WorldWideScience

Sample records for hydrocarbon mixture content

  1. Method for upgrading diene-containing hydrocarbon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, L.E. Jr.; Holcomb, D.E.

    1984-05-22

    There is disclosed a method for upgrading of hydrocarbon mixtures, so as to reduce their content of gum precursors such as diolefins and pseudo-diolefins, and provide a resulting product mixture suitable for mild hydrogenation, for use as a motor fuel or as a feed stock to an extraction unit. The process comprises obtaining a hydrocarbon mixture containing about 60-90 wt. % of aromatic components, about 3-40 wt. % of dienes and pseudodienes, and monoolefins, and up to about 6 wt. % of relatively unreactive organic compounds, reacting this mixture with elemental sulfur in the approximate weight ratio of about 5-95 wt. % of the hydrocarbon mixture with about 95-5 wt. % of elemental sulfur, the reaction being carried out at a temperature in the range of 100/sup 0/-150/sup 0/ C. for about 10 minutes to 24 hours with good mixing, removing the unreacted materials by distillation and separating a sulfur-hydrocarbon reaction product to provide the upgraded hydrocarbon mixture.

  2. Solvation of hydrocarbons in aqueous-organic mixtures

    International Nuclear Information System (INIS)

    Sedov, I.A.; Magsumov, T.I.; Solomonov, B.N.

    2016-01-01

    Highlights: • Thermodynamic functions of solvation in mixtures of water with acetone and acetonitrile are measured at T = 298.15 K. • Solvation of n-octane and toluene in aqueous-organic mixtures is studied. • When increasing water content, Gibbs free energies grow up steadily, while enthalpies have a maximum. • Hydrocarbons are preferentially solvated with organic cosolvent even in mixtures with rather high water content. • Acetonitrile suppresses the hydrophobic effect less than acetone. - Abstract: We study the solvation of two hydrocarbons, n-octane and toluene, in binary mixtures of water with organic cosolvents. Two polar aprotic cosolvents that are miscible with water in any proportions, acetonitrile and acetone, were considered. We determine the magnitudes of thermodynamic functions of dissolution and solvation at T = 298.15 K in the mixtures with various compositions. Solution calorimetry was used to measure the enthalpies of solution, and GC headspace analysis was applied to obtain limiting activity coefficients of solutes in the studied systems. For the first time, the enthalpies of solution of alkane in the mixtures with high water content were measured directly. We observed well-pronounced maxima of the dependencies of enthalpies of solvation from the composition of solvent and no maxima for the Gibbs free energies of solvation. Two factors are concluded to be important to explain the observed tendencies: high energy cost of reorganization of binary solvent upon insertion of solute molecules and preferential surrounding of hydrocarbons with the molecules of organic cosolvent. Enthalpy-entropy compensation leads to a steady growth of the Gibbs free energies with increasing water content. On the other hand, consideration of the plots of the Gibbs free energy against enthalpy of solvation clearly shows that the solvation properties are changed dramatically after addition of a rather small amount of organic cosolvents. It is shown that they

  3. Biological indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture-contaminated soil.

    Science.gov (United States)

    Wang, Jiangang; Zhan, Xinhua; Zhou, Lixiang; Lin, Yusuo

    2010-08-01

    In China, there are many special sites for recycling and washing the used drums, which release a variety of C5-C40 hydrocarbon mixture into the soil around the site. The remediation of these contaminated sites by thermal treatment is adopted ubiquitously and needs to be assessed. Here we report the feasibility of biological indicators applied to assess thermal treatment efficiency in such contaminated soil. A series of biological indicators, including seed germination index (SGI), root elongation index (REI), plant growth height, biomass, carbon dioxide evolved (CDE), soil respiration inhibition (SRI) and soil enzymatic activities, were employed to monitor or assess hydrocarbon mixture removal in thermal treated soil. The results showed that residual hydrocarbon mixture content correlated strongly negatively with SGI for sesamum (Sesamum indicum L.), plant height, and biomass for ryegrass (Lolium perenne L.) in the concentration ranges of 0-3990, 0-3170 and 0-2910 mg kg(-1), respectively. In contrast, REI for sesamum was positively correlated with residual hydrocarbon mixture content from 0 to 1860 mg kg(-1). In addition, both CDE and SRI demonstrated that 600 mg kg(-1) of residual hydrocarbon mixture content caused the highest amount of soil carbon dioxide emission and inhabitation of soil respiration. The results of soil enzymes indicated that 1000 mg kg(-1) of residual hydrocarbon mixture content was the threshold value of stimulating or inhibiting the activities of phosphatase and catalase, or completely destroying the activities of dehydrogenase, invertase, and urease. In conclusion, these biological indicators can be used as a meaningful complementation for traditional chemical content measurement in evaluating the environmental risk of the contaminated sites before and after thermal treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.

    Science.gov (United States)

    Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W

    2010-04-01

    A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.

  5. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  6. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  7. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  8. Nitrocarburising in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammoniapropene- hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  9. Nitrocarburizing in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammonia-propene-hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  10. Carbon/Hydrogen ratio determination in hydrocarbons and its mixtures by electron backscattering technique

    International Nuclear Information System (INIS)

    Padron, I.; Desdin, L.F.; Navarro, A.; Fuentes, M.

    1996-01-01

    A method carbon/hydrogen ratio (C/H) determination in hydrocarbons and its mixtures was improved using the electron backscattering technique. Besides the hetero atoms (S,O and N) influence in petroleum is studied for being able to determinate the C/H ratio in cuban petroleum with high sulphur contents

  11. Experimental study of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Chimres, Nares

    2005-01-01

    This work presents an experimental study on the application of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator. The hydrocarbons investigated are propane (R290), butane (R600) and isobutane (R600a). A refrigerator designed to work with HFC-134a with a gross capacity of 239 l is used in the experiment. The consumed energy, compressor power and refrigerant temperature and pressure at the inlet and outlet of the compressor are recorded and analysed as well as the distributions of temperature at various positions in the refrigerator. The refrigerant mixtures used are divided into three groups: the mixture of three hydrocarbons, the mixture of two hydrocarbons and the mixture of two hydrocarbons and HFC-134a. The experiments are conducted with the refrigerants under the same no load condition at a surrounding temperature of 25 deg. C. The results show that propane/butane 60%/40% is the most appropriate alternative refrigerant to HFC-134a

  12. Analysis of ORC (Organic Rankine Cycle) systems with pure hydrocarbons and mixtures of hydrocarbon and retardant for engine waste heat recovery

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei

    2015-01-01

    The Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology for the recovery of engine waste heat. Systems with hydrocarbons as the working fluids exhibit good thermal performance. However, the flammability of hydrocarbons limits their practical applications because of safety concerns. This paper examines the potential of using mixtures of a hydrocarbon and a retardant in an ORC system for engine waste heat recovery. Refrigerants R141b and R11 are selected as the retardants and blended with the hydrocarbons to form zeotropic mixtures. The flammability is suppressed, and in addition, zeotropic mixtures provide better temperature matches with the heat source and sink, which reduces the exergy loss within the heat exchange processes, thereby increasing the cycle efficiency. Energetic and exergetic analysis of ORC systems with pure hydrocarbons and with mixtures of a hydrocarbon and a retardant are conducted and compared. The net power output and the second law efficiency are chosen as the evaluation criteria to select the suitable working fluid compositions and to define the optimal set of thermodynamic parameters. The simulation results reveal that the ORC system with cyclohexane/R141b (0.5/0.5) is optimal for this engine waste heat recovery case, thereby increasing the net power output of the system by 13.3% compared to pure cyclohexane. - Highlights: • ORC with zeotropic mixtures for engine waste heat recovery is discussed. • Energetic and exergetic analysis of ORC system are conducted. • Optimal mixture working fluid composition is identified. • Greater utilization of jacket water and lower irreversible loss are important.

  13. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Science.gov (United States)

    2010-07-01

    ... Hydrocarbon Solvent Mixtures 2B Table 2B to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Averageboiling point * (degrees F) Criteria Reactivityfactor 1 80-205 Alkanes... + Dry Point) / 2 (b) Aromatic Hydrocarbon Solvents ...

  14. Inverse Opal Photonic Crystals as an Optofluidic Platform for Fast Analysis of Hydrocarbon Mixtures.

    Science.gov (United States)

    Xu, Qiwei; Mahpeykar, Seyed Milad; Burgess, Ian B; Wang, Xihua

    2018-06-13

    Most of the reported optofluidic devices analyze liquid by measuring its refractive index. Recently, the wettability of liquid on various substrates has also been used as a key sensing parameter in optofluidic sensors. However, the above-mentioned techniques face challenges in the analysis of the relative concentration of components in an alkane hydrocarbon mixture, as both refractive indices and wettabilities of alkane hydrocarbons are very close. Here, we propose to apply volatility of liquid as the key sensing parameter, correlate it to the optical property of liquid inside inverse opal photonic crystals, and construct powerful optofluidic sensors for alkane hydrocarbon identification and analysis. We have demonstrated that via evaporation of hydrocarbons inside the periodic structure of inverse opal photonic crystals and observation of their reflection spectra, an inverse opal film could be used as a fast-response optofluidic sensor to accurately differentiate pure hydrocarbon liquids and relative concentrations of their binary and ternary mixtures in tens of seconds. In these 3D photonic crystals, pure chemicals with different volatilities would have different evaporation rates and can be easily identified via the total drying time. For multicomponent mixtures, the same strategy is applied to determine the relative concentration of each component simply by measuring drying time under different temperatures. Using this optofluidic sensing platform, we have determined the relative concentrations of ternary hydrocarbon mixtures with the difference of only one carbon between alkane hydrocarbons, which is a big step toward detailed hydrocarbon analysis for practical use.

  15. PREBIOTIC HYDROCARBON SYNTHESIS IN IMPACTING REDUCED ASTROPHYSICAL ICY MIXTURES

    International Nuclear Information System (INIS)

    Koziol, Lucas; Goldman, Nir

    2015-01-01

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials

  16. PREBIOTIC HYDROCARBON SYNTHESIS IN IMPACTING REDUCED ASTROPHYSICAL ICY MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Koziol, Lucas; Goldman, Nir, E-mail: lucas.koziol@exxonmobil.com, E-mail: ngoldman@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2015-04-20

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.

  17. Application of the cubic-plus-association (CPA) equation of state to complex mixtures with aromatic hydrocarbons

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    The cubic-plus-association (CPA) equation of state is applied to phase equilibria of mixtures containing alcohols, glycols, water, and aromatic or olefinic hydrocarbons. Previously, CPA has been successfully used for mixtures containing various associating compounds (alcohols, glycols, amines......, organic acids, and water) and aliphatic hydrocarbons. We show in this work that the model can be satisfactorily extended to complex vapor-liquid-liquid equilibria with aromatic or olefinic hydrocarbons. The solvation between aromatics/olefinics and polar compounds is accounted for. This is particularly...... important for mixtures containing water and glycols, but less so for mixtures with alcohols. For water/hydrocarbons, a single binary interaction parameter which accounts for the solvation is fitted to the experimental liquid-liquid equilibria (LLE) data. The interaction parameter of the physical term...

  18. Use of lanthanide shift reagents together with silver trifluoroacetate for quantitative analysis of mixtures of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Dambska, A.; Janowski, A.

    1980-01-01

    The shifts induced by equimolar mixture of typical lanthanide shift reagent such as 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octadionato europium with silver trifluoroacetate in 1 H NMR spectra of aromatic hydrocarbons have been used for analytical purposes; the NMR determination of m- and p-xylenes in mixtures has been chosen as an example. The use has been made of difference between induced shifts of methyl group signals in the 1 H NMR spectra of m- and p-xylenes. The magnitude of induced shifts of methyl groups signal in m-xylene is always larger than that of p-isomer, irrespective of contents of m- and p-xylenes in mixture. (author)

  19. A novel approach to predict the excess volume of hydrocarbon mixtures

    NARCIS (Netherlands)

    Finkers, H. J.; Bosma, J. C.; Broekhuis, A. A.

    2011-01-01

    This paper explores whether principles obtained for the packing of solid macroscopic particles can be applied to the study of excess volumes of liquid mixtures. The approach is applied to mixtures of 'pure' hydrocarbons, i.e. containing only C- and H-atoms. In this new approach a set of equations

  20. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range (degrees F) Criteria Reactivityfactor 21 280-290 Aromatic...

  1. A system for removing both oxygen and nitrogen from a rare gas-hydrocarbon mixture

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1989-01-01

    A study has been made how to remove nitrogen from a mixture of a rare gas and a hydrocarbon in addition to the removal of oxygen, H 2 O and gaseous oxides. The purpose was to find a simple method for the purification of drift-chamber gases in a recirculation system. Such a method would reduce the operating costs of the large detectors presently constructed for LEP. A promising technique has been developed. First results of a chemical reactor using the novel technique are presented. The N 2 content of Ar/air mixtures containing up to 28% air could be reduced to a level of 20 ppm at a flow rate of 0.11 m 3 /h (200 ppm at 1.0 m 3 /h); and the O 2 content to 30 and 300 ppm respectively. Water and gaseous oxides concentrations were always below 5 ppm. Some of the practical problems still to be solved are discussed and suggestions are given for further development and applications. The method can in principle be of more general use. (orig.)

  2. Surfactant Membrane Phases Containing Mixtures of Hydrocarbon and Fluorocarbon Surfactants

    International Nuclear Information System (INIS)

    de Campo, Liliana; Warr, G.G.

    2005-01-01

    Full text: We describe the structure and stability of sponge and lamellar phases comprising mixtures of hydrocarbon and fluorocarbon surfactants. Such mixtures can show limited miscibility with each other, forming for example coexisting populations of hydrocarbon rich and fluorocarbon rich micelles under some circumstances. Our system is based on the well-characterised lamellar and sponge phases of cetylpyridinium chloride, hexanol and 0.2M brine, into which the partially fluorinated surfactant N-1H,1H,2H,2H-tridecafluorooctylpyridinium chloride is incorporated. By probing the structures with SAXS (small angle x-ray scattering) and SANS (small angle neutron scattering) using contrast variation, and by characterizing the dynamic properties with dynamic light scattering, we will describe the effect of incorporating the fluorinated surfactant on the phase equilibria and properties of the surfactant membrane structures. (authors)

  3. Predicting the environmental fate properties of petroleum hydrocarbon mixtures

    International Nuclear Information System (INIS)

    Pisigan, R.A. Jr.; Tucker, W.A.

    1995-01-01

    The environmental fate and transport of petroleum products for risk assessment can be evaluated based on the physico-chemical properties of an indicator chemical or a surrogate compound, or the whole mixture. A study was conducted to develop a simple representation of the hydrocarbon mixture as if it contained only few constituents, each of which represents a large number of compounds. The products considered are gasoline, diesel fuel, and jet fuel (JP4). Each petroleum hydrocarbon was characterized as a mixture of six constituents: short chain alkanes, long chain alkanes, short chain cycloalkanes and alkenes, long chain cycloalkanes and alkenes, BTEX, and other aromatics. The carbon number used as a cut-off between short and long chain alkanes, alkenes, and cycloalkanes varies with the type of product. Each mixture has different average molecular weight, water solubility, vapor pressure, organic carbon partition coefficient, and air diffusivity. The properties of each constituent of gasoline were derived from the weighted average of all compounds belonging to each constituent group. For diesel fuel and JP4, the properties of each constituent were generated from the properties of the component most representative of the group. Any property that is missing or not available from common literature sources was derived from regression equations developed from the data base for gasoline. These regression equations express the property as function of the number of carbon atoms. The R 2 values of the regression equations range from 0.82--0.92. Some case studies involving petroleum product contamination in which the estimated properties were applied are presented

  4. Viscosity Prediction of Hydrocarbon Mixtures Based on the Friction Theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2001-01-01

    The application and capability of the friction theory (f-theory) for viscosity predictions of hydrocarbon fluids is further illustrated by predicting the viscosity of binary and ternary liquid mixtures composed of n-alkanes ranging from n-pentane to n-decane for wide ranges of temperature and from...

  5. Biodegradation testing of hydrophobic chemicals in mixtures at low concentrations – covering the chemical space of petroleum hydrocarbons

    DEFF Research Database (Denmark)

    Birch, Heidi; Hammershøj, Rikke Høst; Mayer, Philipp

    Petroleum products are complex mixtures of varying composition containing thousands of hydrocarbons each with their own physicochemical properties and degradation kinetics. One approach for risk assessment of these products is therefore to group the hydrocarbons by carbon number and chemical class...... i.e. hydrocarbon blocks. However, the biodegradation kinetic data varies in quantity and quality for the different hydrocarbon blocks, hampering the characterization of their fate properties. In this study, biodegradation kinetics of a large number of hydrocarbons aiming to cover the chemical space...... of petroleum hydrocarbons, were therefore determined at ng/L to µg/L concentrations in surface water, seawater and activated sludge filtrate. Two hydrocarbon mixtures were prepared, comprising a total of 53 chemicals including paraffins, naphthenics and aromatic hydrocarbons from C8 to C20. Passive dosing from...

  6. Compendium of shock wave data. Section C. Organic compounds excluding hydrocarbons. Section D. Mixtures. Section E. Mixtures and solutions without chemical characterization. Compendium index

    International Nuclear Information System (INIS)

    van Thiel, M.; shaner, J.; Salinas, E.

    1977-06-01

    This volume lists thermodynamic data for organic compounds excluding hydrocarbons, mixtures, and mixtures and solutions without chemical characterization. Alloys and some minerals are included among the mixtures. This volume also contains the index for the three-volume compendium

  7. Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Kamboon, Amnouy; Orachon, Banchob

    2006-01-01

    This paper presents an experimental study on the application of hydrocarbon mixtures to replace HFC-134a in automotive air conditioners. The hydrocarbons investigated are propane (R290), butane (R600) and isobutane (R600a). The measured data are obtained from an automotive air conditioning test facility utilizing HFC-134a as the refrigerant. The air conditioner, with a capacity of 3.5 kW driven by a Diesel engine, is charged and tested with four different ratios of hydrocarbon mixtures. The experiments are conducted at the same surrounding conditions. The temperature and pressure of the refrigerant at every major position in the refrigerant loop, the temperature, flow rate and humidity of air, torque and engine speed are recorded and analyzed. The parameters investigated are the refrigeration capacity, the compressor power and the coefficient of performance (COP). The results show that propane/butane/isobutane: 50%/40%/10% is the most appropriate alternative refrigerant to replace HFC-134a, having the best performance of all the hydrocarbon mixtures investigated

  8. The application of hydrocarbon refrigerant mixtures in a hermetic reciprocating compressor for high back pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Pak, H.Y. [Hanyang University, Seoul (Korea)

    1999-03-01

    The application of hydrocarbon refrigerant mixtures in a hermetic reciprocating compressor for dehumidifier is investigated. The selected refrigerants are R12, R134a, HC-Blend(R290/R600a), CX(R152a/R600a) and OS-12a. Both theoretical and experimental investigations have been performed for the selected refrigerants. The test results of hydrocarbon refrigerants have been compared to traditional refrigerant(R12) and R134a. The results show that hydrocarbon refrigerant mixtures(HC-Blend, CX and OS-12a) are very good alternatives in the refrigeration system for R12 and R134a. 11 refs., 3 fig., 12 tabs.

  9. Mass exchange during rectification of multicomponent mixtures of aromatic C/sub 9/ hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kutsarov, R; Palichev, T; Tasev, Zh

    1978-01-01

    The effectiveness is determined of separating a multicomponent aromatic hydrocarbon (ArU) mixture into binary ones relative to the composition of the initial mixture. The study is conducted in mixtures of ArU which contain: C/sub 8/ ArU, isopropylbenzene, n-propylbenzene, ethyloluene, 1,3,5-trimetylbenzene, 1,2,4-trimethylbenzene, 1,2,3-trimethylbenzene and C/sub 10/ ArU. The total content of the C/sub 8/ and C/sub 10/ ArU is less than 2%. The constants of the phase equilibrium of the components are obtained through experiments or are calculated through the Chao-Sider method. The separation of the multicomponent mixture was conducted in periodic, automated rectification column 30 mm in diameter, filled with a steel spiral with a free volume of 0.818 m/sup 3//m/sup 3/ and a specific surface of 0.785 m/sup 2//m/sup 3/ and an effective headpiece height of 1.5 m. The temperature of the housing was maintained with a precision of 0.5/sup 0/, the speed of vapors was maintained constant (0.231 m/sec) through regulating the pressure differential between the top and bottom with a precision of 0.5 mm of mercury. After reaching a stationary mode, samples of the distillate and the sediment were taken and were analyzed chromatographically with a precision of 0.25%. Five distillations of the multicomponent mixtures of various make up were conducted and the distillates and sediments were analyzed. The obtained data are graphically presented.

  10. Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery

    International Nuclear Information System (INIS)

    Shu, Gequn; Gao, Yuanyuan; Tian, Hua; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    For high temperature ORC (Organic Rankine Cycle) used in engine waste heat recovery, it's very critical to select a high temperature working fluid. HCs (Hydrocarbons) usually have excellent cycle performance, but the flammability limits their practical application. Considering that some retardants can be used to suppress flammability, the paper presents an application of mixtures based on hydrocarbons blending with refrigerant retardants to engine waste heat ORC. Three pure hydrocarbons (cyclopentane, cyclohexane, benzene) and two retardants (R11, R123) are selected for combination. Thermal efficiency and exergy loss are selected as the main objective functions. Based on thermodynamic model, the effects of retardants mass fraction, evaporation temperature and IHE (internal heat exchanger) are investigated. Results show that zeotropic mixtures do have higher thermal efficiency and lower exergy loss than pure fluids, at a certain mixture ratio. There exists the OMR (optimal mixture ratio) for different mixtures, and it changes with the evaporation temperature. When adding IHE to system, cycle performance could be obviously improved, and for benzene/R11 (0.7/0.3), the efficiency growth is about 7.12%∼9.72%. Using it, the maximum thermal efficiency of the system can achieve 16.7%, and minimum exergy loss is only 30.76 kW. - Highlights: • A theoretical analysis of Organic Rankine Cycle for engine exhaust heat recovery is proposed. • Mixtures based on hydrocarbons as working fluids have been suggested. • Effects of the IHE (internal heat exchanger) on ORC system are investigated. • OMR (Optimal mixture ratio) changes with the evaporation temperature. • Using the system, maximum thermal efficiency can achieve 16.7%

  11. Performance prediction of rotary compressor with hydrocarbon refrigerant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Park, M.W.; Chung, Y.G. [Hanyang University Graduate School, Seoul (Korea); Park, K.W. [LG Industrial System Corporation Limited (Korea); Park, H.Y. [Hanyang University, Seoul (Korea)

    1999-04-01

    This paper presents the modeling approach that can be predicted transient behavior of rotary compressor. Mass and energy conservation laws are applied to the control volume, and real gas state equation is used to obtain thermodynamic properties of refrigerant. The valve equation is solved to analyze discharge process also. Dynamic analysis of vane and roller is carried out to gain friction work. From above modeling, the performance of rotary compressor with radial clearance and friction loss is investigated numerically. The performance of each refrigerant and the possibility of using the hydrocarbon refrigerant mixtures in an existing rotary compressor are estimated by applying R12, R134a, R290/R600a mixture also. (author). 6 refs., 13 figs., 1 tab.

  12. Pool Boiling of Hydrocarbon Mixtures on Water

    Energy Technology Data Exchange (ETDEWEB)

    Boee, R.

    1996-09-01

    In maritime transport of liquefied natural gas (LNG) there is a risk of spilling cryogenic liquid onto water. The present doctoral thesis discusses transient boiling experiments in which liquid hydrocarbons were poured onto water and left to boil off. Composition changes during boiling are believed to be connected with the initiation of rapid phase transition in LNG spilled on water. 64 experimental runs were carried out, 14 using pure liquid methane, 36 using methane-ethane, and 14 using methane-propane binary mixtures of different composition. The water surface was open to the atmosphere and covered an area of 200 cm{sup 2} at 25 - 40{sup o}C. The heat flux was obtained by monitoring the change of mass vs time. The void fraction in the boiling layer was measured with a gamma densitometer, and a method for adapting this measurement concept to the case of a boiling cryogenic liquid mixture is suggested. Significant differences in the boil-off characteristics between pure methane and binary mixtures revealed by previous studies are confirmed. Pure methane is in film boiling, whereas the mixtures appear to enter the transitional boiling regime with only small amounts of the second component added. The results indicate that the common assumption that LNG will be in film boiling on water because of the high temperature difference, may be questioned. Comparison with previous work shows that at this small scale the results are influenced by the experimental apparatus and procedures. 66 refs., 76 figs., 28 tabs.

  13. Toxicity of jet fuel aliphatic and aromatic hydrocarbon mixtures on human epidermal Keratinocytes: evaluation based on in vitro cytotoxicity and interleukin-8 release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen-Hung (Chung-Shan Medical University Hospital, Department of Dermatology, Taichung, Taiwan, R.O.C); Lee, Chia-Hue; Tsang, Chau-Loong [National Chung-Hsing University, College of Veterinary Medicine, Taichung (Taiwan); Monteiro-Riviere, Nancy A.; Riviere, Jim E. [North Carolina State University, Center for Chemical Toxicology Research and Pharmacokinetics (CCTRP), Raleigh, NC (United States); Chou, Chi-Chung [National Chung-Hsing University, College of Veterinary Medicine, Taichung (Taiwan); National Chung-Hsing University, College of Veterinary Medicine, Taichung (Taiwan)

    2006-08-15

    Jet fuels are complex mixtures of aliphatic (ALI) and aromatic (ARO) hydrocarbons that vary significantly in individual cytotoxicity and proinflammatory activity in human epidermal keratinocytes (HEK). In order to delineate the toxicological interactions among individual hydrocarbons in a mixture and their contributions to cutaneous toxicity, nine ALI and five ARO hydrocarbons were each divided into five (high/medium/low cytotoxic and strong/weak IL-8 induction) groups and intra/inter-mixed to assess for their mixture effects on HEK mortality and IL-8 release. Addition of single hydrocarbon to JP-8 fuel was also evaluated for their changes in fuel dermatotoxicity. The results indicated that when hydrocarbons were mixed, HEK mortality and IL-8 release were not all predictable by their individual ability affecting these two parameters. The lowest HEK mortality (7%) and the highest IL-8 production were induced with mixtures including high cytotoxic and weak IL-8 inductive ARO hydrocarbons. Antagonistic reactions not consistently correlated with ALI carbon chain length and ARO structure were evident and carried different weight in the overall mixture toxicities. Single addition of benzene, toluene, xylene or ethylbenzene for up to tenfold in JP-8 did not increase HEK mortality while single addition of ALI hydrocarbons exhibited dose-related differential response in IL-8. In an all ALI environment, no single hydrocarbon is the dominating factor in the determination of HEK cytotoxicity while deletion of hexadecane resulted in a 2.5-fold increase in IL-8 production. Overall, decane, undecane and dodecane were the major hydrocarbons associated with high cytotoxicity while tetradecane, pentadecane and hexadecane were those which had the greatest buffering effect attenuating dermatotoxicity. The mixture effects must be considered when evaluating jet fuel toxicity to HEK. (orig.)

  14. Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Isaacman, Gabriel [Univ. of California, Berkeley, CA (United States); Wilson, Kevin R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Arthur W. H. [Univ. of California, Berkeley, CA (United States); Worton, David R. [Univ. of California, Berkeley, CA (United States). Aerosol Dynamics Inc., Berkeley, CA (United States); Kimmel, Joel R. [Aerodyne Research, Inc., Billerica, MA (United States); Univ. of Colorado, Boulder, CO (United States). Tofwerk AG, Thun (Switzerland); Nah, Theodora [Univ. of California, Berkeley, CA (United States); Hohaus, Thorsten [Aerodyne Research, Inc., Billerica, MA (United States); Gonin, Marc [Tofwerk AG, Thun (Switzerland); Kroll, Jesse H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Worsnop, Douglas R. [Aerodyne Research, Inc., Billerica, MA (United States); Goldstein, Allen H. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-30

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography/mass spectrometry (GC/MS) techniques. In this study, we use vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally “unresolved complex mixture” by separating components by GC retention time, tR, and mass-to-charge ratio, m/z, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved on the basis of tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. Lastly, the classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  15. Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry (GC-VUV-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Aerosol Dynamics Inc; Aerodyne Research, Inc.,; Tofwerk AG, Thun; Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.; Worton, David R.; Kimmel, Joel R.; Nah, Theodora; Hohaus, Thorsten; Gonin, Marc; Kroll, Jesse H.; Worsnop, Doug R.; Goldstein, Allen H.

    2011-09-13

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography-mass spectrometry (GC-MS) techniques. This work uses vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally"unresolved complex mixture" by separating components by GC retention time, tR, and mass-to-charge ratio, m/Q, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved based on tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally-relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. The classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  16. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231.

    Science.gov (United States)

    Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin

    2016-07-15

    Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Phase behaviour in water/hydrocarbon mixtures involved in gas production systems; etude des equilibres des systemes: eau-hydrocarbures-gaz acides dans le cadre de la production de gaz

    Energy Technology Data Exchange (ETDEWEB)

    Chapoy, A.

    2004-11-15

    Inside wells, natural gases frequently coexist with water. The gases are in equilibrium with the sub-adjacent aquifer. Many problems are associated with the presence of water during the production, transport and processing of natural gases. Accurate knowledge of the thermodynamic properties of the water/hydrocarbon and water-inhibitor/hydrocarbon equilibria near the hydrate forming conditions, at sub-sea pipeline conditions and during the transport is crucial for the petroleum industry. An apparatus based on a static/analytic method combined with a dilutor apparatus to calibrate on the gas chromatograph (GC) detectors with water was used to measure the water content of binary systems (i.e.: water - methane, ethane - water, nitrogen - water...) as well of a synthetic hydrocarbon gas mixture (i.e.: 94% methane, 4% ethane and 2% n-butane) with and without inhibitor. This same apparatus was also used generate data of methane, ethane, propane, n-butane and nitrogen solubility in water and also the solubilities of a synthetic mixture in water. In-house software has been developed in order to fit and model the experimental data. (author)

  18. Broadly tunable mid-infrared VECSEL for multiple components hydrocarbon gas sensing

    Science.gov (United States)

    Rey, J. M.; Fill, M.; Felder, F.; Sigrist, M. W.

    2014-12-01

    A new sensing platform to simultaneously identify and quantify volatile C1 to C4 alkanes in multi-component gas mixtures is presented. This setup is based on an optically pumped, broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) developed for gas detection. The lead-chalcogenide VECSEL is the key component of the presented optical sensor. The potential of the proposed sensing setup is illustrated by experimental absorption spectra obtained from various mixtures of volatile hydrocarbons and water vapor. The sensor has a sub-ppm limit of detection for each targeted alkane in a hydrocarbon gas mixture even in the presence of a high water vapor content.

  19. Assessing Energy Efficiency of Compression Heat Pumps in Drying Processes when Zeotropic Hydrocarbon Mixtures are Used as Working Agents

    Directory of Open Access Journals (Sweden)

    Shurayts Alexander

    2016-01-01

    Full Text Available Presents the results of studies of innovative materials in the field of renewable energy.The paper proposes a design and a formula for assessing energy efficiency of the heat pump air dryer, which uses zeotropic hydrocarbon mixtures of saturated hydrocarbons as a working agent and applies the principle of a counter-current heat exchanger with a variable temperature of both the working and the drying agents. Energy efficiency of the heat pump is achieved by means of obtaining a greater part of heat from renewable energy sources, in this case by cooling the air and condensing the water vapors in the heat pump. A conducted analysis identified correlations in establishing the marginal real coefficient of performance of the compression heat pump dryer running on zeotropic hydrocarbon mixtures and operating a cycle with variable temperatures of both the working and the drying agent in the evaporator and the condenser of the heat pump. According to the established correlations, the marginal real coefficient of performance of the compression heat pump dryers running on zeotropic hydrocarbon mixtures of 40 mol% of R600a and 60 mol% of R601 is 1.92 times higher than that of the same dryers running on only R600 (n-butane.

  20. Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons (C2-C4 in their gas mixture

    Directory of Open Access Journals (Sweden)

    Oman Zuas

    2016-09-01

    Full Text Available An accurate gas chromatography coupled to a flame ionization detector (GC-FID method was validated for the simultaneous analysis of light hydrocarbons (C2-C4 in their gas mixture. The validation parameters were evaluated based on the ISO/IEC 17025 definition including method selectivity, repeatability, accuracy, linearity, limit of detection (LOD, limit of quantitation (LOQ, and ruggedness. Under the optimum analytical conditions, the analysis of gas mixture revealed that each target component was well-separated with high selectivity property. The method was also found to be precise and accurate. The method linearity was found to be high with good correlation coefficient values (R2 ≥ 0.999 for all target components. It can be concluded that the GC-FID developed method is reliable and suitable for determination of light C2-C4 hydrocarbons (including ethylene, propane, propylene, isobutane, and n-butane in their gas mixture. The validated method has successfully been applied to the estimation of hydrocarbons light C2-C4 hydrocarbons in natural gas samples, showing high performance repeatability with relative standard deviation (RSD less than 1.0% and good selectivity with no interference from other possible components could be observed.

  1. Mutagenic hazards of complex polycyclic aromatic hydrocarbon mixtures in contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, C.L.; Lambert, A.B.; Lundstedt, S.; Tysklind, M.; White, P.A. [Health Canada, Ottawa, ON (Canada). Safe Environment Program

    2008-04-15

    The objective of the present study was to evaluate hazard/risk assessment methods for complex environmental mixtures that involve a targeted, priority chemical approach based on the cumulative hazard/risk of known mixture components or analyses of sufficiently similar mixtures. Ten polycyclic aromatic hydrocarbon (PAH)-contaminated soils were separated into nonpolar and semipolar fractions, and both fractions elicited positive responses on the Salmonella reverse mutation assay. Targeted and nontargeted methods of hazard prediction routinely overestimated mutagenic activities for the nonpolar soil fractions, suggesting nonadditive interactions of PAHs in complex mixtures. This suggests that current risk assessment methods for complex mixtures may provide conservative estimates regarding soils contaminated with priority PAHs alone. Significant underestimations of total risk, however, will be obtained if the soils also contain unidentified PAHs as well as polycyclic aromatic compounds and related compounds that contribute to the total mutagenic activity. Furthermore, estimates of excess lifetime cancer risk associated with the nondietary ingestion of the PAH-contaminated soils studied here indicate that a traditional risk assessment model based on identified priority PAHs and an assumption of additivity generally underestimates the risk associated with the nonpolar soil fractions (in comparison to bioassay-derived risk estimates). Additional cancer risk may be associated with the more polar compounds that also are found at these contaminated sites and that rarely are included in the standard risk assessment methodology.

  2. [Biodegradability of the components of natural hydrocarbon mixtures previously submitted to landfarming].

    Science.gov (United States)

    Pucci, G N; Pucci, O H

    2003-01-01

    The complex composition of the crude oil and the hydrocarbons that integrate the waste of the different stages of the oil industry turn this product a mixture that presents different difficulties for its elimination by biological methods. The objective of this paper was to study the biodegradation potential of autochthonous bacterial communities on hydrocarbons obtained from four polluted places and subjected to landfarming biorremediation system during a decade. The results showed a marked difference in biodegradability of the three main fractions of crude oil, aliphatic, aromatic, and polar fractions, obtained by column chromatography. All fractions were used as carbon source and energy. There were variations in the production of biomass among the different fractions as well as in the kinetics of biodegradation, according to the composition of each fraction.

  3. Identification of unresolved complex mixtures (UCMs) of hydrocarbons in commercial fish oil supplements.

    Science.gov (United States)

    Reid, Anna-Jean M; Budge, Suzanne M

    2015-01-01

    Heightened awareness of the health benefits of fish oil consumption has led to a great increase in the number of fish oil supplements available to the consumer. Therefore manufacturers are continually looking for ways to distinguish their products from those of competitors. Minimally refined or virgin fish oils provide a unique feature; however, petroleum hydrocarbon contamination from oil spills is a reality in the world's oceans. The question arises whether oil produced from fish species caught in these polluted areas is free of petroleum hydrocarbons, with particular interest in unresolved complex mixtures (UCMs). This study investigates the presence of UCMs in commercially available fish oil supplements advertised as being virgin, as well as refined. Weathered petroleum hydrocarbons in the form of a UCM were found at 523 µg g(-1) in a virgin Alaskan salmon oil supplement. Supplements that were refined were free of this contamination. Fish used in the production of fish oil supplements appear to have accumulated petrogenic hydrocarbons in their tissues which were not removed by minimal oil refining. Further study is required to determine if there are any health implications associated with long-term consumption of these contaminated supplements. © 2014 Society of Chemical Industry.

  4. Thermodynamic characterization of deepwater natural gas mixtures with heavy hydrocarbon content at high pressures

    International Nuclear Information System (INIS)

    Atilhan, Mert; Aparicio, Santiago; Ejaz, Saquib; Zhou, Jingjun; Al-Marri, Mohammed; Holste, James J.; Hall, Kenneth R.

    2015-01-01

    This paper includes high-accuracy density measurements and phase envelopes for deepwater natural gas mixtures. Mixtures primarily consist of (0.88 and 0.94) mole fraction methane and both mixtures includes heavy components (C 6+ ) more than 0.002 mole fraction. Experimental density and phase envelope data for deep and ultra-deep reservoir mixtures are scarce in literature and high accuracy measurements for such parameters for such natural gas-like mixtures are essential to validate the benchmark equations for custody transfer such as AGA8-DC92 and GERG-2008 equation of states (EOS). Thus, in this paper we report density and phase envelope experimental data via compact single-sinker magnetic suspension densimeter and isochoric apparatuses. Such data help gas industry to avoid retrograde condensation in natural gas pipelines

  5. Flow boiling heat transfer coefficients at cryogenic temperatures for multi-component refrigerant mixtures of nitrogen-hydrocarbons

    Science.gov (United States)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule-Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen-hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.

  6. DETERMINATION OF SOLID-LIQUID EQUILIBRIA DATA FOR MIXTURES OF HEAVY HYDROCARBONS IN A LIGHT SOLVENT

    Energy Technology Data Exchange (ETDEWEB)

    F.V. Hanson; J.V. Fletcher; Karthik R.

    2003-06-01

    A methodology was developed using an FT-IR spectroscopic technique to obtain solid-liquid equilibria (SLE) data for mixtures of heavy hydrocarbons in significantly lighter hydrocarbon diluents. SLE was examined in multiple Model Oils that were assembled to simulate waxes. The various Model oils were comprised of C-30 to C-44 hydrocarbons in decane. The FT-IR technique was used to identify the wax precipitation temperature (WPT). The DSC technique was also used in the identification of the onset of the two-phase equilibrium in this work. An additional Model oil made up of C-20 to C-30 hydrocarbons in decane was studied using the DSC experiment. The weight percent solid below the WPT was calculated using the FT-IR experimental results. The WPT and the weight percent solid below the WPT were predicted using an activity coefficient based thermodynamic model. The FT-IR spectroscopy method is found to successfully provide SLE data and also has several advantages over other laboratory-based methods.

  7. Studies on capillary tube expansion device used in J-T refrigerators operating with nitrogen-hydrocarbon mixtures

    Science.gov (United States)

    Harish Kruthiventi, S. S.; Venkatarathnam, G.

    2017-10-01

    Capillary tube expansion devices are used extensively in small closed cycle J-T refrigerators operating with refrigerant mixtures due to its low cost and the absence of any moving parts. It is possible for J-T refrigerators operating with mixtures that the velocity of refrigerant mixture at capillary tube outlet reaches a value where it equals the speed of sound at certain conditions. The variation of the speed of sound of nitrogen-hydrocarbon mixtures used in J-T refrigerators has been studied in two phase (vapour-liquid) and three-phase (Vapour-liquid-liquid) region as a function of temperature and pressure in this work. Also the conditions under which choking occurs in practical J-T refrigerators is investigated.

  8. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang,; Dali, [Los Alamos, NM; Devlin, David [Santa Fe, NM; Barbero, Robert S [Santa Cruz, NM; Carrera, Martin E [Naperville, IL; Colling, Craig W [Warrenville, IL

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  9. Development of Reference Equations of State for Refrigerant Mixtures Including Hydrocarbons

    Science.gov (United States)

    Miyamoto, Hiroyuki; Watanabe, Koichi

    In recent years, most accurate equations of state for alternative refrigerants and their mixtures can easily be used via convenient software package, e.g., REFPROP. In the present paper, we described the current state-of-the-art equations of state for refrigerant mixtures including hydrocarbons as components. Throughout our discussion, the limitation of the available experimental data and the necessity of the improvement against the arbitrary fitting of recent modeling were confirmed. The enough number of reliable experimental data, especially for properties in the higher pressures and temperatures and for derived properties, should be accumulated in the near future for the development of the physically-sound theoretical background. The present review argued about the possibility of the progress for the future thermodynamic property modeling throughout the detailed discussion regarding the several types of the equations of state as well as the recent innovative measurement technique.

  10. Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos)

    Science.gov (United States)

    Hoffman, D.J.

    1979-01-01

    Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil.

  11. Petroleum Hydrocarbon Mixture Toxicity and a Trait Based Approach to Soil Invertebrate Species for Site Specific Risk Assessments.

    Science.gov (United States)

    Gainer, Amy; Cousins, Mark; Hogan, Natacha; Siciliano, Steven D

    2018-05-05

    Although petroleum hydrocarbons (PHCs) released to the environment typically occur as mixtures, PHC remediation guidelines often reflect individual substance toxicity. It is well documented that groups of aliphatic PHCs act via the same mechanism of action, nonpolar narcosis and, theoretically, concentration addition mixture toxicity principles apply. To assess this theory, ten standardized acute and chronic soil invertebrate toxicity tests on a range of organisms (Eisenia fetida, Lumbricus terrestris, Enchytraeus crypticus, Folsomia candida, Oppia nitens and Hypoaspis aculeifer) were conducted with a refined PHC binary mixture. Reference models for concentration addition and independent action were applied to the mixture toxicity data with consideration of synergism, antagonism and dose level toxicity. Both concentration addition and independent action, without further interactions, provided the best fit with observed response to the mixture. Individual fraction effective concentration values were predicted from optimized, fitted reference models. Concentration addition provided a better estimate than independent action of individual fraction effective concentrations based on comparison with available literature and species trends observed in toxic responses to the mixture. Interspecies differences in standardized laboratory soil invertebrate species responses to PHC contaminated soil was reflected in unique traits. Diets that included soil, large body size, permeable cuticle, low lipid content, lack of ability to molt and no maternal transfer were traits linked to a sensitive survival response to PHC contaminated soil in laboratory tests. Traits linked to sensitive reproduction response in organisms tested were long life spans with small clutch sizes. By deriving single fraction toxicity endpoints considerate of mixtures, we reduce resources and time required in conducting site specific risk assessments for the protection of soil organism's exposure pathway. This

  12. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  13. Development of a Relative Potency Factor (Rpf) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft)

    Science.gov (United States)

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of polycyclic aromatic hydrocarbon (PAH) mixtures that when finalized will appear on the Integrated Risk Information System (IRIS) database. ...

  14. Effect of volatile hydrocarbon fractions on mobility and earthworm uptake of polycyclic aromatic hydrocarbons from soils and soil/lampblack mixtures.

    Science.gov (United States)

    Bogan, Bill W; Beardsley, Kate E; Sullivan, Wendy R; Hayes, Thomas D; Soni, Bhupendra K

    2005-01-01

    Studies were conducted to examine the mobility and bioavailability to earthworms (Eisenia fetida) of priority pollutant polycyclic aromatic hydrocarbons (PAH) in a suite of 11 soils and soil/lampblack mixtures obtained from former manufactured-gas plant sites. Contaminant mobility was assessed using XAD4 resins encapsulated in dialysis tubing, which were exposed to slurried soils for 15 d. These experiments showed that mobility of PAH in the different soils strongly correlated to the levels of volatile hydrocarbons (namely, gasoline- and diesel-range organics [GRO and DRO]) that existed in the soils as co-contaminants. Actual PAH bioavailability (as measured by earthworm PAH concentrations) also appeared to depend on GRO + DRO levels, although this was most evident at high levels of these contaminants. These findings are discussed in view of the effects of dieselrange organics on oil viscosity, assuming that the hydrocarbon contaminants in these soils exist in the form of distinct adsorbed oil phases. This study, therefore, extends correlations between carrier-oil viscosity and dissolved solute bioavailability, previously observed in a number of other in vitro and whole-organism tests (and in bacterial mutagenicity studies in soil), to multicellular organisms inhabiting contaminated-soil systems.

  15. Aqueous Solubility of Hydrocarbon Mixtures Solubilité dans l'eau de mélanges d'hydrocarbures

    Directory of Open Access Journals (Sweden)

    De Hemptinne J. C.

    2006-12-01

    Full Text Available The solubility of hydrocarbon components in water is of great importance for the environmental sciences. Its prediction is usually based on using the pure component solubilities and the mole fraction of the components in the mixture. While the pure component solubilities are generally well known, few data exist on the solubility of mixtures. Using a simple relationship leads to an underestimation of the true solubility. This paper presents some new data on the aqueous solubility of binary hydrocarbon mixtures. Using a rigorous thermodynamic analysis, we explain the observed behavior, as well as other data from the literature, including the solubility of jet fuel mixtures in water. The activity coefficient models used for this purpose are NRTL, UNIQUAC and UNIFAC. Considering the small concentration in oil of some very soluble substances, the activity coefficient can become significant and thus explain the fact that solubilities of some component may be as much as twice as large as expected. La solubilité de composés hydrocarbonés dans l'eau est d'une importance cruciale pour les sciences environnementales. Sa prévision est généralement basée sur la solubilité des constituants purs et de leur fraction molaire en mélange. La solubilité des composés purs est généralement bien connue, mais peu de données ont été publiées concernant les mélanges. L'utilisation d'une relation simple conduit à une sous-estimation de la solubilité réelle. Cet article présente quelques données nouvelles de solubilités de mélanges hydrocarbonés simples. Une analyse thermodynamique rigoureuse permet de décrire la solubilité observée, aussi bien pour des mélanges modèles que pour des kérosènes. Les modèles de coefficient d'activité utilisés dans ce but sont NRTL, UNIQUAC et UNIFAC. Étant donné la faible concentration de certains constituants dans l'huile, leurs coefficients d'activité peut devenir important. Ceci explique une

  16. Comparative study of the physicochemical properties of aqueous solutions of the hydrocarbon and fluorocarbon surfactants and their ternary mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Szymczyk, Katarzyna, E-mail: katarzyna.szymczyk@poczta.umcs.lublin.pl

    2014-03-03

    Highlights: • Acoustic properties of hydrocarbon and fluorocarbon surfactants were studied. • Auerbach’s relation is not proper for mixtures with fluorocarbon surfactants. • Values of the hydration number decreases at concentrations higher than CMC. • FSO100 and its mixtures are the strongest chaotropes. - Abstract: Speed of sound and density of aqueous solutions of hydrocarbon p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethyleneglycols) (Triton X-100 (TX100), Triton X-165 (TX165)) and fluorocarbon (Zonyl FSN-100 (FSN100), Zonyl FSO-100 (FSO100)) surfactants as well as their ternary mixtures were measured at 293 K. Taking into account these values and the literature data of the surface tension and viscosity of the studied systems, the values of the isentropic compressibility, apparent specific adiabatic compressibility, hydration number, apparent specific volume and Jones Dole’s A and B-coefficients were determined. For the systems containing FSO100 also the values of dB/dT were determined on the basis of the values of viscosity measured at different temperatures. Next, the calculated thermodynamic properties have been discussed in the term of intermolecular interactions between the components of the mixtures.

  17. Numerical investigation of boiling heat transfer on hydrocarbon mixture refrigerant in vertical rectangular minichannel

    OpenAIRE

    Huixing Li; Yu Liu

    2016-01-01

    In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat t...

  18. EVALUATION OF PETROLEUM HYDROCARBONS ELUTION FROM SOIL

    Directory of Open Access Journals (Sweden)

    Janina Piekutin

    2015-06-01

    Full Text Available The paper presents studies on oil removal from soil by means of water elution with a help of shaking out the contaminants from the soil. The tests were performed on simulated soil samples contaminated with a mixture of petroleum hydrocarbons. The study consisted in recording the time influence and the number of elution cycles to remove contaminants from the soil. The samples were then subject to the determination of petroleum hydrocarbons, aliphatic hydrocarbons, and BTEX compounds (benzene, toluene, ethylbenzene, xylene. Due to adding various concentrations of petroleum into particular soil samples and applying different shaking times, it was possible to find out the impact of petroleum content and sample shaking duration on the course and possibility of petroleum substances removal by means of elution process.

  19. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units.

    Science.gov (United States)

    Schmidt, Stine N; Holmstrup, Martin; Smith, Kilian E C; Mayer, Philipp

    2013-07-02

    A 7-day mixture toxicity experiment with the terrestrial springtail Folsomia candida was conducted, and the effects were linked to three different mixture exposure parameters. Passive dosing from silicone was applied to tightly control exposure levels and compositions of 12 mixture treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑C(lipid eq.)), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LC(lipid eq 50)) of 133 mmol kg(-1) lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture exposure in terms of both level and composition, while ∑a, ∑C(lipid eq.), and ∑TU allowed baseline toxicity to be linked to mixture exposure.

  20. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    National Research Council Canada - National Science Library

    Cernansky, N.P

    1998-01-01

    .... The research program entailed mechanistic studies examining the oxidation chemistry of single-component hydrocarbons and ignition studies examining the overall ignition of pure single component fuels and fuel blends...

  1. Prediction of vapour-liquid and vapour-liquid-liquid equilibria of nitrogen-hydrocarbon mixtures used in J-T refrigerators

    Science.gov (United States)

    Narayanan, Vineed; Venkatarathnam, G.

    2018-03-01

    Nitrogen-hydrocarbon mixtures are widely used as refrigerants in J-T refrigerators operating with mixtures, as well as in natural gas liquefiers. The Peng-Robinson equation of state has traditionally been used to simulate the above cryogenic process. Multi parameter Helmholtz energy equations are now preferred for determining the properties of natural gas. They have, however, been used only to predict vapour-liquid equilibria, and not vapour-liquid-liquid equilibria that can occur in mixtures used in cryogenic mixed refrigerant processes. In this paper the vapour-liquid equilibrium of binary mixtures of nitrogen-methane, nitrogen-ethane, nitrogen-propane, nitrogen-isobutane and three component mixtures of nitrogen-methane-ethane and nitrogen-methane-propane have been studied with the Peng-Robinson and the Helmholtz energy equations of state of NIST REFPROP and compared with experimental data available in the literature.

  2. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions

    KAUST Repository

    Pan, Yichang

    2011-01-01

    Exceptional high quality ZIF-8 membranes prepared through a novel seeded growth method in aqueous solutions at near room temperature exhibit excellent separation performance for C2/C3 hydrocarbon mixtures. The separation factors for mixtures of ethane/propane, ethylene/propylene and ethylene/propane are ∼80, ∼10 and ∼167, respectively. © 2011 The Royal Society of Chemistry.

  3. Process for desulfurizing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-04-12

    A process is described for the desulfurization of a mixture of hydrocarbons, and in particular hydrocarbons containing less than 7 atoms of carbon and sulfur compounds of the type of sulfur carbonyl, characterized by the fact that the mixture, preferably in the liquid phase, is brought in contact with a solution of caustic alkali, essentially anhydrous or preferably with a solution of alkali hydroxide in an organic hydroxy nonacid solvent, for example, an alcohol, or with an alkaline alcoholate, under conditions suitable to the formation of hydrogen sulfide which produces a hydrocarbon mixture free from sulfur compounds of the sulfur carbonyl type but containing hydrogen sulfide, and that it is treated, following mixing, having beem submitted to the first treatment, by means of aqueous alkaline hydroxide to eliminate the hydrogen sulfide.

  4. Equilibrium moisture content of waste mixtures from post-consumer carton packaging.

    Science.gov (United States)

    Bacelos, M S; Freire, J T

    2012-01-01

    The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound.

  5. Zeolitic imidazolate framework membranes and methods of making and using same for separation of c2- and c3+ hydrocarbons and separation of propylene and propane mixtures

    KAUST Repository

    Lai, Zhiping

    2012-12-06

    Certain embodiments are directed to processes for fabrication of zeolitic imidazolate framework (ZIF) membranes. These ZIF membranes can be used in separating C2-hydrocarbons from C3+ hydrocarbons and propylene/propane mixtures.

  6. Zeolitic imidazolate framework membranes and methods of making and using same for separation of c2- and c3+ hydrocarbons and separation of propylene and propane mixtures

    KAUST Repository

    Lai, Zhiping; Pan, Yichang

    2012-01-01

    Certain embodiments are directed to processes for fabrication of zeolitic imidazolate framework (ZIF) membranes. These ZIF membranes can be used in separating C2-hydrocarbons from C3+ hydrocarbons and propylene/propane mixtures.

  7. Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons (C2-C4) in their gas mixture

    OpenAIRE

    Oman Zuas; Harry budiman; Muhammad Rizky Mulyana

    2016-01-01

    An accurate gas chromatography coupled to a flame ionization detector (GC-FID) method was validated for the simultaneous analysis of light hydrocarbons (C2-C4) in their gas mixture. The validation parameters were evaluated based on the ISO/IEC 17025 definition including method selectivity, repeatability, accuracy, linearity, limit of detection (LOD), limit of quantitation (LOQ), and ruggedness. Under the optimum analytical conditions, the analysis of gas mixture revealed that each target comp...

  8. Process and apparatus for pyrolytic decomposition and coking of mixtures of finely divided solid carbonaceous material and hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A

    1933-09-18

    A process is described for pyrolytic decomposition and coking of mixtures of finely divided solid and semi-solid carbonaceous material and hydrocarbon oils, whereby the mixture is first heated to a high temperature; the heated products are introduced into a coking zone, where vapors are separated from nonvaporous residue afterwards to be cracked and condensed, characterized in that the mixture is heated to a high temperature under substantially noncoking conditions and that nonvaporous residue obtained in the coking zone is coked as a relatively thin layer on an externally intensely heated surface, preferably of heat-conducting, fireproof material, such as carborundum, fused-aluminum oxide, or clay.

  9. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    Science.gov (United States)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  10. Estimation of performance of a J-T refrigerators operating with nitrogen-hydrocarbon mixtures and a coiled tubes-in-tube heat exchanger

    Science.gov (United States)

    Satya Meher, R.; Venkatarathnam, G.

    2018-06-01

    The exergy efficiency of Joule-Thomson (J-T) refrigerators operating with mixtures (MRC systems) strongly depends on the choice of refrigerant mixture and the performance of the heat exchanger used. Helically coiled, multiple tubes-in-tube heat exchangers with an effectiveness of over 96% are widely used in these types of systems. All the current studies focus only on the different heat transfer correlations and the uncertainty in predicting performance of the heat exchanger alone. The main focus of this work is to estimate the uncertainty in cooling capacity when the homogenous model is used by comparing the theoretical and experimental studies. The comparisons have been extended to some two-phase models present in the literature as well. Experiments have been carried out on a J-T refrigerator at a fixed heat load of 10 W with different nitrogen-hydrocarbon mixtures in the evaporator temperature range of 100-120 K. Different heat transfer models have been used to predict the temperature profiles as well as the cooling capacity of the refrigerator. The results show that the homogenous two-phase flow model is probably the most suitable model for rating the cooling capacity of a J-T refrigerator operating with nitrogen-hydrocarbon mixtures.

  11. Performance of an auto refrigerant cascade refrigerator operating in gas refrigerant supply (GRS) mode with nitrogen-hydrocarbon and argon-hydrocarbon refrigerants

    Science.gov (United States)

    Gurudath Nayak, H.; Venkatarathnam, G.

    2009-07-01

    There is a worldwide interest in the development of auto refrigerant cascade (ARC) refrigerators operating with refrigerant mixtures. Both flammable and non-flammable refrigerant mixtures can be used in these systems. The performance of an ARC system with optimum nitrogen-hydrocarbon and argon-hydrocarbon mixtures between 90 and 160 K is presented in this paper.

  12. Analysis of Polycyclic Aromatic Hydrocarbon (PAH Mixtures Using Diffusion-Ordered NMR Spectroscopy and Adsorption by Powdered Activated Carbon and Biochar

    Directory of Open Access Journals (Sweden)

    Dong An

    2018-03-01

    Full Text Available Analysis of polycyclic aromatic hydrocarbons (PAHs in air and water sources is a key part of environmental chemistry research, since most PAHs are well known to be associated with negative health impacts on humans. This study explores an approach for analyzing PAH mixtures with advanced nuclear magnetic resonance (NMR spectroscopic techniques including high-resolution one-dimensional (1D NMR spectroscopy and diffusion-ordered NMR spectroscopy (DOSY NMR. With this method, different kinds of PAHs can be detected and differentiated from a mixture with high resolution. The adsorption process of PAH mixtures by PAC and biochar was studied to understand the mechanism and assess the method.

  13. Optimizing cementious content in concrete mixtures for required performance.

    Science.gov (United States)

    2012-01-01

    "This research investigated the effects of changing the cementitious content required at a given water-to-cement ratio (w/c) on workability, strength, and durability of a concrete mixture. : An experimental program was conducted in which 64 concrete ...

