catalyzed dediazotizations of diazo carbonyl compounds are the principle and most reliable strategy to access them. Unfortunately, the substrates contain a highly energetic diazo moiety and are potentially explosive. Moreover, chemists need to use energetic reagents to prepare them, putting further constrains on operational safety. In this Account, we show that the unique access to the gold carbene species in homogeneous gold catalysis offers an opportunity to generate α-oxo gold carbenes if both nucleophile and electrophile are oxygen. Hence, this approach would enable readily available and safer alkynes to replace hazardous α-diazo carbonyl compounds as precursors in the realm of gold carbene chemistry. For the past several years, we have demonstrated that alkynes can indeed effectively serve as precursors to versatile α-oxo gold carbenes. In our initial study, we showed that a tethered sulfoxide can be a suitable oxidant, which in some cases leads to the formation of α-oxo gold carbene intermediates. The

  10. Remediation of total petroleum hydrocarbons using combined in-vessel composting ‎and oxidation by activated persulfate

    Directory of Open Access Journals (Sweden)

    A.R. Asgari

    2017-12-01

    Full Text Available This study was investigated the efficiency of activated persulfate and ‎in-vessel composting for removal of total petroleum hydrocarbons. ‎Remediation by activated persulfate with ferrous sulfate as pre-treatment was done at batch system. In the chemical oxidation, various variables including persulfate concentrations (10-3000 mg/g as waste, pH (3-7, ferrous sulfate (0.5-4 mg/g as wasteand temperature (20-60°C were studied. In the biological system, premature compost was added as an amendment. The filter cake to compost ratio were 1:0 (as control and 1:5 to 15 (as dry basis. C: N: P ratio and moisture content were 100:5:1 and 45-60%, respectively. The results showed that acidic pH (pH=3 had high efficiency for the removal of total petroleum hydrocarbons by activated persulfate. Temperature had the significant effect during the persulfate oxidation. When ferrous sulfate was used as an activator for degradation at acidic condition and 60°C, removal efficiency increased to 47.32%. The results of biological process showed that the minimum total petroleum hydrocarbons removal in all reactors was 62 percent. The maximum and minimum removal efficiency was obtained at 1:5 (69.46% and 1:10 (62.42% mixing ratios, respectively. Kinetic study showed that second order kinetic model (R2>0.81 shows the best agreement with the experimental data and the rate of TPH degradation at low mixing ratio (1:3 was faster than high mixing ratio (1:15. Therefore, according to the results, in-vessel composting after pre-treatment by activated persulfate is suggested as an efficient process for degradation of total petroleum hydrocarbons.

  11. Catalysis by mixed oxide perovskites. II. The hydrogenolysis of C/sub 3/-C/sub 5/ hydrocarbons on LaCoO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, K; Inoue, Y; Yasumori, I

    1981-06-01

    The catalytic hydrogenolysis of C/sub 3/ to C/sub 5/ alkanes on LaCoO/sub 3/ perovskite oxide was found to show a highly selective formation of methane in the temperature range of 350 to 620 K. The reaction order with respect to the hydrocarbon pressure was unity in every hydrogenolysis, whereas, the hydrogen order increased from zero for propane to 1.0 for butane and isobutane and to 2.0 for pentane, isopentane, and neopentane. The activation energies of the reactions ranged from 120 for propane to 32 kJ mol/sup -1/ for butane. The reaction of propane or butane with D/sub 2/ on LaCoO/sub 3/ provided large fractions of methane (D/sub 3/) and (D/sub 4/), but a negligible amount of deuterium-exchanged alkanes. An equilibrium among the gaseous H/sub 2/, HD and D/sub 2/ was reached. These hydrogenolyses are described by a mechanism involving the almost concurrent rupture of all the carbon-carbon bonds in the alkanes by the attack of adsorbed hydrogen atoms, and were proposed to be catalyzed by a synergetic effect; the CO/sup 3 +/ ion is effective in breaking the C-C bond, whereas the La/sup 3 +/ and O/sup 2 -/ ions serve to supply hydrogen atoms to the decomposed species. The reaction of propene or butenes with hydrogen produced the corresponding alkanes and methane. The kinetic analyses showed that the fractions of methane produced consecutively via the alkanes amounted to 16% for propene and to more than 93% for butenes. The observed pressure dependence and deuterium distributions in the alkene hydrogenation were interpreted in terms of the associative mechanism. The correlation between the structures of the reactant molecules and of the active sites present on LaCoO/sub 3/ was briefly discussed.

  12. Mechanistic studies related to the metal catalyzed reduction of carbon monoxide to hydrocarbons. Final report, April 1, 1977-June 30, 1985

    International Nuclear Information System (INIS)

    Casey, C.P.

    1985-02-01

    Studies of compounds related to proposed intermediates in the hydrogenation of carbon monoxide over homogeneous and heterogeneous catalysts have been carried out. The synthesis, structure, and reactions of metal formyl compounds have been investigated. The synthesis and desproportionation reactions of hydroxymethyl metal compounds have been explored. Reactions involving interconversion of n 5 - and n'-C 5 H 5 organometallic compounds have been discovered. New synthetic routes to bimetallic compounds with bridging hydrocarbon ligands have been developed. The first bimetallic compound with a budging CH ligand has been prepared. The hydrocarbation reaction in which the CH bond of a bridging methylidyne complex adds across a carbon-carbon double bond has been discovered. New heterobimetallic compounds linked by a heterodifunctional ligand and heterobimetallic compounds with directly bonded early and late transition metals have been synthesized in a search for new CO hydrogenation catalysts. 36 refs

  13. Eosin Y photoredox catalyzed net redox neutral reaction for regiospecific annulation to 3-sulfonylindoles via anion oxidation of sodium sulfinate salts.

    Science.gov (United States)

    Rohokale, Rajendra S; Tambe, Shrikant D; Kshirsagar, Umesh A

    2018-01-24

    An eosin Y photoredox catalyzed net redox neutral process for 3-sulfonylindoles via the anionic oxidation of sodium sulfinate salts and its radical cascade cyclization with 2-alkynyl-azidoarenes was developed with visible light as a mediator. The reaction offers metal and oxidant/reductant free, visible light mediated vicinal sulfonamination of alkynes to 2-aryl/alkyl-3-sulfonylindoles and proceeds via the generation of a sulfur-centered radical through direct oxidation of the sulfinate anion by an excited photocatalyst with a reductive quenching cycle. The mild conditions, use of an organic dye as photo-catalyst, bench stability and easily accessible starting materials make the present approach green and attractive.

  14. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    Science.gov (United States)

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  15. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    Science.gov (United States)

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  16. Dynamics of the NbCl5-catalyzed cycloaddition of propylene oxide and CO2: Assessing the dual role of the nucleophilic co-catalysts

    KAUST Repository

    D'Elia, Valerio

    2014-07-23

    A mechanistic study on the synthesis of propylene carbonate (PC) from CO2 and propylene oxide (PO) catalyzed by NbCl5 and organic nucleophiles such as 4-dimethylaminopyridine (DMAP) or tetra-n-butylammonium bromide (NBu4Br) is reported. A combination of in situ spectroscopic techniques and kinetic studies has been used to provide detailed insight into the reaction mechanism, the formation of intermediates, and interactions between the reaction partners. The results of DFT calculations support the experimental observations and allow us to propose a mechanism for this reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. N-Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C–H Oxidation

    Science.gov (United States)

    2015-01-01

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C–H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C–H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C–H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration. PMID:24999765

  18. N-Boc amines to oxazolidinones via Pd(II)/bis-sulfoxide/Brønsted acid co-catalyzed allylic C-H oxidation.

    Science.gov (United States)

    Osberger, Thomas J; White, M Christina

    2014-08-06

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C-H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C-H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C-H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration.

  19. Mechanistic Study of the Oxidative Coupling of Styrene with 2-Phenylpyridine Derivatives Catalyzed by Cationic Rhodium( III) via C–H Activation

    Science.gov (United States)

    Brasse, Mikaël; Cámpora, Juan; Ellman, Jonathan A.; Bergman, Robert G.

    2013-01-01

    The Rh(III) catalyzed oxidative coupling of alkenes with arenes provides a greener alternative to the classical Heck reaction for the synthesis of arene-functionalized alkenes. The present mechanistic study gives insights for the rational development of this key transformation. The catalyst resting states and the rate law of the reaction have been identified. The reaction rate is solely dependent on catalyst and alkene concentrations and the rate determining step is the migratory insertion of alkene into a Rh–C(aryl) bond. PMID:23590843

  20. Evaluation of the Removal of Hydrocarbons from Soil Media Using Persulfate Oxidation in the Presence of Mineral Siderite

    Directory of Open Access Journals (Sweden)

    Farzad Mohammadi

    2016-09-01

    Full Text Available Introduction and purpose: Soil contamination by petroleum is mostly resulted from oil exploration, refining processes, leaking of oil products from storage tanks, leaking from pipelines due to pipe friction and decay, refinery wastewater discharge and agricultural irrigation with such materials. Sodium persulfate (Na2S2O8, which is a chemical oxidant, could be activated in the presence of ferrous (Fe2+ and, leading to the treatment of a wide range of soil contaminants. Therefore, this study aimed to evaluate the removal of hydrocarbons from soil media using persulfate oxidation in the presence of mineral siderite. Methods: Initially, oil-contaminated soil was prepared in the form of two separate samples, including silt-clay and sandy-loam soils, which were orderly spiked with 5000 mg fuel oil per kilogram of dry soil. Following that, the effects of various factors, such as different concentrations of persulfate (100-500 mmol/L and siderite (0.1-0.5 g/L, pH (3-9 and temperature (20-60◦C and the removal of petroleum hydrocarbon were assessed.Results: In this study, the optimum condition for degeneration of total petroleum hydrocarbon in silt-clay soils was reported, as follows: temperature: 60◦C, pH: 3, and persulfate/siderite molar ratio of 400 mmol/L to 4.0 g/L. Meanwhile, the optimum condition for the removal of hydrocarbon from sandy-loam soils was pH: 3, temperature: 60◦C and persulfate/siderite molar ratio of 300 mmol/L to 3.0 g/L.Conclusion: According to the results of this study, the optimal amount of persulfate and siderite could be used to remove hydrocarbons from contaminated soils.

  1. Fate Of Fissile Material Bound To Monosodium Titanate During Cooper Catalyzed Peroxide Oxidation Of Tank 48H Waste

    International Nuclear Information System (INIS)

    Taylor-Pashow, K.

    2012-01-01

    At the Savannah River Site (SRS), Tank 48H currently holds approximately 240,000 gallons of slurry which contains potassium and cesium tetraphenylborate (TPB). A copper catalyzed peroxide oxidation (CCPO) reaction is currently being examined as a method for destroying the TPB present in Tank 48H. Part of the development of that process includes an examination of the fate of the Tank 48H fissile material which is adsorbed onto monosodium titanate (MST) particles. This report details results from experiments designed to examine the potential degradation of MST during CCPO processing and the subsequent fate of the adsorbed fissile material. Experiments were conducted to simulate the CCPO process on MST solids loaded with sorbates in a simplified Tank 48H simulant. Loaded MST solids were placed into the Tank 48H simplified simulant without TPB, and the experiments were then carried through acid addition (pH adjustment to 11), peroxide addition, holding at temperature (50 C) for one week, and finally NaOH addition to bring the free hydroxide concentration to a target concentration of 1 M. Testing was conducted without TPB to show the maximum possible impact on MST since the competing oxidation of TPB with peroxide was absent. In addition, the Cu catalyst was also omitted, which will maximize the interaction of H 2 O 2 with the MST; however, the results may be non-conservative assuming the Cu-peroxide active intermediate is more reactive than the peroxide radical itself. The study found that both U and Pu desorb from the MST when the peroxide addition begins, although to different extents. Virtually all of the U goes into solution at the beginning of the peroxide addition, whereas Pu reaches a maximum of ∼34% leached during the peroxide addition. Ti from the MST was also found to come into solution during the peroxide addition. Therefore, Ti is present with the fissile in solution. After the peroxide addition is complete, the Pu and Ti are found to precipitate from

  2. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  3. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    Science.gov (United States)

    Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  4. Palladium(II-Catalyzed othro-C–H-Benzoxylation of 2-Arylpyridines by Oxidative Coupling with Aryl Acylperoxides

    Directory of Open Access Journals (Sweden)

    Wing-Yiu Yu

    2013-04-01

    Full Text Available A palladium(II-catalyzed ortho-benzoxylation of 2-arylpyridines with aryl acylperoxides was developed. With pyridyl as directing group, the benzoxylation reaction exhibits remarkable regioselectivity and excellent functional group tolerance, providing the products in up to 87% yield.

  5. Silica Supported Platinum Catalysts for Total Oxidation of the Polyaromatic Hydrocarbon Naphthalene: An Investigation of Metal Loading and Calcination Temperature

    Directory of Open Access Journals (Sweden)

    David R. Sellick

    2015-04-01

    Full Text Available A range of catalysts comprising of platinum supported on silica, prepared by an impregnation method, have been studied for the total oxidation of naphthalene, which is a representative Polycyclic Aromatic Hydrocarbon. The influence of platinum loading and calcination temperature on oxidation activity was evaluated. Increasing the platinum loading up to 2.5 wt.% increased the catalyst activity, whilst a 5.0 wt.% catalyst was slightly less active. The catalyst containing the optimum 2.5 wt.% loading was most active after calcination in air at 550 °C. Characterisation by carbon monoxide chemisorption and X-ray photoelectron spectroscopy showed that low platinum dispersion to form large platinum particles, in combination with platinum in metallic and oxidised states was important for high catalyst activity. Catalyst performance improved after initial use in repeat cycles, whilst there was slight deactivation after prolonged time-on-stream.

  6. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  7. Long-term chemiluminescence signal is produced in the course of luminol oxidation catalyzed by enhancer-independent peroxidase purified from Jatropha curcas leaves.

    Science.gov (United States)

    Duan, Peipei; Cai, Feng; Luo, Yongting; Chen, Yangxi; Zou, Shujuan

    2015-09-01

    Isoenzyme c of horseradish peroxidase (HRP-C) is widely used in enzyme immunoassay combined with chemiluminescence (CL) detection. For this application, HRP-C activity measurement is usually based on luminol oxidation in the presence of hydrogen peroxide (H2O2). However, this catalysis reaction was enhancer dependent. In this study, we demonstrated that Jatropha curcas peroxidase (JcGP1) showed high efficiency in catalyzing luminol oxidation in the presence of H2O2. Compared with HRP-C, the JcGP1-induced reaction was enhancer independent, which made the enzyme-linked immunosorbent assay (ELISA) simpler. In addition, the JcGP1 catalyzed reaction showed a long-term stable CL signal. We optimized the conditions for JcGP1 catalysis and determined the favorable conditions as follows: 50 mM Tris buffer (pH 8.2) containing 10 mM H2 O2, 14 mM luminol and 0.75 M NaCl. The optimum catalysis temperature was 30°C. The detection limit of JcGP1 under optimum condition was 0.2 pM. Long-term stable CL signal combined with enhancer-independent property indicated that JcGP1 might be a valuable candidate peroxidase for clinical diagnosis and enzyme immunoassay with CL detection. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Label-Free and Ultrasensitive Biomolecule Detection Based on Aggregation Induced Emission Fluorogen via Target-Triggered Hemin/G-Quadruplex-Catalyzed Oxidation Reaction.

    Science.gov (United States)

    Li, Haiyin; Chang, Jiafu; Gai, Panpan; Li, Feng

    2018-02-07

    Fluorescence biosensing strategy has drawn substantial attention due to their advantages of simplicity, convenience, sensitivity, and selectivity, but unsatisfactory structure stability, low fluorescence quantum yield, high cost of labeling, and strict reaction conditions associated with current fluorescence methods severely prohibit their potential application. To address these challenges, we herein propose an ultrasensitive label-free fluorescence biosensor by integrating hemin/G-quadruplex-catalyzed oxidation reaction with aggregation induced emission (AIE) fluorogen-based system. l-Cysteine/TPE-M, which is carefully and elaborately designed and developed, obviously contributes to strong fluorescence emission. In the presence of G-rich DNA along with K + and hemin, efficient destruction of l-cysteine occurs due to hemin/G-quadruplex-catalyzed oxidation reactions. As a result, highly sensitive fluorescence detection of G-rich DNA is readily realized, with a detection limit down to 33 pM. As a validation for the further development of the proposed strategy, we also successfully construct ultrasensitive platforms for microRNA by incorporating the l-cysteine/TPE-M system with target-triggered cyclic amplification reaction. Thus, this proposed strategy is anticipated to find use in basic biochemical research and clinical diagnosis.

  9. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction

    Science.gov (United States)

    Pedrini, Nicolás; Ortiz-Urquiza, Almudena; Huarte-Bonnet, Carla; Zhang, Shizhu; Keyhani, Nemat O.

    2013-01-01

    Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon

  10. Oxidant-free Rh(III)-catalyzed direct C-H olefination of arenes with allyl acetates.

    Science.gov (United States)

    Feng, Chao; Feng, Daming; Loh, Teck-Peng

    2013-07-19

    Rh(III)-catalyzed direct olefination of arenes with allyl acetate via C-H bond activation is described using N,N-disubstituted aminocarbonyl as the directing group. The catalyst undergoes a redox neutral process, and high to excellent yields of trans-products are obtained. This protocol exhibits a wide spectrum of functionality compatibility because of the simple reaction conditions employed and provides a highly effective synthetic method in the realm of C-H olefination.

  11. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior.

    Science.gov (United States)

    Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven

    2014-02-03

    A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.

  12. The Oxidative Metabolism of Fossil Hydrocarbons and Sulfide Minerals by the Lithobiontic Microbial Community Inhabiting Deep Subterrestrial Kupferschiefer Black Shale

    Directory of Open Access Journals (Sweden)

    Agnieszka Włodarczyk

    2018-05-01

    Full Text Available Black shales are one of the largest reservoirs of fossil organic carbon and inorganic reduced sulfur on Earth. It is assumed that microorganisms play an important role in the transformations of these sedimentary rocks and contribute to the return of organic carbon and inorganic sulfur to the global geochemical cycles. An outcrop of deep subterrestrial ~256-million-year-old Kupferschiefer black shale was studied to define the metabolic processes of the deep biosphere important in transformations of organic carbon and inorganic reduced sulfur compounds. This outcrop was created during mining activity 12 years ago and since then it has been exposed to the activity of oxygen and microorganisms. The microbial processes were described based on metagenome and metaproteome studies as well as on the geochemistry of the rock. The microorganisms inhabiting the subterrestrial black shale were dominated by bacterial genera such as Pseudomonas, Limnobacter, Yonghaparkia, Thiobacillus, Bradyrhizobium, and Sulfuricaulis. This study on black shale was the first to detect archaea and fungi, represented by Nitrososphaera and Aspergillus genera, respectively. The enzymatic oxidation of fossil aliphatic and aromatic hydrocarbons was mediated mostly by chemoorganotrophic bacteria, but also by archaea and fungi. The dissimilative enzymatic oxidation of primary reduced sulfur compounds was performed by chemolithotrophic bacteria. The geochemical consequences of microbial activity were the oxidation and dehydrogenation of kerogen, as well as oxidation of sulfide minerals.

  13. The Study of NADPH-Dependent Flavoenzyme-Catalyzed Reduction of Benzo[1,2-c]1,2,5-oxadiazole N-Oxides (Benzofuroxans

    Directory of Open Access Journals (Sweden)

    Jonas Šarlauskas

    2014-12-01

    Full Text Available The enzymatic reactivity of a series of benzo[1,2-c]1,2,5-oxadiazole N-oxides (benzofuroxans; BFXs towards mammalian single-electron transferring NADPH:cytochrome P-450 reductase (P-450R and two-electron (hydride transferring NAD(PH:quinone oxidoreductase (NQO1 was examined in this work. Since the =N+ (→OO− moiety of furoxan fragments of BFXs bears some similarity to the aromatic nitro-group, the reactivity of BFXs was compared to that of nitro-aromatic compounds (NACs whose reduction mechanisms by these and other related flavoenzymes have been extensively investigated. The reduction of BFXs by both P-450R and NQO1 was accompanied by O2 uptake, which was much lower than the NADPH oxidation rate; except for annelated BFXs, whose reduction was followed by the production of peroxide. In order to analyze the possible quantitative structure-activity relationships (QSARs of the enzymatic reactivity of the compounds, their electron-accepting potency and other reactivity indices were assessed by quantum mechanical methods. In P-450R-catalyzed reactions, both BFXs and NACs showed the same reactivity dependence on their electron-accepting potency which might be consistent with an “outer sphere” electron transfer mechanism. In NQO1-catalyzed two-electron (hydride transferring reactions, BFXs acted as more efficient substrates than NACs, and the reduction efficacy of BFXs by NQO1 was in general higher than by single-electron transferring P-450R. In NQO1-catalyzed reactions, QSARs obtained showed that the reduction efficacy of BFXs, as well as that of NACs, was determined by their electron-accepting potency and could be influenced by their binding mode in the active center of NQO1 and by their global softness as their electronic characteristic. The reductive conversion of benzofuroxan by both flavoenzymes yielded the same reduction product of benzofuroxan, 2,3-diaminophenazine, with the formation of o-benzoquinone dioxime as a putative primary

  14. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi, E-mail: hamaguch@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Osaka University, Yamadaoka 2-1, Suita 565-0871 (Japan); Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya [Device and Material R& D Group, RDS Platform, Sony Corporation, Kanagawa 243-0014 (Japan)

    2015-11-15

    Sputtering yields and surface chemical compositions of tin-doped indium oxide (or indium tin oxide, ITO) by CH{sup +}, CH{sub 3}{sup +}, and inert-gas ion (He{sup +}, Ne{sup +}, and Ar{sup +}) incidence have been obtained experimentally with the use of a mass-selected ion beam system and in-situ x-ray photoelectron spectroscopy. It has been found that etching of ITO is chemically enhanced by energetic incidence of hydrocarbon (CH{sub x}{sup +}) ions. At high incident energy incidence, it appears that carbon of incident ions predominantly reduce indium (In) of ITO and the ITO sputtering yields by CH{sup +} and CH{sub 3}{sup +} ions are found to be essentially equal. At lower incident energy (less than 500 eV or so), however, a hydrogen effect on ITO reduction is more pronounced and the ITO surface is more reduced by CH{sub 3}{sup +} ions than CH{sup +} ions. Although the surface is covered more with metallic In by low-energy incident CH{sub 3}{sup +} ions than CH{sup +} ions and metallic In is in general less resistant against physical sputtering than its oxide, the ITO sputtering yield by incident CH{sub 3}{sup +} ions is found to be lower than that by incident CH{sup +} ions in this energy range. A postulation to account for the relation between the observed sputtering yield and reduction of the ITO surface is also presented. The results presented here offer a better understanding of elementary surface reactions observed in reactive ion etching processes of ITO by hydrocarbon plasmas.

  15. Kinetics of the H 2O 2-dependent ligninase-catalyzed oxidation of veratryl alcohol in the presence of cationic surfactant studied by spectrophotometric technique

    Science.gov (United States)

    Liu, Airong; Huang, Xirong; Song, Shaofang; Wang, Dan; Lu, Xuemei; Qu, Yinbo; Gao, Peiji

    2003-09-01

    The kinetics of ligninase-catalyzed oxidation of veratryl alcohol (VA) by H 2O 2 in the aqueous medium containing cationic surfactant cetyltrimethylammonium bromide (CTAB) has been investigated using spectrophotometric technique. Steady-state kinetic studies at different concentrations of CTAB indicate that the reaction follows a ping pong mechanism and the mechanism always holds but the kinetic parameters vary with CTAB concentrations. CTAB is a weak inhibitor for ligninase; it lowers the maximum initial velocity. CTAB also causes the Michaelis constant of H 2O 2 to decrease dramatically and that of VA to increase markedly. Based on the changes in kinetic parameters of the enzyme-catalyzed reaction at different CTAB concentrations (lower than, near to and larger than its critical micelle concentration) and the effects of the CTAB monomer and the micelles on the spectra of VA and its corresponding aldehyde, a conclusion could be made that modification of the enzymatic protein by the surfactant monomer should be responsible for the above-mentioned results.

  16. Novel Dry-Type Glucose Sensor Based on a Metal-Oxide-Semiconductor Capacitor Structure with Horseradish Peroxidase + Glucose Oxidase Catalyzing Layer

    Science.gov (United States)

    Lin, Jing-Jenn; Wu, You-Lin; Hsu, Po-Yen

    2007-10-01

    In this paper, we present a novel dry-type glucose sensor based on a metal-oxide-semiconductor capacitor (MOSC) structure using SiO2 as a gate dielectric in conjunction with a horseradish peroxidase (HRP) + glucose oxidase (GOD) catalyzing layer. The tested glucose solution was dropped directly onto the window opened on the SiO2 layer, with a coating of HRP + GOD catalyzing layer on top of the gate dielectric. From the capacitance-voltage (C-V) characteristics of the sensor, we found that the glucose solution can induce an inversion layer on the silicon surface causing a gate leakage current flowing along the SiO2 surface. The gate current changes Δ I before and after the drop of glucose solution exhibits a near-linear relationship with increasing glucose concentration. The Δ I sensitivity is about 1.76 nA cm-2 M-1, and the current is quite stable 20 min after the drop of the glucose solution is tested.

