WorldWideScience

Sample records for hydrocarbon layer formation

  1. Time sequenced heating of multiple layers in a hydrocarbon containing formation

    Science.gov (United States)

    Goldberg, Bernard; Hale, Arthur Herman; Miller, David Scott; Vinegar, Harold J.

    2009-12-22

    A method for treating a hydrocarbon containing formation may include providing heat to a first hydrocarbon layer in the formation from a first heater located in an opening in the formation. The opening and the first heater may have a horizontal or inclined portion located in the first hydrocarbon layer and at least one connecting portion extending between the horizontal or inclined portion and the surface. Isolation material is placed in the opening such that the isolation material partially isolates the layer in which the horizontal or inclined portion of the first heater is located. An additional horizontal or inclined opening portion that extends from at least one of the connecting portions of the opening is formed in a second hydrocarbon layer. A second heater to provide heat the second hydrocarbon formation is placed in the additional substantially horizontal opening portion.

  2. Moving hydrocarbons through portions of tar sands formations with a fluid

    Science.gov (United States)

    Stegemeier, George Leo; Mudunuri, Ramesh Raju; Vinegar, Harold J.; Karanikas, John Michael; Jaiswal, Namit; Mo, Weijian

    2010-05-18

    A method for treating a tar sands formation is disclosed. The method includes heating a first portion of a hydrocarbon layer in the formation from one or more heaters located in the first portion. The heat is controlled to increase a fluid injectivity of the first portion. A drive fluid and/or an oxidizing fluid is injected and/or created in the first portion to cause at least some hydrocarbons to move from a second portion of the hydrocarbon layer to a third portion of the hydrocarbon layer. The second portion is between the first portion and the third portion. The first, second, and third portions are horizontally displaced from each other. The third portion is heated from one or more heaters located in the third portion. Hydrocarbons are produced from the third portion of the formation. The hydrocarbons include at least some hydrocarbons from the second portion of the formation.

  3. In situ heat treatment from multiple layers of a tar sands formation

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX)

    2010-11-30

    A method for treating a tar sands formation is disclosed. The method includes providing a drive fluid to a first hydrocarbon containing layer of the formation to mobilize at least some hydrocarbons in the first layer. At least some of the mobilized hydrocarbons are allowed to flow into a second hydrocarbon containing layer of the formation. Heat is provided to the second layer from one or more heaters located in the second layer. At least some hydrocarbons are produced from the second layer of the formation.

  4. Formation of hydrocarbons by bacteria and algae

    Energy Technology Data Exchange (ETDEWEB)

    Tornabene, T.G.

    1980-12-01

    A literature review has been performed summarizing studies on hydrocarbon synthesis by microorganisms. Certain algal and bacterial species produce hydrocarbons in large quantities, 70 to 80% of dry cell mass, when in a controlled environment. The nutritional requirements of these organisms are simple: CO/sub 2/ and mineral salts. The studies were initiated to determine whether or not microorganisms played a role in petroleum formation. 90 references. (DMC)

  5. In situ recovery from residually heated sections in a hydrocarbon containing formation

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX); Ryan, Robert Charles (Houston, TX)

    2010-12-14

    Methods of treating a tar sands formation is described herein. The methods may include providing heat to a first section of a hydrocarbon layer in the formation from a plurality of heaters located in the first section of the formation. Heat is transferred from the heaters so that at least a first section of the formation reaches a selected temperature. At least a portion of residual heat from the first section transfers from the first section to a second section of the formation. At least a portion of hydrocarbons in the second section are mobilized by providing a solvation fluid and/or a pressurizing fluid to the second section of the formation.

  6. Deposit formation in hydrocarbon rocket fuels

    Science.gov (United States)

    Roback, R.; Szetela, E. J.; Spadaccini, L. J.

    1981-01-01

    An experimental program was conducted to study deposit formation in hydrocarbon fuels under flow conditions that exist in high-pressure, rocket engine cooling systems. A high pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon rocket fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6 to 30 m/sec, and tube wall temperatures in the range 422 to 811 K. Results indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800 K, with peak deposit formation occurring near 700 K. No improvements were obtained when deoxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. There appeared to be little difference between commercial-grade and chemically-pure propane with regard to type and quantity of deposit. Results of tests conducted with RP-1 indicated that the rate of deposit formation increased slightly with pressure over the range 136 atm to 340 atm. Finally, lating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel.

  7. Cogeneration systems and processes for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Fowler, Thomas David; Karanikas, John Michael

    2009-12-29

    A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

  8. Mechanism of Silurian Hydrocarbon Pool Formation in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    Liu Luofu; Guo Yongqiang; Zhao Yande; Li Yan; Chen Yuanzhuang; Chen Lixin; Pang Xiongqi; Xie Qilai; Huo Hong; Zhao Suping; Li Chao; Li Shuangwen

    2007-01-01

    There are three formation stages of Silurian hydrocarbon pools in the Tarim Basin. The widely distributed asphaltic sandstones in the Tazhong (central Tarim) and Tabei (northern Tarim) areas are the results of destruction of hydrocarbon pools formed in the first-stage, and the asphaltic sandstones around the Awati Sag were formed in the second-stage. The hydrocarbon migration characteristics reflected by the residual dry asphalts could represent the migration characteristics of hydrocarbons in the Silurian paleo-pools, while the present movable oil in the Silurian reservoirs is related to the later-stage (the third-stage) hydrocarbon accumulation.

  9. Heating hydrocarbon containing formations in a line drive staged process

    Science.gov (United States)

    Miller, David Scott

    2009-07-21

    Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

  10. Experimental Probing on Formation Mechanism of Hydrocarbon in Deep Earth

    Institute of Scientific and Technical Information of China (English)

    Weng Kenan; Xiao Wansheng; Zhang Huizi; Wang Benshan

    1997-01-01

    @@ In order to study the formation mechanism of hydrocarbon in the earth's interior, preliminary experiments on chemical reactions of wax, graphite, siderite with supercritical water have been carried out respectively under the conditions of temperature about 800~1500℃ and pressure approximately above 1 GPa. These reactions can produce a large amount of methane, together with some CO2 and a little other hydrocarbons, indicating that the reactions of carbon-bearing materials with supercritical water is possibly a new formation mechanism of hydrocarbon under the conditions of high temperature and high pressure in deep earth.

  11. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    Energy Technology Data Exchange (ETDEWEB)

    Benner, Linda S.; Perkins, Patrick; Vollhardt, K.Peter C.

    1980-10-01

    In this report we detail the synthesis catalytic chemistry of polystyrene supported {eta}{sup 5} ~cyclopentadienyl- dicarbonyl cobalt, CpCo(CO){sub 2}. This material is active in the hydrogenation of CO to saturated linear hydrocarbons and appears to retain its "homogeneous", mononuclear character during the course of its catalysis, During ·the course of our work 18% and 20% crosslinked analogs of polystyrene supported CpCo(CO){sub 2} were shown to exhibit limited catalytic activity and no CO activation.

  12. Irregular spacing of heat sources for treating hydrocarbon containing formations

    Science.gov (United States)

    Miller, David Scott [Katy, TX; Uwechue, Uzo Philip [Houston, TX

    2012-06-12

    A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

  13. Dispersal, settling and layer formation.

    Science.gov (United States)

    Caffrey, James R; Hughes, Barry D; Landman, Kerry A

    2011-07-01

    Motivated by examples in developmental biology and ecology, we develop a model for convection-dominated invasion of a spatial region by initially motile agents which are able to settle permanently. The motion of the motile agents and their rate of settling are affected by the local concentration of settled agents. The model can be formulated as a nonlinear partial differential equation for the time-integrated local concentration of the motile agents, from which the instantaneous density of settled agents and its long-time limit can be extracted. In the limit of zero diffusivity, the partial differential equation is of first order; for application-relevant initial and boundary-value problems, shocks arise in the time-integrated motile agent density, leading to delta-function components in the motile agent density. Furthermore, there are simple solutions for a model of successive layer formation. In addition some analytic results for a one-dimensional system with non-zero diffusivity can also be obtained. A case study, both with and without diffusion, is examined numerically. Some important predictions of the model are insensitive to the specific settling law used and the model offers insight into biological processes involving layered growth or overlapping generations of colonization.

  14. Solution mining systems and methods for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; de Rouffignac, Eric Pierre; Schoeling, Lanny Gene

    2009-07-14

    A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

  15. Shock-tube pyrolysis of chlorinated hydrocarbons - Formation of soot

    Science.gov (United States)

    Frenklach, M.; Hsu, J. P.; Miller, D. L.; Matula, R. A.

    1986-01-01

    Soot formation in pyrolysis of chlorinated methanes, their mixtures with methane, and chlorinated ethylenes were studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. An additional single-pulse shock-tube study was conducted for the pyrolysis of methane, methyl chloride, and dichloromethane. The experiments were performed at temperatures 1300-3000 K, pressures of 0.4-3.6 bar, and total carbon atom concentrations of 1-5 x 10 to the 17th atoms cu cm. The amounts of soot produced in the pyrolysis of chlorinated hydrocarbons are larger than that of their nonchlorinated counterparts. The sooting behavior and product distribution can be generally explained in terms of chlorine-catalyzed chemical reaction mechanisms. The pathway to soot from chlorinated methanes and ethylenes with high H:Cl ratio proceeds via the formation of C2H, C2H2, and C2H3 species. For chlorinated hydrocarbons with low H:Cl ratio, the formation of C2 and its contribution to soot formation at high temperatures becomes significant. There is evidence for the importance of CHCl radical and its reactions in the pyrolysis of dichloromethane.

  16. Shock-tube pyrolysis of chlorinated hydrocarbons - Formation of soot

    Science.gov (United States)

    Frenklach, M.; Hsu, J. P.; Miller, D. L.; Matula, R. A.

    1986-01-01

    Soot formation in pyrolysis of chlorinated methanes, their mixtures with methane, and chlorinated ethylenes were studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. An additional single-pulse shock-tube study was conducted for the pyrolysis of methane, methyl chloride, and dichloromethane. The experiments were performed at temperatures 1300-3000 K, pressures of 0.4-3.6 bar, and total carbon atom concentrations of 1-5 x 10 to the 17th atoms cu cm. The amounts of soot produced in the pyrolysis of chlorinated hydrocarbons are larger than that of their nonchlorinated counterparts. The sooting behavior and product distribution can be generally explained in terms of chlorine-catalyzed chemical reaction mechanisms. The pathway to soot from chlorinated methanes and ethylenes with high H:Cl ratio proceeds via the formation of C2H, C2H2, and C2H3 species. For chlorinated hydrocarbons with low H:Cl ratio, the formation of C2 and its contribution to soot formation at high temperatures becomes significant. There is evidence for the importance of CHCl radical and its reactions in the pyrolysis of dichloromethane.

  17. Heating hydrocarbon containing formations in a spiral startup staged sequence

    Science.gov (United States)

    Vinegar, Harold J.; Miller, David Scott

    2009-12-15

    Methods for treating a hydrocarbon containing formation are described herein. Methods may include treating a first zone of the formation. Treatment of a plurality of zones of the formation may be begun at selected times after the treatment of the first zone begins. The treatment of at least two successively treated zones may begin at a selected time after treatment of the previous zone begins. At least two of the successively treated zones may be adjacent to the zone treated previously. The successive treatment of the zones proceeds in an outward, substantially spiral sequence from the first zone so that the treatment of the zones may move substantially spirally outwards towards a boundary of the treatment area.

  18. The Qishn Formation, Yemen: lithofacies and hydrocarbon habitat

    Energy Technology Data Exchange (ETDEWEB)

    Beydoun, Z.R. (American Univ., Beirut (Lebanon)); Bamahmoud, M.O.; Nani, A.S.O. (Ministry of Oil and Mineral Resources, Sana' a (Yemen, Republic of). Petroleum Exploration and Production Board)

    1993-08-01

    The Barremian-Aptian Qishn Formation of Yemen is broadly described in the context of its role as the lowest widespread transgressive unit of the Cretaceous system in the country and of the two laterally equivalent lithofacies groups that reflect the advance of the Cretaceous sea from east to west. This is undertaken against the background to the tectonic events that preceded its deposition and those that followed it during the remainder of the Cretaceous, so as to better understand its hydrocarbon habitat. (Author)

  19. Deposit formation in hydrocarbon rocket fuels: Executive summary

    Science.gov (United States)

    Roback, R.; Szetela, E. J.; Spadaccini, L. J.

    1981-01-01

    An experimental program was conducted to study deposit formation in hydrocarbon fuels under flow conditions that exist in high-pressure, rocket engine cooling systems. A high pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon rocket fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6 to 30 m/sec, and tube wall temperatures in the range 422 to 811K. In addition, the effect of the inside wall material on deposit formation was evaluated in selected tests which were conducted using nickel-plated tubes. The results of the tests indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800K, with peak deposit formation occurring near 700K. No improvements were obtained when de-oxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. There appeared to be little difference between commercial-grade and chemically-pure propane with regard to type and quantity of deposit. The results of tests conducted with RP-1 indicated that the rate of deposit formation increased slightly with pressure over the range 136 atm to 340 atm. Finally, plating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel.

  20. Formation History of Polycyclic Aromatic Hydrocarbons in Galaxies

    CERN Document Server

    Seok, Ji Yeon; Asano, Ryosuke S

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are some of the major dust components in the interstellar medium (ISM). We present our evolution models for the abundance of PAHs in the ISM on a galaxy-evolution timescale. We consider shattering of carbonaceous dust grains in interstellar turbulence as the formation mechanism of PAHs while the PAH abundance can be reduced by coagulation onto dust grains, destruction by supernova shocks, and incorporation into stars. We implement these processes in a one-zone chemical evolution model to obtain the evolution of the PAH abundance in a galaxy. We find that PAH formation becomes accelerated above certain metallicity where shattering becomes efficient. For PAH destruction, while supernova shock is the primary mechanism in the metal-poor environment, coagulation is dominant in the metal-rich environment. We compare the evolution of the PAH abundances in our models with observed abundances in galaxies with a wide metallicity range. Our models reproduce both the paucity of PAH...