  14. Distribution of MEG and methanol in well-defined hydrocarbon and water systems: Experimental measurement and modeling using the CPA EoS

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Yussuf, Mustafe A.; Kontogeorgis, Georgios

    2013-01-01

    + water. These data are satisfactorily correlated (binaries) and predicted (ternaries) using Cubic Plus Association (CPA) equation of state (EoS). CPA is also applied to binary LLE of aromatic hydrocarbon + water and VLE of methane + methanol. Finally the distribution of water and inhibitors (methanol...... and MEG) in various phases is modeled using CPA. The hydrocarbon phase consists of mixture-1 (methane, ethane, n-butane) or mixture-2 (methane, ethane, propane, n-butane, n-heptane, toluene and n-decane). CPA can satisfactorily predict the water content in the gas phase of the multicomponent systems...

  15. Analysis of some aromatic hydrocarbons in a benzene-soluble bitumen from Green River shale

    Energy Technology Data Exchange (ETDEWEB)

    Anders, D.E.; Doolittle, F.G.; Robinson, W.E.

    1973-01-01

    The hydrocarbon content of an aromatic fraction, isolated from the bitumen of Green River shale, was studied by mass spectrometry, infra-red spectrometry, gas chromatography and a dehydrogenation technique. The hydrocarbon types and their distribution in this aromatic fraction, as determined by mass spectrometry, are presented. The carbon-number range, empirical formulas and quantity of each compound in the major types are reported. Mass spectra of several compounds and homologous mixtures of compounds isolated from the aromatic fraction are also given.

  16. Taguchi Method for Development of Mass Flow Rate Correlation Using Hydrocarbon Refrigerant Mixture in Capillary Tube

    OpenAIRE

    Sulaimon, Shodiya; Nasution, Henry; Aziz, Azhar Abdul; Abdul-Rahman, Abdul-Halim; Darus, Amer N

    2014-01-01

    The capillary tube is an important control device used in small vapor compression refrigeration systems such as window air-conditioners, household refrigerators and freezers. This paper develops a non-dimensional correlation based on the test results of the adiabatic capillary tube for the mass flow rate through the tube using a hydrocarbon refrigerant mixture of 89.3% propane and 10.7% butane (HCM). The Taguchi method, a statistical experimental design approach, was employed. This approach e...

  17. [Heavy metals and hydrocarbons content in soils of settlements of the Yamal-Nenets autonomous region].

    Science.gov (United States)

    Alekseev, I I; Abakumov, E V; Shamilishvili, G A; Lodygin, E D

    In August 2015 there were executed investigations on the study of the soils diversity of the Yamal-Nenets Autonomous Okrug. One of the directions of this work got be the study of urban soils of settlements of the Yamal-Nenents Autonomous Okrug. The sectors for the observation were settlement of Harsaim, village Aksarka, city of Salekhard, settlement Harp and city of Labytnangi. About 20 soil samples were collected during the field work. Samples were collected from a depth of 0-5 cm and 5-20 cm. Heavy metals (HM) were detected with the use of X-ray fluorescent analyzer “Spectroscan-MAX”. The HM content values were compared with the corresponding Approxible Permissible Concentrations and Maximum Allowable Concentrations (MAC) adopted in Russia. Hydrocarbons content was determined by gravimetric method. Values of the hydrocarbons content in studied soils were compared with the existing regulations of the Russian Federation. The levels of soil contamination by hydrocarbons were determined. The study of soil samples from different settlements allowed to reveal characteristic features of soil contamination of separate settlements by HM and hydrocarbons and to compare them against each other. The vast majority of samples are characterized by arsenic exceedance of MAC, which should indicate to a high regional background of this element. For a more adequate assessment of the Zc meaning as the value of the total pollution index of soils there were used not only arithmetical average values of the coefficients of the chemical composition concentration (Kc), but also their average geometric values. According to levels of total soil contamination most of soil samples are characterized as non-hazardous (Zc<16). Calculation of soil pollution index showed that the most of soil samples have values less than 1. It characterizes soils as unpolluted. Statistical processing of obtained data in the media of the analytical software interface STATISTICA 10 showed a statistically

  18. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: Linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units

    DEFF Research Database (Denmark)

    Schmidt, Stine Nørgaard; Holmstrup, Martin; Smith, Kilian E. C.

    2013-01-01

    treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑Clipid eq.), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments...... could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LClipid eq...

  19. THE PENALIZED OPTIMAL EXPERIMENTAL DESIGN: THE PRECISE ESTIMATION OF AN INTERACTION THRESHOLD IN A MIXTURE OF EIGHTEEN POLYHALOGENATED AROMATIC HYDROCARBONS.

    Science.gov (United States)

    Crofton et al. (EHP, 2005) conducted a study of 18 polyhalogenated aromatic hydrocarbons (PHAHs) on serum total thyroxine (T4). Young female Long-Evans rats were dosed with the 18 single agents or a fixed-ratio mixture, and serum total T4 was measured via radioimmunoassay. The i...

  20. Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed

    Energy Technology Data Exchange (ETDEWEB)

    Stelmachowski, M. [Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Technical University of Lodz, 90-924 Lodz, Wolczanska 213 (Poland)

    2010-10-15

    Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like organic wastes, plastic wastes, scrap tires, etc. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of a tubular reactor with the molten metal bed is proposed for conversion of waste plastics to fuel-like mixture of hydrocarbons. The results of the thermal degradation of polyolefins in the laboratory scale set-up based on this reactor are presented in the paper. The melting and cracking processes were carried out in a single apparatus at the temperature 390-420 C. The problems with: disintegration of wastes, heat transfer from the wall to the particles of polymers, cooking at the walls of reactor, and mixing of the molten volume of wastes were significantly reduced. The final product consisted of gaseous stream (8-16 wt% of the input) and liquid (84-92 wt%) stream. No solid products were produced. The light, ''gasoline'' fraction of the liquid hydrocarbons mixture (C{sub 4}-C{sub 10}) made over 50% of the liquid product. It may by used for fuel production or electricity generation. (author)

  1. Thermal conversion of waste polyolefins to the mixture of hydrocarbons in the reactor with molten metal bed

    International Nuclear Information System (INIS)

    Stelmachowski, M.

    2010-01-01

    Energy crisis and environmental degradation by polymer wastes have been imperative to find and propose technologies for recovery of raw materials and energy from non-conventional sources like organic wastes, plastic wastes, scrap tires, etc. A variety of methods and processes connected with global or national policies have been proposed worldwide. A new type of a tubular reactor with the molten metal bed is proposed for conversion of waste plastics to fuel like mixture of hydrocarbons. The results of the thermal degradation of polyolefins in the laboratory scale set-up based on this reactor are presented in the paper. The melting and cracking processes were carried out in a single apparatus at the temperature 390-420 deg. C. The problems with: disintegration of wastes, heat transfer from the wall to the particles of polymers, cooking at the walls of reactor, and mixing of the molten volume of wastes were significantly reduced. The final product consisted of gaseous stream (8-16 wt% of the input) and liquid (84-92 wt%) stream. No solid products were produced. The light, 'gasoline' fraction of the liquid hydrocarbons mixture (C 4 -C 10 ) made over 50% of the liquid product. It may by used for fuel production or electricity generation.

  2. An In Silico Approach for Evaluating a Fraction-Based, Risk Assessment Method for Total Petroleum Hydrocarbon Mixtures

    Directory of Open Access Journals (Sweden)

    Nina Ching Y. Wang

    2012-01-01

    Full Text Available Both the Massachusetts Department of Environmental Protection (MADEP and the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG developed fraction-based approaches for assessing human health risks posed by total petroleum hydrocarbon (TPH mixtures in the environment. Both organizations defined TPH fractions based on their expected environmental fate and by analytical chemical methods. They derived toxicity values for selected compounds within each fraction and used these as surrogates to assess hazard or risk of exposure to the whole fractions. Membership in a TPH fraction is generally defined by the number of carbon atoms in a compound and by a compound's equivalent carbon (EC number index, which can predict its environmental fate. Here, we systematically and objectively re-evaluate the assignment of TPH to specific fractions using comparative molecular field analysis and hierarchical clustering. The approach is transparent and reproducible, reducing inherent reliance on judgment when toxicity information is limited. Our evaluation of membership in these fractions is highly consistent (̃80% on average across various fractions with the empirical approach of MADEP and TPHCWG. Furthermore, the results support the general methodology of mixture risk assessment to assess both cancer and noncancer risk values after the application of fractionation.

  3. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation

    DEFF Research Database (Denmark)

    Birch, Heidi; Hammershøj, Rikke Høst; Comber, Mike

    2017-01-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby...... potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation...... method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng...

  4. A method for producing a hydrocarbon resin

    Energy Technology Data Exchange (ETDEWEB)

    Tsachev, A B; Andonov, K S; Igliyev, S P

    1980-11-25

    Rock coal resin (KS), for instance, with a relative density of 1,150 to 1,190 kilograms per cubic meter, which contains 8 to 10 percent naphthaline, 1.5 to 2.8 percent phenol and 6 to 15 percent substances insoluble in toluene, or its mixture with rock coal or oil fractions of resin are subjected to distillation (Ds) in a pipe furnace with two evaporators (Is) and a distillation tower with a temperature mode in the second stage of 320 to 360 degrees and 290 to 340 degrees in the pitch compartment. A hydrocarbon resin is produced with a high carbon content, especially for the production of resin and dolomite refractory materials, as well as fuel mixtures for blast furnace and open hearth industry.

  5. Estimation of Freezing Point of Hydrocarbon and Hydrofluorocarbon Mixtures for Mixed Refrigerant jt Cryocooler

    Science.gov (United States)

    Hwang, G.; Lee, J.; Jeong, S.

    2010-04-01

    Estimating the freezing point of refrigerant is an essential part in designing an MR JT (Mixed refrigerant Joule-Thomson) cryocooler to prevent itself from clogging and to operate with stability. There were researches on estimating freezing point, but some of them resulted in the wrong prediction of clogging. In this paper, the freezing point of the MR is precisely estimated with caution of clogging. The solubility of HC (hydrocarbon) and HFC (hydrofluorocarbon) mixture components are obtained with their activity coefficients, which represent the molecular interaction among the components. The freezing points of the MR JT cryocooler are systematically investigated in the operating temperature range from 70 K to 90 K.

  6. Design and verification of bituminous mixtures with the increased content of reclaimed asphalt pavement

    Science.gov (United States)

    Bańkowski, Wojciech; Król, Jan; Gałązka, Karol; Liphardt, Adam; Horodecka, Renata

    2018-05-01

    Recycling of bituminous pavements is an issue increasingly being discussed in Poland. The analysis of domestic and foreign experience indicates a need to develop this technology in our country, in particular the hot feeding and production technologies. Various steps are being taken in this direction, including research projects. One of them is the InnGA project entitled: “Reclaimed asphalt pavement: Innovative technology of bituminous mixtures using material from reclaimed asphalt pavement”. The paper presents the results of research involving the design of bituminous mixtures in accordance with the required properties and in excess of the content of reclaimed asphalt permitted by the technical guidelines. It presents selected bituminous mixtures with the content of RAP of up to 50% and the results of tests from verification of industrial production of those mixtures. The article discusses the details of the design process of mixtures with a high content of reclaimed asphalt, the carried out production tests and discusses the results of tests under the verification of industrial production. Testing included basic tests according to the Polish technical requirements of WT- 2 and the extended functional testing. The conducted tests and analyses helped to determine the usefulness of the developed bituminous mixtures for use in experimental sections and confirmed the possibility of using an increased amount of reclaimed asphalt up to 50% in mixtures intended for construction of national roads.

  7. The Viscosity of Organic Liquid Mixtures

    Science.gov (United States)

    Len, C. W.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A.

    2006-01-01

    The paper reports measurements of the viscosity and density of two heavy hydrocarbon mixtures, Dutrex and Arab Light Flashed Distillate (ALFD), and of their mixtures with hydrogen. The measurements have been carried out with a vibrating-wire device over a range of temperatures from 399 to 547 K and at pressures up to 20 MPa. Measurements have also been carried out on systems in which hydrogen at different concentrations has been dissolved in the liquids. The measurements have an estimated uncertainty of ±5% for viscosity and ±2% for density and represent the first results on these prototypical heavy hydrocarbons. The results reveal that the addition of hydrogen reduces both the density and viscosity of the original hydrocarbon mixture at a particular temperature and pressure.

  8. Evaluation of environmental samples containing heavy hydrocarbon components in environmental forensic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Raia, J.C.; Blakley, C.R.; Fuex, A.N.; Villalanti, D.C.; Fahrenthold, P.D. [Triton Anal Corp, Houston, TX (United States)

    2004-03-01

    This article presents a procedure to evaluate and characterize environmental samples containing mixtures of hydrocarbons over a wide boiling range of materials that include fuels and other products used in commerce. The range of the method extends to the higher boiling and heavier molecular weight hydrocarbon products in the range of motor oil, bunker fuel, and heavier residue materials. The procedure uses the analytical laboratory technique of high-temperature simulated distillation along with mathematical regression of the analytical data to estimate the relative contribution of individual products in mixtures of hydrocarbons present in environmental samples. An analytical technique to determine hydrocarbon-type distributions by gas chromatography-mass spectrometry with nitric oxide ionization spectrometry evaluation is also presented. This type of analysis allows complex hydrocarbon mixtures to be classified by their chemical composition, or types of hydrocarbons that include paraffins, cycloparaffins, monoaromatics, and polycyclic aromatic hydrocarbons. Characteristic hydrocarbon patterns for example, in the relative distribution of polycyclic aromatic hydrocarbons are valuable for determining the potential origin of materials present in environmental samples. These methods provide quantitative data for hydrocarbon components in mixtures as a function of boiling range and 'hydrocarbon fingerprints' of the types of materials present. This information is valuable in assessing environmental impacts of hydrocarbons at contaminated sites and establishing the liabilities and cost allocations for responsible parties.

  9. Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Gahlyan, Suman; Rani, Manju; Maken, Sanjeev Kumar; Lee, Inkyu; Moon, Il

    2015-01-01

    Excess molar volumes (V m E ) have been measured at 303.15 K for 1-propanol+benzene or toluene or o- or m- or p-xylene mixtures using V-shape dilatometer. The V m E values, for an equimolar composition, vary in the order: benzene>toluene-m-xylene>o-xylene>p-xylene. The V m E data have been used to calculate partial molar volumes, excess partial molar volumes, and apparent molar volumes of 1-propanol and aromatic hydrocarbons over the entire range of composition. The excess volume data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson theory (PFP). While PFP theory fails to predict the V m E values for systems with s-shaped V m E versus x 1 graph, the V m E values calculated by graph theory compare reasonably well with the corresponding experimental values. This graph theory analysis has further yielded information about the state of aggregation of pure components as well as of the mixtures

  10. A method of refining aromatic hydrocarbons from coal chemical production

    Energy Technology Data Exchange (ETDEWEB)

    Zieborak, K.; Koprowski, A.; Ratajczak, W.

    1979-10-01

    A method is disclosed for refining aromatic hydrocarbons of coal chemical production by contact of liquid aromatic hydrocarbons and their mixtures with a strongly acid macroporous sulfocationite in the H-form at atmospheric pressure and high temperature. The method is distinguished in that the aromatic hydrocarbons and their mixtures, from which alkali compounds have already been removed, are supplied for refinement with the sulfocationite with simultaneous addition of olefin derivatives of aromatic hydrocarbons, followed by separation of pure hydrocarbons by rectification. Styrene or alpha-methylstyrene is used as the olefin derivatives of the aromatic hydrocarbons. The method is performed in several stages with addition of olefin derivatives of aromatic hydrocarbons at each stage.

  11. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  12. Bioremediation of oil sludge contaminated soil using bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost

    International Nuclear Information System (INIS)

    Tri Retno, D.L.; Mulyana, N.

    2013-01-01

    Bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost was used on bioremediation of microcosm scale contaminated by hydrocarbon soil. Bioremediation composting was carried out for 42 days. Composting was done with a mixture of bulking agent (sawdust, residual sludge biogas and compost) by 30%, mud petroleum (oil sludge) by 20% and 50% of soil. Mixture of 80% soil and 20% oil sludge was used as a control. Irradiated compost was used as a carrier for consortia of microbial inoculants (F + B) which biodegradable hydrocarbons. Treatment variations include A1, A2, B1, B2, C1, C2, D1 and D2. Process parameters were observed to determine the optimal conditions include: temperature, pH, water content, TPC (Total Plate Count) and degradation of % TPH (Total Petroleum Hydrocarbon). Optimal conditions were achieved in the remediation of oil sludge contamination of 20% using the B2 treatment with the addition consortia of microbial inoculants based by irradiated compost of sawdust (bulking agentby 30% at concentrations of soil by 50% with TPH degradation optimal efficiency of 81.32%. The result of GC-MS analysis showed that bioremediation for 42 days by using a sawdust as a mixture of bulking agents which enriched consortia of microbial inoculants based by irradiated compost is biodegradeable, so initial hydrocarbons with the distribution of the carbon chain C-7 to C-54 into final hydrocarbons with the distribution of carbon chain C-6 to C-8. (author)

  13. Determination of D-lactide content in lactide stereoisomeric mixture using gas chromatography-polarimetry.

    Science.gov (United States)

    Feng, Lidong; Bian, Xinchao; Chen, Zhiming; Xiang, Sheng; Liu, Yanlong; Sun, Bin; Li, Gao; Chen, Xuesi

    2017-03-01

    An analytical method has been proposed to quantify the D-lactide content in a lactide stereoisomeric mixture using combined gas chromatography and polarimetry (GC- polarimetry). As for a lactide stereoisomeric mixture, meso-lactide can be determined quantitatively using GC, but D- and L-lactides cannot be separated by the given GC system. The composition of a lactide stereoisomeric mixture is directly relative to its specific optical rotation. The specific optical rotations of neat L-lactide were obtained in different solutions, which were -266.3° and -298.8° in dichloromethane (DCM) and toluene solutions at 20°C, respectively. Therefore, for a lactide sample, the D-lactide content could be calculated based on the meso-lactide content obtained from GC and the specific optical rotations of the sample and neat L-lactide obtained from polarimetry. The effects of impurities and temperature on the test results were investigated, respectively. When the total content of impurities was not more than 1.0%, the absolute error for determining D-lactide content was less than 0.10% in DCM and toluene solutions. When the D-lactide content was calculated according to the specific optical rotation of neat L-lactide at 20°C, the absolute error caused by the variation in temperature of 20±15°C was not more than 0.2 and 0.7% in DCM and toluene solutions, respectively, and thus usually could be ignored in a DCM solution. When toluene was used as a solvent for the determination of D-lactide content, a temperature correction for specific optical rotations could be introduced and would ensure the accuracy of results. This method is applicable to the determination of D-lactide content in lactide stereoisomeric mixtures. The standard deviation (STDEV) of the measurements is less than 0.5%, indicating that the precision is suitable for this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Radiolytic decomposition of water-ethanol mixtures

    International Nuclear Information System (INIS)

    Baquey, Charles

    1968-07-01

    This research thesis addresses the study of the behaviour of binary mixtures submitted to ionizing radiations, and notably aims, by studying the case of water-ethanol mixtures, at verifying solutions proposed by previously published works on the origin of hydrogen atoms and of molecular hydrogen, on the intervention of excited atoms, and on the origin of products appearing under radiolysis. The experimental part of this work consists in the dosing of products formed in water-ethanol mixtures irradiated in presence or absence of nitrate, hydrogen, hydrocarbon, acetaldehyde, 2-3 butanediol and nitrite. Results are discussed and interpreted in terms of acetaldehyde efficiency, 2-3 butanediol efficiencies, and hydrocarbon efficiencies in pure ethanol, and in water-ethanol mixtures. The influence of the presence of nitrate ions in mixtures is also discussed

  15. Production of light hydrocarbons, etc. [from heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-10-07

    A process is given for the production of light hydrocarbons of the gasoline type and, if desired, of the middle-oil type, from liquid or fusible heavy or medium heavy hydrocarbon materials. The process comprises subjecting the said initial materials in the first stage to catalytic hydrofining, separating the lower boiling constituents and the hydrogenating gas from the resulting products and then subjecting the higher boiling constituents in a second stage to a splitting destructive hydrogenation and then recycling substantially the entire reaction mixture obtained in the second stage to the frst stage.

  16. Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gahlyan, Suman; Rani, Manju; Maken, Sanjeev Kumar [Deenbandhu Chhotu Ram University of Science and Technology, Murthal (India); Lee, Inkyu; Moon, Il [Yonsei University, Seoul (Korea, Republic of)

    2015-01-15

    Excess molar volumes (V{sub m}{sup E} ) have been measured at 303.15 K for 1-propanol+benzene or toluene or o- or m- or p-xylene mixtures using V-shape dilatometer. The V{sub m}{sup E} values, for an equimolar composition, vary in the order: benzene>toluene-m-xylene>o-xylene>p-xylene. The V{sub m}{sup E} data have been used to calculate partial molar volumes, excess partial molar volumes, and apparent molar volumes of 1-propanol and aromatic hydrocarbons over the entire range of composition. The excess volume data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson theory (PFP). While PFP theory fails to predict the V{sub m}{sup E} values for systems with s-shaped V{sub m}{sup E} versus x{sub 1} graph, the V{sub m}{sup E} values calculated by graph theory compare reasonably well with the corresponding experimental values. This graph theory analysis has further yielded information about the state of aggregation of pure components as well as of the mixtures.

  17. Densities and excess volumes of binary mixtures of N,N-dimethylformamide with aromatic hydrocarbon at different temperature

    International Nuclear Information System (INIS)

    Peng Sanjun; Hou Haiyun; Zhou Congshan; Yang Tao

    2007-01-01

    Density of three binary mixtures formed by N,N-dimethylformamide (DMF) with aromatic hydrocarbon (one of benzene, toluene, and ethylbenzene) has been determined over the full range of compositions at the temperatures range (293.15 to 353.15)K and atmospheric pressure using a vibrating-tube densimeter. From these experiments, excess molar volumes (V m E ) could be calculated and fitted by the fourth-order Redlich-Kister equation, so the coefficients and the standard error (σ) could be got. Our result shows V m E decreases when temperature increases in the studied systems

  18. Hydrate dissociation conditions for gas mixtures containing carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons using SAFT

    International Nuclear Information System (INIS)

    Li Xiaosen; Wu Huijie; Li Yigui; Feng Ziping; Tang Liangguang; Fan Shuanshi

    2007-01-01

    A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data

  19. Improved predictive model for n-decane kinetics across species, as a component of hydrocarbon mixtures.

    Science.gov (United States)

    Merrill, E A; Gearhart, J M; Sterner, T R; Robinson, P J

    2008-07-01

    n-Decane is considered a major component of various fuels and industrial solvents. These hydrocarbon products are complex mixtures of hundreds of components, including straight-chain alkanes, branched chain alkanes, cycloalkanes, diaromatics, and naphthalenes. Human exposures to the jet fuel, JP-8, or to industrial solvents in vapor, aerosol, and liquid forms all have the potential to produce health effects, including immune suppression and/or neurological deficits. A physiologically based pharmacokinetic (PBPK) model has previously been developed for n-decane, in which partition coefficients (PC), fitted to 4-h exposure kinetic data, were used in preference to measured values. The greatest discrepancy between fitted and measured values was for fat, where PC values were changed from 250-328 (measured) to 25 (fitted). Such a large change in a critical parameter, without any physiological basis, greatly impedes the model's extrapolative abilities, as well as its applicability for assessing the interactions of n-decane or similar alkanes with other compounds in a mixture model. Due to these limitations, the model was revised. Our approach emphasized the use of experimentally determined PCs because many tissues had not approached steady-state concentrations by the end of the 4-h exposures. Diffusion limitation was used to describe n-decane kinetics for the brain, perirenal fat, skin, and liver. Flow limitation was used to describe the remaining rapidly and slowly perfused tissues. As expected from the high lipophilicity of this semivolatile compound (log K(ow) = 5.25), sensitivity analyses showed that parameters describing fat uptake were next to blood:air partitioning and pulmonary ventilation as critical in determining overall systemic circulation and uptake in other tissues. In our revised model, partitioning into fat took multiple days to reach steady state, which differed considerably from the previous model that assumed steady-state conditions in fat at 4 h post

  20. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: The role of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Andrysik, Zdenek; Vondracek, Jan; Marvanova, Sona; Ciganek, Miroslav; Neca, Jiri; Pencikova, Katerina; Mahadevan, Brinda; Topinka, Jan; Baird, William M.; Kozubik, Alois; Machala, Miroslav

    2011-01-01

    Highlights: → SRM1649a extract and its fractions are potent activators of AhR in a model of epithelial cells. → AhR-dependent effects include both induction of CYP1 enzymes and disruption of cell proliferation control. → Polycyclic aromatic hydrocarbons present in the neutral SRM1649a fraction are major contributors to the AhR-mediated toxic effects. → Activation of AhR and related nongenotoxic effects occur at significantly lower doses than the formation of DNA adducts and activation of DNA damage response. → More attention should be paid to the AhR-dependent nongenotoxic events elicited by urban particulate matter constituents. - Abstract: Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction

  1. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  2. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in Hong Kong marine sediments

    International Nuclear Information System (INIS)

    Zheng, G.J.; Richardson, B.J.

    1999-01-01

    A total of 20 surficial sediment samples, obtained from Hong Kong coastal waters, were analysed for petroleum hydrocarbons (PHCs) and a suite of 15 polycyclic aromatic hydrocarbons (PAHs). The results indicate that Hong Kong coastal sediments are often seriously polluted with petroleum related hydrocarbons. This is especially so in heavily urbanised or industrialized localities, such as Kowloon Bay (Victoria Harbour), Tsing Yi North and Tolo Harbour. Petroleum hydrocarbon pollutants in marine sediments are believed to be mainly derived from the transportation of oil, shipping activities, spillages, and industrial, stormwater and waste wastewater discharge. The ratio of unresolved complex mixture (UCM) to n-alkanes, carbon preference index (CPI), and n-C 16 values indicate that the main contribution to petroleum hydrocarbon contamination is via oil and its products. Pollutant sources appear to be stable and continuing when compared with previous data. (author)

  3. Method of pyrolytic decomposition and coking of a mixture of finely distributed solid or semisolid carbonaceous material and hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-09

    A method of pyrolytic decomposition and coking of a mixture of finely distributed of solid or semi-solid carbonaceous material and hydrocarbon oils is disclosed whereby the mixture is exposed to a decomposition temperature and later is brought into the zone of decomposition where vapors are separated from the unvaporized residue and the vapors are exposed to fractional condensation for the purpose of obtaining a light product of distillation. The method is characterized by the mixture being exposed to heating by means of indirect exchange of heat in a heating zone or by means of a direct addition of a hot heat-conducting medium, or by means of both the mentioned indirect exchange of heat and direct heat under such conditions that the unvaporized residue obtained from the thus-heated mixture in the decomposition zone is transformed to solid coke in this zone by being heated to coking temperature in a comparatively thin layer on the surface of the decomposition zone that has been heated to a high temperature.

  4. Process for refining hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Risenfeld, E H

    1924-11-26

    A process is disclosed for the refining of hydrocarbons or other mixtures through treatment in vapor form with metal catalysts, characterized by such metals being used as catalysts, which are obtained by reduction of the oxide of minerals containing the iron group, and by the vapors of the hydrocarbons, in the presence of the water vapor, being led over these catalysts at temperatures from 200 to 300/sup 0/C.

  5. Improved Separation of Complex Polycyclic Aromatic Hydrocarbon Mixtures Using Novel Column Combinations in GC×GC/ToF-MS

    Science.gov (United States)

    Manzano, Carlos; Hoh, Eunha; Simonich, Staci L. Massey

    2012-01-01

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are difficult to resolve because of the high degree of overlap in compound vapor pressures, boiling points and mass spectral fragmentation patterns. The objective of this research was to improve the separation of complex PAH mixtures (including 97 different parent, alkyl-, nitro-, oxy-, thio-, chloro-, bromo-, and high molecular weight PAHs) using GC×GC/ToF-MS by maximizing the orthogonality of different GC column combinations and improving the separation of PAHs from the sample matrix interferences, including unresolved complex mixtures (UCM). Four different combinations of non-polar, polar, liquid crystal and nano-stationary phase columns were tested. Each column combination was optimized and evaluated for orthogonality using a method based on conditional entropy that considers the quantitative peak distribution in the entire two-dimensional space. Finally, an atmospheric particulate matter with diameter column in the first dimension and a 1.2 m × 0.10 mm × 0.10 µm NSP-35 nano-stationary phase column in the second dimension. In addition, the use of this column combination in GC×GC/ToF-MS resulted in significantly shorter analysis times (176 min) for complex PAH mixtures compared to one-dimensional GC/MS (257 min), as well as potentially reduced sample preparation time. PMID:22769970

  6. Conversion of oligomeric starch, cellulose, hydrolysates or sugars to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Silks, Louis A; Sutton, Andrew; Kim, Jin Kyung; Gordon, John Cameron; Wu, Ruilian; Kimball, David B.

    2017-09-05

    Embodiments of the present invention are directed to the conversion of a source material (e.g., a depolymerized oligosaccharide mixture, a monomeric sugar, a hydrolysate, or a mixture of monomeric sugars) to intermediate molecules containing 7 to 26 contiguous carbon atoms. These intermediates may also be converted to saturated hydrocarbons. Such saturated hydrocarbons are useful as, for example, fuels.

  7. Determination of hydrogen content of Jatropha biodiesel oil using neutron reflection technique

    International Nuclear Information System (INIS)

    Okunade, I. O.; Jonah, S. A.; Omede, M.

    2014-01-01

    Biofuel is an environmental-friendly alternative to fossil fuel and holds immense potential for the future energy needs of the country. Non-edible jatropha biodiesel oil has been identified as one of the suitable bio-fuel options. In this work, experimental measurements were performed to determine the total hydrogen content of jatropha oil and jatropha-synthetic diesel oil mixture. The work was carried out using a neutron reflection facility at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria. Jatropha oil and jatropha-synthetic diesel mixture were subjected to experimental measurements for the purpose of determining bulk hydrogen content using neutron reflection facility that had been previously calibrated using various hydrocarbon materials of known hydrogen content. The hydrogen content of the sample were subsequently determined using their measured neutron reflection coefficient values and calibration data. In general, results obtained indicate high hydrogen content range of 10.68-12.16wt% for jatropha oil and the various jatropha-synthetic diesel mixtures. The implication of this is that jatropha oil or jatrophal-synthetic diesel mixture can be used as alternative fuel to mitigate high carbon monoxide emission.

  8. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation.

    Science.gov (United States)

    Birch, Heidi; Hammershøj, Rikke; Comber, Mike; Mayer, Philipp

    2017-10-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng-μg/L levels. Automated Headspace Solid Phase Microextraction coupled to GC-MS was applied directly to these test systems to determine substrate depletion relative to abiotic controls. Lag phases were generally less than 8 days. First order rate constants were within one order of magnitude for each hydrocarbon in four of the five waters but lower in water from a rural lake. The sequence of degradation between the 9 hydrocarbons showed similar patterns in the five waters indicating the potential for using selected hydrocarbons for benchmarking between biodegradation tests. Degradation half-times were shorter than or within one order of magnitude of BioHCwin predictions for 8 of 9 hydrocarbons. These results showed that location choice is important for biodegradation kinetics and can provide a relevant input to aquatic exposure and fate models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Thermal Adsorption Processing Of Hydrocarbon Residues

    Directory of Open Access Journals (Sweden)

    Sudad H. Al.

    2017-04-01

    Full Text Available The raw materials of secondary catalytic processes must be pre-refined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption or thermo-contact adsorption variety. In oil processing four main processes of thermo-adsorption refining of hydrocarbon residues are used ART Asphalt Residual Treating - residues deasphaltizing 3D Discriminatory Destructive Distillation developed in the US ACT Adsorption-Contact Treatment and ETCC Express Thermo-Contact Cracking developed in Russia. ART and ACT are processes with absorbers of lift type reactor while 3D and ETCC processes are with an adsorbing reactor having ultra-short contact time of the raw material with the adsorbent. In all these processes refining of hydrocarbon residues is achieved by partial Thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed on the surface of the adsorbents resins asphaltene and carboids as well as metal- sulphur - and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes catalytic and hydrogenation cracking etc. since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.

  10. Statistical mixture design selective extraction of compounds with antioxidant activity and total polyphenol content from Trichilia catigua.

    Science.gov (United States)

    Lonni, Audrey Alesandra Stinghen Garcia; Longhini, Renata; Lopes, Gisely Cristiny; de Mello, João Carlos Palazzo; Scarminio, Ieda Spacino

    2012-03-16

    Statistical design mixtures of water, methanol, acetone and ethanol were used to extract material from Trichilia catigua (Meliaceae) barks to study the effects of different solvents and their mixtures on its yield, total polyphenol content and antioxidant activity. The experimental results and their response surface models showed that quaternary mixtures with approximately equal proportions of all four solvents provided the highest yields, total polyphenol contents and antioxidant activities of the crude extracts followed by ternary design mixtures. Principal component and hierarchical clustering analysis of the HPLC-DAD spectra of the chromatographic peaks of 1:1:1:1 water-methanol-acetone-ethanol mixture extracts indicate the presence of cinchonains, gallic acid derivatives, natural polyphenols, flavanoids, catechins, and epicatechins. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Characterization of the pressure field induced by the explosion in air of a hydrocarbon-air a mixture with slow deflagration or fast deflagration

    International Nuclear Information System (INIS)

    Brossard, J.; Desbordes, D.; Leyer, J.C.; Saint-Cloud, J.P.; Di Fabio, N.; Lannoy, A.

    1985-01-01

    The protection of nuclear power plants against external explosions of hydrocarbons more particularly, originating, e.g. in transportation accidents, as a relevant topic of nuclear safety studies. The present research contract has been carried out in the framework of a French working group CEA-EDF-ENSMA. The ''Charles'' tests performed on completely unconfined charges of ethylene-air and acetylene-air mixtures (V approximately equal 12 m 3 ) have demonstrated the high sensitivity of the pressure field to the flame acceleration, particularly at the end of the propagation. The effect of a sudden discontinuity in the concentration of the combustible gas on the deflagration speed in a heterogeneous medium has been studied: this discontinuity was obtained using two concentric latex balloons, filled with different hydrocarbon concentrations and also destroyed before firing. The pseudo-detonation modes for the explosion of spherical ethylene-air mixtures, modes sought by increasing an explosive plastic mass associated to the igniter, have also been studied. The influence of cloud shape and ignition point location on the pressure field generated by the explosion has been tested finally

  12. Hydrocarbons in the Hauptsalz formation of the Gorleben salt dome. Content, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Maximilian; Hammer, Joerg; Ostertag-Henning, Christian [Federal Institute for Geosciences and Natural Resources (BGR), Hannover (Germany)

    2015-07-01

    boundaries of halite crystals, on the surfaces and knuckles or inside of micro capillary tubes of anhydrite crystals and anhydrite clusters, in newly formed micro cracks due to drilling respectively preparational works or rarely in micro-porous parts of the Hauptsalz. In order to get additional information about the origin of hydrocarbons detected in the Gorleben Hauptsalz organic geochemical analyses of potential source rocks in the vicinity like the Stassfurt Carbonate (z2SK) have been provided. These analyses revealed that the level of maturity of hydrocarbons in the Gorleben Hauptsalz correspond to 0,8 to 1,2% vitrinite-reflection-equivalent for the oil, similar to the organic-petrographical data of Stassfurt Carbonate and Copper schist in the periphery of the Gorleben salt dome (Gerling et al. 2002; Senglaub 2001; Cramer 2005). The analyses of biomarkers (esp. triterpenoid biomarkers) detected in the hydrocarbon mixtures from the Hauptsalz point to the Stassfurt Carbonate as source rocks of most of the hydrocarbons.

  13. Decontamination of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Smith, A.J.

    1991-01-01

    This patent describes the method of treating hydrocarbon contaminated soil. It comprises forming the soil into a flowing particulate stream, forming an aqueous liquid mixture of water and treating substance that reacts with hydrocarbon to form CO 2 and water, dispersing the liquid mixture into the particulate soil stream to wet the particulate, allowing the substance to react with the wetted soil particulate to thereby form CO 2 and water, thereby the resultant soil is beneficially treated, the stream being freely projected to dwell at a level and then fall, and the dispersing includes spraying the liquid mixture into the projected stream at the dwell, the substance consisting of natural bacteria, and at a concentration level in the mixture of between 100 to 3,000 PPM of bacteria to water, the soil forming step including impacting the soil to reduce it to particles less than about 1 inches in cross dimension, and including forming the wetting particulate into a first layer on a surface to allow the substance to react

  14. Degradation of volatile hydrocarbons from steam-classified solid waste by a mixture of aromatic hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Leahy, Joseph G; Tracy, Karen D; Eley, Michael H

    2003-03-01

    Steam classification is a process for treatment of solid waste that allows recovery of volatile organic compounds from the waste via steam condensate and off-gases. A mixed culture of aromatic hydrocarbon-degrading bacteria was used to degrade the contaminants in the condensate, which contained approx. 60 hydrocarbons, of which 38 were degraded within 4 d. Many of the hydrocarbons, including styrene, 1,2,4-trimethylbenzene, naphthalene, ethylbenzene, m-/p-xylene, chloroform, 1,3-dichloropropene, were completely or nearly completely degraded within one day, while trichloroethylene and 1,2,3-trichloropropane were degraded more slowly.

  15. High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6-11 μm range

    Science.gov (United States)

    Heinrich, Robert; Popescu, Alexandru; Hangauer, Andreas; Strzoda, Rainer; Höfling, Sven

    2017-08-01

    The availability of accurate and fast hydrocarbon analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in the petro-chemical industry. Primarily gas chromatographs measure the composition of hydrocarbon process streams. Due to sophisticated gas sampling, these analyzers are limited in response time. As hydrocarbons absorb in the mid-infrared spectral range, the employment of fast spectroscopic systems is highly attractive due to significantly reduced maintenance costs and the capability to setup real-time process control. New developments in mid-infrared laser systems pave the way for the development of high-performance analyzers provided that accurate spectral models are available for multi-species detection. In order to overcome current deficiencies in the availability of spectroscopic data, we developed a laser-based setup covering the 6-11 μm wavelength range. The presented system is designated as laboratory reference system. Its spectral accuracy is at least 6.6× 10^{-3} cm^{-1} with a precision of 3× 10^{-3} cm^{-1}. With a "per point" minimum detectable absorption of 1.3× 10^{-3} cm^{-1} Hz^{{-}{1/2}} it allows us to perform systematic measurements of hydrocarbon spectra of the first 7 alkanes under conditions which are not tabulated in spectroscopic database. We exemplify the system performance with measured direct absorption spectra of methane, propane, iso-butane, and a mixture of methane and propane.

  16. Calculation of Interfacial Tensions of Hydrocarbon-water Systems under Reservoir Conditions

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1998-01-01

    Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon......-brine systems. The new model was tested on a number of hydrocarbon-water/brine mixtures and two crude oil-water systems under reservoir conditions. The results show good agreement between the predicted and the experimental interfacial tension data.......Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon-water...... mixtures on the basis of the SRK equation of state. With this model, it is unnecessary to solve the time-consuming density-profile equations of the gradient-theory model. In addition, a correlation was developed for representing the effect of electrolytes on the interfacial tension of hydrocarbon...

  17. Determination of aromatic and PAH (polycyclic aromatic hydrocarbons) content of oily wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Lysyj, I.; Russell, E.C.

    1978-08-01

    An analytical scheme was developed for determining the total organic content and hydrocarbon concentration from a one-liter portion of a wastewater sample, and determining the volatile, suspended, and water-soluble fractions from a second, two-liter portion. Analyses of untreated and treated bilge wastewater from the U.S. Army Fort Eustis, Va., facility showed 10-300 ppm suspended organics and 10-300 ppm dissolved organics in the untreated bilge, and no suspended matter, but 700-2000 ppm dissolved organics, in the treated bilge wastewaters. Of the dissolved organics in untreated and treated wastewater, 70 and 10%, respectively, were extracted with chloroform; the organics in the treated water were probably biologically derived from petroleum degradation. Gas chromatographic/mass spectroscopic and high-pressure liquid chromatographic analyses of the chloroform extracts showed about equal parts of phenolic compounds and aromatic hydrocarbons, small amounts of heterocyclics, and traces of polycyclic aromatics in the untreated wastewater, and mainly phenolics in the treated water.

  18. Thermodynamic characterization of bio-fuels: Excess functions for binary mixtures containing ETBE and hydrocarbons

    International Nuclear Information System (INIS)

    Segovia, Jose J.; Villamanan, Rosa M.; Martin, M. Carmen; Chamorro, Cesar R.; Villamanan, Miguel A.

    2010-01-01

    European energy policy is promoting the use of bio-fuels for transportation. Bioethers and bioalcohols are used as blending agents for enhancing the octane number. They make gasoline work harder, help the engine last longer and reduce air pollution. They also cause changes in the fuel properties. Development of renewable fuels needs both knowledge of new thermodynamic data and improvement of clean energy technologies. In this context, the use of ethanol of vegetable origin in its manufacture process, increases the interest of ETBE or bio-ETBE as an oxygenated additive. A complete study of the behaviour of ETBE + hydrocarbons mixtures is presented. Some experimental data concerning vapor-liquid equilibria and heats of mixing were determined in our laboratory. All the techniques have a high accuracy. The data were reduced by well-known models, such as NRTL and used to model the thermodynamic properties.

  19. Separation of alcohols from organic liquid mixtures by pervaporation

    NARCIS (Netherlands)

    Park, Hyun-Chae

    1993-01-01

    In the chemical industry, distillation is generally the preferred technique to separate a liquid mixture. However some liquid mixtures such as azeotropic mixtures, close-boiling hydrocarbons, and various isomers are difficult to separate by simple distillation. For the separation of these mixtures

  20. Thermal cracking of recycled hydrocarbon gas-mixtures for re-pyrolysis: Operational analysis of some industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Gal, T. [MOL PETCHEM Division, Tisza Chemical Works Co. Ltd. (TVK), P.O. Box 20, H-3581 Tiszaujvaros (Hungary); Lakatos, B.G. [Department of Process Engineering, University of Pannonia, P.O. Box 158, H-8200 Veszprem (Hungary)

    2008-02-15

    Thermal decomposition process of recycled hydrocarbon gas-mixtures in industrial furnaces is analyzed by computer simulation. The detailed kinetic and mathematical model developed was validated by using the process control laboratory cracked gas analysis of an industrially operated furnace. The effects of feed compositions and operational conditions are examined to select the favorable operating parameters and to achieve the possibly highest online operation period of the furnace. The effect of deposited coke on the lifetime of radiant coils is examined by a heat-transfer model. The simulation study confirmed that temporal variations of the feedstock composition could be harmonized well with the operating parameters of furnaces with the purpose of achieving maximum effectiveness. (author)

  1. Treatment of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-22

    A process is described for refining a mixture of liquid hydrocarbons containing harmful substances, this process permitting the operation, which consists in treating the liquid mixture at a temperature higher than 200/sup 0/C with a solid catalyst of phosphoric acid, consisting of phosphoric acid deposited on a solid support of the type of metallurgical coke, for a time sufficient to convert the harmful components to inoffensive substances.

  2. [Study of Determination of Oil Mixture Components Content Based on Quasi-Monte Carlo Method].

    Science.gov (United States)

    Wang, Yu-tian; Xu, Jing; Liu, Xiao-fei; Chen, Meng-han; Wang, Shi-tao

    2015-05-01

    Gasoline, kerosene, diesel is processed by crude oil with different distillation range. The boiling range of gasoline is 35 ~205 °C. The boiling range of kerosene is 140~250 °C. And the boiling range of diesel is 180~370 °C. At the same time, the carbon chain length of differentmineral oil is different. The carbon chain-length of gasoline is within the scope of C7 to C11. The carbon chain length of kerosene is within the scope of C12 to C15. And the carbon chain length of diesel is within the scope of C15 to C18. The recognition and quantitative measurement of three kinds of mineral oil is based on different fluorescence spectrum formed in their different carbon number distribution characteristics. Mineral oil pollution occurs frequently, so monitoring mineral oil content in the ocean is very important. A new method of components content determination of spectra overlapping mineral oil mixture is proposed, with calculation of characteristic peak power integrationof three-dimensional fluorescence spectrum by using Quasi-Monte Carlo Method, combined with optimal algorithm solving optimum number of characteristic peak and range of integral region, solving nonlinear equations by using BFGS(a rank to two update method named after its inventor surname first letter, Boyden, Fletcher, Goldfarb and Shanno) method. Peak power accumulation of determined points in selected area is sensitive to small changes of fluorescence spectral line, so the measurement of small changes of component content is sensitive. At the same time, compared with the single point measurement, measurement sensitivity is improved by the decrease influence of random error due to the selection of points. Three-dimensional fluorescence spectra and fluorescence contour spectra of single mineral oil and the mixture are measured by taking kerosene, diesel and gasoline as research objects, with a single mineral oil regarded whole, not considered each mineral oil components. Six characteristic peaks are

  3. Total Hydrocarbon Content (THC) Testing in Liquid Oxygen (LOX)

    Science.gov (United States)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2016-01-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  4. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  5. Experimental determination of hydrogen content of oil extract from jatropha seeds

    International Nuclear Information System (INIS)

    Okunade, I.O.; Jonah, S.A.; Omede, M.O.

    2010-01-01

    The thermal neutron technique was used for the determination of hydrogen content of oil extract from Jatropha seeds. The experimental arrangement consists of a source holder, Am-Be neutron source embedded in paraffin wax and 3 He detector was used to measure reflection coefficient as a function of hydrogen content of various hydrocarbon materials used as calibration standards. The hydrogen content which is an important property of fuel oils was determined for jatropha oil and jatropha-synthetic diesel using their measured values of neutron reflection coefficients and calibration data. The result obtained showed that the hydrogen content of Jatropha oil exceeds that of the synthetic diesel, thus indicating its suitability as a fuel oil for powering diesel engines. The results obtained also indicated that hydrogen content of jatropha-synthetic diesel mixture increases as the volumetric concentration of jatropha oil in the mixture increases, indicating that jatropha oil can serve as a suitable additive to synthetic diesel oil.

  6. 75 FR 8937 - Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH...

    Science.gov (United States)

    2010-02-26

    ... Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures AGENCY... Aromatic Hydrocarbon (PAH) Mixtures'' (EPA/635/R-08/012A). The draft document was prepared by the National... 27, 2010. The listening session on the draft document for PAH mixtures will be held on April 7, 2010...

  7. Process for separating liquid hydrocarbons from waxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, F J

    1948-03-08

    A process is described for the separation of liquid hydrocarbons from waxes comprising adding to a mixture of liquid hydrocarbons and waxes a sufficient quantity of an organo-silicon compound to cause the separation of the hydrocarbon and wax. The organo-silicon compounds are selected from the class of organic silicanes and their hydrolysis products and polymers. The silicanes have the formula R/sub y/SiX/sub z/, in which R is a saturated or unsaturated hydrocarbon radical, X is a halogen or another hydrocarbon radical or an -OR group, y has a value 1, 2, or 3 and z has a value 1, 2, or 3.

  8. Desiccation resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster adults

    Directory of Open Access Journals (Sweden)

    Jean-Francois Ferveur

    2018-02-01

    Full Text Available Background The insect cuticle covers the whole body and all appendages and has bi-directionnal selective permeability: it protects against environmental stress and pathogen infection and also helps to reduce water loss. The adult cuticle is often associated with a superficial layer of fatty acid-derived molecules such as waxes and long chain hydrocarbons that prevent rapid dehydration. The waterproofing properties of cuticular hydrocarbons (CHs depend on their chain length and desaturation number. Drosophila CH biosynthesis involves an enzymatic pathway including several elongase and desaturase enzymes. Methods The link between desiccation resistance and CH profile remains unclear, so we tested (1 experimentally selected desiccation-resistant lines, (2 transgenic flies with altered desaturase expression and (3 natural and laboratory-induced CH variants. We also explored the possible relationship between desiccation resistance, relative water content and fecundity in females. Results We found that increased desiccation resistance is linked with the increased proportion of desaturated CHs, but not with their total amount. Experimentally-induced desiccation resistance and CH variation both remained stable after many generations without selection. Conversely, flies with a higher water content and a lower proportion of desaturated CHs showed reduced desiccation resistance. This was also the case in flies with defective desaturase expression in the fat body. Discussion We conclude that rapidly acquired desiccation resistance, depending on both CH profile and water content, can remain stable without selection in a humid environment. These three phenotypes, which might be expected to show a simple relationship, turn out to have complex physiological and genetic links.

  9. Performance and energy saving analysis of a refrigerator using hydrocarbon mixture (HC-R134a) as working fluid

    Science.gov (United States)

    Mohtar, M. N.; Nasution, H.; Aziz, A. A.

    2015-12-01

    The use of hydrocarbon mixture as a working fluid in a refrigerator system is rarely explored. Almost all domestic refrigerators use hydroflourocarbon R134a (HFC-R134a) as refrigerants. In this study, hydrocarbon gas (HC-R134a) is used as the alternative refrigerant to replace HFC-R134a. It has a composition of R290 (56%), R600a (54.39%) and additive (0.1%wt) blended for the trials. The experiments were conducted with 105 g and 52.5 g refrigerant mass charge, subjected to internal heat load of 0, 1, 2, 3 and 4 kg respectively. The study investigates the coefficient of performance of the refrigerator (COPR) and energy consumption. The results show that the use of HC-R134a as the replaceable refrigerant can save energy ranging from 2.04% to 7.09%, as compared to the conventional HFC-R134a refrigerant. Naturally, the COPR improvement and temperature distribution using HC-R134a are much better than HFC-R134a

  10. Superlattice configurations in linear chain hydrocarbon binary mixtures

    Indian Academy of Sciences (India)

    monoclinic, monoclinic-monoclinic) are realizable, because of discrete orientational changes in the alignment of molecules of -C28H58 hydrocarbon, through an angle , where = 1, 2, 3 … and angle has an average value of 3.3°.

  11. Evaluation of bio-materials’ rejuvenating effect on binders for high-reclaimed asphalt content mixtures

    Directory of Open Access Journals (Sweden)

    A. Jiménez del Barco-Carrión

    2017-07-01

    Full Text Available The interest in using bio-materials in pavement engineering has grown significantly over the last decades due to environmental concerns about the use of non-recoverable natural resources. In this paper, bio-materials are used together with Reclaimed Asphalt (RA to restore some of the properties of the aged bitumen present in mixtures with high RA content. For this purpose, two bio-materials are studied and compared to conventional and polymer modified bitumens. Blends of these materials with RA bitumen were produced and studied to simulate a 50% RA mixture. The rejuvenating effect of the two bio-materials on RA has been assessed and compared with the effect of the conventional binders. Apparent Molecular Weight Distribution of the samples (obtained by the ?-method and different rheological parameters were used for this purpose. Results revealed the power of bio-materials to rejuvenate RA bitumen, showing their capability to be used as fresh binders in high-RA content mixtures.

  12. Evaluation of bio-materials’ rejuvenating effect on binders for high-reclaimed asphalt content mixtures

    International Nuclear Information System (INIS)

    Jiménez del Barco-Carrión, A.; Pérez-Martínez, M.; Themeli, A.; Lo Presti, D.; Marsac, P.; Pouget, S.; Hammoum, F.; Chailleux, E.; Airey, G.D.

    2017-01-01

    The interest in using bio-materials in pavement engineering has grown significantly over the last decades due to environmental concerns about the use of non-recoverable natural resources. In this paper, bio-materials are used together with Reclaimed Asphalt (RA) to restore some of the properties of the aged bitumen present in mixtures with high RA content. For this purpose, two bio-materials are studied and compared to conventional and polymer modified bitumens. Blends of these materials with RA bitumen were produced and studied to simulate a 50% RA mixture. The rejuvenating effect of the two bio-materials on RA has been assessed and compared with the effect of the conventional binders. Apparent Molecular Weight Distribution of the samples (obtained by the ?-method) and different rheological parameters were used for this purpose. Results revealed the power of bio-materials to rejuvenate RA bitumen, showing their capability to be used as fresh binders in high-RA content mixtures. [es

  13. Radiolysis of hydrocarbons in liquid phase (Modern state of problem)

    International Nuclear Information System (INIS)

    Saraeva, V.V.

    1986-01-01

    Problems of ionizing radiation effect on hydrocarbons and hydrocarbon systems in a liquid phase are considered. Modern representations on the mechanism of hydrocarbon radiolysis are presented. Electron moderation and ion-electron pair formation, behaviour of charged particles, excited states, radical formation and their reactions are discussed. Behaviour of certain hydrocarbon classes: alkanes, cyclic hydrocarbons, olefines, aromatic hydrocarbons as well as different hydrocarbon mixtures is considered in detail. Radiation-chemical changes in organic coolants and ways of increasing radiation resistance are considered. Polyphenyl compounds are noted to be most perspective here

  14. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2011-01-01

    In Part I of this series of articles, the study of H2S mixtures has been presented with CPA. In this study the phase behavior of CO2 containing mixtures is modeled. Binary mixtures with water, alcohols, glycols and hydrocarbons are investigated. Both phase equilibria (vapor–liquid and liquid–liqu...

  15. Raman spectroscopy in determination of horse meat content in the mixture with other meats.

    Science.gov (United States)

    Zając, A; Hanuza, J; Dymińska, L

    2014-08-01

    A new method based on FT-Raman measurements that allows to determine the content of horse meat in its mixture with beef has been proposed. In the analysis of the Raman spectra of the meat mixtures, the integral intensity ratios of the 937/1003, 879/1003, 856/1003, 829/1003, and 480/1003cm(-1) pairs of bands have been determined the intensities of which were related to the reference intensity of the band at 1003cm(-1). The reasonable results that show good fitting between the spectroscopic parameters and chemical content of the studied samples have been obtained. The analytical equations between these parameters have been proposed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Excess enthalpies of ternary mixtures of (oxygenated additives + aromatic hydrocarbon) mixtures in fuels and bio-fuels: (Dibutyl-ether + 1-propanol + benzene), or toluene, at T = (298.15 and 313.15) K

    International Nuclear Information System (INIS)

    Alaoui, Fatima E.M.; Aguilar, Fernando; González-Fernández, María Jesús; Dakkach, Mohamed; Montero, Eduardo A.

    2015-01-01

    Highlights: • New excess enthalpy data for ternary mixtures of (dibutyl ether + aromatic hydrocarbon + 1-propanol) are reported. • 2 ternary systems at T = (298.15 and 313.15) K were measured by means of an isothermal flow calorimeter. • 230 data were fitted to a Redlich–Kister rational equation. • Intermolecular and association effects involved in these systems have been discussed. - Abstract: New experimental excess molar enthalpy data of the ternary systems (dibutyl ether + 1-propanol + benzene, or toluene), and the corresponding binary systems at T = (298.15 and 313.15) K at atmospheric pressure are reported. A quasi-isothermal flow calorimeter has been used to make the measurements. All the binary and ternary systems show endothermic character at both temperatures. The experimental data for the systems have been fitted using the Redlich–Kister rational equation. Considerations with respect the intermolecular interactions amongst ether, alcohol and hydrocarbon compounds are presented

  17. Influence of some anti-inflammatory drugs on the activity of aryl hydrocarbon hydroxylase and the cytochrome P450 content

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, M.H.; Sheweita, S.A.; Abdel-Moneam, N.M. (Alexandria Univ. (Egypt))

    1990-06-01

    The metabolism of benzo({alpha})pyrene is mediated by the mixed function oxidase system including the cytochrome P450-dependent aryl hydrocarbon hydroxylase. The data of the present study revealed the ability of various commonly used anti-inflammatory drugs to alter the activity of this enzyme system, where all the tested drugs, namely phenyl butazone, ketoprofen, piroxicam, and acetaminophen, caused an increase in both the activity of aryl hydrocarbon hydroxylase and the cytochrome P450 content whether administered as a single dose or as a repeated dose for 6 consecutive days. The percentage of change for all drugs except phenyl butazone was proportional to the duration of drug administration. On the other hand, pyrazole which is chemically related to phenyl butazone, had no significant effect when administered as a single dose but caused a decrease in both studied parameters when administered as a repeated dose for 6 consecutive days. The mechanisms by which these commonly used drugs modify the aryl hydrocarbon hydroxylase activity and the cytochrome p450 content are discussed in the text.