  17. Integrated process using non-stoichiometric sulfides or oxides of potassium for making less active metals and hydrocarbons

    International Nuclear Information System (INIS)

    Swanson, R.

    1984-01-01

    Disclosed is a combinative integrated chemical process using inorganic reactants and yielding, if desired, organic products. The process involves first the production of elemental potassium by the thermal or thermal-reduced pressure decomposition of potassium oxide or potassium sulfide and distillation of the potassium. This elemental potassium is then used to reduce ores or ore concentrates of copper, zinc, lead, magnesium, cadmium, iron, arsenic, antimony or silver to yield one or more of these less active metals in elemental form. Process potassium can also be used to produce hydrogen by reaction with water or potassium hydroxide. This hydrogen is reacted with potassium to produce potassium hydride. Heating the latter with carbon produces potassium acetylide which forms acetylene when treated with water. Acetylene is hydrogenated to ethene or ethane with process hydrogen. Using Wurtz-Fittig reaction conditions, the ethane can be upgraded to a mixture of hydrocarbons boiling in the fuel range

  18. New Trends in Oxidative Functionalization of Carbon–Hydrogen Bonds: A Review

    Directory of Open Access Journals (Sweden)

    Georgiy B. Shul’pin

    2016-03-01

    Full Text Available This review describes new reactions catalyzed by recently discovered types of metal complexes and catalytic systems (catalyst + co-catalyst. Works of recent years (mainly 2010–2016 devoted to the oxygenations of saturated, aromatic hydrocarbons and other carbon–hydrogen compounds are surveyed. Both soluble metal complexes and solid metal compounds catalyze such transformations. Molecular oxygen, hydrogen peroxide, alkyl peroxides, and peroxy acids were used in these reactions as oxidants.

  19. Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight

    Science.gov (United States)

    Jiang, Huanhuan; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E.

    2016-04-01

    The oxidative potential of various secondary organic aerosols (SOA) was measured using dithiothreitol (DTT) assay to understand how organic aerosols react with cellular materials. SOA was produced via the photooxidation of four different hydrocarbons (toluene, 1,3,5-trimethylbenzene, isoprene and α-pinene) in the presence of NOx using a large outdoor photochemical smog chamber. The DTT consumption rate was normalized by the aerosol mass, which is expressed as DTTmass. Toluene SOA and isoprene SOA yielded higher DTTmass than 1,3,5-trimethylbenzene SOA or α-pinene SOA. In order to discover the correlation between the molecular structure and oxidative potential, the DTT responses of selected model compounds were also measured. Among them, conjugated aldehydes, quinones, and H2O2 showed considerable DTT response. To investigate the correlation between DTT response and cell responses in vitro, the expression of biological markers, i.e. IL-6, IL-8, and HMOX-1 were studied using small airway epithelial cells. Higher cellular expression of IL-8 was observed with toluene SOA exposure compared to 1,3,5-trimethylbenzene SOA exposure, which aligned with the results from DTT assay. Our study also suggests that within the urban atmosphere, the contribution of toluene SOA and isoprene SOA to the oxidative potential of ambient SOA will be more significant than that of α-pinene SOA.

  20. The effect of prolonged flooding of an oil deposit on the special composition and the activity of hydrocarbon-oxidizing microflora

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevskaya, M V

    1982-07-01

    The special composition of hydrocarbon-oxidizing bacteria was studied in terrigenous and carbonate oil-bearing strata from several deposits of the Permian Cis-Ural region. We isolated 43 strains and assigned them to the following genera: Mycobacterium, Micrococcus, Brevibacterium, Corynebacterium, Flavobacterium, Achromobacter and Pseudomonas. The special composition of the hydrocarbon-oxidizing microflora was shown to depend on the flooding of an oil stratum, as a result of which the ecological environment in a deposit changed. Gram-positive coryneform bacteria were found in stratal salinized waters and in diluted stratal waters. Gram-negative hydrocarbon-oxidizing bacteria were isolated from pumped-in river waters and from stratal waters diluted by 70-100% as the result of flooding. The metabolic activity of Corynebacterium fascians (2 strains), Mycobacterium rubrum (1 strain), Pseudomonas mira (1 strain) and Flavobacterium perigrinum (1 strain) was assayed in stratal waters with different concentrations of salts. The coryneform hydrocarbon-oxidizing bacteria were shown to be very halotolerant as the result of adaptation; that is why the incidence of these microorganisms is very great in highly mineralized stratal water of oil deposits.

  1. Escherichia coli as a potential hydrocarbon conversion microorganism. Oxidation of aliphatic and aromatic compounds by recombinant E. coli in two-liquid phase (aqueous-organic) systems

    NARCIS (Netherlands)

    Favre-Bulle, Olivier

    1992-01-01

    The increased interest in the study of hydrocarbon utilizing microorganisms in recent years has been stimulated by the possibility of using their monooxygenases in the selective oxidation of aliphatic and aromatic compounds. As an example, long chain (>C16) n-alkanes are converted to dicarboxylic

  2. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes

    Science.gov (United States)

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was fo...

  3. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    Science.gov (United States)

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Efficient oxidation of alcohols to carbonyl compounds with molecular oxygen catalyzed by N-hydroxyphthalimide combined with a Co species

    Science.gov (United States)

    Iwahama; Yoshino; Keitoku; Sakaguchi; Ishii

    2000-10-06

    Highly efficient catalytic oxidation of alcohols with molecular oxygen by N-hydroxyphthalimide (NHPI) combined with a Co species was developed. The oxidation of 2-octanol in the presence of catalytic amounts of NHPI and Co(OAc)2 under atmospheric dioxygen in AcOEt at 70 degrees C gave 2-octanone in 93% yield. The oxidation was significantly enhanced by adding a small amount of benzoic acid to proceed smoothly even at room temperature. Primary alcohols were oxidized by NHPI in the absence of any metal catalyst to form the corresponding carboxylic acids in good yields. In the oxidation of terminal vic-diols such as 1,2-butanediol, carbon-carbon bond cleavage was induced to give one carbon less carboxylic acids such as propionic acid, while internal vic-diols were selectively oxidized to 1,2-diketones.

  5. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Technische Chemie 1

    1977-11-01

    In the conversion of the most important chemical raw materials, natural oil and natural gas, to intermediate or end products, selective catalytic oxidation plays an increasing role. This method makes it possible in many cases to use more economical, single-step processes instead of the older multi-step processes. Using the typical example of propylene oxidation or ammonoxidation, the problems encountered by chemical engineers in the development of a heterogeneous-catalytic method of oxidation are demonstrated. The importance of systematic catalyst development is stressed. General aspects of the development of novel processes or the improvement of existing catalytic processes are discussed.

  6. Electrooxidative Rhodium-Catalyzed C-H/C-H Activation: Electricity as Oxidant for Cross-Dehydrogenative Alkenylation.

    Science.gov (United States)

    Qiu, Youai; Kong, Wei-Jun; Struwe, Julia; Sauermann, Nicolas; Rogge, Torben; Scheremetjew, Alexej; Ackermann, Lutz

    2018-04-06

    Rhodium(III) catalysis has enabled a plethora of oxidative C-H functionalizations, which predominantly employ stoichiometric amounts of toxic and/or expensive metal oxidants. In contrast, we describe the first electrochemical C-H activation by rhodium catalysis that avoids hazardous chemical oxidants. Thus, environmentally-benign twofold C-H/C-H functionalizations were accomplished with weakly-coordinating benzoic acids and benzamides, employing electricity as the terminal oxidant with H2 as the sole byproduct. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst.

    Science.gov (United States)

    Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah

    2015-10-30

    The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Co-oxidation of carcinogenic polycyclic aromatic hydrocarbons with some biologically active compounds (BAC)

    Energy Technology Data Exchange (ETDEWEB)

    Gubergrits, M.Y.

    1978-09-01

    Oxidation of benzo(a)pyrene (BP) initiated by UV or gamma irradiation was promoted by benz(a)anthracene and 7,12-dimethylbenz(a)anthracene (DMBA) and inhibited by pyrene, dibenz(a,c)anthracene, and asymmetric benz(a)antharacene. The effects of these BAC commonly occurring together with BP in industrial wastes, increased with their concentrations. Phenol and 3-methylcholanthrene strongly promoted BP oxidation when present at low concentrations and inhibited it at high concentrations. Consistent promoting effect was also observed in BP co-oxidation with adipic acid, ..cap alpha..-naphthoflavon, and vitamin E, whereas succinic, azelaic, ferulic, gallic, and chlorogenic acids, rutin, and vitamin C acted as inhibitors. Most saturated dicarboxylic acids studied did not affect BP oxidation at 1:1 acid-BP molar ratio. The kinetics of 7,12-DMBA photooxidation inhibition by some metabolic intermediates, e.g., DMBA endo-peroxide, were also studied.

  9. Redox-neutral rhodium-catalyzed C-H functionalization of arylamine N-oxides with diazo compounds: primary C(sp(3))-H/C(sp(2))-H activation and oxygen-atom transfer.

    Science.gov (United States)

    Zhou, Bing; Chen, Zhaoqiang; Yang, Yaxi; Ai, Wen; Tang, Huanyu; Wu, Yunxiang; Zhu, Weiliang; Li, Yuanchao

    2015-10-05

    An unprecedented rhodium(III)-catalyzed regioselective redox-neutral annulation reaction of 1-naphthylamine N-oxides with diazo compounds was developed to afford various biologically important 1H-benzo[g]indolines. This coupling reaction proceeds under mild reaction conditions and does not require external oxidants. The only by-products are dinitrogen and water. More significantly, this reaction represents the first example of dual functiaonalization of unactivated a primary C(sp(3) )H bond and C(sp(2) )H bond with diazocarbonyl compounds. DFT calculations revealed that an intermediate iminium is most likely involved in the catalytic cycle. Moreover, a rhodium(III)-catalyzed coupling of readily available tertiary aniline N-oxides with α-diazomalonates was also developed under external oxidant-free conditions to access various aminomandelic acid derivatives by an O-atom-transfer reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  11. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Lehrstuhl fuer Technische Chemie 1

    1978-08-01

    Selective catalytic oxidation is beginning to play a more and more significant role in the process of converting the most important chemical raw materials, crude oil and natural gas, into intermediate and end products. In many cases, this technique makes it possible to replace old processes consisting of many steps by more economical single-step reactions. The typical example of oxidation or ammoxidation of propylene demonstrates the problems which must be solved by the chemical engineer during the development of a heterogeneous catalytic oxidation process. The particular importance of a systematic development of a catalyst is emphasized. General aspects relating to the design of new catalytic processes, or the improvement of existing ones are also discussed.

  12. Oxidation and reduction of copper and iron species in steam generator deposits - Effects of hydrazine, carbohydrazide and catalyzed hydrazine

    International Nuclear Information System (INIS)

    Marks, C.R.; Varrin, R.D.; Gorman, J.A.; McIlree, A.R.; Stanley, R.

    2002-01-01

    It has long been suspected that oxidation and reduction of secondary side deposits in PWR steam generators have a significant influence on the onset of intergranular attack and stress corrosion cracking (IGA/SCC) of mill annealed Alloy 600 steam generator tubes. It is believed that these same processes could affect the possible future occurrence of IGA/SCC of thermally treated Alloy 600 and Alloy 690 tubes that are in newer steam generators. The working hypothesis for describing the influence of oxides on accelerated tube degradation is that deposits formed during normal operation are oxidized during lay-up. During subsequent operation, these oxidized species accelerate tube degradation by raising the electrochemical potential. (authors)

  13. Gold nanoparticles on OMS-2 for heterogeneously catalyzed aerobic oxidative α,β-dehydrogenation of β-heteroatom-substituted ketones.

    Science.gov (United States)

    Yoshii, Daichi; Jin, Xiongjie; Yatabe, Takafumi; Hasegawa, Jun-Ya; Yamaguchi, Kazuya; Mizuno, Noritaka

    2016-12-06

    In the presence of Au nanoparticles supported on manganese oxide OMS-2 (Au/OMS-2), various kinds of β-heteroatom-substituted α,β-unsaturated ketones (heteroatom = N, O, S) can be synthesized through α,β-dehydrogenation of the corresponding saturated ketones using O 2 (in air) as the oxidant. The catalysis of Au/OMS-2 is truly heterogeneous, and the catalyst can be reused.

  14. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Xiang, Ling; Lin, Yuqing; Yu, Ping; Su, Lei; Mao, Lanqun

    2007-01-01

    This study demonstrates a new electrochemical method for the selective determination of dopamine (DA) with the coexistence of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC) with laccase/multi-walled carbon nanotube (MWNT)-based biosensors prepared by cross-linking laccase into MWNT layer confined onto glassy carbon electrodes. The method described here is essentially based on the chemical reaction properties of DA including oxidation, intramolecular cyclization and disproportionation reactions to finally give 5,6-dihydroxyindoline quinone and on the uses of the two-electron and two-proton reduction of the formed 5,6-dihydroxyindoline quinone to constitute a method for the selective determination of DA at a negative potential that is totally separated from those for the redox processes of AA and DOPAC. Instead of the ECE reactions of DA with the first oxidation of DA being driven electrochemically, laccase is used here as the biocatalyst to drive the first oxidation of DA into its quinone form and thus initialize the sequential reactions of DA finally into 5,6-dihydroxyindoline quinone. In addition, laccase also catalyzes the oxidation of AA and DOPAC into electroinactive species with the concomitant reduction of O 2 . As a consequence, a combinational exploitation of the chemical properties inherent in DA and the multifunctional catalytic properties of laccase as well as the excellent electrochemical properties of carbon nanotubes substantially enables the prepared laccase/MWNT-based biosensors to be well competent for the selective determination of DA with the coexistence of physiological levels of AA and DOPAC. This demonstration offers a new method for the selective determination of DA, which could be potentially employed for the determination of DA in biological systems

  15. Organic contaminants degradation from the S(IV) autoxidation process catalyzed by ferrous-manganous ions: A noticeable Mn(III) oxidation process.

    Science.gov (United States)

    Zhang, Jiaming; Ma, Jun; Song, Haoran; Sun, Shaofang; Zhang, Zhongxiang; Yang, Tao

    2018-04-15

    Remarkable atrazine degradation in the S(IV) autoxidation process catalyzed by Fe 2+ -Mn 2+ (Fe 2+ /Mn 2+ /sulfite) was demonstrated in this study. Competitive kinetic experiments, alcohol inhibiting methods and electron spin resonance (ESR) experiments proved that sulfur radicals were not the major oxidation species. Mn(III) was demonstrated to be the primary active species in the Fe 2+ /Mn 2+ /sulfite process based on the comparison of oxidation selectivity. Moreover, the inhibiting effect of the Mn(III) hydrolysis and the S(IV) autoxidation in the presence of organic contaminants indicated the existence of three Mn(III) consumption routes in the Fe 2+ /Mn 2+ /sulfite process. The absence of hydroxyl radical and sulfate radical was interpreted by the competitive dynamics method. The oxidation capacity of the Fe 2+ /Mn 2+ /sulfite was independent of the initial pH (4.0-6.0) because the fast decay of S(IV) decreased initial pH below 4.0 rapidly. The rate of ATZ degradation was independent of the dissolved oxygen (DO) because that the major DO consumption process was not the rate determining step during the production of SO 5 •- . Phosphate and bicarbonate were confirmed to have greater inhibitory effects than other environmental factors because of their strong pH buffering capacity and complexing capacity for Fe 3+ . The proposed acetylation degradation pathway of ATZ showed the application of the Fe 2+ /Mn 2+ /sulfite process in the research of contaminants degradation pathways. This work investigated the characteristics of the Fe 2+ /Mn 2+ /sulfite process in the presence of organic contaminants, which might promote the development of Mn(III) oxidation technology. Copyright © 2018. Published by Elsevier Ltd.

  16. Smoking modify the effects of polycyclic aromatic hydrocarbons exposure on oxidative damage to DNA in coke oven workers.

    Science.gov (United States)

    Yang, Jin; Zhang, Hongjie; Zhang, Huitao; Wang, Wubin; Liu, Yanli; Fan, Yanfeng

    2017-07-01

    Coke oven emissions containing polycyclic aromatic hydrocarbons (PAHs) are predominant toxic constituents of particulate air pollution that have been linked to increased risk of lung cancer. Numerous epidemiological studies have suggested that oxidative DNA damage may play a pivotal role in the carcinogenic mechanism of lung cancer. Little is known about the effect of interaction between PAHs exposure and lifestyle on DNA oxidative damage. The study population is composed by coke oven workers (365) and water treatment workers (144), and their urinary levels of four PAH metabolites and 8-hydroxydeoxyguanosine (8-OHdG) were determined. Airborne samples of exposed sites (4) and control sites (3) were collected, and eight carcinogenic PAHs were detected by high-performance liquid chromatography. The median values of the sum of eight carcinogenic PAHs and BaP in exposed sites were significantly higher than control sites (P < 0.01). The study found that the urinary PAH metabolites were significantly elevated in coke oven workers (P < 0.01). Multivariate logistic regression analysis revealed that the risk of high levels of urinary 8-OHdG will increase with increasing age, cigarette consumption, and levels of urinary 1-hydroxypyrene, and P for trend were all <0.05. Smoking can significantly modify the effects of urinary 1-hydroxypyrene on high concentrations urinary 8-OHdG, during co-exposure to both light or heavy smoking and high 1-hydroxypyrene levels (OR 4.28, 95% CI 1.32-13.86 and OR 5.05, 95% CI 1.63-15.67, respectively). Our findings quantitatively demonstrate that workers exposed to coke oven fumes and smoking will cause more serious DNA oxidative damage.

  17. Photocatalytic oxidation of polycyclic aromatic hydrocarbons: Intermediates identification and toxicity testing

    International Nuclear Information System (INIS)

    Woo, O.T.; Chung, W.K.; Wong, K.H.; Chow, Alex T.; Wong, P.K.

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic pollutants and their low water solubility limits their degradation in aqueous solution. The presence of water-miscible solvent such as acetone can increase the water solubility of PAHs, however acetone will also affect the degradation of PAH. In this study the effects of acetone on the photocatalytic degradation efficiency and pathways of 5 selected PAHs, namely naphthalene (2 rings), acenaphthylene (3 rings), phenanthrene (3 rings), anthracene (3 rings) and benzo[a]anthracene (4 rings) were investigated. The Microtox toxicity test was used to determine whether the PCO system can completely detoxify the parental PAHs and its intermediates. The addition of 16% acetone can greatly alter the degradation pathway of naphthalene and anthracene. Based on intermediates identified from degradation of the 5 PAHs, the location of parental PAHs attacked by reactive free radicals can be correlated with the localization energies of different positions of the compound. For toxicity analysis, irradiation by UV light was found to induce acute toxicity by generating intermediates/degradation products from PAHs and possibly acetone. Lastly, all PAHs (10 mg l -1 ) can be completely detoxified by titanium dioxide (100 mg l -1 ) within 24 h under UVA irradiation (3.9 mW cm -2 ).

  18. Final Technical Report: Tandem and Bimetallic Catalysts for Oxidative Dehydrogenation of Light Hydrocarbon with Renewable Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States)

    2017-01-06

    An estimated 490 million metric tons of lignocellulosic biomass is available annually from U.S. agriculture and forestry. With continuing concerns over greenhouse gas emission, the development of efficient catalytic processes for conversion of biomass derived compounds is an important area of research. Since carbohydrates and polyols are rich in oxygen, approximately one oxygen atom per carbon, removal of hydroxyl groups via deoxygenation is needed. The necessary hydrogen required for hydrodeoxygenation (HDO) would either come from reforming biomass itself or from steam reforming of natural gas. Both processes contribute to global CO2 emission. The hope is that eventually renewable sources such as wind and solar for hydrogen production will become more viable and economic in the future. In the meantime, unconventional natural gas production in North America has boomed. As a result, light hydrocarbons present an opportunity when coupled with biomass derived oxygenates to generate valuable products from both streams without co-production of carbon dioxide. This concept is the focus of our current funding period. The objective of the project requires coupling two different types of catalysis, HDO and dehydrogenation. Our hypothesis was formulated around our success in establishing oxorhenium catalysts for polyol HDO reactions and known literature precedence for the use of iridium hydrides in alkane dehydrogenation. To examine our hypothesis we set out to investigate the reaction chemistry of binuclear complexes of oxorhenium and iridium hydride.

  19. Selective Oxidation of Glycerol to Glyceric Acid in Base-Free Aqueous Solution at Room Temperature Catalyzed by Platinum Supported on Carbon Activated with Potassium Hydroxide

    KAUST Repository

    Tan, Hua

    2016-04-18

    Pt supported on KOH-activated mesoporous carbon (K-AMC) was used to catalyze glycerol oxidation under base-free conditions at room temperature. To study the relationship between the carbon surface chemistry and the catalytic performance of the K-AMC-based Pt catalysts, different levels of surface oxygen functional groups (SOFGs) on the AMC supports were induced by thermal treatment at different temperatures under inert or H2 gas. A strong effect of the surface chemistry was observed on AMC-supported Pt catalysts for glycerol oxidation. The presence of carboxylic acid groups impedes the adsorption of glycerol, which leads to the reduction of catalytic activity, whereas the presence of high-desorption-temperature SOFGs, such as phenol, ether, and carbonyl/quinone groups, provide hydrophilicity to the carbon surface that improves the adsorption of glycerol molecules on Pt metal surface, which is beneficial for the catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  1. Cracking hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1921-10-07

    In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.

  2. A predictive tool for selective oxidation of hydrocarbons: optical basicity of catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Moriceau, P.; Lebouteiller, A.; Bordes, E.; Courtine, P. [Universite de Technologie de Compiegne, 60 (France). Dept. de Genie Chimique

    1998-12-31

    Whatever the composition of the catalyst (promoted, supported, multicomponent, etc.) is, it is possible to calculate its electron donor capacity {Lambda}. However, one important question remains: How are the surface and the bulk values of {Lambda} related? Most oxidation catalysts exhibit either a layered structure as V{sub 2}O{sub 5}, and approximately {Lambda}{sub th}{proportional_to}{Lambda}{sub surf}, or a molecular structure as polyoxometallates, and no correction seems to be needed. Work is in progress on that point. Of great importance is also the actual oxidation and coordination states of cations at the stedy state: {Lambda}s have been calculated from the composition determined by XANES and XPS. Finally, the model is able to discriminate between `paraffins` and olefins as reactants. These calibration curves should help to find new catalysts. (orig.)

  3. Pd-catalyzed aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones: A direct approach to acridines

    Science.gov (United States)

    Mu, Wanlu; Li, Xiaowei; Wang, Longfei; Chen, Yong; Wu, Yanchao

    2017-08-01

    An efficient aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones approach to substituted acridines, a structural motif for a large number of pharmaceuticals and functional materials is described. The key feature of this method is the use of oxygen as the sole oxidant and Pd catalyst, which resulting in the high regioselectivity with unsymmetrical meta-substituted cyclohexanones. The electron gap of the global redox condensation process is filled and the reaction efficiency is significantly promoted by O2 as a redox moderator. This protocol possesses many advantages such as using O2 as a cheap and nonhazardous oxidant, high regioselectivity and water as the only by-product, which meet the principle of green chemistry.

  4. Determination of polycyclic aromatic hydrocarbons and their oxy-, nitro-, and hydroxy-oxidation products

    International Nuclear Information System (INIS)

    Cochran, R.E.; Dongari, N.; Jeong, H.; Beránek, J.; Haddadi, S.; Shipp, J.; Kubátová, A.

    2012-01-01

    Highlights: ► We describe a method for determining PAHs and their oxidation products. ► Solid-phase extraction was used to fractionate PAHs and their oxidation products. ► Gas chromatography–mass spectrometry methods were optimized. ► The developed method was applied to two particulate matter (PM) samples. - Abstract: A sensitive method has been developed for the trace analysis of PAHs and their oxidation products (i.e., nitro-, oxy-, and hydroxy-PAHs) in air particulate matter (PM). Following PM extraction, PAHs, nitro-, oxy-, and hydroxy-PAHs were fractionated using solid phase extraction (SPE) based on their polarities. Gas chromatography–mass spectrometry (GC–MS) conditions were optimized, addressing injection (i.e., splitless time), negative-ion chemical ionization (NICI) parameters, i.e., source temperature and methane flow rate, and MS scanning conditions. Each class of PAH oxidation products was then analyzed using the sample preparation and appropriate ionization conditions (e.g., nitro-PAHs exhibited the greatest sensitivity when analyzed with NICI–MS while hydroxy-PAHs required chemical derivatization prior to GC–MS analysis). The analyses were performed in selected-ion-total-ion (SITI) mode, combining the increased sensitivity of selected-ion monitoring (SIM) with the identification advantages of total-ion current (TIC). The instrumental LODs determined were 6–34 pg for PAHs, 5–36 pg for oxy-PAHs, and 1–21 pg for derivatized hydroxy-PAHs using electron ionization (GC-EI-MS). NICI–MS was found to be a useful tool for confirming the tentative identification of oxy-PAHs. For nitro-PAHs, LODs were 1–10 pg using negative-ion chemical ionization (GC-NICI-MS). The developed method was successfully applied to two types of real-world PM samples, diesel exhaust standard reference material (SRM 2975) and wood smoke PM.