  1. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food.

    Science.gov (United States)

    Singh, Lochan; Varshney, Jay G; Agarwal, Tripti

    2016-05-15

    Polycyclic aromatic hydrocarbons (PAHs) emerged as an important contaminant group in a gamut of processed food groups like dairy, nuts, herbs, beverages, meat products etc. Different cooking processes and processing techniques like roasting, barbecuing, grilling, smoking, heating, drying, baking, ohmic-infrared cooking etc. contribute towards its formation. The level of PAHs depends on factors like distance from heat source, fuel used, level of processing, cooking durations and methods, whereas processes like reuse, conching, concentration, crushing and storage enhance the amount of PAHs in some food items. This review paper provides insight into the impact of dietary intake of PAHs, its levels and formation mechanism in processed food items and possible interventions for prevention and reduction of the PAHs contamination. The gaps and future prospects have also been assessed.

  2. Polycyclic aromatic hydrocarbon formation under simulated coal seam pyrolysis conditions

    Institute of Scientific and Technical Information of China (English)

    Liu Shuqin; Wang Yuanyuan; Wang Caihong; Bao Pengcheng; Dang Jinli

    2011-01-01

    Coal seam pyrolysis occurs during coal seam fires and during underground coal gasification.This is an important source of polycyclic aromatic hydrocarbon (PAH) emission in China.Pyrolysis in a coal seam was simulated in a tubular furnace.The 16 US Environmental Protection Agency priority controlled PAHs were analyzed by HPLC.The effects of temperature,heating rate,pyrolysis atmosphere,and coal size were investigated.The results indicate that the 3-ring PAHs AcP and AcPy are the main species in the pyrolysis gas.The 2-ring NaP and the 4-ring Pyr are also of concern.Increasing temperature caused the total PAH yield to go through a minimum.The lowest value was obtained at the temperature of 600 ℃ Higher heating rates promote PAH formation,especially formation of the lower molecular weight PAHs.The typical heating rate in a coal seam,5 ℃/min,results in intermediate yields of PAHs.The total PAHs yield in an atmosphere of N2 is about 1.81 times that seen without added N2,which indicates that an air flow through the coal seam accelerates the formation of PAHs.An increase in coal particle size reduces the total PAHs emission but promotes the formation of 5- and 6-ring PAHs.

  3. Methane Decomposition and C2 Hydrocarbon Formation under the Condition of DC Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    Jianxun He; Miao Hu; Zhiguo Lu

    2004-01-01

    The infrared emission spectra of methane, H, CH and C2 hydrocarbons in natural gas were measured. The processes of methane decomposition and formation of C2 hydrocarbons were studied. The experiment shows that methane decomposition can be divided into three periods as the reaction proceeds.In the first period, a large number of free radicals were formed. While in the last period, the formation of C2 hydrocarbons and the decrease of free radicals were observed. The time and conditions of methane decomposition and formation of C2 hydrocarbons are different.

  4. The formation of polycyclic aromatic hydrocarbons in evolved circumstellar environments

    CERN Document Server

    Cherchneff, Isabelle

    2010-01-01

    The formation of Polycyclic Aromatic Hydrocarbons in the circumstellar outflows of evolved stars is reviewed, with an emphasis on carbon stars on the Asymptotic Giant Branch. Evidence for PAHs present in their winds is provided by meteoritic studies and recent observations of the Unidentified Infrared bands. We detail the chemical processes leading to the closure of the first aromatic ring as well as the growth mechanisms leading to amorphous carbon grains. Existing studies on PAH formation in evolved stellar envelopes are reviewed and new results for the modelling of the inner wind of the archetype carbon star IRC+10216 are presented. Benzene, C6H6, forms close to the star, as well as water, H2O, as a result of non-equilibrium chemistry induced by the periodic passage of shocks. The growth process of aromatic rings may thus resemble that active in sooting flames due to the presence of radicals like hydroxyl, OH. Finally, we discuss possible formation processes for PAHs and aromatic compounds in the hydrogen-...

  5. Fluidized bed layer-by-layer microcapsule formation.

    Science.gov (United States)

    Richardson, Joseph J; Teng, Darwin; Björnmalm, Mattias; Gunawan, Sylvia T; Guo, Junling; Cui, Jiwei; Franks, George V; Caruso, Frank

    2014-08-26

    Polymer microcapsules can be used as bioreactors and artificial cells; however, preparation methods for cell-like microcapsules are typically time-consuming, low yielding, and/or involve custom microfluidics. Here, we introduce a rapid (∼30 min per batch, eight layers), scalable (up to 500 mg of templates), and efficient (98% yield) microcapsule preparation technique utilizing a fluidized bed for the layer-by-layer (LbL) assembly of polymers, and we investigate the parameters that govern the formation of robust capsules. Fluidization in water was possible for particles of comparable diameter to mammalian cells (>5 μm), with the experimental flow rates necessary for fluidization matching well with the theoretical values. Important variables for polymer film deposition and capsule formation were the concentration of polymer solution and the molecular weight of the polymer, while the volume of the polymer solution had a negligible impact. In combination, increasing the polymer molecular weight and polymer solution concentration resulted in improved film deposition and the formation of robust microcapsules. The resultant polymer microcapsules had a thickness of ∼5.5 nm per bilayer, which is in close agreement with conventionally prepared (quiescent (nonflow) adsorption/centrifugation/wash) LbL capsules. The technique reported herein provides a new way to rapidly generate microcapsules (approximately 8 times quicker than the conventional means), while being also amenable to scale-up and mass production.

  6. Hydrocarbon potential evaluation of the source rocks from the Abu Gabra Formation in the Sufyan Sag, Muglad Basin, Sudan

    Science.gov (United States)

    Qiao, Jinqi; Liu, Luofu; An, Fuli; Xiao, Fei; Wang, Ying; Wu, Kangjun; Zhao, Yuanyuan

    2016-06-01

    The Sufyan Sag is one of the low-exploration areas in the Muglad Basin (Sudan), and hydrocarbon potential evaluation of source rocks is the basis for its further exploration. The Abu Gabra Formation consisting of three members (AG3, AG2 and AG1 from bottom to top) was thought to be the main source rock formation, but detailed studies on its petroleum geology and geochemical characteristics are still insufficient. Through systematic analysis on distribution, organic matter abundance, organic matter type, organic matter maturity and characteristics of hydrocarbon generation and expulsion of the source rocks from the Abu Gabra Formation, the main source rock members were determined and the petroleum resource extent was estimated in the study area. The results show that dark mudstones are the thickest in the AG2 member while the thinnest in the AG1 member, and the thickness of the AG3 dark mudstone is not small either. The AG3 member have developed good-excellent source rock mainly with Type I kerogen. In the Southern Sub-sag, the AG3 source rock began to generate hydrocarbons in the middle period of Bentiu. In the early period of Darfur, it reached the hydrocarbon generation and expulsion peak. It is in late mature stage currently. The AG2 member developed good-excellent source rock mainly with Types II1 and I kerogen, and has lower organic matter abundance than the AG3 member. In the Southern Sub-sag, the AG2 source rock began to generate hydrocarbons in the late period of Bentiu. In the late period of Darfur, it reached the peak of hydrocarbon generation and its expulsion. It is in middle mature stage currently. The AG1 member developed fair-good source rock mainly with Types II and III kerogen. Throughout the geological evolution history, the AG1 source rock has no effective hydrocarbon generation or expulsion processes. Combined with basin modeling results, we have concluded that the AG3 and AG2 members are the main source rock layers and the Southern Sub-sag is

  7. Deposit formation and heat transfer in hydrocarbon rocket fuels

    Science.gov (United States)

    Giovanetti, A. J.; Spadaccini, L. J.; Szetela, E. J.

    1983-01-01

    An experimental research program was undertaken to investigate the thermal stability and heat transfer characteristics of several hydrocarbon fuels under conditions that simulate high-pressure, rocket engine cooling systems. The rates of carbon deposition in heated copper and nickel-plated copper tubes were determined for RP-1, propane, and natural gas using a continuous flow test apparatus which permitted independent variation and evaluation of the effect on deposit formation of wall temperature, fuel pressure, and fuel velocity. In addition, the effects of fuel additives and contaminants, cryogenic fuel temperatures, and extended duration testing with intermittent operation were examined. Parametric tests to map the thermal stability characteristics of RP-1, commercial-grade propane, and natural gas were conducted at pressures of 6.9 to 13.8 MPa, bulk fuel velocities of 30 to 90 m/s, and tube wall temperatures in the range of 230 to 810 K. Also, tests were run in which propane and natural gas fuels were chilled to 230 and 160 K, respectively. Corrosion of the copper tube surface was detected for all fuels tested. Plating the inside of the copper tubes with nickel reduced deposit formation and eliminated tube corrosion in most cases. The lowest rates of carbon deposition were obtained for natural gas, and the highest rates were obtained for propane. For all fuels tested, the forced-convection heat transfer film coefficients were satisfactorily correlated using a Nusselt-Reynolds-Prandtl number equation.

  8. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    Science.gov (United States)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  9. Hydrocarbon accumulation characteristics and enrichment laws of multi-layered reservoirs in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2017-03-01

    Full Text Available The Sichuan Basin represents the earliest area where natural gas is explored, developed and comprehensively utilized in China. After over 50 years of oil and gas exploration, oil and gas reservoirs have been discovered in 24 gas-dominant layers in this basin. For the purpose of predicting natural gas exploration direction and target of each layer in the Sichuan Basin, the sedimentary characteristics of marine and continental strata in this basin were summarized and the forms of multi-cycled tectonic movement and their controlling effect on sedimentation, diagenesis and hydrocarbon accumulation were analyzed. Based on the analysis, the following characteristics were identified. First, the Sichuan Basin has experienced the transformation from marine sedimentation to continental sedimentation since the Sinian with the former being dominant. Second, multiple source–reservoir assemblages are formed based on multi-rhythmed deposition, and multi-layered reservoir hydrocarbon accumulation characteristics are vertically presented. And third, multi-cycled tectonic movement appears in many forms and has a significant controlling effect on sedimentation, diagenesis and hydrocarbon accumulation. Then, oil and gas reservoir characteristics and enrichment laws were investigated. It is indicated that the Sichuan Basin is characterized by coexistence of conventional and unconventional oil and gas reservoirs, multi-layered reservoir hydrocarbon supply, multiple reservoir types, multiple trap types, multi-staged hydrocarbon accumulation and multiple hydrocarbon accumulation models. Besides, its natural gas enrichment is affected by hydrocarbon source intensity, large paleo-uplift, favorable sedimentary facies belt, sedimentary–structural discontinuity plane and structural fracture development. Finally, the natural gas exploration and research targets of each layer in the Sichuan Basin were predicted according to the basic petroleum geologic conditions

  10. Main controlling factors for hydrocarbon reservoir formation and petroleum distribution in Cratonic Area of Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Cratonic Area of the Tarim Basin is located in the central part of the basin, developing primarily with Cambrian marine source rocks and secondly Middle to Upper Ordovician marine and Carboniferous-Permian transitional facies source rocks. The source rocks were matured in the changeable period and space, forming multiple hydrocarbon generating centers during the periods. The Cratonic Area experienced multiple tectonic orogenies, forming several palaeouplifts. The matching condition between effective hydrocarbon generating centers and the palaeouplifts in various periods is the main control factor for the formation and distribution of hydrocarbon reservoirs. The palaeouplifts have experienced multiple hydrocarbon-filling phases, several periods of modifications and even breakdown. The palaeouplifts and the adjacent slopes around the effective hydrocarbon generating center compose the most favorable places for hydrocarbon accumulation. The hydrocarbon phase is related with the evolution of the hydrocarbon generating center. In the Tarim Basin's Cratonic Area, reservoirs were mostly formed during late Hercynian. The originally formed hydrocarbon reservoirs which are adjacent to source kitchens and in the good preservation condition are the most favorable prospecting targets. Hydrocarbon is richly accumulated under the regional caprock, surrounding the faulted trends, and over and below the unconformity surfaces. Reservoirs in the Carboniferous sandstone, Ordovician karstic weathered crust and carbonate rock inside the buried hill compose the main intervals for hydrocarbon accumulation. Carboniferous and Silurian sandstone pinchout reservoirs and carbonate lithologic reservoirs with rich fractures and pores are the main targets for further prospecting.

  11. Solution mining dawsonite from hydrocarbon containing formations with a chelating agent

    Science.gov (United States)

    Vinegar, Harold J.

    2009-07-07

    A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.

  12. Solution mining and heating by oxidation for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Stegemeier, George Leo

    2009-06-23

    A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

  13. Solution mining and heating by oxidation for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Stegemeier, George Leo

    2009-06-23

    A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

  14. Ice Formation in Gas-Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    Dursch, Thomas; Radke, Clayton J.; Weber, Adam Z.

    2010-07-10

    Under sub-freezing conditions, ice forms in the gas-diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) drastically reducing cell performance. Although a number of strategies exist to prevent ice formation, there is little fundamental understanding of the mechanisms of freezing within PEMFC components. Differential scanning calorimetry (DSC) is used to elucidate the effects of hydrophobicity (Teflon® loading) and water saturation on the rate of ice formation within three commercial GDLs. We find that as the Teflon® loading increases, the crystallization temperature decreases due to a change in internal ice/substrate contact angle, as well as the attainable level of water saturation. Classical nucleation theory predicts the correct trend in freezing temperature with Teflon® loading.