  18. Fluorescence quenching of polycyclic aromatic hydrocarbons within deep eutectic solvents and their aqueous mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Ashish; Yadav, Anita; Bhawna; Pandey, Siddharth, E-mail: sipandey@chemistry.iitd.ac.in

    2017-03-15

    Two common and popular deep eutectic solvents (DESs) composed of the salt choline chloride and H-bond donors glycerol and urea in 1:2 mol ratio named glyceline and reline, respectively, are investigated for the analysis of polycyclic aromatic hydrocarbons (PAHs) using quenching of both steady-state and time-resolved fluorescence of ten different PAHs by nitromethane at 30 °C. Based on their quenching efficiencies, the PAHs are divided into two groups – group 1 is constituted of the five PAHs whose fluorescence are quenched less effectively by nitromethane whereas the other five exhibiting high quenching efficiency are associated to group 2. Quenching of steady-state fluorescence of group 1 PAHs by nitromethane, albeit not very significant, follow a simple Stern-Volmer behavior. The excited-state emission intensity decay of these PAHs, in both absence and presence of nitromethane, fit best to a single exponential model with small but monotonic decrease in lifetimes. The decrease in lifetime also follows Stern-Volmer behavior, however, the quenching constants (K{sub D}) are lower than those obtained from steady-state fluorescence (K{sub SV}). This is ascribed to the possible formation of charge-transfer complex between the PAH and the nitromethane. Steady-state fluorescence quenching of group 2 PAHs exhibit distinct upward curvature from linear Stern-Volmer behavior implying highly efficient quenching. The intensity decay fits best to a double exponential decay model with longer of the decay times following simple Stern-Volmer behavior. Formation of a complex or the presence of nitromethane within the quenching sphere of action of the PAH having short decay time is proposed. Quenching behavior was found to be similar irrespective of the identity of the DES. A representative group 2 PAH, pyrene, is employed to investigate diffusion dynamics within aqueous mixtures of the two DESs. The bimolecular quenching rate constant (k{sub q}) is found to increase linearly with

  19. Characterisation of unresolved complex mixtures of hydrocarbons

    OpenAIRE

    Gough, Mark Adrian

    1989-01-01

    Metadata merged with duplicate record (http://hdl.handle.net/10026.1/666) on 20.12.2016 by CS (TIS). This is a digitised version of a thesis that was deposited in the University Library. If you are the author please contact PEARL Admin () to discuss options. The hydrocarbons of Recent Polluted.., sediments, in-reservoir and laboratory biodegraded crude oils, and certain petroleum products (e. g. lubricating oils) often display "humps" or Unresolved Complex...

  20. Distribution of trichloroethylene and selected aliphatic and aromatic hydrocarbons between ''weathered'' and ''unweathered'' fuel mixtures and groundwater: Equilibrium and kinetic considerations

    International Nuclear Information System (INIS)

    Doucette, W.J.; Dupont, R.R.

    1995-01-01

    The distribution of trichloroethylene and several aliphatic and aromatic fuel components between 46 weathered and 11 unweathered fuel mixtures and groundwater was investigated using a slow stirring method. The weathered fuel mixtures were obtained from several contaminated field sites. Both unlabeled and 14C-labeled test compounds were used in the distribution experiments. Analyses of the test compound concentrations over time was performed by gas chromatograph or liquid scintillation counting. The time required to reach equilibrium varied from about 24 to 72 hours. Generally, the greater the hydrophobicity of the test compounds the longer time that was required to reach equilibrium. It was also observed that the fuel/water distribution coefficients were generally larger for the weathered fuels than those measured for the unweathered fuels, in some cases by a factor of 100. The weathered fuel mixtures obtained from the field site were depleted of the more water soluble compounds over time and became significantly more enriched in long chain aliphatic hydrocarbons. The ability of several models to describe the observed distribution behavior was examined

  1. Micellar Enhanced Ultrafiltration for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs Mixtures in Underground Contaminated Water in Oman

    Directory of Open Access Journals (Sweden)

    Mohamed Aoudia

    2011-12-01

    Full Text Available In an attempt to analyze polycyclic aromatic hydrocarbons (PAHs in diesel contaminated underground water in Oman (Rustaq, Gas chromatography-Mass spectrometry was first used to determine the different concentrations in a standard mixture containing 16 PAHs. Retention time and calibration curves were obtained for all aromatic compounds and were used to identify a given analyte as well as its concentration in the contaminated underground water. Micellar enhanced ultrafiltration (MEUF was then used to treat standard aqueous solution of PAHs at low concentration (~ 1 ppb using an edible nonionic surfactant (Tween 80. The totality of the mixture components was completely rejected. Within the experimental detection limit (± 0.01 ppb, the residual PAH concentrations were less than 0.01 ppb in accord with the allowed concentrations in drinking water. Likewise, excellent rejections of PAHs in MEUF treatment of diesel contaminated underground water at an Omani site (Rustaq were observed. The concentration of PAHs was reduced to less than 0.01 ppb, the accepted limit for the most toxic member of the PAH group (benzo(apyrene.

  2. Analysis of petroleum hydrocarbons in soil from view of bioremediation process

    International Nuclear Information System (INIS)

    Mracnova, R.; Sojak, L.; Kubinec, R.; Kraus, A.; Eszenyiova, A.; Ostrovsky, I.

    2002-01-01

    The pollution of the environment by petroleum hydrocarbons is the most often pollution of them all. Nevertheless, hydrocarbons present in environment can be not only of petroleum or anthropogenic origin, but of biogenic as well. Typically the hydrocarbons are presented in the environment as very complex mixtures of individual compounds with very different chemical structure, wide range of the boiling points (∼800 0 C) as well as with the wide range of the number of carbon atoms. Immediately they are spread in any environmental matrix the complex physical, chemical and biochemical reactions start. A lot of methods have been developed and new are permanently in progress for the monitoring and control of petroleum hydrocarbons contamination and/or soils bioremediation. Generally, all methods by whose the hydrocarbons contaminants are determined in GC-FID system do not satisfied recommendations for enough accurate and precise results. Hyphenation of capillary gas chromatography and mass selective detector operated in the selective ion monitoring mode essentially allows detailed specification of non-polar extractable hydrocarbons. Isoprenoid alkanes, alkylhomologues of aromatic hydrocarbons and polycyclic alkanes hopanes-like were investigated as markers for recognition of petroleum and biogenic contamination. C 30 17α(H)21β(H)-hopane (C 30 -hopane) seems to be a suitable marker to identify hydrocarbons origin, to determine composting rates for nonpolar extractable compounds and to calculate real content of non-polar extractable compounds in final composting status on the assumption that the contamination is of mineral oil type. This is the survey into the results obtained in this field published in the literature as well as reached in our laboratory. (author)

  3. Total hydrocarbon content (THC) testing in liquid oxygen (LOX) systems

    Science.gov (United States)

    Meneghelli, B. J.; Obregon, R. E.; Ross, H. R.; Hebert, B. J.; Sass, J. P.; Dirschka, G. E.

    2015-12-01

    The measured Total Hydrocarbon Content (THC) levels in liquid oxygen (LOX) systems at Stennis Space Center (SSC) have shown wide variations. Examples of these variations include the following: 1) differences between vendor-supplied THC values and those obtained using standard SSC analysis procedures; and 2) increasing THC values over time at an active SSC test stand in both storage and run vessels. A detailed analysis of LOX sampling techniques, analytical instrumentation, and sampling procedures will be presented. Additional data obtained on LOX system operations and LOX delivery trailer THC values during the past 12-24 months will also be discussed. Field test results showing THC levels and the distribution of the THC's in the test stand run tank, modified for THC analysis via dip tubes, will be presented.

  4. The amino acid and hydrocarbon contents of the Paris meteorite: Insights into the most primitive CM chondrite

    Science.gov (United States)

    Martins, Zita; Modica, Paola; Zanda, Brigitte; D'Hendecourt, Louis Le Sergeant

    2015-05-01

    The Paris meteorite is one of the most primitive carbonaceous chondrites. It is reported to be the least aqueously altered CM chondrite, and to have experienced only weak thermal metamorphism. We have analyzed for the first time the amino acid and hydrocarbon contents of this pristine meteorite by gas chromatography-mass spectrometry (GC-MS). When plotting the relative amino acids abundances of several CM chondrites according to the increasing hydrothermal scale (petrologic subtypes), from the CM2.7/2.8 Paris to the CM2.0 MET 01070, Paris has the lowest relative abundance of β-alanine/glycine (0.15), which fits with the relative abundances of β-alanine/glycine increasing with increasing aqueous alteration for CM chondrites. These results confirm the influence of aqueous alteration on the amino acid abundances and distribution. The amino acid analysis shows that the isovaline detected in this meteorite is racemic (D/L = 0.99 ± 0.08; L-enantiomer excess = 0.35 ± 0.5%; corrected D/L = 1.03; corrected L-enantiomer excess = -1.4 ± 2.6%). The identified hydrocarbons show that Paris has n-alkanes ranging from C16 to C25 and 3- to 5-ring nonalkylated polycyclic aromatic hydrocarbons (PAHs). The lack of alkylated PAHs in Paris seems to be also related to this low degree of aqueous alteration on its parent body. The extraterrestrial hydrocarbon content, suggested by the absence of any biomarker, may well have a presolar origin. The chemistry of the Paris meteorite may thus be closely related to the early stages of the solar nebula with a contribution from interstellar (molecular cloud) precursors.

  5. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.

    1988-11-29

    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  6. Production of hydrocarbons of value

    Energy Technology Data Exchange (ETDEWEB)

    1931-06-16

    A process is described for the production of hydrocarbons of great value by treating with heat and pressure carbonaceous materials such as coals, tars, mineral oils, and products of distillation and transformation of these materials, also for the refining with heat and pressure of mixed liquid hydrocarbons by means of hydrogen gas, preferably in the presence of catalysts, consisting in using as the hydrogenating gas that obtained by gasification of combustible solids after partial or complete cleaning at atmospheric or elevated pressures, by means of solid adsorbents, chemical agents or catalysts, or mixtures of these agents, the hydrocarbons being characterized by strong unsaturation, and the presence of oxygen, sulfur compounds, and oxides of nitrogen.

  7. Process for treating hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-15

    A process is described for treating simultaneously bituminous substances and hydrocarbon oils for the production of low-boiling hydrocarbons and volatilization of the bituminous substances, characterized by the fact that it consists of heating a current of charge constituted by a mixture of the bituminous substances and hydrocarbon oils, to a high temperature, passing the heated current into a zone of extended reaction where the vapors are separated from the liquid or solid residue to favor transformation of the liquid hydrocarbons and volatilization of the bituminous substances, owing to the utilization of a heating agent carried to a high temperature being brought in contact with the heated charge in order to communicate its heat to the charge, while this later presents itself as relatively fine pellet or in the condition of distinct particles, particularly separated from one another.

  8. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    International Nuclear Information System (INIS)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.

    2007-01-01

    Quantitative mid-IR absorption spectra (2500-3400 cm -1 ) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 deg. C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm -1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm -1 resolution. High-resolution (0.1 cm -1 ), room-temperature measurements of neat hydrocarbons were made at low pressure (∼1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N 2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 o C for atmospheric-pressure measurements of hydrocarbon/N 2 mixtures (X hydrocarbon ∼0.06-1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement

  9. Risk analysis associated with petroleum hydrocarbons: is everything running smoothly?

    International Nuclear Information System (INIS)

    Morin, D.

    1999-01-01

    Petroleum products represent one of the main sources of environmental contamination, and these products are complex, composed of several hundred individual hydrocarbons. The evaluation of the risks associated with petroleum products is often limited by certain specific parameters such as benzene. The petroleum hydrocarbons running from C(10) to C(50) are not often integrated in an analysis of the toxological risks since the toxological characterization of a complex mixture of hydrocarbons is difficult to carry out. There exist in the United States two approaches that were developed recently that allow the integration of various hydrocarbons comprising a mixture. In this presentation, two of these approaches are described and compared. An overview of these approaches related to Canadian regulatory bodies is included, and a case study completes the account. The two approaches that are most well known in this area are: 1) that of the Massachusetts Dept. of Environmental Protection, and 2) that of the Total Petroleum Hydrocarbon Criteria Working Group. The integration of petroleum hydrocarbons in a quantitative evaluation of their toxological risk is possible by present methods. This integration allows a reduction in the uncertainty associated with the use of an integrating parameter in the case of these petroleum hydrocarbons in the C(10) to the C(50) range

  10. Method of cleansing and refining of liquid hydrocarbons and derivatives of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, C A; Nielsen, H

    1934-10-11

    A process is described for cleaning and refining liquid hydrocarbons and derivatives by utilization of acids, followed by washing partly with a basic solution, partly with clean water. The process is characterized by using, in connection with the acid solutions mentioned, a strong solution of a mixture of sulfuric acid and phosphoric acid.

  11. Improved ZIF-8 membrane: Effect of activation procedure and determination of diffusivities of light hydrocarbons

    KAUST Repository

    Pan, Yichang; Liu, Wei; Zhao, Yingjie; Wang, Chongqing; Lai, Zhiping

    2015-01-01

    Zeolitic imidazolate framework ZIF-8 has shown great potential for effective separation of hydrocarbon mixtures based on its intrinsic ultramicroporous feature. In order to explore the permeation and diffusion properties of hydrocarbons through ZIF-8 membrane, high-quality ZIF-8 membranes with a separation factor of ~90 for propylene/propane are successfully prepared via optimizing the activation processes. Single-component permeation data for hydrocarbons (C1–C4) through the improved ZIF-8 membrane are measured and analyzed by Maxwell-Stefan (MS) model to get the transport diffusivities of these hydrocarbons. The diffusivity values of hydrocarbon compare well with those obtained by other experimental techniques. Binary mixture permeation also can be well predicted through single-component adsorption parameters.

  12. Improved ZIF-8 membrane: Effect of activation procedure and determination of diffusivities of light hydrocarbons

    KAUST Repository

    Pan, Yichang

    2015-06-23

    Zeolitic imidazolate framework ZIF-8 has shown great potential for effective separation of hydrocarbon mixtures based on its intrinsic ultramicroporous feature. In order to explore the permeation and diffusion properties of hydrocarbons through ZIF-8 membrane, high-quality ZIF-8 membranes with a separation factor of ~90 for propylene/propane are successfully prepared via optimizing the activation processes. Single-component permeation data for hydrocarbons (C1–C4) through the improved ZIF-8 membrane are measured and analyzed by Maxwell-Stefan (MS) model to get the transport diffusivities of these hydrocarbons. The diffusivity values of hydrocarbon compare well with those obtained by other experimental techniques. Binary mixture permeation also can be well predicted through single-component adsorption parameters.

  13. Study on Relationship between Dielectric Constant and Water Content of Rock-Soil Mixture by Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    Daosheng Ling

    2016-01-01

    Full Text Available It is important to test water content of rock-soil mixtures efficiently and accurately to ensure both the quality control of compaction and assessment of the geotechnical engineering properties. To overcome time and energy wastage and probe insertion problems when using the traditional calibration method, a TDR coaxial test tube calibration arrangement using an upward infiltration method was designed. This arrangement was then used to study the influence of dry density, pore fluid conductivity, and soil/rock ratio on the relationship between water content and the dielectric constant of rock-soil mixtures. The results show that the empirical calibration equation forms for rock-soil mixtures can be the same as for soil materials. The effect of dry density on the calibration equation has the most significance and the influence of pore fluid conductivity can be ignored. The impact of variation of the soil/rock ratio can be neutralized by considering the effect of dry density in the calibration equation for the same kind of soil and rock. The empirical equations proposed by Zhao et al. show a good accuracy for rock-soil mixtures, indicating that the TDR method can be used to test gravimetric water content conveniently and efficiently without calibration in the field.

  14. Method of separation of gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, M.A.; Potapov, V.F.; Potapova, M.S.

    1980-04-05

    Gas mixtures are separated in a rectification tower by repeated counterflow contact of the heated gas flow and cool condensate as the pressure drops in each stage of separation (StR) and when condensate is added from StR with lower pressure to the StR with higher pressure. In order to reduce energy consumption noncondensing gas in amounts of 5-15 percent by weight of the amount of incoming gases are added. Hydrocarbon or carbon dioxide gas can be used as the latter. Example. To separate natural gas of the Shatlyk deposit of composition, percent by mo1: C1 -- 94.960; C2 -- 4.260; C3 -- 0.200; C4 -- 0.08; C4+B -- 0.51. It is enriched with carbon dioxide gas in an amount of 10 percent by weight. Upon rectification of the enriched hydrocarbon mixture separation is achieved at lower pressures of the gas mixture and less cold. This leads to reduction of energy consumption by 10-12 percent.

  15. A framework for the use of single-chemical transcriptomics data in predicting the hazards associated with complex mixtures of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Labib, Sarah; Williams, Andrew; Kuo, Byron; Yauk, Carole L; White, Paul A; Halappanavar, Sabina

    2017-07-01

    The assumption of additivity applied in the risk assessment of environmental mixtures containing carcinogenic polycyclic aromatic hydrocarbons (PAHs) was investigated using transcriptomics. MutaTMMouse were gavaged for 28 days with three doses of eight individual PAHs, two defined mixtures of PAHs, or coal tar, an environmentally ubiquitous complex mixture of PAHs. Microarrays were used to identify differentially expressed genes (DEGs) in lung tissue collected 3 days post-exposure. Cancer-related pathways perturbed by the individual or mixtures of PAHs were identified, and dose-response modeling of the DEGs was conducted to calculate gene/pathway benchmark doses (BMDs). Individual PAH-induced pathway perturbations (the median gene expression changes for all genes in a pathway relative to controls) and pathway BMDs were applied to models of additivity [i.e., concentration addition (CA), generalized concentration addition (GCA), and independent action (IA)] to generate predicted pathway-specific dose-response curves for each PAH mixture. The predicted and observed pathway dose-response curves were compared to assess the sensitivity of different additivity models. Transcriptomics-based additivity calculation showed that IA accurately predicted the pathway perturbations induced by all mixtures of PAHs. CA did not support the additivity assumption for the defined mixtures; however, GCA improved the CA predictions. Moreover, pathway BMDs derived for coal tar were comparable to BMDs derived from previously published coal tar-induced mouse lung tumor incidence data. These results suggest that in the absence of tumor incidence data, individual chemical-induced transcriptomics changes associated with cancer can be used to investigate the assumption of additivity and to predict the carcinogenic potential of a mixture.

  16. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Ghisari, Mandana; Long, Manhai; Tabbo, Agnese; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2015-05-01

    Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyacetic acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark

  17. ANALYSIS OF THE KINETICS OF SOLVOLYSIS OF P-NITROPHENYLSULFONYLMETHYL PERCHLORATE IN BINARY ALCOHOLIC MIXTURES IN TERMS OF THE THERMODYNAMIC PROPERTIES OF THE SOLVENT MIXTURES

    NARCIS (Netherlands)

    Wijnen, J W; Engberts, J B F N; Blandamer, Michael J

    Rate constants are reported for the solvolysis of p-nitrophenylsulfonylmethyl perchlorate in binary ethanolic and methanolic mixtures at 298.2 K. Co-solvents include hydrocarbons, chlorinated hydrocarbons and 1,4-dioxane. The kinetic data are examined in terms of the effect of decreasing mole

  18. Reflections about the modelling of unconfined explosions of air-hydrocarbon mixtures

    International Nuclear Information System (INIS)

    Hendrickx, S.; Lannoy, A.

    1983-01-01

    To design nuclear power plants structures, an evaluation of hazards which can be induced by the industrial activities is needed. These hazards namely involve explosions of flamable air-hydrocarbon gas clouds. Such clouds can drift before ignition, and, when ignited, the generated pressure wave can cause serious damage, even far from the initial accident location. When the designs an industrial plant, the designer has to predict the overpressures capable of jeopardizing the safety functions of the plant. The analysis of real accidental explosions which have actually occurred, on the basis of a total explosion yield and the TNT equivalency concept, is a first step. Indeed, it allows a total explosion yield to be calculated, an empirical TNT equivalent of hydrocarbon to be deducted. Unfortunately, this TNT equivalency concept is scientifically not satisfying. The modelling of an unconfined air-hydrocarbon detonation can be used for safety analysis, if we assume that an unconfined explosion can be a detonation, which is unlikely. (orig./WL)

  19. A binary mixture operated heat pump

    International Nuclear Information System (INIS)

    Hihara, E.; Saito, T.

    1991-01-01

    This paper evaluates the performance of possible binary mixtures as working fluids in high- temperature heat pump applications. The binary mixtures, which are potential alternatives of fully halogenated hydrocarbons, include HCFC142b/HCFC22, HFC152a/HCFC22, HFC134a/HCFC22. The performance of the mixtures is estimated by a thermodynamic model and a practical model in which the heat transfer is considered in heat exchangers. One of the advantages of binary mixtures is a higher coefficient of performance, which is caused by the small temperature difference between the heat-sink/-source fluid and the refrigerant. The mixture HCFC142b/HCFC22 is promising from the stand point of thermodynamic performance

  20. Chronic toxicity of unresolved complex mixtures (UCM) of hydrocarbons in marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Scarlett, A.; Galloway, T.S. [Plymouth Univ., Drake Circus (United Kingdom). School of Biological Sciences; Rowland, S.J. [Plymouth Univ., Drake Circus (United Kingdom). School of Earth, Ocean and Environmental Sciences

    2007-08-15

    Background, Aim and Scope: Unresolved complex mixtures (UCM) of hydrocarbons, containing many thousands of compounds which cannot be resolved by conventional gas chromatography (GC), are common contaminants of sediments but little is known of their potential to affect sediment-dwelling organisms. Evidence exists for reduced health status in mussels, arising from aqueous exposure to aromatic UCM components acting through a narcotic mode of action. However, UCM contaminants in sediments may not be sufficiently bioavailable to elicit toxic effects. The aim of our study was therefore to measure the sublethal effects of chronic exposure to model UCM-dominated oils at environmentally realistic concentrations and compare this to effects produced by a UCM containing weathered crude oil. A further aim was to determine which, if any, fractions of the oils were responsible for any observed toxicity. Materials and Methods: Whole oils were spiked into estuarine sediment to give nominal concentrations of 500 {mu}g g-1 dry weight. Juveniles of the estuarine amphipod Corophium volutator were exposed to the contaminated sediment for 35 days and their survival, growth rate and reproductive success quantified. Using an effect-directed fractionation approach, the oils were fractionated into aliphatic and two aromatic fractions by open column chromatography and their toxicity assessed by further chronic exposures using juvenile C. volutator. Results: The growth rates of amphipods were reduced following exposure to the oils although this was only statistically significant for the weathered oil; reproductive success was reduced by all oil exposures. Sediment spiked with UCM fractions also caused reduced growth and reproduction but no particular fraction was found to be responsible for the observed toxicity. Survivorship was not affected by any oil or fraction. Discussion: The study showed that chronic exposure to sediments contaminated by UCM-dominated oils could have population level

  1. Upgrading of syngas hydrotreated fractionated oxidized bio-oil to transportation grade hydrocarbons

    International Nuclear Information System (INIS)

    Luo, Yan; Hassan, El Barbary; Guda, Vamshi; Wijayapala, Rangana; Steele, Philip H.

    2016-01-01

    Highlights: • Hydrotreating of fractionated oxidized bio-oil with syngas was feasible. • Hydrocarbon properties were similar with all syngas H_2/CO molar ratios except viscosity. • Syngas with H_2/CO molar ratio of (4:6) produced the highest hydrocarbon yield. • The produced hydrocarbons were in the range of gasoline, jet fuel and diesel boiling points. - Abstract: Fast pyrolysis bio-oils have the potential to replace a part of transportation fuels obtained from fossil. Bio-oil can be successfully upgraded into stable hydrocarbons (gasoline, jet fuel and diesel) through a two-stage hydrodeoxygenation process. Consumption large amount of expensive hydrogen during this process is the major hurdle for commercialization of this technology. Applying syngas in the hydrotreating step can significantly reduce the cost of the whole process and make it competitive. In this study, four different models of syngas with different H_2 concentrations (H_2/CO molar ratios = 2:8, 4:6, 6:4 and 8:2) were used for the 1st-stage hydrotreating step of oxidized fractionated bio-oil (OFB). The 2nd-stage hydrocracking step was performed on the produced organic liquid products (OLPs) by using pure H_2 gas. The effect of syngas H_2 concentrations on the yields and properties of OLPs and the 2nd-stage hydrocarbons (HCs) was investigated. Physical and chemical properties of the 2nd-stage hydrocarbons were similar regardless syngas H_2 content, with the exception of the viscosity. Syngas with H_2/CO molar ratio of 4:6 gave significantly highest HCs yield (24.8 wt.%) based on the OFB. Simulated distillation analysis proved that all 2nd-stage hydrocarbons were mixture from a wide range boiling point fuels. These results also indicated that the successful 1st-stage syngas hydrotreating step was having the potential to produce different hydrocarbons.

  2. Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks.

    Directory of Open Access Journals (Sweden)

    Patrick Tarnow

    Full Text Available The majority of printing inks are based on mineral oils (MOs which contain complex mixtures of saturated and aromatic hydrocarbons. Consumer exposure to these oils occurs either through direct skin contacts or, more frequently, as a result of MO migration into the contents of food packaging that was made from recycled newspaper. Despite this ubiquitous and frequent exposure little is known about the potential toxicological effects, particularly with regard to the aromatic MO fractions. From a toxicological point of view the huge amount of alkylated and unsubstituted compounds therein is reason for concern as they can harbor genotoxicants as well as potential endocrine disruptors. The aim of this study was to assess both the genotoxic and estrogenic potential of MOs used in printing inks. Mineral oils with various aromatic hydrocarbon contents were tested using a battery of in vitro assays selected to address various endpoints such as estrogen-dependent cell proliferation, activation of estrogen receptor α or transcriptional induction of estrogenic target genes. In addition, the comet assay has been applied to test for genotoxicity. Out of 15 MOs tested, 10 were found to potentially act as xenoestrogens. For most of the oils the effects were clearly triggered by constituents of the aromatic hydrocarbon fraction. From 5 oils tested in the comet assay, 2 showed slight genotoxicity. Altogether it appears that MOs used in printing inks are potential endocrine disruptors and should thus be assessed carefully to what extent they might contribute to the total estrogenic burden in humans.

  3. Taguchi Method for Development of Mass Flow Rate Correlation using Hydrocarbon Refrigerant Mixture in Capillary Tube

    Directory of Open Access Journals (Sweden)

    Shodiya Sulaimon

    2014-07-01

    Full Text Available The capillary tube is an important control device used in small vapor compression refrigeration systems such as window air-conditioners, household refrigerators and freezers. This paper develops a non-dimensional correlation based on the test results of the adiabatic capillary tube for the mass flow rate through the tube using a hydrocarbon refrigerant mixture of 89.3% propane and 10.7% butane (HCM. The Taguchi method, a statistical experimental design approach, was employed. This approach explores the economic benefit that lies in studies of this nature, where only a small number of experiments are required and yet valid results are obtained. Considering the effects of the capillary tube geometry and the inlet condition of the tube, dimensionless parameters were chosen. The new correlation was also based on the Buckingham Pi theorem. This correlation predicts 86.67% of the present experimental data within a relative deviation of -10% to +10%. The predictions by this correlation were also compared with results in published literature.

  4. Content of heterocyclic amines and polycyclic aromatic hydrocarbons in pork, beef and chicken barbecued at home by Danish consumers

    DEFF Research Database (Denmark)

    Aaslyng, Margit D.; Duedahl-Olesen, Lene; Jensen, Kirsten

    2013-01-01

    It is a well-known fact that, when meat is barbecued, several harmful components, including heterocyclic amines (HCA) and polycyclic aromatic hydrocarbons (PAH), may be formed. The aim of this study was to determine the HCA and PAH content in meat (pork, chicken and beef) when barbecued at home...

  5. Numerical investigation of boiling heat transfer on hydrocarbon mixture refrigerant in vertical rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Huixing Li

    2016-05-01

    Full Text Available In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat transfer was investigated in vertical rectangular minichannel of plate-fin heat exchanger. The results show that the boiling heat transfer coefficient increases with the increase in quality and mass flux and is slightly impacted by the heat flux. This is because that the main boiling mechanism is forced convective boiling while the contribution of nucleate boiling is slight. The correlation of Liu and Winterton is in good agreement with the simulation results. The deviation between correlation calculations and simulation results is mostly less than ±15%. These results will provide some constructive instructions for the understanding of saturated boiling mechanism in a vertical rectangular minichannel and the prediction of heat transfer performance in plate-fin heat exchanger.

  6. Kelvin Equation for a Non-Ideal Multicomponent Mixture

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1997-01-01

    The Kelvin equation is generalized by application to a case of a multicomponent non-ideal mixture. Such a generalization is necessary in order to describe the two-phase equilibrium in a capillary medium with respect to both normal and retrograde condensation. The equation obtained is applied...... to the equilibrium state of a hydrocarbon mixture ina gas-condensate reservoir....

  7. Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts; Influence of Pt Contents

    Directory of Open Access Journals (Sweden)

    Suk-Hwan Kang

    2017-10-01

    How to Cite: Kang, S.H., Ryu, J.H., Kim, J.H., Kim, H.S., Yang, H.C., Chung, D.Y. (2017. Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts; Influence of Pt Contents. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 452-459 (doi:10.9767/bcrec.12.3.592.452-459

  8. Mixtures of biofuels can serve as an ecological substitute for photovoltaics during nighttime hours

    Energy Technology Data Exchange (ETDEWEB)

    Matejovsky, Vladimir [QMS Consulting, Prague (Czech Republic); Hromadko, Jan; Hoenig, Vladimir [Czech Univ. of Life Sciences, Prague (Czech Republic)

    2013-06-01

    Diesel fuels consisting of mixtures of ethanol (alternatively butanol), FAME and vegetable oils in variable proportions can meet different requirements of OEMs for viscosity and heating values and constitute a form of renewable and storable energy from the sun which can be easily transformed into electricity. The ratio of component can vary according to the immediate availability and prices of components, oxygen content and the absence of aromatic hydrocarbons enabling the combustion of these mixtures in engines with very low emissions, especially of particulates. From these reasons these mixtures constitute an ecological source of energy suitable to supplement photovoltaic power plants during the night, when insufficient electric power supply and even blackouts can occur. It was verified that Diesel engines working with a mixture consisting of 50% ethanol, 30% FAME, 20% rapeseed oil and a small dosage of cetane improver, exuded much less smoke compared with B7 and B30 fuels and only little more when compared with the E95 fuel for which smoke emission ions was almost zero. Similar results were obtained when ethanol was replaced by biobutanol. (orig.)

  9. The role of mass spectrometry in hydrocarbon analysis

    International Nuclear Information System (INIS)

    Kerenyi, E.

    1980-01-01

    Modern mass spectrometry has an outstandin.o role in solving problems concerning the composition and structure of hydrocarbon mixtures and their derivatives, petroleum and petrochemical products. Its efficiency in hydrocarbon analysis has been increased not only by high resolving power and computerized spectrum processing but also by the metastable ion spectrum technique promoting structural examinations, by mild ionization facilitating composition analysis, and by selective ion-detecting technique. The author presents the advantages of the metastable ion spectra, the field ionization, field desorption and other mild ionization methods, and finally, those of fragmentation analysis in connection with the examination of hydrocarbons and hydrocarbon derivatives. Examples taken from the literature and from the research work carried out in the Institute are also given. (author)

  10. Effect of hydrocarbons on plasma treatment of NOx

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Pitz, W.J.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Lean burn gasoline engine exhausts contain a significant amount of hydrocarbons in the form of propene. Diesel engine exhausts contain little gaseous hydrocarbon; however, they contain a significant amount of liquid-phase hydrocarbons (known as the volatile organic fraction) in the particulates. The objective of this paper is to examine the fate of NO{sub x} when an exhaust gas mixture that contains hydrocarbons is subjected to a plasma. The authors will show that the hydrocarbons promote the oxidation of NO to NO{sub 2}, but not the reduction of NO to N{sub 2}. The oxidation of NO to NO{sub 2} is strongly coupled with the hydrocarbon oxidation chemistry. This result suggests that gas-phase reactions in the plasma alone cannot lead to the chemical reduction of NO{sub x}. Any reduction of NO{sub x} to N{sub 2} can only be accomplished through heterogeneous reactions of NO{sub 2} with surfaces or particulates.

  11. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons.

    Science.gov (United States)

    Isaacman, Gabriel; Chan, Arthur W H; Nah, Theodora; Worton, David R; Ruehl, Chris R; Wilson, Kevin R; Goldstein, Allen H

    2012-10-02

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization gas chromatography techniques. Nucleated motor oil particles are oxidized in a flow tube reactor to investigate the relative reaction rates of observed hydrocarbon classes: alkanes, cycloalkanes, bicycloalkanes, tricycloalkanes, and steranes. Oxidation of hydrocarbons in a complex aerosol is found to be efficient, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ∼20% per nonaromatic ring present. These differences in rates are expected to alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Due to this expected shift toward ring-opening reactions heterogeneous oxidation of the unreacted hydrocarbon mixture is less likely to proceed through fragmentation pathways in more oxidized particles. Based on the observed oxidation-induced changes in composition, isomer-resolved analysis has potential utility for determining the photochemical age of atmospheric particulate matter with respect to heterogeneous oxidation.

  12. Total Petroleum Hydrocarbon Content (TPH) As an Index ...

    African Journals Online (AJOL)

    MICHAEL

    potential for hydrocarbon accumulation and could be evaluated for its efficacy as a tool in phytoremediation exercise for cleaning ... often assessed from changes in the physical, chemical ... Germination test: The approach adapted by Agboola.

  13. Field Implementation of Handheld FTIR Spectrometer for Polymer Content Determination and for Quality Control of RAP Mixtures : Research Project Capsule

    Science.gov (United States)

    2017-10-01

    The purpose of this research study is to determine if the implementation of FTIRS in Louisiana for determining polymer content in asphalt mixtures and for quality control of recycled asphalt mixtures is feasible. The ultimate objective is to develop ...

  14. Preparing valuable hydrocarbons by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1930-08-22

    A process is described for the preparation of valuable hydrocarbons by treatment of carbonaceous materials, like coal, tars, minerals oils, and their distillation and conversion products, and for refining of liquid hydrocarbon mixture obtained at raised temperature and under pressure, preferably in the presence of catalysts, by the use of hydrogen-containing gases, purified and obtained by distilling solid combustibles, characterized by the purification of the hydrogen-containing gases being accomplished for the purpose of practically complete removal of the oxygen by heating at ordinary or higher pressure in the presence of a catalyst containing silver and oxides of metals of group VI of the periodic system.

  15. Evaluation of the effectiveness of different methods for the remediation of contaminated groundwater by determining the petroleum hydrocarbon content

    Energy Technology Data Exchange (ETDEWEB)

    Voyevoda, Maryna; Geyer, Wolfgang; Mothes, Sibylle [Department of Analytical Chemistry, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany); Mosig, Peter [Centre for Environmental Biotechnology, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany); Seeger, Eva M. [Department of Environmental Biotechnology, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany)

    2012-08-15

    The effectiveness of different remediation procedures for decreasing the amount of TPH (total petroleum hydrocarbons) in contaminated groundwater was evaluated at the site of a former refinery. The investigations were carried out on samples taken from several gravel based HSSF (horizontal subsurface flow) constructed wetlands (CW) which differed in relation to their filter material additives (no additive, charcoal, and ferric oxides additives) and examined the potential effect of these additives on the overall treatment efficiency. Samples of the following gravel based HSSF CW were investigated. No filter additive (system A), 0.1% activated carbon (system B), 0.5% iron(III) hydroxide (system C), and the reference (system D). Systems A-C were planted with common reed (Phragmites australis), whereas system D remained unplanted. In addition, the influence of seasonal conditions on the reduction of these hydrocarbons and the correlation between the amounts of TPH and BTEX (benzene, toluene, ethylbenzene, and xylene isomers), on the one hand, and methyl tert-butyl ether, on the other, was investigated. The study was carried out by using a modified GC-FID approach and multivariate methods. The investigations carried out in the first year of operation demonstrated that the effectiveness of the petroleum hydrocarbon removal was highest and reached a level of 93 {+-} 3.5% when HSSF filters with activated carbon as a filter additive were used. This remediation method allowed the petroleum hydrocarbon content to be reduced independently of seasonal conditions. The correlation between the reduction of TPH and BTEX was found to be R = 0.8824. Using this correlation coefficient, the time-consuming determination of the BTEX content was no longer necessary. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Magnetic susceptibility and magnetic resonance measurements of the moisture content and hydration condition of a magnetic mixture material

    International Nuclear Information System (INIS)

    Tsukada, K.; Kusaka, T.; Saari, M. M.; Takagi, R.; Sakai, K.; Kiwa, T.; Bito, Y.

    2014-01-01

    We developed a magnetic measurement method to measure the moisture content and hydration condition of mortar as a magnetic mixture material. Mortar is a mixture of Portland cement, sand, and water, and these materials exhibit different magnetic properties. The magnetization–magnetic field curves of these components and of mortars with different moisture contents were measured, using a specially developed high-temperature-superconductor superconducting quantum interference device. Using the differences in magnetic characteristics, the moisture content of mortar was measured at the ferromagnetic saturation region over 250 mT. A correlation between magnetic susceptibility and moisture content was successfully established. After Portland cement and water are mixed, hydration begins. At the early stage of the hydration/gel, magnetization strength increased over time. To investigate the magnetization change, we measured the distribution between bound and free water in the mortar in the early stage by magnetic resonance imaging (MRI). The MRI results suggest that the amount of free water in mortar correlates with the change in magnetic susceptibility

  17. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  18. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min; Zhang, Xuming

    2017-01-01

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  19. Hydrocarbon Degradation Potentials of Bacteria Isolated from Spent ...

    African Journals Online (AJOL)

    ADOWIE PERE

    chemical nature of the compounds within the petroleum mixture and ... are toxic, mutagenic, and carcinogenic (Clemente et al., 2001). ... Hydrocarbon utilizing bacteria in the soil sample ... paper (Whatman No.1) saturated with sterile spent oil.

  20. Process of converting phenols into hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Seelig, S

    1929-02-02

    A process is disclosed for the conversion of phenols into hydrocarbons, characterized by preheating a mixture of phenols and hydrogen or hydrogen-producing gases to approximately the reaction temperature under pressure, heating by passage percussion-like through a bath of metal to the reaction temperature, and rapidly cooling.

  1. Polycyclic Aromatic Hydrocarbons (PAHs) Content in Cattle Hides ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Vol. 21 (6) 1105-1110. Full-text Available Online at www.ajol.info and ... Keywords: Cattle hide, meat, tyre, singeing, hydrocarbons ... on the substance used as fuel for meat processing. .... through the centrifuge at 200 rpm for 5 min. The.

  2. Distilling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bataafsche, N V; de Brey, J H.C.

    1918-10-30

    Hydrocarbons containing a very volatile constituent and less volatile constituents, such as casing-head gases, still gases from the distillation of crude petroleum and bituminous shale are separated into their constituents by rectification under pressure; a pressure of 20 atmospheres and limiting temperatures of 150/sup 0/C and 40/sup 0/C are mentioned as suitable. The mixture may be subjected to a preliminary treatment consisting in heating to a temperature below the maximum rectification temperature at a pressure greater than that proposed to be used in the rectification.

  3. Method for the conversion of hydrocarbon charges

    Energy Technology Data Exchange (ETDEWEB)

    Whittam, T V

    1976-11-11

    The basis of the invention is the application of defined zeolites as catalysts to hydrocarbon conversion processes such as reformation, isomerization, dehydrocyclization, and cracking. By charging the zeolite carrier masses with 0.001 to 5% metal of the 8th group of the periodic system, preferably noble metals, a wide region of applications for the catalysts is achieved. A method for the isomerization of an alkyl benzene (or mixture of alkyl benzenes) in the liquid or gas phase under suitable temperature, pressure and flow-rate conditions, as well as in the presence of a cyclic hydrocarbon, is described as preferential model form of the invention; furthermore, a method for the reformation of a hydrocarbon fraction boiling in the gasoline or benzene boiling region and a method for the hydrocracking of hydrocarbon charge (e.g. naphtha, kerosine, gas oils) are given. Types of performance of the methods are explained using various examples.

  4. [Comparison of polycyclic aromatic hydrocarbons (PAHS) contents in bakery products].

    Science.gov (United States)

    Ciemniak, Artur; Witczak, Agata

    2010-01-01

    Polycyclic aromatic hydrocarbons are a group of well-known chemical carcinogens with a wide distribution in the environment and formed by the incomplete combustion of organic substances. PAHs have attracted most attention because of their carcinogenic potential. PAHs have been found as contaminants in different food categories such as dairy products, smoked and barbecued meat, vegetables, fruits, oils, coffee, tea, and cereals. Processing of food at high temperatures increases the amount of PAHs in the food Diet is the major source of human exposure to PAHs. The major dietary source of PAH are oils and fats, cereals products and vegetables. The aims of this study were to determine the content levels of 23 PAHs in various sorts of bread. The analytical procedure was based Soxhlet extraction with n--hexane and cleaned up in aflorisil cartridge. Chromatographic separation was performed using gas chromatography (HP 6890) coupled to mass spectrometry (HP 5973). The total concentration of PAHs was low end varied between 2.61 microg/kg to 43.4 microg/kg. Furthermore, the results revealed differences in concentrations of PAHs between rind and bread-crumb.

  5. Quantification of petroleum-type hydrocarbons in avian tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gay, M.L.; Belisle, A.A.; Patton, J.F.

    1980-01-04

    Methods were developed for the analysis of 16 hydrocarbons in avian tissue. Mechanical extraction with pentane was followed by clean-up on Florisil and Silicar. Residues were determined by gas-liquid chromatography and gas-liquid, chromatography-mass spectrometry. The method was applied to the analysis of liver, kidney, fat, and brain tissue of mallard ducks (Anas platyrhynchos) fed a mixture of hydrocarbons. Measurable concentrations of all compounds analyzed were present in all tissues except brain. Highest concentrations were in fat.

  6. Fuels by Waste Plastics Using Activated Carbon, MCM-41, HZSM-5 and Their Mixture

    Directory of Open Access Journals (Sweden)

    Miskolczi Norbert

    2016-01-01

    Full Text Available Waste material was pyrolyzed in a horizontal tubular reactor at 530-540°C using different catalysts, such as activated carbon, MCM-41, HZSM-5 and their mixtures. Products were investigated by gas-chromatography, EDXRFS and standardized methods. Catalysts significantly affected the yields of volatiles; e.g. HZSM-5 catalyst increased especially the yield of gaseous hydrocarbons, while MCM-41 catalyst was responsible for increasing the pyrolysis oil yield. Synergistic effects were found using mixtures of different catalysts. Furthermore the catalysts modified the main carbon frame of the products. Pyrolysis oil obtained over HZSM-5 catalyst contained large amounts of aromatics, while MCM-41 catalyst mainly isomerized the carbon frame. Regarding contaminants it was concluded, that the sulphur content could be significantly decreased by activated carbon, however it had only a slight effect to the other properties of the products.

  7. Model-based experimental design for assessing effects of mixtures of chemicals

    NARCIS (Netherlands)

    Baas, J.; Stefanowicz, A.M.; Klimek, B.; Laskowski, R.; Kooijman, S.A.L.M.

    2010-01-01

    We exposed flour beetles (Tribolium castaneum) to a mixture of four poly aromatic hydrocarbons (PAHs). The experimental setup was chosen such that the emphasis was on assessing partial effects. We interpreted the effects of the mixture by a process-based model, with a threshold concentration for

  8. Superlattice configurations in linear chain hydrocarbon binary mixtures

    Indian Academy of Sciences (India)

    Unknown

    Long-chain alkanes; binary mixtures; superlattices; discrete orientational changes. 1. Introduction ... tem and a model of superlattice configuration was proposed4, in terms of .... C18 system,4 the angle with value = 3⋅3° was seen to play an ...

  9. TNFα and IL-6 Responses to Particulate Matter in Vitro: Variation According to PM Size, Season, and Polycyclic Aromatic Hydrocarbon and Soil Content

    Science.gov (United States)

    Manzano-León, Natalia; Serrano-Lomelin, Jesús; Sánchez, Brisa N.; Quintana-Belmares, Raúl; Vega, Elizabeth; Vázquez-López, Inés; Rojas-Bracho, Leonora; López-Villegas, Maria Tania; Vadillo-Ortega, Felipe; De Vizcaya-Ruiz, Andrea; Perez, Irma Rosas; O’Neill, Marie S.; Osornio-Vargas, Alvaro R.

    2015-01-01

    Background: Observed seasonal differences in particulate matter (PM) associations with human health may be due to their composition and to toxicity-related seasonal interactions. Objectives: We assessed seasonality in PM composition and in vitro PM pro-inflammatory potential using multiple PM samples. Methods: We collected 90 weekly PM10 and PM2.5 samples during the rainy-warm and dry-cold seasons in five urban areas with different pollution sources. The elements, polycyclic aromatic hydrocarbons (PAHs), and endotoxins identified in the samples were subjected to principal component analysis (PCA). We tested the potential of the PM to induce tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) secretion in cultured human monocytes (THP-1), and we modeled pro-inflammatory responses using the component scores. Results: PM composition varied by size and by season. PCA identified two main components that varied by season. Combustion-related constituents (e.g., vanadium, benzo[a]pyrene, benzo[a]anthracene) mainly comprised component 1 (C1). Soil-related constituents (e.g., endotoxins, silicon, aluminum) mainly comprised component 2 (C2). PM from the rainy-warm season was high in C2. PM (particularly PM2.5) from the dry-cold season was rich in C1. Elevated levels of cytokine production were associated with PM10 and C2 (rainy-warm season), whereas reduced levels of cytokine production were associated with PM2.5 and C1 (dry-cold season). TNFα secretion was increased following exposure to PM with high (vs. low) C2 content, but TNFα secretion in response to PM was decreased following exposure to samples containing ≥ 0.1% of C1-related PAHs, regardless of C2 content. The results of the IL-6 assays suggested more complex interactions between PM components and particle size. Conclusions: Variations in PM soil and PAH content underlie seasonal and PM size–related patterns in TNFα secretion. These results suggest that the mixture of components in PM explains some

  10. Natural gas treatment: Simultaneous water and hydrocarbon-dew point-control

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T. (Solvay Catalysts GmbH, Hannover (Germany)); Rennemann, D. (Solvay Catalysts GmbH, Hannover (Germany)); Schulz, T. (Solvay Catalysts GmbH, Hannover (Germany))

    1993-10-01

    Natural gas is a multicomponent mixture of hydrocarbons. The condensation behavior of such mixtures is different from single component systems. The so-called retrograde behavior leads to the observations that saturated vapor (dew point curve) and saturated liquid curve (bubble point curve) are not identical. Between both is a region of saturated phases which even can exist above the critical point. Following this behaviour it is possible that condensation might occur at pressure decrease or at temperature increase, respectively. This phenomenon is undesired in natural gas pipeline networks. Selective removal of higher hydrocarbons by the means of adsorption can change the phase behavior in such a way that condensation does not occur at temperatures and pressures specified for gas distribution. (orig.)

  11. Partial Oxidation of High-Boiling Hydrocarbon Mixtures in the Pilot Unit

    Czech Academy of Sciences Publication Activity Database

    Hanika, Jiří; Lederer, J.; Nečesaný, F.; Poslední, W.; Tukač, V.; Veselý, Václav

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1701-1706 ISSN 0366-6352 Institutional support: RVO:67985858 Keywords : partial oxidation * high-boiling hydrocarbons * pilot plant Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 1.468, year: 2014

  12. Bio-treatment of oily sludge: the contribution of amendment material to the content of target contaminants, and the biodegradation dynamics.

    Science.gov (United States)

    Kriipsalu, Mait; Marques, Marcia; Nammari, Diauddin R; Hogland, William

    2007-09-30

    The objective was to investigate the aerobic biodegradation of oily sludge generated by a flotation-flocculation unit (FFU) of an oil refinery wastewater treatment plant. Four 1m(3) pilot bioreactors with controlled air-flow were filled with FFU sludge mixed with one of the following amendments: sand (M1); matured oil compost (M2); kitchen waste compost (M3) and shredded waste wood (M4). The variables monitored were: pH, total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), total carbon (C(tot)), total nitrogen (N(tot)) and total phosphorus (P(tot)). The reduction of TPH based on mass balance in M1, M2, M3 and M4 after 373 days of treatment was 62, 51, 74 and 49%; the reduction of PAHs was 97%, +13% (increase), 92 and 88%, respectively. The following mechanisms alone or in combination might explain the results: (i) most organics added with amendments biodegrade faster than most petroleum hydrocarbons, resulting in a relative increase in concentration of these recalcitrant contaminants; (ii) some amendments result in increased amounts of TPH and PAHs to be degraded in the mixture; (iii) sorption-desorption mechanisms involving hydrophobic compounds in the organic matrix reduce bioavailability, biodegradability and eventually extractability; (iv) mixture heterogeneity affecting sampling. Total contaminant mass reduction seems to be a better parameter than concentration to assess degradation efficiency in mixtures with high content of biodegradable amendments.

  13. Kinetic mechanism of plasma-assisted ignition of hydrocarbons

    International Nuclear Information System (INIS)

    Kosarev, I N; Aleksandrov, N L; Kindysheva, S V; Starikovskaia, S M; Starikovskii, A Yu

    2008-01-01

    Ignition of hydrocarbon-containing gaseous mixtures has been studied experimentally and numerically under the action of a high-voltage nanosecond discharge at elevated temperatures. Ignition delay times were measured behind a reflected shock wave in stoichiometric C n H 2n+2 : O 2 mixtures (10%) diluted with Ar (90%) for n = 1-5. It was shown that the application of the gas discharge leads to more than an order of magnitude decrease in ignition delay time for all hydrocarbons under consideration. The measured values of ignition delay time agree well with the results of a numerical simulation of the ignition based on the calculation of atom and radical production during the discharge and in its afterglow. The analysis of simulation results showed that a non-equilibrium plasma favours the ignition mainly due to O atoms produced in the active phase of the discharge. (fast track communication)

  14. Autothermal reforming of liquid hydrocarbons for H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Palm, C.; Montel, S.; Cremer, P.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany). Inst. for Materials and Processes in Energy Systems IWV-3: Process Engineering

    2001-07-01

    The process of autothermal reforming of hydrocarbons can be used for the production of hydrogen within a fuel cell system. The application of three precious metal catalysts for the autothermal reforming of alkane mixtures with boiling ranges between 235 and 325 C was examined. The experiments were carried out at n(O{sub 2})/n(C) = 0.40, n(H{sub 2}O)/n(C) = 2.20, a catalyst bed temperature between 730 and 570 C and a hydrocarbon feed of 30 g/h. The catalysts yielded different hydrocarbon conversions, which can be explained by differences in the activity for the steam reforming reaction. The most active catalyst was also successfully utilized in the conversion of 400 g/h hydrocarbon feed. (orig.)

  15. Investigation of non-volatile additives on the process of distillation of hydrocarbon mixtures

    Directory of Open Access Journals (Sweden)

    М.Б. Степанов

    2009-02-01

    Full Text Available  The given results of researches of influence of nonvolatile additives on processes of distillation of individual hydrocarbons and their mixes, including petroleum and mineral oil. With the help of the developed computer system of the continuous control of distillation it is shown, that at the presence of small amounts of the additive decrease of temperature of the beginning of boiling of hydrocarbons is observed, their speeds of banish and exits of light fuel mineral oil grow during initial oil refining

  16. Excess enthalpies of ternary mixtures of oxygenated additives + hydrocarbon mixtures in fuels and bio-fuels: Dibutyl ether (DBE) and 1-butanol and 1-hexene or cyclohexane or 2,2,4 trimethylpentane at 298.15 K and 313.15 K

    International Nuclear Information System (INIS)

    Aguilar, Fernando; Alaoui, Fatima E.M.; Segovia, José J.; Montero, Eduardo A.

    2013-01-01

    Highlights: ► New excess enthalpy data for ternary mixtures of dibutyl ether + hydrocarbon + 1-butanol are reported. ► Four ternary systems at 298.15 K and 313.15 K were measured by means of an isothermal flow calorimeter. ► 420 Data were fitted to a Redlich–Kister rational equation. ► Intermolecular and association effects involved in these systems have been discussed. - Abstract: New experimental excess molar enthalpy data (420 points) of the ternary systems dibutyl ether (DBE) and 1-butanol and 1-hexene at 298.15 K and 313.15 K, and DBE and 1-butanol and cyclohexane or 2,2,4-trimethylpentane (TMP) at 313.15 K at atmospheric pressure are reported. A quasi-isothermal flow calorimeter has been used to make the measurements. All the ternary systems show endothermic character. The experimental data for the ternary systems have been fitted using the Redlich–Kister rational equation. Considerations with respect the intermolecular interactions amongst ether, alcohol and hydrocarbon compounds are presented.

  17. Production of low molecular weight hydrocarbons by volcanic eruptions on early Mars.

    Science.gov (United States)

    Segura, Antígona; Navarro-González, Rafael

    2005-10-01

    Methane and other larger hydrocarbons have been proposed as possible greenhouse gases on early Mars. In this work we explore if volcanic processes may have been a source for such molecules based on theoretical and experimental considerations. Geologic evidence and numerical simulations indicate that explosive volcanism was widely distributed throughout Mars. Volcanic lightning is typically produced in such explosive volcanism. Therefore this geologic setting was studied to determine if lightning could be a source for hydrocarbons in volcanic plumes. Volcanic lightning was simulated by focusing a high-energy infrared laser beam inside of a Pyrex reactor that contained the proposed volcanic gas mixture composed of 64% CH(4), 24% H(2), 10% H(2)O and 2% N(2), according to an accretion model and the nitrogen content measured in Martian meteorites. The analysis of products was performed by gas chromatography coupled to infrared and mass spectroscopy. Eleven hydrocarbons were identified among the products, of which acetylene (C(2)H(2)) was the most abundant. A thermochemical model was used to determine which hydrocarbons could arise only from volcanic heat. In this case, acetylene and ethylene are formed at magmatic temperatures. Our results indicate that explosive volcanism may have injected into the atmosphere of early Mars approximately 6 x 10(12) g yr(-1) of acetylene, and approximately 2 x 10(12) g yr(-1) of 1,3-butadiyne, both produced by volcanic lightning, approximately 5 x 10(11) g yr(-1) of ethylene produced by volcanic heat, and 10(13) g yr(-1) of methane.

  18. Occurrence and sources of aliphatic hydrocarbons in surface soils from Riyadh city, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed I. Rushdi

    2013-01-01

    Full Text Available Soil particles contain a variety of anthropogenic and natural organic components derived from many sources such as industrial and traffic fossil fuel emissions and terrestrial biota. The organic contents of soil and sand from the Arabian region have not fully characterized. Thus, samples of fine soil particles (sieved to <125 μM were collected from the Riyadh area in November 2006 (late summer and February 2007 (late winter. The samples were extracted with a mixture of dichloromethane/hexane and analyzed by gas chromatography–mass spectroscopy (GCMS in order to characterize the chemical composition and sources of aliphatic hydrocarbons. The results showed that both anthropogenic and natural biogenic inputs were the major sources of the aliphatic hydrocarbons in these extracts. Vehicular emission products and discarded plastics were the major anthropogenic sources in the fine particles of the soils and ranged from 64% to 96% in November 2006 and from 70% to 92% in February 2007. Their tracers were n-alkanes, hopanes, sterane, plasticizers and UCM. Vegetation was also a major natural source of hydrocarbon compounds in samples ranging from ∼0% to18% in November 2006 and from 1% to 13% in February 2007 and included n-alkanes and triterpenoids.

  19. Conversion of heavy aromatic hydrocarbons to valuable synthetic feed for steamcrackers

    Energy Technology Data Exchange (ETDEWEB)

    Cesana, A.; Dalloro, L.; Rivetti, F.; Buzzoni, R.; Bignazzi, R. [ENI S.p.A., Novara (Italy). Refining and Marketing Div.

    2007-07-01

    The scope of the present study was upgrading a set of heavy aromatic hydrocarbons mixtures whose commercial value ranks close to fuel oil and should become even lower in the next future because of the introduction of more stringent regulations on fuels, through hydro-conversion to a synthetic feed for steam-cracking. The resulting process provides an opportunity to improve the economic return of a steamcracking plant, offering the chance of converting low-value mixtures produced by the plant itself, such as fuel oil of cracking (FOK), saving an equivalent amount of naphtha. The method can also be used for converting pyrolysis gasoline (pygas). Although pygas has at present a fair commercial value, it could suffer a significant penalization in the future due to further limitations on total aromatic content in gasoline. Pygas hydro-conversion to a synthetic steam-cracking feedstock has been recently reported. Fractions from refinery, such as heavy distillates (e.g. Heavy Vacuum Gas Oil, VGO), deasphalted resides (DAO), or some FCC streams (e.g. LCO) resulted suitable and very attractive mixtures to be treated as well. No more than deasphalting was required as pretreatment of the feed mixture and only when the asphalts were >2%. Hetero-elements are often present in such kind of feeds at quite high concentrations, but no problems were observed due to the presence of sulphur and nitrogen, respectively, up to 15000 and 5500 ppm. (orig.)

  20. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

    OpenAIRE

    Eunjong Kim; Dong-Hyun Lee; Seunggun Won; Heekwon Ahn

    2016-01-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdu...

  1. Characterization of the pressure field induced by the explosions in air of a hydrocarbon-air mixture with slow deflagration of fast deflagration

    International Nuclear Information System (INIS)

    Garnier, J.L.; Perrot, J.; Brossard, J.; Di Fabio, N.; Lannoy, A.; Desbordes, D.; Leyer, J.C.; Saint-Cloud, J.P.

    1984-11-01

    The present research contract, carried out in the framework of a French working group CEA-EDF-ENSMA, was divided into four phases: 1) Phase 1: Scaling effects on a pressure field generated by spontaneous accelerations of deflagrations in a homogeneous medium: these ''CHARLES'' tests performed on completely unconfined charges of ethylene-air and acetylene-air mixture (V approximately= 12 m 3 ) have demonstrated the high sensitivity of the pressure field to the flame acceleration, particularly at the end of the propagation. 2) Phase 2: Effect of a sudden discontinuity in the concentration of the combustible gas on the deflagration speed in a heterogeneous medium: this discontinuity was obtained using two concentric latex balloons, filled with different hydrocarbon concentrations and also destroyed before firing. 3) Phase 3: Study of pseudo-detonation modes for the explosion of spherical ethylene-air mixtures: these modes were sought by increasing an explosive plastic mass associated to the igniter. 4) Phase 4: Study of the influence of cloud shape, ignition point location and simple obstacles in the flame path on the pressure field generated by the explosion. A retractable enclosure was designed, built and unfortunately destroyed by the second test

  2. Polycyclic aromatic hydrocarbons as skin carcinogens: Comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse

    International Nuclear Information System (INIS)

    Siddens, Lisbeth K.; Larkin, Andrew; Krueger, Sharon K.; Bradfield, Christopher A.; Waters, Katrina M.; Tilton, Susan C.; Pereira, Cliff B.; Löhr, Christiane V.; Arlt, Volker M.; Phillips, David H.; Williams, David E.