  5. Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: A critical review.

    Science.gov (United States)

    Ja'fari, Mahsa; Ebrahimi, Seyedeh Leila; Khosravi-Nikou, Mohammad Reza

    2018-01-01

    Nowadays, a continuously worldwide concern for development of process to produce ultra-low sulfur and nitrogen fuels have been emerged. Typical hydrodesulfurization and hydrodenitrogenation technology deals with important difficulties such as high pressure and temperature operating condition, failure to treat some recalcitrant compounds and limitations to meet the stringent environmental regulations. In contrary an advanced oxidation process that is ultrasound assisted oxidative desulfurization and denitrogenation satisfies latest environmental regulations in much milder conditions with more efficiency. The present work deals with a comprehensive review on findings and development in the ultrasound assisted oxidative desulfurization and denitrogenation (UAOD) during the last decades. The role of individual parameters namely temperature, residence time, ultrasound power and frequency, pH, initial concentration and types of sulfur and nitrogen compounds on the efficiency are described. What's more another treatment properties that is role of phase transfer agent (PTA) and solvents of extraction step, reaction kinetics, mechanism of the ultrasound, fuel properties and recovery in UAOD are reviewed. Finally, the required future works to mature this technology are suggested. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Directory of Open Access Journals (Sweden)

    Michel D. Santos

    2008-01-01

    Full Text Available This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.

  7. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    International Nuclear Information System (INIS)

    Santos, Michel D.; Lopes, Norberto P.; Iamamoto, Yassuko

    2008-01-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  8. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Michel D.; Lopes, Norberto P. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Fisica e Quimica]. E-mail: npelopes@fcfrp.usp.br; Iamamoto, Yassuko [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Quimica

    2008-07-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules. (author)

  9. Solvent 1H/2H isotopic effects in the reaction of the L-Tyrosine oxidation catalyzed by Tyrosinase

    International Nuclear Information System (INIS)

    Kozlowska, M.; Kanska, M.

    2006-01-01

    Tyrosinase is well known catalyst in the oxidation of L-Tyrosine to L-DOPA and following oxidation of L-DOPA to dopachinone. The aim of communication is to present the results of studies on the solvent isotopic effects (SIE) in the above reactions for the 1 H/ 2 H in the 3',5' and 2',6' substituted tyrosine. Obtained dependence of the reaction rate on the substrate concentration were applied for optimization of the kinetic parameters, k cat and k cat /K m , in the Michaelis-Menten equation. As a result - better understanding of the L-DOPA creation can be achieved

  10. Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Framework.

    Science.gov (United States)

    Ikuno, Takaaki; Zheng, Jian; Vjunov, Aleksei; Sanchez-Sanchez, Maricruz; Ortuño, Manuel A; Pahls, Dale R; Fulton, John L; Camaioni, Donald M; Li, Zhanyong; Ray, Debmalya; Mehdi, B Layla; Browning, Nigel D; Farha, Omar K; Hupp, Joseph T; Cramer, Christopher J; Gagliardi, Laura; Lercher, Johannes A

    2017-08-02

    Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu + and ∼85% Cu 2+ . The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu 2+ to Cu + . The products, methanol, dimethyl ether, and CO 2 , were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.

  11. Mechanistic Dichotomy in the Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes Catalyzed by Chiral Pyridine N-Oxides

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Stončius, S.; Bell, M.; Castelluzzo, F.; Ramírez-López, P.; Biedermannová, Lada; Langer, V.; Rulíšek, Lubomír; Kočovský, P.

    2013-01-01

    Roč. 19, č. 28 (2013), s. 9167-9185 ISSN 0947-6539 R&D Projects: GA MŠk LC512 Institutional support: RVO:61388963 ; RVO:86652036 Keywords : allylation * allylsilanes * calculations * organocatalysis * pyridine N-oxides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013

  12. Single Pd Atoms on θ-Al2O3 (010) Surface do not Catalyze NO Oxidation.

    Science.gov (United States)

    Narula, Chaitanya K; Allard, Lawrence F; Moses-DeBusk, Melanie; Stocks, G Malcom; Wu, Zili

    2017-04-03

    New convenient wet-chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms, however, the single supported atoms on inert substrates (e.g. alumina) are limited to adatoms and cations of Pt, Pd, and Ru. Previously, we have found that single supported Pt atoms are remarkable NO oxidation catalysts. In contrast, we report that Pd single atoms are completely inactive for NO oxidation. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show the absence of nitrate formation on catalyst. To explain these results, we explored modified Langmuir-Hinshelwood type pathways that have been proposed for oxidation reactions on single supported atom. In the first pathway, we find that there is energy barrier for the release of NO 2 which prevent NO oxidation. In the second pathway, our results show that there is no driving force for the formation of O=N-O-O intermediate or nitrate on single supported Pd atoms. The decomposition of nitrate, if formed, is an endothermic event.

  13. OMS-2-Supported Cu Hydroxide-Catalyzed Benzoxazoles Synthesis from Catechols and Amines via Domino Oxidation Process at Room Temperature.

    Science.gov (United States)

    Meng, Xu; Wang, Yanmin; Wang, Yuanguang; Chen, Baohua; Jing, Zhenqiang; Chen, Gexin; Zhao, Peiqing

    2017-07-07

    In the presence of manganese oxide octahedral molecular sieve (OMS-2) supported copper hydroxide Cu(OH) x /OMS-2, aerobic synthesis of benzoxazoles from catechols and amines via domino oxidation/cyclization at room temperature is achieved. This heterogeneous benzoxazoles synthesis initiated by the efficient oxidation of catechols over Cu(OH) x /OMS-2 tolerates a variety of substrates, especially amines containing sensitive groups (hydroxyl, cyano, amino, vinyl, ethynyl, ester, and even acetyl groups) and heterocycles, which affords functionalized benzoxazoles in good to excellent yields by employing low catalyst loading (2 mol % Cu). The characterization and plausible catalytic mechanism of Cu(OH) x /OMS-2 are described. The notable features of our catalytic protocol such as the use of air as the benign oxidant and EtOH as the solvent, mild conditions, ease of product separation, being scalable up to the gram level, and superior reusability of catalyst (up to 10 cycles) make it more practical and environmentally friendly for organic synthesis.

  14. Effective oxidation of benzylic and alkane C-H bonds catalyzed by sodium o-iodobenzenesulfonate with Oxone as a terminal oxidant under phase-transfer conditions.

    Science.gov (United States)

    Cui, Li-Qian; Liu, Kai; Zhang, Chi

    2011-04-07

    Catalytic oxidation of benzylic C-H bonds could be efficiently realized using IBS as a catalyst which was generated in situ from the oxidation of sodium 2-iodobenzenesulfonate (1b) by Oxone in the presence of a phase-transfer catalyst, tetra-n-butylammonium hydrogen sulfate, in anhydrous acetonitrile at 60 °C. Various alkylbenzenes, including toluenes and ethylbenzenes, several oxygen-containing functionalities substituted alkylbenzenes, and a cyclic benzyl ether could be efficiently oxidized. And, the same reagent system of cat. 1b/Oxone/cat. n-Bu(4)NHSO(4) could be applied to the effective oxidation of alkanes as well.

  15. Density functional theory analysis of the reaction pathway for methane oxidation to acetic acid catalyzed by Pd2+ in sulfuric acid.

    Science.gov (United States)

    Chempath, Shaji; Bell, Alexis T

    2006-04-12

    Density functional theory has been used to investigate the thermodynamics and activation barriers associated with the direct oxidation of methane to acetic acid catalyzed by Pd2+ cation in concentrated sulfuric acid. Pd2+ cations in such solutions are ligated by two bisulfate anions and by one or two molecules of sulfuric acid. Methane oxidation is initiated by the addition of CH4 across one of the Pd-O bonds of a bisulfate ligand to form Pd(HSO4)(CH3)(H2SO4)2. The latter species will react with CO to produce Pd(HSO4)(CH3CO)(H2SO4)2. The most likely path to the final products is found to be via oxidation of Pd(HSO4)(CH3)(H2SO4)2 and Pd(HSO4)(CH3CO)(H2SO4)2 to form Pd(eta2-HSO4)(HSO4)2(CH3)(H2SO4) and Pd(eta2-HSO4)(HSO4)2(CH3CO)(H2SO4), respectively. CH3HSO4 or CH3COHSO4 is then produced by reductive elimination from the latter two species, and CH(3)COOH is then formed by hydrolysis of CH3COHSO4. The loss of Pd2+ from solution to form Pd(0) or Pd-black is predicted to occur via reduction with CO. This process is offset, though, by reoxidation of palladium by either H2SO4 or O2.

  16. Radical Intermediates in the Catalytic Oxidation of Hydrocarbons by Bacterial and Human Cytochrome P450 Enzymes†

    OpenAIRE

    Jiang, Yongying; He, Xiang; Ortiz de Montellano, Paul R.

    2006-01-01

    Cytochromes P450cam and P450BM3 oxidize α- and β-thujone into multiple products, including 7-hydroxy-α-(or β-)thujone, 7,8-dehydro-α-(or β-)thujone, 4-hydroxy-α-(or β-)thujone, 2-hydroxy α-(or β-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 ± 0.3 × ...

  17. Metalloporphyrins immobilized in Fe3O4@SiO2 mesoporous submicrospheres: Reusable biomimetic catalysts for hydrocarbon oxidation.

    Science.gov (United States)

    Barbosa, Isaltino A; de Sousa Filho, Paulo C; da Silva, Douglas L; Zanardi, Fabrício B; Zanatta, Lucas D; de Oliveira, Adilson J A; Serra, Osvaldo A; Iamamoto, Yassuko

    2016-05-01

    We successfully immobilized metalloporphyrins (MeP) in mesoporous silica coating magnetite spheres. In this sense, we prepared two different classes of core@shell supports, which comprise aligned (Fe3O4-AM-MeP, MeP=FeP or MnP) and non-aligned (Fe3O4-NM-MeP, MeP=FeP or MnP) mesoporous magnetic structures. X-ray diffractometry and energy dispersive X-ray spectroscopy confirmed the mesoporous nature of the silica shell of the materials. Magnetization measurements, scanning and transmission electron microscopies (SEM/TEM), electrophoretic mobility (ζ-potential), and infrared spectroscopy (FTIR) also confirm the composition and structure of the materials. The catalysts maintained their catalytic activity during nine reaction cycles toward hydrocarbon oxidation processes without detectable catalyst leaching. The catalysis results revealed a biomimetic pattern of cytochrome P450-type enzymes, thus confirming that the prepared materials are can effectively mimic the activity of such groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Graphene oxide bound silica for solid-phase extraction of 14 polycyclic aromatic hydrocarbons in mainstream cigarette smoke.

    Science.gov (United States)

    Shi, Rui; Yan, Lihong; Xu, Tongguang; Liu, Dongye; Zhu, Yongfa; Zhou, Jun

    2015-01-02

    Polycyclic aromatic hydrocarbons (PAHs) were considered as a source of carcinogenicity in mainstream cigarette smoke (MSS). Accurate quantification of these components was necessary for assessing public health risk. In our study, a solid-phase extraction (SPE) method using graphene oxide (GO) bound silica as adsorbent for purification of 14 PAHs in MSS was developed. During SPE process, large matrices interferences of MSS were adsorbed on SPE column. The result of FTIR spectra demonstrated that these matrices interferences were adsorbed on GO mainly through OH and CO groups. The concentrations of PAHs in MSS extract were determined by gas chromatography-mass spectrometry (GC-MS). The limit of detection (LOD) and limit of quantification (LOQ) of the developed method for 14 PAHs ranged from 0.05 to 0.36 ng/cig and 0.17 to 1.19 ng/cig, respectively. The accuracy of the measurement of 14 PAHs was from 73 to 116%. The relative standard deviations of intra- and inter-day analysis were less than 7.8% and 13.9%, respectively. Moreover, the developed method was successfully applied for analysis of real cigarette containing 1R5F reference cigarette and 12 top-selling commercial cigarettes in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Environmental exposure to polycyclic aromatic hydrocarbons, kitchen ventilation, fractional exhaled nitric oxide, and risk of diabetes among Chinese females.

    Science.gov (United States)

    Hou, J; Sun, H; Zhou, Y; Zhang, Y; Yin, W; Xu, T; Cheng, J; Chen, W; Yuan, J

    2018-05-01

    Diabetes is related to exposure to polycyclic aromatic hydrocarbons (PAHs), inflammation in the body, and housing characters. However, associations of urinary monohydroxy-PAHs (OH-PAHs) or fractional exhaled nitric oxide (FeNO) with diabetes risk in relation to housing characters are unclear. In this study, 2645 individuals were drawn from the baseline survey of the Wuhan-Zhuhai Cohort Study. Associations of diabetes with urinary OH-PAHs or FeNO among cooking participants were estimated using logistic regression models. Among women with self-cooking meals, urinary OH-PAH levels were positively associated with diabetes risk (P kitchen exhaust fans/hoods had a 52% decrease in the risk of diabetes (OR: 0.48, 95% CI: 0.27, 0.84), compared with those with nonuse of kitchen exhaust fans/hoods. The results indicated that the cooking women had an elevated risk of diabetes, which may be partly explained by an increase in the PAH body burden and higher inflammatory responses. Use of kitchen exhaust fan/hood can be associated with a lower risk of diabetes. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria

    DEFF Research Database (Denmark)

    Beier, Matthias Josef; Hansen, Thomas Willum; Grunwaldt, Jan-Dierk

    2009-01-01

    simultaneously. When a high catalytic conversion (>30% over 2 h) was found the number of catalyst components was reduced in the following tests. Thereby, a collaborative effect between a physical mixture of ceria nanoparticles and silver-impregnated silica (10 wt.% Ag–SiO2) was found. The catalytic activity...... by in situ XAS experiments. Oxygen species incorporated in the silver lattice appear to be important for the catalytic oxidation of the alcohol for which a preliminary mechanism is presented. The application of the catalyst was extended to the oxidation of a wide range of primary and secondary alcohols....... Compared to palladium and gold catalysts, the new silver catalyst performed similarly or even superior in the presence of CeO2. In addition, the presence of ceria increased the catalytic activity of all investigated catalysts....

  1. Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides

    Directory of Open Access Journals (Sweden)

    Zhongwei Liang

    2015-04-01

    Full Text Available A novel and simple strategy for the efficient synthesis of the corresponding tetrahydroquinolines from N,N-dimethylanilines and maleimides using visible light in an air atmosphere in the presence of Eosin Y as a photocatalyst has been developed. The metal-free protocol involves aerobic oxidative cyclization via sp3 C–H bond functionalization process to afford good yields in a one-pot procedure under mild conditions.

  2. Oxidative C-H Activation Approach to Pyridone and Isoquinolone through an Iron-Catalyzed Coupling of Amides with Alkynes.

    Science.gov (United States)

    Matsubara, Tatsuaki; Ilies, Laurean; Nakamura, Eiichi

    2016-02-04

    An iron catalyst combined with a mild organic oxidant promotes both C-H bond cleavage and C-N bond formation, and forms 2-pyridones and isoquinolones from an alkene- or arylamide and an internal alkyne, respectively. An unsymmetrical alkyne gives the pyridone derivative with high regioselectivity, this could be due to the sensitivity of the reaction to steric effects because of the compact size of iron. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Oxidative decarboxylation of glycolic and phenylacetic acids with cerium(4) catalyzed by silver ions in the sulfuric acid media

    International Nuclear Information System (INIS)

    Venkatesvar Rao, G.; Nagardzhun Rao, Ch.; Sajprakash, P.K.

    1981-01-01

    Oxidative decarboxylation of glycolic and phenylacetic acids by cerium (4) in the presence of Ag + ions is studied. The Ce(4) order equals 1, glycolic acid order in the absence of a catalyst also equals 1 and is fractional (0.5) for a catalytic reaction. The phenylacetic acid order is fractional (0.75). The Ag + ion reaction order is fractional and constitutes 0.32 for glycolic and 0.36 for phenylacetic acids. The reaction mechanism is proposed [ru

  4. Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides.

    Science.gov (United States)

    Liang, Zhongwei; Xu, Song; Tian, Wenyan; Zhang, Ronghua

    2015-01-01

    A novel and simple strategy for the efficient synthesis of the corresponding tetrahydroquinolines from N,N-dimethylanilines and maleimides using visible light in an air atmosphere in the presence of Eosin Y as a photocatalyst has been developed. The metal-free protocol involves aerobic oxidative cyclization via sp(3) C-H bond functionalization process to afford good yields in a one-pot procedure under mild conditions.

  5. Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C-H/N-H Activation with Internal Alkynes.

    Science.gov (United States)

    Mei, Ruhuai; Sauermann, Nicolas; Oliveira, João C A; Ackermann, Lutz

    2018-06-27

    Electrochemical oxidative C-H/N-H activations have been accomplished with a versatile cobalt catalyst in terms of [4 + 2] annulations of internal alkynes. The electro-oxidative C-H activation manifold proved viable with an undivided cell setup under exceedingly mild reaction conditions at room temperature using earth-abundant cobalt catalysts. The electrochemical cobalt catalysis prevents the use of transition metal oxidants in C-H activation catalysis, generating H 2 as the sole byproduct. Detailed mechanistic studies provided strong support for a facile C-H cobaltation by an initially formed cobalt(III) catalyst. The subsequent alkyne migratory insertion was interrogated by mass spectrometry and DFT calculations, providing strong support for a facile C-H activation and the formation of a key seven-membered cobalta(III) cycle in a regioselective fashion. Key to success for the unprecedented use of internal alkynes in electrochemical C-H/N-H activations was represented by the use of N-2-pyridylhydrazides, for which we developed a traceless electrocleavage strategy by electroreductive samarium catalysis at room temperature.

  6. Oxidation of Hydrocarbons on the Surface of Tin Dioxide Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Izabela Polowczyk

    2011-04-01

    Full Text Available The paper presents the results of our investigation on the effect of the molecular structure of organic vapors on the characteristics of resistive chemical gas sensors. The sensors were based on tin dioxide and prepared by means of thick film technology. The electrical and catalytic examinations showed that the abstraction of two hydrogen atoms from the organic molecule and formation of a water in result of reaction with a chemisorbed oxygen ion, determine the rate of oxidation reactions, and thus the sensor performance. The rate of the process depends on the order of carbon atoms and Lewis acidity of the molecule. Therefore, any modification of the surface centers of a sensor material, modifies not only the sensor sensitivity, but also its selectivity.

  7. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  8. Biomimetic oxidation studies of monensin A catalyzed by metalloporphyrins: identification of hydroxyl derivative product by electrospray tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    José N. Sousa-Junior

    2013-08-01

    Full Text Available Monensin A is an important commercially available natural product isolated from Streptomyces cinnamonensins that shows antibiotic and anti-parasitic activities. This molecule has a significant influence in the antibiotic market, but until now there are no studies on putative metabolite formations. Bioorganic catalysts applying metalloporphyrins and mono-oxygen donors are able to mimic the cytochrome P450 reactions. This model has been employed for natural product metabolism studies affording several new putative metabolites and in vivo experiments confirming the relevance of this procedure. In this work we evaluated the potential of 10,15,20-tetrakis (pentafluorophenyl porphyrin metal(III chloride [Fe(TFPPCl] catalyst models to afford a putative monensin A metabolite. Oxidation agents such as meta-chloroperoxy benzoic acid, iodosylbenzene, hydrogen peroxide 30 wt.% and tert-butyl hydroperoxide 70 wt.%, were used to investigate different reaction conditions, in addition to the analysis of the influence of the solvent. The quantification of total monensin A conversion and the structure of the new hydroxylated putative metabolite were proposed based on electrospray ionization tandem mass spectrometry analysis. The porphyrin tested, afforded moderate conversions of monensin A in all reaction conditions and the selectivity was found to be dependent on the oxidation/medium employed.

  9. Sulfate radical degradation of acetaminophen by novel iron-copper bimetallic oxidation catalyzed by persulfate: Mechanism and degradation pathways

    Science.gov (United States)

    Zhang, Yuanchun; Zhang, Qian; Hong, Junming

    2017-11-01

    A novel iron coupled copper oxidate (Fe2O3@Cu2O) catalyst was synthesized to activate persulfate (PS) for acetaminophen (APAP) degradation. The catalysts were characterized via field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The effects of the catalyst, PS concentration, catalyst dosage, initial pH, dissolved oxygen were analyzed for treatment optimization. Results indicated that Fe2O3@Cu2O achieved higher efficiency in APAP degradation than Fe2O3/PS and Cu2O/PS systems. The optimal removal efficiency of APAP (90%) was achieved within 40 min with 0.6 g/L PS and 0.3 g/L catalyst. To clarify the mechanism for APAP degradation, intermediates were analyzed with gas chromatography-mass spectrometry. Three possible degradation pathways were identified. During reaction, Cu(I) was found to react with Fe(III) to generate Fe(II), which is the most active phase for PS activation. Through the use of methanol and tert-butyl alcohol (TBA) as radical trappers, SO4rad - was identified as the main radical species that is generated during oxidation.

  10. I2-Catalyzed Oxidative Condensation of Aldoses with Diamines: Synthesis of Aldo-Naphthimidazoles for Carbohydrate Analysis

    Directory of Open Access Journals (Sweden)

    Chunchi Lin

    2010-03-01

    Full Text Available A novel method for the conversion of unprotected and unmodified aldoses to aldo-imidazoles has been developed. Using iodine as a catalyst in acetic acid solution, a series of mono- and oligosaccharides, including those containing carboxyl and acetamido groups, undergo an oxidative condensation reaction with aromatic vicinal diamines at room temperature to give the corresponding aldo-imidazole products in high yields. No cleavage of the glycosidic bond occurs under the mild reaction conditions. The compositional analysis of saccharides is commonly realized by capillary electropheresis of the corresponding aldo-imidazole derivatives, which are easily synthesized by the reported iodine-promoted oxidative condensation. In addition, a series of aldo-imidazoles were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS to analyze molecular weight and ion intensity. The diamine-labeled saccharides showed enhanced signals in MALDI–TOF MS. The combined use of aldoimidazole derivatization and mass spectrometric analysis thus provides a rapid method for identification of saccharides, even when less than 1 pmol of saccharide is present in the sample. These results can be further applied to facilitate the isolation and analysis of novel saccharides.

  11. Selective Oxidation of Glycerol with 3% H2O2 Catalyzed by LDH-Hosted Cr(III Complex

    Directory of Open Access Journals (Sweden)

    Gongde Wu

    2015-11-01

    Full Text Available A series of layered double hydroxides (LDHs –hosted sulphonato-salen Cr(III complexes were prepared and characterized by various physico-chemical measurements, such as Fourier transform infrared spectroscopy (FTIR, ultraviolet-visible spectroscopy (UV-Vis, powder X-ray diffraction (XRD, transmission electron microscope (TEM, scanning electron microscope (SEM and elemental analysis. Additionally, their catalytic performances were investigated in the selective oxidation of glycerol (GLY using 3% H2O2 as an oxidant. It was found that all the LDH-hosted Cr(III complexes exhibited significantly enhanced catalytic performance compared to the homogeneous Cr(III complex. Additionally, it was worth mentioning that the metal composition of LDH plates played an important role in the catalytic performances of LDH-hosted Cr(III complex catalysts. Under the optimal reaction conditions, the highest GLY conversion reached 85.5% with 59.3% of the selectivity to 1,3-dihydroxyacetone (DHA. In addition, the catalytic activity remained after being recycled five times.

  12. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  13. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  14. TiO2 on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-01-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO 2 ) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO 2 powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO 2 aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO 2 powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO 2 sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC 3 H 7 ) 4 ) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO 2 powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO 2 active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified

  15. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process.

    Science.gov (United States)

    Chen, Dan; Ma, Xiaolong; Zhou, Jizhi; Chen, Xi; Qian, Guangren

    2014-08-30

    We synthesized a novel magnetic composite, Fe3O4/Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25°C with Acid Orange 7 (AO7) initial concentration of 25mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe3O4/Cu1.5Ni0.5Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe3O4/Cu(Ni)Cr-LDH to generate sulfate radicals (SO4(-)). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO4(-)), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe3O4/Cu(Ni)Cr-LDH composite could be applied widely for the treatment of organic dyes in wastewater. Copyright © 2014. Published by Elsevier B.V.