  15. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs

    Science.gov (United States)

    Sherwood Lollar, B.; Westgate, T. D.; Ward, J. A.; Slater, G. F.; Lacrampe-Couloume, G.

    2002-04-01

    Natural hydrocarbons are largely formed by the thermal decomposition of organic matter (thermogenesis) or by microbial processes (bacteriogenesis). But the discovery of methane at an East Pacific Rise hydrothermal vent and in other crustal fluids supports the occurrence of an abiogenic source of hydrocarbons. These abiogenic hydrocarbons are generally formed by the reduction of carbon dioxide, a process which is thought to occur during magma cooling and-more commonly-in hydrothermal systems during water-rock interactions, for example involving Fischer-Tropsch reactions and the serpentinization of ultramafic rocks. Suggestions that abiogenic hydrocarbons make a significant contribution to economic hydrocarbon reservoirs have been difficult to resolve, in part owing to uncertainty in the carbon isotopic signatures for abiogenic versus thermogenic hydrocarbons. Here, using carbon and hydrogen isotope analyses of abiogenic methane and higher hydrocarbons in crystalline rocks of the Canadian shield, we show a clear distinction between abiogenic and thermogenic hydrocarbons. The progressive isotopic trends for the series of C1-C4 alkanes indicate that hydrocarbon formation occurs by way of polymerization of methane precursors. Given that these trends are not observed in the isotopic signatures of economic gas reservoirs, we can now rule out the presence of a globally significant abiogenic source of hydrocarbons.

  16. Certain features of the formation of accumulations of hydrocarbons in the Mesozoic sediments of teh Nadym-Tazovsk interfluve

    Energy Technology Data Exchange (ETDEWEB)

    Rysev, V.V.

    1981-01-01

    The role is shown of migration processes in the formation and disposition of accumulations of hydrocarbons relative to the facial-lithological features of the section. Special attention is focused on the process of formation of hydrocarbon accumulations in shelf strata. Certain recommendations are given in regards to the exploration for new hydrocarbon deposits.

  17. Layer Formation in Sedimentary Fingering Convection

    CERN Document Server

    Reali, J F; Alsinan, A; Meiburg, E

    2016-01-01

    When particles settle through a stable temperature or salinity gradient they can drive an instability known as sedimentary fingering convection. This phenomenon is thought to occur beneath sediment-rich river plumes in lakes and oceans, in the context of marine snow where decaying organic materials serve as the suspended particles, or in the atmosphere in the presence of aerosols or volcanic ash. Laboratory experiments of Houk and Green (1973) and Green (1987) have shown sedimentary fingering convection to be similar to the more commonly known thermohaline fingering convection in many ways. Here, we study the phenomenon using 3D direct numerical simulations. We find evidence for layer formation in sedimentary fingering convection in regions of parameter space where it does not occur for non-sedimentary systems. This is due to two complementary effects. Sedimentation affects the turbulent fluxes and broadens the region of parameter space unstable to the $\\gamma$-instability (Radko 2003) to include systems at l...

  18. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    Science.gov (United States)

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems.

  19. Characteristics of hydrocarbon sources and controlling factors of their formation in Pingliang Formation, West Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to organic geochemistry and organic petrology, the hydrocarbon sources in Pingliang Formation, W. Ordos basin, are systematically evaluated. The organic abundance of hydrocarbon source in this research is higher in the upper part of profiles than In the low, and more in mudstone than in carbonate. Most of organic matters become sapropelic, and few are humlc-aapropelic in the regions of Shibangou and Zhuzisan. According to stable isotopes of carbon and oxygen in carbonate rock, boron index and ratios of elements, palaeo-salinity and sedimentary velocity are calculated. The two factors of paleao-salinity and sediment velocity, which control the distribution of organic matters, are discussed.Good relationship is found between water salinity and abundance of organic matter; in contrast, poor correlation is observed between salinity and types of organic matters. The relative sediment velocity in the research regions is also related with organic abundance and types. A low sediment velocity would lead to high abundance and good type of organic matters, and vice versa.

  20. Investigation on Methane Decomposition and the Formation of C2 Hydrocarbons in DC Discharge Plasma byEmission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    贺建勋; 韩媛媛; 高爱华; 周引穗; 陆治国

    2004-01-01

    The IR emission spectra of methane were measured under DC glow discharge conditions. The distinct difference in time between methane decomposition and C2 hydrocarbons formation was specially pointed out. C2 hydrocarbons formed at the end of methane decomposition. The optimum condition for C2 hydrocarbon formation was studied and the optimum combination between electric current density and methane input quantity was suggested. The appropriate reaction conditions for methane decomposition and C2 hydrocarbons formation are different, so high yield of C2 hydrocarbons will be probably obtained when different conditions are taken.

  1. Pyrolytic formation of polyaromatic hydrocarbons from steroid hormones

    OpenAIRE

    2011-01-01

    Four steroid hormones, namely androsterone, cholesterol, estrone and estradiol, have been pyrolysed at 300, 400 and 500 °C and the pyrolysates from these have been analysed by GC-MS. The results indicate that these formed different products under the pyrolysis and most of them evolved into polycyclic aromatic hydrocarbons during their residence in the pyrolysis chamber at high temperatures. The products from the pyrolysates, at all temperatures, were analysed for similarities and differences ...

  2. Hydrocarbon potential assessment of Ngimbang formation, Rihen field of Northeast Java Basin

    Science.gov (United States)

    Pandito, R. H.; Haris, A.; Zainal, R. M.; Riyanto, A.

    2017-07-01

    The assessment of Ngimbang formation at Rihen field of Northeast Java Basin has been conducted to identify the hydrocarbon potential by analyzing the response of passive seismic on the proven reservoir zone and proposing a tectonic evolution model. In the case of petroleum exploration in Northeast Java basin, the Ngimbang formation cannot be simply overemphasized. East Java Basin has been well known as one of the mature basins producing hydrocarbons in Indonesia. This basin was stratigraphically composed of several formations from the old to the young i.e., the basement, Ngimbang, Kujung, Tuban, Ngerayong, Wonocolo, Kawengan and Lidah formation. All of these formations have proven to become hydrocarbon producer. The Ngrayong formation, which is geologically dominated by channels, has become a production formation. The Kujung formation that has been known with the reef build up has produced more than 102 million barrel of oil. The Ngimbang formation so far has not been comprehensively assessed in term its role as a source rock and a reservoir. In 2013, one exploratory well has been drilled at Ngimbang formation and shown a gas discovery, which is indicated on Drill Stem Test (DST) reading for more than 22 MMSCFD of gas. This discovery opens new prospect in exploring the Ngimbang formation.

  3. Formation Dynamics and Quantitative Prediction of Hydrocarbons of the Superpressure System in the Dongying Sag

    Institute of Scientific and Technical Information of China (English)

    SUI Fenggui; HAO Xuefeng; LIU Qing; ZHUO Qingong; ZHANG Shouchun

    2008-01-01

    Based on the theory of formation dynamics of oil/gas pools, the Dongying sag can be divided into three dynamic systems regarding the accumulation of oil and gas: the superpressure closed system,the semi-closed system and the normal pressure open system. Based on the analysis of genesis of superpressure in the superpressure closed system and the rule of hydrocarbon expulsion,it is found that hydrocarbon generation is related to superpressure, which is the main driving factor of hydrocarbon migration. Micro fractures formed by superpressure are the main channels for hydrocarbon migration. There are three dynamic patterns for hydrocarbon expulsion: free water drainage, hydrocarbon accumulation and drainage through micro fissures. In the superpressure closed system, the oil-driving-water process and oil/gas accumulation were completed in lithologic traps by way of such two dynamic patterns as episodic evolution of superpressure systems and episodic pressure release of faults. The oil-bearing capacity of lithologic traps is intimately related to reservoir-forming dynamic force. Quantitative evaluation of dynamic conditions for pool formation can effectively predict the oil-bearing capability of traps.

  4. A novel layered perovskite as symmetric electrode for direct hydrocarbon solid oxide fuel cells

    Science.gov (United States)

    Zhao, Ling; Chen, Kongfa; Liu, Yuanxu; He, Beibei

    2017-02-01

    Layered perovskite oxides are well known to possess significant electronic, magnetic and electrochemical properties. Herein, we highlight a novel layered perovskite PrBaMn1.5Fe0.5O5+δ (PBMFO) as electrodes of symmetrical solid oxide fuel cells (SSOFCs). The layered PBMFO shows high electrical conductivity of 112.5 and 7.4 S cm-1 at 800 °C in air and 5% H2/Ar, respectively. The single cell with PBMFO symmetric electrodes achieves peak power density of 0.54 W cm-2 at 800 °C using humidified hydrogen as fuel. Moreover, PBMFO electrodes demonstrate good redox stability and high coking tolerance against hydrocarbon fuel.

  5. Formation of hydrocarbons by micro-organisms. [Review with 152 references

    Energy Technology Data Exchange (ETDEWEB)

    Bird, C.W. (Queen Elizabeth Coll., London); Lynch, J.M.

    1974-01-01

    A review covers the formation of methane, e.g., by Methanobacterium ruminantium on hydrogen and carbon dioxide substrate in swamps, sewage plants, etc.; ethylene, e.g., from plant pathogens such as Penicillium digitatum in citrus fruits; other short-chain hydrocarbons, e.g., hexa-1,3,5-triyne, formed by the fungus Fomes annosus; longer-chain hydrocarbons, e.g., C/sub 16/-C/sub 33/ alkanes formed by algae and fungi, with the chain lengths dependent upon the carbon source used for growth; isoprenoid hydrocarbons, e.g., squalene, formed by yeasts and fungi; and geochemical aspects, such as the microbial contributions to petroleum formation. 152 references.

  6. In situ heat treatment of a tar sands formation after drive process treatment

    Science.gov (United States)

    Vinegar, Harold J.; Stanecki, John

    2010-09-21

    A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.

  7. An Investigation of Model Catalyzed Hydrocarbon Formation Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tysoe, W. T.

    2001-05-02

    Work was focused on two areas aimed at understanding the chemistry of realistic catalytic systems: (1) The synthesis and characterization of model supported olefin metathesis catalysts. (2) Understanding the role of the carbonaceous layer present on Pd(111) single crystal model catalysts during reaction.

  8. Empirical modeling of soot formation in shock-tube pyrolysis of aromatic hydrocarbons

    Science.gov (United States)

    Frenklach, M.; Clary, D. W.; Matula, R. A.

    1986-01-01

    A method for empirical modeling of soot formation during shock-tube pyrolysis of aromatic hydrocarbons is developed. The method is demonstrated using data obtained in pyrolysis of argon-diluted mixtures of toluene behind reflected shock waves. The developed model is in good agreement with experiment.

  9. Kinetics of Hydrocarbon formation in a- C:H Film deposition plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cal, E. de la; Tabares, F. L.

    1993-07-01

    The formation of C2 and Cp hydrocarbons during the PACVD of a-C:H films from admixtures of methane with H2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanisms of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene formation was found to be directly related to the formation of the film on top of the carburized metal. (Author) 12 refs.

  10. EXPERIMENTAL EVIDENCE FOR THE FORMATION OF HIGHLY SUPERHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS THROUGH H ATOM ADDITION AND THEIR CATALYTIC ROLE IN H2 FORMATION

    DEFF Research Database (Denmark)

    Thrower, John; Jørgensen, Bjarke; Friis, Emil Enderup;

    2012-01-01

    Mass spectrometry measurements show the formation of highly superhydrogenated derivatives of the polycyclic aromatic hydrocarbon molecule coronene through H atom addition reactions. The observed product mass distribution provides evidence also for abstraction reactions resulting in H2 formation...

  11. Inclusion of poly-aromatic hydrocarbon (PAH) molecules in a functionalized layered double hydroxide

    Indian Academy of Sciences (India)

    L Mohanambe; S Vasudevan

    2006-01-01

    The internal surface of an Mg-Al layered double hydroxide has been functionalized by anchoring carboxy-methyl derivatized -cyclodextrin cavities to the gallery walls. Neutral polyaromatic hydrocarbon (PAH) molecules have been included within the functionalized solid by driving the hydrophobic aromatic molecules from a polar solvent into the less polar interior of the anchored cyclodextrin cavities by a partitioning process. The optical (absorption and emission) properties of the PAH molecules included within the functionalized Mg-Al layered double hydroxide solid are similar to that of dilute solutions of the PAH in non-polar solvents. The unique feature of these hybrid materials is that they are thermally stable over a wide temperature range with their emission properties practically unaltered.

  12. Zeolite-Catalyzed Hydrocarbon Formation from Methanol: Density Functional Simulations

    Directory of Open Access Journals (Sweden)

    George Fitzgerald

    2002-04-01

    Full Text Available Abstract: We report detailed density functional theory (DFT calculations of important mechanisms in the methanol to gasoline (MTG process in a zeolite catalyst. Various reaction paths and energy barriers involving C-O bond cleavage and the first C-C bond formation are investigated in detail using all-electron periodic supercell calculations and recently developed geometry optimization and transition state search algorithms. We have further investigated the formation of ethanol and have identified a different mechanism than previously reported [1], a reaction where water does not play any visible role. Contrary to recent cluster calculations, we were not able to find a stable surface ylide structure. However, a stable ylide structure built into the zeolite framework was found to be possible, albeit a very high reaction barrier.

  13. Normal hydrocarbons as a source of resin formation in the process of obtaining isoprene from isopentane

    Energy Technology Data Exchange (ETDEWEB)

    Isagulyants, G.V.; Sire, Y.M.; Vasil' yeva, V.P.; Gitis, K.M.; Rozengart, M.I.