    2012-01-01

    The polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), was compared to dibenzo[def,p]chrysene (DBC) and combinations of three environmental PAH mixtures (coal tar, diesel particulate and cigarette smoke condensate) using a two stage, FVB/N mouse skin tumor model. DBC (4 nmol) was most potent, reaching 100% tumor incidence with a shorter latency to tumor formation, less than 20 weeks of 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion compared to all other treatments. Multiplicity was 4 times greater than BaP (400 nmol). Both PAHs produced primarily papillomas followed by squamous cell carcinoma and carcinoma in situ. Diesel particulate extract (1 mg SRM 1650b; mix 1) did not differ from toluene controls and failed to elicit a carcinogenic response. Addition of coal tar extract (1 mg SRM 1597a; mix 2) produced a response similar to BaP. Further addition of 2 mg of cigarette smoke condensate (mix 3) did not alter the response with mix 2. PAH-DNA adducts measured in epidermis 12 h post initiation and analyzed by 32 P post‐labeling, did not correlate with tumor incidence. PAH‐dependent alteration in transcriptome of skin 12 h post initiation was assessed by microarray. Principal component analysis (sum of all treatments) of the 922 significantly altered genes (p < 0.05), showed DBC and BaP to cluster distinct from PAH mixtures and each other. BaP and mixtures up-regulated phase 1 and phase 2 metabolizing enzymes while DBC did not. The carcinogenicity with DBC and two of the mixtures was much greater than would be predicted based on published Relative Potency Factors (RPFs). -- Highlights: ► Dibenzo[def,p]chrysene (DBC), 3 PAH mixtures, benzo[a]pyrene (BaP) were compared. ► DBC and 2 PAH mixtures were more potent than Relative Potency Factor estimates. ► Transcriptome profiles 12 hours post initiation were analyzed by microarray. ► Principle components analysis of alterations revealed treatment-based clustering. ► DBC gave a unique pattern of

  3. Hydro-carbon liquid for use in motors

    Energy Technology Data Exchange (ETDEWEB)

    Cobbett, G T.B.

    1907-03-15

    A process for the manufacture of liquid hydro-carbon mixtures suitable as a fuel for internal-combustion engines is disclosed, which consists in dissolving a suitable quantity of shale oil, which has been purified with sulfuric acid, in petroleum spirit, then purifying the solution with sulfuric acid and subsequently with oxalic acid or other suitable decolorizing agent.

  4. Process for recovery of liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Millar, J.F.; Cockshott, J.E.

    1978-04-11

    Methane is recovered as a gas for discharge to a pipeline from a gas stream containing methane and heavier hydrocarbons, principally ethane and propane. Separation is accomplished by condensing the heavier hydrocarbons and distilling the methane therefrom. A liquid product (LPG) comprising the heavier hydrocarbons is subsequently recovered and transferred to storage. Prior to being discharged to a pipeline, the recovered methane gas is compressed and in undergoing compression the gas is heated. The heat content of the gas is employed to reboil the refrigerant in an absorption refrigeration unit. The refrigeration unit is used to cool the LPG prior to its storage.

  5. Hydrogen/hydrocarbon explosions in the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Goranson, P.L.

    1992-01-01

    The consequences of H 2 /hydrocarbon detonations in the vacuum vessel (torus) of the International Thermonuclear Experimental Reactor (ITER) have been studied. The most likely scenario for such a detonation involves a water leak into the torus and a vent of the torus to atmosphere, permitting the formation of an explosive fuel-air mixture. The generation of fuel gases and possible sources of air or oxygen are reviewed, and the severity and effects of specific fuel-air mixture explosions are evaluated. Detonation or deflagration of an explosive mixture could result in pressures exceeding the maximum allowable torus pressure. Further studies to examine the design details and develop an event-tree study of events following a gas detonation are recommended

  6. Content of PAHs, activities of γ-radionuclides and ecotoxicological assessment in biochars

    Directory of Open Access Journals (Sweden)

    Gondek Krzysztof

    2016-12-01

    Full Text Available The aim of this research was to determine the effect of thermal conversion temperature and plant material addition to sewage sludge on the PAHs content and the activity of selected γ-radionuclides in biochars, and to conduct an ecotoxicological assessment. The pyrolysis of the mixtures of sewage sludge and plant materials at 300°C and such temperature caused an increase in the contents of 2- and 3-ring hydrocarbons. During the pyrolysis of organic materials at 600°C, the amount of the following compounds was reduced in biochars: benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3c,d]pyrene, dibenzo[a,h]anthracene, and benzo[g,h,i]perylene. Among γ-radioisotopes of the elements, natural radiogenic isotopes were dominant. 137Cs was the only artificial radioactive isotope. The pyrolysis of the mixtures of municipal sewage sludge and plant materials revealed that isotope 40K had the highest radioactive activity. In the case of other analysed nuclides, activities of 212Pb, 214Pb, 214Bi, and 137Cs were determined after the sample pyrolysis. The extracts from the mixtures of sewage sludge and plant materials were non-toxic to Vibrio fischeri.

  7. The analysis of hydrocarbons by dual-energy gamma-ray densitometry

    International Nuclear Information System (INIS)

    Taylor, T.; Reynolds, P.W.; Lipsett, J.J.

    1985-11-01

    Various hydrocarbons have been analyzed noninvasively by dual-energy gamma-ray densitometry. The hydrogen/carbon atomic ratio was deduced for pure hydrocarbons while for heavy oil process samples, the ash content was inferred

  8. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons

    KAUST Repository

    González-Gaya, Belén

    2016-05-16

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 10 2 -10 3 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr -1, around 15% of the oceanic CO2 uptake. © 2016 Macmillan Publishers Limited.

  9. Limitations of the toxic equivalency factor (TEF) approach for risk assessment of halogenated aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Safe, S. [Texas A and M Univ., College Station, TX (United States). Dept. of Veterinary Physiology and Pharmacology

    1995-12-31

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related halogenated aromatic hydrocarbons (HAHs) are present as complex mixtures of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs) in most environmental matrices. Risk management of these mixtures utilize the toxic equivalency factor (TEF) approach in which the TCDD (dioxin) or toxic equivalents of a mixture is a summation of the congener concentration (Ci) times TEF{sub i} (potency relative to TCDD) where. TEQ{sub mixture} = {Sigma}[Cil] {times} TEF{sub i}. TEQs are determined only for those HAHs which are aryl hydrocarbon (Ah) receptor agonists and this approach assumes that the toxic or biochemical effects of individual compounds in a mixture are additive. Several in vivo and in vitro laboratory and field studies with different HAH mixtures have been utilized to validate the TEF approach. For some responses, the calculated toxicities of PCDD/PCDF and PCB mixtures predict the observed toxic potencies. However, for fetal cleft palate and immunotoxicity in mice, nonadditive (antagonistic) responses are observed using complex PCB mixtures or binary mixtures containing an Ah receptor agonist with 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl (PCB153). The potential interactive effects of PCBs and other dietary Ah receptor antagonist suggest that the TEF approach for risk management of HAHs requires further refinement and should be used selectively.

  10. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Science.gov (United States)

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  11. X-ray fluorescence diffractionless analyzer for determining light element content in iron ore mixtures

    International Nuclear Information System (INIS)

    Yuksa, L.K.; Kochmola, N.M.; Bondarenko, V.P.; Bogdanov, V.K.

    1986-01-01

    Diffractionless X-ray fluorescence analyzer for detecting calcium oxide and silicon dioxide contents in dry iron ore materials has been developed. The analyzer includes a charging unit, sample-conveying device, spectrometric units for detecting calcium and silicon, computing racks and sample-removing device. Results of calcium oxide and silicon dioxide analyses in iron ore mixtures are presented. Errors are evaluated. It is shown that the analyzer provides high accuracy of one-time determinations, as well as reading constancy for a long time

  12. Method and apparatus for synthesizing hydrocarbons

    Science.gov (United States)

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1985-04-16

    A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

  13. Effective dielectric mixture model for characterization of diesel contaminated soil

    International Nuclear Information System (INIS)

    Al-Mattarneh, H.M.A.

    2007-01-01

    Human exposure to contaminated soil by diesel isomers can have serious health consequences like neurological diseases or cancer. The potential of dielectric measuring techniques for electromagnetic characterization of contaminated soils was investigated in this paper. The purpose of the research was to develop an empirical dielectric mixture model for soil hydrocarbon contamination application. The paper described the basic theory and elaborated in dielectric mixture theory. The analytical and empirical models were explained in simple algebraic formulas. The experimental study was then described with reference to materials, properties and experimental results. The results of the analytical models were also mathematically explained. The proposed semi-empirical model was also presented. According to the result of the electromagnetic properties of dry soil contaminated with diesel, the diesel presence had no significant effect on the electromagnetic properties of dry soil. It was concluded that diesel had no contribution to the soil electrical conductivity, which confirmed the nonconductive character of diesel. The results of diesel-contaminated soil at saturation condition indicated that both dielectric constant and loss factors of soil were decreased with increasing diesel content. 15 refs., 2 tabs., 9 figs

  14. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  15. Detonation velocity in poorly mixed gas mixtures

    Science.gov (United States)

    Prokhorov, E. S.

    2017-10-01

    The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.

  16. Effect of hydrocarbon chain length of aliphatic diluents on hydrodynamic properties of irradiated solutions of extractant

    International Nuclear Information System (INIS)

    Gumenyuk, V.E.; Pribush, A.G.; Egorov, G.F.

    1990-01-01

    To optimize the composition of n-paraffin mixtures with different molecular weight, used as a diluent (D) of extractant during extraction reprocessing of spent fuel, interrelation between D hydrocarbon chain length and change in hydrodynamic properties of extraction mixture on D basis depending on the dose has been considered. It is shown that the value of threshold dose loading (D crit ), at which a sharp change in hydrodynamic properties of tri-n-butyl phosphate solutions in D is observed, decreases with hydrocarbon chain length growth. Empiric ratio relating D crit value and the number of carbon atoms of D is obtained

  17. A closer look at bioaccumulation of petroleum hydrocarbon mixtures in aquatic worms.

    NARCIS (Netherlands)

    Muijs, B.; Jonker, M.T.O.

    2010-01-01

    Petroleum hydrocarbons (oils) are ubiquitous in the aquatic environment, and adequate risk assessment is thus essential. Bioaccumulation plays a key role in risk assessment, but the current knowledge on bioaccumulation of oils is limited. Therefore, this process was studied in detail, using the

  18. Evaluation of the performance and response of the bacharach TLV sniffer and H-Nu photoionization gas analyzer to common hydrocarbon solvents.

    Science.gov (United States)

    Chelton, C F; Zakraysek, N; Lautner, G M; Confer, R G

    1983-10-01

    Two direct reading instruments, the H-Nu PI 101 photoionization analyzer and the J.W. Bacharach TLV Sniffer, were evaluated under laboratory conditions to determine their performance characteristics when challenged by vapors of common hydrocarbon solvent mixtures. Each instrument was evaluated against the manufacturer's recommended test solvent for rise time, fall time, noise, span drift, zero drift, position sensitivity, battery life, and recharge time. The precision, accuracy, and operating linear range were also determined for the test solvents and some petroleum solvent mixtures which are common refinery products. For these latter mixtures, correction factors are presented which allow for an improved estimate of ambient concentrations when monitoring with each of these instruments. All tests except operating humidity range were performed by challenging each instrument with a known concentration of hydrocarbon generated by evaporating calculated liquid volumes into a static chamber. Humidity tests were performed using a dynamic dilution apparatus generating a fixed concentration of hydrocarbon while relative humidity was varied. Concentrations in both systems were verified by gas injection into gas chromatograph. Each instrument performed well when challenged by manufacturers' recommended test solvents. Humidity was shown to influence each instrument's readings. Also, the instruments were shown to have application as monitors of airborne concentrations of common hydrocarbon solvent mixtures.

  19. Haematological and serum biochemical indices of growing rabbits fed camel blood-rumen content mixture

    OpenAIRE

    Mohammed Gambo,; Igwebuike Joseph Uchechi,; Alade Nurudeen Kehinde,; Adamu Shaibu Bala; Raji Abdulrazaq Onimisi

    2011-01-01

    Forty-five crossbred rabbits (Dutch × New Zealand White) of mixed sexes with age between 5 and 7 weeks were divided into 5 groups of 9 rabbits and fed camel blood–rumen content mixture (CBRCM) for 10 weeks. The CBRCM which contained 36.40% crude protein and 22.36% crude fibre was included at 0, 10, 20, 30 and 40% levels in diets of group 1, 2, 3, 4 and 5 respectively. The packed cell volume (PCV), red blood cells (RBC), mean corpuscular volume (MCV)...

  20. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  1. Biodegradation and environmental behavior of biodiesel mixtures in the sea: An initial study.

    Science.gov (United States)

    DeMello, Jared A; Carmichael, Catherine A; Peacock, Emily E; Nelson, Robert K; Samuel Arey, J; Reddy, Christopher M

    2007-07-01

    Biodiesel, a mixture of fatty acid methyl esters (FAMEs) derived from animal fats or vegetable oils, is rapidly moving towards the mainstream as an alternative source of energy. However, the behavior of biodiesel, or blends of biodiesel with fossil diesel, in the marine environment have yet to be fully understood. Hence, we performed a series of initial laboratory experiments and simple calculations to evaluate the microbial and environmental fate of FAMEs. Aerobic seawater microcosms spiked with biodiesel or mixtures of biodiesel and fossil diesel revealed that the FAMEs were degraded at roughly the same rate as n-alkanes, and more rapidly than other hydrocarbon components. The residues extracted from these different microcosms became indistinguishable within weeks. Preliminary results from physical-chemical calculations suggest that FAMEs in biodiesel mixtures will not affect the evaporation rates of spilled petroleum hydrocarbons but may stabilize oil droplets in the water column and thereby facilitate transport.

  2. Application of association models to mixtures containing alkanolamines

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Eriksen, Daniel Kunisch; Kontogeorgis, Georgios

    2011-01-01

    Two association models,the CPA and sPC-SAFT equations of state, are applied to binarymixtures containing alkanolamines and hydrocarbons or water. CPA is applied to mixtures of MEA and DEA, while sPC-SAFT is applied to MEA–n-heptane liquid–liquid equilibria and MEA–water vapor–liquid equilibria. T...

  3. Bioremediation of hydrocarbon contaminated-oil field drill-cuttings ...

    African Journals Online (AJOL)

    The effectiveness of 2 bacterial isolates (Bacillus subtilis and Pseudomonas aeruginosa) in the restoration of oil-field drill-cuttings contaminated with polycyclic aromatic hydrocarbons (PAHs) was studied. A mixture of 4 kg of the drill-cuttings and 0.67 kg of top-soil were charged into triplicate plastic reactors labeled A1 to A3, ...

  4. Viscosity prediction of carbon dioxide plus hydrocarbon mixtures using the friction theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2002-01-01

    mixtures are simple representations or real oil mixtures with carbon dioxide, the f-theory approach can easily be extended to more complex scenarios, such as the simulation of carbon dioxide enhance oil recovery. Additionally, a comparison with the LBC model, which is a widely used model in the oil...

  5. Electrochemical masstransfer of oil hydrocarbons in dispersed soils

    Energy Technology Data Exchange (ETDEWEB)

    Nekrasova, M.A.; Zvolinsky, V.P.; Kanev, M.V. [Russian Friendship Peoples Univ., Dept. of Eecological Monitoring and Forecasting, Moscow (Russian Federation)

    2001-07-01

    A large-scale pollution of the geological environment is a result of imperfect processes of mining, refining, haul of oil and irrational use of petroleum. The processes of masstransfer of hydrocarbons in dispersed soils and the problems of forming of a dual electric layer (DEL) on the demarcations 'water-oil' and 'mineral-water' are still insufficiently studied. Therefore, one of the most important problems in the field of the ecological geology is the analysis of ways of cleaning of soils from hydrocarbons. The kaolinitic clay from the Tirlianskoye deposit (K{sub 2}, st. Jabik, Bashkiria) and average polymineral loam (prlllkl, Moscow region, the south-east of town Zvenigorod) was chosen as the objects of the experimental study. The mixture of West Siberian oils was used for model pollution. The experimental laboratory researches of electrochemical migration of hydrocarbons were carried out on dispersiblis clayey soils. (orig.)

  6. Studies on the production of hydrocarbon mixtures from waste methyl ethyl ketone

    International Nuclear Information System (INIS)

    Kokitkar, P.B.; Roth, O.B.; Debelak, K.A.

    1992-01-01

    Large quantities of waste solvents are generated annually around the world in a large number of diverse industries, the paints and plastics industry being the largest consumer. The management of these waste solvents is becoming more and more difficult due to stricter environmental regulations by the EPA. The paint and allied products industry is expected to shift its solvent use from aliphatics and aromatics to oxygenated solvents to meet emissions and disposal standards. Many researchers have studied the dehydration reactions of oxygenated solvents to produce dehydration. However, most researchers have obtained only low molecular weight compounds (C 3 - C 4 hydrocarbons) from C 1 - C 4 alcohols and ketones. The kinetics of this class of reactions are not available in the open literature. The objective of this paper is to investigate the thermodynamic feasibility of this class of reactions and to compare the hydrocarbon products obtained using methylethyl ketone with regular unleaded gasoline

  7. Composition and Temperature Dependence of Shear Viscosity of Hydrocarbon Mixtures

    Science.gov (United States)

    1980-07-01

    HNN- XTHDCPD Binary System IX. VTF Eq. Parameters for Shear Viscosities Using Constant B Parameter X. Results of Fits to Master Viscosity Eqs. (43...T(K) for 5 C10 Hydrocarbons I Fig. 2a. log n versus 103/T(K) for HNNi I Fig. 2b. log n versus 103/T(K) for XTHDCPD Fig. 3. Isothem of log n versus X...CD for CO-MO Binary System Fig. 4. Isotherm of log n versus XNBC for NBC-DMO Binary System ( ~Fig. 5. Isotherm of log n versus XfINN for HNN- XTHDCPD

  8. Polycyclic aromatic hydrocarbons as skin carcinogens: Comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse

    Energy Technology Data Exchange (ETDEWEB)

    Siddens, Lisbeth K.; Larkin, Andrew [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Krueger, Sharon K. [Superfund Research Center, Oregon State University (United States); The Linus Pauling Institute, Oregon State University (United States); Bradfield, Christopher A. [McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706 (United States); Waters, Katrina M.; Tilton, Susan C. [Superfund Research Center, Oregon State University (United States); Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Pereira, Cliff B. [Superfund Research Center, Oregon State University (United States); Deptartment of Statistics, Oregon State University, Corvallis, OR 97331 (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Löhr, Christiane V. [Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331 (United States); Arlt, Volker M.; Phillips, David H. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London SE1 9NH (United Kingdom); Williams, David E., E-mail: david.williams@oregonstate.edu [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); The Linus Pauling Institute, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); and others

    2012-11-01

    The polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), was compared to dibenzo[def,p]chrysene (DBC) and combinations of three environmental PAH mixtures (coal tar, diesel particulate and cigarette smoke condensate) using a two stage, FVB/N mouse skin tumor model. DBC (4 nmol) was most potent, reaching 100% tumor incidence with a shorter latency to tumor formation, less than 20 weeks of 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion compared to all other treatments. Multiplicity was 4 times greater than BaP (400 nmol). Both PAHs produced primarily papillomas followed by squamous cell carcinoma and carcinoma in situ. Diesel particulate extract (1 mg SRM 1650b; mix 1) did not differ from toluene controls and failed to elicit a carcinogenic response. Addition of coal tar extract (1 mg SRM 1597a; mix 2) produced a response similar to BaP. Further addition of 2 mg of cigarette smoke condensate (mix 3) did not alter the response with mix 2. PAH-DNA adducts measured in epidermis 12 h post initiation and analyzed by {sup 32}P post‐labeling, did not correlate with tumor incidence. PAH‐dependent alteration in transcriptome of skin 12 h post initiation was assessed by microarray. Principal component analysis (sum of all treatments) of the 922 significantly altered genes (p < 0.05), showed DBC and BaP to cluster distinct from PAH mixtures and each other. BaP and mixtures up-regulated phase 1 and phase 2 metabolizing enzymes while DBC did not. The carcinogenicity with DBC and two of the mixtures was much greater than would be predicted based on published Relative Potency Factors (RPFs). -- Highlights: ► Dibenzo[def,p]chrysene (DBC), 3 PAH mixtures, benzo[a]pyrene (BaP) were compared. ► DBC and 2 PAH mixtures were more potent than Relative Potency Factor estimates. ► Transcriptome profiles 12 hours post initiation were analyzed by microarray. ► Principle components analysis of alterations revealed treatment-based clustering. ► DBC gave a unique

  9. Deep catalytic oxidation of heavy hydrocarbons on Pt/Al{sub 2}O{sub 3} catalysts; Oxydation catalytique totale des hydrocarbures lourds sur Pt/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, F.

    1998-12-09

    Deep oxidation by air on Pt supported on alumina of a large number of heavy hydrocarbons representative of those found in a real Diesel car exhaust has been studied. Light-off temperatures between 140 and 320 deg. C on 1%Pt/alumina (80% metal dispersion) have been found. Results show that not only the physical state around the conversion area but also the chemical nature of the hydrocarbon plays an important role. Heavy hydrocarbons deep oxidation behaviour has been classified as a function of their chemical category (alkane, alkene, aromatics etc..). Oxidation of binary mixtures of hydrocarbons has shown strong inhibition effects on n-alkane or CO oxidation by polycyclic compounds like 1-methyl-naphthalene. In some cases, by-product compounds in the gas effluent (other than CO{sub 2} and H{sub 2}O) have been identified by mass-spectrometry leading to oxidation mechanism proposals for different hydrocarbons. Catalyst nature (metal dispersion, content) influence has also been studied. It is shown that turn-over activity is favoured by the increase of the metal bulk size. Acidity influence of the carrier has shown only very little influence on n-alkane or di-aromatic compound oxidation. (author)

  10. Bio-remediation of a sludge containing hydrocarbons

    International Nuclear Information System (INIS)

    Ayotamuno, M.J.; Okparanma, R.N.; Nweneka, E.K.; Ogaji, S.O.T.; Probert, S.D.

    2007-01-01

    Bio-augmentation has been used as a bio-remediation option for hydrocarbon-contaminated, oily-sludge restoration. This sludge was obtained from the Bonny-Terminal Improvement Project (BTIP) for Bonny Island, near Port Harcourt, Nigeria. Its total hydrocarbon-content (THC) was 69,372 mg/kg of sludge. Three treatment reactors (X, Y and Z) and one control reactor (A) were charged with 1500 g of oily sludge and 250 g of agricultural soil (i.e. an oily sludge to soil ratio of 6:1), the mixture homogenized and allowed to settle for seven days before various CFUs were added to reactors X, Y and Z. Reactor A did not receive any bio-preparation. The agricultural soil served both as a nutrient and a microbe carrier. With regularly scheduled mixing and watering, the THC reduction in the oily sludge varied between 40.7% and 53.2% within two weeks as well as between 63.7% and 84.5% within six weeks of applying the bio-remediation. The CFU counts of the added bio-preparation varied between 1.2 x 12 12 and 3.0 x 10 12 CFU/g of sludge and decreased to 7.0 x 10 11 CFU/g of sludge by the end of the sixth week. The pH of the degrading sludge fluctuated between 6.5 and 7.8 during the same period. When compared with the performance of the indigenous microbes in the control sample, the added bio-preparation evidently increased the THC reduction rate in the oily sludge

  11. Dewaxing hydrocarbon oils. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1933-06-23

    In dewaxing hydrocarbon oils such as residium stocks, overhead distillates and crude petroleum or shale oils, by admixing with a liquefied normally gaseous solvent, such as liquefied propane, and cooling to crystallize the wax, the rate of crystallization diminishes rapidly when a certain temperature in an example about 20/sup 0/F is reached. The diminution is prevented during further cooling by removing solvent by evaporation at such a rate that the proporation of solvent in the oil solvent component is maintained at about that existing at the temperature at which the alteration in the rate of crystallization takes place. The evaporation is effected by adjusting the pressure on the mixture, preferably in stages. Solvents for coloring matters and asphaltic compounds, such as carbon disulfide sulfur dioxide, methyl chloride or butyl alcohol may be added to the mixture before crystallization. Chilled solvent may be added to the chilled mixture before separation of the wax in a centrifuge, in order to increase the difference in specific gravity between the wax and the oil-solvent component.

  12. Improved models for the prediction of activity coefficients in nearly athermal mixtures: Part I. Empirical modifications of free-volume models

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios M.; Coutsikos, Philipos; Tassios, Dimitrios

    1994-01-01

    Mixtures containing exclusively normal, branched and cyclic alkanes, as well as saturated hydrocarbon polymers (e.g. poly(ethylene) and poly(isobutylene)), are known to exhibit almost athermal behavior. Several new activity coefficient models containing both combinatorial and free-volume contribu......Mixtures containing exclusively normal, branched and cyclic alkanes, as well as saturated hydrocarbon polymers (e.g. poly(ethylene) and poly(isobutylene)), are known to exhibit almost athermal behavior. Several new activity coefficient models containing both combinatorial and free...

  13. Identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar.

    Science.gov (United States)

    Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara; Wise, Stephen A

    2016-04-15

    A methodology for the characterization of groups of polycyclic aromatic hydrocarbons (PAHs) using a combination of normal phase liquid chromatography with ultraviolet-visible spectroscopy (NPLC/UV-vis) and gas chromatography with mass spectrometry (GC/MS) was used for the identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons, PAHs, in standard reference material (SRM) 1597a, complex mixture of PAHs from coal tar. The NPLC/UV-vis isolated the fractions based on the number of aromatic carbons and the GC/MS allowed the identification and quantification of five of the nine C26H14 PAH isomers; naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene using a retention time comparison with authentic reference standards. For the other four benzenoid isomers with no available reference standards the following two approaches were used. First, the annellation theory was used to achieve the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene, and second, the elution distribution in the GC fractions was used to support the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene and to reach the tentative identifications of dibenzo[a,ghi]perylene, naphtho[7,8,1,2,3-pqrst]pentaphene, and anthra[2,1,9,8-opqra]naphthacene. It is the first time that naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene are quantified, and the first time that benzo[qr]naphtho[3,2,1,8-defg]chrysene is potentially identified, in any sample, in any context. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Gas condensate--raw material for producing liquid paraffin hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Aliyeva, R.B.; Alikishi-Zade, G.Yu.; Kuliyev, A.M.; Leonidov, A.N.; Pereverzev, A.N.

    1980-01-01

    The problem of efficient utilization of gas condensates as raw material for removal of a valuable product, liquid paraffins, is examined. A classification of gas condensates is given which is used as raw material for removing these hydrocarbons: gas condensate with high content of n-alkanes (25-40 mass percent), with average content (18-25 mass percent), with low content (12-18 mass percent), light weight fractions compositions, which do not contain fractions up to 200/sup 0/, and also, content ofless than 12% n-alkanes. Gas condensate I-III groups are 30% of the total reserve of gas condensate. Liquid paraffins hydrocarbons, produced from fractions of diesel fuel, which has been removed from Shatlyk gas condensate under conditions which simulate virtual processes of caramide deparaffinization meet all requirements without additional refining.

  15. Small angle neutron scattering study on short and long chain phosphatidylcholine mixture in trehalose solution

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi [Department of Physics, Gunma University, Maebashi, Gunma (Japan)

    2001-03-01

    Trehalose protects cells and proteins against various stresses due to low temperatures or dryness. In order to clarify the molecular mechanism of cryoprotective function of trehalose, we have studied the interaction between trehalose and phosphatidylcholine (PC) which is a main lipid component of cell membranes. In this study, the structural change of a binary PC mixture by the presence of trehalose was investigated by means of small angle neutron scattering. The PC binary mixture studied contains dihexanoyl-PC (diC{sub 6}PC) and dihexadecy-PC (DHPC). The former has short hydrocarbon chains and the latter has long hydrocarbon chains. The scattering profiles from the DHPC/diC{sub 6}PC mixture were changed, depending on trehalose concentrations. This change can be interpreted as suggesting that the presence of trehalose reduces the interfacial area between water and PCs. (author)

  16. Chemometrics as a tool to analyse complex chemical mixtures

    DEFF Research Database (Denmark)

    Christensen, J. H.

    Chemical characterisation of contaminant mixtures is important for environmental forensics and risk assessment. The great challenge in future research lies in develop- ing suitable, rapid, reliable and objective methods for analysis of the composition of complex chemical mixtures. This thesis...... describes the development of such methods for assessing the identity (chemical fingerprinting) and fate (e.g. biodegradation) of petroleum hydrocarbon mixtures. The methods comply with the general concept that suitable methods must be rapid and inexpensive, objective with limited human in- tervention...... and at the same time must consider a substantial fraction of compounds in the complex mixture. A combination of a) limited sample preparation, b) rapid chemical screening analysis, c) fast and semi-automatic pre-processing, d) compre- hensive multivariate statistical data analysis and e) objective data evaluation...

  17. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....

  18. Continuous process for converting hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    1934-05-01

    A continuous process is disclosed for converting hydrocarbons, liquid, semi-liquid, and solid, of all origins and kinds, into incondensable gases, without carbon deposits, characterized by the fact that an intimate mixture of the material and superheated steam before cracking is passed through a contact mass. The contact mass consists of all metals, metal alloys, and mineral salts which, at the reaction temperature, are fused and do not react with the water vapor or gaseous products.

  19. Bioassay-based risk assessment of complex mixtures

    International Nuclear Information System (INIS)

    Donnelly, K.C.; Huebner, H.J.

    1996-01-01

    The baseline risk assessment often plays an integral role in various decision-making processes at Superfund sites. The present study reports on risk characterizations prepared for seven complex mixtures using biological and chemical analysis. Three of the samples (A, B, and C) were complex mixtures of polycyclic aromatic hydrocarbons (PAHs) extracted from coal tar; while four samples extracted from munitions-contaminated soil contained primarily nitroaromatic hydrocarbons. The chemical-based risk assessment ranked sample C as least toxic, while the risk associated with samples A and B was approximately equal. The microbial bioassay was in general agreement for the coal tar samples. The weighted activity of the coal tar extracts in Salmonella was 4,960 for sample C, and 162,000 and 206,000 for samples A and B, respectively. The bacterial mutagenicity of 2,4,6-trinitrotoluene contaminated soils exhibited an indirect correlation with chemical-based risk assessment. The aqueous extract of sample 004 induced 1,292 net revertants in Salmonella, while the estimated risk to ingestion and dermal adsorption was 2E-9. The data indicate that the chemical-based risk assessment accurately predicted the genotoxicity of the PAHs, while the accuracy of the risk assessment for munitions contaminated soils was limited due to the presence of metabolites of TNT degradation. The biological tests used in this research provide a valuable compliment to chemical analysis for characterizing the genotoxic risk of complex mixtures

  20. Thermodynamics of organic mixtures containing amines. X. Phase equilibria for binary systems formed by imidazoles and hydrocarbons: Experimental data and modelling using DISQUAC

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula; Zawadzki, Maciej [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw (Poland); Gonzalez, Juan Antonio, E-mail: jagl@termo.uva.e [G.E.T.E.F., Grupo Especializado en Termodinamica de Equilibrio entre Fases, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071, Valladolid (Spain)

    2010-04-15

    (Solid + liquid) equilibrium (SLE) temperatures have been determined using a dynamic method for the systems (1H-imidazole, + benzene, + toluene, + hexane, or + cyclohexane; 1-methylimidazole + benzene, or + toluene, 2-methyl-1H-imidazole + benzene, + toluene, or + cyclohexane, and benzimidazole + benzene). In addition (liquid + liquid) equilibrium (LLE) temperatures have been obtained using a cloud point method for (1H-imidazole, + hexane, or + cyclohexane; 1-methylimidazole + toluene, and 2-methyl-1H-imidazole + cyclohexane). The measured systems show positive deviations from the Raoult's law, due to strong dipolar interactions between amine molecules related to the high dipole moment of imidazoles. On the other hand, DISQUAC interaction parameters for the contacts present in these solutions and for the amine/hydroxyl contacts in (1H-imidazole + 1-alkanol) mixtures have been determined. The model correctly represents the available data for the examined systems. Deviations between experimental and calculated SLE temperatures are similar to those obtained using the Wilson or NRTL equations, or the UNIQUAC association solution model. The quasichemical interaction parameters are the same for mixtures containing 1H-imidazole, 1-methylimidazole, or 2-methyl-1H-imidazole and hydrocarbons. This may be interpreted assuming that they are members of a homologous series. Benzimidazole behaves differently.

  1. Thermodynamics of organic mixtures containing amines. X. Phase equilibria for binary systems formed by imidazoles and hydrocarbons: Experimental data and modelling using DISQUAC

    International Nuclear Information System (INIS)

    Domanska, Urszula; Zawadzki, Maciej; Gonzalez, Juan Antonio

    2010-01-01

    (Solid + liquid) equilibrium (SLE) temperatures have been determined using a dynamic method for the systems (1H-imidazole, + benzene, + toluene, + hexane, or + cyclohexane; 1-methylimidazole + benzene, or + toluene, 2-methyl-1H-imidazole + benzene, + toluene, or + cyclohexane, and benzimidazole + benzene). In addition (liquid + liquid) equilibrium (LLE) temperatures have been obtained using a cloud point method for (1H-imidazole, + hexane, or + cyclohexane; 1-methylimidazole + toluene, and 2-methyl-1H-imidazole + cyclohexane). The measured systems show positive deviations from the Raoult's law, due to strong dipolar interactions between amine molecules related to the high dipole moment of imidazoles. On the other hand, DISQUAC interaction parameters for the contacts present in these solutions and for the amine/hydroxyl contacts in (1H-imidazole + 1-alkanol) mixtures have been determined. The model correctly represents the available data for the examined systems. Deviations between experimental and calculated SLE temperatures are similar to those obtained using the Wilson or NRTL equations, or the UNIQUAC association solution model. The quasichemical interaction parameters are the same for mixtures containing 1H-imidazole, 1-methylimidazole, or 2-methyl-1H-imidazole and hydrocarbons. This may be interpreted assuming that they are members of a homologous series. Benzimidazole behaves differently.

  2. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  3. Quality Evaluation of Chicken Nugget Formulated with Various Contents of Chicken Skin and Wheat Fiber Mixture

    Science.gov (United States)

    Kim, Hack-Youn; Kim, Kon-Joong; Lee, Jong-Wan; Kim, Gye-Woong; Choe, Ju-Hui; Kim, Hyun-Wook; Yoon, Yohan; Kim, Cheon-Jei

    2015-01-01

    This study aimed to investigate the effects of various mixtures of the chicken skin and wheat fiber on the properties of chicken nuggets. Two skin and fiber mixtures (SFM) were prepared using the following formulations; SFM-1: chicken skin (50%), wheat fiber (20%), and ice (30%); and SFM-2: chicken skin (30%), wheat fiber (20%), and ice (50%). Chicken nugget samples were prepared by adding the following amounts of either SFM-1 or SFM-2: 0%, 2.5%, 5%, 7.5%, and 10%. The water content for samples formulated with SFM-1 or SFM-2 was higher than in the control (pchicken nuggets was higher than that of cooked chicken nuggets for all the samples tested. Chicken nuggets formulated with SFM-1 and SFM-2 displayed higher cooking yields than the control sample. The hardness of the control sample was also lower than the samples containing SFM-1 and SFM-2. The sensory evaluation showed no significant differences between the control and the samples containing SFM. Therefore, the incorporation of a chicken skin and wheat fiber mixture improved the quality of chicken nuggets. PMID:26761796

  4. A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on HZSM-5

    KAUST Repository

    Khare, Rachit; Liu, Zhaohui; Han, Yu; Bhan, Aditya

    2017-01-01

    Increasing crystallize size or aluminum content in MFI-type zeolites independently enhances the propagation of the aromatics-based methylation/dealkylation cycle relative to that of the olefins-based methylation/cracking cycle in methanol-to-hydrocarbons (MTH) conversion and consequentially results in higher ethene selectivity. Ethene selectivity increases monotonically with increasing aluminum content for HZSM-5 samples with nearly identical crystallite size consequent to an increase in the intracrystalline contact time analogous to our recent report detailing the effects of crystallite size (Khare et al., 2015) on MTH selectivity. The confected effects of crystallite size and site density on MTH selectivity can therefore, be correlated using a descriptor that represents the average number of acid sites that an olefin-precursor will interact with before elution.

  5. A mechanistic basis for the effect of aluminum content on ethene selectivity in methanol-to-hydrocarbons conversion on HZSM-5

    KAUST Repository

    Khare, Rachit

    2017-03-20

    Increasing crystallize size or aluminum content in MFI-type zeolites independently enhances the propagation of the aromatics-based methylation/dealkylation cycle relative to that of the olefins-based methylation/cracking cycle in methanol-to-hydrocarbons (MTH) conversion and consequentially results in higher ethene selectivity. Ethene selectivity increases monotonically with increasing aluminum content for HZSM-5 samples with nearly identical crystallite size consequent to an increase in the intracrystalline contact time analogous to our recent report detailing the effects of crystallite size (Khare et al., 2015) on MTH selectivity. The confected effects of crystallite size and site density on MTH selectivity can therefore, be correlated using a descriptor that represents the average number of acid sites that an olefin-precursor will interact with before elution.

  6. Thermodiffusion in Multicomponent Mixtures Thermodynamic, Algebraic, and Neuro-Computing Models

    CERN Document Server

    Srinivasan, Seshasai

    2013-01-01

    Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.

  7. Effects of hydrocarbon contamination on ozone generation with dielectric barrier discharges

    Science.gov (United States)

    Lopez, Jose L.; Vezzu, Guido; Freilich, Alfred; Paolini, Bernhard

    2013-08-01

    The increasing usage of the feed gases of lower grade liquid oxygen (LOX) containing higher levels of trace hydrocarbon impurities in dielectric barrier discharge (DBD) for ozone generation requires a better understanding of the kinetics of the by-product formation resulting from reactions involving these hydrocarbon impurities. As a case study of hydrocarbon impurities, the kinetics of CH4 conversion in DBDs and the subsequent HNO3 formation were investigated by means of gas-phase plasma diagnostics, supported by detailed process modeling, and extensive in-situ and ex-situ by-product analysis. The by-products formation in the plasma with the presence of CH4, were found to differ significantly in oxygen-fed generators as compared to generators fed with oxygen/nitrogen mixtures. The amount of HNO3 formed depends on the concentration of NOx formed in the plasma and the amount of CH4 that is converted, but not on the O3 concentration. In the present work we have investigated CH4 concentrations of up to 1.95 wt% of the feed gas. The rate of deterioration of the overall ozone generator performance was found to be affected by the concentration of nitrogen in the oxygen/nitrogen mixture.

  8. Modeling Hydrodynamic State of Oil and Gas Condensate Mixture in a Pipeline

    Directory of Open Access Journals (Sweden)

    Dudin Sergey

    2016-01-01

    Based on the developed model a calculation method was obtained which is used to analyze hydrodynamic state and composition of hydrocarbon mixture in each ith section of the pipeline when temperature-pressure and hydraulic conditions change.

  9. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    International Nuclear Information System (INIS)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-01

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction

  10. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.

  11. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part IV. Applications to mixtures of CO2 with alkanes

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Ali, Shahid; Kontogeorgis, Georgios

    2015-01-01

    The thermodynamic properties of pure gaseous, liquid or supercritical CO2 and CO2 mixtures with hydrocarbons and other compounds such as water, alcohols, and glycols are very important in many processes in the oil and gas industry. Design of such processes requires use of accurate thermodynamic...... models, capable of predicting the complex phase behavior of multicomponent mixtures as well as their volumetric properties. In this direction, over the last several years, the cubic-plus-association (CPA) thermodynamic model has been successfully used for describing volumetric properties and phase...

  12. Discharge characteristics of He-Ne-Xe gas mixture with varying Xe contents and at varying sustain electrode gap lengths in the plasma display panel

    International Nuclear Information System (INIS)

    Kwon, Ohyung; Whang, Ki-Woong; Bae, Hyun Sook

    2009-01-01

    The discharge characteristics of He-Ne-Xe gas mixture in the plasma display panel were investigated using a two-dimensional numerical simulation to understand the effects of adding He and varying the Xe contents in the gas mixture, and also varying sustain electrode gap. With 5% Xe content and 60 μm sustain electrode gap, decreased ionization led to the improvement of the vacuum ultraviolet (vuv) efficacy at increasing He mixing ratios. However, at 20% Xe content and 60 μm sustain electrode gap, increased electron heating improved the vuv efficacy until the He mixing ratio reached 0.7, but the efficacy decreased beyond the ratio of 0.7 due to the increased ionization of Xe atoms. At 5% Xe content and 200 μm sustain electrode gap, the vuv efficacy increased as a result of increased electron heating at the gap space at increasing He mixing ratios.

  13. Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions.

    Science.gov (United States)

    Obla, K; Hong, R; Sherman, S; Bentz, D P; Jones, S Z

    2018-01-01

    Characterization of fresh concrete is critical for assuring the quality of our nation's constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K + , Na + , and OH - ) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass ( w/c ), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c , paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture's paste content or the product w*c ; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed.

  14. Extension of the new proposed association equation of state (AEOS) to associating fluid mixtures

    International Nuclear Information System (INIS)

    Rezaei, H.; Modarress, H.; Mohsen-Nia, M.

    2010-01-01

    Recently, a new statistical mechanic-based equation of state has been proposed by Mohsen-Nia and Modarress [M. Mohsen-Nia, H. Modarress, Chem. Phys. 336 (2007) 22-26] for associating pure fluids. The new association equation of state (AEOS) was successfully applied to calculate the saturated properties of water, methanol, and ammonia. In this work, the new proposed AEOS is used to evaluate the (vapour + liquid) equilibrium (VLE) of 25 associating pure compounds and the adjusted parameters are reported. The new AEOS is also extended to mixtures containing associating and non-associating compounds. The calculated saturated properties of the pure compounds are compared with those calculated by other AEOSs. The results of VLE calculation for various binary mixtures such as: alcohol/hydrocarbon, alcohol/CO 2 , alcohol/aromatic-hydrocarbons, and the quaternary system (H 2 O/CH 4 /CO 2 /H 2 S) indicate the capability of the new proposed AEOS for associating pure and mixture calculations.

  15. Petroleum hydrocarbons in offshore sediments from the Gulf

    International Nuclear Information System (INIS)

    Al-Lihaibi, S.S.; Al-Omran, Laila

    1996-01-01

    Petroleum hydrocarbons in offshore sediments from the central part of the Gulf were measured using fluorescence spectrophotometry. Concentrations varied between 4.0 and 56.2 μg/g wet sediment (expressed as Kuwait Crude Oil equivalents), with an average of 12.3 μ/g. Highest concentrations were recorded in the north-west sector, with concentrations decreasing in a south-westerly direction. No significant correlations were observed between petroleum hydrocarbons and sedimentary organic carbon (r-0.07), 'mud' content (r=0.09), 'sand' content (r= -0.08) or 'gravel' content (r= -0.12). Distributions of oil are considered to relate more closely to prevailing current and localized pollutant sources in the region. Despite the substantial inputs of oil to the Gulf, contamination can be considered comparatively low, possibly reflecting physical processes and biological degradation which accelerate removal of petroleum from this marine environment. (author)

  16. Oil-shale gasification for obtaining of gas for synthesis of aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Strizhakova, Yu. [Samara State Univ. (Russian Federation); Avakyan, T.; Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Nowadays, the problem of qualified usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. Gasification with further processing of gaseous products is a one of possible ways of their use. Production of synthesis gas with H{sub 2}/CO ratio equal 2 is possible by gasification of oil-shale. This gas is converted into the mixture of hydrocarbons over cobalt catalyst at temperature from 160 to 210 C at atmospheric pressure. The hydrocarbons can be used as motor, including diesel, or reactive fuel. (orig.)

  17. Ethanol dehydration via azeotropic distillation with gasoline fractions as entrainers: A pilot-scale study of the manufacture of an ethanol–hydrocarbon fuel blend

    OpenAIRE

    Gomis Yagües, Vicente; Pedraza Berenguer, Ricardo; Saquete Ferrándiz, María Dolores; Font, Alicia; Garcia-Cano, Jorge

    2015-01-01

    We establish experimentally and through simulations the economic and technical viability of dehydrating ethanol by means of azeotropic distillation, using a hydrocarbon as entrainer. The purpose of this is to manufacture a ready-to-use ethanol–hydrocarbon fuel blend. In order to demonstrate the feasibility of this proposition, we have tested an azeotropic water–ethanol feed mixture, using a hydrocarbon as entrainer, in a semi pilot-plant scale distillation column. Four different hydrocarbons ...

  18. Hydrocarbons in the suspended matter and the bottom sediments in different regions of the Black Sea Russian sector

    Directory of Open Access Journals (Sweden)

    I. A. Nemirovskaya

    2017-08-01

    Full Text Available Content and composition of hydrocarbons (mainly the aliphatic ones in the suspended matter and the bottom sediments in the Gelendzhik Bay, the Big Sochi water area, the Feodosiya Bay and the Black Sea central part are defined and compared with the total organic carbon and chlorophyll a contents. It is shown that the aliphatic hydrocarbon concentrations exceeding the background ones are found only in the coastal zone. Advancing to the pelagic zone is accompanied by sharp decrease of their concentrations. Petroleum and pyrogenic hydrocarbons are mainly manifested in the polycyclic aromatic hydrocarbons composition. Influence of construction of the Olympic facilities upon distribution of hydrocarbons in the Big Sochi water area was of short duration, and already by 2015 the aliphatic hydrocarbons concentration decreased, on the average, up to 24 µg/l in the surface waters, and up to 18 µg/g – in the bottom sediments. Accumulation of hydrocarbons took place in bottom sediments, where their concentrations exceeded the background ones in terms of dry weight. In the Gelendzhik Bay, their content reached 252 μg/g, and in the composition of organic carbon (Corg > 1 %, which may indicate the contamination of sediments with oil products. In the Feodosiya Bay their part in the composition of Corg did not exceed 0.73 % and was 0.35 % on average. Natural alkanes dominated in the composition of aliphatic hydrocarbons. The bottom sediments are characterized by the predominance of odd high-molecular terrigenous alkanes. The content of polycyclic aromatic hydrocarbons in the studied sediments was rather low: up to 31 ng/g in the Gelendzhik Bay, up to 348 ng/g in the Feodosiya Bay. These concentrations according to the EPA classification are considered background, or minor petroleum hydrocarbons increase the level of aliphatic hydrocarbons in water and sediments, thus creating a modern hydrocarbon background.

  19. Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.).

    Science.gov (United States)

    Freitas, Marisa; Azevedo, Joana; Pinto, Edgar; Neves, Joana; Campos, Alexandre; Vasconcelos, Vitor

    2015-06-01

    Toxic cyanobacterial blooms are documented worldwide as an emerging environmental concern. Recent studies support the hypothesis that microcystin-LR (MC-LR) and cylindrospermopsin (CYN) produce toxic effects in crop plants. Lettuce (Lactuca sativa L.) is an important commercial leafy vegetable that supplies essential elements for human nutrition; thus, the study of its sensitivity to MC-LR, CYN and a MC-LR/CYN mixture is of major relevance. This study aimed to assess the effects of environmentally relevant concentrations (1, 10 and 100 µg/L) of MC-LR, CYN and a MC-LR/CYN mixture on growth, antioxidant defense system and mineral content in lettuce plants. In almost all treatments, an increase in root fresh weight was obtained; however, the fresh weight of leaves was significantly decreased in plants exposed to 100 µg/L concentrations of each toxin and the toxin mixture. Overall, GST activity was significantly increased in roots, contrary to GPx activity, which decreased in roots and leaves. The mineral content in lettuce leaves changed due to its exposure to cyanotoxins; in general, the mineral content decreased with MC-LR and increased with CYN, and apparently these effects are time and concentration-dependent. The effects of the MC-LR/CYN mixture were almost always similar to the single cyanotoxins, although MC-LR seems to be more toxic than CYN. Our results suggest that lettuce plants in non-early stages of development are able to cope with lower concentrations of MC-LR, CYN and the MC-LR/CYN mixture; however, higher concentrations (100 µg/L) can affect both lettuce yield and nutritional quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effect of Fibers on Mixture Design of Stone Matrix Asphalt

    Directory of Open Access Journals (Sweden)

    Yanping Sheng

    2017-03-01

    Full Text Available Lignin fibers typically influence the mixture performance of stone matrix asphalt (SMA, such as strength, stability, durability, noise level, rutting resistance, fatigue life, and water sensitivity. However, limited studies were conducted to analyze the influence of fibers on the percent voids in mineral aggregate in bituminous mixture (VMA during the mixture design. This study analyzed the effect of different fibers and fiber contents on the VMA in SMA mixture design. A surface-dry condition method test and Marshall Stability test were applied on the SMA mixture with four different fibers (i.e., flocculent lignin fiber, mineral fiber, polyester fiber, blended fiber. The test results indicated that the bulk specific gravity of SMA mixtures and asphalt saturation decreased with the increasing fiber content, whilst the percent air voids in bituminous mixtures (VV, Marshall Stability and VMA increased. Mineral fiber had the most obvious impact on the bulk specific gravity of bituminous mixtures, while flocculent lignin fiber had a minimal impact. The mixture with mineral fiber and polyester fiber had significant effects on the volumetric properties, and, consequently, exhibited better VMA over the conventional SMA mixture with lignin fiber. Modified fiber content range was also provided, which will widen the utilization of mineral fiber and polyester fiber in the applications of SMA mixtures. The mixture evaluation suggested no statistically significant difference between lignin fiber and polyester fiber on the stability. The mineral fiber required a much larger fiber content to improve the mixture performance than other fibers. Overall, the results can be a reference to guide SMA mixture design.

  1. Empirically Estimated Heats of Combustion of Oxygenated Hydrocarbon Bio-type Oils

    Directory of Open Access Journals (Sweden)

    Dmitry A. Ponomarev

    2015-04-01

    Full Text Available An empirical method is proposed by which the heats of combustion of oxygenated hydrocarbon oils, typically found from wood pyrolysis, may be calculated additively from empirically predicted heats of combustion of individual compounds. The predicted values are in turn based on four types of energetically inequivalent carbon and four types of energetically inequivalent hydrogen atomic energy values. A method is also given to estimate the condensation heats of oil mixtures based on the presence of four types of intermolecular forces. Agreement between predicted and experimental values of combustion heats for a typical mixture of known compounds was ± 2% and < 1% for a freshly prepared mixture of known compounds.

  2. Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, R.; Rosseel, E.

    2000-01-01

    It is well known that adding hydrogen to natural gas extends the lean limit of combustion and that in this way extremely low emission levels can be obtained: even the equivalent zero emission vehicle (EZEV) requirements can be reached. The emissions reduction is especially important at light engine loads. In this paper results are presented for a GM V8 engine. Natural gas, pure hydrogen and different blends of these two fuels have been tested. The fuel supply system used provides natural gas/hydrogen mixtures in variable proportion, regulated independently of the engine operating condition. The influence of the fuel composition on the engine operating characteristics and exhaust emissions has been examined, mainly but not exclusively for 10 and 20% hydrogen addition. At least 10% hydrogen addition is necessary for a significant improvement in efficiency. Due to the conflicting requirements for low hydrocarbons and low NO{sub x} determining the optimum hythane composition is not straight-forward. For hythane mixtures with a high hydrogen fraction, it is found that a hydrogen content of 80% or less guarantees safe engine operation (no backfire nor knock), whatever the air excess factor. It is shown that to obtain maximum engine efficiency for the whole load range while taking low exhaust emissions into account, the mixture composition should be varied with respect to engine load.

  3. Modelling of phase equilibria of glycol ethers mixtures using an association model

    DEFF Research Database (Denmark)

    Garrido, Nuno M.; Folas, Georgios; Kontogeorgis, Georgios

    2008-01-01

    Vapor-liquid and liquid-liquid equilibria of glycol ethers (surfactant) mixtures with hydrocarbons, polar compounds and water are calculated using an association model, the Cubic-Plus-Association Equation of State. Parameters are estimated for several non-ionic surfactants of the polyoxyethylene ...

  4. Interfacial tensions of binary mixtures of ethanol with octane, decane, dodecane, and tetradecane

    International Nuclear Information System (INIS)

    Mejia, Andres; Cartes, Marcela; Segura, Hugo

    2011-01-01

    Highlights: → Experimental interfacial tensions in binary mixtures with aneotropic behavior. → Experimental interfacial tensions for ethanol + hydrocarbon mixtures. → Aneotropic displacement in ethanol mixtures. - Abstract: This contribution is devoted to the experimental characterization of interfacial tensions of a representative group of binary mixtures pertaining to the (ethanol + linear hydrocarbon) series (i.e. octane, decane, dodecane, and tetradecane). Experimental measurements were isothermically performed using a maximum differential bubble pressure technique, which was applied over the whole mole fraction range and over the temperature range 298.15 K < T/K < 318.15 K. Experimental results show that the interfacial tensions of (ethanol + octane or decane) negatively deviate from the linear behavior and that sharp minimum points on concentration, or aneotropes, are observed for each isotherm. The interfacial tensions of (ethanol + dodecane or tetradecane), in turn, are characterized by combined deviations from the linear behavior, and inflecting behavior observed on concentration for each isotherm. The experimental evidence also shows that these latter mixtures are close to exhibit aneotropy. For the case of (ethanol + octane or decane) mixtures, aneotropy was clearly induced by the similarity of the interfacial tension values of the constituents. The inflecting behavior of the interfacial tensions of (ethanol + dodecane or tetradecane), in turn, was observed in the vicinity of the coordinates of the critical point of these mixtures, thus pointing to the fact that the quasi-aneotropic singularity that affects these mixtures was provoked by the proximity of an immiscibility gap of the liquid phase. Finally, the experimental data of interfacial tensions were smoothed with the Scott-Myers expansion, from which it is possible to conclude that the observed aneotropic concentrations weakly depend on temperature for all the analyzed mixtures.

  5. Formaldehyde, methanol and hydrocarbon emissions from methanol-fueled cars

    International Nuclear Information System (INIS)

    Williams, R.L.; Lipari, F.; Potter, R.A.

    1990-01-01

    Exhaust and evaporative emissions tests were conducted on several methanol- and gasoline-fueled vehicles. Separate samples for chromatographic analysis of formaldehyde, methanol, and individual hydrocarbons were collected in each of the three phases of the driving cycle and in each of the two portions of the evaporative emissions test. One vehicle, equipped with an experimental variable-fuel engine, was tested using methanol/gasoline fuel mixtures of 100, 85, 50, 15, and 0 percent methanol. Combustion-generated hydrocarbons were lowest using methanol fuel, and increased several-fold as the gasoline fraction was increased. Gasoline components in the exhaust increased from zero as the gasoline fraction of the fuel was increased. On the other hand, formaldehyde emissions were several times higher using methanol fuel than they were using gasoline. A dedicated methanol car and the variable-fuel car gave similar emissions patterns when they both were tested using methanol fuel. The organic-carbon composition of the exhaust was 85-90 percent methanol, 5-7 percent formaldehyde, and 3-9 percent hydrocarbons. Several cars that were tested using gasoline emitted similar distributions of hydrocarbons, even through the vehicles represented a broad range of current and developmental engine families and emissions control systems

  6. Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jodie [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Berntsen, Hanne Friis; Zimmer, Karin Elisabeth [Norwegian University of Life Sciences, Oslo (Norway); Frizzell, Caroline [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Verhaegen, Steven; Ropstad, Erik [Norwegian University of Life Sciences, Oslo (Norway); Connolly, Lisa, E-mail: l.connolly@qub.ac.uk [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom)

    2016-03-01

    Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POPs were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p’-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2 h and 48 h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC + Br mixture in comparison to the effects of the individual mixtures. No significant effects were detected in the Br + Cl, PFC + Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment. - Highlights: • High content analysis (HCA) is a novel approach for determining toxicity of

  7. Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening

    International Nuclear Information System (INIS)

    Wilson, Jodie; Berntsen, Hanne Friis; Zimmer, Karin Elisabeth; Frizzell, Caroline; Verhaegen, Steven; Ropstad, Erik; Connolly, Lisa

    2016-01-01

    Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POPs were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p’-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2 h and 48 h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC + Br mixture in comparison to the effects of the individual mixtures. No significant effects were detected in the Br + Cl, PFC + Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment. - Highlights: • High content analysis (HCA) is a novel approach for determining toxicity of

  8. Purification of iodine-containing mixtures and compositions useful therefor

    International Nuclear Information System (INIS)

    Cobb, R.L.