  16. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    Science.gov (United States)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-02-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au-Ag, Ag-Pd, Au-Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au-Ag = 9.2, Ag-Pd = 9.6, Au-Pd = 9.4 nm) are characterized by UV-Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.

  17. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    International Nuclear Information System (INIS)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-01-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au–Ag, Ag–Pd, Au–Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au–Ag = 9.2, Ag–Pd = 9.6, Au–Pd = 9.4 nm) are characterized by UV–Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.Graphical Abstract

  18. Efficient asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolases in ionic liquid-based biphasic systems.

    Science.gov (United States)

    Chen, Wen-Jing; Lou, Wen-Yong; Zong, Min-Hua

    2012-07-01

    The asymmetric hydrolysis of styrene oxide to (R)-1-phenyl-1,2-ethanediol using Mung bean epoxide hydrolases was, for the first time, successfully conducted in an ionic liquid (IL)-containing biphasic system. Compared to aqueous monophasic system, IL-based biphasic systems could not only dissolve the substrate, but also effectively inhibit the non-enzymatic hydrolysis, and therefore markedly improve the reaction efficiency. Of all the tested ILs, the best results were observed in the biphasic system containing C(4)MIM·PF(6), which exhibited good biocompatibility with the enzyme and was an excellent solvent for the substrate. In the C(4)MIM·PF(6)/buffer biphasic system, it was found that the optimal volume ratio of IL to buffer, reaction temperature, buffer pH and substrate concentration were 1/6, 35°C, 6.5 and 100 mM, respectively, under which the initial reaction rate, the yield and the product e.e. were 18.4 mM/h, 49.4% and 97.0%. The biocatalytic process was shown to be feasible on a 500-mL preparative scale. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process.

    Science.gov (United States)

    Madhuvilakku, Rajesh; Piraman, Shakkthivel

    2013-12-01

    Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. Copyright © 2013. Published by Elsevier Ltd.

  20. Fenton-like Degradation of Phenol Catalyzed by a Series of Fe-Containing Mixed Oxides Systems

    Science.gov (United States)

    Alhmoud, T. T.; Mahmoud, S. S.; Hammoudeh, A. Y.

    2018-02-01

    In our attempts to develop a solid catalyst to degrade organic pollutants in wastewater via the Fenton-like reaction, six Fe-containing mixed oxide systems were prepared by means of the sol-gel auto-combustion method to have the following stoichiometries: CuFe1.2O2.8, BaFe7.2O11.8, BaFe7.2Cu2O13.8, BaFe5.4V3O16.6, BaFe4.8Cu2V3O17.7 and Ag2Fe5.4V3O16.6. The prepared systems were thermally treated at 550°C, 650°C, 800°C and 1100°C, and then characterized by XRD to identify the present phases. The systems were tested with respect to their catalytic efficiency in the degradation of phenol (200 ppm) in water where CuFe1.2O2.8 was found to be the most reactive one (80% removal in 60 min). It showed thereby first-order kinetics and an enhanced behavior under irradiation with a 30-W LED light source. The positive role of irradiation was most obvious in the case of Ag2Fe5.4V3O16.6 in which almost complete conversion was achieved in 120 min compared to only 45% in the same period but without irradiation. However, increasing the temperature at which thermal treatment is performed was found to suppress the catalytic activity of the system. Due to their high efficiency and rather low leaching rates of constituents, CuFe1.2O2.8 or Ag2Fe5.4V3O16.6 seem to be very promising in the Fenton-like degradation of organic pollutants.

  1. Hydrogen production with short contact time. Catalytic partial oxidation of hydrocarbons and oxygenated compounds: Recent advances in pilot- and bench-scale testing and process design

    Energy Technology Data Exchange (ETDEWEB)

    Guarinoni, A.; Ponzo, R.; Basini, L. [ENI Refining and Marketing Div., San Donato Milanese (Italy)

    2010-12-30

    ENI R and D has been active for fifteen years in the development of Short Contact Time - Catalytic Partial Oxidation (SCT-CPO) technologies for producing Hydrogen/Synthesis Gas. From the beginning the experimental work addressed either at defining the fundamental principles or the technical and economical potential of the technology. Good experimental responses, technical solutions' simplicity and flexibility, favourable techno-economical evaluations promoted the progressive widening of the field of the investigations. From Natural Gas (NG) the range of ''processable'' Hydrocarbons extended to Liquefied Petroleum Gas (LPG) and Gasoils, including those characterised by high levels of unsaturated and sulphurated molecules and, lately, to other compounds with biological origin. The extensive work led to the definition of different technological solutions, grouped as follows: Technology 1: Air Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 2: Enriched Air/Oxygen Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 3: Enriched Air/Oxygen Blown SCT-CPO of Liquid Hydrocarbons and/or Compounds with biological origin Recently, the licence rights on a non-exclusive basis for the commercialisation of SCT-CPO based processes for H{sub 2}/Synthesis gas production from light hydrocarbons with production capacity lower than 5,000 Nm{sup 3}/h of H{sub 2} or 7,500 Nm3/h of syngas have been assigned to two external companies. In parallel, development of medium- and large-scale plant solutions is progressing within the ENI group framework. These last activities are addressed to the utilisation of SCT-CPO for matching the variable Hydrogen demand in several contexts of oil refining operation. This paper will report on the current status of SCT-CPO with a focus on experimental results obtained, either at pilot- and bench- scale level. (orig.)

  2. Process for refining hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Risenfeld, E H

    1924-11-26

    A process is disclosed for the refining of hydrocarbons or other mixtures through treatment in vapor form with metal catalysts, characterized by such metals being used as catalysts, which are obtained by reduction of the oxide of minerals containing the iron group, and by the vapors of the hydrocarbons, in the presence of the water vapor, being led over these catalysts at temperatures from 200 to 300/sup 0/C.

  3. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process

    International Nuclear Information System (INIS)

    Chen, Dan; Ma, Xiaolong; Zhou, Jizhi; Chen, Xi; Qian, Guangren

    2014-01-01

    Graphical abstract: Organic dyes could be absorbed on the surface of the composite or dispersed in the solution. Sulfate radicals (SO 4 · − ) generated by the synergistic reaction between peroxymonosulfate (PMS) and the composite, attacked the organic functional groups of the dyes molecules both adsorbed on the composite surface and dispersed in the solution, which resulted in the degradation of AO7 dye. - Highlights: • A new composite was synthesized successfully via microwave hydrothermal method. • The complete degradation in the system of FLCN and PMS can be achieved. • The catalytic behavior of FLCN can be reused at least for five times. • The AO7 degradation mechanism in the system of FLCN and PMS was demonstrated. - Abstract: We synthesized a novel magnetic composite, Fe 3 O 4 /Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25 °C with Acid Orange 7 (AO7) initial concentration of 25 mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe 3 O 4 /Cu 1.5 Ni 0.5 Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe 3 O 4 /Cu(Ni)Cr-LDH to generate sulfate radicals (SO 4 · − ). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO 4 · − ), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe 3 O 4 /Cu(Ni)Cr-LDH composite could be applied widely for the

  4. Deep catalytic oxidation of heavy hydrocarbons on Pt/Al{sub 2}O{sub 3} catalysts; Oxydation catalytique totale des hydrocarbures lourds sur Pt/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, F.

    1998-12-09

    Deep oxidation by air on Pt supported on alumina of a large number of heavy hydrocarbons representative of those found in a real Diesel car exhaust has been studied. Light-off temperatures between 140 and 320 deg. C on 1%Pt/alumina (80% metal dispersion) have been found. Results show that not only the physical state around the conversion area but also the chemical nature of the hydrocarbon plays an important role. Heavy hydrocarbons deep oxidation behaviour has been classified as a function of their chemical category (alkane, alkene, aromatics etc..). Oxidation of binary mixtures of hydrocarbons has shown strong inhibition effects on n-alkane or CO oxidation by polycyclic compounds like 1-methyl-naphthalene. In some cases, by-product compounds in the gas effluent (other than CO{sub 2} and H{sub 2}O) have been identified by mass-spectrometry leading to oxidation mechanism proposals for different hydrocarbons. Catalyst nature (metal dispersion, content) influence has also been studied. It is shown that turn-over activity is favoured by the increase of the metal bulk size. Acidity influence of the carrier has shown only very little influence on n-alkane or di-aromatic compound oxidation. (author)

  5. Graphene oxide-mediated rapid dechlorination of carbon tetrachloride by green rust

    DEFF Research Database (Denmark)

    Huang, Li-Zhi; Hansen, Hans Christian B.; Daasbjerg, Kim

    2017-01-01

    Graphene-based nanomaterials can mediate environmentally relevant abiotic redox reactions of chlorinated aliphatic hydrocarbons. In this study as low amounts as ∼0.007 % of graphene oxide (GO) was found to catalyze the reduction of carbon tetrachloride by layered Fe(II)-Fe(III) hydroxide (Green R....... This study indicates that traces of graphene oxide can affect reaction pathways as well as kinetics for dechlorination processes in anoxic sediments by facilitating a partial dechlorination....

  6. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  7. The multichannel n-propyl + O2 reaction surface: Definitive theory on a model hydrocarbon oxidation mechanism

    Science.gov (United States)

    Bartlett, Marcus A.; Liang, Tao; Pu, Liang; Schaefer, Henry F.; Allen, Wesley D.

    2018-03-01

    of hydrocarbon oxidation.

  8. Effect of hydrocarbons and nitrogen oxides on ozone formation in smog chambers exposed to solar irradiance of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval F, J; Marroquin de la R, O; Jaimes L, J. L; Zuniga L, V. A; Gonzalez O, E; Guzman Lopez-Figueroa, F [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2001-01-01

    Outdoor smog chambers experiments were performed on air to determine the answer of maximum ozone levels, to changes in the initial hydrocarbons, HC, and nitrogen oxide NO{sub x}. These captive-air experiments under natural irradiation were carried out. Typically, eight chambers were filled with Mexico city air in the morning. In some of those chambers, the initial HC and/or Nox concentrations were varied by {+-}25% to {+-}50% by adding various combinations of a mixture of HC, clean air, or NO{sub x} (perturbed chambers). The O{sub 3} and NO{sub x} concentration in each chamber was monitored throughout the day to determine O{sub 3} (max). The initial HC and NO{sub x} concentration effects were determined by comparing the maximum ozone concentrations measured in the perturbed and unperturbed chambers. Ozone isopleths were constructed from the empirical model obtained of measurements of the eight chambers and plotted in a graph whose axe were the initial HC and NO{sub x} values. For the average initial conditions that were measured in Mexico City, it was found that the most efficient strategy to reduce the maximum concentration of O{sub 3} is the one that reduces NO{sub x}. [Spanish] Se realizaron experimentos de camaras de esmog con el aire de la ciudad de Mexico para determinar las respuestas de los niveles maximos de ozono a los cambios en las concentraciones iniciales de hidrocarburos, HC y oxido de nitrogeno, NO{sub x}. Por lo general, se llenaron 8 bolsas con aire matutino de la Ciudad de Mexico. En algunas camaras, las concentraciones iniciales fueron cambiadas de 25% a 50%, anadiendo varias concentraciones de una mezcla de HC, aire limpio y/o NO{sub x}. La concentracion de O{sub 3} y NO{sub x}, en cada camara, fueron monitoreadas a lo largo del dia para determinar el maximo de O{sub 3}. El efecto de los HC y el NO{sub x} fue determinado por comparacion del maximo de ozono formado en las camaras, que fueron perturbadas por adicion o reduccion de HC y/o Nox

  9. Adsorption of Polycyclic aromatic hydrocarbons (fluoranthene and anthracenemethanol) by functional graphene oxide and removal by pH and temperature-sensitive coagulation.

    Science.gov (United States)

    Zhang, Caili; Wu, Lin; Cai, Dongqing; Zhang, Caiyun; Wang, Ning; Zhang, Jing; Wu, Zhengyan

    2013-06-12

    A new kind of functional graphene oxide with fine stability in water was fabricated by mixing graphene oxide (GO) and brilliant blue (BB) with a certain weight ratio. The adsorption performance of this mixture of BB and GO (BBGO) to polycyclic aromatic hydrocarbons (anthracenemethanol (AC) and fluoranthene (FL)) was investigated, and the results indicated BBGO possessed adsorption capacity of 1.676 mmol/g and removal efficiency of 72.7% as to AC and adsorption capacity of 2.212 mmol/g and removal efficiency of 93.2% as to FL. After adsorption, pH and temperature-sensitive coagulation (PTC) method was used to remove the AC/BBGO or FL/BBGO complex and proved to be an effective approach to flocculate the AC/BBGO or FL/BBGO complex into large flocs, which tended to be removed from the aqueous solution.

  10. Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gas chromatography of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2012-01-01

    A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida

    International Nuclear Information System (INIS)

    Wackett, L.P.; Kwart, L.D.; Gibson, D.T.

    1988-01-01

    Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by 19 F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that monooxygen insertion is mediated by an active-site process. Experiments with 3-[ 2 H] indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases

  12. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    National Research Council Canada - National Science Library

    Cernansky, N.P

    1998-01-01

    .... The research program entailed mechanistic studies examining the oxidation chemistry of single-component hydrocarbons and ignition studies examining the overall ignition of pure single component fuels and fuel blends...

  13. Two Palladium-Catalyzed Domino Reactions from One Set of Substrates/Reagents: Efficient Synthesis of Substituted Indenes and cis-Stilbenoid Hydrocarbons from the Same Internal Alkynes and Hindered Grignard Reagents

    Science.gov (United States)

    Dong, Cheng-Guo; Yeung, Pik; Hu, Qiao-Sheng

    2008-01-01

    Two types of domino reactions from the same internal alkynes and hindered Grignard reagents based on carbopalladation, Pd-catalyzed cross-coupling reaction and C-H activation strategy are described. The realization of these domino reactions relied on the control of the use of the ligand and the reaction temperature. Our study provides an efficient access to useful polysubstituted indenes and cis-substituted stilbenes, and may offer new means to the development of tandem/domino reactions in a more efficient way. PMID:17217305

  14. A fungal P450 (CYP5136A3 capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129 and Leu(324.

    Directory of Open Access Journals (Sweden)

    Khajamohiddin Syed

    Full Text Available The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs. Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9, in addition to PAHs (3-4 ring size. AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation. Structure-activity analysis based on a 3D model indicated a potential role of Trp(129 and Leu(324 in the oxidation mechanism of CYP5136A3. Replacing Trp(129 with Leu (W129L and Phe (W129F significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80% as compared to W129F which caused greater reduction in pyrene oxidation (88%. Almost complete loss of oxidation of C3-C8 APs (83-90% was observed for the W129L mutation as compared to W129F (28-41%. However, the two mutations showed a comparable loss (60-67% in C9-AP oxidation. Replacement of Leu(324 with Gly (L324G caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20-58%, and complete loss of activity toward nonylphenol (C9-AP. Collectively, the results suggest that Trp(129 and Leu(324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first

  15. Pyridine synthesis by reactions of allyl amines and alkynes proceeding through a Cu(OAc)2 oxidation and Rh(III)-catalyzed N-annulation sequence.

    Science.gov (United States)

    Kim, Dong-Su; Park, Jung-Woo; Jun, Chul-Ho

    2012-11-28

    A new methodology has been developed for the synthesis of pyridines from allyl amines and alkynes, which involves sequential Cu(II)-promoted dehydrogenation of the allylamine and Rh(III)-catalyzed N-annulation of the resulting α,β-unsaturated imine and alkyne.

  16. Hydroperoxide-dependent oxygenation of polycyclic aromatic hydrocarbons and their metabolites

    International Nuclear Information System (INIS)

    Marnett, L.J.

    1985-01-01

    Fatty acid hydroperoxides in the presence of heme complexes and heme proteins oxidize benzo(a)pyrene and 7,8-dihydroxy-7, 8-dihydrobenzo(a)pyrene to quinones and diol epoxides, respectively. The oxidizing agent is a peroxyl radical derived from the fatty acid hydroperoxide but not a higher oxidation state of a mammalian peroxidase. The stereochemistry of (+-)-BP-dihydrodiol epoxidation is distinct from that catalyzed by mixed-function oxidases, which provides a convenient method for discriminating the contributions of the two systems to BP-7,8-dihydrodiol metabolism in cell homogenates, cell or organ culture. Using this method, epoxidation of BP-7,89-dihydroodiol has been detected during prostaglandin biosynthesis, lipid peroxidation, and xenobiotic oxygenation. Fatty acid hydroperoxide-dependent oxidation constitutes a novel pathway for metabolic activation of polycyclic hydrocarbons and other carcinogens which has widespread potential in vivo significance

  17. Polytetrafluoroethylene-jacketed stirrer modified with graphene oxide and polydopamine for the efficient extraction of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Zhang, Zinxin; Mwadini, Mwadini Ahmada; Chen, Zilin

    2016-10-01

    Steel stirrers jacketed with polytetrafluoroethylene can be regarded as an ideal substrate for stirrer bar sorptive extraction. However, it is still a great challenge to immobilize graphene onto a polytetrafluoroethylene stirrer due to the high chemical resistance of the surface of a polytetrafluoroethylene stirrer. We describe here a method to modify the surface of polytetrafluoroethylene stirrers with graphene. In this work, graphene was used as the sorbent due to its excellent adsorption capability for aromatic compounds, such as polycyclic aromatic compounds. Graphene was successfully immobilized onto polytetrafluoroethylene-stirrer by a bio-inspired polydopamine functionalization method. The graphene-modified polytetrafluoroethylene-stirrer shows good stability and tolerance to stirring, ultrasonication, strong acidic and basic solutions, and to organic solvents. The multilayer coating was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. After the optimization of some experimental conditions, the graphene-modified polytetrafluoroethylene stirrer was used for the stirrer bar sorptive extraction of polycyclic aromatic hydrocarbons, in which the binding between the polycyclic aromatic hydrocarbons and the graphene layer was mainly based on π-π stacking and hydrophobic interactions. The graphene-modified polytetrafluoroethylene-stirrer-based stirrer bar sorptive extraction and high-performance liquid chromatography method was developed for the determination of polycyclic aromatic hydrocarbons with great extraction efficiency, with enrichment factors from 18 to 62. The method has low limits of detection of 1-5 pg/mL, wide linear range (5-100 and 10-200 pg/mL), good linearity (R ≥ 0.9957) and good reproducibility (RSD ≤ 6.45%). The proposed method has been applied to determine polycyclic aromatic hydrocarbons in real dust samples. Good recoveries were obtained, ranging from 88.53 to 109.43%. © 2016 WILEY-VCH Verlag

  18. Synthesis of zirconia-immobilized copper chelates for catalytic decomposition of hydrogen peroxide and the oxidation of polycyclic aromatic hydrocarbons

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Merhautová, Věra; Cajthaml, Tomáš; Nerud, František; Stopka, Pavel; Gorbacheva, O.; Hrubý, Martin; Beneš, Milan J.

    2008-01-01

    Roč. 72, č. 11 (2008), s. 1721-1726 ISSN 0045-6535 R&D Projects: GA AV ČR IBS5020306 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : degradation * polycyclic aromatic hydrocarbons * hydrogen peroxide Subject RIV: EE - Microbiology, Virology Impact factor: 3.054, year: 2008

  19. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.

    Science.gov (United States)

    Ragsdale, Stephen W

    2014-01-01

    Methane, the major component of natural gas, has been in use in human civilization since ancient times as a source of fuel and light. Methanogens are responsible for synthesis of most of the methane found on Earth. The enzyme responsible for catalyzing the chemical step of methanogenesis is methyl-coenzyme M reductase (MCR), a nickel enzyme that contains a tetrapyrrole cofactor called coenzyme F430, which can traverse the Ni(I), (II), and (III) oxidation states. MCR and methanogens are also involved in anaerobic methane oxidation. This review describes structural, kinetic, and computational studies aimed at elucidating the mechanism of MCR. Such studies are expected to impact the many ramifications of methane in our society and environment, including energy production and greenhouse gas warming.

  20. Reinforced microextraction of polycyclic aromatic hydrocarbons from polluted soil samples using an in-needle coated fiber with polypyrrole/graphene oxide nanocomposite.

    Science.gov (United States)

    Behfar, Mina; Ghiasvand, Ali Reza; Yazdankhah, Fatemeh

    2017-07-01

    The surface of a stainless-steel wire was platinized using electrophoretic deposition method to create a high-surface-area with porous and cohesive substrate. The platinized fiber was coated by the polypyrrole/graphene oxide nanocomposite by electropolymerization and accommodated into a stainless-steel needle to fabricate an in-needle coated fiber. The developed setup was coupled to gas chromatography with flame ionization detection and applied to extract and determine polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene, and pyrene) in complicated solid matrices, along with reinforcement of the extraction by cooling the sorbent, using liquid carbon dioxide. To obtain the best extraction efficiency, the important experimental variables including extraction temperature and time, temperature of cooled sorbent, sampling flow rate, and desorption condition were studied. Under the optimal condition, limits of detection for five studied analytes were in the range of 0.2-0.8 pg/g. Linear dynamic ranges for the calibration curves were found to be in the range of 0.001-1000 ng/g. Relative standard deviations obtained for six replicated analyses of 1 ng/g of analytes were 4.9-13.5%. The reinforced in-needle coated fiber method was successfully applied for the analysis of polycyclic aromatic hydrocarbons in contaminated soil samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation of Benzo[c]carbazol-6-amines via Manganese-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Oxidative Cyclization.

    Science.gov (United States)

    Zhou, Xiaorong; Li, Zhenmin; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2018-03-02

    Manganese-catalyzed C 2 -H enaminylation of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. A migration of the directing group pyrimidinyl occurred during this process. The synthesized 2-enaminyl indoles could be conveniently converted into 5-aryl-7H-benzo[c]carbazol-6-amines.

  2. Stereoselective synthesis of 1,3-disubstituted isoindolines via Rh(III)-catalyzed tandem oxidative olefination-cyclization of 4-aryl cyclic sulfamidates.

    Science.gov (United States)

    Son, Se-Mi; Seo, Yeon Ji; Lee, Hyeon-Kyu

    2016-03-21

    Rh(III)-catalyzed tandem ortho C-H olefination of cyclic 4-aryl sulfamidates (1) and subsequent intramolecular cyclization are described. This reaction serves as a method for the direct and stereoselective synthesis of 1,3-disubstituted isoindolines (3) starting with enantiomerically enriched 4-aryl cyclic sulfamidates. In this process, the configurational integrity of the stereogenic center in the starting cyclic sulfamidate is completely retained. In addition, the process generates trans-1,3-disubstituted isoindolines exclusively.

  3. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  4. Effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage (EXPAH project): description of the population under study.

    Science.gov (United States)

    Taioli, Emanuela; Sram, Radim J; Garte, Seymour; Kalina, Ivan; Popov, Todor A; Farmer, Peter B

    2007-07-01

    The EXPAH project was a molecular epidemiology study whose aims were to evaluate the hypothesis that polycyclic aromatic hydrocarbons (PAHs) are a major source of genotoxic activities of organic mixtures associated with air pollution. Biomarkers of exposure, effects and susceptibility, and oxidative DNA damage were measured in three PAH-exposed populations from Prague (Czech Republic), Kosice (Slovakia) and Sofia (Bulgaria). Control populations were included from each city. In total 356 individuals were enrolled. A questionnaire was used to determine life style/dietary factors. Ambient air exposure was measured by stationary monitoring, and personal exposure monitoring was also carried out. The characteristics of the population are described in this paper together with their personal exposure to carcinogenic PAHs (c-PAHs). The dose of c-PAH exposure was found to vary between the occupationally exposed (e.g. policemen and bus drivers) and the control populations in each country, and also varied from country to country.

  5. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.

    Science.gov (United States)

    Huang, Ta-Jen; Hsu, Sheng-Hsiang; Wu, Chung-Ying

    2012-02-21

    The high fuel efficiency of lean-burn engines is associated with high temperature and excess oxygen during combustion and thus is associated with high-concentration NO(x) emission. This work reveals that very high concentration of NO(x) in the exhaust can be reduced and hydrocarbons (HCs) can be simultaneously oxidized using a low-temperature solid oxide fuel cell (SOFC). An SOFC unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3) (LSC)-Ce(0.9)Gd(0.1)O(1.95) as the cathode, with or without adding vanadium to LSC. SOFC operation at 450 °C and open circuit can effectively treat NO(x) over the cathode at a very high concentration in the simulated exhaust. Higher NO(x) concentration up to 5000 ppm can result in a larger NO(x) to N(2) rate. Moreover, a higher oxygen concentration promotes NO conversion. Complete oxidation of HCs can be achieved by adding silver to the LSC current collecting layer. The SOFC-based emissions control system can treat NO(x) and HCs simultaneously, and can be operated without consuming the anode fuel (a reductant) at near the engine exhaust temperature to eliminate the need for reductant refilling and extra heating.