    1981-01-01

    A study was made on a catalyst of dehydrogenation of olefins of the conversion of isoamylenes and other C/sub 5/ hydrocarbons (isoprene, n-pentenes, piperylene), formed during dehydrogenation of isoamylenes to isoprene. It was found that the yield of heavy products increases on transition from hydrocarbons of iso-structure to normal hydrocarbons, which is due to the greater ease of polycondensation of cyclopentadiene formed from n-pentenes and particularly from piperylene under conditions of dehydrogenation. A study was made by chromato-mass-spectrometry of the composition of heavy products of conversion of piperylene and isoprene. In contrast with the catalysate of isoprene, the catalysate of piperylene contains a significant proportion of hydrocarbons containing a five-membered ring in the molecule (dicyclopentadiene, indane, indene, methylindenes, azilene), this being due to the participation of cyclopentadiene in the formation of heavy products. In the two-stage process of dehydrogenation of isopentane to isoprene 95% normal hydrocarbons are formed on dehydrogenation of isopentane to isoamylenes. (JMT)

  14. A mechanism of raft formation on both plasma membrane layers

    Science.gov (United States)

    Sornbundit, Kan; Modchang, Charin; Triampo, Wannapong; Triampo, Darapond; Nuttavut, Narin

    2013-10-01

    A double-layered membrane model is proposed to explain raft formation and induction on extracellular (outer) and cytoplasmic (inner) leaflets of plasma membranes in a situation where only the outer layer has a tendency to phase-separate. In the model, lipid exchange with the surrounding medium is allowed on both layers, but lipid exchange between layers is not allowed. Simulations display domain stabilization on both layers. The effect of the lipid recycling frequencies on stationary domain sizes is also investigated. It is found that stationary domain sizes decrease when lipid recycling frequencies are stronger. Linear stability analysis is used to verify the results.

  15. Epitaxial composite layers of electron donors and acceptors from very large polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Samorí, Paolo; Severin, Nikolai; Simpson, Christopher D; Müllen, Klaus; Rabe, Jürgen P

    2002-08-14

    Large polycyclic aromatic hydrocarbons (PAHs) can be considered as nanographenes, whose electron donating or accepting properties are controlled by their size and shape as well as functionalities in their periphery. Epitaxial thin films of them are targets for optoelectronic applications; however, large PAHs are increasingly difficult to process. Here we show that epitaxial layers of very large unsubstituted PAHs (C(42)H(18) and C(132)H(34)), as well as a mixed layer of C(42)H(18) with an electron acceptor, can be obtained by self-assembly from solution. The C(132)H(34) is by far the largest nanographene that up to now has been processed into ordered thin films; due to its size it cannot be sublimed in a vacuum. Scanning tunneling microscopy (STM) studies reveal that the interaction with the substrate induces a strong perturbation of the electronic structure of the pure donor in the first epitaxial monolayer. In a second epitaxial layer with a donor acceptor stoichiometry of 2:1 the molecules are unperturbed.

  16. Lithological architecture, geological processes and energy-field environments are major factors for the formation of hydrocarbon reservoirs

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wenzhi; WANG Zecheng; LI Xiaoqing; WANG Hongjun; WANG Zhaoyun

    2005-01-01

    The formation of hydrocarbon reservoirs is controlled by three major factors: lithological architecture, geological processes and energy-field environments. Among the three major factors, lithological architecture provides the storing medium for hydrocarbon; geological processes include hydrocarbon generation, migration, accumulation, preservation and modification; and energy-field environments refer to the various geothermal and geodynamic forces that affect the lithological architecture and drive the geological processes.In this study, we take Kela-2 and Sulige gas reservoirs as two examples to study relationships among the three major factors, and explain how these factors influence the scale and quality of hydrocarbon reservoirs.

  17. Role of minerals in formation of hydrocarbons during pyrolysis of organic matter - a material balance approach

    Energy Technology Data Exchange (ETDEWEB)

    Tannenbaum, E.; Huizinga, B.J.; Kaplan, I.R.

    1985-02-01

    Monterey Formation and Green River Formation kerogens (types II and I, respectively) were isolated, mixed with common sedimentary minerals, and pyrolyzed under dry and hydrous conditions for various times and temperatures. Analysis of all the pyrolyses products were conducted to perform a material balance and to infer reaction kinetics and mechanisms. Material balance of the pyrolyses products, in the presence and absence of minerals, reveals that the kerogen degradation results in the formation of bitumen rich in high molecular weight compounds in the initial stages, followed by additional cracking of kerogen and bitumen. However, amount and type of hydrocarbons in the pyrolyses products of kerogen in the presence of montmorillonite are markedly different from those produced by heating kerogen alone or with other minerals. The initial amounts of products in the presence of montmorillonite, and in particular the quantities of low molecular weight hydrocarbons, are higher than those in the presence of illite, calcite, and kerogen alone. The composition of these low molecular weight compounds is dominated by branched hydrocarbons, indicating catalytic cracking via carbonium ion mechanism, which is initiated on acidic sites of the clay. Composition differences are evident also in the distribution of n-alkanes and in the pristane/phytane ratio. The catalytic effect of montmorillonite, however, disappears in the presence of excess water. These differences may have important implications for the composition and quantities of petroleum generated from source rocks with different mineralogies.

  18. Contribution of methyl group to secondary organic aerosol formation from aromatic hydrocarbon photooxidation

    Science.gov (United States)

    Li, Lijie; Qi, Li; Cocker, David R.

    2017-02-01

    The complete atmospheric oxidation pathways leading to secondary organic aerosol remain elusive for aromatic compounds including the role of methyl substitutes on oxidation. This study investigates the contribution of methyl group to Secondary Organic Aerosol (SOA) formation during the photooxidation of aromatic hydrocarbons under low NOx condition by applying methyl carbon labeled aromatic hydrocarbons ((13C2) m-xylene and (13C2) p-xylene). Particle and gas phase oxidation products are analyzed by a series of mass spectrometers (HR-TOF-AMS, PTR-MS and SIFT-MS). The methyl group carbon containing oxidation products partition to the particle-phase at a lower rate than the carbons originating from the aromatic ring as a result of ring opening reactions. Further, the methyl carbon in the original aromatic structure is at least 7 times less likely to be oxidized when forming products that partition to SOA than the aromatic ring carbon. Therefore, oxidation of the methyl group in xylenes exerts little impact on SOA formation in current study. This study provides supporting evidence for a recent finding - a similarity in the SOA formation and composition from aromatic hydrocarbons regardless of the alkyl substitutes.

  19. Kinetics of Hydrocarbon formation in a-C:H film deposition plasmas

    Energy Technology Data Exchange (ETDEWEB)

    De la Cal, E.; Tabares, F.L.

    1993-07-01

    The formation of C{sub 2} and C{sub 3} hydrocarbons during the PACVD of a-C-H films from admixtures of methane with H{sub 2} and He has been investigated by mass espectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanism of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the carburized metal. (Author)

  20. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR GROWTH TO SOOT -A REVIEW OF CHEMICAL REACTION PATHWAYS. (R824970)

    Science.gov (United States)

    The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...

  1. Evolution and formation of shear layers in a developing turbulent boundary layer

    Science.gov (United States)

    Lee, Junghoon; Monty, Jason; Hutchins, Nicholas

    2016-11-01

    The evolution and formation mechanism of shear layers in the outer region of a turbulent boundary layer are investigated using time-resolved PIV datasets of a developing turbulent boundary layer from inception at the trip up to Reτ = 3000 . An analysis of a sequence of instantaneous streamwise velocity fluctuation fields reveals that strong streamwise velocity gradients are prevalent along interfaces where low- and high-speed regions interact. To provide an insight on how such regions are associated with the formation of shear layers in the outer regions, we compute conditional averages of streamwise velocity fluctuations based on a strong shear layer. Our results reveal that one possible mechanism for the generation of shear layers in the outer region is due to the mismatch in the convection velocities between low- and high-speed regions. The results also indicate that the angle of the inclined shear layer is developing in time. In addition, the conditionally averaged velocity fluctuations exhibit a local instability along these shear layers, leading to a shear layer roll-up event as the layers evolve in time. Based on these findings, we propose a conceptual model which describes dynamic interactions of shear layers and their associated large-scale coherent motions. The authors wish to acknowledge the financial support of the Australian Research Council.

  2. Experimentally Determined Binding Energies of Astrophysically Relevant Hydrocarbons in Pure and H2O-Layered Ices

    Science.gov (United States)

    Behmard, Aida; Graninger, Dawn; Fayolle, Edith; Oberg, Karin I.

    2017-01-01

    Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H4, C3H6, and C3H8) in pure ices and in relation to water ice, the dominant ice constituent during star and planet formation. These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.

  3. Accounting for water formation from hydrocarbon fuel combustion in life cycle analyses

    Science.gov (United States)

    Belmont, E. L.; Davidson, F. T.; Glazer, Y. R.; Beagle, E. A.; Webber, M. E.

    2017-09-01

    Hydrocarbon fuel production and utilization are considered water intensive processes due to the high volumes of water used in source development and fuel processing. At the same time, there is significant water formed during combustion. However, this water is not currently widely harvested at the site of production. Instead, it is added to the hydrologic cycle, often in a different location from the fuel production site. This study quantifies the water formed from combustion of these fuels and analyzes the magnitudes of formation in the context of other hydrologic sources and sinks in order to facilitate future assessments of water harvesting technology and/or atmospheric impacts of combustion. Annual water formation from stoichiometric combustion of hydrocarbon fuels, including natural gas, oil- and natural gas liquid-derived products, and coal, in the United States and worldwide are presented and compared with quantities of water sequestered, evaporated, and stored in the atmosphere. Water production factors in terms of mass and energy of fuel consumed, WPFm and WPFe, respectively, are defined for the comparison of fuels and incorporation into future life cycle analyses (LCAs). Results show that water formation from combustion has increased worldwide from 2005 to 2015, with the largest increase coming from growth in combustion of natural gas. Water formation from combustion of hydrocarbon fuels equals or exceeds water sequestered from the hydrologic cycle through deep well injection in the US annually. Overall, water formation is deemed significant enough to warrant consideration by LCAs of water intensity in fuel production and use, and should be included in future analyses.

  4. Duration of the hydrocarbon fluid formation under thermobaric conditions of the Earth's upper mantle

    Science.gov (United States)

    Mukhina, Elena; Kolesnikov, Anton; Kutcherov, Vladimir

    2016-04-01

    Deep abiogenic formation of hydrocarbons is an inherent part of the Earth's global carbon cycle. It was experimentally confirmed that natural gas could be formed from inorganic carbon and hydrogen containing minerals at pressure and temperature corresponding to the Earth's upper mantle conditions. Reaction between calcite, wustite and water in the large volume device was studied in several works. It was previously proposed that reaction is possible only after 40 minutes of exposure at high pressure and temperature. In this work similar experiment at P = 60 kbar and T = 1200 K were carried out in "Toroid" type chamber with the 5 seconds duration of thermobaric exposure. Gas chromatographic analysis of the reaction products has shown the presence of hydrocarbon mixture comparable to 5 minutes and 6 hours exposure experiments. Based on this fact it is possible to conclude that the reaction of natural gas formation is instant at least at given thermobaric conditions. This experiment will help to better understand the process of deep hydrocarbon generation, particularly its kinetics.

  5. Hydrocarbons in the Hauptsalz formation of the Gorleben salt dome. Content, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Maximilian; Hammer, Joerg; Ostertag-Henning, Christian [Federal Institute for Geosciences and Natural Resources (BGR), Hannover (Germany)

    2015-07-01

    In the frame of the geological exploration of the Gorleben salt dome (November 2010 to November 2012) concentrations and compositions of hydrocarbons occuring in the main rock salt (Hauptsalz, Stassfurt series, z2) have been investigated. These exploration works followed former investigations of Gerling et al. (2002) and Bornemann et al. (2008). In order to get fresh, unaltered and representative samples beyond the EDZ (excavation damaged zone) for mineralogical and geochemical analyses, about 45 boreholes have been drilled at the 840 m level of the Gorleben exploration mine. These boreholes have been arranged in equal distances (depending on the mine structure) alongside crosscut 1 west (each 6 m long) and crosscut 1 east (each 9 m long). In addition 20 packer boreholes (10 packer boreholes per crosscut) for pressure build-up recording and hydrocarbon sampling have also been established. Immediately after drilling, core samples from the Hauptsalz for organic geochemical analyses have been retrieved and were dissolved in deionised and degased water. The results of analyses of about 210 samples scattered over all 45 boreholes reveal a total background concentration of hydrocarbons (C{sub 1} to C{sub 40}) of 0,24 mg/kg. 70 samples have concentrations between 1 mg/kg and 50 mg/kg (average 2,66 mg/kg) with 5 outliers up to 442 mg/kg in crosscut 1 west (Hammer et al. 2012, 2013). The drill cores have been investigated and documented by using ultraviolet light (l = 254 nm) in respect of visible indications of the existence of fluorescing aromatic hydrocarbons. Analyses revealed a high level of heterogeneous hydrocarbon distribution in the shape of isolated, irregular streaks, clusters, clouds and occasionally layers mainly located in recrystallized zones of the Hauptsalz. Thin sections and thick sections showed that hydrocarbons in z2HS1 (Knaeuelsalz) and z2HS2 (Streifensalz) samples are either located as black to brownish dendritical fluid inclusions alongside the grain

  6. Formation of Chimneys in Mushy Layers: Experiment and Simulation

    CERN Document Server

    Anderson, Anthony M; Worster, Grae

    2011-01-01

    In this fluid dyanmics video, we show experimental images and simulations of chimney formation in mushy layers. A directional solidification apparatus was used to freeze 25 wt % aqueous ammonium chloride solutions at controlled rates in a narrow Hele-Shaw cell (1mm gap). The convective motion is imaged with schlieren. We demonstrate the ability to numerically simulate mushy layer growth for direct comparison with experiments.