    1987-01-01

    This patent describes a process for the preparation by distillation of essentially colorless hydrocarbon product substantially free of color-forming impurities, which process comprises: (a) adding 0.02 to 0.10 wt% of a metal, M, to a solution comprising: (i) a hydrocarbon product having 8-30 carbon atoms, and (ii) at least one color-forming impurity selected from the group consisting of: I/sub 2/, and R-I, wherein R is H or an organic radical having 1-30 carbon atoms, inclusive. The color-forming impurity and the metal interact under distillation conditions form a complex, MI/sub n/, where n is equal to the valence of the metal M, and the complex MI/sub n/ is non-volatile and essentially non-decomposable under distillation conditions; (b) subjecting the resulting mixture to distillation conditions; and (c) recovering essentially colorless hydrocarbon product as the overhead fraction from the distillation

  9. Laboratory analytical methods for the determination of the hydrocarbon status of soils (a review)

    Science.gov (United States)

    Pikovskii, Yu. I.; Korotkov, L. A.; Smirnova, M. A.; Kovach, R. G.

    2017-10-01

    Laboratory analytical methods suitable for the determination of the hydrocarbon status of soils (a specific soil characteristic involving information on the total content and qualitative features of soluble (bitumoid) carbonaceous substances and individual hydrocarbons (polycyclic aromatic hydrocarbons, alkanes, etc.) in bitumoid, as well as the composition and content of hydrocarbon gases) have been considered. Among different physicochemical methods of study, attention is focused on the methods suitable for the wide use. Luminescence-bituminological analysis, low-temperature spectrofluorimetry (Shpolskii spectroscopy), infrared (IR) spectroscopy, gas chromatography, chromatography-mass spectrometry, and some other methods have been characterized, as well as sample preparation features. Advantages and limitations of each of these methods are described; their efficiency, instrumental complexity, analysis duration, and accuracy are assessed.

  10. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    oxidation of contaminants and by integrating the process to biological treatment, in which the formed degradation products can be biodegraded. Phytoremediation was used to remove fresh and aged petroleum hydrocarbons from soil, and modified FentonAEs reaction combined with biodegradation was used to remove aged creosote oil from soil. The effects of hydrocarbon aging, different plant species and soil amendments on the removal efficiency were studied in phytoremediation experiments. Lab-scale experiments were made with fresh diesel fuel, and a field study was made with aged hydrocarbons deriving from diesel fuel and lubricants. The used plant species were pine, poplar, a grass mixture and a legume mixture. The experiments with modified Fenton's treatment were carried out in soil columns, to which concentrated H{sub 2}O{sub 2} was added simulating in situ injection. Iron was not added since the soil was rich in iron. After FentonAEs treatment, the soil was incubated in serum bottles to determine the effects on bioavailability of PAHs by modified FentonAEs oxidation and to simulate the potential of intrinsic remediation. In addition to hydrocarbon analyses, the effects of both methods on soil microbial activities and toxicity were determined. In the presence of white clover and green pea, pine or poplar, 89 to 98 % of diesel fuel was removed, whereas the presence of grasses did not increase diesel fuel removal compared to treatment without plants, where up to 86 % of diesel fuel was removed. When diesel was applied to the trees for a second time, reduction in one month was 9 to 25 % higher than what was achieved after first month of first application. During the four growing season study with soil contaminated with aged hydrocarbon contaminants, the presence of vegetation did not increase hydrocarbon removal in unfertilised soil. Vegetation cover was denser in amended soil than in unfertilised soil. The addition of compost or NPK fertiliser enhanced hydrocarbon removal

  11. Petroleum pollution in surface sediments of Daya Bay, South China, revealed by chemical fingerprinting of aliphatic and alicyclic hydrocarbons

    Science.gov (United States)

    Gao, Xuelu; Chen, Shaoyong

    2008-10-01

    Nine surface sediments collected from Daya Bay have been Soxhlet-extracted with 2:1 (v/v) dichloromethane-methanol. The non-aromatic hydrocarbon (NAH) fraction of solvent extractable organic matter (EOM) and some bulk geochemical parameters have been analyzed to determine petroleum pollution of the bay. The NAH content varies from 32 to 276 μg g -1 (average 104 μg g -1) dry sediment and accounts for 5.8-64.1% (average 41.6%) of the EOM. n-Alkanes with carbon number ranging from 15 to 35 are identified to be derived from both biogenic and petrogenic sources in varying proportions. The contribution of marine authigenic input to the sedimentary n-alkanes is lower than the allochthonous input based on the average n-C 31/ n-C 19 alkane ratio. 25.6-46.5% of the n-alkanes, with a mean of 35.6%, are contributed by vascular plant wax. Results of unresolved complex mixture, isoprenoid hydrocarbons, hopanes and steranes also suggest possible petroleum contamination. There is strong evidence of a common petroleum contamination source in the bay.

  12. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images

    International Nuclear Information System (INIS)

    Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Boyd, Doreen S.

    2015-01-01

    The global demand for fossil energy is triggering oil exploration and production projects in remote areas of the world. During the last few decades hydrocarbon production has caused pollution in the Amazon forest inflicting considerable environmental impact. Until now it is not clear how hydrocarbon pollution affects the health of the tropical forest flora. During a field campaign in polluted and pristine forest, more than 1100 leaf samples were collected and analysed for biophysical and biochemical parameters. The results revealed that tropical forests exposed to hydrocarbon pollution show reduced levels of chlorophyll content, higher levels of foliar water content and leaf structural changes. In order to map this impact over wider geographical areas, vegetation indices were applied to hyperspectral Hyperion satellite imagery. Three vegetation indices (SR, NDVI and NDVI 705 ) were found to be the most appropriate indices to detect the effects of petroleum pollution in the Amazon forest. - Highlights: • Leaf biochemical alterations in the rainforest are caused by petroleum pollution. • Lower levels of chlorophyll content are symptom of vegetation stress in polluted sites. • Increased foliar water content was found in vegetation near polluted sites. • Vegetation stress was detected by using vegetation indices from satellite images. • Polluted sites and hydrocarbon seepages in rainforest can be identified from space. - Hydrocarbon pollution in the Amazon forest is observed for first time from satellite data

  13. Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures.

    Science.gov (United States)

    Jager, Tjalling; Baerselman, Rob; Dijkman, Ellen; de Groot, Arthur C; Hogendoorn, Elbert A; de Jong, Ad; Kruitbosch, Jantien A W; Peijnenburg, Willie J G M

    2003-04-01

    The bioavailability of polycyclic aromatic hydrocarbons (PAHs) for earthworms (Eisenia andrei) was experimentally determined in seven field-polluted soils and 15 soil-sediment mixtures. The pore-water concentration of most PAHs was higher than predicted. However, most of the compound was associated with dissolved organic carbon (DOC) and not directly available for uptake by earthworms. The apparent sorption could be reasonably predicted on the basis of interactions with DOC; however, the biota-soil accumulation factors (BSAFs) for earthworms were up to two orders of magnitude lower than predicted by equilibrium partitioning. The large variability between sites was not fully explained by differences in sorption. Experimental results indicate that the pool of freely dissolved PAHs in the pore water became partially depleted because of uptake by the earthworms and that bioaccumulation is thus also influenced by the kinetics of PAH desorption and mass transport. A pilot study with Lumbricus rubellus showed that steady-state body residues were well correlated to E. andrei. Current results show that depositing dredge spoil on land may lead to increased bioavailability of the lower-molecular-weight PAHs. However, risk assessment can conservatively rely on equilibrium partitioning, but accurate prediction requires quantification of the kinetics of bioavailability.

  14. Mathematics of Periodic Tables for Benzenoid Hydrocarbons.

    Science.gov (United States)

    Dias, Jerry Ray

    2007-01-01

    The upper and lower bounds for invariants of polyhex systems based on the Harary and Harborth inequalities are studied. It is shown that these invariants are uniquely correlated by the Periodic Table for Benzenoid Hydrocarbons. A modified periodic table for total resonant sextet (TRS) benzenoids based on the invariants of Ds and r(empty) is presented; Ds is the number of disconnections among the empty rings for fused TRS benzenoid hydrocarbons. This work represents a contribution toward deciphering the topological information content of benzenoid formulas.

  15. Inhibition of hydrocarbon bioremediation by lead in a crude oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, E.S.; Obuekwe, C. [Kuwait University (Kuwait). Department of Biological Sciences, Microbiology Program

    2005-07-01

    Analyses of soil samples revealed that the level of lead (total or bioavailable) was three-fold greater in crude oil contaminated than in uncontaminated Kuwaiti soils. Investigation of the possible inhibitory effect of lead on hydrocarbon degradation by the soil microbiota showed that the number of hydrocarbon-degrading bacteria decreased with increased levels of lead nitrate added to soil samples, whether oil polluted or not. At 1.0 mg lead nitrate g{sup -1} dry soil, the number of degraders of hexadecane, naphthalene and crude oil declined by 14%, 23% and 53%, respectively. In a similar manner, the degradation and mineralization of different hydrocarbons decreased with increased lead content in cultures, although the decreases were not significantly different (P>0.05). The dehydrogenase activities of soil samples containing hydrocarbons as substrates also declined with an increase in the lead content of soil samples. (author)

  16. The applicability of radiotracers for the investigation of the distillation of hydrocarbons

    International Nuclear Information System (INIS)

    Graczyk, J.; Iller, E.

    1976-01-01

    The use of radioactive tracers provide valuable methods for the investigation of distillation processes and have been applied to determine the characteristics of material streams, the dynamics of flowing phases and the composition in various parts of the distillation equipment. A method is proposed for testing individual radiotracers emplozemployed for the investigation of the distillation of hydrocarbons. The method consists in laboratory-scale distillation of a tracer together with a multicomponent hydrocarbon mixture, namely a gasoline fraction. The purification efficiency, distillation characteristics, and effective radiochemical purity of several tracers (reactor activated bromobenzene and synthesized C 3 H 7 82 Br, C 4 H 9 82 Br, C 5 H 11 82 Br) have been investigated. The distillation characteristics of bromohydrocarbons labelled with 82 Br and selected hydrocarbons tagged with 14 C (benzene and cumene) have been compared. The radiotracers investigated were employed for the determination of the hydrodynamic parameters of hydrocarbon distillation in laboratory packed columns and a commercial distillation tower. (author)

  17. Novel Photocatalytic Reactor Development for Removal of Hydrocarbons from Water

    Directory of Open Access Journals (Sweden)

    Morgan Adams

    2008-01-01

    Full Text Available Hydrocarbons contamination of the marine environment generated by the offshore oil and gas industry is generated from a number of sources including oil contaminated drill cuttings and produced waters. The removal of hydrocarbons from both these sources is one of the most significant challenges facing this sector as it moves towards zero emissions. The application of a number of techniques which have been used to successfully destroy hydrocarbons in produced water and waste water effluents has previously been reported. This paper reports the application of semiconductor photocatalysis as a final polishing step for the removal of hydrocarbons from two waste effluent sources. Two reactor concepts were considered: a simple flat plate immobilised film unit, and a new rotating drum photocatalytic reactor. Both units proved to be effective in removing residual hydrocarbons from the effluent with the drum reactor reducing the hydrocarbon content by 90% under 10 minutes.

  18. Catalysts for the production of hydrocarbons from carbon monoxide and water

    Science.gov (United States)

    Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

    1985-11-06

    A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  19. MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS

    International Nuclear Information System (INIS)

    Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare; Zonca, Alberto

    2013-01-01

    We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproduce the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 × 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.

  20. Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures

    Science.gov (United States)

    Piotrowska, A.; Chorowski, M.; Dorosz, P.

    2017-02-01

    Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.

  1. Model-based experimental design for assessing effects of mixtures of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Baas, Jan, E-mail: jan.baas@falw.vu.n [Vrije Universiteit of Amsterdam, Dept of Theoretical Biology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Stefanowicz, Anna M., E-mail: anna.stefanowicz@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Klimek, Beata, E-mail: beata.klimek@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Laskowski, Ryszard, E-mail: ryszard.laskowski@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Kooijman, Sebastiaan A.L.M., E-mail: bas@bio.vu.n [Vrije Universiteit of Amsterdam, Dept of Theoretical Biology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2010-01-15

    We exposed flour beetles (Tribolium castaneum) to a mixture of four poly aromatic hydrocarbons (PAHs). The experimental setup was chosen such that the emphasis was on assessing partial effects. We interpreted the effects of the mixture by a process-based model, with a threshold concentration for effects on survival. The behavior of the threshold concentration was one of the key features of this research. We showed that the threshold concentration is shared by toxicants with the same mode of action, which gives a mechanistic explanation for the observation that toxic effects in mixtures may occur in concentration ranges where the individual components do not show effects. Our approach gives reliable predictions of partial effects on survival and allows for a reduction of experimental effort in assessing effects of mixtures, extrapolations to other mixtures, other points in time, or in a wider perspective to other organisms. - We show a mechanistic approach to assess effects of mixtures in low concentrations.

  2. Model-based experimental design for assessing effects of mixtures of chemicals

    International Nuclear Information System (INIS)

    Baas, Jan; Stefanowicz, Anna M.; Klimek, Beata; Laskowski, Ryszard; Kooijman, Sebastiaan A.L.M.

    2010-01-01

    We exposed flour beetles (Tribolium castaneum) to a mixture of four poly aromatic hydrocarbons (PAHs). The experimental setup was chosen such that the emphasis was on assessing partial effects. We interpreted the effects of the mixture by a process-based model, with a threshold concentration for effects on survival. The behavior of the threshold concentration was one of the key features of this research. We showed that the threshold concentration is shared by toxicants with the same mode of action, which gives a mechanistic explanation for the observation that toxic effects in mixtures may occur in concentration ranges where the individual components do not show effects. Our approach gives reliable predictions of partial effects on survival and allows for a reduction of experimental effort in assessing effects of mixtures, extrapolations to other mixtures, other points in time, or in a wider perspective to other organisms. - We show a mechanistic approach to assess effects of mixtures in low concentrations.

  3. Assessment of propane/commercial butane mixtures as possible alternatives to R134a in domestic refrigerators

    International Nuclear Information System (INIS)

    Fatouh, M.; El Kafafy, M.

    2006-01-01

    The possibility of using hydrocarbon mixtures as working fluids to replace R134a in domestic refrigerators has been evaluated through a simulation analysis in the present work. The performance characteristics of domestic refrigerators were predicted over a wide range of evaporation temperatures (-35 to -10 o C) and condensation temperatures (40-60 deg. C) for various working fluids such as R134a, propane, commercial butane and propane/iso-butane/n-butane mixtures with various propane mass fractions. The performance characteristics of the considered domestic refrigerator were identified by the coefficient of performance (COP), volumetric cooling capacity, cooling capacity, condenser capacity, input power to compressor, discharge temperature, pressure ratio and refrigerant mass flow rate. The results showed that pure propane could not be used as a drop in replacement for R134a in domestic refrigerators because of its high operating pressures and low COP. Commercial butane yields many desirable characteristics but requires a compressor change. The coefficient of performance of the domestic refrigerator using a ternary hydrocarbon mixture with propane mass fractions from 0.5 to 0.7 is higher than that of R134a. Comparison among the considered working fluids confirmed that the average refrigerant mass flow rate of the propoane/commercial butane mixture is 50% lower than that of R134a. Also, the results indicated that R134a and the propoane/commercial butane mixture with 60% propane mass concentration have approximately the same values of saturation pressure, compressor discharge temperature, condenser heat load, input power, cooling capacity and volumetric cooling capacity. However, the pressure ratio of the hydrocarbon mixture with 60% propane is lower than that of R134a by about 11.1%. Finally, the reported results confirmed that the propane/iso-butane/n-butane mixture with 60% propane is the best drop in replacement for R134a in domestic refrigerators under normal

  4. Bioremediation of severely weathered hydrocarbons: is it possible?

    International Nuclear Information System (INIS)

    Gallego, J. R.; Villa, R.; Sierra, C.; Sotres, A.; Pelaez, A. I.; Sanchez, J.

    2009-01-01

    Weathering processes of spilled hydrocarbons promote a reduced biodegradability of petroleum compounds mixtures, and consequently bioremediation techniques are often ruled out within the selection of suitable remediation approaches. This is truly relevant wherever old spills at abandoned industrial sites have to be remediated. However it is well known most of the remaining fractions and individual compounds of weathered oil are still biodegradable, although at slow rates than alkanes or no and two-ring aromatics. (Author)

  5. Process and catalysts for hydrocarbon conversion. [high antiknock motor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1940-02-14

    High anti-knock motor fuel is produced from hydrocarbons by subjecting it at an elevated temperature to contact with a calcined mixture of hydrated silica, hydrated alumina, and hydrated zirconia, substantially free from alkali metal compounds. The catalyst may be prepared by precipitating silica gel by the acidification of an aqueous solution of an alkali metal silicate, intimately mixing hydrated alumina and hydrated zirconia therewith, drying, purifying the composite to substantially remove alkali metal compounds, again drying, forming the dried material into particles, and finally calcining. The resultant conversion products may be fractionated to produce gasoline, hydrocarbon oil above gasoling boiling point range, and a gaseous fraction of olefins which are polymerized into gasoline boiling range polymers.

  6. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    Directory of Open Access Journals (Sweden)

    Gennady G. Kuvshinov

    2012-12-01

    Full Text Available The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  7. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Wang, Shurong; Guo, Zuogang; Cai, Qinjie; Guo, Long

    2012-01-01

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h −1 . The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h −1 . A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain

  8. Intelligent gas-mixture flow sensor

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Fred; Houkes, Z.; van Kuijk, J.C.C.; van Kuijk, Joost

    A simple way to realize a gas-mixture flow sensor is presented. The sensor is capable of measuring two parameters from a gas flow. Both the flow rate and the helium content of a helium-nitrogen gas mixture are measured. The sensor exploits two measurement principles in combination with (local)

  9. Quantitative X-ray methods of amorphous content and crystallinity determination of SiO2, in Quartz and Opal mixture

    International Nuclear Information System (INIS)

    Ketabdari, M.R.; Ahmadi, K.; Esmaeilnia Shirvani, A.; Tofigh, A.

    2001-01-01

    X-ray diffraction technique is commonly used for qualitative analysis of minerals, and has also been successfully used for quantitative measurements. In this research, the matrix flushing and a new X-ray diffraction method have been used for the determination of crystallinity and amorphous content of Opal and Quartz mixture. The PCAPD is used to determine the quantitative analysis of these two minerals

  10. Topical absorption and toxicity studies of jet fuel hydrocarbons in skin

    Science.gov (United States)

    Muhammad, Faqir

    Kerosene-based fuels have been used for many decades. Over 2 million military and civilian personnel each year are occupationally exposed to various jet fuel mixtures. Dermatitis is one of the major health concerns associated with these exposures. In the past, separate absorption and toxicity studies have been conducted to find the etiology of such skin disorders. There was a need for integrated absorption and toxicity studies to define the causative constituents of jet fuel responsible for skin irritation. The focus of this thesis was to study the percutaneous absorption and to identify the hydrocarbons (HC) causing irritation in jet fuels so that preventive measures could be taken in the future. The initial study was conducted to understand the possible mechanism for additive interactions on hydrocarbon absorption/disposition in silastic, porcine skin and isolated perfused porcine skin flap (IPPSF) models. The influence of JP-8 (100) additives (MDA, BHT, 8Q405) on the dermal kinetics of 14C-naphthalene and 14C/3H-dodecane as markers of HC absorption was evaluated. This study indicated that individual and combination of additives influenced marker disposition in different membranes. MDA was a significant suppressor while BHT was a significant enhancer of naphthalene absorption in IPPSF. The 8Q405 significantly reduced naphthalene content in dosed silastic and skin indicating a direct interaction between additive and marker HC. Similarly, the individual MDA and BHT significantly retained naphthalene in the stratum corneum of porcine skin, but the combination of both of these additives statistically decreased the marker retention in the stratum corneum suggesting a potential biological interaction. This study concluded that all components of a chemical mixture should be assessed since the effects of single components administered alone or as pairs may be confounded when all are present in the complete mixture. However, this study indicated that the marker HC

  11. Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting

    International Nuclear Information System (INIS)

    Antizar-Ladislao, Blanca; Lopez-Real, Joseph; Beck, Angus J.

    2005-01-01

    The biodegradation of 16 polycyclic aromatic hydrocarbons (PAHs), listed as priority pollutants by the USEPA, present in a coal-tar-contaminated soil from a former manufactured gas plant site was investigated using laboratory-scale in-vessel composting reactors to determine the suitability of this approach as a bioremediation technology. Preliminary investigations were conducted over 16 weeks to determine the optimum soil composting temperature (38, 55 and 70 deg. C). Three tests were performed; firstly, soil was composted with green-waste, with a moisture content of 60%. Secondly, microbial activity was HgCl 2 -inhibited in the soil green-waste mixture with a moisture content of 60%, to evaluate abiotic losses, while in the third experiment only soil was incubated at the three different temperatures. PAHs and microbial populations were monitored. PAHs were lost from all treatments with 38 deg. C being the optimum temperature for both PAH removal and microbial activity. Calculated activation energy values (E a ) for total PAHs suggested that the main loss mechanism in the soil-green waste reactors was biological, whereas in the soil reactors it was chemical. Total PAH losses in the soil-green waste composting mixtures were by pseudo-first order kinetics at 38 deg. C (k = 0.013 day -1 , R 2 = 0.95), 55 deg. C (k = 0.010 day -1 , R 2 = 0.76) and at 70 deg. C (k = 0.009 day -1 , R 2 = 0.73)

  12. X-ray excited optical luminescence of polynuclear aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Oestreich, G.J.

    1979-05-01

    X-ray excited optical luminescence (XEOL) coupled with time resolved spectroscopy was employed to analyze polynuclear aromatic hydrocarbons (PAH) in n-alkane solvents at 10 K. A pulsed XEOL system which was designed around minicomputer control of a medical x-ray unit was developed. Computer software which generated variable width x-ray pulses, monitored timing reference pulses, controlled data acquisition, and analyzed data was written. Phosphorescence decay constants of several PAHs were determined. Synthetic mixtures of zone refined PAHs were prepared and time resolved with the pulsed XEOL technique. Analytical results obtained from the five component mixtures of PAHs at the part per million level were tabulated. Systematic improvements and further development of the pulsed XEOL method were considered.

  13. NO{sub x} emissions from combustion of hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Roertveit, Geir Johan

    2002-07-01

    This work includes five different parts each of which has resulted in a paper that is accepted and submitted for publication. Additionally, a short introductory background section precedes these papers. A significant amount of experimental data is presented for the combustion of hydrogen which focus on emission of NO{sub x}. Different dilutes were added to the hydrogen to reduce the flame temperature and subsequently the NO{sub x} emissions. These experiments were performed in a counterflow burner where a flat steady flame layer facilitated accurate measurements. The experiments were compared with numerical calculations to assist the interpretation and discussion of the results. It was found that the experimental results compared well with numerical calculations of NO{sub x} at temperatures of up to 1900 K, while for higher temperatures an increasing discrepancy was found due to the influence of the sampling equipment. Nitrogen diluted methane was enriched by hydrogen from 0to 100 % to study the effect of NO{sub x} with the use of different fuel mixtures in the same counterflow burner. For a similar temperature of the NO{sub x} emitted from a H{sub 2} flame is only 25 % of that of a methane flame. Experiments compared to the pure methane flame showed that there is only a reduction of NO{sub x} when there is very high hydrogen content in the fuel mixture and for most mixtures an actual increase in NO{sub x} is observed. This is found partly due to a triggering of the NO{sub x} from the prompt mechanism. Natural gas and methane have both been substituted by up to 30 % H{sub 2} at constant load in various burners to reveal the effect of H{sub 2} enrichment on emissions. The burners include a swirl burner, a fibre burner, a porous burner and a catalytically supported porous burner. The thermal loads were varied from 2.6 to 21 kW, while excess air ratios were varied form 1 to 1.8. In general little effect of H{sub 2} is found by enriching the fuel. At temperatures of up

  14. An improved molecular dynamics algorithm to study thermodiffusion in binary hydrocarbon mixtures

    Science.gov (United States)

    Antoun, Sylvie; Saghir, M. Ziad; Srinivasan, Seshasai

    2018-03-01

    In multicomponent liquid mixtures, the diffusion flow of chemical species can be induced by temperature gradients, which leads to a separation of the constituent components. This cross effect between temperature and concentration is known as thermodiffusion or the Ludwig-Soret effect. The performance of boundary driven non-equilibrium molecular dynamics along with the enhanced heat exchange (eHEX) algorithm was studied by assessing the thermodiffusion process in n-pentane/n-decane (nC5-nC10) binary mixtures. The eHEX algorithm consists of an extended version of the HEX algorithm with an improved energy conservation property. In addition to this, the transferable potentials for phase equilibria-united atom force field were employed in all molecular dynamics (MD) simulations to precisely model the molecular interactions in the fluid. The Soret coefficients of the n-pentane/n-decane (nC5-nC10) mixture for three different compositions (at 300.15 K and 0.1 MPa) were calculated and compared with the experimental data and other MD results available in the literature. Results of our newly employed MD algorithm showed great agreement with experimental data and a better accuracy compared to other MD procedures.

  15. Fate of polycyclic aromatic hydrocarbons during composting of oily sludge.

    Science.gov (United States)

    Kriipsalu, M; Marques, M; Hogland, W; Nammari, D R

    2008-01-01

    In order to assess the effectiveness of aerobic degradation with emphasis on the 16 U.S. EPA priority polycyclic aromatic hydrocarbons (PAH), oily sludge generated by a dissolved air flotation flocculation unit of a wastewater treatment plant in a petroleum refinery was amended with remediated oil-contaminated soil and non-mature garden waste compost 40:40:20 (wet weight) respectively. About 21 t of the mixture with a top-layer formed by 30 cm of remediated soil was treated in a 28 m3 air-forced reactor. The PAH concentration was monitored for 370 days. In the top-layer, a reduction of 88 % of the total extractable PAH was measured at day 62 and a final reduction of 93% at day 370. In the mixture, a reduction of 72% in total PAH was measured at day 62, followed by fluctuation in concentration with a final measured reduction of 53% at day 370. The analysis of individual PAH in the mixture suggested that volatilization and biodegradation are the main mechanisms responsible for the reduction of 2 ring PAH and 3-4 ring PAH, respectively. Fluctuation of 5-6 ring PAH concentrations with increase observed at the end of the period might result from a combination of the following: (i) sequestration of large PAH in the organic matrix (reducing bioavailability, biodegradability and eventually, extractability) and desorption as composting progresses; (ii) heterogeneous distribution of the stable large PAH in the mixture, thus affecting sampling. It was concluded that one-time composting in static-aerated biopiles with organic amendments as the sole strategy to treat oily sludge is very effective in reducing the content of 2-4 ring PAH, but it is not effective in reducing the content of 5-6 ring PAHs, even after a relatively long time span (370 d). The concentrations measured in the remediated soil that formed the top layer after 62 days of composting suggests that further relevant reduction of residual PAH (89% of total PAH and 69% of 5-6 ring PAH) can be obtained if the

  16. Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification.

    Science.gov (United States)

    Eroglu, Ela; Okada, Shigeru; Melis, Anastasios

    2011-08-01

    Six different strains of the green microalgae Botryococcus belonging to the A-race or B-race, accumulating alkadiene or botryococcene hydrocarbons, respectively, were compared for biomass and hydrocarbon productivities. Biomass productivity was assessed gravimetrically upon strain growth in the laboratory under defined conditions. Hydrocarbon productivities were measured by three different and independent experimental approaches, including density equilibrium of the intact cells and micro-colonies, spectrophotometric analysis of hydrocarbon extracts, and gravimetric quantitation of eluted hydrocarbons. All three hydrocarbon-quantitation methods yielded similar results for each of the strains examined. The B-race microalgae Botryococcus braunii var. Showa and Kawaguchi-1 constitutively accumulated botryococcene hydrocarbons equivalent to 30% and 20%, respectively, of their overall biomass. The A-race microalgae Botryococcus braunii, varieties Yamanaka, UTEX 2441 and UTEX LB572 constitutively accumulated alkadiene hydrocarbons ranging from 14% to 13% and 10% of their overall biomass, respectively. Botryococcus sudeticus (UTEX 2629), a morphologically different green microalga, had the lowest hydrocarbon accumulation, equal to about 3% of its overall biomass. Results validate the density equilibrium and spectrophotometric analysis methods in the quantitation of botryococcene-type hydrocarbons. These analytical advances will serve in the screening and selection of B. braunii and of other microalgae in efforts to identify those having a high hydrocarbon content for use in commercial applications.

  17. Kandungan Senyawa Polisiklik Aromatik Hidrokarbon (PAH di Teluk Jakarta (Polycyclic Aromatic Compounds Hydrocarbons (PAH Content in Jakarta Bay

    Directory of Open Access Journals (Sweden)

    Fasmi Ahmad

    2013-07-01

    , including Polycyclic Aromatic Hydrocarbons organic compounds (PAH. These organic compounds are toxic to marine life. This study determines the content of PAH in sea water and sediments in relation to marine life and to find out the source of the PAH compounds in the Bay of Jakarta. Measurement of Polycyclic Aromatic Hydrocarbon levels were carried out in March 2011. Sea water samples were taken by using a water sampler and sediment samples taken using a grab at 15 sites. PAH content were analyzed using gas chromatography–Flame Ionization Detector. The results showed that the content of PAH in seawater in the western part of Jakarta Bay > middle > east. The content of PAH in the western of Jakarta Bay ranged from 201,57 to 474,68 ppb with PAH total 1404,68 ppb, in the middle area ranged from 104,61 to 337,07 ppb with PAH total 825,63 ppb, and in the eastern part ranged from 8.72 to 115,39 ppb with PAH total 806,73 ppb. This means that seawater in the western part receives the PAH compound more than the others. However, the content of PAH in sediments in the western part < middle < eastern. This means that sediment in the western part of Jakarta Bay accumulates PAH compound less than the others areas. The content of PAH in the western part of Jakarta Bay ranged from 1.92 to 64.241 ppm with PAH total 107,931 ppm, in middle part ranged from 16.14 to 77.71 ppb with PAH total 170,61 ppm, and in the eastern part range 8,72 to 115.39 ppm with PAH total 252,25 ppm. This means that sediment in the western area of Jakarta Bay accumulates the PAH compound less than the others. Sources of PAH in seawater and sediment came from several sources namely from combustion of organic material, combustion of petroleum, and from petroleum. PAH content in seawater has passed the Threshold Limit Value stated by KMNLH for marine life and also has passed the threshold value stated the Ministry of Environment and Handbook for Sediment Quality Assessment for marine organism. Key words: Jakarta Bay

  18. Biodegradation of hydrocarbon remnants by biological activators in the presence of INIPOL EAP 22

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. R.; Luengo, M. C.; Socias, S.; Perez, F.; Laseca, D. [Universidad de las Islas Baleares, Palma de Mallorca (Spain); Perez-Navarro, A.; Morales, N. [Universidad Alfonso X El Sabio, Madrid (Spain)

    1997-10-01

    Degradation of highly weathered hydrocarbon mixtures resulting from an accidental spill in an oil refinery was studied, using BIOLEN IG 30 as the degradation agent microorganism, and INIPOL EAP 22 as the biodegradation accelerator. Results show that BIOLEN IG 30 is able to degrade highly weathered hydrocarbons at 20 degrees C, in the presence of INIPOL EAP 22. BIOLEN IG 30 is also able to degrade the total ionic and anionic dispersants in FINASOL OSR 51 (a dispersant), even in the absence of a biodegradation accelerator. 10 refs., 7 tabs., 3 figs.

  19. Biodegradation of hydrocarbon remnants by biological activators in the presence of INIPOL EAP 22

    International Nuclear Information System (INIS)

    Bergueiro, J. R.; Luengo, M. C.; Socias, S.; Perez, F.; Laseca, D.; Perez-Navarro, A.; Morales, N.

    1997-01-01

    Degradation of highly weathered hydrocarbon mixtures resulting from an accidental spill in an oil refinery was studied, using BIOLEN IG 30 as the degradation agent microorganism, and INIPOL EAP 22 as the biodegradation accelerator. Results show that BIOLEN IG 30 is able to degrade highly weathered hydrocarbons at 20 degrees C, in the presence of INIPOL EAP 22. BIOLEN IG 30 is also able to degrade the total ionic and anionic dispersants in FINASOL OSR 51 (a dispersant), even in the absence of a biodegradation accelerator. 10 refs., 7 tabs., 3 figs

  20. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile)

    International Nuclear Information System (INIS)

    Godoy-Faundez, Alex; Antizar-Ladislao, Blanca; Reyes-Bozo, Lorenzo; Camano, Andres; Saez-Navarrete, Cesar

    2008-01-01

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration > 50,000 mg kg -1 ) and sawdust (fuel concentration > 225,000 mg kg -1 ) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 deg. C), constant moisture content (MC, 50%) and continuous aeration (16 l min -1 ) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p < 0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct

  1. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile).

    Science.gov (United States)

    Godoy-Faúndez, Alex; Antizar-Ladislao, Blanca; Reyes-Bozo, Lorenzo; Camaño, Andrés; Sáez-Navarrete, César

    2008-03-01

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration>50,000 mg kg(-1)) and sawdust (fuel concentration>225,000 mg kg(-1)) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 degrees C), constant moisture content (MC, 50%) and continuous aeration (16 l min(-1)) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (pcontaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct nutrient balance

  2. Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they?

    DEFF Research Database (Denmark)

    Carvalho, Raquel N.; Arukwe, Augustine; Ait-Aissa, Selim

    2014-01-01

    , polyaromatic hydrocarbons, a surfactant, and a plasticizer), each present at its safety limit concentration imposed by the European legislation, were prepared and tested for their toxic effects. The effects of the mixtures were assessed in 35 bioassays, based on 11 organisms representing different trophic...

  3. Thermodiffusion in multicomponent n-alkane mixtures.

    Science.gov (United States)

    Galliero, Guillaume; Bataller, Henri; Bazile, Jean-Patrick; Diaz, Joseph; Croccolo, Fabrizio; Hoang, Hai; Vermorel, Romain; Artola, Pierre-Arnaud; Rousseau, Bernard; Vesovic, Velisa; Bou-Ali, M Mounir; Ortiz de Zárate, José M; Xu, Shenghua; Zhang, Ke; Montel, François; Verga, Antonio; Minster, Olivier

    2017-01-01

    Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n -alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution.

  4. A comparison of the C{sub 2}-C{sub 9} hydrocarbon compositions of vehicle fuels and urban air in Dublin, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, B M; Marnane, I S [Trinity College, Dublin (Ireland). Dept. of Civil, Structural and Environmental Engineering

    2002-07-01

    Hourly roadside hydrocarbon concentrations were measured over a six-week period at a heavily trafficked junction in Dublin city centre. Samples of ten typical leaded and unleaded petrol fuels used in Irish vehicles were also collected and their hydrocarbon compositions determined. The measured ambient hydrocarbon concentrations are presented, as are the properties of each of the analysed fuels. Comparison of the ambient hydrocarbon concentrations and the fuel hydrocarbon composition reveals a strong correlation for most hydrocarbons, except those compounds that were wholly combustion derived (i.e. not present in the fuel). Different characteristics were noted for aromatics, alkanes and alkenes. The comparison of roadside ambient air and fuel hydrocarbon content agrees well with other studies that have compared fuel content and exhaust composition. The relative impacts of exhaust and evaporative emissions on roadside hydrocarbon concentrations are apparent. (Author)

  5. Toxicity of oils and petroleum hydrocarbons to estuarine crustaceans

    Energy Technology Data Exchange (ETDEWEB)

    Tatem, H.E. (Army Engineer Waterways Experiment Station, Vicksburg, MS); Cox, B.A.; Anderson, J.W.

    1978-04-01

    Bioassay experiments with various life stages of three estuarine shrimp and soluble petroleum hydrocarbons (PH) revealed residual Bunker C oil and refined No. 2 fuel oil to be more toxic than two crude oils tested. Larvae of Palaemonetes pugio were slightly more sensitive to the PH than adults, while young penaeid shrimp were shown to be more resistant than older, larger individuals. Shrimp exposed to PH in conjunction with temperature and salinity changes were more susceptible to the PH. Some common aromatic and diaromatic PH, including three naphthalene compounds, were utilized in bioassays. Naphthalenes were highly toxic. The toxicity of petroleum products is closely related to aromatic hydrocarbon content, especially the naphthalenes and related hydrocarbons.

  6. Catalyst for reforming hydrocarbons with water vapors

    International Nuclear Information System (INIS)

    Nicklin, T.; Farrington, F.; Whittaker, J.R.

    1979-01-01

    The catalyst should reform hydrocarbons with water vapour. It consists of a carrier substance (preferably clay) on whose surface the catalytically active substances are formed. By impregnation one obtains this with a mixture of thermally destructable nickel and uranium compounds and calcination of the impregnated carrier. The catalyst is marked by a definite weight ratio of uranium to nickel (about 0.6 to 1), the addition of barium compounds and a maximum limit of these additives. All details of manufacture and the range of variations are described in detail. (UWI) [de

  7. Liquid, urea group-containing polyisocyanate mixtures and plastics derived therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Buethe, I.; Marx, M.; Schoenleben, W.

    1988-04-05

    The invention relates to urea group-containing polyisocyanate mixtures which are liquid at room temperature and have an isocyanate group content of from 15 to 30 weight percent and a diphenylmethane diisocyanate content of from 55 to 90 weight percent. These mixtures are obtained through the reaction of polyoxyalkylene polyamines having a functionality of from 2 to 5 and an amine number from 20 to 250 with a polyisocyanate selected from the group consisting of: a mixture of diphenylmethane diisocyanates and polyphenyl polymethylene polysocyanates having a diphenylmethane diisocyanate content of from 55 to 90 wt%, or at least one diphenylmethane diisocyanate isomer. The polyisocyanate mixtures claimed in the invention are used to prepare dense or cellular polyurethane and/or polyisocyanurate plastics, in particular, flexible polyurethane foams.

  8. Determination of molecular structures of aromatic hydrocarbons of crystal fractions of Noriysk crude by a series of luminescent-spectral methods

    Energy Technology Data Exchange (ETDEWEB)

    Ogloblina, A.I.; Alekseyeva, T.A.; Barabadze, Sh.Sh.; Melikadze, L.D.; Teplitskaya, T.A.

    1979-01-01

    The structure of crystalline aromatic hydrocarbons isolated from the high boiling fraction (540-560 degrees) of Noriysk crude was studied using methods of luminescent-spectral analysis. The individual composition of the crystalline aromatic hydrocarbons was analyzed by a combination of fine structure luminescent spectroscopy and spectrofluorimetric methods in frozen matrices using spectra of fluorescence, phosphorescence and excitation of luminescence. The composite method used at 77 K is very effective and allows detailed characteristics of the molar-group composition of complex mixtures of petroleum aromatic hydrocarbons to the point of identification of individual components.

  9. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kostanovskiy, I.A., E-mail: kostanovskiyia@gmail.com [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Afanas’ev, V.P. [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Naujoks, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Mayer, M. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-07-15

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses.

  10. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    International Nuclear Information System (INIS)

    Kostanovskiy, I.A.; Afanas’ev, V.P.; Naujoks, D.; Mayer, M.

    2015-01-01

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses

  11. The Stingless Bee Melipona solani Deposits a Signature Mixture and Methyl Oleate to Mark Valuable Food Sources.

    Science.gov (United States)

    Alavez-Rosas, David; Malo, Edi A; Guzmán, Miguel A; Sánchez-Guillén, Daniel; Villanueva-Gutiérrez, Rogel; Cruz-López, Leopoldo

    2017-10-01

    Stingless bees foraging for food improve recruitment by depositing chemical cues on valuable food sites or pheromone marks on vegetation. Using gas chromatography/mass spectrometry and bioassays, we showed that Melipona solani foragers leave a mixture composed mostly of long chain hydrocarbons from their abdominal cuticle plus methyl oleate from the labial gland as a scent mark on rich food sites. The composition of hydrocarbons was highly variable among individuals and varied in proportions, depending on the body part. A wide ratio of compounds present in different body parts of the bees elicited electroantennogram responses from foragers and these responses were dose dependent. Generally, in bioassays, these bees prefer to visit previously visited feeders and feeders marked with extracts from any body part of conspecifics. The mean number of visits to a feeder was enhanced when synthetic methyl oleate was added. We propose that this could be a case of multi-source odor marking, in which hydrocarbons, found in large abundance, act as a signature mixture with attraction enhanced through deposition of methyl oleate, which may indicate a rich food source.

  12. Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil

    CSIR Research Space (South Africa)

    Maila, MP

    2002-01-01

    Full Text Available The sensitivity of Lepidium sativum germination to polycyclic aromatic hydrocarbons (PAHs) was investigated in soil(s) artificially and historically contaminated with mixtures of PAR The level of germination of L. sativum decreased with increasing...

  13. Analysis of points of dew and contents of humidity of gassy mixtures N2-H2 O and CH4 H2 O

    International Nuclear Information System (INIS)

    Bedoya M, D; Muller, C; Oellrich, L R

    1995-01-01

    The actual knowledge of the exact water content in saturated gas mixtures still is incomplete, especially in the high pressure and low temperature region. Hence, dew point measurements with nitrogen - water and methane-water mixtures were performed; at pressures of 3 and 6 MPa and temperatures from 258 K to 288 K. The dew points were determined with the dew point mirror method and the water content by means of the Karl-Fischer-titration. The experimental values were compared to correlations from the literature. The approach by Sharma-Campbell resulted in the best description of the system nitrogen - water. For temperatures below 273 K the assumption of ideal behavior proved to be sufficient for the system methane-water, whereas for temperatures above 273 K calculations with the two-parameter corresponding states principle in combination with a fugacity correction turned out to be the best

  14. Thermodynamics of mixtures containing amines. IX. Application of the concentration-concentration structure factor to the study of binary mixtures containing pyridines

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Juan Antonio, E-mail: jagl@termo.uva.es [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain); Cobos, Jose Carlos; Garcia de la Fuente, Isaias; Mozo, Ismael [G.E.T.E.F. Dpto Termodinamica y Fisica Aplicada, Facultad de Ciencias, Universidad de Valladolid, Valladolid 47071 (Spain)

    2009-10-10

    Binary mixtures formed by a pyridine base and an alkane, or an aromatic hydrocarbon, or a 1-alkanol have been studied in the framework of the concentration-concentration structure factor, S{sub CC}(0), formalism. Deviations between experimental data and those provided by the DISQUAC model are discussed. Systems containing alkanes are characterized by homocoordination. In pyridine + alkane mixtures, S{sub CC}(0) decreases with the chain length of the longer alkanes, due to size effects. For a given alkane, S{sub CC}(0) also decreases with the number of CH{sub 3}- groups in the pyridine base. This has been interpreted assuming that the number of amine-amine interactions available to be broken upon mixing also decreases similarly, probably as steric hindrances exerted by the methyl groups of the aromatic amine increase with the number of these groups. Homocoordination is higher in mixtures with 3,5-dimethylpyridine than in those with 2,6-dimethylpyridine. That is, steric effects exerted by methyl groups in positions 3 and 5 are stronger than when they are in positions 2 and 6. Similarly, from the application of the DISQUAC (dispersive-quasichemical) model, it is possible to conclude that homocoordination is higher in systems with 3- or 4-methylpyridine than in those involving 2-methylpyridine. Systems including aromatic hydrocarbons are nearly ideal, which seems to indicate that there is no specific interaction in such solutions. Mixtures with 1-alkanols show heterocoordination. This reveals the existence of interactions between unlike molecules, characteristic of alkanol + amine mixtures. Methanol systems show the lowest S{sub CC}(0) values due, partially, to size effects. This explains the observed decrease of homocoordination in such solutions in the order: pyridine > 2-methylpyridine > 2,6-dimethylpyridine. Moreover, as the energies of the OH-N hydrogen bonds are practically independent of the pyridine base considered when mixed with methanol, it suggests that

  15. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

    Directory of Open Access Journals (Sweden)

    Eunjong Kim

    2016-05-01

    Full Text Available Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30% for aerobic composting due to the sawdust’s coarse particle size and bulking effect.

  16. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement.

    Science.gov (United States)

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-05-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

  17. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark; Badu-Tawiah, Abraham K.; Li, Anyin; Soparawalla, Santosh; Roqan, Iman S.; Cooks, Robert Graham

    2013-01-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  18. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  19. Frequency–amplitude range of hydrocarbon microtremors and a discussion on their source

    International Nuclear Information System (INIS)

    Gerivani, H; Hafezi Moghaddas, N; Ghafoori, M; Lashkaripour, G R; Haghshenas, E

    2012-01-01

    Recently, some studies have suggested using ambient noise as a tool for hydrocarbon reservoir investigation. This new passive seismic technique, named HyMas, is based on the positive energy anomaly in data spectra between 1 to 6 Hz for microtremor measurements over reservoirs, which are called hydrocarbon microtremors. Despite the acceptable results obtained by the HyMas technique, there are many unknowns, especially concerning the source and generation mechanism of hydrocarbon microtremors and the relations between reservoir characteristics and the attributes of hydrocarbon microtremors. In this study we tried to find the relations between reservoir characteristics, including fluid content and depth, for 12 sites around the world with hydrocarbon microtremor attributes, including peak amplitude and frequency. Based on the power spectral density curves of these 12 reservoirs, a frequency–amplitude range is also proposed as a criterion for separating hydrocarbon microtremors from local noise not related to reservoirs. Finally, the source of the hydrocarbon microtremors is discussed and tidal displacement is suggested as a probable agent for the generation of these anomalies. (paper)

  20. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2015-01-01

    of CPA for ternary and multicomponent CO2 mixtures containing alcohols (methanol, ethanol or propanol) water and hydrocarbons. This work belongs to a series of studies aiming to arrive in a single "engineering approach" for applying CPA to acid gas mixtures, without introducing significant changes...... to the model. In this direction, CPA results were obtained using various approaches, i.e. different association schemes for pure CO2 (assuming that it is a non-associating compound, or that it is a self-associating fluid with two, three or four association sites) and different possibilities for modelling...... mixtures of CO2 with water and alcohols (only use of one interaction parameter kij or assuming cross-association interactions and obtaining the relevant parameters either via a combining rule or using an experimental value for the cross-association energy). It is concluded that CPA is a powerful model...

  1. Coupling spectroscopic and chromatographic techniques for evaluation of the depositional history of hydrocarbons in a subtropical estuary

    International Nuclear Information System (INIS)

    Martins, César C.; Doumer, Marta E.; Gallice, Wellington C.; Dauner, Ana Lúcia L.; Cabral, Ana Caroline; Cardoso, Fernanda D.

    2015-01-01

    Spectroscopic and chromatographic techniques can be used together to evaluate hydrocarbon inputs to coastal environments such as the Paranaguá estuarine system (PES), located in the SW Atlantic, Brazil. Historical inputs of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed using two sediment cores from the PES. The AHs were related to the presence of biogenic organic matter and degraded oil residues. The PAHs were associated with mixed sources. The highest hydrocarbon concentrations were related to oil spills, while relatively low levels could be attributed to the decrease in oil usage during the global oil crisis. The results of electron paramagnetic resonance were in agreement with the absolute AHs and PAHs concentrations measured by chromatographic techniques, while near-infrared spectroscopy results were consistent with unresolved complex mixture (UCM)/total n-alkanes ratios. These findings suggest that the use of a combination of techniques can increase the accuracy of assessment of contamination in sediments. - Highlights: • Historical inputs of hydrocarbons in a subtropical estuary were evaluated. • Spectroscopic and chromatographic methods were used in combination. • High hydrocarbon concentrations were related to anthropogenic activities. • Low hydrocarbon levels could be explained by the 1970s global oil crisis. - Spectroscopic and chromatographic techniques could be used together to evaluate hydrocarbon inputs to coastal environments

  2. Alkanes as Components of Soil Hydrocarbon Status: Behavior and Indication Significance

    Science.gov (United States)

    Gennadiev, A. N.; Zavgorodnyaya, Yu. A.; Pikovskii, Yu. I.; Smirnova, M. A.

    2018-01-01

    Studies of soils on three key plots with different climatic conditions and technogenic impacts in Volgograd, Moscow, and Arkhangelsk oblasts have showed that alkanes in the soil exchange complex have some indication potential for the identification of soil processes. The following combinations of soil-forming factors and processes have been studied: (a) self-purification of soil after oil pollution; (b) accumulation of hydrocarbons coming from the atmosphere to soils of different land use patterns; and (c) changes in the soil hydrocarbon complex beyond the zone of technogenic impact due to the input of free hydrocarbon-containing gases. At the injection input of hydrocarbon pollutants, changes in the composition and proportions of alkanes allow tracing the degradation trend of pollutants in the soil from their initial content to the final stage of soil self-purification, when the background concentrations of hydrocarbons are reached. Upon atmospheric deposition of hydrocarbons onto the soil, from the composition and mass distribution of alkanes, conclusions can be drawn about the effect of toxicants on biogeochemical processes in the soil, including their manifestation under different land uses. Composition analysis of soil alkanes in natural landscapes can reveal signs of hydrocarbon emanation fluxes in soils. The indication potentials of alkanes in combination with polycyclic aromatic hydrocarbons and other components of soil hydrocarbon complex can also be used for the solution of other soil-geochemical problems.

  3. Chlorinated hydrocarbons and PCBs in field soils, sediments and sewage sludges

    International Nuclear Information System (INIS)

    Schaaf, H.

    1992-01-01

    As requested by the Ministry of Agriculture of the FRG, the 'Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA)' built up a data collection over chlorinated hydrocarbons and PCBs in field soils, sediments, sewage sludges. Nearly 70.000 samples were collected and statistically evaluated. The results of these investigations will be described. The major constituents of the chlorinated hydrocarbons generally were Lindane, DDT(total) and HCB. In sewage sludges PCBs could be detected in nearly every sample. The contents of PCBs in field soils are smaller than in sewage sludges. Rather 'high contents', greater than 100-200 μg/kg d.m./organic pollutants, were detected only in 2% of the samples. 7 refs., 5 figs., 2 tabs

  4. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  5. Radiation induced chemical reaction of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Sugimoto, Shun-ichi; Nishii, Masanobu

    1985-01-01

    Previous studies of radiation induced chemical reactions of CO-H 2 mixture have revealed that the yields of oxygen containing products were larger than those of hydrocarbons. In the present study, methane was added to CO-H 2 mixture in order to increase further the yields of the oxygen containing products. The yields of most products except a few products such as formaldehyde increased with the addition of small amount of methane. Especially, the yields of trioxane and tetraoxane gave the maximum values when CO-H 2 mixture containing 1 mol% methane was irradiated. When large amounts of methane were added to the mixture, the yields of aldehydes and carboxylic acids having more than two carbon atoms increased, whereas those of trioxane and tetraoxane decreased. From the study at reaction temperature over the range of 200 to 473 K, it was found that the yields of aldehydes and carboxylic acids showed maxima at 323 K. The studies on the effects of addition of cationic scavenger (NH 3 ) and radical scavenger (O 2 ) on the products yields were also carried out on the CO-H 2 -CH 4 mixture. (author)

  6. Field reconnaissance and estimation of petroleum hydrocarbon and heavy metal contents of soils affected by the Ebocha-8 oil spillage in Niger Delta, Nigeria.

    Science.gov (United States)

    Osuji, Leo C; Onojake, Chukunedum M

    2006-04-01

    Field reconnaissance of the Ebocha-8 oil spill-affected site at Obiobi/Obrikom in the Niger Delta region of Nigeria was carried out to assess the extent of damage to the terrestrial ecosystem and delimit the epicenter of oil spillage. Following three successive reconnaissance surveys, the area to be sampled was delimited (200 x 200 m2), and soil samples were collected using the grid method from three replicate quadrats at two depths, surface (0-15 cm) and subsurface (15-30 cm). A geographically similar area located 50 m adjacent to the oil-polluted area was used as a reference (control) site. Total hydrocarbon content (THC) and heavy metal concentrations were later determined in the laboratory by extraction and spetrophotemetric techniques. Generally, the THC of soils at surface and subsurface depths of the oil-polluted plots was 2.06 x 10(4) +/- 4.97 x 10(3) mg/kg and 1.67 x 10(3) +/- 3.61 x 10(2) mg/kg soil, respectively, (no overlap in standard errors at 95% confidence limit) while concentrations of heavy metals(Pb, Cd, V, Cu and Ni) were enhanced, especially at the surface. The high levels of THC and heavy metals may predispose the site, which hitherto served as arable agricultural land, to impaired fertility and possible conflagration. When concentrations of heavy metals reach the levels obtained in this study, they may become toxic to plants or possibly bio-accumulate, thus leading to toxic reactions along the food chain. While the spilled-oil may have contributed to the enhanced levels of the metals in the affected soils, physico-chemical properties of the soils, mobility of metals, and the intense rainfall and flooding that preceded the period of study may have also contributed in part to their enhanced concentrations. The presence of high hydrocarbon content may cause oxygen deprivation, which may result in the death of soil fauna by asphyxiation. There is, therefore, an urgent need to clear the affected site of these excess hydrocarbon deposits so as to

  7. Total organic carbon, an important tool in an holistic approach to hydrocarbon source fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, P.D.; Burns, W.A.; Page, D.S.; Bence, A.E.; Mankiewicz, P.J.; Brown, J.S.; Douglas, G.S. [Battelle Member Inst., Waltham, MA (United States)

    2002-07-01

    The identification and allocation of multiple hydrocarbon sources in marine sediments is best achieved using an holistic approach. Total organic carbon (TOC) is one important tool that can constrain the contributions of specific sources and rule out incorrect source allocations in cases where inputs are dominated by fossil organic carbon. In a study of the benthic sediments from Prince William Sound (PWS) and the Gulf of Alaska (GOA), we find excellent agreement between measured TOC and TOC calculated from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. Confirmation by two such independent source indicators (TOC and fingerprint matches) provides evidence that source allocations determined by the fingerprint matches are robust and that the major TOC sources have been correctly identified. Fingerprint matches quantify the hydrocarbon contributions of various sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. TOC contents are then calculated using source allocation results from fingerprint matches and the TOCs of contributing sources. Comparisons of the actual sediment TOC values and those calculated from source allocation support our earlier published findings that the natural petrogenic hydrocarbon background in sediments in this area comes from eroding Tertiary shales and associated oil seeps along the northern GOA coast and exclude thermally mature area coals from being important contributors to the PWS background due to their high TOC content.

  8. Diagnostics of capacitively-coupled hydrocarbon plasmas for deposition of diamond-like carbon films using quadrupole mass spectrometry and Langmuir probe

    Science.gov (United States)

    Oda, Akinori; Fukai, Shun; Kousaka, Hiroyuki; Ohta, Takayuki

    2015-09-01

    Diamond-like carbon (DLC) films are the hydrogenated amorphous carbon films, which contains a mixture of sp2- and sp3-bonded carbon. The DLC films have been widely used for various applications, such as automotive, semiconductors, medical devices, since have excellent material properties in lower friction, higher chemical stability, higher hardness, higher wear resistance. Until now, numerous investigations on the DLC films using plasma assisted chemical vapor deposition have been done. For precise control of coating technique of DLC films, it is enormously important to clarify the fundamental properties in hydrocarbon plasmas, as a source of hydrocarbon ions and radicals. In this paper, the fundamental properties in a low pressure radio-frequency hydrocarbon (Ar/CH4 (1 %) gas mixture) plasmas have been diagnosed using a quadrupole mass spectrometer (HIDEN ANARYTICAL Ltd., EQP-300) and Langmuir probe system (HIDEN ANARYTICAL Ltd., ESPion). This work was partly supported by KAKENHI (No.26420247), and a ``Grant for Advanced Industrial Technology Development (No.11B06004d)'' in 2011 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  9. Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation.

    Science.gov (United States)

    Bori, Jaume; Vallès, Bettina; Ortega, Lina; Riva, Maria Carme

    2016-09-01

    In this study chemical analyses and ecotoxicity tests were applied for the assessment of a heavily hydrocarbon-contaminated soil prior and after the application of a remediation procedure that consisted in the stimulation of soil autochthonous populations of hydrocarbon degraders in static-ventilated biopiles. Terrestrial bioassays were applied in mixtures of test soils and artificial control soil and studied the survival and reproduction of Eisenia fetida and the avoidance response of E. fetida and Folsomia candida. Effects on aquatic organisms were studied by means of acute tests with Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna performed on aqueous elutriates from test soils. The bioremediation procedure led to a significant reduction in the concentration of hydrocarbons (from 34264 to 3074 mg kg(-1), i.e., 91 % decrease) and toxicity although bioassays were not able to report a percentage decrease of toxicity as high as the percentage reduction. Sublethal tests proved the most sensitive terrestrial bioassays and avoidance tests with earthworms and springtails showed potential as monitoring tools of hydrocarbon remediation due to their high sensitivity and short duration. The concentrations of hydrocarbons in water extracts from test soils were 130 and 100 μg L(-1) before and after remediation, respectively. Similarly to terrestrial tests, most aquatic bioassays detected a significant reduction in toxicity, which was almost negligible at the end of the treatment. D. magna survival was the most affected by soil elutriates although toxicity to the crustacean was associated to the salinity of the samples rather than to the concentration of hydrocarbons. Ecotoxicity tests with aqueous soil elutriates proved less relevant in the assessment of hydrocarbon-contaminated soils due to the low hydrosolubility of hydrocarbons and the influence of the physicochemical parameters of the aquatic medium.