  6. Oxygenation of saturated and unsaturated hydrocarbons with ...

    Indian Academy of Sciences (India)

    Unknown

    Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate. 431. Table 1. Competitive oxygenation of tetralin and cyclooctene with sodium periodate catalyzed by different manga- .... Teacher Education University. My grateful thanks also extend to Dr D Mohajer for his useful sugges- tions. References. 1.

  7. Process of converting heavy hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, F C

    1921-05-27

    A modification is described of the process of the principal Patent 373,060 for splitting and converting heavy hydrocarbons into low-boiling lighter products or into cylinder oil, characterized in that, in place of petroleum, brown-coal oil, shale oil, or the like is distilled in the presence of hydrosilicate as a catalyzer or is heated with refluxing.

  8. Copper-catalyzed difunctionalization of activated alkynes by radical oxidation-tandem cyclization/dearomatization to synthesize 3-trifluoromethyl spiro[4.5]trienones.

    Science.gov (United States)

    Hua, Hui-Liang; He, Yu-Tao; Qiu, Yi-Feng; Li, Ying-Xiu; Song, Bo; Gao, Pin; Song, Xian-Rong; Guo, Dong-Hui; Liu, Xue-Yuan; Liang, Yong-Min

    2015-01-19

    A copper-catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois' reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3-(trifluoromethyl)-spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon-carbon single bonds and one carbon-oxygen double bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of incorporating graphene oxide and surface imprinting on polysulfone membranes on flux, hydrophilicity and rejection of salt and polycyclic aromatic hydrocarbons from water

    Science.gov (United States)

    Kibechu, Rose Waithiegeni; Ndinteh, Derek Tantoh; Msagati, Titus Alfred Makudali; Mamba, Bhekie Briliance; Sampath, S.

    2017-08-01

    We report a significant enhancement of hydrophillity of polysulfone (Psf) membranes after modification with graphene oxide (GO) as a filler followed by surface imprinting on the surface of GO/Psf composite imprinted membranes (CIMs). The surface imprinting on the GO-Psf membrane was employed in order to enhance its selectivity towards polycyclic aromatic hydrocarbons (PAHs) in water. The CIMs were prepared through a process of phase inversion of a mixture of graphene oxide and polysulfone (Psf) in N-methylpyrrolidone (NMP). Fourier-transform spectroscopy (FT-IR) of the imprinted showed new peaks at 935 cm-1 and 1638 cm-1 indicating success in surface imprinting on the GO-Psf membrane. The CIM also showed improvement in flux from 8.56 LM-2 h-1 of unmodified polysulfone membrane to 15.3 LM-2 h-1 in the CIM, salt rejection increased from 57.2 ± 4.2% of polysulfone membrane to 76 ± 4.5%. The results obtained from the contact angle measurements showed a decrease with increase in GO content from 72 ± 2.7% of neat polysulfone membrane to 62.3 ± 2.1% of CIM indicating an improvement in surface hydrophilicity. The results from this study shows that, it is possible to improve the hydrophilicity of the membranes without affecting the performance of the membranes.

  10. Super oxidation and solidification of organic solvents, polycyclic aromatic hydrocarbons and pesticides at an abandoned chemical factory site

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Kevin; Xu, Paul [Suntime Remediation Company, Changzhou, Jiangsu (China); Loo, Walter [Environment and Technology Services, 1323 Horizon Lane, Patterson, CA 95363 (United States)

    2013-07-01

    Large quantities of organic chemical such as VOCs, SVOCs and POPs were found in the soil of land at an abandoned Chemical Plant. Technology of super oxidation was applied to the soil for cleanup. Fenton process was utilized to treat soil contaminated heavily by BHC, benzene, chlorobenzene, dichlorobenzene, hexachlorobenzene, dichloroethane, dichloropropane, trichlorobenzene and dichloroether, etc. Super oxidation was coupled with method of stabilization for this case to enhance the remediation effect, which proved to be successful. Concentration of concerned pollutants was brought down below the national regulation level by approximately 8 folds. To make the treated soil strong and effective layer preventing pollutants breaking through, Iron powder was mixed in the soil, forming PBR (Permeable Barrier Reactor), to lower the risk to human health. The site after enhanced super oxidation above was totally safe to be developed into a residential community and/or commercial area. (authors)

  11. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  12. Development of a detailed chemical mechanism (MCMv3.1 for the atmospheric oxidation of aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    C. Bloss

    2005-01-01

    Full Text Available The Master Chemical Mechanism has been updated from MCMv3 to MCMv3.1 in order to take into account recent improvements in the understanding of aromatic photo-oxidation. Newly available kinetic and product data from the literature have been incorporated into the mechanism. In particular, the degradation mechanisms for hydroxyarenes have been revised following the observation of high yields of ring-retained products, and product studies of aromatic oxidation under relatively low NOx conditions have provided new information on the branching ratios to first generation products. Experiments have been carried out at the European Photoreactor (EUPHORE to investigate key subsets of the toluene system. These results have been used to test our understanding of toluene oxidation, and, where possible, refine the degradation mechanisms. The evaluation of MCMv3 and MCMv3.1 using data on benzene, toluene, p-xylene and 1,3,5-trimethylbenzene photosmog systems is described in a companion paper, and significant model shortcomings are identified. Ideas for additional modifications to the mechanisms, and for future experiments to further our knowledge of the details of aromatic photo-oxidation are discussed.

  13. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    International Nuclear Information System (INIS)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-01-01

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA

  14. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  15. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  16. Nonafluorobutanesulfonyl azide as a shelf-stable highly reactive oxidant for the copper-catalyzed synthesis of 1,3-diynes from terminal alkynes.

    Science.gov (United States)

    Suárez, José Ramón; Collado-Sanz, Daniel; Cárdenas, Diego J; Chiara, Jose Luis

    2015-01-16

    Nonafluorobutanesulfonyl azide is a highly efficient reagent for the copper-catalyzed coupling of terminal alkynes to give symmetrical and unsymmetrical 1,3-diynes in good to excellent yields and with good functional group compatibility. The reaction is extremely fast (<10 min), even at low temperature (−78 °C), and requires substoichiometric amounts of a simple copper(I) or copper(II) salt (2–5 mol %) and an organic base (0.6 mol %). A possible mechanistic pathway is briefly discussed on the basis of model DFT theoretical calculations. The quantitative assessment of the safety of use and shelf stability of nonafluorobutanesulfonyl azide has confirmed that this reagent is a superior and safe alternative to other electrophilic azide reagents in use today.

  17. Stereoselective Synthesis of Functionalized 1,3-Disubstituted Isoindolines via Rh(III)-Catalyzed Tandem Oxidative Olefination-Cyclization of 4-Aryl-cyclic Sulfamidate-5-Carboxylates.

    Science.gov (United States)

    Achary, Raghavendra; Jung, In-A; Son, Se-Mi; Lee, Hyeon-Kyu

    2017-07-21

    A new method for the direct, stereoselective synthesis of highly functionalized 1,3-disubstituted isoindolines 6 from enantiomerically enriched cyclic 4-aryl-sulfamidate-5-carboxylates (5) is described. The process involves sulfamidate directed, Rh(III)-catalyzed tandem ortho C-H olefination of the 4-aryl-sulfamidate-5-carboxylates and subsequent cyclization by aza-Michael addition. In the reaction, which generates trans-1,3-disubstituted isoindolines exclusively, the configurational integrity of the stereogenic center in the starting cyclic sulfamidate is completely retained in the product. Examples are provided which show that the cyclic sulfamidate moiety not only serves as a chiral directing group but also as a versatile handle for further functionalization of the generated isoindoline ring system.

  18. REGIOSELECTIVE OXIDATIONS OF EQUILENIN DERIVATIVES CATALYZED BY A RHODIUM (III) PORPHYRIN COMPLEX-CONTRAST WITH THE MANGANESE (III) PORPHYRIN. (R826653)

    Science.gov (United States)

    AbstractEquilenin acetate and dihydroequilenin acetate were oxidized with iodosobenzene and a rhodium(III) porphyrin catalyst. The selectivity of the reactions differs from that with the corresponding Mn(III) catalyst, or from that of free radical chain oxidation.

  19. CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes.

    Science.gov (United States)

    Davies, Benjamin J; Coller, Janet K; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2007-01-01

    The cytochrome P450 (P450)-mediated 4-monohydroxylations of the individual enantiomers of the racemic antianginal agent perhexiline (PHX) were investigated in human liver microsomes (HLMs) to identify stereoselective differences in metabolism and to determine the contribution of the polymorphic enzyme CYP2D6 and other P450s to the intrinsic clearance of each enantiomer. The cis-, trans1-, and trans2-4-monohydroxylation rates of (+)- and (-)-PHX by human liver microsomes from three extensive metabolizers (EMs), two intermediate metabolizers (IMs), and two poor metabolizers (PMs) of CYP2D6 were measured with a high-performance liquid chromatography assay. P450 isoform-specific inhibitors, monoclonal antibodies directed against P450 isoforms, and recombinantly expressed human P450 enzymes were used to define the P450 isoform profile of PHX 4-monohydroxylations. The total in vitro intrinsic clearance values (mean +/- S.D.) of (+)- and (-)-PHX were 1376 +/- 330 and 2475 +/- 321, 230 +/- 225 and 482 +/- 437, and 63.4 +/- 1.6 and 54.6 +/- 1.2 microl/min/mg for the EM, IM, and PM HLMs, respectively. CYP2D6 catalyzes the formation of cis-OH-(+)-PHX and trans1-OH-(+)-PHX from (+)-PHX and cis-OH-(-)-PHX from (-)-PHX with high affinity. CYP2B6 and CYP3A4 each catalyze the trans1- and trans2-4-monohydroxylation of both (+)- and (-)-PHX with low affinity. Both enantiomers of PHX are subject to significant polymorphic metabolism by CYP2D6, although this enzyme exhibits distinct stereoselectivity with respect to the conformation of metabolites and the rate at which they are formed. CYP2B6 and CYP3A4 are minor contributors to the intrinsic P450-mediated hepatic clearance of both enantiomers of PHX, except in CYP2D6 PMs.

  20. Life estimation and analysis of dielectric strength, hydrocarbon backbone and oxidation of high voltage multi stressed EPDM composites

    Science.gov (United States)

    Khattak, Abraiz; Amin, Muhammad; Iqbal, Muhammad; Abbas, Naveed

    2018-02-01

    Micro and nanocomposites of ethylene propylene diene monomer (EPDM) are recently studied for different characteristics. Study on life estimation and effects of multiple stresses on its dielectric strength and backbone scission and oxidation is also vital for endorsement of these composites for high voltage insulation and other outdoor applications. In order to achieve these goals, unfilled EPDM and its micro and nanocomposites are prepared at 23 phr micro silica and 6 phr nanosilica loadings respectively. Prepared samples are energized at 2.5 kV AC voltage and subjected for a long time to heat, ultraviolet radiation, acid rain, humidity and salt fog in accelerated manner in laboratory. Dielectric strength, leakage current and intensity of saturated backbone and carbonyl group are periodically measured. Loss in dielectric strength, increase in leakage current and backbone degradation and oxidation were observed in all samples. These effects were least in the case of EPDM nanocomposite. The nanocomposite sample also demonstrated longest shelf life.

  1. Exposure to polycyclic aromatic hydrocarbons, arsenic and environmental tobacco smoke, nutrient intake, and oxidative stress in Japanese preschool children.

    Science.gov (United States)

    Mori, Takuya; Yoshinaga, Jun; Suzuki, Kei; Mizoi, Miho; Adachi, Shu-Ichi; Tao, Hiroaki; Nakazato, Tetsuya; Li, Yun-Shan; Kawai, Kazuaki; Kasai, Hiroshi

    2011-07-01

    The association between oxidative stress and exposure to environmental chemicals was assessed in a group of Japanese preschool children. The concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), 1-hydroxypyrene (1-OHP), inorganic arsenic (iAs) and monomethylarsonic acid (MMA), and cotinine in spot urine samples, collected from 134 children (3-6 yrs) from a kindergarten in Kanagawa, Japan, were measured as biomarkers of oxidative stress or exposure to environmental chemicals. For 76 subjects of the 134, intakes of anti-oxidant nutrients (vitamins A, C, and E, manganese, copper, zinc and selenium (Se)) were estimated from a food consumption survey carried out 2-4 weeks after urine sampling and by urine analysis (Se). The median (min-max) creatinine-corrected concentrations of urinary biomarkers were 4.45 (1.98-12.3), 0.127 (0.04-2.41), 4.78 (1.18-12.7), and 0.62 (iAs+MMA, and cotinine, respectively. Multiple regression analysis was carried out using 8-OHdG concentration as a dependent variable and urinary biomarkers of exposure and Se intake, intakes of vitamins and biological attributes of the subjects as independent variables. To explain 8-OHdG concentrations, intake of vitamin A and age were significant variables with negative coefficients, while 1-OHP concentration had a positive coefficient. These results indicated that oxidative stress of children is affected by chemical exposure at environmental levels, by nutrient intake and by physiological factors in a complex manner. On the other hand, unstable statistical results due to sub-grouping of subject, based on the availability of food consumption data, were found: the present results should further be validated by future studies with suitable research design. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Role of GSTT1 deletion in DNA oxidative damage by exposure to polycyclic aromatic hydrocarbons in humans

    Czech Academy of Sciences Publication Activity Database

    Garte, S.; Taioli, E.; Popov, T.; Kalina, I.; Šrám, Radim; Farmer, P.

    2007-01-01

    Roč. 120, - (2007), s. 2499-2503 ISSN 0020-7136 Grant - others:EU(GB) 2000-00091 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK Keywords : metabolic polymorphism * GSTT1 genotype * oxidative DNA damage Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.555, year: 2007

  3. Evaluation of ethyl lactate as solvent in Fenton oxidation for the remediation of total petroleum hydrocarbon (TPH)-contaminated soil.

    Science.gov (United States)

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2017-07-01

    Due to the health and environmental risks posed by the presence of petroleum-contaminated areas around the world, remediation of petroleum-contaminated soil has drawn much attention from researchers. Combining Fenton reaction with a solvent has been proposed as a novel way to remediate contaminated soils. In this study, a green solvent, ethyl lactate (EL), has been used in conjunction with Fenton's reagents for the remediation of diesel-contaminated soil. The main aim of this research is to determine how the addition of EL affects Fenton reaction for the destruction of total petroleum hydrocarbons (TPHs) within the diesel range. Specifically, the effects of different parameters, including liquid phase volume-to-soil weight (L/S) ratio, hydrogen peroxide (H 2 O 2 ) concentration and EL% on the removal efficiency, have been studied in batch experiments. The results showed that an increase in H 2 O 2 resulted in an increase in removal efficiency of TPH from 68.41% at H 2 O 2  = 0.1 M to 90.21% at H 2 O 2  = 2 M. The lowest L/S, i.e. L/S = 1, had the highest TPH removal efficiency of 85.77%. An increase in EL% up to 10% increased the removal efficiency to 96.74% for TPH, and with further increase in EL%, the removal efficiency of TPH decreased to 89.6%. EL with an optimum value of 10% was found to be best for TPH removal in EL-based Fenton reaction. The power law and pseudo-first order equations fitted well to the experimental kinetic data of Fenton reactions.

  4. CuX2络合物催化甲基丙烯酸甲酯的氧化聚合%CuX2 COMPLEX-CATALYZED OXIDATIVE POLYMERIZATIONS OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    孙燕; 孙晋; 宋瑾; 黄文艳; 蒋必彪; 翟光群

    2011-01-01

    Oxidative polymerizations of methyl methacrylate ( MMA) catalyzed by complexes of transition metal halides in high oxidation states were investigated. First, CuBr2/2, 2'-bipyridine ( bPy)-catalyzed oxidative polymerizations of MMA in the presence of poly (2-( N, iV-dimethylamino) ethyl methacrylate) were performed in different solvents. When cyclohexanone was used as a solvent, only poly ( methyl methacrylate) ( PMMA) was obtained, suggesting redox initiation between CuBr2/bPy and tertiary amines in cyclohexanone is negligible. Second, oxidative polymerizations of MMA catalyzed by different complexes were carried out. Complexes of CuCl2 ,CuBr2 or FeCl3 with bPy,N,N,/V',N",/V"-pentamethyldiethylenetriamine or N,N,N',N'-tetramethylethylenediamine can catalyze oxidative polymerizations of MMA, and polymerization rates increased with the increase of the catalyst concentration. Molecular weight of PMMA increases with monomer conversions initially and maintains constant later. Last,atom transfer radical polymerization ( ATRP) chain extension using PMMA from the oxidative polymerizations at different conversions was performed. The results show the C-X functionality of PMMA chains at low conversion was also 100% ,and it decreased sharply with conversions. Two different mechanisms were conceived to contribute to the oxidative polymerization of MMA: (1) the complexes form ATRP initiators and catalysts with MMA via monomer addition, and then ATRP proceeds to give rise to PMMA chains with C-X terminal groups; (2) the complexes catalyze/initiate conventional free radical polymerizations of MMA.%研究了高氧化态过渡金属卤化物络合物催化甲基丙烯酸甲酯(MMA)的氧化聚合.首先在叔胺类聚合物存在条件下以CuBr2/2,2′-联吡啶(bPy)络合物催化MMA在不同溶剂中的氧化聚合,结果在环己酮中得到PMMA均聚物,CuBr2/bPy同叔胺的氧化还原引发可以忽略.随后在环己酮中分别以不同络合物催化MMA的

  5. Highly efficient alkane oxidation catalyzed by [Mn(V)(N)(CN)4](2-). Evidence for [Mn(VII)(N)(O)(CN)4](2-) as an active intermediate.

    Science.gov (United States)

    Ma, Li; Pan, Yi; Man, Wai-Lun; Kwong, Hoi-Ki; Lam, William W Y; Chen, Gui; Lau, Kai-Chung; Lau, Tai-Chu

    2014-05-28

    The oxidation of various alkanes catalyzed by [Mn(V)(N)(CN)4](2-) using various terminal oxidants at room temperature has been investigated. Excellent yields of alcohols and ketones (>95%) are obtained using H2O2 as oxidant and CF3CH2OH as solvent. Good yields (>80%) are also obtained using (NH4)2[Ce(NO3)6] in CF3CH2OH/H2O. Kinetic isotope effects (KIEs) are determined by using an equimolar mixture of cyclohexane (c-C6H12) and cyclohexane-d12 (c-C6D12) as substrate. The KIEs are 3.1 ± 0.3 and 3.6 ± 0.2 for oxidation by H2O2 and Ce(IV), respectively. On the other hand, the rate constants for the formation of products using c-C6H12 or c-C6D12 as single substrate are the same. These results are consistent with initial rate-limiting formation of an active intermediate between [Mn(N)(CN)4](2-) and H2O2 or Ce(IV), followed by H-atom abstraction from cyclohexane by the active intermediate. When PhCH2C(CH3)2OOH (MPPH) is used as oxidant for the oxidation of c-C6H12, the major products are c-C6H11OH, c-C6H10O, and PhCH2C(CH3)2OH (MPPOH), suggesting heterolytic cleavage of MPPH to generate a Mn═O intermediate. In the reaction of H2O2 with [Mn(N)(CN)4](2-) in CF3CH2OH, a peak at m/z 628.1 was observed in the electrospray ionization mass spectrometry, which is assigned to the solvated manganese nitrido oxo species, (PPh4)[Mn(N)(O)(CN)4](-)·CF3CH2OH. On the basis of the experimental results the proposed mechanism for catalytic alkane oxidation by [Mn(V)(N)(CN)4](2-)/ROOH involves initial rate-limiting O-atom transfer from ROOH to [Mn(N)(CN)4](2-) to generate a manganese(VII) nitrido oxo active species, [Mn(VII)(N)(O)(CN)4](2-), which then oxidizes alkanes (R'H) via a H-atom abstraction/O-rebound mechanism. The proposed mechanism is also supported by density functional theory calculations.

  6. CuO and Ag2O/CuO Catalyzed Oxidation of Aldehydes to the Corresponding Carboxylic Acids by Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-04-01

    Full Text Available Furfural was oxidized to furoic acid by molecular oxygen under catalysis by 150nm-sized Ag2O/CuO (92% or simply CuO (86.6%. When 30 nm-size catalyst was used,the main product was a furfural Diels-Alder adduct. Detailed reaction conditions andregeneration of catalysts were investigated. Under optimal conditions, a series of aromaticand aliphatic aldehydes were oxidized to the corresponding acids in good yields.

  7. Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides.

    Science.gov (United States)

    You, Qing; Wang, Fei; Wu, Chaoting; Shi, Tianchao; Min, Dewen; Chen, Huajun; Zhang, Wu

    2015-06-28

    Cu(OAc)2 was found to be an efficient catalyst for dehydrogenative synthesis of 1,3,5-triazine derivatives via oxidative coupling reaction of amidine hydrochlorides and alcohols in air. Both aromatic and aliphatic alcohols can be involved in the reaction and thirty-three products were obtained with good to excellent yields. Moreover, the use of a ligand, strong base and organic oxidant is unnecessary.

  8. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Zhang, Wangzhen [Institute of Industrial Health, Wuhan Iron & Steel (Group) Corporation, Wuhan 430070, China. (China); Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Guo, Huan, E-mail: ghuan5011@hust.edu.cn [Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-07-15

    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P{sub interaction}≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies. - Highlights: • Heavy metals and PAHs are predominate toxic constituents of particulate matters. • Urinary As and Ni showed linear dose-dependent effects on 8-OHdG and 8-iso-PGF2α. • PAHs significant interact with toxic metal in increasing 8

  9. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers

    International Nuclear Information System (INIS)

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei; Zhang, Wangzhen; Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun; Guo, Huan

    2015-01-01

    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P interaction ≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies. - Highlights: • Heavy metals and PAHs are predominate toxic constituents of particulate matters. • Urinary As and Ni showed linear dose-dependent effects on 8-OHdG and 8-iso-PGF2α. • PAHs significant interact with toxic metal in increasing 8-OHd

  10. Phytic acid-stabilized super-amphiphilic Fe3O4-graphene oxide for extraction of polycyclic aromatic hydrocarbons from vegetable oils.

    Science.gov (United States)

    Ji, Wenhua; Zhang, Mingming; Duan, Wenjuan; Wang, Xiao; Zhao, Hengqiang; Guo, Lanping

    2017-11-15

    Phytic acid-stabilized Fe 3 O 4 -graphene oxide (GOPA@Fe 3 O 4 ) was assembled by microwave-enhanced hydrothermal synthesis and super-amphipathicity was demonstrated by measurement of dynamic oil and water contact angles. GOPA@Fe 3 O 4 was used as a sorbent for enrichment of eight polycyclic aromatic hydrocarbons (PAHs) from vegetable oils by magnetic solid-phase extraction (MSPE). The extraction-desorption factors were systematically investigated and, under optimum conditions, the super-amphiphilic sorbent achieved wide linear ranges (0.2-200ngg -1 ), satisfactory precision (3.44-6.64% for intra-day and 5.39-8.41% for inter-day) and low limits of detection (LODs, 0.06-0.15ngg -1 ) for PAHs. Excellent recoveries (85.6-102.3%) for spiked PAHs were obtained with genuine vegetable oil samples. These results indicate that MSPE using GOPA@Fe 3 O 4 as the sorbent, coupled with high performance liquid chromatography (HPLC), is an efficient and simple method for the detection of low concentrations of PAHs in vegetable oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Reduced Graphene Oxide-Hybridized Polymeric High-Internal Phase Emulsions for Highly Efficient Removal of Polycyclic Aromatic Hydrocarbons from Water Matrix.

    Science.gov (United States)

    Huang, Yipeng; Zhang, Wenjuan; Ruan, Guihua; Li, Xianxian; Cong, Yongzheng; Du, Fuyou; Li, Jianping

    2018-03-27

    Reduced graphene oxide (RGO)-hybridized polymeric high-internal phase emulsions (RGO/polyHIPEs) with an open-cell structure and hydrophobicity have been successfully prepared using 2-ethylhexyl acrylate and ethylene glycol dimethacrylate as the monomer and the cross-linker, respectively. The adsorption mechanism and performance of this RGO/polyHIPEs to polycyclic aromatic hydrocarbons (PAHs) were investigated. Adsorption isotherms of PAHs on RGO/polyHIPEs show that the saturated adsorption capacity is 47.5 mg/g and the equilibrium time is 8 h. Cycling tests show that the adsorption capacity of RGO/polyHIPEs remains stable in 10 adsorption-desorption cycles without observable structure change in RGO/polyHIPEs. Moreover, the PAH residues in water samples after being purified by RGO/polyHIPEs are lower than the limit values in drinking water set by the European Food Safety Authority. These results demonstrate that the RGO/polyHIPEs have great potentiality in PAH removal and water purification.