  7. Formation dynamics of subsurface hydrocarbon intrusions following the Deepwater Horizon blowout

    Science.gov (United States)

    Socolofsky, Scott A.; Adams, E. Eric; Sherwood, Christopher R.

    2011-01-01

    Hydrocarbons released following the Deepwater Horizon (DH) blowout were found in deep, subsurface horizontal intrusions, yet there has been little discussion about how these intrusions formed. We have combined measured (or estimated) observations from the DH release with empirical relationships developed from previous lab experiments to identify the mechanisms responsible for intrusion formation and to characterize the DH plume. Results indicate that the intrusions originate from a stratification-dominated multiphase plume characterized by multiple subsurface intrusions containing dissolved gas and oil along with small droplets of liquid oil. Unlike earlier lab measurements, where the potential density in ambient water decreased linearly with elevation, at the DH site it varied quadratically. We have modified our method for estimating intrusion elevation under these conditions and the resulting estimates agree with observations that the majority of the hydrocarbons were found between 800 and 1200 m.

  8. Formation of multilayered structures in the layer by layer deposition of colloid particles.

    Science.gov (United States)

    Adamczyk, Zbigniew; Weroński, Paweł; Barbasz, Jakub

    2008-01-01

    Theoretical calculations of particle film formation in the layer by layer (LbL) self-assembling processes have been performed according to the generalized random sequential adsorption (RSA) scheme. The first (precursor) layer was generated using the standard RSA scheme pertinent to homogeneous surface. Formation of the consecutive layers (up to twenty) was simulated for two kinds of particles of equal size. The interaction of two particles of different kind resulted in irreversible and localized adsorption upon contact, whereas particles of the same kind were assumed to interact via the hard potential (no adsorption possible). Using this algorithm particle coverage (2D density) and volume fraction (3D density) were calculated as well as the film thickness as a function of the number of layers. Additionally, the structure of the film was quantitatively characterized in terms of the 2D and 3D pair correlation functions. The simulations revealed that particle concentration distribution in the film was more uniform for low precursor layer density than for higher density, where well-defined layers of closely packed particles appeared. It was also predicted theoretically that the averaged value of particle volume fraction in the uniform film region was rho(LbL)=0.42, which is very close to the maximum packing density equal to 0.382 predicted from the 3D RSA model. On the other hand, the roughness of the film was the lowest at the highest precursor layer density. It was shown that for low precursor layer density the film thickness increased with the number of layers in a nonlinear way. However, for high precursor layer density, the film thickness increased linearly with the number of layers and the average layer thickness was close to the hexagonal layer thickness equal to 1.73a p. It was concluded that our theoretical results can be effectively exploited for interpretation of the LbL processes involving colloid particles and polyelectrolytes.

  9. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.

    Science.gov (United States)

    Comandini, A; Malewicki, T; Brezinsky, K

    2012-03-15

    An experimental investigation of phenyl radical pyrolysis and the phenyl radical + acetylene reaction has been performed to clarify the role of different reaction mechanisms involved in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) serving as precursors for soot formation. Experiments were conducted using GC/GC-MS diagnostics coupled to the high-pressure single-pulse shock tube present at the University of Illinois at Chicago. For the first time, comprehensive speciation of the major stable products, including small hydrocarbons and large PAH intermediates, was obtained over a wide range of pressures (25-60 atm) and temperatures (900-1800 K) which encompass the typical conditions in modern combustion devices. The experimental results were used to validate a comprehensive chemical kinetic model which provides relevant information on the chemistry associated with the formation of PAH compounds. In particular, the modeling results indicate that the o-benzyne chemistry is a key factor in the formation of multi-ring intermediates in phenyl radical pyrolysis. On the other hand, the PAHs from the phenyl + acetylene reaction are formed mainly through recombination between single-ring aromatics and through the hydrogen abstraction/acetylene addition mechanism. Polymerization is the common dominant process at high temperature conditions.

  10. Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons

    Science.gov (United States)

    Manion, Jeffrey A.

    2002-03-01

    Experimental data on the enthalpies of formation of chloromethanes, chloroethynes, chloroethenes, and chloroethanes are critically reviewed. Enthalpy of formation values for the C1 and C2 chlorinated hydrocarbons are highly cross-linked by various measured reaction equilibria and currently available sets of values are not internally self-consistent. It is shown that the early static bomb combustion calorimetry studies on highly chlorinated compounds generally give enthalpies of formation that are systematically more positive than later values derivable from rotating bomb combustion or equilibria studies. Those previously recommended values which were based mainly on the early static bomb work therefore need substantial revision. On the basis of more recent literature data obtained with rotating bomb combustion calorimetry, together with analyses of literature data on other reaction enthalpies and equilibria involving chlorinated hydrocarbons, an updated self-consistent set of ΔfHo[298.15 K] values for closed shell chlorinated C1 and C2 hydrocarbons (25 compounds) is recommended. Data on the enthalpies of vaporization are also reviewed and values of ΔvapH[298.15 K] and ΔvapHo[298.15 K] are recommended. The presently suggested enthalpies of formation for highly chlorinated alkenes and alkanes (particularly C2Cl4, C2HCl3, C2HCl5, and C2Cl6) are significantly (8-15 kJ mol-1) more negative than given by most previous evaluators. Values for the chloroethynes are 10-25 kJ mol-1 more positive than given in previous reviews and more limited changes are suggested for other compounds in the series.

  11. Experimental Study on Hydrocarbon Formation Due to Reactions Between Carbonates and Water or Water—Bearing Minerals in Deep Earth

    Institute of Scientific and Technical Information of China (English)

    翁克难; 汪本善; 等

    1999-01-01

    In order to investigate the mechanism of formation of abiogenetic hydrocarbons at the depth of the Earth,experimental research on reactions between carbonates and water or waterbearing minerals was carried out at the pressure of about 1GPa and the temperature range of 800-1500℃.The reactions took place in an open and nonequilibrium state.Chromatographic analyses of the gas products indicate that in the experiments there were generated CH4-dominated hydrocarbons,along with some CO2 and CO.Accordingly,we think there is no essential distinction between free-state water and hydroxy in the minerals in the process of hydrocarbon formation.This study indicates that reactions between carbonates and water or water-bearing minerals should be an important factor leading to the formation of abiogenetic hydrocarbons at the Earth's depth.

  12. On the Role of Carbides in the Formation of Hydrocarbons from Deep Carbon

    Science.gov (United States)

    Vecht, A.

    2012-12-01

    The origin of hydrocarbons found in rocks has been a matter of dispute for over a century. Scientists of the former Soviet Union favoured an inorganic origin, while in the west an organic origin was thought the most likely. Both hypotheses may be reconciled by considering the origin of carbon compounds from the core upwards or from the Earth surface downwards. Carbides are the key to understanding the development and distribution of global carbon compounds. They are precursors in the formation of hydrocarbons. It has been estimated that the Earth's core is composed of between 2-4% carbon. It is found in metallic form and is substantially denser that the surrounding mantle. Wood has proposed that the inner core is a carbide probably iron carbide(1). This conclusion is consistent with studies of meteorites, shock waves and densities Carbides can be divided into four groups:- (a) Interstitial: -Ti, V, Cr, Zr, Nb, Hf, Ta and W. (b) Covalent:- B and Si (c) Intermediate:- Ti, V, Cr, Mn, Fe, Co and Ni. (d) Salt like:- Groups I, II, and III. Groups (a) (b) and (c) should be included as candidates for carbides found in the inner core. Such carbides are stable at high temperature and will react with water and/or oxygen to form hydrocarbons and CO or CO2 respectively., carbides can be described as examples of a 'reactive minerals' as we suggested in 2007(2). Carbides which are stable at high temperatures react with water to yield hydrocarbons. This points to an abiotic origin for a range of natural hydrocarbons. A detailed review by Cataldo(3) analysed the relevant evidence for biological vs. inorganic origins. He suggests that metal carbides when hydrolysed yield organic 'matter'. Amongst the carbides suggested are (Cr, Fe, Ni, V, Mn and Co}. These carbides are correlated to the relative abundance of these elements in the solar system. We propose similar reactions based on carbides of calcium and aluminium for the formation of methane hydrate. The reactions are expected to

  13. Formation of H{sub 2} from internally heated polycyclic aromatic hydrocarbons: Excitation energy dependence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T., E-mail: tao.chen@fysik.su.se, E-mail: henning@fysik.su.se; Gatchell, M.; Stockett, M. H.; Schmidt, H. T.; Cederquist, H.; Zettergren, H., E-mail: tao.chen@fysik.su.se, E-mail: henning@fysik.su.se [Department of Physics, Stockholm University, S-106 91 Stockholm (Sweden); Delaunay, R.; Rousseau, P.; Adoui, L. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); Université de Caen Basse-Normandie, Esplanade de la Paix, F-14032 Caen (France); Domaracka, A.; Huber, B. A. [CIMAP, UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Basse-Normandie, bd Henri Becquerel, BP 5133, F-14070 Caen cedex 05 (France); Micelotta, E. R. [Université Paris Sud, Institut d’Astrophysique Spatiale, UMR 8617, 91405 Orsay (France); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2015-04-14

    We have investigated the effectiveness of molecular hydrogen (H{sub 2}) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H{sub 2} formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H{sub 2} emission is correlated with multi-fragmentation processes, which means that the [PAH-2H]{sup +} peak intensities in the mass spectra may not be used for estimating H{sub 2}-formation rates.

  14. Production of a New Emulsifier Material for the Formation Heavy Hydrocarbon/Water Emulsion

    Directory of Open Access Journals (Sweden)

    Afshin Farahbakhsh

    2011-04-01

    Full Text Available Emulsifiers are a unique class of compounds that have proved to have a variety of potential applications in formation of hydrocarbon in water emulsion, in enhancement of oil recovery and in the reduction of heavy oil viscosity. In this paper, a bio emulsifier was synthesized by a strain of Bacillus licheniformis and was separated by an autoclave and centrifugal process; the purification of bio emulsifier and the increase quality of product was done by adding sulfuric acid (H2SO4 (98% to the solution and centrifuging this compound again. This bio emulsifier has the property of emulsification to a wide range of heavy hydrocarbon to form a stable hydrocarbon-water emulsion. This bio emulsifier could reduce Iranian Nuroze high viscosity oil of about 10000 cP down to 250 cP. This means about 97% decreases in the viscosity. The emulsion stable this condition for 48 hr and the viscosity slowly increases to 4000cp until 192 hr. The stability of the oil in water emulsion during 48hr allows the heavy oil to be transported practically over lengthy distances or remain stable for long periods of time prior to utilization.

  15. LABORATORY INVESTIGATIONS OF POLYCYCLIC AROMATIC HYDROCARBON FORMATION AND DESTRUCTION IN THE CIRCUMSTELLAR OUTFLOWS OF CARBON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Cesar S.; Salama, Farid, E-mail: cesar.contreras@nasa.gov, E-mail: Farid.Salama@nasa.gov [Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-09-15

    The formation and destruction mechanisms of interstellar dust analogs formed from a variety of polycyclic aromatic hydrocarbon (PAH) and hydrocarbon molecular precursors are studied in the laboratory. We used the newly developed facility COSmIC, which simulates interstellar and circumstellar environments, to investigate both PAHs and species that include the cosmically abundant atoms O, N, and S. The species generated in a discharge plasma are detected, monitored, and characterized in situ using highly sensitive techniques that provide both spectral and ion mass information. We report here the first series of measurements obtained in these experiments which focus on the characterization of the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars. We compare and discuss the relative efficiencies of the various molecular precursors that lead to the formation of the building blocks of carbon grains. We discuss the most probable molecular precursors in terms of size and structure and the implications for the expected growth and destruction processes of interstellar carbonaceous dust.

  16. Role of glyoxal in SOA formation from aromatic hydrocarbons: gas-phase reaction trumps reactive uptake

    Directory of Open Access Journals (Sweden)

    S. Nakao

    2011-11-01

    Full Text Available This study evaluates the significance of glyoxal acting as an intermediate species leading to SOA formation from aromatic hydrocarbon photooxidation under humid conditions. Rapid SOA formation from glyoxal uptake onto aqueous (NH42SO4 seed particles is observed; however, glyoxal did not partition to SOA or SOA coated aqueous seed during all aromatic hydrocarbon experiments (RH up to 80%. Glyoxal is found to only influence SOA formation by raising hydroxyl (OH radical concentrations. Four experimental approaches supporting this conclusion are presented in this paper: (1 increased SOA formation and decreased SOA volatility in the toluene + NOx photooxidation system with additional glyoxal was reproduced by matching OH radical concentrations through H2O2 addition; (2 glyoxal addition to SOA seed formed from toluene + NOx photooxidation did not increase observed SOA volume; (3 SOA formation from toluene + NOx photooxidation with and without deliquesced (NH42SO4 seed resulted in similar SOA growth, consistent with a coating of SOA preventing glyoxal uptake onto deliquesced (NH42SO4 seed; and (4 the fraction of a C4H9+ fragment (observed by Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer, HR-ToF-AMS from SOA formed by 2-tert-butylphenol (BP oxidation was unchanged in the presence of additional glyoxal despite enhanced SOA formation. This study suggests that glyoxal uptake onto aerosol is minor when the surface (and near-surface of aerosols are primarily composed of secondary organic compounds.

  17. Heterogeneity of lithologically-screened hydrocarbon formations governed by carbonate concretions

    Energy Technology Data Exchange (ETDEWEB)

    Vysotskiy, V.N.; Lyudofun, F.N.; Sidorenkov, A.I.