  10. MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS

    Energy Technology Data Exchange (ETDEWEB)

    Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare [INAF-Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, I-09012 Capoterra (Italy); Zonca, Alberto, E-mail: gmulas@oa-cagliari.inaf.it, E-mail: silvia@oa-cagliari.inaf.it, E-mail: ccp@oa-cagliari.inaf.it, E-mail: azonca@oa-cagliari.inaf.it [Dipartimento di Fisica, Universita di Cagliari, Strada Prov.le Monserrato-Sestu Km 0.700, I-09042 Monserrato (Italy)

    2013-07-01

    We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproduce the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 Multiplication-Sign 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.

  11. Prediction of the Flash Point of Binary and Ternary Straight-Chain Alkane Mixtures

    Directory of Open Access Journals (Sweden)

    X. Li

    2014-01-01

    Full Text Available The flash point is an important physical property used to estimate the fire hazard of a flammable liquid. To avoid the occurrence of fire or explosion, many models are used to predict the flash point; however, these models are complex, and the calculation process is cumbersome. For pure flammable substances, the research for predicting the flash point is systematic and comprehensive. For multicomponent mixtures, especially a hydrocarbon mixture, the current research is insufficient to predict the flash point. In this study, a model was developed to predict the flash point of straight-chain alkane mixtures using a simple calculation process. The pressure, activity coefficient, and other associated physicochemical parameters are not required for the calculation in the proposed model. A series of flash points of binary and ternary mixtures of straight-chain alkanes were determined. The results of the model present consistent experimental results with an average absolute deviation for the binary mixtures of 0.7% or lower and an average absolute deviation for the ternary mixtures of 1.03% or lower.

  12. Preparation of standard mixtures of gas hydrocarbons in air by the diffusion dilution method

    International Nuclear Information System (INIS)

    Garcia, M. R.; Perez, M. M.

    1979-01-01

    An original diffusion system able to produce continuously gaseous samples is described. This system can generate samples with concentrations of benzene in air from 0.1 to 1 ppm a reproducible way. The diffusion dilution method used Is also studied. The use of this diffusion system has been extended to the preparation of binary mixtures (benzene-toluene). Whit a secondary dilution device is possible preparing these mixtures over a wide range of concentrations (0.11 to 0.04 ppm for benzene and 0.06 to 0.02 for toluene). (Author) 7 refs

  13. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  14. Methods of reforming hydrocarbon fuels using hexaaluminate catalysts

    Science.gov (United States)

    Gardner, Todd H [Morgantown, WV; Berry, David A [Morgantown, WV; Shekhawat, Dushyant [Morgantown, WV

    2012-03-27

    A metal substituted hexaaluminate catalyst for reforming hydrocarbon fuels to synthesis gas of the general formula AB.sub.yAl.sub.12-yO.sub.19-.delta., A being selected from alkali metals, alkaline earth metals and lanthanide metals or mixtures thereof. A dopant or surface modifier selected from a transitions metal, a spinel of an oxygen-ion conductor is incorporated. The dopant may be Ca, Cs, K, La, Sr, Ba, Li, Mg, Ce, Co, Fe, Ir, Rh, Ni, Ru, Cu, Pe, Os, Pd, Cr, Mn, W, Re, Sn, Gd, V, Ti, Ag, Au, and mixtures thereof. The oxygen-ion conductor may be a perovskite selected from M'RhO.sub.3, M'PtO.sub.3, M'PdO.sub.3, M'IrO.sub.3, M'RuO.sub.3 wherein M'=Mg, Sr, Ba, La, Ca; a spinel selected from MRh.sub.2O.sub.4, MPt.sub.2O.sub.4, MPd.sub.2O.sub.4, MIr.sub.2O.sub.4, MRu.sub.2O.sub.4 wherein M=Mg, Sr, Ba, La, Ca and mixtures thereof; a florite is selected from M''O.sub.2.

  15. Dynamic Viscosity and Compensation Effect in Hydrocarbon Media with a High Content of Resins and Paraffins

    Science.gov (United States)

    Boitsova, A. A.; Kondrasheva, N. K.; Dolomatov, M. Yu.

    2017-11-01

    Linear dependences have been obtained for multicomponent hydrocarbon media (oils and high-boiling fractions), which relate the preexponent and the activation energy of viscous flow in the Arrhenius equation. A distinctive feature of the established kinetic compensation effect is it existing before and after the phase-transition temperature. The obtained results have been confirmed by statistical data and make it possible to predict the dynamic viscosity of multicomponent hydrocarbon systems, such as oil and high-boiling fractions.

  16. Study on the combustion and hydrocarbon emission characteristics of direct injection spark-ignition engines during the direct-start process

    International Nuclear Information System (INIS)

    Shi, Lei; Xiao, Maoyu; Deng, Kangyao

    2015-01-01

    Highlights: • Mixture concentration in first-combustion cylinder of direct start is measured. • Factors that affect direct start performances are investigated. • Combustion characteristics of first-combustion cylinder are analyzed. • Hydrocarbon emission is considered to determined control strategies of direct start. - Abstract: This study was conducted to investigate the combustion and emissions characteristics of the first-combustion cylinder in a direct-start process. The explosive energy of the first combustion is important for the success of a direct start, but this combustion was rarely addressed in recent research. For a 2.0 L direct-injection spark-ignition engine, the in-cylinder mixture concentration, cylinder pressure, engine speed and exhaust hydrocarbon concentration were detected to analyze the fuel evaporation, combustion, engine movement and engine emissions, respectively. In the first-combustion cylinder of the direct-start process, the injected fuel was often enriched to ensure that an appropriate mixture concentration was obtained for ignition without misfiring. Approximately one-third of the injected fuel would not participate in the combustion process and would therefore reduce the exhaust hydrocarbon emissions. The start position determined the amount of the total explosive energy in the first-combustion cylinder, and an optimal start position for a direct start was found to be at a 70–80° crank angle before the top dead center to obtain a better combustion performance and lower emissions. A lower coolant temperature increased the maximum explosion energy of the first combustion, but additional hydrocarbon emissions were generated. Because there was almost no problem in the direct-start capability with different coolant temperatures after an idling stop, it was necessary to maintain the coolant temperature when the engine was stopped

  17. Removal of hydrocarbon from refinery tank bottom sludge employing microbial culture.

    Science.gov (United States)

    Saikia, Rashmi Rekha; Deka, Suresh

    2013-12-01

    Accumulation of oily sludge is becoming a serious environmental threat, and there has not been much work reported for the removal of hydrocarbon from refinery tank bottom sludge. Effort has been made in this study to investigate the removal of hydrocarbon from refinery sludge by isolated biosurfactant-producing Pseudomonas aeruginosa RS29 strain and explore the biosurfactant for its composition and stability. Laboratory investigation was carried out with this strain to observe its efficacy of removing hydrocarbon from refinery sludge employing whole bacterial culture and culture supernatant to various concentrations of sand-sludge mixture. Removal of hydrocarbon was recorded after 20 days. Analysis of the produced biosurfactant was carried out to get the idea about its stability and composition. The strain could remove up to 85 ± 3 and 55 ± 4.5 % of hydrocarbon from refinery sludge when whole bacterial culture and culture supernatant were used, respectively. Maximum surface tension reduction (26.3 mN m(-1)) was achieved with the strain in just 24 h of time. Emulsification index (E24) was recorded as 100 and 80 % with crude oil and n-hexadecane, respectively. The biosurfactant was confirmed as rhamnolipid containing C8 and C10 fatty acid components and having more mono-rhamnolipid congeners than the di-rhamnolipid ones. The biosurfactant was stable up to 121 °C, pH 2-10, and up to a salinity value of 2-10 % w/v. To our knowledge, this is the first report showing the potentiality of a native strain from the northeast region of India for the efficient removal of hydrocarbon from refinery sludge.

  18. Comparison of the Emission of Aromatic Hydrocarbons from Moulding Sands with Furfural Resin with the Low Content of Furfuryl Alcohol and Different Activators

    Directory of Open Access Journals (Sweden)

    Żymankowska-Kumon S.

    2016-12-01

    Full Text Available No-bake process refers to the use of chemical binders to bond the moulding sand. Sand is moved to the mould fill station in preparation for filling of the mould. A mixer is used to blend the sand with the chemical binder and activator. As the sand exits the mixer, the binder begins the chemical process of hardening. This paper presents the results of decomposition of the moulding sands with modified urea-furfuryl resin (with the low content of furfuryl alcohol below 25 % and different activators: organic and inorganic on a quartz matrix, under semi-industrial conditions. Investigations of the gases emission in the test foundry plant were executed according to the method extended in the Faculty of Foundry Engineering (AGH University of Science and Technology. Article presents the results of the emitted chosen aromatic hydrocarbons and loss on ignition compared with the different activators used to harden this resin. On the bases of the data, it is possible to determine the content of the emitted dangerous substances from the moulding sand according to the content of loss on ignition.

  19. Experimental, theoretical and numerical interpretation of thermodiffusion separation for a non-associating binary mixture in liquid/porous layers

    International Nuclear Information System (INIS)

    Ahadi, Amirhossein; Jawad, H.; Saghir, M.Z.; Giraudet, C.; Croccolo, F.; Bataller, H.

    2014-01-01

    Thermodiffusion in a hydrocarbon binary mixture has been investigated experimentally and numerically in a liquid-porous cavity. The solutal separation of the 50% toluene and 50% n-hexane binary mixture induced by a temperature difference at atmospheric pressure has been performed in a new thermodiffusion cell. A new optimized cell design is used in this study. The inner part of the cell is a cylindrical porous medium sandwiched between two liquid layers of the same binary hydrocarbon mixture. Experimental measurement and theoretical estimation of the molecular diffusion and thermodiffusion coefficients showed a good agreement. In order to understand the different regimes occurring in the different parts of the cell, a full transient numerical simulation of the solutal separation of the binary mixture has been performed. Numerical results showed that the lighter species, which are of n-hexane migrated toward the hot surface, while the denser species, which is toluene migrated towards the cold surface. Also, it was found that a good agreement has been reached between experimental measurements and numerical calculations for the solutal separation between the hot and cold surface for different medium porosity. In addition, we used the numerical results to analyse convection and diffusion regions in the cell precisely. (authors)

  20. Rotationally cooled laser induced fluorescence determination of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Warren, J.A.; Hayes, J.M.; Small, G.J.

    1982-01-01

    In recent years the development of new highly selective and sensitive methods for the characterization and determination of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in complex mixtures has received considerable attention. High selectivity is associated here with the ability to distinguish between substitutional isomers of PAHs. Attainment of this selectivity with capillary column-gas chromatography-mass spectrometry for complex mixtures is very difficult and time-consuming. Alternative approaches are, therefore, required. Given that the majority of PAHs fluoresce with reasonable quantum yields and that high sensitivities are afforded by fluorescence detection, the possibility of developing high-resolution fluorescence based techniques is attractive. This is all the more so if the technique's selectivity does not rely on physical separation, e.g., chromatography. In this paper discussion is limited to such techniques

  1. Bioremediation of soils contaminated by hydrocarbons at the coastal zone of “Punta Majagua”.

    Directory of Open Access Journals (Sweden)

    Jelvys Bermúdez Acosta

    2012-03-01

    Full Text Available The purpose of this research was to describe and assess the main results in the process of bioremediation of 479 m3 of petroleum residuals spilled on the soil and restrained into four deposits of fuel on the coastal zone of “Punta Majagua”, Cienfuegos. The volume of hydrocarbons spilled and contained into the tanks was determined by means of their previous mixture with fertile ground in a ratio of 3/1. The hydrocarbons were disposed in a bioremediation area of 115 m X 75m built in situ. In turn 54, 5 m3 of BIOIL - FC were applied, which were fermented in an industrial bioreactor of 12000 L. An initial sampling was carried out registering values of total hydrocarbons (HTP higher than 41880 mg/kg, with high concentrations of Saturated hydrocarbons, aromatics, resins, asphaltens (SARA. Three subsequent samples were taken with a sampling interval of 0, 45, 90 and 120 days of the application. An average concentration of 1884.57 mg/kg of total hydrocarbons was obtained at 120 days with an average removal rate of 94.8%, moreover values of 94.6%, 90.78%, 86.99% y 79.9% of SARA were respectively reported.

  2. MULTICOMPONENT DETERMINATION OF CHLORINATED HYDROCARBONS USING A REACTION-BASED CHEMICAL SENSOR .2. CHEMICAL SPECIATION USING MULTIVARIATE CURVE RESOLUTION

    NARCIS (Netherlands)

    Tauler, R.; Smilde, A. K.; HENSHAW, J. M.; BURGESS, L. W.; KOWALSKI, B. R.

    1994-01-01

    A new multivariate curve resolution method that can extract analytical information from UV/visible spectroscopic data collected from a reaction-based chemical sensor is proposed. The method is demonstrated with the determination of mixtures of chlorinated hydrocarbons by estimating the kinetic and

  3. Hydrocarbon pollution fixed to combined sewer sediment: a case study in Paris.

    Science.gov (United States)

    Rocher, Vincent; Garnaud, Stéphane; Moilleron, Régis; Chebbo, Ghassan

    2004-02-01

    Over a period of two years (2000-2001), sediment samples were extracted from 40 silt traps (STs) spread through the combined sewer system of Paris. All sediment samples were analysed for physico-chemical parameters (pH, organic matter content, grain size distribution), with total hydrocarbons (THs) and 16 polycyclic aromatic hydrocarbons (PAHs) selected from the priority list of the US-EPA. The two main objectives of the study were (1) to determine the hydrocarbon contamination levels in the sediments of the Paris combined sewer system and (2) to investigate the PAH fingerprints in order to assess their spatial variability and to elucidate the PAH origins. The results show that there is some important inter-site and intra-site variations in hydrocarbon contents. Despite this variability, TH and PAH contamination levels (50th percentile) in the Parisian sewer sediment are estimated at 530 and 18 microg g(-1), respectively. The investigation of the aromatic compound distributions in all of the 40 STs has underlined that there is, at the Paris sewer system scale, a homogeneous PAH background pollution. Moreover, the study of the PAH fingerprints, using specific ratios, suggests the predominance of a pyrolytic origin for those PAHs fixed to the sewer sediment.

  4. Research on the influence of anaerobic stabilization of various dairy sewage sludge on biodegradation of polycyclic aromatic hydrocarbons PAHs with the use of effective microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Boruszko, Dariusz, E-mail: d.boruszko@pb.edu.pl

    2017-05-15

    Sewage sludge was taken from a dairy WWTP belonging to Mlekovita Cooperative in Wysokie Mazowieckie. There were excess sludge, flotation sludge and a mixture of excess and flotation sludge from pre-treatment of dairy sewage. The initial content of 16 PAHs in excess sludge before fermentation was approximately 689 µg·kg{sup −1} in dry mass, whereas in post-flotation sludge (which constituted around 30% of raw sludge) it was approximately 95 µg·kg{sup −1} in dry mass. A mixture of excess and flotation sludge had the content of 497,7 µg·kg{sup −1} in dry mass. Through comparison of particular hydrocarbons content in raw sewage sludge to the total PAHs content, it was shown that tricyclic compounds, which constituted 46,3% of the PAHs sum (excess sludge), and tetracyclic compounds, which constituted 60,0% of the PAHs sum (flotation sludge), were the dominating fractions. In the sludge subjected to fermentation in reactors with mixed sludge and surplus activated sludge, the general trend of the course of changes in concentrations of PAHs was similar. Both in the sludge inoculated with EM and in that not inoculated with EM, a significant increase in the total PAHs contents was observed in the first fermentation phase (acidic fermentation) after 7 days of the process. Addition of EM into the sludge did not prevent the PAHs release, and therefore higher concentrations of PAHs sum were recorded during the hydrolysis stage than in sludge before fermentation. A decrease in the sum of PAHs was observed after 2 weeks of fermentation in relation to the quantity observed after 1 week of fermentation (except from post-flotation sludge). In the following weeks, there was further decrease in the concentration of the 16 PAHs sum in all sludge types. However, in sludge without EM inoculation, it was lower than in sludge with EM inoculation. The loss of the majority of tested hydrocarbons was reported in the final phase of fermentation. - Highlights: • The influence of

  5. Research on the influence of anaerobic stabilization of various dairy sewage sludge on biodegradation of polycyclic aromatic hydrocarbons PAHs with the use of effective microorganisms

    International Nuclear Information System (INIS)

    Boruszko, Dariusz

    2017-01-01

    Sewage sludge was taken from a dairy WWTP belonging to Mlekovita Cooperative in Wysokie Mazowieckie. There were excess sludge, flotation sludge and a mixture of excess and flotation sludge from pre-treatment of dairy sewage. The initial content of 16 PAHs in excess sludge before fermentation was approximately 689 µg·kg −1 in dry mass, whereas in post-flotation sludge (which constituted around 30% of raw sludge) it was approximately 95 µg·kg −1 in dry mass. A mixture of excess and flotation sludge had the content of 497,7 µg·kg −1 in dry mass. Through comparison of particular hydrocarbons content in raw sewage sludge to the total PAHs content, it was shown that tricyclic compounds, which constituted 46,3% of the PAHs sum (excess sludge), and tetracyclic compounds, which constituted 60,0% of the PAHs sum (flotation sludge), were the dominating fractions. In the sludge subjected to fermentation in reactors with mixed sludge and surplus activated sludge, the general trend of the course of changes in concentrations of PAHs was similar. Both in the sludge inoculated with EM and in that not inoculated with EM, a significant increase in the total PAHs contents was observed in the first fermentation phase (acidic fermentation) after 7 days of the process. Addition of EM into the sludge did not prevent the PAHs release, and therefore higher concentrations of PAHs sum were recorded during the hydrolysis stage than in sludge before fermentation. A decrease in the sum of PAHs was observed after 2 weeks of fermentation in relation to the quantity observed after 1 week of fermentation (except from post-flotation sludge). In the following weeks, there was further decrease in the concentration of the 16 PAHs sum in all sludge types. However, in sludge without EM inoculation, it was lower than in sludge with EM inoculation. The loss of the majority of tested hydrocarbons was reported in the final phase of fermentation. - Highlights: • The influence of applying

  6. Comparison of forcefields for molecular dynamics simulations of hydrocarbon phase diagrams

    Science.gov (United States)

    Pisarev, V. V.; Zakharov, S. A.

    2018-01-01

    Molecular dynamics calculations of vapor-liquid equilibrium of methane-n-butane mixture are performed. Three force-field models are tested: the TraPPE-UA united-atom forcefield, LOPLS-AA all-atom forcefield and a fully flexible version of the TraPPE-EH all-atom forcefield. All those forcefields reproduce well the composition of liquid phase in the mixture as a function of pressure at the 300 K isotherm, while significant discrepancies from experimental data are observed in the saturated vapor compositions with OPLS-AA and TraPPE-UA forcefields. The best agreement with the experimental phase diagram is found with TraPPE-EH forcefield which accurately reproduces compositions of both liquid and vapor phase. This forcefield can be recommended for simulation of two-phase hydrocarbon systems.

  7. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Chiar, J. E.; Ricca, A. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Tielens, A. G. G. M. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Adamson, A. J., E-mail: jchiar@seti.org, E-mail: Alessandra.Ricca@1.nasa.gov, E-mail: tielens@strw.leidenuniv.nl, E-mail: aadamson@gemini.edu [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place, Hilo, HI 96729 (United States)

    2013-06-10

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 {mu}m) and aliphatic (3.4 {mu}m) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp {sup 2} bonds can be measured in astronomical spectra using the 6.2 {mu}m CC aromatic stretch feature, whereas the 3.4 {mu}m aliphatic feature can be used to quantify the fraction of sp {sup 3} bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp {sup 3} content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  8. THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS

    International Nuclear Information System (INIS)

    Chiar, J. E.; Ricca, A.; Tielens, A. G. G. M.; Adamson, A. J.

    2013-01-01

    Many materials have been considered for the carrier of the hydrocarbon absorption bands observed in the diffuse interstellar medium (ISM). In order to refine the model for ISM hydrocarbon grains, we analyze the observed aromatic (3.28, 6.2 μm) and aliphatic (3.4 μm) hydrocarbon absorption features in the diffuse ISM along the line of sight toward the Galactic center Quintuplet Cluster. Observationally, sp 2 bonds can be measured in astronomical spectra using the 6.2 μm CC aromatic stretch feature, whereas the 3.4 μm aliphatic feature can be used to quantify the fraction of sp 3 bonds. The fractional abundance of these components allows us to place the Galactic diffuse ISM hydrocarbons on a ternary phase diagram. We conclude that the Galactic hydrocarbon dust has, on average, a low H/C ratio and sp 3 content and is highly aromatic. We have placed the results of our analysis within the context of the evolution of carbon dust in the ISM. We argue that interstellar carbon dust consists of a large core of aromatic carbon surrounded by a thin mantle of hydrogenated amorphous carbon (a-C:H), a structure that is a natural consequence of the processing of stardust grains in the ISM.

  9. Evaluation of mineral oil saturated hydrocarbons (MOSH and mineral oil aromatic hydrocarbons (MOAH in pure mineral hydrocarbon-based cosmetics and cosmetic raw materials using 1H NMR spectroscopy [version 2; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Dirk W. Lachenmeier

    2017-08-01

    Full Text Available Mineral hydrocarbons consist of two fractions, mineral oil saturated hydrocarbons (MOSH and mineral oil aromatic hydrocarbons (MOAH. MOAH is a potential public health hazard because it may include carcinogenic polycyclic compounds. In the present study, 400 MHz nuclear magnetic resonance (NMR spectroscopy was introduced, in the context of official controls, to measure MOSH and MOAH in raw materials or pure mineral hydrocarbon final products (cosmetics and medicinal products. Quantitative determination (qNMR has been established using the ERETIC methodology (electronic reference to access in vivo concentrations based on the PULCON principle (pulse length based concentration determination. Various mineral hydrocarbons (e.g., white oils, paraffins or petroleum jelly were dissolved in deuterated chloroform. The ERETIC factor was established using a quantification reference sample containing ethylbenzene and tetrachloronitrobenzene. The following spectral regions were integrated: MOSH δ 3.0 – 0.2 ppm and MOAH δ 9.2 - 6.5, excluding solvent signals. Validation showed a sufficient precision of the method with a coefficient of variation <6% and a limit of detection <0.1 g/100 g. The applicability of the method was proven by analysing 27 authentic samples with MOSH and MOAH contents in the range of 90-109 g/100 g and 0.02-1.10 g/100 g, respectively. It is important to distinguish this new NMR-approach from the hyphenated liquid chromatography-gas chromatography methodology previously used to characterize MOSH/MOAH amounts in cosmetic products. For mineral hydrocarbon raw materials or pure mineral hydrocarbon-based cosmetic products, NMR delivers higher specificity without any sample preparation besides dilution. Our sample survey shows that previous methods may have overestimated the MOAH amount in mineral oil products and opens new paths to characterize this fraction. Therefore, the developed method can be applied for routine monitoring of consumer

  10. Reduced chemical kinetic model of detonation combustion of one- and multi-fuel gaseous mixtures with air

    Science.gov (United States)

    Fomin, P. A.

    2018-03-01

    Two-step approximate models of chemical kinetics of detonation combustion of (i) one hydrocarbon fuel CnHm (for example, methane, propane, cyclohexane etc.) and (ii) multi-fuel gaseous mixtures (∑aiCniHmi) (for example, mixture of methane and propane, synthesis gas, benzene and kerosene) are presented for the first time. The models can be used for any stoichiometry, including fuel/fuels-rich mixtures, when reaction products contain molecules of carbon. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier's principle. Constants of the models have a clear physical meaning. The models can be used for calculation thermodynamic parameters of the mixture in a state of chemical equilibrium.

  11. DURABILITY OF ASPHALT CONCRETE MIXTURES USING DOLOMITE AGGREGATES

    Directory of Open Access Journals (Sweden)

    Imad Al-Shalout

    2015-12-01

    Full Text Available This study deals with the durability of asphalt concrete, including the effects of different gradations, compaction temperatures and immersion time on the durability potential of mixtures. The specific objectives of this study are: to investigate the effect of compaction temperature on the mechanical properties of asphalt concrete mixtures; investigate the effect of bitumen content and different aggregate gradations on the durability potential of bituminous mixtures.

  12. Polypropylene/ hydrocarbon resin blends nanocomposites; Blendas de polipropileno e resina hidrocarbonica com adicao de nanoparticulas de argila

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Marlon W.M. da; Chinellato, Anne C.; Vidotti, Suel E., E-mail: suel.vidotti@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2015-07-01

    This work dealt with a study on the incorporation of hydrocarbon resin (HC) (Sukorez-120) and organoclay nanoparticles (MMT) (Cloisite 20A) to a homopolymer polypropylene (PP) matrix. The mixtures were done using a twin screw extruder and after molded into thin films. The films were characterized by differential scanning calorimetry (DSC), melt flow index (MFI), X-ray diffraction (DRX) and water vapor permeability. In general, the addition of the hydrocarbon resin led to an increase on the polypropylene crystallinity and a reduction on the water vapor permeability, when compared to the pristine PP. Although it was not possible to perceive synergism by the addition of the organoclay, once the samples containing both HC and MMT presented similar crystallinity but higher permeation values than those obtained by the mixtures prepared without the organoclay. This behavior could be attributed to the lack of the organoclay dispersion, as demonstrated by X-ray, as well as to interface defects that could result in worst barrier properties. (author)

  13. Quantification of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate using stable isotope dilution liquid chromatography with atmospheric-pressure photoionization tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Xiaotao; Hou, Hongwei; Chen, Huan; Liu, Yong; Wang, An; Hu, Qingyuan

    2015-09-17

    A stable isotope dilution liquid chromatography with tandem mass spectrometry method for the analysis of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate was developed and validated. Compared with previously reported methods, this method has lower limits of detection (0.04-1.35 ng/cig). Additionally, the proposed method saves time, reduces the number of separation steps, and reduces the quantity of solvent needed. The new method was applied to evaluate polycyclic aromatic hydrocarbon content in 213 commercially available cigarettes in China, under the International Standardization Organization smoking regime and the Health Canadian intense smoking regime. The results showed that the total polycyclic aromatic hydrocarbon content was more than two times higher in samples from the Health Canadian intense smoking regime than in samples from the International Standardization Organization smoking regime (1189.23 vs. 2859.50 ng/cig, ppolycyclic aromatic hydrocarbons (and total polycyclic aromatic hydrocarbons) increased with labeled tar content in both of the tested smoking regimes. There was a positive correlation between total polycyclic aromatic hydrocarbons under the International Standardization Organization smoking regime with that under the Health Canadian intense smoking regime. The proposed liquid chromatography with tandem mass spectrometry method is satisfactory for the rapid, sensitive, and accurately quantitative evaluation of polycyclic aromatic hydrocarbon content in cigarette smoke condensate, and it can be applied to assess potential health risks from smoking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. THE EFFECTS OF EQUIVALENCE RATIO ON THE FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOOT IN PREMIXED ETHANE FLAMES. (R825412)

    Science.gov (United States)

    AbstractThe formation of polycyclic aromatic hydrocarbons (PAH) and soot has been investigated in atmospheric-pressure, laminar, ethane/oxygen/argon premixed flames as a function of mixture equivalence ratio. Mole fraction profiles of major products, trace aromatics, ...

  15. Polycyclic aromatic hydrocarbons (PAHs) in a coal tar standard reference material - SRM 1597a updated

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Stephen A.; Poster, Dianne L.; Rimmer, Catherine A.; Schubert, Patricia; Sander, Lane C.; Schantz, Michele M. [National Institute of Standards and Technology (NIST), Analytical Chemistry Division, Gaithersburg, MD (United States); Leigh, Stefan D. [National Institute of Standards and Technology (NIST), Statistical Engineering Division, Gaithersburg, MD (United States); Moessner, Stephanie [National Institute of Standards and Technology (NIST), Analytical Chemistry Division, Gaithersburg, MD (United States); GMP/Comparator Labs, Werthenstein Chemie AG, Industrie Nord, Schachen (Switzerland)

    2010-09-15

    SRM 1597 Complex Mixture of Polycyclic Aromatic Hydrocarbons from Coal Tar, originally issued in 1987, was recently reanalyzed and reissued as SRM 1597a with 34 certified, 46 reference, and 12 information concentrations (as mass fractions) for polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic sulfur heterocycles (PASHs) including methyl-substituted PAHs and PASHs. The certified and reference concentrations (as mass fractions) were based on results of analyses of the coal tar material using multiple analytical techniques including gas chromatography/mass spectrometry on four different stationary phases and reversed-phase liquid chromatography. SRM 1597a is currently the most extensively characterized SRM for PAHs and PASHs. (orig.)

  16. MECHANICAL BEHAVIOR OF COLD BITUMINOUS MIXTURE UNDER EFFECTS OF STATIC AND REPEATED LOADS1

    OpenAIRE

    Tamyres Karla da Silva; Carlos Alexandre Braz de Carvalho; Geraldo Luciano de Oliveira Marques; Dario Cardoso de Lima; Taciano Oliveira da Silva; Carlos Cardoso Machado

    2017-01-01

    Abstract This paper presents the results of an experimental research aimed at analyzing the mechanical behavior of a cold bituminous mixture under effects of static and repeated loads. Initially, a Marshall mixture design was performed to determine the mixture design contents according to standard DNER (1994a). After obtaining the mixture design contents, nine bituminous specimens were molded and subjected to the following tests: resilient modulus, tensile strength by diametral compression, a...

  17. Measuring two-phase and two-component mixtures by radiometric technique

    International Nuclear Information System (INIS)

    Mackuliak, D.; Rajniak, I.

    1984-01-01

    The possibility was tried of the application of the radiometric method in measuring steam water content. The experiments were carried out in model conditions where steam was replaced with the two-component mixture of water and air. The beta radiation source was isotope 204 Tl (Esub(max)=0.765 MeV) with an activity of 19.35 MBq. Measurements were carried out within the range of the surface density of the mixture from 0.119 kg.m -2 to 0.130 kg.m -2 . Mixture speed was 5.1 m.s -1 to 7.1 m.s -1 . The observed dependence of relative pulse frequency on the specific water content in the mixture was approximated by a linear regression. (B.S.)

  18. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  19. Geochemical interpretation of distribution of aromatic hydrocarbons in components of geologic environment of Pechora, Barents and Kara seas.

    Science.gov (United States)

    Kursheva, Anna; Petrova, Vera; Litvinenko, Ivan; Morgunova, Inna

    2017-04-01

    Information about the hydrocarbons content (including aromatic ones) in components of geologic environment allows to define common factors in distribution and correlation both nature and technogenic component, and also to reveal the sources of contamination. At that, it should be noted, that hydrocarbons are widely spread in lithosphere and create steady geochemical background, variations are caused here by specifics of initial organic matter, conditions of its accumulation and transformation. The basis of the study are the samples of sea water and deep sea sediments (more than 600 stations), collected in western sector of Arctic region (Pechora, Barents and Kara seas) during the scientific-research expeditions of FSBI "VNIIOkeangeologia" for the period 2000-2010. Total content of aromatic hydrocarbons was defined by spectrofluorometric method using analyzer «FLUORAT-Panorama-02». Certification of data was performed on representative samples based on contents and molecule structure of polycyclic aromatic hydrocarbons using GC-MS (Agilent 5973/6850 GC-MS System). Results of spectrofluorometric analysis of lipid fraction of organic matter of bottom sediments allowed to define specific parameters, which characterize various lithofacies groups of sediments. Thus, sandy residues are characterized by low level of aromatic hydrocarbons (ca. 4.3 μg/g) with prevalence of bi- and tri-aromatic compounds (λmax 270-310 nm). This correlates with low sorption capacity of coarse-grained sediments and absence of organic-mineral component, containing the breakdown products of initial organic matter. Tetra- and penta- aromatic structures prevail in clay sediments (ca. 13.0 μg/g), which are typical components of lipid fraction of organic matter of post sedimentation and early diagenetic stages of transformation. At that, changes of spectral characteristic of sediments in stratigraphic sequence completely reflect processes of diagenetic transformation of organic matter, including

  20. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  1. NON-EQUILIBRIUM MOLECULAR DYNAMICS USED TO OBTAIN SORET COEFFICIENTS OF BINARY HYDROCARBON MIXTURES

    Directory of Open Access Journals (Sweden)

    F. A. Furtado

    2015-09-01

    Full Text Available AbstractThe Boundary Driven Non-Equilibrium Molecular Dynamics (BD-NEMD method is employed to evaluate Soret coefficients of binary mixtures. Using a n-decane/n-pentane mixture at 298 K, we study several parameters and conditions of the simulation procedure such as system size, time step size, frequency of perturbation, and the undesired warming up of the system during the simulation. The Soret coefficients obtained here deviated around 20% when comparing with experimental data and with simulated results from the literature. We showed that fluctuations in composition gradients and the consequent deviations of the Soret coefficient may be due to characteristic fluctuations of the composition gradient. Best results were obtained with the smallest time steps and without using a thermostat, which shows that there is room for improvement and/or development of new BD-NEMD algorithms.

  2. Thermodynamic performance of R502 alternative refrigerant mixtures for low temperature and transport applications

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Jung, Dongsoo

    2007-01-01

    In this study, two pure hydrocarbon refrigerants, R1270 (propylene) and R290 (propane), and three binary mixtures composed of R1270, R290 and R152a were tested in a refrigerating bench tester with a scroll compressor in an attempt to substitute R502, which is used in most low temperature and transport refrigeration applications. The test bench provided 3-3.5 kW capacity, and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions, resulting in the average saturation temperatures of -28 and 45 o C in the evaporator and condenser, respectively. The test results showed that all refrigerants tested had 9.6-18.7% higher capacity and 17.1-27.3% higher COP than R502. The compressor discharge temperature of R1270 was similar to that of R502, while those of all the other refrigerants were 23.7-27.9 o C lower than that of R502. For all alternative refrigerants, the charge was reduced up to 60% as compared to R502. There, of course, was no problem with mineral oil, since the mixtures were mainly composed of hydrocarbons. Since some of them are mixtures, one can change their compositions a little to suit various needs in many applications without significant deterioration of the performance. Overall, these alternative refrigerants offer better system performance and reliability than R502 and can be used as long term substitutes for R502 due to their excellent environmental properties

  3. He+ irradiation temperature influence on the structure and nanohardness of hydrocarbon films

    International Nuclear Information System (INIS)

    Fan, Hongyu; Yang, Deming; Sun, Li; Yang, Qi; Niu, Jinhai; Guo, Liping; Chen, Jihong; Bi, Zhenhua; Liu, Dongping

    2013-01-01

    Polymer-like hydrocarbon films were irradiated with 100 keV He + or annealed at sample temperatures varying from 25 to 600 °C. The effects of sample temperature on the structure and nanohardness of hydrocarbon films are investigated by atomic force microscopy (AFM), AFM-based nanoindentation, Fourier transform infrared spectroscopy, and Raman spectroscopy. Analysis shows that annealing results in the decrease in the nanohardness of hydrocarbon films from 4.0 GPa to 0.55 GPa while He + irradiation at an elevated sample temperature results in the formation of dense diamond-like carbon films with nanohardness up to 20.0 GPa. This indicates that polymer-like hydrocarbon films can be transformed into the hard diamond-like carbon films with a relatively low H content on vacuum vessels of fusion devices due to the energetic bombardments at an elevated wall temperature

  4. Mercury-free PVT apparatus for thermophysical property analyses of hydrocarbon reservoir fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lansangan, R.M.; Lievois, J.S.

    1992-08-31

    Typical reservoir fluid analyses of complex, multicomponent hydrocarbon mixtures include the volumetric properties, isothermal compressibility, thermal expansivity, equilibrium ratios, saturation pressure, viscosities, etc. These parameters are collectively referred to as PVT properties, an acronym for the primary state variables; pressure, volume, and temperature. The reservoir engineer incorporates this information together with the porous media description in performing material balance calculations. These calculations lead to the determination (estimation) of the initial hydrocarbon in-place, the future reservoir performance, the optimal production scheme, and the ultimate hydrocarbon recovery. About four years ago, Ruska Instrument Corporation embarked on a project to develop an apparatus designed to measure PVT properties that operates free of mercury. The result of this endeavor is the 2370 Hg-Free PVT system which has been in the market for the last three years. The 2370 has evolved from the prototype unit to its present configuration which is described briefly in this report. The 2370 system, although developed as a system-engineered apparatus based on existing technology, has not been exempt from this burden-of-proof Namely, the performance of the apparatus under routine test conditions with real reservoir fluids. This report summarizes the results of the performance and applications testing of the 2370 Hg-Free PVT system. Density measurements were conducted on a pure fluid. The results were compared against literature values and the prediction of an equation of state. Routine reservoir fluid analyses were conducted with a black oil and a retrograde condensate gas mixtures. Limited comparison of the results were performed based on the same tests performed on a conventional mercury-based PVT apparatus. The results of these tests are included in this report.

  5. MOLECULAR DIAGNOSTIC RATIOS TO ASSESS THE APPORTIONMENT OF PETROLEUM HYDROCARBONS CONTAMINANTION IN MARINE SEDIMENT

    Directory of Open Access Journals (Sweden)

    Agung Dhamar Syakti

    2016-11-01

    Full Text Available As maritime fulcrum nation, in Indonesia, marine environmental analytical chemistry field is still under developed. So that why, this review paper aims to provide basic understanding of the use some molecular diagnostic indices using n-alkanes indexes and polycyclic aromatic hydrocarbons (PAHs diagnostic ratios to estimate the source of apportionment of the hydrocarbons contamination and origin. The n-alkane chromatograms were then used to characterize the predominance of petrogenic or biogenic either terrestrial or aquatic. Furthermore, characterization allowed to discriminate riverine versus marine input. The occurrence of a broad unresolved complex mixture can be an evidence of biodegraded petroleum residues. For aromatic compounds, the prevalence of petrogenic, pyrolitic, and combustion-derived can be easily plotted by using isomers ratio calculation. This paper thus provides useful information on the hydrocarbon contamination origin, especially in marine sediments. Further researches should be undertaken in order to validate the use of molecular diagnostic ratio with isotopic approach.

  6. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  7. Co-processing of lignite-plastic mixtures into liquid distillate fractions in the presence of iron catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Sharypov, V.I.; Beregovtsova, N.G.; Baryshnikov, S.V.; Doroginskaya, A.N. [Russian Academy of Sciences, Krasnoyarsk (Russian Federation). Inst. of Chemistry of Natural Organic Materials Sibirian Branch

    1997-12-31

    Some features of co-processing of Kansk-Achinsk lignite with plastics into hydrocarbon mixtures in the presence of activated iron-containing minerals (hematite, magnetite, pyrrhotite) were investigated under various operating parameters. The following catalytic processes were studied: pyrolysis in an inert atmosphere, hydropyrolysis and water-steam cracking. (orig.)

  8. Iodide- and bromide-specific electron-capture/photodetachment-modulated detector for the trace analysis of halocarbon mixtures

    International Nuclear Information System (INIS)

    Mock, R.S.; Grimsrud, E.P.

    1988-01-01

    The use of photodetachment (PD) of electrons from negative ions in a pulsed electron capture detector (ECD) is described. By passing a chopped light beam through the ECD and amplification of the modulated component of the ECD signal, the photodetachment-modulated (PDM) pulsed ECD can be made to respond selectively and sensitively to iodine- containing hydrocarbons alone, or to iodine- and bromine-containing hydrocarbons in the presence of chlorinated hydrocarbons. The detection limit of the iodide/bromide-specific mode of the PDM-ECD to CH 3 I is shown to be competitive with that of the normal mode of the pulsed ECD. This detection mode of the ECD is shown to be of great assistance in the gas chromatographic analysis of organobromides and organoiodides in complex mixtures which contain a large number of organochlorides

  9. Immunotoxicity of environmentally relevant mixtures of polychlorinated aromatic hydrocarbons with methyl mercury on rat lymphocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Omara, F.O.; Brochu, C.; Flipo, D.; Denizeau, F.; Fournier, M. [Univ. of Quebec, Montreal, Quebec (Canada)

    1997-03-01

    The immunosuppressive effects of methyl mercury (MHg), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and dibenzofurans (PCDFs) are well established at higher exposure levels but unclear at low exposure levels. The authors exposed Fischer 344 rat splenocytes, thymocytes, and peripheral blood lymphocytes in vitro for 72 h to MHg of three PCDDs and two PCDFs PCB mixtures, or combinations of MHg/PCB/PCDD/PCDF mixtures Mitogenic responses of lymphocytes to concanavalin A, phytohemagglutinin, or lipopolysaccharide/dextran sulfate were determined by {sup 3}H-thymidine uptake; cytotoxicity and intracellular Ca{sup 2+} were determined by flow cytometry. Methylmercury mixtures with 2 {micro}g/ml MHg decreased the viability of splenocytes to 57 and 40% at 4 and 24 h, respectively. Basal intracellular calcium ion levels were unaffected by the treatments. Methylmercury suppressed the responses of lymphocytes to T and B cell mitogens. All combinations of MHg/PCB/PCDD/PCDF mixtures decreased mitogenic responses to levels similar to those to MHg alone. In contrast, PCB and PCDD/PCDF mixtures did not suppress but augmented responses of splenocytes and peripheral blood lymphocytes to T cell mitogens. Overall, no interactive toxicity was observed with MHg/PCB/PCDD/PCDF mixtures on cytotoxicity and lymphocyte mitogenic responses. Therefore, MHg may pose a greater threat than organochlorines to the mammalian immune system.

  10. IDENTIFICATION OF SOME CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS IN BANGLADESHI VEHICLES EXHAUST TAR BY GAS CHROMATOGRAPHY-MASS SPECTROPHOTOMETER

    Directory of Open Access Journals (Sweden)

    M. Amzad Hossain

    2010-06-01

    Full Text Available A more sensitive GC-MS method has been established for the determination of some carcinogenic polycyclic aromatic hydrocarbons (PAHs in vehicles exhaust tar samples. The tar samples were extracted using dichloromethane (DMC: n-hexane solvent mixture. A multi-layer clean-up (silica gel/sodium sulphate column was used, followed by glass fiber filter (GFF paper. The method was successfully applied to determine a number of PAHs present in exhaust tar sample of different vehicles of the Atomic Energy Centre, Dhaka, Bangladesh.   Keywords: Carcinogenic polycyclic aromatic hydrocarbons, vehicles tar samples, identification, GC-MS/MS

  11. [Research on Oil Sands Spectral Characteristics and Oil Content by Remote Sensing Estimation].

    Science.gov (United States)

    You, Jin-feng; Xing, Li-xin; Pan, Jun; Shan, Xuan-long; Liang, Li-heng; Fan, Rui-xue

    2015-04-01

    Visible and near infrared spectroscopy is a proven technology to be widely used in identification and exploration of hydrocarbon energy sources with high spectral resolution for detail diagnostic absorption characteristics of hydrocarbon groups. The most prominent regions for hydrocarbon absorption bands are 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm by the reflectance of oil sands samples. These spectral ranges are dominated by various C-H overlapping overtones and combination bands. Meanwhile, there is relatively weak even or no absorption characteristics in the region from 1,700 to 1,730 nm in the spectra of oil sands samples with low bitumen content. With the increase in oil content, in the spectral range of 1,700-1,730 nm the obvious hydrocarbon absorption begins to appear. The bitumen content is the critical parameter for oil sands reserves estimation. The absorption depth was used to depict the response intensity of the absorption bands controlled by first-order overtones and combinations of the various C-H stretching and bending fundamentals. According to the Pearson and partial correlation relationships of oil content and absorption depth dominated by hydrocarbon groups in 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm wavelength range, the scheme of association mode was established between the intensity of spectral response and bitumen content, and then unary linear regression(ULR) and partial least squares regression (PLSR) methods were employed to model the equation between absorption depth attributed to various C-H bond and bitumen content. There were two calibration equations in which ULR method was employed to model the relationship between absorption depth near 2,350 nm region and bitumen content and PLSR method was developed to model the relationship between absorption depth of 1,758, 2,310, 2,350 nm regions and oil content. It turned out that the calibration models had good predictive ability and high robustness and they could provide the scientific

  12. Soil bioremediation approaches for petroleum hydrocarbon polluted environments

    Directory of Open Access Journals (Sweden)

    Eman Koshlaf

    2017-01-01

    Full Text Available Increasing industrialisation, continued population growth and heavy demand and reliance on petrochemical products have led to unprecedented economic growth and development. However, inevitably this dependence on fossil fuels has resulted in serious environmental issues over recent decades. The eco-toxicity and the potential health implications that petroleum hydrocarbons pose for both environmental and human health have led to increased interest in developing environmental biotechnology-based methodologies to detoxify environments impacted by petrogenic compounds. Different approaches have been applied for remediating polluted sites with petroleum derivatives. Bioremediation represents an environmentally sustainable and economical emerging technology for maximizing the metabolism of organic pollutants and minimizing the ecological effects of oil spills. Bioremediation relies on microbial metabolic activities in the presence of optimal ecological factors and necessary nutrients to transform organic pollutants such as petrogenic hydrocarbons. Although, biodegradation often takes longer than traditional remediation methods, the complete degradation of the contaminant is often accomplished. Hydrocarbon biodegradation in soil is determined by a number of environmental and biological factors varying from site to site such as the pH of the soil, temperature, oxygen availability and nutrient content, the growth and survival of hydrocarbon-degrading microbes and bioavailability of pollutants to microbial attack. In this review we have attempted to broaden the perspectives of scientists working in bioremediation. We focus on the most common bioremediation technologies currently used for soil remediation and the mechanisms underlying the degradation of petrogenic hydrocarbons by microorganisms.

  13. Total petroleum hydrocarbons in edible marine biota from Northern Persian Gulf.

    Science.gov (United States)

    Nozar, Seyedeh Laili Mohebbi; Pauzi, Mohamad Zakaria; Salarpouri, Ali; Daghooghi, Behnam; Salimizadeh, Maryam

    2015-04-01

    To provide a baseline information for consumer's health, distribution of total petroleum hydrocarbons in 18 edible marine biota species from northern Persian Gulf was evaluated. The samples were purchased from fish market of Hormozgan Province, South of Iran. Marine biota samples included different species with various feeding habits and were analyzed based on ultraviolet florescence spectroscopy. Petroleum hydrocarbons showed narrow variation, ranging from 0.67 to 3.36 μg/g dry weight. The maximum value was observed in silver pomfret. Anchovy and silver pomfret with the highest content of petroleum hydrocarbons were known as good indicator for oil pollution in the studied area. From public health point of view, the detected concentrations for total petroleum hydrocarbons were lower than hazardous guidelines. The results were recorded as background data and information in the studied area; the continuous monitoring of pollutants is recommended, according to the rapid extension of industrial and oily activities in Hormozgan Province.

  14. Modelling of associating mixtures for applications in the oil & gas and chemical industries

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Folas, Georgios; Muro Sunè, Nuria

    2007-01-01

    Thermodynamic properties and phase equilibria of associating mixtures cannot often be satisfactorily modelled using conventional models such as cubic equations of state. CPA (cubic-plus-association) is an equation of state (EoS), which combines the SRK EoS with the association term of SAFT. For non......-alcohol (glycol)-alkanes and certain acid and amine-containing mixtures. Recent results include glycol-aromatic hydrocarbons including multiphase, multicomponent equilibria and gas hydrate calculations in combination with the van der Waals-Platteeuw model. This article will outline some new applications...... thermodynamic models especially those combining cubic EoS with local composition activity coefficient models are included. (C) 2007 Elsevier B.V. All rights reserved....

  15. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    Science.gov (United States)

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  16. Detection of irradiated mushrooms by GC/MS analysis of lipid-derived hydrocarbons

    International Nuclear Information System (INIS)

    Delincee, H.; Koller, W.D.

    1993-01-01

    A number of methods has been developed for the detection of irradiated foods in recent years, and in the case of mushrooms several methods have been proposed, of which the thermoluminescence (TL) measurements seem to be the most valuable. However, in several cases mineral contamination of fresh mushrooms is so extremely low that not enough minerals can be isolated for TL analysis. In that case an alternative method is needed to detect the radiation treatment of mushrooms. Several methods including TTC (2,3,5-triphenyl-tetrazolium-chloride) staining, kinetin treatment, dropping out of spores and mirco-gel electrophoresis of spores, were tested, but the most promising method was the GC/MS analysis of radiation-induced lipid-derived hydrocarbons in spite of the low fat content - around 0.2-0.3% - of mushrooms. Successful results were achieved by GC/MS analysis of the radiolytic hydrocarbons. Although mushrooms have a low fat content, by extracting a large quantity, in this case 500 g of mushrooms, about 1.2-1.5 g of fat could be obtained. The main fatty acids of mushroom fat and some of their expected cleavage products on irradiation - the c n-1 hydrocarbon which has one C atom less than the parent fatty acid and the C n-2:1 hydrocarbon, which has two C atoms less and an additional double bond in position 1 - are given. (orig./Vhe)

  17. The reformation of liquid hydrocarbons in an aqueous discharge reactor

    International Nuclear Information System (INIS)

    Zhang, Xuming; Cha, Min Suk

    2015-01-01

    We present an aqueous discharge reactor for the reformation of liquid hydrocarbons. To increase a dielectric constant of a liquid medium, we added distilled water to iso-octane and n-dodecane. As expected, we found decreased discharge onset voltage and increased discharge power with increased water content. Results using optical emission spectroscopy identified OH radicals and O atoms as the predominant oxidative reactive species with the addition of water. Enriched CH radicals were also visualized, evidencing the existence of cascade carbon–carbon cleavage and dehydrogenation processes in the aqueous discharge. The gaseous product consisted primarily of hydrogen, carbon monoxide, and unsaturated hydrocarbons. The composition of the product was readily adjustable by varying the volume of water added, which demonstrated a significant difference in composition with respect to the tested liquid hydrocarbon. In this study, we found no presence of CO 2 emissions or the contamination of the reactor by solid carbon deposition. These findings offer a new approach to the reforming processes of liquid hydrocarbons and provide a novel concept for the design of a practical and compact plasma reformer. (paper)

  18. Investigation of Underground Hydrocarbon Leakage using Ground Penetrating Radar

    Science.gov (United States)

    Srigutomo, Wahyu; Trimadona; Agustine, Eleonora

    2016-08-01

    Ground Penetrating Radar (GPR) survey was carried out in several petroleum plants to investigate hydrocarbon contamination beneath the surface. The hydrocarbon spills are generally recognized as Light Non-Aqueous Phase Liquids (LNAPL) if the plume of leakage is distributed in the capillary fringe above the water table and as Dense Non-Aqueous Phase Liquids (DNAPL) if it is below the water table. GPR antennas of 200 MHz and 400 MHz were deployed to obtain clear radargrams until 4 m deep. In general, the interpreted radargram sections indicate the presence of surface concrete layer, the compacted silty soill followed by sand layer and the original clayey soil as well as the water table. The presence of hydrocarbon plumes are identified as shadow zones (radar velocity and intensity contrasts) in the radargram that blur the layering pattern with different intensity of reflected signal. Based on our results, the characteristic of the shadow zones in the radargram is controlled by several factors: types of hydrocarbon (fresh or bio-degraded), water moisture in the soil, and clay content which contribute variation in electrical conductivity and dielectric constants of the soil.

  19. Composition of some botanical mixtures as potential feed additives for laying hens

    Directory of Open Access Journals (Sweden)

    Varzaru Iulia

    2015-01-01

    Full Text Available The aim of this study was to assess the nutritional quality of four botanical mixtures (AFC: AFC 1 (containing red corn, pumpkin pulp and marigold, AFC 2 (containing alfalfa meal, pumpkin pulp and marigold, AFC 3 (containing kale, alfalfa meal, marigold and spinach leaves, AFC 4 (containing buckthorn, red corn, pumpkin pulp and marigold, in terms of proximate analysis (crude protein, crude fat, crude fiber, ash, amino acid (AA profile, vitamin E concentration and lutein and zeaxanthin content, in order to determine the potential of AFCs as feed additives in laying hens nutrition. The crude protein content for the analysed botanical mixtures ranged between 9.07-18.18% DM, and crude fiber between 10.41-30.83% DM. The amino acid profile of the mixture AFC 4 revealed a content of limiting essential amino acids required for laying hens: lysine 5.719% CP, methionine 1.058% CP and threonine 4.415% CP. The highest content of lutein and zeaxanthin was found in the mixture AFC 4 (66.659 mg/100 g, which also had the highest amount of vitamin E (640.93 mg/kg. With regard to safety of the botanical mixtures, lead and cadmium concentrations were determined. Concentration of lead ranged from 0.28-0.75 µg/g DM and 0.06-0.09 µg/g DM for concentration of cadmium, which was within the legislation of maximal limits of EU regulations. It can be concluded that the botanical mixture AFC 4 had the highest concentration of lutein, zeaxanthin and vitamin E, with an adequate content of essential amino acids. Furthermore, all four botanical mixtures had high amounts of xantophylls and should be tested in laying hens trials in order to establish their effects on lutein and zeaxanthin concentration in egg yolk.

  20. Simplex-centroid mixture formulation for optimised composting of kitchen waste.

    Science.gov (United States)

    Abdullah, N; Chin, N L

    2010-11-01

    Composting is a good recycling method to fully utilise all the organic wastes present in kitchen waste due to its high nutritious matter within the waste. In this present study, the optimised mixture proportions of kitchen waste containing vegetable scraps (V), fish processing waste (F) and newspaper (N) or onion peels (O) were determined by applying the simplex-centroid mixture design method to achieve the desired initial moisture content and carbon-to-nitrogen (CN) ratio for effective composting process. The best mixture was at 48.5% V, 17.7% F and 33.7% N for blends with newspaper while for blends with onion peels, the mixture proportion was 44.0% V, 19.7% F and 36.2% O. The predicted responses from these mixture proportions fall in the acceptable limits of moisture content of 50% to 65% and CN ratio of 20-40 and were also validated experimentally. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Federal Environmental Regulations Impacting Hydrocarbon Exploration, Drilling, and Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Waste handling and disposal from hydrocarbon exploration, drilling, and production are regulated by the US Environmental Protection Agency (EPA) through federal and state regulations and/or through implementation of federal regulations. Some wastes generated in these operations are exempt under the Resource Conservation and Recovery Act (RCRA) but are not exempt under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Superfund Amendments and Reauthorization Act (SARA), and other federal environmental laws. Exempt wastes remain exempt only if they are not mixed with hazardous wastes or hazardous substances. Once mixture occurs, the waste must be disposed as a hazardous material in an approved hazardous waste disposal facility. Before the Clean Air Act as amended in 1990, air emissions from production, storage, steam generation, and compression facilities associated with hydrocarbon exploration, drilling, and production industry were not regulated. A critical proposed regulatory change which will significantly effect Class II injection wells for disposal of produced brine and injection for enhanced oil recovery is imminent. Federal regulations affecting hydrocarbon exploration, drilling and production, proposed EPA regulatory changes, and a recent significant US Court of Appeals decision are covered in this report. It appears that this industry will, in the future, fall under more stringent environmental regulations leading to increased costs for operators.

  2. Stability of hydrocarbon systems at thermobaric conditions corresponding to depth down to 50 km

    Science.gov (United States)

    Kutcherov, V.; Kolesnikov, A.; Mukhina, E.; Serovaiskii, A.

    2017-12-01

    Most of the theoretical models show that crude oil stability is limited by the depth of 6-8 km (`oil window'). Commercial discovery of crude oil deposits on the depth more than 10 km in the different petroleum basins worldwide casts doubt on the validity of the above-mentioned theoretical calculations. Therefore, the question at which depth complex hydrocarbon systems could be stable is important not only from fundamental research point of view but has a great practical application. To answer this question a hydrocarbon mixture was investigated under thermobaric conditions corresponding to the conditions of the Earth's lower crust. Experiments were conducted by means of Raman Mössbauer spectroscopy. The results obtained show that the complex hydrocarbon systems could be stable and remain their qualitative and quantitative composition at temperature 320-450 °C and pressure 0.7-1.4 GPa. The oxidizing resistance of hydrocarbon system was tested in the modelled the Earth's crust surrounding. The hydrocarbon system stability at the presence of Fe2O3 strongly confirms that the Earth's crust oxygen fugacity does not influence on petroleum composition. The data obtained broaden our knowledge about the possible range of depths for crude oil and natural gas deposits in the Earth's crust and give us the possibility to revise the depth of petroleum deposits occurrence.

  3. Hydrocarbon degradation potential in reference soils and soils contaminated with jet fuel

    International Nuclear Information System (INIS)

    Lee, R.F.; Hoeppel, R.

    1991-01-01

    Petroleum degradation in surface and subsurface soils is affected by such factors as moisture content, pH, soil type, soil organics, temperature, and oxygen concentrations. In this paper, the authors determine the degradation rates of 14 C-labeled hydrocarbons added to soils collected from a contaminated surface site, contaminated subsurface sites, and a clean reference site. The radiolabeled hydrocarbons used include benzene, toluene, naphthalene, 1-methynaphthalene, phenanthrene, fluorene, anthracene, chrysene, and hexadecane. Microbial degradation rates were based on determination of mineralization rates (production of 14 CO 2 ) of hydrocarbons that were added to soil samples. Since water was added and oxygen was not limiting, the hydrocarbon rates determined are likely to be higher than those occurring in situ. Using radiolabeled hydrocarbons, information can be provided on differences in the degradation rates of various petroleum compounds in different types of soils at a site, on possible production of petroleum metabolites in the soil, and on the importance of anaerobic petroleum degradation and the effects of nutrient, water, and surfactant addition on biodegradation rates

  4. A novel zeolite process for clean end use of hydrocarbon products

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, K M [Neste Oy, Porvoo (Finland). Technology Centre

    1997-12-31

    In recent years zeolites such as ZSM-5 have attracted considerable interest for the catalysis of a wide range of hydrocarbon transformations. A novel process developed by Neste converts light olefins to higher molecular weight hydrocarbon products. A wide range of high quality diesel, solvents and lube oils can be produced by the new NESKO process. Hydrotreated products have excellent properties; negligible sulphur or nitrogen compounds, very low aromatic content and pour point lower than -50 deg C. Proprietary technology is used in this olefin oligomerization process. (author) (7 refs.)