  12. Numerical simulation of in-situ chemical oxidation (ISCO) and biodegradation of petroleum hydrocarbons using a coupled model for bio-geochemical reactive transport

    Science.gov (United States)

    Marin, I. S.; Molson, J. W.

    2013-05-01

    Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.

  13. A nanocomposite consisting of silica-coated magnetite and phenyl-functionalized graphene oxide for extraction of polycyclic aromatic hydrocarbon from aqueous matrices.

    Science.gov (United States)

    Mahpishanian, Shokouh; Sereshti, Hassan; Ahmadvand, Mohammad

    2017-05-01

    In this study, graphene oxide was covalently immobilized on silica-coated magnetite and then modified with 2-phenylethylamine to give a nanocomposite of type Fe 3 O 4 @SiO 2 @GO-PEA that can be applied to the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from water samples. The resulting microspheres (Fe 3 O 4 @SiO 2 @GO-PEA) were characterized by Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), CHNS elemental analysis, and vibrating sample magnetometry (VSM) techniques. The adsorbent possesses the magnetic properties of Fe 3 O 4 nanoparticles that allow them easily to be separated by an external magnetic field. They also have the high specific surface area of graphene oxide which improves adsorption capacity. Desorption conditions, extraction time, amount of adsorbent, salt concentration, and pH were investigated and optimized. Following desorption, the PAHs were quantified by gas chromatography with flame ionization detection (GC-FID). The limits of detection (at an S/N ratio of 3) were achieved from 0.005 to 0.1μg/L with regression coefficients (R 2 ) higher than 0.9954. The relative standard deviations (RSDs) were below 5.8% (intraday) and 6.2% (inter-day), respectively. The method was successfully applied to the analysis of PAHs in environmental water samples where it showed recoveries in the range between 71.7% and 106.7% (with RSDs of 1.6% to 8.4%, for n=3). The results indicated that the Fe 3 O 4 @SiO 2 @GO-PEA microspheres had a great promise to extraction of PAHs from different water samples. Copyright © 2016. Published by Elsevier B.V.

  14. Molecular epidemiology studies of carcinogenic environmental pollutants. Effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage.

    Science.gov (United States)

    Farmer, Peter B; Singh, Rajinder; Kaur, Balvinder; Sram, Radim J; Binkova, Blanka; Kalina, Ivan; Popov, Todor A; Garte, Seymour; Taioli, Emanuela; Gabelova, Alena; Cebulska-Wasilewska, Antonina

    2003-11-01

    Exposure to high levels of environmental air pollution is known to be associated with an increased carcinogenic risk. The individual contribution to this risk derived from specific carcinogenic chemicals within the complex mixture of air pollution is less certain, but may be explored by the use of molecular epidemiological techniques. Measurements of biomarkers of exposure, of effect and of susceptibility provide information of potential benefit for epidemiological and cancer risk assessment. The application of such techniques has been mostly concerned in the past with the carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) that are associated with particulate matter in air pollution, and has showed clear evidence of genotoxic effects, such as DNA adducts, chromosome aberrations (CA) and ras oncogene overexpression, in environmentally exposed Czech and Polish populations. We are currently extending these studies by an investigation of populations exposed to environmental pollution in three European countries, Czech Republic, Slovak Republic and Bulgaria. This pays particular attention to PAHs, but also investigates the extent of radically induced (oxidative) DNA damage in the exposed populations. Policemen, bus drivers and controls, who carried personal monitors to determine their exposures to PAHs have been studied, and blood and urine were collected. Antioxidant and dietary status were assessed in these populations. Stationary monitors were also used for ambient air monitoring. Amongst the parameters studied in the biological samples were: (a) exposure biomarkers, such as PAH adducts with DNA, p53 and p21(WAF1) protein levels, (b) oxidative DNA damage, (c) the biological effect of the exposure by measurement of chromosome damage by fluorescence in situ hybridisation (FISH) or conventional methods, and (d) polymorphisms in carcinogen metabolising and DNA repair enzymes. Repair ability was also measured by the Comet assay. In vitro systems are being evaluated to

  15. Effects of Low Sulfur Fuel and a Catalyzed Particle Trap on the Composition and Toxicity of Diesel Emissions

    Science.gov (United States)

    McDonald, Jacob D.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.

    2004-01-01

    In this study we compared a “baseline” condition of uncontrolled diesel engine exhaust (DEE) emissions generated with current (circa 2003) certification fuel to an emissions-reduction (ER) case with low sulfur fuel and a catalyzed particle trap. Lung toxicity assessments (resistance to respiratory viral infection, lung inflammation, and oxidative stress) were performed on mice (C57Bl/6) exposed by inhalation (6 hr/day for 7 days). The engine was operated identically (same engine load) in both cases, and the inhalation exposures were conducted at the same exhaust dilution rate. For baseline DEE, this dilution resulted in a particle mass (PM) concentration of approximately 200 μg/m3 PM, whereas the ER reduced the PM and almost every other measured constituent [except nitrogen oxides (NOx)] to near background levels in the exposure atmospheres. These measurements included PM, PM size distribution, PM composition (carbon, ions, elements), NOx, carbon monoxide, speciated/total volatile hydrocarbons, and several classes of semi-volatile organic compounds. After exposure concluded, one group of mice was immediately sacrificed and assessed for inflammation and oxidative stress in lung homogenate. Another group of mice were intratracheally instilled with respiratory syncytial virus (RSV), and RSV lung clearance and inflammation was assessed 4 days later. Baseline DEE produced statistically significant biological effects for all measured parameters. The use of low sulfur fuel and a catalyzed trap either completely or nearly eliminated the effects. PMID:15345344

  16. Supported manganese oxide on TiO{sub 2} for total oxidation of toluene and polycyclic aromatic hydrocarbons (PAHs): Characterization and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Aboukaïs, Antoine, E-mail: aboukais@univ-littoral.fr [Univ Lille Nord de France, 59000 Lille (France); Equipe Catalyse, UCEIV, EA 4492, MREI, ULCO, 59140 Dunkerque (France); Abi-Aad, Edmond [Univ Lille Nord de France, 59000 Lille (France); Equipe Catalyse, UCEIV, EA 4492, MREI, ULCO, 59140 Dunkerque (France); Taouk, Bechara [Laboratoire de Sécurité des procédés Chimiques (LSPC), EA 4704, INSA Rouen, Avenue de l' Université, 76801 Saint Etienne du Rouvray (France)

    2013-11-01

    Manganese oxide catalysts supported on titania (TiO{sub 2}) were prepared by incipient wetness impregnation method in order to elaborate catalysts for total oxidation of toluene and PAHs. These catalysts have been characterized by means of X-ray diffraction (XRD), electron paramagnetic resonance (EPR), temperature programmed reduction (TPR) and temperature programmed desorption (TPD). It has been shown that for the 5%Mn/TiO{sub 2} catalyst the reducibility and the mobility of oxygen are higher compared, in one side, to other x%Mn/TiO{sub 2} samples and, in another side, to catalysts where TiO{sub 2} support was replaced by γ-Al{sub 2}O{sub 3} or SiO{sub 2}. It has been shown that the content of manganese loading on TiO{sub 2} has an effect on the catalytic activity in the toluene oxidation. A maximum of activity was obtained for the 5%Mn/TiO{sub 2} catalyst where the total conversion of toluene was reached at 340 °C. This activity seems to be correlated to the presence of the Mn{sup 3+}/Mn{sup 4+} redox couple in the catalyst. When the Mn content increases, large particles of Mn{sub 2}O{sub 3} appear leading then to the decrease in the corresponding activity. In addition, compared to both other supports, TiO{sub 2} seems to be the best to give the best catalytic activity for the oxidation of toluene when it is loaded with 5% of manganese. For this reason, the latter catalyst was tested for the abatement of some PAHs. The light off temperature of PAHs compounds increases with increasing of benzene rings number and with decreasing of H/C ratio. All of PAHs are almost completely oxidized and converted at temperatures lower than 500 °C. - Highlights: • Preparation of x%MnO{sub 2}/TiO{sub 2} catalysts. • Catalytic oxidation tests of toluene and PAHs. • EPR, TPR and TPD characterizations of Mn(II) and Mn(IV) ions.

  17. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  18. Deep Desulfurization of Diesel Fuels with Plasma/Air as Oxidizing Medium, Diperiodatocuprate (III) as Catalyzer and Ionic Liquid as Extraction Solvent

    Science.gov (United States)

    Ban, Lili; Liu, Ping; Ma, Cunhua; Dai, Bin

    2013-12-01

    In this paper, the oxidative desulfurization (ODS) system is directly applied to deal with the catalytic oxidation of sulfur compounds of sulfur-containing model oil by dielectric barrier discharge (DBD) plasma in the presence of air plus an extraction step with the oxidation-treated fuel put over ionic liquid [BMIM]FeCl4 (1-butyl-3-methylimidazolium tetrachloroferrate). This new system exhibited an excellent desulfurization effect. The sulfur content of DBT in diesel oil decreased from 200 ppm to 4.92 ppm (S removal rate up to 97.5%) under the following optimal reaction conditions: air flow rate (ν) of 60 mL/min, amplitude of applied voltage (U) on DBD of 16 kV, input frequency (f) of 79 kHz, catalyst amount (ω) of 1.25 wt%, reaction time (t) of 10 min. Moreover, a high desulfurization rate was obtained during oxidation of benzothiophene (BT) or 4,6-DMDBT (4,6-dimethyl-dibenzothiophene) under the aforementioned conditions. The oxidation reactivity of different S compounds was decreased in the order of DBT, 4,6-DMDBT and BT. The remarkable advantage of the novel ODS system is that the desulfurization condition applies in the presence of air at ambient conditions without peroxides, aqueous solvent or biphasic oil-aqueous solution system.

  19. Deep Desulfurization of Diesel Fuels with Plasma/Air as Oxidizing Medium, Diperiodatocuprate (III) as Catalyzer and Ionic Liquid as Extraction Solvent

    International Nuclear Information System (INIS)

    Ban Lili; Liu Ping; Ma Cunhua; Dai Bin

    2013-01-01

    In this paper, the oxidative desulfurization (ODS) system is directly applied to deal with the catalytic oxidation of sulfur compounds of sulfur-containing model oil by dielectric barrier discharge (DBD) plasma in the presence of air plus an extraction step with the oxidation-treated fuel put over ionic liquid [BMIM]FeCl 4 (1-butyl-3-methylimidazolium tetrachloroferrate). This new system exhibited an excellent desulfurization effect. The sulfur content of DBT in diesel oil decreased from 200 ppm to 4.92 ppm (S removal rate up to 97.5%) under the following optimal reaction conditions: air flow rate (ν) of 60 mL/min, amplitude of applied voltage (U) on DBD of 16 kV, input frequency (f) of 79 kHz, catalyst amount (ω) of 1.25 wt%, reaction time (t) of 10 min. Moreover, a high desulfurization rate was obtained during oxidation of benzothiophene (BT) or 4,6-DMDBT (4,6-dimethyl-dibenzothiophene) under the aforementioned conditions. The oxidation reactivity of different S compounds was decreased in the order of DBT, 4,6-DMDBT and BT. The remarkable advantage of the novel ODS system is that the desulfurization condition applies in the presence of air at ambient conditions without peroxides, aqueous solvent or biphasic oil-aqueous solution system. (plasma technology)

  20. Oxidative stress and respiratory symptoms due to human exposure to polycyclic aromatic hydrocarbons (PAHs) in Kumasi, Ghana

    International Nuclear Information System (INIS)

    Bortey-Sam, Nesta; Ikenaka, Yoshinori; Akoto, Osei; Nakayama, Shouta M.M.; Asante, Kwadwo A.; Baidoo, Elvis; Obirikorang, Christian; Saengtienchai, Aksorn; Isoda, Norikazu; Nimako, Collins

    2017-01-01

    Studies of polycyclic aromatic hydrocarbons (PAHs) and its metabolites in PM10, soils, rat livers and cattle urine in Kumasi, Ghana, revealed high concentrations and cancer potency. In addition, WHO and IARC have reported an increase in cancer incidence and respiratory diseases in Ghana. Human urine were therefore collected from urban and control sites to: assess the health effects associated with PAHs exposure using malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG); identify any association between OH-PAHs, MDA, 8-OHdG with age and sex; and determine the relationship between PAHs exposure and occurrence of respiratory diseases. From the results, urinary concentrations of the sum of OH-PAHs (∑OHPAHs) were significantly higher from urban sites compared to the control site. Geometric mean concentrations adjusted by specific gravity, GM SG , indicated 2-OHNaphthalene (2-OHNap) (6.01 ± 4.21 ng/mL) as the most abundant OH-PAH, and exposure could be through the use of naphthalene-containing-mothballs in drinking water purification, insect repellent, freshener in clothes and/or “treatment of various ailments”. The study revealed that exposure to naphthalene significantly increases the occurrence of persistent cough (OR = 2.68, CI: 1.43–5.05), persistent headache (OR = 1.82, CI: 1.02–3.26), tachycardia (OR = 3.36, CI: 1.39–8.10) and dyspnea (OR = 3.07, CI: 1.27–7.43) in Kumasi residents. Highest level of urinary 2-OHNap (224 ng/mL) was detected in a female, who reported symptoms of persistent cough, headache, tachycardia, nasal congestion and inflammation, all of which are symptoms of naphthalene exposure according to USEPA. The ∑OHPAHs, 2-OHNap, 2-3-OHFluorenes, and -OHPhenanthrenes showed a significantly positive correlation with MDA and 4-OHPhenanthrene with 8-OHdG, indicating possible lipid peroxidation/cell damage or degenerative disease in some participants. MDA and 8-OHdG were highest in age group 21–60. The present study

  1. Inter- and intramolecular deuterium isotope effects on the cytochrome P-450-catalyzed oxidative dehalogenation of 1,1,2,2-tetrachloroethane

    International Nuclear Information System (INIS)

    Hales, D.B.; Ho, B.; Thompson, J.A.

    1987-01-01

    The oxidation of 1,1,2,2-tetrachloroethane to dichloroacetic acid was investigated with rat liver microsomes and purified cytochrome P-450. Deuterium substitution had no effect on Km values, but both the inter- and intramolecular isotope effects (kH/kD) on Vmax were in the range 5.7-6.1. The equivalence of the inter- and intramolecular values indicates that 6.0 may be a good estimate of the intrinsic isotope effect. The intermolecular kH/kD value for the conversion of 1,1,2,2-trichloroethane and its 1- 2 H analog to chloroacetic acid was 5.5. These data, and the finding that 1 atom of 18 O was incorporated into the product when TCEA was oxidized in an 18 O 2 atmosphere, support an oxidative dechlorination mechanism that involves hydrogen atom abstraction by the P-450 intermediate oxo complex

  2. Kinetics of phosphotungstic acid catalyzed oxidation of propan-1,3-diol and butan-1,4-diol by N-chlorosaccharin

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Singh

    2011-09-01

    Full Text Available The kinetic studies of N-chlorosaccharin (NCSA oxidation of propan-1,3-diol and butan-1,4-diol have been reported in presence of phophotungstic acid and in aqueous acetic acid medium. The reactions follow first-order in NCSA and one to zero order with respect to substrate and phosphotungstic acid. Increase in the concentration of added perchloric acid increases the rate of oxidation. A negative effect on the oxidation rate is observed for solvent whereas the ionic strength does not influence the rate of reaction. Addition of the reaction product, saccharin, exhibited retarding effect. Various activation parameters have been evaluated. The products of the reactions were identified as the corresponding aldehydes. A suitable scheme of mechanism consistent with the experimental results has been proposed.

  3. A single source precursor route to group 13 homo- and heterometallic oxides as highly active supports for gold-catalyzed aerobic epoxidation of trans-stilbene

    KAUST Repository

    Mishra, Shashank K.; Mendez, Violaine; Jeanneau, Erwann; Caps, Valerie; Daniè le, Sté phane

    2012-01-01

    A new Mitsubishi-type of star-shaped homoleptic derivative of indium(III), In4(mdea)6 (2, mdeaH2 = N-methyldiethanolamine) , was synthesized by the chloro-aminoalkoxo exchange reaction of a heteroleptic complex In6Cl6(mdea)6 (1) and used as a facile single source molecular precursor for the sol-gel preparation of high surface area indium oxide. Successful deposition of gold nanoparticles (1 wt.-%) of average size 3.3 nm on the above metal oxide by using HAuCl4· 3H2O afforded a highly efficient Au/In2O3 catalyst for the aerobic epoxidation of trans-stilbene at low temperature. The above single source precursor approach was further extended to obtain other group 13 homo- and heterometallic oxides, namely, α-Ga2O 3, β-Ga2O3 and Al4Ga 2O9, as highly active supports for gold catalysts. The obtained Au/M2O3 (M = Ga, In) and Au/Al4Ga 2O9 catalysts were thoroughly characterized by using several physicochemical techniques such as XRD, high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). A comparative study of the above catalysts for the model aerobic oxidation of stilbene in methylcyclohexane was undertaken. Highly efficient catalysts for aerobic oxidation reactions were obtained by depositing gold nanoparticles on group 13 mono- or mixed metal oxides prepared from the hydrolysis of well-characterized homo- and heterometallic N-methyldiethanolaminate derivatives. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A single source precursor route to group 13 homo- and heterometallic oxides as highly active supports for gold-catalyzed aerobic epoxidation of trans-stilbene

    KAUST Repository

    Mishra, Shashank K.

    2012-12-14

    A new Mitsubishi-type of star-shaped homoleptic derivative of indium(III), In4(mdea)6 (2, mdeaH2 = N-methyldiethanolamine) , was synthesized by the chloro-aminoalkoxo exchange reaction of a heteroleptic complex In6Cl6(mdea)6 (1) and used as a facile single source molecular precursor for the sol-gel preparation of high surface area indium oxide. Successful deposition of gold nanoparticles (1 wt.-%) of average size 3.3 nm on the above metal oxide by using HAuCl4· 3H2O afforded a highly efficient Au/In2O3 catalyst for the aerobic epoxidation of trans-stilbene at low temperature. The above single source precursor approach was further extended to obtain other group 13 homo- and heterometallic oxides, namely, α-Ga2O 3, β-Ga2O3 and Al4Ga 2O9, as highly active supports for gold catalysts. The obtained Au/M2O3 (M = Ga, In) and Au/Al4Ga 2O9 catalysts were thoroughly characterized by using several physicochemical techniques such as XRD, high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). A comparative study of the above catalysts for the model aerobic oxidation of stilbene in methylcyclohexane was undertaken. Highly efficient catalysts for aerobic oxidation reactions were obtained by depositing gold nanoparticles on group 13 mono- or mixed metal oxides prepared from the hydrolysis of well-characterized homo- and heterometallic N-methyldiethanolaminate derivatives. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oxidative N-Heterocyclic Carbene-Catalyzed γ-Carbon Addition of Enals to Imines: Mechanistic Studies and Access to Antimicrobial Compounds.

    Science.gov (United States)

    Zheng, Peng-Cheng; Cheng, Jiajia; Su, Shihu; Jin, Zhichao; Wang, Yu-Huang; Yang, Song; Jin, Lin-Hong; Song, Bao-An; Chi, Yonggui Robin

    2015-07-06

    The reaction mechanism of the γ-carbon addition of enal to imine under oxidative N-heterocyclic carbene catalysis is studied experimentally. The oxidation, γ-carbon deprotonation, and nucleophilic addition of γ-carbon to imine were found to be facile steps. The results of our study also provide highly enantioselective access to tricyclic sulfonyl amides that exhibit interesting antimicrobial activities against X. oryzae, a bacterium that causes bacterial disease in rice growing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fish Proteins as Targets of Ferrous-Catalyzed Oxidation: Identification of Protein Carbonyls by Fluorescent Labeling on Two-Dimensional Gels and MALDI-TOF/TOF Mass Spectrometry

    DEFF Research Database (Denmark)

    Pazos, Manuel; da Rocha, Angela Pereira; Roepstorff, Peter

    2011-01-01

    Protein oxidation in fish meat is considered to affect negatively the muscle texture. An important source of free radicals taking part in this process is Fenton's reaction dependent on ferrous ions present in the tissue. The aim of this study was to investigate the susceptibility of cod muscle pr...

  7. Synthesis of New Chiral 2,2'-bipyridine ligands and their application in copper-catalyzed asymmetric allylic oxidation and cyclopropanation

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Pernazza, D.; Bell, M.; Bella, M.; Massa, A.; Teplý, Filip; Meghani, P.; Kočovský, P.

    2003-01-01

    Roč. 68, č. 12 (2003), s. 4727-4742 ISSN 0022-3263 Institutional research plan: CEZ:AV0Z4055905 Keywords : optically-active bipyridine * enantioselective cyclopropanation * allylic oxidation Subject RIV: CC - Organic Chemistry Impact factor: 3.297, year: 2003

  8. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.

    Science.gov (United States)

    Shown, Indrajit; Hsu, Hsin-Cheng; Chang, Yu-Chung; Lin, Chang-Hui; Roy, Pradip Kumar; Ganguly, Abhijit; Wang, Chen-Hao; Chang, Jan-Kai; Wu, Chih-I; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-11-12

    The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO.

  9. Catalyst-Free Growth of Three-Dimensional Graphene Flakes and Graphene/g-C₃N₄ Composite for Hydrocarbon Oxidation.

    Science.gov (United States)

    Chen, Ke; Chai, Zhigang; Li, Cong; Shi, Liurong; Liu, Mengxi; Xie, Qin; Zhang, Yanfeng; Xu, Dongsheng; Manivannan, Ayyakkannu; Liu, Zhongfan

    2016-03-22

    Mass production of high-quality graphene flakes is important for commercial applications. Graphene microsheets have been produced on an industrial scale by chemical and liquid-phase exfoliation of graphite. However, strong-interaction-induced interlayer aggregation usually leads to the degradation of their intrinsic properties. Moreover, the crystallinity or layer-thickness controllability is not so perfect to fulfill the requirement for advanced technologies. Herein, we report a quartz-powder-derived chemical vapor deposition growth of three-dimensional (3D) high-quality graphene flakes and demonstrate the fabrication and application of graphene/g-C3N4 composites. The graphene flakes obtained after the removal of growth substrates exhibit the 3D curved microstructure, controllable layer thickness, good crystallinity, as well as weak interlayer interactions suitable for preventing the interlayer stacking. Benefiting from this, we achieved the direct synthesis of g-C3N4 on purified graphene flakes to form the uniform graphene/g-C3N4 composite, which provides efficient electron transfer interfaces to boost its catalytic oxidation activity of cycloalkane with relatively high yield, good selectivity, and reliable stability.

  10. Hydrocarbon formation mechanism during uranium monocarbide hydrolysis

    International Nuclear Information System (INIS)

    Ermolaev, M.I.; Tishchenko, G.V.

    1979-01-01

    The hydrolysis of uranium monocarbide in oxidative media and in the presence of excessive hydrogen in statu nascendi has been investigated. It was found that oxydants promote the formation of elementary carbon, while in the presence of hydrogen the yield of light C-C hydrocarbons increases. EPR data confirm the radical mechanism of hydrocarbons formation during the decomposition of uranium monocarbide

  11. Nitrogen oxidative activation in the radiolysis process of dioxide hydrocarbon composition, oxygen-nitrogen over 3-d transition metals

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Garibov, A.A.; Kerimov, V.K.; Aliyev, S.M.; Nasirova, Kh.Y.

    2004-01-01

    The radiochemical process of nitrogen fixation in carbon dioxide, oxygen-nitrogen composition in 3-d metal (iron, nickel) was studied. Bifunctional character of surface's role in the generation of radiolysis products was postulated: a) Chemisorption's of molecular ions (N 2 + , CO 2 + , O 2 + ) on the surface of metal and their dissociative neutralization. b) Coordination of nitrogen and carbon oxide being generated in nitrosyl and carbonyl-nitrosyl complex of iron and nickel. Total yield of the products is over the rang 6,4†7,5, to explain radiolysis' what contribution of only neutral products is impossible. Evidently in the generation of final products, defined contribution brings in molecular ions N 2 + (N + ) and CO 2 + . Interaction character of these ions with nickel proposes the formation of the relation between unpaired electrons N 2 + and CO 2 + with unfilled d-sub level of this metals with the nickel nitride generation [N i -N=N + ] and binding energy in ion diazotate decreases to twice. The yield of nitrogen dioxide on radiolysis of the air gave G NO2 =0,8±0,2 molecule/100eV which is proper to the date in the literature. Kinetic curve appears rapidly in the saturation. Air radiolysis over iron gave the following results: G NO 2 = 2,75 ± 0,25, G N 2 O = 9,0 ± 1,0 molecule/100eV. Thus total yield of radiolysis products is Σ G = 10,5 ± 12,0 molecule/100eV. (author)

  12. Nitrogen oxidative activation in the radiolysis process of dioxide hydrocarbon composition, oxygen-nitrogen over 3-D transition metals

    International Nuclear Information System (INIS)

    Rustamov, V.R.; Garibov, A.A.; Kerimov, V.K.; Aliyev, S.M.; Nasirova, Kh.Y.