    1979-01-01

    The complex structure of sections of thinning of bed-collectors governed by the constant presence of a lens of carbonate-terrigenous rocks is examined. It is indicated that the thinning traps have higher concretion carbonate content than the bed arc. The closer to the lateral lithological screen in the thinning traps, the more the concretion coefficient has a directed changing gradient of increase. The conclusion is drawn that this empirical law can be used at the stage of exploring hydrocarbon formations or for tracing the thinning line of the bed collector.

  18. Description Of Alloy Layer Formation On A Cast Steel Substrate

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2015-09-01

    Full Text Available A description of alloy layer formation on a steel substrate is presented. Two types of formation are considered: diffusion of carbon and chromium into the solid from the pad in the direction of the cast steel within the FeCrC (grains and diffusion in a layer of liquid chromium cast iron formed in a preceding step. The influence of silicon in the pad on the pad’s transformation into the liquid is also examined. Solidus and liquidus temperatures of high carbon ferrochromium are determined. The larger the content of Si is used in the experiment, the lower the solidus temperature of the FeCrC alloy is observed. This results from the higher intensity of the elements’ diffusion and faster formation of the liquid.

  19. Screening method for the analysis of polycyclic aromatic hydrocarbons by high performance thin layer chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Butler, H.T.

    1983-01-01

    Investigations were carried out to develop a routine analytical method for the determination of the polycyclic aromatic hydrocarbons (PAH) in environmental samples. The method used high performance thin layer chromatography (HPTLC) for the separation of the PAH's. Densitometric measurements using selective fluorescence detection was employed for the quantitative aspects of the method. High performance silica gel, cellulose, acetylated cellulose and reversed-phase plates as the separation media were evaluated. Reversed-phase plates with 60% silanization and solvent system of methanol:water using continuous multiple developments produced the best separation. The method was evaluated using shale oil, air particulate, diesel exhaust particulate and an in-house dust samples. During the course of the studies a characterization of the fluorescence and single wavelength double beam reflectance modes was performed. Based on observations made during the characterization studies, a calibration method employing a single standard solution was developed. The method had an operating range of approximately 0.5 to 20 ng and is suitable as a scouting technique to determine approximate concentrations of unknown samples in HPTLC. A method for expressing the relative fluorescence intensity of the PAH's at a given excitation wavelength was also developed. The emission response ratios (ERR) were useful in approximating interferences and determining optimal wavelength combinations.

  20. Role of temperature and hydrochloric acid on the formation of chlorinated hydrocarbons and polycyclic aromatic hydrocarbons during combustion of paraffin powder, polymers, and newspaper.

    Science.gov (United States)

    Takasuga, Takumi; Umetsu, Norihito; Makino, Tetsuya; Tsubota, Katsuya; Sajwan, Kenneth S; Kumar, Kurunthachalam Senthil

    2007-07-01

    Formation of chlorinated hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) were determined using a laboratory-scale incinerator when combusting materials at different temperatures, different concentrations of hydrochloric acid (HCl), and when combusting various types of polymers/newspaper. Polychlorobenzenes (PCBz), polychlorophenols (PCPhs), polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and their toxic equivalency (TEQ) and PAHs were highlighted and reported. Our results imply maximum formation of chlorinated hydrocarbons at 400 degrees C in the following order; PCBz>or=PCPhs>PCDFs>PCDDs>TEQ on a parts-per-billion level. Similarly, a maximum concentration of chlorinated hydrocarbons was noticed with an HCl concentration at 1000 ppm with the presence of paraffin powder in the following order; PAHs>PCBz>or=PCPhs>PCDFs>PCDDs>TEQ an a parts-per-billion level. PAHs were not measured at different temperatures. Elevated PAHs were noticed with different HCl concentrations and paraffin powder combustion (range: 27-32 microg/g). While, different polymers and newspaper combusted, nylon and acrylonitrile butadiene styrene (ABS) produced the maximum hydrogen cyanide (HCN) concentration, concentrations of PCDD/FS, dioxin-like polychlorinated biphenyls (DL-PCBs), and TEQ were in a decreasing order: polyvinylchloride (PVC)newspapernewspapernewspaper newspapernewspaper

  1. Hydrocarbon Source Rock Potential of the Sinamar Formation, Muara Bungo, Jambi

    Directory of Open Access Journals (Sweden)

    Moh. Heri Hermiyanto Zajuli

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v1i1.175The Oligocene Sinamar Formation consists of shale, claystone, mudstone, sandstone, conglomeratic sandstone, and intercalation of coal seams. The objective of study was to identify the hydrocarbon source rock potential of the Sinamar Formation based on geochemichal characteristics. The analyses were focused on fine sediments of the Sinamar Formation comprising shale, claystone, and mudstone. Primary data collected from the Sinamar Formation well and outcrops were analyzed according to TOC, pyrolisis analysis, and gas chromatography - mass spectometry of normal alkanes that include isoprenoids and sterane. The TOC value indicates a very well category. Based on TOC versus Pyrolysis Yields (PY diagram, the shales of Sinamar Formation are included into oil prone source rock potential with good to excellent categories. Fine sediments of the Sinamar Formation tend to produce oil and gas originated from kerogen types I and III. The shales tend to generate oil than claystone and mudstone and therefore they are included into a potential source rock. 

  2. The Adhesion and Formation Mechanism of Blast Furnace Gunning Layer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Basing on the study of the equilibrium relationship of interfacial tension among gunning particles, repaired surface and atmosphere, this test is in a position to draw a conclusion concerning the adhesion mechanism of the gunning refractory and the repaired surface, which illustrates the formation of the bottom gunning layer by moist fine gunning particles on the repaired surface. Also involved within the scope of discussion and probe are the patterns formed under this contacting effect and the formation mechanism of gunning layer. The analytic research regarding the behavior of gunning interface has ascribed the influence upon adhesion intensity to the quality of furnace gunning refractory, the state of the repaired surface and the gunning techniques.

  3. Impact of molecular structure on secondary organic aerosol formation from aromatic hydrocarbon photooxidation under low-NOx conditions

    Science.gov (United States)

    Li, Lijie; Tang, Ping; Nakao, Shunsuke; Cocker, David R., III

    2016-08-01

    The molecular structure of volatile organic compounds determines their oxidation pathway, directly impacting secondary organic aerosol (SOA) formation. This study comprehensively investigates the impact of molecular structure on SOA formation from the photooxidation of 12 different eight- to nine-carbon aromatic hydrocarbons under low-NOx conditions. The effects of the alkyl substitute number, location, carbon chain length and branching structure on the photooxidation of aromatic hydrocarbons are demonstrated by analyzing SOA yield, chemical composition and physical properties. Aromatic hydrocarbons, categorized into five groups, show a yield order of ortho (o-xylene and o-ethyltoluene) > one substitute (ethylbenzene, propylbenzene and isopropylbenzene) > meta (m-xylene and m-ethyltoluene) > three substitute (trimethylbenzenes) > para (p-xylene and p-ethyltoluene). SOA yields of aromatic hydrocarbon photooxidation do not monotonically decrease when increasing alkyl substitute number. The ortho position promotes SOA formation while the para position suppresses aromatic oxidation and SOA formation. Observed SOA chemical composition and volatility confirm that higher yield is associated with further oxidation. SOA chemical composition also suggests that aromatic oxidation increases with increasing alkyl substitute chain length and branching structure. Further, carbon dilution conjecture developed by Li et al. (2016) is extended in this study to serve as a standard method to determine the extent of oxidation of an alkyl-substituted aromatic hydrocarbon.

  4. Hydrocarbon oxidation over catalysts prepared by the molecular layer deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Koltsov, S.I.; Smirnov, V.M.; Postnov, V.N.; Postnova, A.M.; Aleskovskii, V.B.

    1980-01-01

    By depositing consecutive uniform monolayers of phosphorus pentoxide and vanadium pentoxide on a large-surface-area (240 sq m/g) silica gel, active and selective catalysts for hydrocarbon oxidation were obtained. Thus, in piperylene oxidation by air at 330/sup 0/-430/sup 0/C and 2000-18,000/hr space velocity, a productive capacity of 220 g/l./hr with 41 mole % each maleic anhydride yield and selectivity was achieved over a SiO/sub 2/-P/sub 2/O/sub 5//P/sub 2/O/sub 5//V/sub 2/O/sub 5/ catalyst (120 sq cm/g surface area), compared with 80 g/l./hr for a P/sub 2/O/sub 5/-V/sub 2/O/sub 5/ catalyst prepared by impregnation. In benzene oxidation, maleic anhydride yields of 52 and 60% and selectivities of 63 and 79% were achieved over SiO/sub 2/-P/sub 2/O/sub 5//V/sub 2/O/sub 5/ and SiO/sub 2/-P/sub 2/O/sub 5//P/sub 2/O/sub 5//P/sub 2/O/sub 5//V/sub 2/O/sub 5/ catalysts, respectively, compared with a 6% yield and very low selectivity over the impregnated P/sub 2/O/sub 5/-V/sub 2/O/sub 5/ catalyst. The molecular-layer catalysts retained their total activity for 100 hr on stream and permitted to reduce the oxidation temperature by 50/sup 0/-70/sup 0/C.

  5. New Theories on Boundary Layer Transition and Turbulence Formation

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2012-01-01

    Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.

  6. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study.

    Science.gov (United States)

    Sinha, Sourab; Raj, Abhijeet

    2016-03-21

    The role of resonantly stabilized radicals such as propargyl, cyclopentadienyl and benzyl in the formation of aromatic hydrocarbons such as benzene and naphthalene in the high temperature environments has been long known. In this work, the possibility of benzyl recombination to form three-ring aromatics, phenanthrene and anthracene, is explored. A reaction mechanism for it is developed, where reaction energetics are calculated using density functional theory (B3LYP functional with 6-311++G(d,p) basis set) and CBS-QB3, while temperature-dependent reaction kinetics are evaluated using transition state theory. The mechanism begins with barrierless formation of bibenzyl from two benzyl radicals with the release of 283.2 kJ mol(-1) of reaction energy. The further reactions involve H-abstraction by a H atom, H-desorption, H-migration, and ring closure to gain aromaticity. Through mechanism and rate of production analyses, the important reactions leading to phenanthrene and anthracene formation are determined. Phenanthrene is found to be the major product at high temperatures. Premixed laminar flame simulations are carried out by including the proposed reactions for phenanthrene formation from benzyl radicals and compared to experimentally observed species profiles to understand their effects on species concentrations.

  7. Effects of Large Polycyclic Aromatic Hydrocarbons on the Soot Formation in Ethylene-Air Nonpremixed Flames

    KAUST Repository

    Prabhu, S.

    2015-03-30

    This study presents updated comprehensive gas-phase kinetic mechanism and aerosol models to predict soot formation characteristics in ethylene-air nonpremixed flames. A main objective is to investigate the sensitivity of the soot formation rate to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph (DRG) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames of pure ethylene at low strain rate sooting conditions are considered, for which the sensitivity of soot formation characteristics with respect to hetrogeneous nucleation is investigated. Results show that higher PAH concentrations result in higher soot nucleation rate, and that the average size of the particles are in good agreement with experimental results. It is found that the nucleation processes (i.e., soot inception) from higher PAH precursors, coronene in particular, is critical for accurate prediction of the overall soot formation.

  8. Formation of Silicide Coating layer on U-Mo Powder

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Sunghwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    High-density U-Mo alloys are regarded as promising candidates for advanced research reactor fuel as they have shown stable irradiation performance when compared to other uranium alloys and compounds. However, interaction layer formation between the U-Mo alloys and Al matrix degrades the irradiation performance of U-Mo Dispersion fuel. Therefore, the addition of Ti in U-Mo alloys, the addition of Si in a Al matrix, and silicide or nitride coating on the surface of U-Mo particles have been proposed to inhibit the interaction layer growth. In this study, U-Mo alloy powder was produced using a centrifugal atomization method. In addition, silicide coating layers were fabricated by several mixing process changes on the surface of the U-Mo particles. The coated powders were characterized by using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDAX). Decreased annealing duration did not affect the forming of silicide coating layers on the surface of U-7wt%Mo powders. The variation in the mixing ratio between U-7wt%Mo and Si powders had an effect on the quality of silicide coating on the U-7wt%Mo powders. The weight of Si powders should be smaller than that of U-7wt%Mo powders for better silicide coating when it comes to the mixing ratio.

  9. Formation of polycyclic aromatic hydrocarbons from acetylene over nanosized olivine-type silicates.

    Science.gov (United States)

    Tian, M; Liu, B S; Hammonds, M; Wang, N; Sarre, P J; Cheung, A S-C

    2012-05-14

    The formation mechanism of polycyclic aromatic hydrocarbon (PAH) molecules in interstellar and circumstellar environments is not well understood although the presence of these molecules is widely accepted. In this paper, addition and aromatization reactions of acetylene over astrophysically relevant nesosilicate particles are reported. Gas-phase PAHs produced from exposure of acetylene gas to crystalline silicates using pulsed supersonic jet expansion (SJE) conditions were detected by time-of-flight mass spectrometry (TOF-MS). The PAHs produced were further confirmed in a separate experiment using a continuous flow fixed-bed reactor in which acetylene was introduced at atmospheric pressure. The gas-phase effluent and solutions of the carbonaceous compounds deposited on the nesosilicate particles were analyzed using gas chromatography-mass spectrometry (GC-MS). A mechanism for PAH formation is proposed in which the Mg(2+) ions in the nesosilicate particles act as Lewis acid sites for the acetylene reactions. Our studies indicate that the formation of PAHs in mixed-chemistry astrophysical environments could arise from acetylene interacting with olivine nano-particles. These nesosilicate particles are capable of providing catalytic centres for adsorption and activation of acetylene molecules that are present in the circumstellar environments of mass-losing carbon stars. The structure and physical properties of the particles were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and high-resolution transmission electron microscopy (HRTEM) techniques.