  5. A novel zeolite process for clean end use of hydrocarbon products

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, K.M. [Neste Oy, Porvoo (Finland). Technology Centre

    1996-12-31

    In recent years zeolites such as ZSM-5 have attracted considerable interest for the catalysis of a wide range of hydrocarbon transformations. A novel process developed by Neste converts light olefins to higher molecular weight hydrocarbon products. A wide range of high quality diesel, solvents and lube oils can be produced by the new NESKO process. Hydrotreated products have excellent properties; negligible sulphur or nitrogen compounds, very low aromatic content and pour point lower than -50 deg C. Proprietary technology is used in this olefin oligomerization process. (author) (7 refs.)

  6. Non-aromatic hydrocarbons in surface sediments near the Pearl River estuary in the South China Sea

    International Nuclear Information System (INIS)

    Gao Xuelu; Chen Shaoyong; Xie Xueliang; Long Aimin; Ma Fujun

    2007-01-01

    Surface sediment samples at 4 sites along an offshore transect from outer continental shelf off the Pearl River estuary to the shelf slope region of the northern South China Sea, have been analyzed for total organic carbon (TOC), total nitrogen (TN), solvent extractable organic matter (EOM) and non-aromatic hydrocarbons. TOC, TN and EOM show distinct spatial variations. Their highest values are all recorded at the shelf slope region. EOM varies from 18.70-38.58 μg g -1 dry sediment and accounts for 0.20-0.72% of the TOC contents. The non-aromatic hydrocarbons are an important fraction of EOM. Their contents range from 3.43-7.06 μg g -1 dry sediment. n-Alkanes with carbon number ranging from 15-38 are identified. They derive from both biogenic and petrogenic sources in different proportions. Results of isoprenoid hydrocarbons, hopanes and steranes also suggest possible petroleum contamination. - Anthropogenic activities have influences on the composition of non-aromatic hydrocarbons in the surface sediments of the northern South China Sea outer continental shelf

  7. Effects of P/Ni ratio and Ni content on performance of γ-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    Science.gov (United States)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    γ-Al2O3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0-2.5) and Ni content (m = 5-15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al2O3 was also studied for comparison. It was found that the formation of AlPO4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni3P, Ni12P5 and Ni2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al2O3, the mNi-Pn catalysts showed much lower activities for decarbonylation, Csbnd C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl laurate was promoted with increasing P/Ni ratio and Ni content, ascribed to the phase change in the order of Ni, Ni3P, Ni12P5 and Ni2P in the prepared catalysts.

  8. Sample enrichment for gas chromatographic mass spectrometric analysis of polynuclear aromatic hydrocarbons in water and in organic mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Bruner, F.; Furlani, G.; Mangani, F.

    1984-10-19

    Among the extraction and preconcentration steps used for polynuclear aromatic hydrocarbons, Soxhlet extraction is largely used for atmospheric dust or other solid material, while liquid-liquid extraction is the method which has been suggested for extraction from water. The use of graphitized carbon black for liquid-solid extraction and preconcentration from water was explored. The properties of different kinds of graphitized carbon black as traps for the extraction and preconcentration of polynuclear aromatic hydrocarbons from water and mineral oil were determined. The best results were obtained with Carbopack F, eluted with toluene at 100 C. Graphitized carbon black is preferred because of its thermal and chemical stability and its high purity, exhibiting no bleeding and possessing high sensitivity. 9 references, 2 figures, 2 tables.

  9. Hydraulic properties of domestic bentonite-sand mixture as a backfill material in the high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Lee, Jae Owan; Kang, Chul Hyung [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    This study is intended to investigate the effect of dry density and sand content on hydraulic conductivities of bentonite-sand mixtures. The hydraulic conductivities of bentonite-sand mixtures with dry densities of 1.6 and 1.8 Mg/m{sup 3} are lower than 10{sup -11} m/s if their sand contents are less than 70 wt%. However at the sand content of 90 wt%, the hydraulic conductivities increase sharply. In the case of sand contents not exceeding 70 wt%, the logarithm of the hydraulic conductivity of bentonite-sand mixture increase linearly with increasing sand content. The hydraulic conductivity of the mixture can be explained using 'effective clay dry density' concept. 16 refs., 21 figs., 5 tabs. (Author)

  10. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations.

    Science.gov (United States)

    Liu, Q; Tang, J; Liu, X; Song, B; Zhen, M; Ashbolt, N J

    2017-10-01

    Study the response of microbial communities and selected petroleum hydrocarbon (PH)-degrading genes on simulated PH spills in soils/sediments from different geographic locations. A microcosm experiment was conducted by spiking mixtures of petroleum hydrocarbons (PHs) to soils/sediments collected from four different regions of China, including the Dagang Oilfield (DG), Sand of Bohai Sea (SS), Northeast China (NE) and Xiamen (XM). Changes in bacterial community and the abundance of PH-degrading genes (alkB, nah and phe) were analysed by denaturing gradient electrophoresis (DGGE) and qPCR, respectively. Degradation of alkanes and PAHs in SS and NE materials were greater (P < 0·05) than those in DG and XM. Clay content was negatively correlated with the degradation of total alkanes by 112 days and PAHs by 56 days, while total organic carbon content was negatively correlated with initial degradation of total alkanes as well as PAHs. Abundances of alkB, nah and phe genes increased 10- to 100-fold and varied by soil type over the incubation period. DGGE fingerprints identified the dominance of α-, β- and γ-Proteobacteria (Gram -ve) and Actinobacteria (Gram +ve) bacteria associated with degradation of PHs in the materials studied. The geographic divergence resulting from the heterogeneity of physicochemical properties of soils/sediments appeared to influence the abundance of metabolic genes and community structure of microbes capable of degrading PHs. When developing practical in-situ bioremediation approaches for PHs contamination of soils/sediment, appropriate microbial community structures and the abundance of PH-degrading genes appear to be influenced by geographic location. © 2017 The Society for Applied Microbiology.

  11. SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2013-01-01

    Full Text Available Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture was studied using Superpave gyratory compactor (SGC simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.

  12. Determining Biodegradation Kinetics of Hydrocarbons at Low Concentrations: Covering 5 and 9 Orders of Magnitude of Kow and Kaw

    DEFF Research Database (Denmark)

    Birch, Heidi; Høst Hammershøj, Rikke; Mayer, Philipp

    2018-01-01

    a loaded silicone donor was used to set the concentration of each hydrocarbon in mixture stock solutions; (2) these solutions were combined with environmental water samples in gastight auto sampler vials for 1-100 days incubation, and (3) automated solid phase microextraction (SPME) coupled to GC...

  13. Monomers and Monomer Mixtures Used in Impregnation of Fibrous Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-10-15

    Some important properties of monomers and polymers in relation to their use for reinforcement of fibrous materials are listed. Some monomers and their properties important in impregnation of fibrous materials are also listed. In general it is not advantageous to use a pure monomer for impregnation but rather a mixture of monomers or a mixture of a monomer and a low molecular weight polymer such as unsaturated polyester. Some of these mixtures which have been well studied in connection with WPC are listed together with some of their properties when used in WPC. Other monomer mixtures may well come in question and other monomers can probably be used. For instance, it is reported from Japan that the cheap monomer ethyleneoxide, which cannot be polymerized by gamma radiation as such, can be polymerized (in bulk) as a mixture with methylmethacrylate. Good results with WPC have generally been obtained without swelling agents but more is grafted if some swelling agent is used, and it is possible that a swelling agent might be useful in the case of fibre-boards. Solvents, plasticizers, crosslinkable natural resins, aromatic chlorinated hydrocarbons, and retardants can be added, and with their use the properties of WPC can be widely modified. For example, a chlorinated wax can act as retardant, can reduce the total dose of radiation and can increase the flame resistance simultaneously.

  14. He{sup +} irradiation temperature influence on the structure and nanohardness of hydrocarbon films

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Yang, Deming [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Sun, Li [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics, Liaoning Normal University, Dalian 116023 (China); Yang, Qi; Niu, Jinhai [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Guo, Liping; Chen, Jihong [Accelerator Laboratory, School of Physics, Wuhan University, Wuhan 430072 (China); Bi, Zhenhua [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electronic Science, Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-09-15

    Polymer-like hydrocarbon films were irradiated with 100 keV He{sup +} or annealed at sample temperatures varying from 25 to 600 °C. The effects of sample temperature on the structure and nanohardness of hydrocarbon films are investigated by atomic force microscopy (AFM), AFM-based nanoindentation, Fourier transform infrared spectroscopy, and Raman spectroscopy. Analysis shows that annealing results in the decrease in the nanohardness of hydrocarbon films from 4.0 GPa to 0.55 GPa while He{sup +} irradiation at an elevated sample temperature results in the formation of dense diamond-like carbon films with nanohardness up to 20.0 GPa. This indicates that polymer-like hydrocarbon films can be transformed into the hard diamond-like carbon films with a relatively low H content on vacuum vessels of fusion devices due to the energetic bombardments at an elevated wall temperature.

  15. Applying petroleum biomarkers as a tool for confirmation of petroleum hydrocarbons in high organic content soils

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, G.; Martin, E.J.; Waddell, J.; Sandau, C.D. [TRIUM Environmental Solutions, Cochrane, AB (Canada); Denham, G. [Nexen Inc., Calgary, AB (Canada); Samis, M.W. [Great Plains Environmental Management Ltd., Medecine Hat, AB (Canada)

    2009-10-01

    It is often difficult to separate naturally occurring phytogenic organic materials from petrogenic sources in routine gas chromatography flame ionization detection (GC-FID) analyses. Phytogenic compounds include tannins, waxes, terpenes, fats and oils. This study examined the use of petroleum biomarkers as a means of determining the nature, sources, type and geological conditions of the formation of petroleum hydrocarbons (PHCs). The analysis was conducted at a former well site consisting of low-lying peat marshlands that had the potential to interfere with the delineation of PHC impacts. Fourteen boreholes and 8 hand auger holes were placed at the site. Soil samples were analyzed for salinity, metals, and PHC constituents. Biomarker targets included acyclic isoprenoid compounds, polycyclic aromatic hydrocarbon (PAH) compounds, terpanes, hopanes, and triaromatic steranes. A grain-size analysis showed the presence of peat materials within the saturated zone. Results of the study demonstrated the presence of PHC constituents that exceeded applicable guidelines. The biomarker analysis was used to statistically determine site-specific background levels of hydrocarbons. Nearly 3000 tonnes of soil were excavated from the site. It was concluded that site-specific conditions should be taken into consideration when evaluating reclamation targets. 3 refs., 6 figs.

  16. Utilization of hydrocarbons by cyanobacteria from microbial mats on oily coasts of the Gulf

    International Nuclear Information System (INIS)

    Al Hasan, R.H.; Sorkhoh, N.A.; Al Bader, D.; Radwan, S.S.

    1994-01-01

    Several pieces of evidence indicate that Microcoleus chthonoplastes and Phormidium corium, the predominant cyanobacteria in microbial mats on crude oil polluting the Arabian Gulf coasts, contribute to oil degradation by consuming individual n-alkanes. Both cyanobacteria grew phototrophically better in the presence of crude oil or individual n-alkanes than in their absence, indicating that hydrocarbons may have been utilized. This result was true when growth was measured in terms of dry biomass, as well as in terms of the content of biliprotein, the accessory pigment characteristic of cyanobacteria. The phototrophic biomass production by P. corium was directly proportional to the concentration of n-nonadecane (C 19 ) in the medium. The chlorophyll to carotene ratio of hydrocarbon-grown cyanobacteria did not decrease compared to the ratio in the absence of hydrocarbons, indicating that on hydrocarbons the organisms were not stressed. Comparing the fatty acid patterns of total lipids from hydrocarbon-grown cyanobacteria to those of the same organisms grown without hydrocarbons confirms that n-alkanes were taken up and oxidized to fatty acids by both cyanobacteria. (orig.)

  17. Experimental study of the overpressures generated by the detonation of spherical air-hydrocarbon gaseous mixtures

    International Nuclear Information System (INIS)

    Brossard, J.

    1978-01-01

    The characteristics of the pressure waves transmitted by detonation of gaseous mixtures to the surrounding air were measured by tests made near the ground level in 1 to 54 m 3 spherical balloons containing air-acetylene or air-ethylene mixtures. As concerns the peak overpressure Δp, a theoretical dimensional analysis in accordance with the experimental results shows that Δp can be expressed as a function of two independent variables, which are the radial distance R and the volume V of the balloon . A semi-empirical formula, including ground effects, is proposed and its present validity range is given. (author)

  18. Hydrocarbon potential of the Trinidad area - 1977

    Energy Technology Data Exchange (ETDEWEB)

    Persad, K.M.

    1978-06-01

    It is recognized that deltaic and associated sands, together with porous marine limestones, form the vast majority of the reservoirs in the major accumulations of hydrocarbons throughout the world. The source of the hydrocarbons is now thought to be kerogen which is generated from the organic content of principally marine shales which are formed in or near the continental shelves. The Trinidad area contains several sedimentary subbasins, most of which consist largely of deltaic and associated sediments. These sediments, like most of the ancient deltas of the world, contain major reserves of oil and gas. Other less important reserves should occur in sporadic (time-wise) porous limestones. The total proven and probable reserves of the Trinidad area are around 5 billion bbl of oil, of which 1.6 billion bbl already have been produced, and over 47 TCF of gas.

  19. Metal accumulation in the polychaete Hediste japonica with emphasis on interaction between heavy metals and petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Sun Fuhong; Zhou Qixing

    2007-01-01

    The accumulation of cadmium (Cd) and copper (Cu) in the polychaete Hediste japonica exposed to the mixture of Cd (or Cu) and petroleum hydrocarbons (PHCs) was investigated and compared with that exposed to single Cd (or Cu). The increased bioavailability of Cd or Cu with exposure concentrations resulted in an increase in the accumulation and net accumulation rate of Cd or Cu during single metal exposure. The net accumulation rate of Cd increased, but the net accumulation rate of Cu decreased with exposure time during single metal exposure, suggesting that H. japonica could actively regulate Cu burden in their body by inhibition of absolute uptake or promotion of excretion. The interactions between Cd (or Cu) and PHCs had complicated influences on the net accumulation rate of Cd and Cu in H. japonica under the condition of the binary mixture, which are dependent on their concentration combinations and exposure time. - The influences of petroleum hydrocarbons on Cd and Cu accumulation in H. japonica depend on their concentration combinations and exposure time

  20. Hydrocarbon composition and concentrations in the Gulf of Mexico sediments in the 3 years following the Macondo well blowout.

    Science.gov (United States)

    Babcock-Adams, Lydia; Chanton, Jeffrey P; Joye, Samantha B; Medeiros, Patricia M

    2017-10-01

    In April of 2010, the Macondo well blowout in the northern Gulf of Mexico resulted in an unprecedented release of oil into the water column at a depth of approximately 1500 m. A time series of surface and subsurface sediment samples were collected to the northwest of the well from 2010 to 2013 for molecular biomarker and bulk carbon isotopic analyses. While no clear trend was observed in subsurface sediments, surface sediments (0-3 cm) showed a clear pattern with total concentrations of n-alkanes, unresolved complex mixture (UCM), and petroleum biomarkers (terpanes, hopanes, steranes) increasing from May to September 2010, peaking in late November 2010, and strongly decreasing in the subsequent years. The peak in hydrocarbon concentrations were corroborated by higher organic carbon contents, more depleted Δ 14 C values and biomarker ratios similar to those of the initial MC252 crude oil reported in the literature. These results indicate that at least part of oil discharged from the accident sedimented to the seafloor in subsequent months, resulting in an apparent accumulation of hydrocarbons on the seabed by the end of 2010. Sediment resuspension and transport or biodegradation may account for the decrease in sedimented oil quantities in the years following the Macondo well spill. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modeling derivative properties and binary mixtures with CO2 using the CPA and the quadrupolar CPA equations of state

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel; Kontogeorgis, Georgios

    2016-01-01

    The cubic plus association (CPA) equation of state (EoS) is extended to include quadrupolar interactions. The quadrupolar term is based on a modification of the perturbation terms by Larsen et al. (1977) [5] for a hard sphere fluid with a symmetric point quadrupole moment. The new quadrupolar CPA......CPA can accurately correlate both the phase behaviour of CO2+hydrocarbon mixtures as well as mixtures of CO2+a self-associating compound....

  2. Radiation-induced chemical reactions of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Sugimoto, S.; Nishii, M.; Sugiura, T.

    1984-01-01

    The radiation chemical reaction of CO-H 2 mixture has been studied in the pressure range from 10 4 to 1.3 x 10 5 Pa using 7 l. reaction vessel made of stainless steel. Various hydrocarbons and oxygen containing compounds such as methane, formaldehyde, acetaldehyde, and methanol have been obtained as radiolytic products. The amounts and the G values of these products depended upon the irradiation conditions such as composition of reactant, total pressure, reaction temperature, and dose. It was found that the irradiation at low dose produced small amounts of trioxane and tetraoxane, which have not yet been reported in literature. The yields of these cyclic ethers increased at high pressure and at low temperature. An experiment was also made on CO-H 2 mixture containing ammonia as a cation scavenger to investigate the precursor of these products. (author)

  3. Aromatic hydrocarbon concentrations in sediments of Placentia Bay, Newfoundland

    International Nuclear Information System (INIS)

    Kiceniuk, J.W.

    1992-01-01

    A study was conducted to examine the potential for contamination of recent sediments with polycyclic aromatic hydrocarbons due to tanker and refinery activity in Placentia Bay, Newfoundland, an area without large local anthropogenic sources of aromatics. Sediment samples were taken from the vicinity of the Come By Chance refinery, Woody Island, Wild Cove, and Port Royal Arm, all in the north end of the bay. The samples were extracted by two methods, dichloromethane extraction of dried sediment for determination of total aromatic hydrocarbon content and hexane extraction of wet sediment for estimation of the bioavailability of hydrocarbons and determination of more volatile compounds. Class analysis of aromatic hydrocarbons was conducted on a NH 2 column with detection at 255 nm. Total concentrations of di-tricyclic aromatics were highest at the Woody Island site (0.6 μg/g). The sediments from the Come By Chance site, Wild Cove, and Port Royal Arm sediments contained 0.3, 0.1, and 0.2 μg/g respectively. The hexane extracts from Come By Chance were lowest in di-tricyclic aromatics (0.007 μg/g), with the other sites being equal in concentration (0.01 μg/g). It is evident from the study that aromatic hydrocarbon concentrations in Placentia Bay are elevated in some parts of the bay in the absence of local combustion sources, and that the most likely source is petroleum. 12 refs., 5 figs., 2 tabs

  4. Cryotrapping assisted mass spectrometry for the analysis of complex gas mixtures

    International Nuclear Information System (INIS)

    Ferreira, Jose A.; Tabares, Francisco L.

    2007-01-01

    A simple method is described for the unambiguous identification of the individual components in a gas mixture showing strong overlapping of their mass spectrometric cracking patterns. The method, herein referred to as cryotrapping assisted mass spectrometry, takes advantage of the different vapor pressure values of the individual components at low temperature (78 K for liquid nitrogen traps), and thus of the different depletion efficiencies and outgassing patterns during the fast cooling and slow warming up of the trap, respectively. Examples of the use of this technique for gas mixtures with application to plasma enhanced chemical vapor deposition of carbon and carbon-nitrogen hard films are shown. Detection of traces of specific C 3 hydrocarbons ( 2 containing deposition plasmas are addressed as representative examples of specific applications of the technique

  5. Distribution of hydrocarbon-utilizing microorganisms and hydrocarbon biodegradation potentials in Alaskan continental shelf areas

    International Nuclear Information System (INIS)

    Roubal, G.; Atlas, R.M.

    1978-01-01

    Hydrocarbon-utilizing microogranisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14 C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14 C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene >> pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population

  6. The reformation of liquid hydrocarbons in an aqueous discharge reactor

    KAUST Repository

    Zhang, Xuming

    2015-04-21

    We present an aqueous discharge reactor for the reformation of liquid hydrocarbons. To increase a dielectric constant of a liquid medium, we added distilled water to iso-octane and n-dodecane. As expected, we found decreased discharge onset voltage and increased discharge power with increased water content. Results using optical emission spectroscopy identified OH radicals and O atoms as the predominant oxidative reactive species with the addition of water. Enriched CH radicals were also visualized, evidencing the existence of cascade carbon-carbon cleavage and dehydrogenation processes in the aqueous discharge. The gaseous product consisted primarily of hydrogen, carbon monoxide, and unsaturated hydrocarbons. The composition of the product was readily adjustable by varying the volume of water added, which demonstrated a significant difference in composition with respect to the tested liquid hydrocarbon. In this study, we found no presence of CO2 emissions or the contamination of the reactor by solid carbon deposition. These findings offer a new approach to the reforming processes of liquid hydrocarbons and provide a novel concept for the design of a practical and compact plasma reformer. © 2015 IOP Publishing Ltd.

  7. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  8. Data Requirements and Modeling for Gas Hydrate-Related Mixtures and a Comparison of Two Association Models

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Aloupis, Georgios; Kontogeorgis, Georgios M.

    2017-01-01

    the performance of the CPA and sPC-SAFT EOS for modeling the fluid-phase equilibria of gas hydrate-related systems and will try to explore how the models can help in suggesting experimental measurements. These systems contain water, hydrocarbon (alkane or aromatic), and either methanol or monoethylene glycol...... parameter sets have been chosen for the sPC-SAFT EOS for a fair comparison. The comparisons are made for pure fluid properties, vapor liquid-equilibria, and liquid liquid equilibria of binary and ternary mixtures as well as vapor liquid liquid equilibria of quaternary mixtures. The results show, from...

  9. Extraction of hydrocarbons from high-maturity Marcellus Shale using supercritical carbon dioxide

    Science.gov (United States)

    Jarboe, Palma B.; Philip A. Candela,; Wenlu Zhu,; Alan J. Kaufman,

    2015-01-01

    Shale is now commonly exploited as a hydrocarbon resource. Due to the high degree of geochemical and petrophysical heterogeneity both between shale reservoirs and within a single reservoir, there is a growing need to find more efficient methods of extracting petroleum compounds (crude oil, natural gas, bitumen) from potential source rocks. In this study, supercritical carbon dioxide (CO2) was used to extract n-aliphatic hydrocarbons from ground samples of Marcellus shale. Samples were collected from vertically drilled wells in central and western Pennsylvania, USA, with total organic carbon (TOC) content ranging from 1.5 to 6.2 wt %. Extraction temperature and pressure conditions (80 °C and 21.7 MPa, respectively) were chosen to represent approximate in situ reservoir conditions at sample depth (1920−2280 m). Hydrocarbon yield was evaluated as a function of sample matrix particle size (sieve size) over the following size ranges: 1000−500 μm, 250−125 μm, and 63−25 μm. Several methods of shale characterization including Rock-Eval II pyrolysis, organic petrography, Brunauer−Emmett−Teller surface area, and X-ray diffraction analyses were also performed to better understand potential controls on extraction yields. Despite high sample thermal maturity, results show that supercritical CO2 can liberate diesel-range (n-C11 through n-C21) n-aliphatic hydrocarbons. The total quantity of extracted, resolvable n-aliphatic hydrocarbons ranges from approximately 0.3 to 12 mg of hydrocarbon per gram of TOC. Sieve size does have an effect on extraction yield, with highest recovery from the 250−125 μm size fraction. However, the significance of this effect is limited, likely due to the low size ranges of the extracted shale particles. Additional trends in hydrocarbon yield are observed among all samples, regardless of sieve size: 1) yield increases as a function of specific surface area (r2 = 0.78); and 2) both yield and surface area increase with increasing

  10. Bioremediation of hydrocarbon-contaminated soils: are treatability and ecotoxicity endpoints related?

    International Nuclear Information System (INIS)

    Visser, S.

    1999-01-01

    To determine if there is a relationship between biotreatability and ecotoxicity endpoints in a wide range of hydrocarbon-contaminated soils, including medium and heavy crude oil-contaminated flare pit wastes and lubrication oil contaminated soil, research was conducted. Each test material was analyzed for pH, water repellency, electrical conductivity, available N and P, total extractable hydrocarbons, oil and grease, and toxicity to seedling emergence, root elongation in barley, lettuce and canola, earthworm survival and luminescent bacteria (Microtox), prior to, and following three months of bioremediation in the laboratory. By monitoring soil respiration, progress of the bioremediation process and determination of a treatment endpoint were assessed. The time required to attain a treatment endpoint under laboratory conditions can range from 30 days to 100 days depending on the concentration of hydrocarbons and degree of weathering. Most flare pits are biotreatable, averaging a loss of 25-30% of hydrocarbons during bioremediation. Once a treatment endpoint is achieved, residual hydrocarbons contents almost always exceeds Alberta Tier I criteria for mineral oil and grease. As a result of bioremediation treatments, hydrophobicity is often reduced from severe to low. Many flare pit materials are still moderately to extremely toxic after reaching a treatment endpoint. (Abstract only)

  11. Observations of the release of non-methane hydrocarbons from fractured shale.

    Science.gov (United States)

    Sommariva, Roberto; Blake, Robert S; Cuss, Robert J; Cordell, Rebecca L; Harrington, Jon F; White, Iain R; Monks, Paul S

    2014-01-01

    The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing ("fracking"). While the main focus is on the extraction of methane, shale also contains significant amounts of non-methane hydrocarbons (NMHCs). We describe the first real-time observations of the release of NMHCs from a fractured shale. Samples from the Bowland-Hodder formation (England) were analyzed under different conditions using mass spectrometry, with the objective of understanding the dynamic process of gas release upon fracturing of the shale. A wide range of NMHCs (alkanes, cycloalkanes, aromatics, and bicyclic hydrocarbons) are released at parts per million or parts per billion level with temperature- and humidity-dependent release rates, which can be rationalized in terms of the physicochemical characteristics of different hydrocarbon classes. Our results indicate that higher energy inputs (i.e., temperatures) significantly increase the amount of NMHCs released from shale, while humidity tends to suppress it; additionally, a large fraction of the gas is released within the first hour after the shale has been fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the "fracking" process, improving gas yields and reducing environmental impacts.

  12. Understanding Content-and-Structure

    NARCIS (Netherlands)

    Kamps, J.; Marx, M.J.; de Rijke, M.; Sigurbjörnsson, B.; Trotman, A.; Lalmas, M.; Fuhr, N.

    2005-01-01

    Document-centric XML is a mixture of text and structure. +With the increased availability of document-centric XML content comes a need for query facilities in which both structural constraints and constraints on the content of the documents can be expressed. This has generated considerable interest

  13. Some properties of explosive mixtures containing peroxides

    International Nuclear Information System (INIS)

    Zeman, Svatopluk; Trzcinski, Waldemar A.; Matyas, Robert

    2008-01-01

    This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. The detonation energies, E 0 , and detonation velocities, D, were calculated for the mixtures studied by means of the thermodynamic code CHEETAH. Relationships have been found and are discussed between the RP and the E 0 values related to unit volume of gaseous products of detonation of these mixtures. These relationships together with those between RP and oxygen balance values of the mixtures studied indicate different types of participation of AN and UN in the explosive decomposition of the respective mixtures. Dry TATP/UN mixtures exhibit lower RP than analogous mixtures TATP/AN containing up to 25% of water. Depending on the water content, the TATP/AN mixtures possess higher detonability values than the ANFO explosives. A semi-logarithmic relationship between the D values and oxygen coefficients has been derived for all the mixtures studied at the charge density of 1000 kg m -3 . Among the mixtures studied, this relationship distinguishes several samples of the type of 'tertiary explosives' as well as samples that approach 'high explosives' in their performances and detonation velocities

  14. Some properties of explosive mixtures containing peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, Svatopluk [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice (Czech Republic)], E-mail: svatopluk.zeman@upce.cz; Trzcinski, Waldemar A. [Institute of Chemistry, Military University of Technology, PL-00-908 Warsaw 49 (Poland); Matyas, Robert [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice (Czech Republic)

    2008-06-15

    This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. The detonation energies, E{sub 0}, and detonation velocities, D, were calculated for the mixtures studied by means of the thermodynamic code CHEETAH. Relationships have been found and are discussed between the RP and the E{sub 0} values related to unit volume of gaseous products of detonation of these mixtures. These relationships together with those between RP and oxygen balance values of the mixtures studied indicate different types of participation of AN and UN in the explosive decomposition of the respective mixtures. Dry TATP/UN mixtures exhibit lower RP than analogous mixtures TATP/AN containing up to 25% of water. Depending on the water content, the TATP/AN mixtures possess higher detonability values than the ANFO explosives. A semi-logarithmic relationship between the D values and oxygen coefficients has been derived for all the mixtures studied at the charge density of 1000 kg m{sup -3}. Among the mixtures studied, this relationship distinguishes several samples of the type of 'tertiary explosives' as well as samples that approach 'high explosives' in their performances and detonation velocities.

  15. Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea.

    Science.gov (United States)

    Louati, A; Elleuch, B; Kallel, M; Saliot, A; Dagaut, J; Oudot, J

    2001-06-01

    The coastal area off the city of Sfax (730,000 inhabitants), well-known for fisheries and industrial activities, receives high inputs of organic matter mostly anthropogenic. Eighteen stations were selected in the vicinity of the direct discharge of industrial sewage effluents in the sea in order to study the spatial distribution of the organic contamination. Surface sediments sampled in the shallow shelf were analysed for hydrocarbons by Fourier transform infrared spectroscopy, gas chromatography and gas chromatography/mass spectrometry. Total hydrocarbon distributions revealed high contamination as compared to other coastal Mediterranean sites, with an average concentration of 1865 ppm/dry weight sediment. Gas chromatographic distribution patterns, values of unresolved mixture/n-alkane ratio and distributions of steranes and hopanes confirmed a petroleum contamination of the Arabian light crude oil type. Biogenic compounds were also identified with a series of short-chain carbon-numbered n-alkenes in the carbon range 16-24.

  16. A pre-Paleogene unconformity surface of the Sikeshu Sag, Junggar Basin: Lithological, geophysical and geochemical implications for the transportation of hydrocarbons

    Directory of Open Access Journals (Sweden)

    Xiaoyue Gao

    2013-11-01

    Full Text Available The unconformity surface at the bottom of the Paleogene is one of the most important migration pathways in the Sikeshu Sag of the Junggar Basin, which consists of three layers: upper coarse clastic rock, lower weathering crust and leached zone. The upper coarse clastic rock is characterized by higher density and lower SDT and gamma-ray logging parameters, while the lower weathering crust displays opposite features. The transport coefficient of the unconformity surface is controlled by its position in respect to the basal sandstone; it is higher in the ramp region but lower in the adjacent uplifted and sag areas. The content of saturated hydrocarbons increases with the decrease of the content of non-hydrocarbons and asphaltenes. The content of benzo[c] carbazole decreases as the content of benzo[a] carbazole and [alkyl carbazole]/[alkyl + benzo carbazole] increases. This suggests that the unconformity surface is an efficient medium for the transportation of hydrocarbons.

  17. Effect of the key mixture parameters on shrinkage of reactive powder concrete.

    Science.gov (United States)

    Ahmad, Shamsad; Zubair, Ahmed; Maslehuddin, Mohammed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 3(3) factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content.

  18. Evaluation of yielding of mixtures of Pisum sativum L. with Triticum aestivum L. grown in organic farming

    Directory of Open Access Journals (Sweden)

    Jerzy Księżak

    2016-09-01

    Full Text Available The aim of this study was to determine the productivity and quality of feed obtained from the mixtures of field pea (Pisum sativum L. with spring wheat (Triticum aestivum L., depending on the pea cultivar and its percentage in the weight of sown seeds under the conditions of organic farming. A field experiment was carried out in the years 2011–2013 in a randomized split-plot design with four replications. The first factor was a pea ‘Wiato’ or ‘Tarchalska’. The secondary factor was density of a pea mixture sown: 40, 60, and 80%. The yield of mixture seeds as well as the yield and structure of individual components were evaluated. The contents of crude protein and crude fiber, fat, ash, phosphorus, and potassium were determined in cereal grain and pea seeds. The examined factors and weather conditions during the growing season had a significant impact on the growth and yield of pea–spring wheat mixtures. The seed yields of the mixtures with the semi-leafless ‘Tarchalska’ were lower than with ‘Wiato’ (with bipinnate leaves. Increasing the pea percentage in seed material resulted in lower mixture yields. The percentage of pea seeds (regardless of foliage type in the mixture yields was significantly lower than the weight of sown seeds. Increasing the pea percentage in the mixture yield positively influenced the contents of protein, fat, and ash but it caused a decrease in the content of fiber. The pea percentage at sowing had little influence on the content of phosphorus in the mixture seed yields, but it slightly increased the content of potassium, regardless of the pea cultivar. The mixtures with the ‘Wiato’ and ‘Tarchalska’ cultivars contained a similar amount of protein, fiber, and fat, while the mixtures with ‘Tarchalska’ accumulated more ash.

  19. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  20. Process for gasification of heavy hydrocarbons or salvaged oil. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Koch, C

    1978-09-14

    The invention refers to the separation of solids which are carried over during evaporation of salvaged oil (oil recovered from used oil or fat). They are removed by exposing the oil vapour to an acceleration of 500 g to 20,000g in a hot gas cyclone. Subsequently the cleaned gas is converted to fission gas in a fission gas generator using an air-water gas mixture and is taken to the combustion equipment. By this process salvaged oil and heavy hydrocarbons can be used for burning in Diesel engines without previous refining.

  1. Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals.

    Science.gov (United States)

    Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna

    2009-06-01

    The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.

  2. Diatom, cyanobacterial and microbial mats as indicators of hydrocarbon contaminated Arctic streams and waters

    Energy Technology Data Exchange (ETDEWEB)

    Ziervogel, H.; Selann, J.; Adeney, B. [EBA Engineering Consultants Ltd., Edmonton, AB (Canada); Nelson, J.A. [J.B. Services, Sarnia, ON (Canada); Murdock, E. [Nunavut Power, Iqaluit (Canada)

    2003-07-01

    An environmental assessment conducted at Repulse Bay, Nunavut in the summer of 2001 revealed a recent diesel spill flowing from the groundwater into a creek. The spill had not been reported. When Arctic surface waters mix with hydrocarbon impacted groundwater and sediments, distinctive mats of diatom, cyanobacteria and other bacteria are formed. These mats have the potential for phytoremediation of hydrocarbons. This paper explained the apparent dominance of mats in contaminated Arctic waters and why they promote biodegradation of hydrocarbons. Hydrocarbon-contaminated soils and groundwater are generally anaerobic. The higher dissolved carbon dioxide in polluted soils and groundwater can benefit photosynthetic cyanobacteria and diatom found in oligotrophic, lower alkalinity Arctic waters. The anaerobic and aerobic bacteria can potentially take advantage of the hydrogen substrate and the nitrogen fixing abilities of the cyanobacteria. Zooplankton predators may be killed off by the toxicity of the polluted groundwater. The paper provides examples where a microbial mat reduced the sulfate content of a hydrocarbon-impacted Arctic stream by 100 ppm, and where a pond covered in a benthic microbial mat showed no evidence of hydrocarbons in the water overlying sediments contaminated with hydrocarbons at concentrations measured at 30,000 ppm. 19 refs., 3 tabs., 8 figs.

  3. Thermoeconomic Optimization of Cascade Refrigeration System Using Mixed Carbon Dioxide and Hydrocarbons at Low Temperature Circuit

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2016-12-01

    Full Text Available Many applications and industrial processes require very low cooling temperature, such as cold storage in the biomedical field, requiring temperature below -80 °C. However,single-cycle refrigeration systems can only achieve the effective cooling temperature of -40 °C and, also, the performance of the cycle will decrease drastically for cooling temperatures lower than -35°C. Currently, most of cascade refrigeration systems use refrigerants that have ozone depletion potential (ODP and global warming potential (GWP, therefore, in this study, a cascade system is simulated using a mixture of environmentally friendly refrigerants, namely, carbon dioxide and a hydrocarbon (propane, ethane or ethylene as the refrigerant of the low temperature circuit. A thermodynamic analysis is performed to determine the optimal composition of the mixture of carbon dioxide and hydrocarbons in the scope of certain operating parameters. In addition, an economic analysis was also performed to determine the annual cost to be incurred from the cascade refrigeration system. The multi-objective/thermoeconomic optimization points out optimal operating parameter values of the system, to addressing both exergy efficiency and its relation to the costs to be incurred.

  4. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    KAUST Repository

    Sarathy, Mani

    2015-01-01

    Petroleum derived gasoline is the most used transportation fuel for light-duty vehicles. In order to better understand gasoline combustion, this study investigated the ignition propensity of two alkane-rich FACE (Fuels for Advanced Combustion Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from 715 to 1500 K, and two equivalence ratios. Rapid compression machine ignition delay times were measured for fuel/air mixtures at pressures of 20 and 40 bar, temperatures from 632 to 745 K, and two equivalence ratios. Detailed hydrocarbon analysis was also performed on the FACE gasoline fuels, and the results were used to formulate multi-component gasoline surrogate mixtures. Detailed chemical kinetic modeling results are presented herein to provide insights into the relevance of utilizing PRF and multi-component surrogate mixtures to reproduce the ignition behavior of the alkane-rich FACE gasoline fuels. The two FACE gasoline fuels and their corresponding PRF mixture displayed similar ignition behavior at intermediate and high temperatures, but differences were observed at low temperatures. These trends were mimicked by corresponding surrogate mixture models, except for the amount of heat release in the first stage of a two-stage ignition events, when observed. © 2014 The Combustion Institute.

  5. Bacterial communities associated with biofouling materials used in bench-scale hydrocarbon bioremediation.

    Science.gov (United States)

    Al-Mailem, Dina; Kansour, Mayada; Radwan, Samir

    2015-03-01

    Biofouling material samples from the Arabian (Persian) Gulf, used as inocula in batch cultures, brought about crude oil and pure-hydrocarbon removal in a mineral medium. Without any added nitrogen fertilizers, the hydrocarbon-removal values were between about 10 and 50 %. Fertilization with NaNO3 alone or together with a mixture of the vitamins thiamine, pyridoxine, vitamin B12, biotin, riboflavin, and folic acid increased the hydrocarbon-removal values, to reach 90 %. Biofouling material samples harbored total bacteria in the magnitude of 10(7) cells g(-1), about 25 % of which were hydrocarbonoclastic. These numbers were enhanced by NaNO3 and vitamin amendment. The culture-independent analysis of the total bacterioflora revealed the predominance of the gammaproteobacterial genera Marinobacter, Acinetobacter, and Alcanivorax, the Flavobacteriia, Flavobacterium, Gaetbulibacter, and Owenweeksia, and the Alphaproteobacteria Tistrella, Zavarzinia, and others. Most of those bacteria are hydrocarbonoclastic. Culture-dependent analysis of hydrocarbonoclastic bacteria revealed that Marinobacter hydrocarbonoclasticus, Dietzia maris, and Gordonia bronchialis predominated in the fouling materials. In addition, each material had several more-specific hydrocarbonoclastic species, whose frequencies were enhanced by NaNO3 and vitamin fertilization. The same samples of fouling materials were used in four successive crude-oil-removal cycles without any dramatic loss of their hydrocarbon-removal potential nor of their associated hydrocarbonoclastic bacteria. In the fifth cycle, the oil-removal value was reduced by about 50 % in only one of the studied samples. This highlights how firmly biofouling materials were immobilizing the hydrocarbonoclastic bacteria.

  6. Reactivity of hydrocarbons in response to injection of a CO2/O2 mixture under depleted reservoir conditions: experimental and numerical modeling

    International Nuclear Information System (INIS)

    Pacini-Petitjean, Claire

    2015-01-01

    The geological storage of CO 2 (CO 2 Capture-Storage - CCS) and the Enhanced Oil Recovery (EOR) by CO 2 injection into petroleum reservoirs could limit CO 2 atmospheric accumulation. However, CO 2 can be associated with oxygen. To predict the hydrocarbon evolution under these conditions involves the study of oxidation mechanisms. Oxidation experiment and kinetic detailed modeling were carried out with pure compounds. The comparison between experimental and modeling results led to the construction of a hydrocarbon oxidation kinetic model and emphasized the parameters leading to auto ignition. The good agreement between our experiments and modeling are promising for the development of a tool predicting the critical temperature leading to auto-ignition and the evolution of hydrocarbon composition, to estimate the stability of a petroleum system in CO 2 injection context. (author) [fr

  7. Characterization of laser-induced ignition of biogas-air mixtures

    International Nuclear Information System (INIS)

    Forsich, Christian; Lackner, Maximilian; Winter, Franz; Kopecek, Herbert; Wintner, Ernst

    2004-01-01

    Fuel-rich to fuel-lean biogas-air mixtures were ignited by a Nd:YAG laser at initial pressures of up to 3 MPa and compared to the ignition of methane-air mixtures. The investigations were performed in a constant volume vessel heatable up to 473 K. An InGaAsSb/AlGaAsSb quantum well ridge diode laser operating at 2.55 μm was used to track the generation of water in the vicinity of the laser spark in a semi-quantitative manner. Additionally, the flame emissions during the ignition process were recorded and a gas inhomogeneity index was deduced. Laser-induced ignition and its accompanying effects could be characterized on a time scale spanning four orders of magnitude. The presence of CO 2 in the biogas reduces the burning velocity. The flame emissions result in a much higher intensity for methane than it was the case during biogas ignition. This knowledge concludes that engines fuelled with biogas ultimately affect the performance of the process in a different way than with methane. Methane-air mixtures can be utilized in internal combustion engines with a higher air-fuel ratio than biogas. Comparing failed laser-induced ignition of methane-air and biogas-air mixtures similar results were obtained. The three parameters water absorbance, flame emission and the gas inhomogeneity index constitute a suitable tool for judging the quality of laser-induced ignition of hydrocarbon-air mixtures at elevated pressures and temperatures as encountered in internal combustion engines

  8. Investigation of the ignition of liquid hydrocarbon fuels with nanoadditives

    Science.gov (United States)

    Bakulin, V. N.; Velikodnyi, V. Yu.; Levin, Yu. K.; Popov, V. V.

    2017-12-01

    During our experimental studies we showed a high efficiency of the influence of nanoparticle additives on the stability of the ignition of hydrocarbon fuels and the stabilization of their combustion in a highfrequency high-voltage discharge. We detected the effects of a jet deceleration, an increase in the volume of the combustible mixture, and a reduction in the inflammation delay time. These effects have been estimated quantitatively by digitally processing the video frames of the ignition of a bubbled kerosene jet with 0.5% graphene nanoparticle additives and without these additives. This effect has been explained by the influence of electrodynamic processes.

  9. Bioaccumulation of petroleum hydrocarbons in arctic amphipods in the oil development area of the Alaskan Beaufort Sea.

    Science.gov (United States)

    Neff, Jerry M; Durell, Gregory S

    2012-04-01

    An objective of a multiyear monitoring program, sponsored by the US Department of the Interior, Bureau of Ocean Energy Management was to examine temporal and spatial changes in chemical and biological characteristics of the Arctic marine environment resulting from offshore oil exploration and development activities in the development area of the Alaskan Beaufort Sea. To determine if petroleum hydrocarbons from offshore oil operations are entering the Beaufort Sea food web, we measured concentrations of hydrocarbons in tissues of amphipods, Anonyx nugax, sediments, Northstar crude oil, and coastal peat, collected between 1999 and 2006 throughout the development area. Mean concentrations of polycyclic aromatic hydrocarbons (PAH), saturated hydrocarbons (SHC), and sterane and triterpane petroleum biomarkers (StTr) were not significantly different in amphipods near the Northstar oil production facility, before and after it came on line in 2001, and in amphipods from elsewhere in the study area. Forensic analysis of the profiles (relative composition and concentrations) of the 3 hydrocarbon classes revealed that hydrocarbon compositions were different in amphipods, surface sediments where the amphipods were collected, Northstar crude oil, and peat from the deltas of 4 North Slope rivers. Amphipods and sediments contained a mixture of petrogenic, pyrogenic, and biogenic PAH. The SHC in amphipods were dominated by pristane derived from zooplankton, indicating that the SHC were primarily from the amphipod diet of zooplankton detritus. The petroleum biomarker StTr profiles did not resemble those in Northstar crude oil. The forensic analysis revealed that hydrocarbons in amphipod tissues were not from oil production at Northstar. Hydrocarbons in amphipod tissues were primarily from their diet and from river runoff and coastal erosion of natural diagenic and fossil terrestrial materials, including seep oils, kerogens, and peat. Offshore oil and gas exploration and development

  10. Hydrocarbons in Deep-Sea Sediments following the 2010 Deepwater Horizon Blowout in the Northeast Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Isabel C Romero

    Full Text Available The Deepwater Horizon (DWH spill released 4.9 million barrels of oil into the Gulf of Mexico (GoM over 87 days. Sediment and water sampling efforts were concentrated SW of the DWH and in coastal areas. Here we present geochemistry data from sediment cores collected in the aftermath of the DWH event from 1000-1500 m water depth in the DeSoto Canyon, NE of the DWH wellhead. Cores were analyzed at high-resolution (at 2 mm and 5 mm intervals in order to evaluate the concentration, composition and input of hydrocarbons to the seafloor. Specifically, we analyzed total organic carbon (TOC, aliphatic, polycyclic aromatic hydrocarbon (PAHs, and biomarker (hopanes, steranes, diasteranes compounds to elucidate possible sources and transport pathways for deposition of hydrocarbons. Results showed higher hydrocarbon concentrations during 2010-2011 compared to years prior to 2010. Hydrocarbon inputs in 2010-2011 were composed of a mixture of sources including terrestrial, planktonic, and weathered oil. Our results suggest that after the DWH event, both soluble and highly insoluble hydrocarbons were deposited at enhanced rates in the deep-sea. We proposed two distinct transport pathways of hydrocarbon deposition: 1 sinking of oil-particle aggregates (hydrocarbon-contaminated marine snow and/or suspended particulate material, and 2 advective transport and direct contact of the deep plume with the continental slope surface sediments between 1000-1200 m. Our findings underline the complexity of the depositional event observed in the aftermath of the DWH event in terms of multiple sources, variable concentrations, and spatial (depth-related variability in the DeSoto Canyon, NE of the DWH wellhead.

  11. Mechanism-Based Classification of PAH Mixtures to Predict Carcinogenic Potential.

    Science.gov (United States)

    Tilton, Susan C; Siddens, Lisbeth K; Krueger, Sharon K; Larkin, Andrew J; Löhr, Christiane V; Williams, David E; Baird, William M; Waters, Katrina M

    2015-07-01

    We have previously shown that relative potency factors and DNA adduct measurements are inadequate for predicting carcinogenicity of certain polycyclic aromatic hydrocarbons (PAHs) and PAH mixtures, particularly those that function through alternate pathways or exhibit greater promotional activity compared to benzo[a]pyrene (BaP). Therefore, we developed a pathway-based approach for classification of tumor outcome after dermal exposure to PAH/mixtures. FVB/N mice were exposed to dibenzo[def,p]chrysene (DBC), BaP, or environmental PAH mixtures (Mix 1-3) following a 2-stage initiation/promotion skin tumor protocol. Resulting tumor incidence could be categorized by carcinogenic potency as DBC > BaP = Mix2 = Mix3 > Mix1 = Control, based on statistical significance. Gene expression profiles measured in skin of mice collected 12 h post-initiation were compared with tumor outcome for identification of short-term bioactivity profiles. A Bayesian integration model was utilized to identify biological pathways predictive of PAH carcinogenic potential during initiation. Integration of probability matrices from four enriched pathways (P PAH mixtures. These data further provide a 'source-to-outcome' model that could be used to predict PAH interactions during tumorigenesis and provide an example of how mode-of-action-based risk assessment could be employed for environmental PAH mixtures. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  13. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil.

    Science.gov (United States)

    Anyanwu, Ihuoma N; Ikpikpini, Ojerime C; Semple, Kirk T

    2018-01-01

    When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14 C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore, 12/14 C-B[a]P and 14 C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons ( 14 C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14 C-B[a]P-N-PAH mineralisation recording polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Bioavailability and bioaccessibility of petroleum hydrocarbons in contaminated site soils

    International Nuclear Information System (INIS)

    Stephenson, G.; Angell, R.; Strive, E.; Ma, W.

    2010-01-01

    Although the bioavailability and/or bioaccessibility of contaminants in soil can be measured by various ecological receptors, the methods that are suitable for metals do not necessarily work well for petroleum hydrocarbons (PHCs). In this study, several biological and chemical methods were used at various PHC contaminated sites to find the most fitting method for different soil types in terms of predicting the biological responses of organisms as measured by standard single species toxicity tests. Organisms such as plants, earthworms, and collembolan were exposed to soils with different PHC concentrations. Multiple endpoints were then measured to evaluate the biological responses. The exposure concentrations for the 4 CCME hydrocarbon fractions were measured using hexane:acetone extraction as well as extractions with cyclodextrin, and a mixture of enzymes to simulate the gastro-intestinal fluid of an earthworm. The estimated exposure concentrations depended on the extraction method. The study showed that existing methodologies must be modified in order to better estimate the biological effect of PHCs in soil. Comparative data was presented and discussed along with proposed methodological modifications.

  15. Bioavailability and bioaccessibility of petroleum hydrocarbons in contaminated site soils

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, G.; Angell, R.; Strive, E.; Ma, W. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2010-07-01

    Although the bioavailability and/or bioaccessibility of contaminants in soil can be measured by various ecological receptors, the methods that are suitable for metals do not necessarily work well for petroleum hydrocarbons (PHCs). In this study, several biological and chemical methods were used at various PHC contaminated sites to find the most fitting method for different soil types in terms of predicting the biological responses of organisms as measured by standard single species toxicity tests. Organisms such as plants, earthworms, and collembolan were exposed to soils with different PHC concentrations. Multiple endpoints were then measured to evaluate the biological responses. The exposure concentrations for the 4 CCME hydrocarbon fractions were measured using hexane:acetone extraction as well as extractions with cyclodextrin, and a mixture of enzymes to simulate the gastro-intestinal fluid of an earthworm. The estimated exposure concentrations depended on the extraction method. The study showed that existing methodologies must be modified in order to better estimate the biological effect of PHCs in soil. Comparative data was presented and discussed along with proposed methodological modifications.

  16. Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation

    Science.gov (United States)

    Heller, John P.; Dandge, Dileep K.

    1986-01-01

    Solvent-type flooding fluids comprising light hydrocarbons in the range of ethane to hexane (and mixtures thereof) are used to displace crude oil in formations having temperatures of about 20 degrees to about 150 degrees Centigrade and pressures above about 650 psi, the light hydrocarbons having dissolved therein from about 0.05% to about 3% of an organotin compound of the formula R.sub.3 SnF where each R is independently an alkyl, aryl or alkyaryl group from 3 to 12 carbon atoms. Under the pressures and temperatures described, the organotin compounds become pentacoordinated and linked through the electronegative bridges, forming polymers within the light hydrocarbon flooding media to render them highly viscous. Under ambient conditions, the viscosity control agents will not readily be produced from the formation with either crude oil or water, since they are insoluble in the former and only sparingly soluble in the latter.

  17. Hydrocarbons, PCBs and DDT in the NW Mediterranean deep-sea fish Mora moro

    Science.gov (United States)

    Solé, Montserrat; Porte, Cinta; Albaigés, Joan

    2001-02-01

    Data on aliphatic and polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and DDTs in the deep-sea fish Mora moro are reported in relation to the animal's weight/size and tissues (muscle, liver, digestive tube and gills). Fish samples were collected in the Gulf of Lions (NW Mediterranean) at an approximate depth of 1000 m. The concentrations of these organic pollutants followed the trend musclelipid content of the organs. No clear bioaccumulation dependence on fish weight/size was observed for gills, digestive tube and liver when the fat contents of these tissues were taken into account. However, the concentrations in muscle decreased with size, possibly implying a simple dilution effect by the increase of body weight. Hydrocarbons, and particularly PAHs, were strongly depleted in all tissues with respect to organochlorinated compounds if compared with the amounts present in bottom waters and sediment. Smaller specimens displayed for most pollutants qualitatively different patterns than larger fish, which could be attributed to their particular habitat/diet. The aliphatic hydrocarbon profiles suggested that Mora moro was exposed to a more predominant intake of biogenic rather than petrogenic hydrocarbons. The entrance and storage organs exhibited characteristic PAH and PCB distributions, reflecting different bioaccumulation and metabolic pathways. Compared with the profiles currently found in surface fish species, a relatively higher contribution of heavier components, namely hepta- and octochlorinated PCBs, and 4-6-ringed PAHs, was found in the deep-sea fish.

  18. Optical properties of binary and ternary liquid mixtures containing tetralin, isobutylbenzene and dodecane

    International Nuclear Information System (INIS)

    Sechenyh, Vitaliy V.; Legros, Jean-Claude; Shevtsova, Valentina

    2013-01-01

    Highlights: ► The refractive indices in binary and ternary mixtures of hydrocarbons were measured. ► The error of the theoretical prediction of the refractive indices does not exceed 0.13%. ► The error of the prediction of concentration derivatives is unsatisfactory large. ► Feasibility of application of optical methods to measuring mass transport coefficients is studied. -- Abstract: Refractive indices of binary and ternary mixtures formed by tetralin (1,2,3,4-tetrahydronaphthalene), isobutylbenzene (2-methyl-1-propyl benzene) and n-dodecane are presented over a wide range of compositions. All measurements of the refractive index have been conducted at 298.15 K and atmospheric pressure using two light sources: one in the visible (λ = 670 nm) and the other in the infrared (λ = 925 nm) spectrum. The concentration derivatives of the refractive index have been determined. The mixture compositions, where these two wavelengths are applicable for the measurements of mass transport coefficients by interferometry, are estimated and discussed

  19. Influence of particle packing density on the rheology of low cement content concrete

    NARCIS (Netherlands)

    Fennis-Huijben, S.A.A.M.; Grunewald, S.; Walraven, J.C.; Den Uijl, J.A.

    2012-01-01

    Optimizing concrete mixtures with regard to cement content is one of the most important solutions in sustainable concrete design. Workability o f these low cement content or ecological mixtures is very important. Eleven mortar mixtures are presented, which show how a higher packing density can be

  20. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil

    International Nuclear Information System (INIS)

    Elazhari-Ali, Abdulmagid; Singh, Arvind K.; Davenport, Russell J.; Head, Ian M.; Werner, David

    2013-01-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. Highlights: ► The effect of 10% ethanol or 20% biodiesel on the biodegradability of volatile petroleum hydrocarbons in soil was investigated. ► Competition for scarce inorganic nutrients between biofuel and VPH degraders slowed monoaromatic hydrocarbon degradation. ► Biofuel effects were transitional. ► Each fuel selected for a distinct predominant bacterial community. ► All bacterial communities were dominated by Pseudomonas spp. - Blending of petroleum with ethanol or biodiesel changes the fuel degrading soil bacterial community structure, but the long-term effects on fuel biodegradability are minor.

  1. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  2. An assessment of the information content of likelihood ratios derived from complex mixtures.

    Science.gov (United States)

    Marsden, Clare D; Rudin, Norah; Inman, Keith; Lohmueller, Kirk E

    2016-05-01

    With the increasing sensitivity of DNA typing methodologies, as well as increasing awareness by law enforcement of the perceived capabilities of DNA typing, complex mixtures consisting of DNA from two or more contributors are increasingly being encountered. However, insufficient research has been conducted to characterize the ability to distinguish a true contributor (TC) from a known non-contributor (KNC) in these complex samples, and under what specific conditions. In order to investigate this question, sets of six 15-locus Caucasian genotype profiles were simulated and used to create mixtures containing 2-5 contributors. Likelihood ratios were computed for various situations, including varying numbers of contributors and unknowns in the evidence profile, as well as comparisons of the evidence profile to TCs and KNCs. This work was intended to illustrate the best-case scenario, in which all alleles from the TC were detected in the simulated evidence samples. Therefore the possibility of drop-out was not modeled in this study. The computer program DNAMIX was then used to compute LRs comparing the evidence profile to TCs and KNCs. This resulted in 140,000 LRs for each of the two scenarios. These complex mixture simulations show that, even when all alleles are detected (i.e. no drop-out), TCs can generate LRs less than 1 across a 15-locus profile. However, this outcome was rare, 7 of 140,000 replicates (0.005%), and associated only with mixtures comprising 5 contributors in which the numerator hypothesis includes one or more unknown contributors. For KNCs, LRs were found to be greater than 1 in a small number of replicates (75 of 140,000 replicates, or 0.05%). These replicates were limited to 4 and 5 person mixtures with 1 or more unknowns in the numerator. Only 5 of these 75 replicates (0.004%) yielded an LR greater than 1,000. Thus, overall, these results imply that the weight of evidence that can be derived from complex mixtures containing up to 5 contributors

  3. Jet-Fuel Range Hydrocarbons from Biomass-Derived Sorbitol over Ni-HZSM-5/SBA-15 Catalyst

    Directory of Open Access Journals (Sweden)

    Yujing Weng

    2015-12-01

    Full Text Available Aromatics and cyclic-hydrocarbons are the significant components of jet fuel with high energy-density. However, conventional technologies for bio-fuel production cannot produce these products without further aromatization and isomerization. In this work, renewable liquid fuel with high content of aromatics and cyclic-hydrocarbons was obtained through aqueous catalytic conversion of biomass sorbitol over Ni-HZSM-5/SBA-15 catalyst. Texture characteristics of the catalyst were determined by physisorption of N2, which indicated its bimodal pore structures were microporous (HZSM-5, pore width: 0.56 nm and mesoporous (SBA-15, pore width: 8 nm. The surface acidity included weak and strong acid sites, predominantly Lewis type, and was further confirmed by the NH3-TPD and Py-IR analysis. The catalytic performances were tested in a fixed-bed reactor under the conditions of 593 K, WHSV of 0.75 h−1, GHSV of 2500 h−1 and 4.0 MPa of hydrogen pressure, whereby oil yield of 40.4 wt. % with aromatics and cyclic-hydrocarbons content of 80.0% was obtained.