    2004-01-01

    Full text: The radiochemical process of nitrogen fixation in carbon dioxide, oxygen-nitrogen composition in 3-d metal (iron, nickel) was studied. Bifunctional character of surface's role in the generation of radiolysis products was postulated: a) Chemisorption's of molecular ions (N 2 + , CO 2 + , O 2 + ) on the surface of metal and their dissociative neutralization. b) Coordination of nitrogen and carbon oxide being generated in nitrosyl and carbonyl-nitrosyl complex of iron and nickel. Total yield of the products is over the rang 6,4†7,5, to explain radiolysis' what contribution of only neutral products is impossible. Evidently in the generation of final products, defined contribution brings in molecular ions N 2 + (N + ) and CO 2 + . Interaction character of these ions with nickel proposes the formation of the relation between unpaired electrons N 2 + and CO 2 + with unfilled d-sub level of this metals with the nickel nitride generation [N i -N=N + ] and binding energy in ion diazotate decreases to twice. The yield of nitrogen dioxide on radiolysis of the air gave G NO2 =0,8±0,2 molecule/100eV which is proper to the date in the literature. Kinetic curve appears rapidly in the saturation. Air radiolysis over iron gave the following results: G NO 2 = 2,75 ± 0,25, G N 2 O = 9,0 ± 1,0 molecule/100eV. Thus total yield of radiolysis products is Σ G = 10,5 ± 12,0 molecule/100eV

  13. Rhodium Catalyzed Decarbonylation

    DEFF Research Database (Denmark)

    Garcia Suárez, Eduardo José; Kahr, Klara; Riisager, Anders

    2017-01-01

    Rhodium catalyzed decarbonylation has developed significantly over the last 50 years and resulted in a wide range of reported catalyst systems and reaction protocols. Besides experimental data, literature also includes mechanistic studies incorporating Hammett methods, analysis of kinetic isotope...

  14. Selective Oxidation of Cyclohexene, Toluene and Ethyl Benzene Catalyzed by Bis-(L-tyrosinatocopper(II, Immersed in a Magnetite-Infused Silica Matrix

    Directory of Open Access Journals (Sweden)

    Massomeh Ghorbanloo

    2016-01-01

    Full Text Available Bis-(L-tyrosinatocopper(II was reacted with 3-(chloropropyl-trimethoxysilane functionalized silica that has infused magnetite to yield a magnetically separable catalyst in which the copper carboxylate is covalently linked to the silica matrix through the silane linkage. The immobilized catalyst has been characterized by spectroscopic studies (such as FT-IR, EPR, Magnetic Measurement, SEM and chemical analyses. The immobilized catalytic system functions as an efficient heterogeneous catalyst for oxidation of cyclohexene, toluene and ethyl benzene in the presence of hydrogen peroxide (as an oxidant and sodium bicarbonate (a co-catalyst. The reaction conditions have been optimized for solvent, temperature and amount of oxidant and catalyst. Comparison of the encapsulated catalyst with the corresponding homogeneous catalyst showed that the heterogeneous catalyst had higher activity and selectivity than the homogeneous catalyst. The immobilized catalyst could be readily recovered from the reaction mixture by using a simple magnet, and  reused up to five times without any loss of activity.

  15. Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2014-04-01

    Full Text Available The conversion of syngas (CO + H2 to gasoline-ranged hydrocarbons was carried out using a hybrid catalyst consisting of metal-loaded ZSM-5 coupled with Cu-ZnO in a near-critical n-hexane solvent. Methanol was synthesized from syngas over Cu-ZnO; subsequently, was converted to hydrocarbons through the formation of dimethyl ether (DME over the metal-loaded ZSM-5. When 0.5 wt% Pd/ZSM-5 and 5 wt% Cu/ZSM-5 among the metal-loaded ZSM-5 catalysts with Pd, Co, Fe or Cu were employed as a portion of the hybrid catalyst, the gasoline-ranged hydrocarbons were selectively produced (the gasoline-ranged hydrocarbons in all hydrocarbons: 59% for the hybrid catalyst with Pd/ZSM-5 and 64% for that with Cu/ZSM-5 with a similar CO conversion during the reaction. An increase in the Cu loading on ZSM-5 resulted in increasing the yield of the gasoline-ranged hydrocarbons, and in decreasing the yield of DME. Furthermore, the hybrid catalyst with Cu/ZSM-5 exhibited no deactivation for 30 h of the reaction. It was revealed that a hybrid catalyst containing Cu/ZSM-5 was efficient in the selective synthesis of gasoline-ranged hydrocarbons from syngas via methanol in the near-critical n-hexane fluid.

  16. TiO{sub 2} on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-05-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO{sub 2}) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO{sub 2} powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO{sub 2} aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO{sub 2} powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO{sub 2} sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC{sub 3}H{sub 7}){sub 4}) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO{sub 2} powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO{sub 2} active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified.

  17. Three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite for the magnetic dispersive solid phase extraction of 16 polycyclic aromatic hydrocarbons in vegetable oils.

    Science.gov (United States)

    Zhang, Yun; Zhou, Hua; Zhang, Zhe-Hua; Wu, Xiang-Lun; Chen, Wei-Guo; Zhu, Yan; Fang, Chun-Fu; Zhao, Yong-Gang

    2017-03-17

    In this paper, a novel three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite (3D-IL@mGO) was prepared, and used as an effective adsorbent for the magnetic dispersive solid phase extraction (MSPE) of 16 polycyclic aromatic hydrocarbons (PAHs) in vegetable oil prior to gas chromatography-mass spectrometry (GC-MS). The properties of 3D-IL@mGO were characterized by scanning electron micrographs (SEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). The 3D-IL@mGO, functionalized by ionic liquid, exhibited high adsorption toward PAHs. Compared to molecularly imprinted solid phase extraction (MISPE), the MSPE method based on 3D-IL@mGO had less solvent consumption and low cost, and was more efficent to light PAHs in quantitative analysis. Furthermore, the rapid and accurate GC-MS method coupled with 3D-IL@mGO MSPE procedure was successfully applied for the analysis of 16 PAHs in eleven vegetable oil samples from supermarket in Zhejiang Province. The results showed that the concentrations of BaP in 3 out of 11 samples were higher than the legal limit (2.0μg/kg, Commission Regulation 835/2011a), the sum of 8 heavy PAHs (BaA, CHR, BbF, BkF, BaP, IcP, DaA, BgP) in 11 samples was between 3.03μg/kg and 229.5μg/kg. Validation results on linearity, specificity, accuracy, precision and stability, as well as on application to the analysis of PAHs in oil samples demonstrated the applicability to food safety risk monitoring in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. L-cysteine-capped core/shell/shell quantum dot-graphene oxide nanocomposite fluorescence probe for polycyclic aromatic hydrocarbon detection.

    Science.gov (United States)

    Adegoke, Oluwasesan; Forbes, Patricia B C

    2016-01-01

    Environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), become widely distributed in the environment after emission from a range of sources, and they have potential biological effects, including toxicity and carcinogenity. In this work, we have demonstrated the analytical potential of a covalently linked L-cysteine-capped CdSeTe/ZnSe/ZnS core/shell/shell quantum dot (QD)-graphene oxide (GO) nanocomposite fluorescence probe to detect PAH compounds in aqueous solution. Water-soluble L-cysteine-capped CdSeTe/ZnSe/ZnS QDs were synthesized for the first time and were covalently bonded to GO. The fluorescence of the QD-GO nanocomposite was enhanced relative to the unconjugated QDs. Various techniques including TEM, SEM, HRSEM, XRD, Raman, FT-IR, UV/vis and fluorescence spectrophotometry were employed to characterize both the QDs and the QD-GO nanocomposite. Four commonly found priority PAH analytes namely; phenanthrene (Phe), anthracene (Ant), pyrene (Py) and naphthalene (Naph), were tested and it was found that each of the PAH analytes enhanced the fluorescence of the QD-GO probe. Phe was selected for further studies as the PL enhancement was significantly greater for this PAH. A limit of detection (LOD) of 0.19 µg/L was obtained for Phe under optimum conditions, whilst the LOD of Ant, Py and Naph were estimated to be ~0.26 µg/L. The fluorescence detection mechanism is proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Regiospecifically Fluorinated Polycyclic Aromatic Hydrocarbons via Julia-Kocienski Olefination and Oxidative Photocyclization. Effect of Fluorine Atom Substitution on Molecular Shape.

    Science.gov (United States)

    Banerjee, Shaibal; Sinha, Saikat; Pradhan, Padmanava; Caruso, Alessio; Liebowitz, Daniel; Parrish, Damon; Rossi, Miriam; Zajc, Barbara

    2016-05-20

    A modular synthesis of regiospecifically fluorinated polycyclic aromatic hydrocarbons (PAHs) is described. 1,2-Diarylfluoroalkenes, synthesized via Julia-Kocienski olefination (70-99% yields), were converted to isomeric 5- and 6-fluorobenzo[c]phenanthrene, 5-and 6-fluorochrysene, and 9- and 10-benzo[g]chrysene (66-83% yields) by oxidative photocyclization. Photocyclization to 6-fluorochrysene proceeded more slowly than conversion of 1-styrylnaphthalene to chrysene. Higher fluoroalkene dilution led to a more rapid cyclization. Therefore, photocyclizations were performed at higher dilutions. To evaluate the effect of fluorine atom on molecular shapes, X-ray data for 5- and 6-fluorobenzo[c]phenanthrene, 6-fluorochrysene, 9- and 10-fluorobenzo[g]chrysene, and unfluorinated chrysene as well as benzo[g]chrysene were obtained and compared. The fluorine atom caused a small deviation from planarity in the chrysene series and decreased nonplanarity in the benzo[c]phenanthrene derivatives, but its influence was most pronounced in the benzo[g]chrysene series. A remarkable flattening of the molecule was observed in 9-fluorobenzo[g]chrysene, where the short 2.055 Å interatomic distance between bay-region F-9 and H-8, downfield shift of H-8, and a 26.1 Hz coupling between F-9 and C-8 indicate a possible F-9···H-8 hydrogen bond. In addition, in 9-fluorobenzo[g]chrysene, the stacking distance is short at 3.365 Å and there is an additional interaction between the C-11-H and C-10a of a nearby molecule that is almost perpendicular.

  20. Multiwall carbon nanotube- zirconium oxide nanocomposite hollow fiber solid phase microextraction for determination of polyaromatic hydrocarbons in water, coffee and tea samples.

    Science.gov (United States)

    Yazdi, Mahnaz Nozohour; Yamini, Yadollah; Asiabi, Hamid

    2018-06-15

    The purpose of this study was to evaluate the application of hollow fiber solid-phase microextraction (HF-SPME) followed by HPLC-UV to determine the ultra-trace amounts of polycyclic aromatic hydrocarbons (PAHs) as model analytes in complex coffee and tea samples. HF-SPME can be effectively used as an alternative to the direct immersion SPME (DI-SPME) method in complex matrices. The DI-SPME method suffers from serious limitation in dirty and complicated matrices with low sample clean-up, while the HF-SPME method has high clean-up and selectivity due to the high porosity of hollow fiber that can pick out analyte from complicated matrices. As a hollow fiber sorbent, a novel multiwall carbon nanotube/zirconium oxide nanocomposite (MWCNT/ZrO 2 ) was fabricated. The excellent adsorption of PAHs on the sorbent was attributed to the dominant roles of π-π stacking interaction and hydrophobic interaction. Under the optimized extraction conditions, the wide linear range of 0.1-200 μg L -1 with coefficients of determination better than 0.998 and low detection limits of 0.033-0.16 μg L -1 with satisfactory precision (RSD tea samples were in the range of 92.0-106.0%. Compared to other methods, MWCNT/ZrO 2 hollow fiber solid phase microextraction demonstrated a good capability for determination of PAHs in complex coffee and tea samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions

    DEFF Research Database (Denmark)

    Hansen, Thomas S.; Sádaba, Irantzu; Garcia, Eduardo

    2013-01-01

    containing promoters (NCPs) to obtain excellent yields. In acetonitrile a 95% DFF yield was obtained after 24h with ambient pressure of dioxygen at room temperature in the presence of different NCPs, which – to our knowledge – is the best result reported thus far for this reaction. The use of NCPs made...... it further possible to apply various traditional solvents, e.g. acetone, methanol and methyl isobutyl ketone for the reaction. The latter can be used as extraction solvent for HMF synthesis in aqueous media and thus integrate the two processes. Additionally, HMF was oxidized to 2,5-furandicarboxylic acid...

  2. CuCl-catalyzed aerobic oxidation of 2,3-allenols to 1,2-allenic ketones with 1:1 combination of phenanthroline and bipyridine as ligands

    Directory of Open Access Journals (Sweden)

    Shengming Ma

    2011-04-01

    Full Text Available A protocol has been developed to prepare 1,2-allenyl ketones using molecular oxygen in air or pure oxygen as the oxidant from 2,3-allenylic alcohols with moderate to good yields under mild conditions. In this reaction CuCl (20 mol % with 1,10-phenanthroline (10 mol % and bipyridine (10 mol % was used as the catalyst. It is interesting to observe that the use of the mixed ligands is important for the higher yields of this transformation: With the monoligand approach developed by Markó et al., the yields are relatively lower.

  3. Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy

    DEFF Research Database (Denmark)

    Mondelli, C.; Grunwaldt, Jan-Dierk; Ferri, D.

    2010-01-01

    the catalysts under working conditions using in situ X-ray absorption spectroscopy (XAS) and attenuated total reflection infrared spectroscopy (ATR-IR), aiming at uncovering the roles of the metal promoter and the reaction medium. XAS confirms that Bi is oxidized more easily than Pt, maintaining the catalytic...... surfaces than on step or kink sites. Side products, CO and benzoate species, appearing during the reaction reveal that the geometric suppression of undesired reactions does not occur to the same extent on Pt-based catalysts as on Pd, suggesting that decarbonylation of the produced aldehyde on Pt may occur...

  4. Oxidative Olefination of Anilides with Unactivated Alkenes Catalyzed by an (Electron-Deficient η(5) -Cyclopentadienyl)Rhodium(III) Complex Under Ambient Conditions.

    Science.gov (United States)

    Takahama, Yuji; Shibata, Yu; Tanaka, Ken

    2015-06-15

    The oxidative olefination of sp(2) C-H bonds of anilides with both activated and unactivated alkenes using an (electron-deficient η(5) -cyclopentadienyl)rhodium(III) complex is reported. In contrast to reactions using this electron-deficient rhodium(III) catalyst, [Cp*RhCl2 ]2 showed no activity against olefination with unactivated alkenes. In addition, the deuterium kinetic isotope effect (DKIE) study revealed that the C-H bond cleavage step is thought to be the turnover-limiting step. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Analysis of hydrocarbons generated in coalbeds

    Science.gov (United States)

    Butala, Steven John M.

    This dissertation describes kinetic calculations using literature data to predict formation rates and product yields of oil and gas at typical low-temperature conditions in coalbeds. These data indicate that gas formation rates from hydrocarbon thermolysis are too low to have generated commercial quantities of natural gas, assuming bulk first-order kinetics. Acid-mineral-catalyzed cracking, transition-metal-catalyzed hydrogenolysis of liquid hydrocarbons, and catalyzed CO2 hydrogenation form gas at high rates. The gaseous product compositions for these reactions are nearly the same as those for typical natural coalbed gases, while those from thermal and catalytic cracking are more representative of atypical coalbed gases. Three Argonne Premium Coals (Upper-Freeport, Pittsburgh #8 and Lewiston-Stockton) were extracted with benzene in both Soxhlet and elevated pressure extraction (EPE) systems. The extracts were compared on the basis of dry mass yield and hydrocarbon profiles obtained by gas chromatography/mass spectrometry. The dry mass yields for the Upper-Freeport coal gave consistent results by both methods, while the yields from the Pittsburgh #8 and Lewiston-Stockton coals were greater by the EPE method. EPE required ˜90 vol. % less solvent compared to Soxhlet extraction. Single-ion-chromatograms of the Soxhlet extracts all exhibited bimodal distributions, while those of the EPE extracts did not. Hydrocarbons analyzed from Greater Green River Basin samples indicate that the natural oils in the basin originated from the coal seams. Analysis of artificially produced oil indicates that hydrous pyrolysis mimics generation of C15+ n-alkanes, but significant variations were found in the branched alkane, low-molecular-weight n-alkanes, and high-molecular-weight aromatic hydrocarbon distributions.

  6. Distilling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bataafsche, N V; de Brey, J H.C.

    1918-10-30

    Hydrocarbons containing a very volatile constituent and less volatile constituents, such as casing-head gases, still gases from the distillation of crude petroleum and bituminous shale are separated into their constituents by rectification under pressure; a pressure of 20 atmospheres and limiting temperatures of 150/sup 0/C and 40/sup 0/C are mentioned as suitable. The mixture may be subjected to a preliminary treatment consisting in heating to a temperature below the maximum rectification temperature at a pressure greater than that proposed to be used in the rectification.

  7. Zeolite-Catalyzed Hydrocarbon Formation from Methanol: Density Functional Simulations

    Directory of Open Access Journals (Sweden)

    George Fitzgerald

    2002-04-01

    Full Text Available Abstract: We report detailed density functional theory (DFT calculations of important mechanisms in the methanol to gasoline (MTG process in a zeolite catalyst. Various reaction paths and energy barriers involving C-O bond cleavage and the first C-C bond formation are investigated in detail using all-electron periodic supercell calculations and recently developed geometry optimization and transition state search algorithms. We have further investigated the formation of ethanol and have identified a different mechanism than previously reported [1], a reaction where water does not play any visible role. Contrary to recent cluster calculations, we were not able to find a stable surface ylide structure. However, a stable ylide structure built into the zeolite framework was found to be possible, albeit a very high reaction barrier.

  8. Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst

    KAUST Repository

    Kelly, Michael J.

    2017-06-12

    A reusable zirconium-based catalyst for the cycloaddition of CO2 to propylene oxide (PO) was prepared by the surface organometallic chemistry (SOMC) methodology. Accordingly, well-defined amounts of the ZrCl4·(OEt2)2 precursor were grafted on the surface of silica dehydroxylated at 700°C (SiO2-700) and at 200°C (SiO2-200) in order to afford surface coordination compounds with different podality and chemical environment. The identity of the surface complexes was thoroughly investigated by FT-IR, elemental microanalysis and solid state NMR and applied as a recoverable and reusable heterogeneous catalyst for the title reaction using pure CO2 and flue gas samples from a cement factory. The observed catalytic activity for the isolated zirconium complexes is rationalized by means of systematic DFT calculations.

  9. Conversion of actual flue gas CO 2 via cycloaddition to propylene oxide catalyzed by a single-site, recyclable zirconium catalyst

    KAUST Repository

    Kelly, Michael J.; Barthel, Alexander; Maheu, Clement; Sodpiban, Ounjit; Dega, Frank-Blondel; Vummaleti, Sai V.C.; Abou-Hamad, Edy; Pelletier, Jeremie; Cavallo, Luigi; D'Elia, Valerio; Basset, Jean-Marie

    2017-01-01

    A reusable zirconium-based catalyst for the cycloaddition of CO2 to propylene oxide (PO) was prepared by the surface organometallic chemistry (SOMC) methodology. Accordingly, well-defined amounts of the ZrCl4·(OEt2)2 precursor were grafted on the surface of silica dehydroxylated at 700°C (SiO2-700) and at 200°C (SiO2-200) in order to afford surface coordination compounds with different podality and chemical environment. The identity of the surface complexes was thoroughly investigated by FT-IR, elemental microanalysis and solid state NMR and applied as a recoverable and reusable heterogeneous catalyst for the title reaction using pure CO2 and flue gas samples from a cement factory. The observed catalytic activity for the isolated zirconium complexes is rationalized by means of systematic DFT calculations.

  10. Preparing valuable hydrocarbons by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1930-08-22

    A process is described for the preparation of valuable hydrocarbons by treatment of carbonaceous materials, like coal, tars, minerals oils, and their distillation and conversion products, and for refining of liquid hydrocarbon mixture obtained at raised temperature and under pressure, preferably in the presence of catalysts, by the use of hydrogen-containing gases, purified and obtained by distilling solid combustibles, characterized by the purification of the hydrogen-containing gases being accomplished for the purpose of practically complete removal of the oxygen by heating at ordinary or higher pressure in the presence of a catalyst containing silver and oxides of metals of group VI of the periodic system.

  11. Kinetic Studies of Iron Deposition Catalyzed by Recombinant Human Liver Heavy, and Light Ferritins and Azotobacter Vinelandii Bacterioferritin Using O2 and H2O2 as Oxidants

    Science.gov (United States)

    Bunker, Jared; Lowry, Thomas; Davis, Garrett; Zhang, Bo; Brosnahan, David; Lindsay, Stuart; Costen, Robert; Choi, Sang; Arosio, Paolo; Watt, Gerald D.

    2005-01-01

    The discrepancy between predicted and measured H2O2 formation during iron deposition with recombinant heavy human liver ferritin (rHF) was attributed to reaction with the iron protein complex [Biochemistry 40 (2001) 10832-10838]. This proposal was examined by stopped-flow kinetic studies and analysis for H2O2 production using (1) rHF, and Azotobacter vinelandii bacterial ferritin (AvBF), each containing 24 identical subunits with ferroxidase centers; (2) site-altered rHF mutants with functional and dysfunctional ferroxidase centers; and (3) rccombinant human liver light ferritin (rLF), containing 110 ferroxidase center. For rHF, nearly identical pseudo-first-order rate constants of 0.18 per second at pH 7.5 were measured for Fe(2+) oxidation by both O2 and H2O2, but for rLF, the rate with O2 was 200-fold slower than that for H2O2 (k-0.22 per second). A Fe(2+)/O2 stoichiometry near 2.4 was measured for rHF and its site altered forms, suggesting formation of H2O2. Direct measurements revealed no H2O2 free in solution 0.5-10 min after all Fe(2+) was oxidized at pH 6.5 or 7.5. These results are consistent with initial H2O2 formation, which rapidly reacts in a secondary reaction with unidentified solution components. Using measured rate constants for rHF, simulations showed that steady-state H2O2 concentrations peaked at 14 pM at approx. 600 ms and decreased to zero at 10-30 s. rLF did not produce measurable H2O2 but apparently conducted the secondary reaction with H2O2. Fe(2+)/O2 values of 4.0 were measured for AvBF. Stopped-flow measurements with AvBF showed that both H2O2 and O2 react at the same rate (k=0.34 per second), that is faster than the reactions with rHF. Simulations suggest that AvBF reduces O2 directly to H2O without intermediate H2O2 formation.

  12. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  13. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.; Dietrich, Paul J.; Detwiler, Michael D.; Akatay, Cem M.; Stach, Eric A.; Miller, Jeffrey T.; Delgass, W. Nicholas; Agrawal, Rakesh; Ribeiro, Fabio H.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.

  14. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    Science.gov (United States)

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Forms of adsorption and transition states of oxidation of carbon monoxide by molecular oxygen and dissociation of nitrogen monooxide, catalyzed by monovalent copper

    Science.gov (United States)

    Ermakov, A. I.; Mashutin, V. Y.; Vishnjakov, A. V.

    With the help of the results of semiempirical (parametric method 3) and ab initio (second-order Møller-Plesset [MP2] unrestricted Hartree-Fock [UHF] 6-31G**, unrestricted density functional theory [UDFT] 6-31G** Becke's three-parameter exchange functional and the gradient-corrected functional of Lee, Yang, and Paar [B3LYP] and UDFT LANL2DZ B3LYP) quantum-chemical calculations has been studied the complexation CO and NO with molecular hydroxide of copper(I). The influence of charge defects has been simulated by the calculations of anionic, neutral, and cationic systems. It is shown that CO and NO are mainly coordinated by nonoxygen atom on an atom of copper(I) hydroxide as one- and two-center forms. These forms are suitable for appearance of prereactionary complexes of catalytic oxidation CO by molecular oxygen and decomposition NO into atoms of nitrogen and oxygen. The corresponding prereactionary complexes for systems with participation of copper(II) hydroxide and copper(III) hydroxide are not revealed. The calculations predict inhibiting impact of copper(II) and copper(III) of the observed reactions. Computed stability of complexes CO and NO with copper(I) hydroxide and activation energy of catalytic conversion of monooxides essentially depend on an excessive charge of the system. Introduction of electron-donating additives into copper(I) hydroxide promotes rise of catalytic activity of copper(I) compound.

  16. Synthesis of o-Alkenylated 2-Arylbenzoxazoles via Rh-Catalyzed Oxidative Olefination of 2-Arylbenzoxazoles: Scope Investigation, Structural Features, and Mechanism Studies.