  10. Layer formation by 1,7-diphosphono-heptane

    Directory of Open Access Journals (Sweden)

    J. TELEGDI

    2001-12-01

    Full Text Available Surface modification of polycrystalline ARMCO iron and an Fe(110 single crystal was performed using a solution of 1,7-diphosphono-heptane (DPH. The changes of the surface properties were studied by subtractively normalised interfacial Fourier transform infrared spectroscopy (SNIFTIRS, scanning tunneling microscopy (STM and electrochemical impedance spectroscopy (EIS. The immersion of the surfaces into DPH solution resulted in a build up of an ordered thin multimolecular layer after a few hours of continuous adsorption. The orientation of the DPH molecules was influenced by the supporting electrolyte and the electrode potential. The treatment in the absence of oxygen resulted in a lower corrosion protection effect compared to diphosphonate layer formation in an atmospheric environment.

  11. Experimental Investigation of White Layer formation in Hard Turning

    Science.gov (United States)

    Umbrello, D.; Rotella, G.; Crea, F.

    2011-05-01

    Hard turning with super hard cutting tools, like PCBN or Ceramics inserts, represents an interesting advance in the manufacturing industry, regarding the finishing of hardened steels. This innovative machining technique is considered an attractive alternative to traditional finish grinding operations because of the high flexibility, the ability to achieve higher metal removal rates, the possibility to operate without the use of coolants, and the capability to achieve comparable workpiece quality. However, the surface integrity effects of hard machining need to be taken into account due to their influence on the life of machined components. In particular, the formation of a usually undesirable white layer at the surface needs further investigation. Three different mechanisms have been proposed as main responsible of the white layer genesis: (i) microstructural phase transformation due to a rapid heating and quenching, (ii) severe plastic deformation resulting in a homogenous structure and/or a very fine grain size microstructure; (iii) surface reaction with the environment. In this research, an experimental campaign was carried out and several experimental techniques were used in order to analyzed the machined surface and to understand which of the above mentioned theories is the main cause of the white layer formation when AISI 52100 hardened steel is machined by PCBN inserts. In particular, the topography characterization has obtained by means of optical and scanning electron microscope (SEM) while microstructural phase composition and chemical characterization have been respectively detected using X-ray Diffraction (XRD) and Energy-dispersive X-ray spectroscopy (EDS) techniques. The results prove that the white layer is the result of microstructural alteration, i.e. the generation of a martensitic structure.

  12. In situ direct sampling mass spectrometric study on formation of polycyclic aromatic hydrocarbons in toluene pyrolysis.

    Science.gov (United States)

    Shukla, Bikau; Susa, Akio; Miyoshi, Akira; Koshi, Mitsuo

    2007-08-30

    The gas-phase reaction products of toluene pyrolysis with and without acetylene addition produced in a flow tube reactor at pressures of 8.15-15.11 Torr and temperatures of 1136-1507 K with constant residence time (0.56 s) have been detected in an in situ direct sampling mass spectrometric study by using a vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry technique. Those products range from methyl radical to large polycyclic aromatic hydrocarbons (PAHs) of mass 522 amu (C(42)H(18)) including smaller species, radicals, polyynes, and PAHs, together with ethynyl, methyl, and phenyl PAHs. On the basis of observed mass spectra, the chemical kinetic mechanisms of the formation of products are discussed. Especially, acetylene is mixed with toluene to understand the effect of the hydrogen abstraction and acetylene addition (HACA) mechanism on the formation pathways of products in toluene pyrolysis. The most prominent outputs of this work are the direct detection of large PAHs and new reaction pathways for the formation of PAHs with the major role of cyclopenta-fused radicals. The basis of this new reaction route is the appearance of different sequences of mass spectra that well explain the major role of aromatic radicals mainly cyclopenta fused radicals of PAHs resulting from their corresponding methyl PAHs, with active participation of c-C(5)H(5), C(6)H(5), C(6)H(5)CH(2) ,and C(9)H(7) in the formation of large PAHs. The role of the HACA only seemed important for the formation of stable condensed PAHs from unstable primary PAHs with zigzag structure (having triple fusing sites) in one step by ring growth with two carbon atoms.

  13. Geology and hydrocarbon potential of Dawson Bay Formation carbonate unit (Middle Devonian), Williston basin, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Pound, W.

    1988-07-01

    The Middle Devonian Dawson Bay Formation carbonate unit is present in the subsurface of North Dakota except where truncated by postdepositional erosion. The carbonate unit thickens from the erosional limit to a maximum thickness of 47.5 m (156 ft) in Renville County and reaches a maximum depth of 3798 m (12,460 ft) below the surface in McKenzie County. In North Dakota, a submarine hardground separates the carbonate unit from the underlying second red bed member of the Dawson Bay Formation. The upper contact with the Souris River Formation is conformable except in those areas where the Dawson Bay Formation was exposed to subaerial erosion prior to deposition of the Souris River sediments. The Dawson Bay carbonate unit is predominantly dolomitic and fossiliferous limestone or fossiliferous dolostone. The carbonate unit can be subdivided into five lithofacies on the basis of characteristic fossil fauna, flora, and other lithologic features. Lithofacies analysis of the Dawson Bay carbonates suggests a shallowing-upward succession of depositional environments and associated energy zones as follows: shallow epeiric sea (very low energy), stromatoporoid biostrome/bioherm (low energy), very shallow epeiric sea (very low energy), restricted shallow epeiric sea (extremely low energy), and shallow epeiric sea shoreline (variable energy). Eogenetic diagenesis includes color-mottling, dolomitization of micrite to microcrystalline dolomite with penecontemporaneous anhydrite replacement of cryptalgal mudstones and boundstones, cementation by sparry calcite, and vuggy porosity development. Mesogenetic diagenesis includes formation of mosaic dolomites, cementation by blocky equant calcite, neomorphism, pressure-solution, fracturing, halite cementation, and hydrocarbon emplacement.

  14. Boundary-layer model of pattern formation in solidification

    Science.gov (United States)

    Ben-Jacob, E.; Goldenfeld, N.; Langer, J. S.; Schon, G.

    1984-01-01

    A model of pattern formation in crystal growth is proposed, and its analytic properties are investigated. The principal dynamical variables in this model are the curvature of the solidification front and the thickness (or heat content) of a thermal boundary layer, both taken to be functions of position along the interface. This model is mathematically much more tractable than the realistic, fully nonlocal version of the free-boundary problem, and still recaptures many of the features that seem essential for studying dendritic behavior, for example. Preliminary numerical solutions produce snowflakelike patterns similar to those seen in nature.

  15. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    Science.gov (United States)

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-06-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  16. A novel high-performance thin layer chromatography method for quantification of long chain aliphatic hydrocarbons from Cissus quadrangularis

    Directory of Open Access Journals (Sweden)

    Vandana Jain

    2016-08-01

    Full Text Available Context: A high-performance thin layer chromatography (HPTLC is an analytical technique, which can be used for the determination of constituents or marker components in various parts of the plants. Earlier studies have estimated phytoconstituents from the stem and other aerial plant parts of Cissus quadrangularis Linn. Estimation of hydrocarbons can also be successfully done using HPTLC technique using suitable derivatization. Aims: To develop and validate a simple and rapid method for the estimation of long chain aliphatic hydrocarbons from the leaves of C. quadrangularis using HPTLC technique. Methods: Precoated silica gel 60 F254 plates were used as stationary phase. The mobile phase used was hexane (100 %. The detection of spots was carried out using berberine sulphate as detecting reagent. Results: The method was validated in terms of linearity, sensitivity, accuracy, and precision. Linearity range was found to be 2-10 µg/mL, limit of detection 0.127 µg/mL, and limit of quantification 0.384 µg/mL. Conclusions: A novel, simple, accurate, precise and sensitive HPTLC method has been developed and validated for the estimation of long chain aliphatic hydrocarbons obtained from the leaves of C. quadrangularis Linn.

  17. EXPERIMENTAL EVIDENCE FOR THE FORMATION OF HIGHLY SUPERHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS THROUGH H ATOM ADDITION AND THEIR CATALYTIC ROLE IN H{sub 2} FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, J. D.; Jorgensen, B.; Friis, E. E.; Baouche, S.; Luntz, A. C.; Andersen, M.; Hammer, B.; Hornekaer, L. [Department of Physics and Astronomy and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C (Denmark); Mennella, V., E-mail: thrower@phys.au.dk [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli (Italy)

    2012-06-10

    Mass spectrometry measurements show the formation of highly superhydrogenated derivatives of the polycyclic aromatic hydrocarbon molecule coronene through H atom addition reactions. The observed product mass distribution provides evidence also for abstraction reactions resulting in H{sub 2} formation, in agreement with recent IR measurements. Complementary density functional theory calculations confirm the stability of the observed superhydrogenated species toward spontaneous H and H{sub 2} loss indicating that abstraction reactions may be the dominant route to H{sub 2} formation involving neutral polycyclic aromatic hydrocarbons (PAHs). The results indicate that highly superhydrogenated PAHs could well be formed and could act as efficient catalysts for H{sub 2} formation in the interstellar medium in low UV flux regions.

  18. Importance of Aqueous-phase Secondary Organic Aerosol Formation from Aromatics in an Atmospheric Hydrocarbon Mixture

    Science.gov (United States)

    Parikh, H. M.; Carlton, A. G.; Vizuete, W.; Zhang, H.; Zhou, Y.; Chen, E.; Kamens, R. M.

    2010-12-01

    Two new secondary organic aerosol (SOA) modeling frameworks are developed, one based on an aromatic gas and particle-phase kinetic mechanism and another based on a parameterized SOA model used in conjunction with an underlying gas-phase mechanism, both of which simulate SOA formation through partitioning to two stable liquid phases: one hydrophilic containing particle aqueous-phase and the other hydrophobic comprising mainly organic components. The models were evaluated against outdoor smog chamber experiments with different combinations of initial toluene, o-xylene, p-xylene, toluene and xylene mixtures, NOx, non-SOA-forming hydrocarbon mixture, initial seed type, and humidity. Aerosol data for experiments with either ammonium sulfate or initial background seed particles, in the presence of an atmospheric hydrocarbon mixture, NOx and in sunlight under a dry atmosphere (RH = 6 to 10%) show reduced SOA formation when compared to experiments with similar initial gas and particle concentrations at higher relative humidities (RH = 40 to 90%). Both frameworks simulated reasonable fits to the total observed SOA concentrations under all conditions. For both dry and wet experiments with low initial seed, semi-volatile product partitioning in particle organic-phase is mass-transfer limited and is modeled using a dynamic gas-particle partitioning algorithm with accommodation coefficient as the primary pseudo-transport parameter. Further, the modeled SOA product distributions for both frameworks clearly show the importance of the contribution of aqueous-phase SOA particularly under conditions of low initial seed concentrations and high-humidity. For both models, under these conditions, aqueous-phase SOA from uptake of glyoxal, methylglyoxal and related polar products to particle water phase dominates as compared to the partitioning of semi-volatiles to particle organic phase. Interestingly, both the kinetic and parameterized SOA frameworks simulate similar amounts of aqueous

  19. A 4D synchrotron X-ray tomography study of the formation of hydrocarbon migration pathways in heated organic-rich shale

    CERN Document Server

    Panahi, Hamed; Renard, Francois; Mazzini, Adriano; Scheibert, Julien; Dysthe, Dag Kristian; Jamtveit, Bjorn; Malthe-Sørenssen, Anders; Meakin, Paul

    2014-01-01

    Recovery of oil from oil shales and the natural primary migration of hydrocarbons are closely related processes that have received renewed interests in recent years because of the ever tightening supply of conventional hydrocarbons and the growing production of hydrocarbons from low permeability tight rocks. Quantitative models for conversion of kerogen into oil and gas and the timing of hydrocarbon generation have been well documented. However, lack of consensus about the kinetics of hydrocarbon formation in source rocks, expulsion timing and how the resulting hydrocarbons escape from or are retained in the source rocks motivates further investigation. In particular, many mechanisms for the transport of hydrocarbons from the source rocks in which they are generated into adjacent rocks with higher permeabilities and smaller capillary entry pressures have been proposed, and a better understanding of this complex process (primary migration) is needed. To characterize these processes it is imperative to use the ...

  20. Direct hydrocarbons formation from CH{sub 4} and CO{sub 2} by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pham, M.H.; Tatibouet, J.M.; Batiot-Dupeyrat, C. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Methane (CH{sub 4}) is typically burned to produce heat, the most degraded form of energy. This paper presented a possible way to conserve fossil carbon resources and limit carbon dioxide (CO{sub 2}) emissions by transforming methane into a chemical feedstock. The Fischer-Tropsch process is one of the possible ways of producing hydrocarbons by reforming CH{sub 4} by CO{sub 2} to obtain a mixture of carbon monoxide (CO) and hydrogen (H{sub 2}). However, previous studies have shown that hydrocarbons can by produced directly from a CH{sub 4} and CO{sub 2} mixture by non-thermal plasma, thereby avoiding the Fischer-Tropsch synthesis. This paper presented the results obtained in a coaxial dielectric discharge barrier (DBD) reactor for hydrocarbon formation by varying either the CH{sub 4}/CO{sub 2} ratio or the input energy. The main products were C{sub 2} to C{sub 4} alkanes. The increasing hydrocarbons to CO ratio with the CH{sub 4}/CO{sub 2} initial ratio suggests a radical type mechanism. It was concluded that a 15 percent hydrocarbon yield can be obtained in a single pass with only a short loss of initial carbon. 1 ref.