  4. Hydrocarbon composition and distribution in a coastal region under influence of oil production in northeast Brazil.

    Science.gov (United States)

    Wagener, Angela de L R; Carreira, Renato S; Hamacher, Claudia; Scofield, Arthur de L; Farias, Cassia O; Cordeiro, Lívia G M S; Luz, Letícia G; Baêta, Aída P; Kalas, Francine A

    2011-08-01

    Waters and sediments from the Potiguar Basin (NE Brazilian coast) were investigated for the presence and nature of polycyclic aromatic hydrocarbons (PAH) and aliphatic hydrocarbons. The region receives treated produced waters through a submarine outfall system serving the industrial district. The total dispersed/dissolved concentrations in the water column ranged from 10-50 ng L(-1) for ∑16PAH and 5-10 μg L(-1) for total aliphatic hydrocarbons. In the sediments, hydrocarbon concentrations were low (0.5-10 ng g(-1)for ∑16PAH and 0.01-5.0 μg g(-1) for total aliphatic hydrocarbons) and were consistent with the low organic carbon content of the local sandy sediments. These data indicate little and/or absence of anthropogenic influence on hydrocarbon distribution in water and sediment. Therefore, the measured values may be taken as background values for the region and can be used as future reference following new developments of the petroleum industry in the Potiguar Basin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Chemical storage of renewable electricity in hydrocarbon fuels via H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, H.; Iglesias Gonzalez, M.; Schaub, G. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Engler-Bunte-Institute I

    2012-07-01

    The increased generation of renewable electricity leads to an increasing demand for storage due to its fluctuating production. Electrical energy can be stored as chemical energy carriers e.g. in form of H{sub 2} that can be further processed to hydrocarbons. Storage in form of hydrocarbons is advantageous compared to H{sub 2} storage since (i) a higher volumetric energy density in the product can be achieved and (ii) the infrastructure for hydrocarbon distribution, storage and utilization already exists. The present contribution introduces the potential of H{sub 2} integration in upgrading/production processes to hydrocarbon fuels, based on stoichiometry and kind of carbon feedstock. Processes include petroleum refining, vegetable oil hydrogenation, production of synfuel from lignocellulosic biomass and substitute natural gas from H{sub 2}/CO{sub 2}. In the case of fossil raw materials, yields per feedstock can be increased and fossil CO{sub 2} emissions decreased since fossil resources for H{sub 2} production can be avoided. In the case of biomass conversion to synfuels, product yields per biomass/hectare can be increased. If CO{sub 2} is hydrogenated to fuels, no gasification step is needed, however lower hydrocarbon product yields per H{sub 2} are achieved since CO{sub 2} has the highest oxygen content. (orig.)

  6. Studies concerning thermodynamics and kinetics of the absorption of halogenated hydrocarbons relevant to environment

    International Nuclear Information System (INIS)

    Weisweiler, W.; Eidam, K.; Winterbauer, H.

    1993-07-01

    In the context of the research project the scrubbing of air contaminated by peculiar volatile organic compounds was investigated using the absorption technique by means of high boiling organics as washing liquids. Eight chlorinated hydrocarbons well known from technical processes were chosen to be representative for the volatile organic compounds. Eleven absorption media were selected on the basis of their physical properties. For the determination of the solubility data of the absorption media due to chlorinated hydrocarbons, nitrogen as well as a mixture of nitrogen and oxygen were used as carrier gas. The influence of the dipole moment of the absorption media on the amount of solubility - expressed as enrichment factor - was studied, too. Concerning the technical application, the thermostability and the stability against diluted inorganic acids were studied as well. (orig.). 56 figs., 8 tabs., 63 refs [de

  7. Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Belen; Brey, J. Javier; Viera, Inmaculada G. [Hynergreen Technologies, S.A. Avda. de la Buhaira, 2. 41018 Sevilla (Spain); Gonzalez-Elipe, Agustin R.; Cotrino, Jose; Rico, Victor J. [Instituto de Ciencia de los Materiales de Sevilla (CSIC-University Sevilla), Avda. Americo Vespucio, 49, 41092 Sevilla (Spain)

    2007-06-10

    This work reports about the use of plasmas to obtain hydrogen by reforming of hydrocarbons or alcohols in mixtures with CO{sub 2} or H{sub 2}O. The plasma is activated in a dielectric barrier discharge (DBD) reactor working at atmospheric pressure and low temperatures (i.e., about 100 C). The reactor presents a great versatility in operation and a low manufacturing cost. Results are presented for the reforming of methane, methanol and ethanol. Methane transforms up to a 70% into CO and H{sub 2} without formation of any kind of superior hydrocarbon. For the two alcohols 100% conversion into the same products is found for flows much higher than in the case of methane. The work reports a description of the reactor and the operational conditions of the power supply enabling the ignition of the plasma and its steady state operation. (author)

  8. Drift velocity studies at a time projection chamber for various water contents in the gas mixture

    International Nuclear Information System (INIS)

    Stoever, F.W.

    2007-03-01

    For the answer of different open questions in high energy physics the construction of a linear e + e - collider with a c. m. energy of up to one TeV is prepared. With this is connected a comprehensive development on detectors, which must satisfy the requirements of the planned experiments. For the track chamber a TPC is considered. Hereby it deals with a gas-based concept, which has already been proved in past experiments and which is at time further developed by means of test chambers. The composition of the gas mixtureplays hereby an important role. Impurities of the gas mixture, especially by oxygen and water from the ambient air are a fact, which occurs every time in the development phase and can scarcely be avoided. From this arose the motivation to study directly the effects of this impurities. The object of the present thesis are correlations between drift velocity and water content in the chamber gas of a TPC

  9. Influence factors of sand-bentonite mixtures on hydraulic conductivity

    International Nuclear Information System (INIS)

    Chen Yonggui; Ye Weimin; Chen Bao; Wan Min; Wang Qiong

    2008-01-01

    Buffer material is a very important part of the engineering barrier for geological disposal of high-level radioactive nuclear waste. Compacted bentonite is attracting greater attention as buffer and backfill material because it offer impermeability and swelling properties, but the pure compacted bentonite strength decreases with increasing hydration and these will reduce the buffer capability. To solve this problem, sand is often used to form compacted sand-bentonite mixtures (SBMs) providing high thermal conductivity, excellent compaction capacity, long-time stability, and low engineering cost. As to SBMs, hydraulic conductivity is a important index for evaluation barrier capability. Based on the review of research results, the factors affecting the hydraulic conductivity of SBMs were put forward including bentonite content, grain size distribution, moisture content, dry density, compacting method and energy, and bentonite type. The studies show that the hydraulic conductivity of SBMs is controlled by the hydraulic conductivity of the bentonite, it also decreases as dry density and bentonite content increase, but when the bentonite content reach a critical point, the influence of increasing bentonite to decrease the hydraulic conductivity is limited. A fine and well-graded SBMs is likely to have a lower hydraulic conductivity than a coarse and poorly graded material. The internal erosion or erodibility based on the grain size distribution of the SBMs has a negative effect on the final hydraulic conductivity. The lowest hydraulic conductivity is gained when the mixtures are compacted close to optimum moisture content. Also, the mixtures compacted at moisture contents slightly above optimum values give lower hydraulic conductivity than when compacted at slightly under the optimum moisture content. Finally, discussion was brought to importance of compaction method, compacting energy, and bentonite type to the hydraulic conductivity of SBMs. (authors)

  10. Distribution of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and organochlorinated pollutants in deep-sea sediments of the Southern Cretan margin, Eastern Mediterranean Sea: a baseline assessment.

    Science.gov (United States)

    Mandalakis, Manolis; Polymenakou, Paraskevi N; Tselepides, Anastasios; Lampadariou, Nikolaos

    2014-07-01

    Deep sediments from the southern Cretan margin were analyzed to establish baseline levels for various types of organic pollutants before the anticipated intensification of anthropogenic activities. The total concentration of aliphatic hydrocarbons (ΣAH:326-3758ngg(-1), dry weight) was similar to those reported for deep sediments of the western Mediterranean Sea, while considerably lower levels were measured for polycyclic aromatic hydrocarbons (ΣPAH:9-60ngg(-1)). Source-diagnostic ratios suggested that the aliphatic hydrocarbons in sediments were mainly of terrestrial biogenic origin, while polycyclic aromatic hydrocarbons stemmed from the deposition of long-range transported combustion aerosols. Among the organochlorinated compounds analyzed, β-hexachlorocyclohexane (β-HCH:222-7052pgg(-1)), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT:37-2236pgg(-1)) and polychlorinated biphenyls (ΣPCB:38-1182pgg(-1)) showed the highest abundance in sediments. The presence of HCHs and PCBs was attributed to historical inputs that have undergone extensive weathering, whereas an ongoing fresh input was suggested for p,p'-DDT. Multiple linear regression analysis revealed that the levels of the various pollutants in sediments were controlled by different factors, but with organic carbon content playing a prominent role in most cases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  12. Process for the selective cracking of straight-chained and slightly branched hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gorring, R L; Shipman, G F

    1975-01-23

    The invention describes a method for the selective (hydro) cracking of petroleum materials, containing normal straight-chained and/or slightly branched-chained hydrocarbons. The mixture is brought into contact with a selective, crystalline alumino silicate zeolite cracking catalyst housing a silicon oxide/aluminum oxide ratio of at least about 12 and a constraint index of about 1 to 12 under cracking conditions. A zeolite catalyst with a crystal size of up to 0.05 ..mu.. is used. Solidification point and viscosity in particular of oils are to be lowered through the catalytic dewaxing.

  13. Applications of electrochemically-modulated liquid chromatography (EMLC): Separations of aromatic amino acids and polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Li [Iowa State Univ., Ames, IA (United States)

    1998-03-27

    The research in this thesis explores the separation capabilities of a new technique termed electrochemically-modulated liquid chromatography (EMLC). The thesis begins with a general introduction section which provides a literature review of this technique as well as a brief background discussion of the two research projects in each of the next two chapters. The two papers which follow investigate the application of EMLC to the separation of a mixture of aromatic amino acids and of a mixture of polycyclic aromatic hydrocarbons (PAHs). The last section presents general conclusions and summarizes the thesis. References are compiled in the reference section of each chapter. The two papers have been removed for separate processing.

  14. Bioassay-based risk assessment of complex mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, K.C.; Safe, S.H. [Texas A& M Univ., Houston, TX (United States); Randerath, K.; Randerath, E. [College Station and Baylor College of Medicine, Houston, TX (United States)

    1994-12-31

    To compare the standard chemical-based risk assessment with in vitro genotoxicity assays, two complex environmental mixtures from a wood preserving site were analyzed in the Salmonella/microsome and E. coli prophage induction assays. Using GC/MS, sample 003 was found to contain relatively low levels of polycyclic aromatic hydrocarbons (PNAs) and elevated levels of polychlorinated dibenzo-p-dioxins (PCDDs), while sample 005 had higher levels of PNAs and relatively low levels of PCDDs. The complex mixtures were sequentially extracted with methylene chloride and methanol for analysis in Salmonella, or extracted with 1:1 hexane: acetone mixture for analysis in the prophage induction assay. At a dose of 1.0 mg/plate in Salmonella strain TA98 with metabolic activation, the methanol extract of sample 003 induced 197 net revertants, while sample 005 induced 436 net revertants. In the prophage induction assay, with activation, the hexane:acetone extract of sample 003 induced a fold increase that was slightly lower than that observed with sample 005. The estimated incremental carcinogenic risk for dermal adsorption and ingestion was 1.5E-3 for sample 003, while for sample 005 the estimated risk was 1.5E-2. Thus, the sample which induced the maximum response in both bioassays also had the highest estimated cancer risk. However, the frequency of PNA-DNA adducts in both skin and liver tissues was appreciably higher with sample 005 than with sample 003.

  15. Criticality of mixtures of plutonium and high enriched uranium

    International Nuclear Information System (INIS)

    Grolleau, E.; Lein, M.; Leka, G.; Maidou, B.; Klenov, P.

    2003-01-01

    This paper presents a criticality evaluation of moderated homogeneous plutonium-uranium mixtures. The fissile media studied are homogeneous mixtures of plutonium and high enriched uranium in two chemical forms: aqueous mixtures of metal and mixtures of nitrate solutions. The enrichment of uranium considered are 93.2wt.% 235 U and 100wt.% 235 U. The 240 Pu content in plutonium varies from 0wt.% 240 Pu to 12wt.% 240 Pu. The critical parameters (radii and masses of a 20 cm water reflected sphere) are calculated with the French criticality safety package CRISTAL V0. The comparison of the calculated critical parameters as a function of the moderator-to-fuel atomic ratio shows significant ranges in which high enriched uranium systems, as well as plutonium-uranium mixtures, are more reactive than plutonium systems. (author)

  16. Demonstration of Pressurizing Coal/Biomass Mixtures Using Posimetric Solids Pump Technology

    Energy Technology Data Exchange (ETDEWEB)

    Westendorf, Tiffany; Acharya, Harish; Cui, Zhe; Furman, Anthony; Giammattei, Mark; Rader, Jeff; Vazquez, Arturo

    2012-12-31

    This document is the Final Technical Report for a project supported by U.S. DOE NETL (Contract No. DE-FE0000507), GE Global Research, GE Energy, and Idaho National Laboratory (INL). This report discusses key project accomplishments for the period beginning August 7, 2009 and ending December 31, 2012. In this project, pressurized delivery of coal/biomass mixtures using GE Posimetric* solids pump technology was achieved in pilot scale experiments. Coal/biomass mixtures containing 10-50 wt% biomass were fed against pressures of 65-450 psi. Pressure capability increased with decreasing biomass content for a given pump design, and was linked to the interaction of highly compressible coal/biomass mixtures with the pump outlet design. Biomass pretreatment specifications for particle size and moisture content were defined based on bench-scale flowability, compressibility, friction, and permeability experiments that mimic the behavior of the Posimetric pump. A preliminary economic assessment of biomass pretreatment and pump operation for coal/biomass mixtures (CBMs) was conducted.

  17. Fatigue Evaluation of Recycled Asphalt Mixture Based on Energy-Controlled Mode

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-01-01

    Full Text Available The fatigue properties of asphalt mixtures are important inputs for mechanistic-empirical pavement design. To understand the fatigue properties of asphalt mixtures better and to predict the fatigue life of asphalt mixtures more precisely, the energy-controlled test mode was introduced. Based on the implementation theory, the laboratory practice for the energy-controlled mode was realized using a four-point-bending fatigue test with multiple-step loading. In this mode, the fatigue performance of typical AC-20 asphalt specimens with various reclaimed asphalt pavement (RAP contents was tested and evaluated. Results show that the variation regulation of the dissipated energy and accumulative energy is compatible with the loading control principle, which proves the feasibility of the method. In addition, the fatigue life of the asphalt mixture in the energy-controlled mode was between that for the stress-controlled and strain-controlled modes. The specimen with a higher RAP content has a longer fatigue life and better fatigue performance.

  18. Characterization of bioactive mixtures oligogalacturonidos

    International Nuclear Information System (INIS)

    Mederos Torres, Yuliem; Hormaza Montenegro, Josefa; Reynaldo Escobar, Ines; Montesino Sequi, Raquel

    2011-01-01

    Oligogalacturonides are pectic oligosaccharides composed of lineal chains of D-galacturonic acid, linked by α (1-4) glycosidic linkage. Oligogalacturonides' mixtures are obtained by enzymatic hydrolysis of pectins of diverse vegetal species. These oligosaccharides unchain a diverse biological activity in plants, which depends mainly on their polymerization degrees. The National Institute of Agricultural Science has a patent technology at national scale that lets to obtain a mixture of oligogalacturonides with different polymerization degree. In this work is presented the characterization of oligogalacturonides by spectrophotometric analysis attending to their uronic acids, reductor sugars, and neutral sugars content. Also the chromatographic profile of samples in study is obtained, using the derivatization with 2-aminobenzamide label and the separation by high pH anion exchange chromatography. It is achieved the separation of at least eight galacturonic acid oligomers with a variable degree of polymerization. On the other hand, the analysis by Fourier transform-infrared spectroscopy (FT-IR) showed that mixtures were composed by galacturonic acid salts. Results indicated that starting from two pectic acids with different characteristics, mixtures of oligogalacturonides of similar chemical composition could be obtained, but they differ in the proportion that they are presented

  19. An approximate method for calculating composition of the non-equilibrium explosion products of hydrocarbons and oxygen

    International Nuclear Information System (INIS)

    Shargatov, V A; Gubin, S A; Okunev, D Yu

    2016-01-01

    We develop a method for calculating the changes in composition of the explosion products in the case where the complete chemical equilibrium is absent but the bimolecular reactions are in quasi-equilibrium with the exception bimolecular reactions with one of the components of the mixture. We investigate the possibility of using the method of 'quasiequilibrium' for mixtures of hydrocarbons and oxygen. The method is based on the assumption of the existence of the partial chemical equilibrium in the explosion products. Without significant loss of accuracy to the solution of stiff differential equations detailed kinetic mechanism can be replaced by one or two differential equation and a system of algebraic equations. This method is always consistent with the detailed mechanism and can be used separately or in conjunction with the solution of a stiff system for chemically non-equilibrium mixtures replacing it when bimolecular reactions are near to equilibrium. (paper)

  20. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  1. Bioconversions of Palm Kernel Cake and Rice Bran Mixtures by Trichoderma viride Toward Nutritional Contents

    Directory of Open Access Journals (Sweden)

    Yana Sukaryana

    2010-12-01

    Full Text Available The objective of the research is to examine the mixtures of palm kernel cake and rice bran of fermented by Trichoderma viride. Completely randomized design in factorial pattern 4 x 4 was used in this experiment. factor I is the doses of inoculums; D1 = 0%, D2 =  0,1% , D3 =  0,2%, D4 =  0,3%, and  complement factor II is mixtures of palm kernel cake and rice bran : T1=20:80% ; T2=40:60% ; T3=60:40% ; T4=80:20%. The treatment each of three replicate. Fermentation was conducted at temperature 28 oC as long as 9 days. Determining the best of the mixtures be based on the crude protein increased and the crude fibre decreased. The results showed that the combination of product mix is the best fermentation inoculums doses 0.3% in mixture of palm kernel cake and rice bran ; 80%: 20%, which produces dry matter of 88,12%, crude protein 17.34%, ether extract 5,35%, crude fibre 23.67%, and ash 6.43%. When compared with a mixture of palm kernel cake and rice bran; 80%: 20% without of fermentation is crude protein increase 29.58% and crude fibre decreased 22.53%.

  2. Paraselectivity and Formation of Aromatic Hydrocarbons over ZSM-5 Type Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Unneberg, E

    1997-12-31

    The zeolite ZSM-5, patented by Mobil Oil Corporation in 1972, is able to convert methanol to gasoline (MTG) and water. Due to the size of the channels, undesired hydrocarbons larger than C{sub 11} are not present in the mixture, and a high octane gasoline is obtained. This has aroused a great deal of interest in the ZSM-5. Rather than being concerned with energy considerations, this doctoral thesis describes syntheses of ZSM-5 and discusses the ZSM-5 as such and studies the possible paraselectivities in various reactions over the catalyst ZSM-5. 774 refs., 113 figs., 54 tabs.

  3. Paraselectivity and Formation of Aromatic Hydrocarbons over ZSM-5 Type Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Unneberg, E.

    1996-12-31

    The zeolite ZSM-5, patented by Mobil Oil Corporation in 1972, is able to convert methanol to gasoline (MTG) and water. Due to the size of the channels, undesired hydrocarbons larger than C{sub 11} are not present in the mixture, and a high octane gasoline is obtained. This has aroused a great deal of interest in the ZSM-5. Rather than being concerned with energy considerations, this doctoral thesis describes syntheses of ZSM-5 and discusses the ZSM-5 as such and studies the possible paraselectivities in various reactions over the catalyst ZSM-5. 774 refs., 113 figs., 54 tabs.

  4. The hydrogen coverage of interstellar PAHs [Polycyclic Aromatic Hydrocarbons

    International Nuclear Information System (INIS)

    Tielens, A.G.G.M.; Allamandola, L.J.; Barker, J.R.; Cohen, M.

    1986-02-01

    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a uv photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense uv fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments

  5. EFFECT OF FLY ASHES AND SEWAGE SLUDGE ON Fe, Mn, Al, Si AND Co UPTAKE BY GRASS MIXTURE

    Directory of Open Access Journals (Sweden)

    Jacek Antonkiewicz

    2014-07-01

    Full Text Available Application of sewage sludge for environmental management of fly ashes landfill site affects chemical composition of plants. The aim of the present investigations was learning the effect of growing doses of municipal sewage sludge on the yield and uptake of Fe, Mn, Al, Si and Co by grass mixture used for environmental management of fly ashes landfill. The experimental design comprised of 5 objects differing by a dose of municipal sewage sludge supplied per 1 hectare: I. control, II. 25 t d.m., III. 50 t d.m., IV. 75 t d.m. and V. 100 t d.m. Application of sewage sludge resulted in the increase in yield. The content of analyzed elements in the grass mixture depended significantly on sewage sludge dose. Increasing doses of sewage sludge caused marked increase in Mn and Co contents, while they decreased Fe, Al and Si contents in the grass mixture. It was found that growing doses of sewage sludge caused an improvement of Fe to Mn ratio value in the grass mixture. Assessing the element content in the grass mixture in the view of forage value, it was found that Fe and Mn content did not meet the optimal value. Si content in plants was below the optimal value.

  6. The Compressibility and Swell of Mixtures for Sand-Clay Liners

    Directory of Open Access Journals (Sweden)

    Muawia A. Dafalla

    2017-01-01

    Full Text Available Sand-clay liners utilize expansive clay to act as a filler to occupy the voids in the sand and thus reduce the hydraulic conductivity of the mixture. The hydraulic conductivity and transfer of water and other substances through sand-clay mixtures are of prime concern in the design of liners and hydraulic barriers. Many successful research studies have been undertaken to achieve appropriate mixtures that satisfy hydraulic conductivity requirements. This study investigates compressibility and swelling properties of mixtures to ensure that they were acceptable for light structures, roads, and slabs on grade. A range of sand-expansive clay mixtures were investigated for swell and compression properties. The swelling and compressibility indices were found to increase with increasing clay content. The use of highly expansive material can result in large volume changes due to swell and shrinkage. The inclusion of less expansive soil material as partial replacement of bentonite by one-third to two-thirds is found to reduce the compressibility by 60% to 70% for 10% and 15% clay content, respectively. The swelling pressure and swell percent were also found significantly reduced. Adding less expansive natural clay to bentonite can produce liners that are still sufficiently impervious and at the same time less problematic.

  7. Optimization of microwave-assisted extraction of hydrocarbons in marine sediments: comparison with the Soxhlet extraction method.

    Science.gov (United States)

    Vázquez Blanco, E; López Mahía, P; Muniategui Lorenzo, S; Prada Rodríguez, D; Fernández Fernández, E

    2000-02-01

    Microwave energy was applied to extract polycyclic aromatic hydrocarbons (PAHs) and linear aliphatic hydrocarbons (LAHs) from marine sediments. The influence of experimental conditions, such as different extracting solvents and mixtures, microwave power, irradiation time and number of samples extracted per run has been tested using real marine sediment samples; volume of the solvent, sample quantity and matrix effects were also evaluated. The yield of extracted compounds obtained by microwave irradiation was compared with that obtained using the traditional Soxhlet extraction. The best results were achieved with a mixture of acetone and hexane (1:1), and recoveries ranged from 92 to 106%. The extraction time is dependent on the irradiation power and the number of samples extracted per run, so when the irradiation power was set to 500 W, the extraction times varied from 6 min for 1 sample to 18 min for 8 samples. Analytical determinations were carried out by high-performance liquid chromatography (HPLC) with an ultraviolet-visible photodiode-array detector for PAHs and gas chromatography (GC) using a FID detector for LAHs. To test the accuracy of the microwave-assisted extraction (MAE) technique, optimized methodology was applied to the analysis of standard reference material (SRM 1941), obtaining acceptable results.

  8. Evaluation of iron bioavailability in a mixture of cereals, seeds, and grains ("Human Ration"

    Directory of Open Access Journals (Sweden)

    Bárbara Nery Enes

    2014-03-01

    Full Text Available Iron bioavailability was evaluated in three mixtures of cereals, seeds, and grains ("Human Ration": light, regular, and homemade provided to rats. The animals received an iron depletion diet for 21 days, followed by a repletion diet containing 12 mg·kg-1 of iron for 14 days. The hemoglobin regeneration efficiency and the relative biological value did not differ between the light mixture and control group. The iron bioavailability of the light mixture of cereals, seeds, and grains and the control group were 99.99±27.62 and 80.02±36.63, respectively, while the regular and homemade mixtures of cereals, seeds, and grains showed lower iron bioavailability, 50.12±35.53 and 66.66±15.44, respectively; the iron content of the diet with light cereal mixture light was statistically similar to that of the control (ferrous sulfate 99.99±27.62. The high content of tannin (202.81±19.53 mg·100-1 in the diet with the regular cereal mixture may have contributed to its low iron bioavailability. The higher intake of soluble fiber by the animals fed the light mixture (21.15±0.92 g was moderately correlated (r=0.5712, p=0.0018 with the concentration of propionate in the caecal bulk (65.49±11.08 µmol/g. The short chain fatty acids produced by soluble fiber fermentation, associated with the low-content of tannin may have improved iron solubility and absorption in the light cereal mixture diet. The iron bioavailability in the light mixture of cereals, seeds, and grains was similar to that of ferrous sulfate.

  9. System for deuterium-tritium mixture filling the working chamber of a dense plasma focus device

    International Nuclear Information System (INIS)

    Bondar', A.I.; Vyskubov, V.P.; Gerasimov, S.A.

    1981-01-01

    A gas-vacuum system designed for filling the gas-discharge chamber of a plasma focus device with equal-coaponent deuterium-tritium mixture is described. The system consists of a unit for gaseous mixture prepa ration and a unit for mixture absorption and device evacuation. The system provides the gaseous mixture purification of O 2 and N 2 impurities. Final tritium content in the gas-discharge chamber after tritium removal is not greater than 2x10 8 Bq/l. Tritium content in a sealed box in which the device is placed does not exceed 30 Bq/l that is less than limiting safe value. The conclusion is made that the described system design gives an opportunity to begin experimental studies at plasma focus devices with deuterium-tritium mixture [ru

  10. Water activity changes of multicomponent food mixture during processing

    Directory of Open Access Journals (Sweden)

    Jiří Štencl

    2004-01-01

    Full Text Available Water activity of multicomponent food mixture was analysed and measured. Samples of dry fermented sausages with two different starter cultures (Pediococcus pentosaceus + Staphylococcus carnosus and Staphylococcus carnosus + Staphylococcus xylosus + Lactobacillus farciminis were tested during ripening (21 days and storing (91 days. The basic raw materials were the same for all samples: lean beef meat, lean pork and pork fat in equal parts, nitrite salt mixture (2.5 %, and sugars (1.0 %. The method used for water activity tests was indirect manometric in a static environment. Moisture content of samples was measured using halogen dryer. The course of water activity and moisture content of sausages was variable during ripening and steady during storage. Diagrams showed gradual decrease of both parameters. Mathematical models of water activity and moisture content for storage of dry fermented sausages were developed and statistically verified. The influence of starter cultures was not significant.

  11. Decreased Mitochondrial DNA Content in Association with Exposure to Polycyclic Aromatic Hydrocarbons in House Dust during Wintertime: From a Population Enquiry to Cell Culture

    Science.gov (United States)

    Pieters, Nicky; Koppen, Gudrun; Smeets, Karen; Napierska, Dorota; Plusquin, Michelle; De Prins, Sofie; Van De Weghe, Hendrik; Nelen, Vera; Cox, Bianca; Cuypers, Ann; Hoet, Peter; Schoeters, Greet; Nawrot, Tim S.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that are formed in combustion processes. At the cellular level, exposure to PAHs causes oxidative stress and/or some of it congeners bind to DNA, which may interact with mitochondrial function. However, the influence of these pollutants on mitochondrial DNA (mtDNA) content remains largely unknown. We determined whether indoor exposure to PAHs is associated with mitochondrial damage as represented by blood mtDNA content. Blood mtDNA content (ratio mitochondrial/nuclear DNA copy number) was determined by real-time qPCR in 46 persons, both in winter and summer. Indoor PAH exposure was estimated by measuring PAHs in sedimented house dust, including 6 volatile PAHs and 8 non-volatile PAHs. Biomarkers of oxidative stress at the level of DNA and lipid peroxidation were measured. In addition to the epidemiologic enquiry, we exposed human TK6 cells during 24 h at various concentrations (range: 0 to 500 µM) of benzo(a)pyrene and determined mtDNA content. Mean blood mtDNA content averaged (±SD) 0.95±0.185. The median PAH content amounted 554.1 ng/g dust (25th–75th percentile: 390.7–767.3) and 1385ng/g dust (25th–75th percentile: 1000–1980) in winter for volatile and non-volatile PAHs respectively. Independent for gender, age, BMI and the consumption of grilled meat or fish, blood mtDNA content decreased by 9.85% (95% CI: −15.16 to −4.2; p = 0.002) for each doubling of non-volatile PAH content in the house dust in winter. The corresponding estimate for volatile PAHs was −7.3% (95% CI: −13.71 to −0.42; p = 0.04). Measurements of oxidative stress were not correlated with PAH exposure. During summer months no association was found between mtDNA content and PAH concentration. The ability of benzo(a)pyrene (range 0 µM to 500 µM) to lower mtDNA content was confirmed in vitro in human TK6 cells. Based on these findings, mtDNA content can be a target of PAH toxicity in humans

  12. Decreased mitochondrial DNA content in association with exposure to polycyclic aromatic hydrocarbons in house dust during wintertime: from a population enquiry to cell culture.

    Directory of Open Access Journals (Sweden)

    Nicky Pieters

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are widespread environmental pollutants that are formed in combustion processes. At the cellular level, exposure to PAHs causes oxidative stress and/or some of it congeners bind to DNA, which may interact with mitochondrial function. However, the influence of these pollutants on mitochondrial DNA (mtDNA content remains largely unknown. We determined whether indoor exposure to PAHs is associated with mitochondrial damage as represented by blood mtDNA content. Blood mtDNA content (ratio mitochondrial/nuclear DNA copy number was determined by real-time qPCR in 46 persons, both in winter and summer. Indoor PAH exposure was estimated by measuring PAHs in sedimented house dust, including 6 volatile PAHs and 8 non-volatile PAHs. Biomarkers of oxidative stress at the level of DNA and lipid peroxidation were measured. In addition to the epidemiologic enquiry, we exposed human TK6 cells during 24 h at various concentrations (range: 0 to 500 µM of benzo(apyrene and determined mtDNA content. Mean blood mtDNA content averaged (± SD 0.95 ± 0.185. The median PAH content amounted 554.1 ng/g dust (25(th-75(th percentile: 390.7-767.3 and 1385 ng/g dust (25(th-75(th percentile: 1000-1980 in winter for volatile and non-volatile PAHs respectively. Independent for gender, age, BMI and the consumption of grilled meat or fish, blood mtDNA content decreased by 9.85% (95% CI: -15.16 to -4.2; p = 0.002 for each doubling of non-volatile PAH content in the house dust in winter. The corresponding estimate for volatile PAHs was -7.3% (95% CI: -13.71 to -0.42; p = 0.04. Measurements of oxidative stress were not correlated with PAH exposure. During summer months no association was found between mtDNA content and PAH concentration. The ability of benzo(apyrene (range 0 µM to 500 µM to lower mtDNA content was confirmed in vitro in human TK6 cells. Based on these findings, mtDNA content can be a target of PAH toxicity in humans.

  13. Improvement of lean combustion characteristics of heavy-hydrocarbon fuels with hydrogen addition; Suiso tenka ni yoru kokyu tanka suisokei nenryo no kihaku nensho no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y. [Saitama Institute of Technology, Saitama (Japan); Ishizuka, S. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1999-09-25

    The Lewis numbers of lean heavy-hydrocarbon fuels are larger than unity, and hence, their flames are prone to extinction in a shear flow, which occurs in a turbulent combustion. Here, propane is used as a representative fuel of heavy-hydrocarbon fuels because the Lewis number of lean propane/air mixtures is larger than unity, and an attempt to improve its combustion characteristics by hydrogen addition has been made. A tubular flame burner is used to evaluate its improvement, since a rotating, stretched vortex flow is established in the burner. The results show that with' hydrogen addition, the fuel concentration, the flame diameter and the flame temperature at extinction are reduced and its combustion characteristics are improved. However, it is found that the effective equivalence ration at extinction cannot become so small as that of lean methane/air mixture, which has a Lewis number less than unity. (author)

  14. Hydrocarbons and energy from plants: Final report, 1984-1987

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, M.; Otvos, J.; Taylor, S.E.; Nemethy, E.K.; Skrukrud, C.L.; Hawkins, D.R.; Lago, R.

    1988-08-01

    Plant hydrocarbon (isoprenoid) production was investigated as an alternative source to fossil fuels. Because of their high triterpenoid (hydrocarbon) content of 4--8%, Euphorbia lathyris plants were used as a model system for this study. The structure of the E. lathyris triterpenoids was determined, and triterpenoid biosynthesis studied to better understand the metabolic regulation of isoprenoid production. Triterpenoid biosynthesis occurs in two distinct tissue types in E. lathyris plants: in the latex of the laticifer cells; and in the mesophyll cells of the leaf and stem. The latex has been fractionated by centrifugation, and it has been determined that the later steps of isoprenoid biosynthesis, the conversion of mevalonic acid to the triterpenes, are compartmentized within a vacuole. Also identified was the conversion of hydroxymethyl glutaryl-CoA to mevalonic acid, catalyzed by the enzyme Hydroxymethyl glutaryl-CoA Reductase, as a key rate limiting step in isoprenoid biosynthesis. At least two isozymes of this enzyme, one in the latex and another in the leaf plastids, have been identified. Environmental stress has been applied to plants to study changes in carbon allocation. Salinity stress caused a large decrease in growth, smaller decreases in photosynthesis, resulting in a larger allocation of carbon to both hydrocarbon and sugar production. An increase in Hydroxymethyl glutaryl-CoA Reductase activity was also observed when isoprenoid production increased. Other species where also screened for the production of hydrogen rich products such as isoprenoids and glycerides, and their hydrocarbon composition was determined.

  15. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology

    Science.gov (United States)

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-08-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.

  16. Solvation of decane and benzene in mixtures of 1-octanol and N, N-dimethylformamide

    Science.gov (United States)

    Kustov, A. V.; Smirnova, N. L.

    2016-09-01

    The heats of dissolution of decane and benzene in a model system of octanol-1 (OctOH) and N, N-dimethylformamide (DMF) at 308 K are measured using a variable temperature calorimeter equipped with an isothermal shell. Standard enthalpies are determined and standard heat capacities of dissolution in the temperature range of 298-318 K are calculated using data obtained in [1, 2]. The state of hydrocarbon molecules in a binary mixture is studied in terms of the enhanced coordination model (ECM). Benzene is shown to be preferentially solvated by DMF over the range of physiological temperatures. The solvation shell of decane is found to be strongly enriched with 1-octanol. It is obvious that although both hydrocarbons are nonpolar, the presence of the aromatic π-system in benzene leads to drastic differences in their solvation in a lipid-protein medium.

  17. Unconventional Hydrocarbon Development Hazards Within the Central United States. Report 1: Overview and Potential Risk to Infrastructure

    Science.gov (United States)

    2015-08-01

    Zou 2013; NRC 2013). The ideal shale for gas production should have low clay content, less than 30%, and high brittle mineral content, greater...high clay content has higher ductility, thus increasing the energy loss within the rock; i.e., requiring more imparted energy to generate fractures...used to increase the permeability of the geologic formation containing recoverable hydrocarbons and utilizes highly pressurized, low- viscosity fluid

  18. Methods and compositions for removing carbon dioxide from a gaseous mixture

    Science.gov (United States)

    Li, Jing; Wu, Haohan

    2014-06-24

    Provided is a method for adsorbing or separating carbon dioxide from a mixture of gases by passing the gas mixture through a porous three-dimensional polymeric coordination compound having a plurality of layers of two-dimensional arrays of repeating structural units, which results in a lower carbon dioxide content in the gas mixture. Thus, this invention provides useful compositions and methods for removal of greenhouse gases, in particular CO.sub.2, from industrial flue gases or from the atmosphere.

  19. Effects of P/Ni ratio and Ni content on performance of γ-Al_2O_3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    International Nuclear Information System (INIS)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    Graphical abstract: - Highlights: • The formation of AlPO_4 was unfavorable for that of nickel phosphides. • The phase compositions of nickel phosphide depended on the amount of reduced P. • Catalytic activity was determined by surface Ni site density and catalyst acidity. • HDO pathway was promoted by increasing P/Ni ratio and Ni content. • Nickel phosphide gave much higher carbon yield and lower H_2 consumption than Ni. - Abstract: γ-Al_2O_3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0–2.5) and Ni content (m = 5–15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al_2O_3 was also studied for comparison. It was found that the formation of AlPO_4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni_3P, Ni_1_2P_5 and Ni_2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al_2O_3, the mNi-Pn catalysts showed much lower activities for decarbonylation, C−C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl

  20. High molecular weight non-polar hydrocarbons as pure model substances and in motor oil samples can be ionized without fragmentation by atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Hourani, Nadim; Kuhnert, Nikolai

    2012-10-15

    High molecular weight non-polar hydrocarbons are still difficult to detect by mass spectrometry. Although several studies have targeted this problem, lack of good self-ionization has limited the ability of mass spectrometry to examine these hydrocarbons. Failure to control ion generation in the atmospheric pressure chemical ionization (APCI) source hampers the detection of intact stable gas-phase ions of non-polar hydrocarbon in mass spectrometry. Seventeen non-volatile non-polar hydrocarbons, reported to be difficult to ionize, were examined by an optimized APCI methodology using nitrogen as the reagent gas. All these analytes were successfully ionized as abundant and intact stable [M-H](+) ions without the use of any derivatization or adduct chemistry and without significant fragmentation. Application of the method to real-life hydrocarbon mixtures like light shredder waste and car motor oil was demonstrated. Despite numerous reports to the contrary, it is possible to ionize high molecular weight non-polar hydrocarbons by APCI, omitting the use of additives. This finding represents a significant step towards extending the applicability of mass spectrometry to non-polar hydrocarbon analyses in crude oil, petrochemical products, waste or food. Copyright © 2012 John Wiley & Sons, Ltd.

  1. A Combined On-Line Acoustic Flowmeter and Fluorocarbon Coolant Mixture Analyzer for The ATLAS Silicon Tracker

    CERN Document Server

    Bitadze, A.; Bates, R.; Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; DiGirolamo, B.; Godlewski, J.; Perez-Rodriguez, E.; Zwalinski, L.; Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A.; Boyd, G.; Doubek, M.; Vacek, V.; Vitek, M.; Egorov, K.; Katunin, S.; McMahon, S.; Nagai, K.

    2011-01-01

    An upgrade to the ATLAS silicon tracker cooling control system may require a change from C3F8 (octafluoro-propane) to a blend containing 10-30% of C2F6 (hexafluoro-ethane) to reduce the evaporation temperature and better protect the silicon from cumulative radiation damage with increasing LHC luminosity. Central to this upgrade is a new acoustic instrument for the real-time measurement of the C3F8/C2F6 mixture ratio and flow. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. The instrument has demonstrated a resolution of 3.10-3 for C3F8/C2F6 mixtures with ~20%C2F6, and flow resolution of 2% of full scale for mass flows up to 30gs-1. In mixtures of widely-differing molecular weight (mw), higher mixture precision is possible: a sensitivity of < 5.10-4 to leaks of C3F8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has been seen. The instrument has many potential applications, including the analysis of mixtures of hydrocarbons,...

  2. Investigation of sulfur-polycyclic aromatic hydrocarbon in coal derived tars of pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion

    1999-07-01

    A study was undertaken to characterize sulphur forms in coal derived tars from pyrolysis and hydropyrolysis of bituminous coal and lignite. The pyrolysis tars were analyzed for content of polycyclic aromatic sulfur hydrocarbons (PASH). 5 refs., 3 figs., 3 tabs.

  3. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.

    Science.gov (United States)

    Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming

    2017-02-01

    Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  5. Sampling of high molecular weight hydrocarbons with adsorbent tubes

    International Nuclear Information System (INIS)

    Stroemberg, B.

    1996-12-01

    Adsorption tubes have been used to determine the content of hydrocarbons in gas samples from small scale combustion and gasification of biomass. Compounds from benzene (mw 78) to indeno (1,2,3-cd) pyrene (mw 276) have been examined. The results show that it is possible to analyze polyaromatic hydrocarbons (PAH) with 4 aromatic rings (mw 202). Detection limits for these compounds are 3 . PAH with higher molecule weight can be identified and quantified in samples with high amounts of PAH e.g. at gasification of biomass. Sampling on adsorption tubes is extremely quick and easy. The tube is inserted in the gas of interest and the sample is sucked through the tube with a pump. Sampling times of 2-10 minutes are often sufficient. High moisture content in the gas may result in losses of the most volatile compounds, when drying. Even very low concentrations of water in the tube may cause ice formation in the cold-trap and the sample will be destroyed. The analysis is unfortunately time-consuming because the desorption oven must be cooled between every analysis. This will reduce the number of samples which can be analyzed per day. The tubes can be stored for several weeks before analysis without deterioration. 4 refs, 5 figs, 3 tabs

  6. Pulse radiolysis of alkanes in the gas-phase, ion-molecule reactions and neutralization mechanisms of hydrocarbon ions

    International Nuclear Information System (INIS)

    Ausloos, P.

    1975-01-01

    A discussion is presented of the fate of unreactive hydrocarbon ions in various selected gaseous systems. It is shown that experiments performed with the high radiation dose rates obtained in pulse radiolysis experiments have several advantages over conventional low dose rate experiments for the elucidation of the mechanism of homogeneous neutralization of unreactive hydrocarbon ions. This is so because the charged species has a much shorter lifetime with respect to neutralization under high dose rate (pulse radiolysis) conditions, so that the reaction of the ions with minor impurities or accumulated products is much less probable than in low dose rate experiments. It is further shown through a few examples, that quantitative information about the rate contants of neutralization events and ion-molecule reactions can be obtained when the dose rate is high enough for neutralization and chemical reaction to be in competition. Once reliable rate constants for neutralization and ion-molecule reactions are derived, one can obtain a quantitative evaluation of the products which will by formed in the pulse radiolysis of a hydrocarbon gas mixture from a computer calculation. (author)

  7. Pre-Alleghenian (Pennsylvanian-Permian) hydrocarbon emplacement along Ordovician Knox unconformity, eastern Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, F.M.; Kesler, S.E.

    1989-03-01

    Cores taken during exploration for Mississippi Valley-type lead and zinc ores in the Mascot-Jefferson City zinc district of eastern Tennessee commonly contain hydrocarbon residues in carbonate rocks of the Knox Group immediately below the Lower Ordovician Knox unconformity. The location and number of these residue-bearing strata reveal information about the Paleozoic history of hydrocarbon emplacement in the region. Contour maps, generated from nearly 800 holes covering more than 20 km/sup 2/, indicate that zones with elevated organic content in the uppermost 30 m of the Lower Ordovician Mascot Dolomite show a strong spatial correlation with Middle Ordovician paleotopographic highs. These same zones show no spatial association with present-day structural highs, which were formed during Pennsylvanian-Permian Alleghenian tectonism. This suggests that the physical entrapment of hydrocarbons migrating through the upper permeable units of the Mascot must have occurred prior to the principal tectonism of the Alleghenian orogeny. 7 figures, 1 table.

  8. Phase equilibria at low temperature for light hydrocarbons-methanol-water-acid gases mixtures: measurements and modelling; Equilibres de phases a basse temperature de systemes complexes CO{sub 2} - hydrocarbures legers - methanol - eau: mesures et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Ruffine, L.

    2005-10-15

    The need to develop and improve natural gas treatment processes is real. The petroleum industry usually uses separation processes which require phase equilibrium phenomena. Yet, the complexity of the phase equilibria involved results in a lack of data, which in turn limits the development of thermodynamic models. The first part of this work is devoted to experimental investigations for systems containing light hydrocarbons, methanol, water and acid gases. We present a new apparatus that was developed to measure vapor-liquid and vapor-liquid-liquid equilibria. It allowed us to obtain new phase composition data for the methanol-ethane binary system and different mixtures, and also to determine a part of the three phases equilibrium envelope of the same systems. In the second part of this work, we have developed a thermodynamic model based on the CPA equation of state. This choice may be justified by the presence of associating components like methanol, hydrogen sulfide and water in the systems. Such model is necessary for the design of gas treatment plants. Our model provides good results for phase equilibrium calculations for binaries systems without binary interaction parameter in many cases, and describes correctly the vapour-liquid and vapor-liquid-liquid equilibria for complex mixtures. (author)

  9. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system

    Science.gov (United States)

    Kolak, Jonathan J.; Burruss, Robert A.

    2014-01-01

    Samples of three high volatile bituminous coals were subjected to parallel sets of extractions involving solvents dichloromethane (DCM), carbon disulfide (CS2), and supercritical carbon dioxide (CO2) (40 °C, 100 bar) to study processes affecting coal–solvent interactions. Recoveries of perdeuterated surrogate compounds, n-hexadecane-d34 and four polycyclic aromatic hydrocarbons (PAHs), added as a spike prior to extraction, provided further insight into these processes. Soxhlet-DCM and Soxhlet-CS2 extractions yielded similar amounts of extractable organic matter (EOM) and distributions of individual hydrocarbons. Supercritical CO2 extractions (40 °C, 100 bar) yielded approximately an order of magnitude less EOM. Hydrocarbon distributions in supercritical CO2 extracts generally mimicked distributions from the other solvent extracts, albeit at lower concentrations. This disparity increased with increasing molecular weight of target hydrocarbons. Five- and six-ring ring PAHs generally were not detected and no asphaltenes were recovered in supercritical CO2 extractions conducted at 40 °C and 100 bar. Supercritical CO2 extraction at elevated temperature (115 °C) enhanced recovery of four-ring and five-ring PAHs, dibenzothiophene (DBT), and perdeuterated PAH surrogate compounds. These results are only partially explained through comparison with previous measurements of hydrocarbon solubility in supercritical CO2. Similarly, an evaluation of extraction results in conjunction with solubility theory (Hildebrand and Hansen solubility parameters) does not fully account for the hydrocarbon distributions observed among the solvent extracts. Coal composition (maceral content) did not appear to affect surrogate recovery during CS2 and DCM extractions but might affect supercritical CO2 extractions, which revealed substantive uptake (partitioning) of PAH surrogates into the coal samples. This uptake was greatest in the sample (IN-1) with the highest vitrinite content. These

  10. The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ali Khazaei

    2014-07-01

    Full Text Available In this work, artificial neural network (ANN has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocarbon components. The ANN model has been developed as a function of temperature, critical properties, and acentric factor of the mixture according to conventional corresponding-state models. 80% of the data points were employed for training ANN and the remaining data were utilized for testing the generated model. The average absolute relative deviations (AARD% of the model for the training set, the testing set, and the total data points were obtained 1.69, 1.86, and 1.72 respectively. Comparing the results with Flory theory, Brok-Bird equation, and group contribution theory has proved the high prediction capability of the attained model.

  11. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting

    International Nuclear Information System (INIS)

    Mani, Devleena; Kumar, T. Satish; Rasheed, M. A.; Patil, D. J.; Dayal, A. M.; Rao, T. Gnaneshwar; Balaram, V.

    2011-01-01

    The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana–Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospective for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r 2 < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.

  12. Evolution of paraffinic and naphtenic hydrocarbon and 3,4 benzopyrene content in mussels from a coastal zone polluted by a fuel spill

    Energy Technology Data Exchange (ETDEWEB)

    Bories, G; Tulliez, J; Peltier, J C; Fleckinger, R

    1969-05-03

    After an oil spill, a coastal zone was polluted and wild mussels were contaminated by paraffinic and naphtenic hydrocarbons and 3,4-benzopyrene. The evolution of this contamination was followed. Normal levels were re-established after a month and a half. Normal paraffins were metabolized faster than other hydrocarbons.

  13. Effects of Crumb Rubber Size and Concentration on Performance of Porous Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Altan Cetin

    2013-01-01

    Full Text Available The purpose of this study is to investigate the effect of size distribution and concentration of crumb rubber on the performance characteristics of porous asphalt mixture. The recycling of scrap tires in asphalt pavements appears as an important alternative providing a large-scale market. The characteristics of bitumen are very important with regard to service life of porous asphalt pavement. The experimental study consists of two main steps. Firstly, the mixture design was performed to determine the optimum bitumen content. In the latter step, the mixtures were modified by dry process using crumb rubber in three different grain size distributions of #4~#20, #20~#200, and #4~#200 and rubber content of 10%, 15%, and 20% as weight of optimum bitumen. The permeability, Cantabro abrasion loss, indirect tensile strength, moisture susceptibility, and resilient modulus tests were carried out on the specimens. Test results show that #20~#200 sized rubber particles reduced air voids and coefficient of permeability, while they increased the Cantabro abrasion loss. In general, increasing the crumb rubber size and content decreased the performance characteristics of the porous asphalt mixtures.

  14. Nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The nature of hydrocarbon activation in oxidative ammonolysis of propane to acrylonitrile over a gallium-antimony oxide catalyst GaSbNiPOx (1:3:1.5:1 atomic ratios of the elements) was studied by comparing the rate of this reaction at 550/sup 0/C and 5Vertical Bar3< by vol propane/6Vertical Bar3< ammonia/18.6Vertical Bar3< oxygen/70.4Vertical Bar3< helium reactant mixture with that of isobutane ammoxidation to methacrylonitrile under the same conditions, at low (Vertical Bar3; 20Vertical Bar3<) conversions that prevent secondary oxidation of the products. Both the over-all hydrocarbon conversion rate and that of nitrile formation were higher for propane, suggesting that the reactions proceed via the respective carbanions (probably primary carbanions), rather than carbocations or uncharged radicals.

  15. Evaluation of quicklime mixing for the remediation of petroleum contaminated soils.

    Science.gov (United States)

    Schifano, V; Macleod, C; Hadlow, N; Dudeney, R

    2007-03-15

    Quicklime mixing is an established solidification/stabilization technique to improve mechanical properties and immobilise contaminants in soils. This study examined the effects of quicklime mixing on the concentrations and leachability of petroleum hydrocarbon compounds, in two natural soils and on a number of artificial sand/kaolinite mixtures. Several independent variables, such as clay content, moisture content and quicklime content were considered in the study. After mixing the soils with the quicklime, pH, temperature, moisture content, Atterberg limits and concentrations of petroleum hydrocarbon compounds were determined on soil and leachate samples extracted from the treated soils. Significant decreases in concentrations of petroleum hydrocarbon compounds were measured in soils and leachates upon quicklime mixing, which may be explained by a number of mechanisms such as volatilization, degradation and encapsulation of the hydrocarbon compounds promoted by the quicklime mixing. The increase in temperature due to the exothermic hydration reaction of quicklime when in contact with porewater helps to volatilize the light compounds but may not be entirely responsible for their concentration decreases and for the decrease of heavy aliphatics and aromatics concentrations.

  16. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H{sub 2}-O{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kamenskihs, Vsevolods; Lee, John H.S. [Department of Mechanical Engineering, McGill University, Montreal, Quebec (Canada); Ng, Hoi Dick [Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec (Canada)

    2010-09-15

    In this study, the critical energy for direct initiation of spherical detonations in stoichiometric high-pressure hydrogen-oxygen mixtures are measured and investigated to look at the effect of explosion limits on the detonation sensitivity. Results up to an initial pressure of 20 atm are obtained. Experiments are carried out in a spherical bomb and direct initiation is achieved via spark ignition from a high-voltage capacitor discharge. A detailed description of different methods to obtain a good estimate of the correct amount of energy deposited into the mixture used to initiate the detonation, including the calorimeter method and current method, is provided. It is demonstrated that at elevated initial pressure, the second explosion limit effect plays a significant role leading to slow-branching reactions and the detonation sensitivity of hydrogen mixtures is comparable to other common hydrocarbon mixtures at such condition. (author)

  17. Determination of chlorinated hydrocarbons in single and multi component test gases

    Energy Technology Data Exchange (ETDEWEB)

    Giese, U.; Stenner, H. (Paderborn Univ. (Gesamthochschule) (Germany, F.R.). Angewandte Chemie); Ludwig, E.; Kettrup, A. (Paderborn Univ. (Gesamthochschule) (Germany, F.R.). Angewandte Chemie Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Oekologische Chemie)

    1990-11-01

    For comparing the efficiency of active and diffusive sampling methods two diffusive samplers with different properties were used to determine chlorinated hydrocarbons (CH{sub 2}Cl{sub 2}, CHCl{sub 3}, CCl{sub 4}) in single and multi component test gas mixtures. One of the chosen diffusive samplers can also be used for active sampling. In general, good correlations of all tested methods could be observed in the direct comparison of active and diffusive sampling and in the determination of the efficiencies. During the application of active and diffusive sampling methods in multi component test gases of the analytes possible interferences could not be ascertained. (orig.).

  18. Adsorption of volatile hydrocarbons in iron polysulfide chalcogels

    KAUST Repository

    Ahmed, Ejaz

    2014-11-01

    We report the synthesis, characterization and possible applications of three new metal-chalcogenide aerogels KFe3Co3S 21, KFe3Y3S22 and KFe 3Eu3S22. Metal acetates react with the alkali metal polychalcogenides in formamide/water mixture to form extended polymeric frameworks that exhibit gelation phenomena. Amorphous aerogels obtained after supercritical CO2 drying have BET surface area from 461 to 573 m 2/g. Electron microscopy images and nitrogen adsorption measurements showed that pore sizes are found in micro (below 2 nm), meso (2-50 nm), and macro (above 50 nm) porous regions. These chalcogels possess optical bandgaps in the range of 1.55-2.70 eV. These aerogels have been studied for the adsorption of volatile hydrocarbons and gases. A much higher adsorption of toluene in comparison with cyclohexane and cyclopentane vapors have been observed. The adsorption capacities of the three volatile hydrocarbons are found in the following order: toluene > cyclohexane > cyclopentane. It has been observed that high selectivity in adsorption is feasible with high-surface-area metal chalcogenides. Similarly, almost an eight to ten times increase in adsorption selectivity towards CO2 over H2/CH4 was observed in the aerogels. Moreover, reversible ion-exchange properties for K+/Cs+ ions have also been demonstrated. © 2014 Elsevier Inc. All rights reserved.

  19. Interactions between marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Button, D.K.; Robertson, B.R.; McIntosh, D.; Juettner, F.

    1992-01-01

    Turnover times for toluene in Resurrection Bay after the Exxon Valdez grounding were determined to be decades, longer than expected considering that dissolved hydrocarbons were anticipated to drift with the current and stimulate development of additional hydrocarbon-utilizing capacity among the microflora in that downcurrent location. These turnover times were based on the recovery of 14 CO 2 from added [ 14 C]toluene that was oxidized. The concentrations of toluene there, 0.1 to 0.2 μg/liter, were similar to prespill values. Oxidation rates appeared to be enhanced upstream near islands in the wake of the wind-blown slick, and even more within the slick itself. Since current-driven mixing rates exceeded those of oxidation, dissolved spill components such as toluene should enter the world-ocean pool of hydrocarbons rather than biooxidize in place. Some of the floating oil slick washed ashore and permeated a coarse gravel beach. A bacterial biomass of 2 to 14 mg/kg appeared in apparent response to the new carbon and energy source. A large population of carbon- and energy-starved, induced hydrocarbon oxidizers with metabolism limited by the physical and molecular recalcitrance of the heavier components is suggested. The effects of a surfactant that was widely applied were unremarkable on a test beach after 1.5 months. Unresolved components appearing in chromatograms from the remaining mixture were characteristic of partial oxidation products. Such compounds, known to accumulate when concentrations of smaller aqueous-phase hydrocarbons exceed the K m , may form in sediments as well

  20. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.

    Science.gov (United States)

    Edison, J R; Monson, P A

    2013-11-12

    We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.