    Science.gov (United States)

    Zhou, Quan; Zhang, Jing-Fan; Cao, Hui; Zhong, Rui; Hou, Xiu-Feng

    2016-12-16

    2-Arylbenzazoles are promising molecules for potential applications in medicine and material areas. Efficient protocols for direct regioselective functionalization of 2-arylbenzoxazoles are in high demand. Herein, we disclose a general method for selective ortho-olefination of 2-arylbenzo[d]oxazoles with alkenes enabled by versatile Cp*Rh(III) in high yields. This protocol features broad functional group tolerance and high regioselectivity. Intermolecular competition studies and kinetic isotope effect experiments imply that the oxidative olefination process occurs via an electrophilic C-H activation pathway. The molecular structure of the m-fluoro-substituted olefination product confirms regioselective C-H activation/olefination at the more hindered site in cases where the meta F atom or heteroatom substituent existed. Apparent torsion angles were observed in the structures of mono- and bis-olefination products, which resulted in distinct different chemical shifts of olefinic protons. Additionally, two gram-scale reactions and further transformation experiments demonstrate that this method is practical for synthesis of ortho-alkenylated 2-arylbenzoxazole derivatives.

  17. Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet

    Science.gov (United States)

    Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.

    2009-01-01

    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen

  18. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  19. Hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. (South Carolina Univ., Columbia, SC (United States). Dept. of Geological Sciences)

    1993-01-01

    This special issue of the journal examines various aspects of the on-going search for hydrocarbons, ranging from frontier basins where little data are available, to more mature areas where considerable data are available. The incentives underlying the search for oil are roughly: the social, economic and industrial needs of a nation; the incentive of a corporation to be profitable; and the personal incentives of individuals in the oil industry and governments, which range from financial wealth to power and which are as diverse as the individuals who are involved. From a geopolitical perspective, the needs, requirements, goals, strategies, and philosophies of nations, and groups of nations, also impact on the oil exploration game. Strategies that have been employed have ranged from boycott to austerity and rationing, to physical intervention, to global ''flooding'' with oil by over-production. (author)

  20. Production of hydrocarbons of value

    Energy Technology Data Exchange (ETDEWEB)

    1931-06-16

    A process is described for the production of hydrocarbons of great value by treating with heat and pressure carbonaceous materials such as coals, tars, mineral oils, and products of distillation and transformation of these materials, also for the refining with heat and pressure of mixed liquid hydrocarbons by means of hydrogen gas, preferably in the presence of catalysts, consisting in using as the hydrogenating gas that obtained by gasification of combustible solids after partial or complete cleaning at atmospheric or elevated pressures, by means of solid adsorbents, chemical agents or catalysts, or mixtures of these agents, the hydrocarbons being characterized by strong unsaturation, and the presence of oxygen, sulfur compounds, and oxides of nitrogen.

  1. Caffeine-catalyzed gels.

    Science.gov (United States)

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Electrochemical removal of NOx and hydrocarbons

    DEFF Research Database (Denmark)

    Friedberg, Anja Zarah

    on the electrodes during polarisation, probably because of strong adsorption of the hydrocarbon relative to NO. On LSF/CGO electrode the impregnation of ionic conducting material increased the oxidation of NO to NO2 which is an important step before nitrogen formation. The propene inhibited this reaction because....... This could only be done if the electrode was impregnated with BaO. The nitrate formation did not seem to be inhibited by the presence of the hydrocarbon. However, the oxidation of propene was inhibited by the BaO because the active sites for oxidations were partially covered by the BaO nanoparticles...

  3. Selective coke combustion by oxygen pulsing during Mo/ZSM‐5‐catalyzed methane dehydroaromatization

    NARCIS (Netherlands)

    Kosinov, N.; Coumans, F.J.A.G.; Uslamin, E.A.; Kapteijn, F.; Hensen, E.J.M.

    2016-01-01

    Non-oxidative methane dehydroaromatization is a promising reaction to directly convert natural gas into aromatic hydrocarbons and hydrogen. Commercialization of this technology is hampered by rapid catalyst deactivation because of coking. A novel approach is presented involving selective oxidation

  4. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui; Guo, Donghui; Munkerup, Kristin; Huang, Kuo-Wei; Li, Fangyi; Wang, Jian

    2018-01-01

    on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a

  5. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems.

    Science.gov (United States)

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph

    2011-08-01

    Exhaust emissions of 17 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, 12 2005 WHO chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine were investigated. Testing included configurations composed of different combinations of aftertreatment including a diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), copper zeolite urea selective catalytic reduction (SCR), iron zeolite SCR, and ammonia slip catalyst. Results were compared to a baseline engine out configuration. Testing included the use of fuel that contained the maximum expected chlorine (Cl) concentration of U.S. highway diesel fuel and a Cl level 1.5 orders of magnitude above. Results indicate there is no risk for an increase in polychlorinated dibenzo-p-dioxin/furan and polychlorinated biphenyl emissions from modern diesel engines with catalyzed aftertreatment when compared to engine out emissions for configurations tested in this program. These results, along with PAH results, compare well with similar results from modern diesel engines in the literature. The results further indicate that polychlorinated dibenzo-p-dioxin/furan emissions from modern diesel engines both with and without aftertreatment are below historical values reported in the literature as well as the current inventory value.

  6. Desaturation reactions catalyzed by soluble methane monooxygenase.

    Science.gov (United States)

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  7. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved......, the networks of environmental professionals that work in the environmental organisation, in consulting and regulatory enforcement, and dominating business cultures. These have previously been identified in the literature as individually significant in relation to the evolving environmental agendas...... they are implemented in and how the changing context is reflected in the environmental objectives that are established and prioritised. Our argument is, that the ability of the standard to achieve an impact is dependant on the constitution of ’coherent’ environmental issues in the context, where the management system...

  8. Towards a methanol economy: Zeolite catalyzed production of synthetic fuels

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie

    The main focus of this thesis is zeolite catalyzed conversion of oxygenates to hydrocarbon fuels and chemicals. Furthermore, conversion of ethane to higher hydrocarbons has also been studied. After a brief introduction to the concept of “the methanol economy” in the first chapter, the second...... a commercial H-ZSM-5 zeolite impregnated with gallium and/or molybdenum is described. The object was to investigate if the presence of methanol in the feed could enhance the conversion of ethane, but in all cases the opposite is observed; the presence of methanol actually suppresses the conversion of ethane...... various zeolite catalysts is studied in Chapter 4. When 2-propanol or 1-butanol is converted over H-ZSM-5, the total conversion capacities of the catalyst are more than 25 times higher than for conversion of methanol and ethanol. Furthermore, for conversion of C3+ alcohols, the selectivity shifts during...

  9. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  10. Process for conversion of lignin to reformulated hydrocarbon gasoline

    Science.gov (United States)

    Shabtai, Joseph S.; Zmierczak, Wlodzimierz W.; Chornet, Esteban

    1999-09-28

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  11. Zinc oxide/polypyrrole nanocomposite as a novel solid phase microextraction coating for extraction of aliphatic hydrocarbons from water and soil samples

    International Nuclear Information System (INIS)

    Amanzadeh, Hatam; Yamini, Yadollah; Moradi, Morteza

    2015-01-01

    Highlights: • ZnO/polypyrrole (ZNO/PPY) nanocomposite coating was fabricated on stainless steel. • Nanocomposite coating morphology was evaluated using scanning electron microscopy. • It was applied for HS-SPME of aliphatic hydrocarbons in water and soil samples. • Separation and determination of the hydrocarbons were performed by GC-FID. • The method is suitable for routine analysis of n-alkanes in various environmental samples. - Abstract: In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65 ± 1 °C; extraction time, 15 min; desorption temperature, 250 °C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08–0.5 μg L −1 , whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4–7.6% and 8.6–10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85–108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results

  12. Zinc oxide/polypyrrole nanocomposite as a novel solid phase microextraction coating for extraction of aliphatic hydrocarbons from water and soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Amanzadeh, Hatam; Yamini, Yadollah [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175 Tehran (Iran, Islamic Republic of); Moradi, Morteza [Department of Semiconductors, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of)

    2015-07-16

    Highlights: • ZnO/polypyrrole (ZNO/PPY) nanocomposite coating was fabricated on stainless steel. • Nanocomposite coating morphology was evaluated using scanning electron microscopy. • It was applied for HS-SPME of aliphatic hydrocarbons in water and soil samples. • Separation and determination of the hydrocarbons were performed by GC-FID. • The method is suitable for routine analysis of n-alkanes in various environmental samples. - Abstract: In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65 ± 1 °C; extraction time, 15 min; desorption temperature, 250 °C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08–0.5 μg L{sup −1}, whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4–7.6% and 8.6–10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85–108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results

  13. Plasma-catalytic reforming of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya; Kolgan, V.V.; Iukhymenko, V.V.; Solomenko, O.V.; Fedirchyk, I.I.; Martysh, E.V.; Demchina, V.P.; Klochok, N.V.; Dragnev, S.V.

    2015-01-01

    The series of experiments studying the plasma-catalytic reforming of liquid hydrocarbons was carried out. The dynamic plasma-liquid system based on a low-power rotating gliding arc with solid electrodes was used for the investigation of liquid hydrocarbons reforming process. Conversion was done via partial oxidation. A part of oxidant flow was activated by the discharge. Synthesis-gas composition was analysed by means of mass-spectrometry and gas-chromatography. A standard boiler, which operates on natural gas and LPG, was used for the burning of synthesis-gas

  14. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  15. The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones

    Science.gov (United States)

    Zhang, Li; Jin, Yi; Huang, Meng; Penning, Trevor M.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable of reducing PAH o-quinones to form PAH catechols. The interconversion of o-quinones and catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH catechols can be intercepted through phase II metabolism by which PAH o-quinones could be detoxified and eliminated. The aim of the present review is to summarize the role of human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II conjugation reactions to human lung carcinogenesis. PMID:23162467

  16. Induction of hepatic carbonyl reductase/20β-hydroxysteroid dehydrogenase mRNA in rainbow trout downstream from sewage treatment works-Possible roles of aryl hydrocarbon receptor agonists and oxidative stress

    International Nuclear Information System (INIS)

    Albertsson, E.; Larsson, D.G.J.; Foerlin, L.

    2010-01-01

    Carbonyl reductase/20β-hydroxysteroid dehydrogenase (CR/20β-HSD) serves both as a key enzyme in the gonadal synthesis of maturing-inducing hormone in salmonids, and as an enzyme protecting against certain reactive oxygen species. We have previously shown that mRNA of the hepatic CR/20β-HSD B isoform is increased in rainbow trout caged downstream from a Swedish sewage treatment plant. Here, we report an increase of both the A as well as B form in fish kept downstream from a second sewage treatment plant. The two mRNAs were also induced in fish hepatoma cells in vitro after exposure to effluent extract. This indicates that the effects observed in vivo could be a direct effect on the liver, i.e. the mRNA induction does not require a signal from any other organ. When fish were exposed in vivo to several effluents treated with more advanced methods (ozone, moving bed biofilm reactor or membrane bioreactor) the expression of hepatic mRNA CR/20β-HSD A and B was significantly reduced. Their abundance did not parallel the reduction of estrogen-responsive transcripts, in agreement with our previous observations that ethinylestradiol is not a potent inducer. Treatment with norethisterone, methyltestosterone or hydrocortisone in vivo did not induce the hepatic CR/20β-HSD A and B mRNA expression. In contrast, both isoforms were markedly induced by the aryl hydrocarbon receptor agonist β-naphthoflavone as well as by the pro-oxidant herbicide paraquat. We hypothesize that the induction of CR/20β-HSD A and B by sewage effluents could be due to anthropogenic contaminants stimulating the aryl hydrocarbon receptor and/or causing oxidative stress.

  17. Effect of additions of cerium, lanthanum, and zirconium on the state of plantinum and the activity of aluminoplatinum catalysts for the complete oxidation of hydrocarbons

    International Nuclear Information System (INIS)

    Drozdov, V.A.; Davydov, A.A.; Popovskii, V.V.; Tsyrul'nikov, P.G.

    1986-01-01

    It is shown from an analysis of the diffuse reflectance spectra that additions of cerium, lanthanum or zirconium to aluminoplatinum catalyst stabilize the platinum in an oxidized state. This leads to a change in the specific catalytic activity (SCA) towards the total oxidation of methane and butane. The SCA of modified, reduced samples is greater than the SCA of samples that were calcined in air. This is because of the greater activity of metallic platinum compared to the ionic form

  18. Development of a second generation palladium-catalyzed cycloalkenylation and its application to bioactive natural product synthesis.

    Science.gov (United States)

    Toyota, Masahiro

    2013-07-01

    A novel palladium-catalyzed intramolecular oxidative alkylation of unactivated olefins is described. This protocol was devised to solve one of the drawbacks of the original palladium-catalyzed cycloalkenylation that we developed. We call this new procedure the 'second generation palladium-catalyzed cycloalkenylation'. This protocol has been applied to the total syntheses of cis-195A, trans-195A, boonein, scholareins A, C, D, and alpha-skytanthine.

  19. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  20. Method of removing deterioration product in hydrocarbon type solvent

    International Nuclear Information System (INIS)

    Ito, Yoshifumi; Takashina, Toru; Murasawa, Kenji.

    1988-01-01

    Purpose: To remarkably reduce radioactive wastes by bringing adsorbents comprising titanium oxide and/or zirconium oxide into contact with hydrocarbon type solvents. Method: In a nuclear fuel re-processing step, an appropriate processing is applied to extraction solvents suffering from radioactive degradation, to separate the hydrocarbon solvents and store them in a solvent tank. Then, titanium oxide and/or zirconium oxide adsorbents are continuously mixed and agitated therewith to adsorb degradation products on the adsorbents. Then, they are introduced with adsorbent separators to recover purified hydrocarbon type solvents. Meanwhile, the separated adsorbents are discharged from pipeways. This enables to regenerate the hydrocarbon type solvents for reuse, as well as remarkably reduce the radioactive wastes. (Takahashi, M.)

  1. Self-ignition and oxidation of various hydrocarbons between 600 and 1000 K at high pressure: experimental study with fast compression machine and modeling; Autoinflammation et oxydation de divers hydrocarbures entre 600 et 1000 K a haute pression: etude experimentale en machine a compression rapide et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Ribaucour, M.

    2002-12-01

    Low- and intermediate-temperature oxidation and self-ignition of hydrocarbons play a major role in spark ignition, diesel and HCCI (homogenous charge compression ignition) engines. A deep understanding of the chemistry linked with both phenomena is necessary to improve the engines efficiency and to reduce the formation of pollutants. This document treats of works about the self-ignition and oxidation at high pressure of various hydrocarbons between 600 and 1000 deg. K. The experimental tool used is a fast compression machine fitted with a fast sampling system for the measurement of self-ignition delays and of the concentrations of intermediate oxidation products. The advantages and limitations of this tool are discussed. The self-ignition of various hydrocarbons is compared using pre-defined data which characterize the phenomenologies like cold flames, negative temperature coefficients and self-ignition limits. The hydrocarbons considered are pure or binary mixtures of alkanes, pent-1-ene and n-butyl-benzene. The development of high pressure oxidation reaction schemes of alkanes between 600 and 1000 deg. K is described. It is directly based on the analysis of intermediate oxidation products. This methodology is also applied to pent-1-ene and n-butyl-benzene. The construction of detailed thermo-kinetic models of oxidation and the modeling of phenomena are made for n-butane, n-heptane, for the 3 pentane isomers, for pent-1-ene and n-butyl-benzene. Finally, the perspectives of future works are evoked. They concern new modeling and new methodologies to be applied in more predictive thermo-kinetic models and the reduction of detailed models in order to include them inside fluid dynamics codes. (J.S.)

  2. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    Science.gov (United States)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  3. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  4. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  5. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  6. Oxidative and nonoxidative metabolism of polycyclic aromatic hydrocarbons in rabbit and chicken aortas and in human fetal smooth-muscle cells

    International Nuclear Information System (INIS)

    Bond, J.A.; Kocan, R.M.; Benditt, E.P.; Juchau, M.R.

    1980-01-01

    A description of the various enzyme systems in aortas of rabbits and chickens and in human fetal smooth muscle cells in culture which are responsible overall for the metabolism of F, 12-dimethylbenz(a)anthracene and benzo(a)pyrene-4, 5-oxide are provided

  7. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China).

    Science.gov (United States)

    Poltaraus, Andrey B; Sokolova, Diyana S; Grouzdev, Denis S; Ivanov, Timophey M; Malakho, Sophia G; Korshunova, Alena V; Rozanov, Aleksey S; Tourova, Tatiyana P; Nazina, Tamara N

    2016-06-09

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus. Copyright © 2016 Poltaraus et al.

  8. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China)

    OpenAIRE

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Rozanov, Aleksey S.; Tourova, Tatiyana P.; Nazina, Tamara N.

    2016-01-01

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus.

  9. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  10. Gold nanoparticles in oxidation catalysis [Les nanoparticules d'or en catalyse d'oxydation

    KAUST Repository

    Caps, Valerie

    2010-01-01

    On the other hand, it seems to catalyze the formation of reduced and active dioxygen species in the presence of a reductant (hydrogen or hydrocarbon) and the decomposition of organic hydroperoxides. It thus allows using an alkane as a promoter of the epoxidation of an alkene. In the liquid phase, this translates into an ultra-selective radical mechanism, initiated and controlled by gold particles, which uses oxygen from the air at atmospheric pressure as oxidant and which can be generalized to other types of oxidations. This unique activity at low temperature, which can be optimized upon a thorough control of the surface chemistry of the material, makes gold a catalyst of choice to reconsider the oxidative transformations of petrochemicals in an eco-efficient way.

  11. Enhancing the muon-catalyzed fusion yield

    International Nuclear Information System (INIS)

    Jones, S.E.

    1987-01-01

    Much has been learned about muon-catalyzed fusion since the last conference on emerging nuclear energy systems. Here the authors consider what they have learned about enhancing the muon-catalyzed fusion energy yield

  12. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    Science.gov (United States)

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The relationship between biomarkers of oxidative DNA damage, polycyclic aromatic hydrocarbon DNA adducts, antioxidant status and genetic susceptibility following exposure to environmental air pollution in humans

    Czech Academy of Sciences Publication Activity Database

    Shing, R.; Šrám, Radim; Binková, Blanka; Kalina, I.; Popov, T. A.; Georgieva, T.; Garte, S.; Taioli, E.; Farmer, P. B.

    2007-01-01

    Roč. 620, - (2007), s. 83-92 ISSN 0027-5107 Grant - others:EU(GB) 2000-00091; EU(GB) G0100873 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : air pollution * PAHs * oxidative DNA damage Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.159, year: 2007

  14. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  15. Synthesis and characterization of novel mesocomposites Co3O4 and CuO@OMS (ordered mesoporous silica) as active catalysts for hydrocarbon oxidation

    Science.gov (United States)

    Comănescu, Cezar

    2014-03-01

    Novel metal nanoporous transition metal oxides M x O y (Co3O4, CuO) have been synthesized by thermal decomposition of inorganic salts precursors (acetates, nitrates) impregnated into hexagonal mesoporous silica (OMS, ordered mesoporous silica) of SBA-15 type (prepared in-house) at different precursor loadings, the mesocomposites thus obtained being monitored after each impregnation-calcination step by small and wide angle powder XRD. The pore size for the ordered silica host range from 5.08 to 7.06 nm. Retention of the hexagonal silica framework has been observed in spite of the temperatures up to 500 °C. Mesoporous Co3O4 has been obtained by leaching the silica through overnight HF dissolution, which partially preserved the small-range ordering found in the parent Co3O4@OMS composite prior to leaching. Both Co3O4 ( meso) and Co3O4@SBA-15 have been tested in methane oxidation and were found to be superior to the bulk Co3O4 performance, with mesoporous Co3O4 being able to fully oxidize methane to CO2 and H2O at 350 °C, while Co3O4@OMS exhibits a lower activity with 20 % conversion at 350 °C. CuO@OMS shows the lowest activity, with only 13 % conversion at 500 °C.

  16. A Study of Fuel and Reactor Design for Platinum Nanoparticle Catalyzed Microreactors

    OpenAIRE

    McNally, Dylan; Agnello, Marika; Pastore, Brigitte; Applegate, James R.; Westphal, Eric; Bakrania, Smitesh D.

    2015-01-01

    Typical microcombustion-based power devices entail the use of catalyst to sustain combustion in less than millimeter scale channels. This work explores the use of several other candidate fuels for ~8 nm diameter Pt particle catalyzed combustion within 800 μm channel width cordierite substrates. The results demonstrate while commercial hydrocarbon fuels such as methane, propane, butane, and ethanol can be used to sustain catalytic combustion, room temperature ignition was only observed using m...

  17. Degradation of Hydrocarbons by Members of the Genus Candida II. Oxidation of n-Alkanes and 1-Alkenes by Candida lipolytica

    Science.gov (United States)

    Klug, M. J.; Markovetz, A. J.

    1967-01-01

    Candida lipolytica ATCC 8661 was grown in a mineral-salts hydrocarbon medium. n-Alkanes and 1-alkenes with 14 through 18 carbon atoms were used as substrates. Ether extracts of culture fluids and cells obtained from cultures grown on the various substrates were analyzed by thin-layer and gas-liquid chromatography. Analyses of fluids from cultures grown on n-alkanes indicated a predominance of fatty acids and alcohols of the same chain length as the substrate. In addition, numerous other fatty acids and alcohols were present. Analyses of saponifiable and nonsaponifiable material obtained from the cells revealed essentially the same products. The presence of primary and secondary alcohols, as well as fatty acids, of the same chain length as the n-alkane substrate suggested that attack on both the methyl and α-methylene group was occurring. The significance of these two mechanisms in the degradation of n-alkanes by this organism was not evident from the data presented. Analyses of fluids from cultures grown on 1-alkenes indicated the presence of 1,2-diols, as well as ω-unsaturated fatty acids, of the same chain length as the substrate. Alcohols present were all unsaturated. Saponifiable and nonsaponifiable material obtained from cells contained essentially the same products. The presence of 1,2-diols and ω-unsaturated fatty acids of the same chain length as the substrate from cultures grown on 1-alkenes indicated that both the terminal methyl group and the terminal double bond were being attacked. PMID:6025303

  18. Perturbation effect of reduced graphene oxide quantum dots (rGOQDs) on aryl hydrocarbon receptor (AhR) pathway in zebrafish.

    Science.gov (United States)

    Zhang, Jing-Hui; Sun, Tai; Niu, Aping; Tang, Yu-Mei; Deng, Shun; Luo, Wei; Xu, Qun; Wei, Dapeng; Pei, De-Sheng

    2017-07-01

    Graphene quantum dots (GQDs) has been widely used in enormous fields, however, the inherent molecular mechanism of GQDs for potential risks in biological system is still elusive to date. In this study, the outstanding reduced graphene quantum dots (rGOQDs) with the QY as high as 24.62% were successfully synthesized by the improved Hummers method and DMF hydrothermal treatment approach. The rGOQDs were N-doped photoluminescent nanomaterials with functional groups on the surface. The fluorescent bio-imaging was performed by exposing zebrafish in different concentrations of the as-prepared rGOQDs, and the distribution of rGOQDs was successfully observed. Moreover, the developmental toxicity and genotoxicity were evaluated to further investigate the potential hazard of rGOQDs. The result indicated that rGOQDs were responsible for the dose-dependent abnormalities on the development of zebrafish. Since the real-time polymerase chain reaction (RT-PCR) results showed that the expression of cyp1a was the highest expression in the selected genes and significantly up-regulated 8.49 fold in zebrafish, the perturbation of rGOQDs on aryl hydrocarbon receptor (AhR) pathway was investigated by using the Tg(cyp1a:gfp) zebrafish for the first time. The results demonstrated that rGOQDs significantly increased the green fluorescent protein (GFP) expression promoted by cyp1a in a dose-dependent manner, which was also further confirmed by the western blotting. This study offered an opportunity to reveal the potential hazards of in vivo bio-probes, which provided a valuable reference for investigating the graphene-based materials on the disturbance of AhR pathway in biological organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Photodynamic activity of polycyclic hydrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S S

    1963-01-01

    Exposure of Paramecium caudatum to suspensions of 3,4-benzopyrene, followed by long wave ultraviolet irradiation, results in cell death at times related, inter alia, to carcinogen concentration. Prior to death, the cells exhibit progressive immobilization and blebbing. This photodynamic response is a sensitized photo-oxidation, as it is oxygen-dependent and inhibited by anti-oxidants, such as butylated hydroxy anisole and ..cap alpha..-tocopherol. Protection is also afforded by other agents, including Tweens, tryptophan and certain fractions of plasma proteins. No evidence was found for the involvement of peroxides or sulfhydryl groups. The correlations between photodynamic toxicity and carcinogenicity in a large series of polycyclic hydrocarbons is under investigation. Assays of air extracts for photodynamic toxicity are in progress. Significant toxicity has been found in oxygenated besides aromatic fractions.

  20. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2013-01-01

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.