  1. Model of Layered Weld Formation Under Narrow Gap Pulse Welding

    Science.gov (United States)

    Krampit, A. G.

    2016-04-01

    The model parameters of narrow gap pulse welding can be divided into input, internal and output ones. The breadth of gap, that is, clearance breadth between upright edges is one of key parameters securing high quality of a weld joint. The paper presents theoretical outcomes for the model of layered weld formation under narrow gap pulse welding. Based on these studies is developed model of processes, which occur in the weld pool under pulse grove welding. It comprises the scheme of liquid metal motion in the weld pool, scheme of fusion with the side edge and in the bottom part, and the scheme of welding current impulse effect on the structure of a weld joint.

  2. Palynofacies characterization for hydrocarbon source rock evaluation in the Subathu Formation of Marhighat, Sirmaur district, Himachal Pradesh

    Indian Academy of Sciences (India)

    O P Thakur; N N Dogra

    2011-10-01

    This paper deals with the hydrocarbon source rock evaluation of the Subathu Formation exposed at Marhighat on Sarahan–Narag road in Sirmaur district of Himachal Pradesh. Hydrocarbon potential of these sediments is estimated on the basis of palynofacies analysis and thermal alteration index (TAI) values based on the fossil spores/pollen colouration. The analyses are based on the classification and hydrocarbon generation potential of plant derived dispersed organic matter present in the sediments. The palynofacies analysis of Subathu Formation in the area reveal moderate to rich organic matter, with amorphous organic matter constituting the bulk of the total organic matter, followed by charcoal, biodegraded organic matter, fungal remains, spores/pollen and structured terrestrial organic matter. The TAI value for the organic matter in these sediments has been ascertained as 3.00. A dominance of the sapropelic facies (amorphous organic matter) and the measured TAI values for the Subathu sediments in the Marhighat area suggests a good source-rock potential for the hydrocarbon generation.

  3. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions.

    Science.gov (United States)

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T

    2015-02-01

    The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  4. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hui [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Wu, Chunfei, E-mail: c.wu@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Onwudili, Jude A. [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom); Meng, Aihong [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Yanguo, E-mail: zhangyg@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk [Energy Research Institute, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  5. Interface formation between hydrocarbon ring molecules and III-V semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Passmann, Regina

    2008-08-15

    In this work a systematical study to investigate the adsorption structures of small hydrocarbon ring shaped molecules on III-V semiconductor surfaces with Photo-Emission Spectroscopy (PES), Reflectance Anisotropy Spectroscopy (RAS), Scanning Tunneling Microscopy (STM) as well as Low Electron Energy Diffraction (LEED) was performed. To investigate the influence of the surface structure in detail the surface dimer configuration to the adsorption process of organic molecules GaAs(001) surfaces, the c(4 x 4), the (2 x 4) and the (4 x 2) have been investigated as well as the adsorption of cyclopentene on the InP(001)(2 x 4) reconstructed surface. In the direct comparison it is shown that cyclopentene bonds to the InP(001)(2 x 4) surface via a cycloaddition like reaction. During this adsorption the double bond splits which is in contrast to the adsorption of cyclopentene on the GaAs(001) surfaces. Therefrom it is concluded that the surface geometry has an influence on the resulting adsorption structure. In order to investigate the influence of the intra-molecular double bonds, cyclopentene (one double bond), 1,4-cyclohexadiene (two double bonds) and benzene (three double bonds) were used for the characterization of the interface formation. With the investigations on the GaAs(001) reconstructed surfaces it was shown that a dependency of the bonding configuration on the intra-molecular double bonds exists. During the adsorption of cyclopentene no evidence was found that the double bond has to be involved in the interface formation while during the adsorption of 1,4-cyclohexadiene and benzene the double bonds are involved. Furthermore it was found that a bonding to As atoms of the surface is more likely than a bonding to Ga atoms. (orig.)

  6. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis.

    Science.gov (United States)

    Gao, Meiqi; Wang, Yulong; Dong, Jie; Li, Fan; Xie, Kechang

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants. They have attracted considerable attention due to their severe potential carcinogenic, mutagenic and genotoxic effects on human health. In this study, five different rank coals from China were pyrolyzed using pyro-probe CDS 5250 and the release behavior of 16 PAHs under different pyrolysis conditions were studied by Gas Chromatography-Mass Spectrometer (GC-MS). The structural characteristics of the five coals were determined by Cross-Polarization/Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS (13)C NMR) spectroscopy, and then the factors influencing the formation of PAHs during coal pyrolysis were discussed together with the coal structural data. It was shown that the amount of PAHs generated during coal pyrolysis was largely related to coal rank and followed the order of medium metamorphic coal > low metamorphic coal > high metamorphic coal. The amount of total PAHs varied as the temperature was increased from 400 °C to 1200 °C, which showed a trend of first increasing and then decreasing, with the maximum value at 800 °C. Moreover, the species of PAHs released varied with pyrolysis temperatures. When the temperature was lower than 800 °C, the small ring PAHs were the most abundant, while the proportion of heavy rings increased at higher temperature. The results indicate that the formation of PAHs during coal pyrolysis depends on the structure of the coal. The species and amounts of PAHs generated during coal pyrolysis are closely related to the contents of protonated aromatic carbons and bridging ring junction aromatic carbons present in the coal structure.

  7. Reduced kinetic mechanism of n-heptane oxidation in modeling polycyclic aromatic hydrocarbon formation in opposed-flow diffusion flames

    Institute of Scientific and Technical Information of China (English)

    Beijing ZHONG; Jun XI

    2008-01-01

    A reduced mechanism, which could couple with the multidimensional computational fluid dynamics code for quantitative description of a reacting flow, was developed for chemical kinetic modeling of polycyclic aro-matic hydrocarbon formation in an opposed-flow dif-fusion flame. The complete kinetic mechanism, which comprises 572 reactions and 108 species, was reduced to a simplified mechanism that includes only 83 reactions and 56 species through sensitivity analysis. The results computed via this reduced mechanism are nearly indistin-guishable from those via the detailed mechanism, which demonstrate that the model based on this reduced mech-anism can properly describe n-heptane oxidation chem-istry and quantitatively predict polycyclic aromatic hydrocarbon (such as benzene, naphthalene, phenan-threne and pyrene) formation in opposed-flow diffusion flames.

  8. Effect of Multi-Layered Corium Formations on Integrity of Steel Components under Steam Explosion Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hyun; Kim, Tae Hyun; Chang, Yoon-Suk [Kyung Hee University, Yongin (Korea, Republic of); Cho, Yong-Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The object of the present study is to examine effect of multi-layered corium formations on the integrity of steel components under a representative steam explosion condition. In this context, multi-layered corium formation conditions are assumed based on a previous study. Subsequently, stress evaluation of steel components is performed by TNT (trinitrotoluene) model for the steam explosion analysis and their results are discussed. In this paper, comparative numerical analyses were carried out to examine effect of the multi-layered corium formations on integrity of steel components under a typical steam explosion condition and the following conclusions were derived. (1) The highest maximum von Mises stress was calculated at RPV. However, stress values of all components did not exceed their yield strengths. (2) Effect of the 3-layer corium formation was higher than 2-layer corium formation. Resulting von Mises stress increased 20% than that of no corium formation and 16% than that of 2-layer corium formation.

  9. Differences of Hydrocarbon Enrichment between the Upper and the Lower Structural Layers in the Tazhong Paleouplift

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhenxue; YANG Haijun; LI Zhuo; PANG Xiongqi; HAN Jianfa; LI Dongxu; HUANG Yuyan

    2010-01-01

    The Tazhong paleouplift is divided into the upper and the lower structural layers,bounded by the unconformity surface at the top of the Ordovician carbonate rock.The reservoirs in the two layers from different parts vary in number,type and reserves,but the mechanism was rarely researched before.Therefore,an explanation of the mechanism will promote petroleum exploration in Tazhong paleouplift.After studying the evolution and reservoir distribution of the Tazhong paleouplift,it is concluded that the evolution in late Caledonian,late Hercynian and Himalayan periods resulted in the upper and the lower structural layers.It is also defined that in the upper structural layer,structural and stratigraphic overlap reservoirs are developed at the top and the upper part of the paleouplift,which are dominated by oil reservoirs,while for the lower structural layer,lithological reservoirs are developed in the lower part of the paieouplift,which are dominated by gas reservoirs,and more reserves are discovered in the lower structural layer than the upper.Through a comparative analysis of accumulation conditions of the upper and the lower structural layers,the mechanism of enrichment differences is clearly explained.The reservoir and seal conditions of the lower structural layer are better than those of the upper layer,which is the reason why more reservoirs have been found in the former.The differences in the carrier system types,trap types and charging periods between the upper and the lower structural layers lead to differences in the reservoir types and distribution.An accumulation model is established for the Tazhong paleouplift.For the upper structural layer,the structural reservoirs and the stratigraphic overlap reservoirs are formed at the upper part of the paleouplift,while for the lower structural layer,the weathering crust reservoirs are formed at the top,the reef-flat reservoirs are formed on the lateral margin,the karst and inside reservoirs are formed in the lower

  10. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    Science.gov (United States)

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  11. Daily oscillation of gene expression associated with nacreous layer formation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Three major organic matrix components,nacrein,MSI60 and N16 have been reported from the nacreous layer of Japanese pearl oyster,Pinctada fucata.Though several in vitro experiments have been carried out to elucidate the functions of these molecules details have not yet been clarified.In this report,we tempt to clarify the gene expression levels encoding the above three proteins between samples of 1) summer and winter seasons and 2) ocean and aquarium environments by using realtime polymerase chain reaction (PCR).It was confirmed that the biomineralization process of P.fucata is mainly influenced by the circatidal rhythm of the ocean environment.The gene expressions coding for N16 and MSI60 increased at the time of high tide,while that of nacrein increased at the time of low tide.The similar tendency observed in N16 and MSI60 showed the possibility that both components are secreted simultaneously,supporting a hypothesis that N16 forms crosslinkage with MSI60 to form the membrane.The expressions of MSI60,N16 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were remarkable in winter season,while no variation was found in the expression level of the nacrein gene in summer and winter season.The study is the first attempt regarding the seasonal and circadian rhythms observed on gene expressions incorporated into molluscan shell formation.The results will give a new insight into the relationship between molluscan physiology and the mechanism of shell formation.

  12. Maximum Topological Distances Based Indices as Molecular Descriptors for QSPR. 4. Modeling the Enthalpy of Formation of Hydrocarbons from Elements

    Directory of Open Access Journals (Sweden)

    Andrey A. Toropov

    2001-06-01

    Full Text Available The enthalpy of formation of a set of 60 hydroarbons is calculated on the basis of topological descriptors defined from the distance and detour matrices within the realm of the QSAR/QSPR theory. Linear and non-linear polynomials fittings are made and results show the need to resort to higher-order regression equations in order to get better concordances between theoretical results and experimental available data. Besides, topological indices computed from maximum order distances seems to yield rather satisfactory predictions of heats of formation for hydrocarbons.

  13. Reservoir attributes of a hydrocarbon-prone sandstone complex: case of the Pab Formation (Late Cretaceous) of Southwest Pakistan

    DEFF Research Database (Denmark)

    Umar, Muhammad; Khan, Abdul Salam; Kelling, Gilbert;

    2016-01-01

    Links between the architectural elements of major sand bodies and reservoir attributes have been explored in a field study of the hydrocarbon-yielding Late Cretaceous Pab Formation of southwest Pakistan. The lithofacies and facies associations represented in the Pab Formation are the main...... porosity values than more shale-rich successions. Diagenetic studies of Pab sandstones reveal that intense mechanical compaction and cementation have reduced primary porosity and reservoir quality. Conversely, dissolution of detrital feldspar grains and volcanic fragments during burial and later uplift...

  14. Crop impaction resulting from feather ball formation in caged layers.

    Science.gov (United States)

    Morishita, T Y; Aye, P P; Harr, B S

    1999-01-01

    Abnormal behaviors in commercial poultry, including feather pulling and pica, have been known to occur when birds are exposed to an unfamiliar environment. We report here the development of crop impactions resulting from feather ball formation. Twelve specific-pathogen-free (SPF) chickens were placed in one of three cages housed among a commercial layer flock in three different buildings on a farm site. Three weeks after placement, the birds were removed from the cages and given a physical exam. Chickens were thin, and one bird in each of the three caged groups had a palpable mass at the level of the thoracic inlet. At necropsy, a mass was noted in the crop. Upon further dissection, a wet, foul-smelling mass consisting of feathers and feed debris was recovered. Results from our case indicate that unfamiliar surroundings can cause pica in birds. Hence, avian researchers and veterinarians planning to introduce new birds into a flock, i.e., SPF birds, should consider the birds' previous environmental conditions prior to placement because sudden placement in unfamiliar surroundings can result in pica.

  15. Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography.

    Science.gov (United States)

    Schmidt, Joel E; Poplawsky, Jonathan D; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D A Matthijs; Meirer, Florian; Bare, Simon R; Weckhuysen, Bert M

    2016-09-01

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.

  16. Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format

    Energy Technology Data Exchange (ETDEWEB)

    Pinzon, NM; Aukema, KG; Gralnick, JA; Wackett, LP

    2011-06-28

    A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone production as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. IMPORTANCE In recent years, there has been renewed interest in advanced biofuel sources such as bacterial hydrocarbon production. Previous studies used solvent extraction of bacterial cultures followed by gas chromatography-mass spectrometry (GC-MS) to detect and quantify ketones and hydrocarbons (Beller HR, Goh EB, Keasling JD, Appl. Environ. Microbiol. 76: 1212-1223, 2010; Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP, Appl. Environ. Microbiol. 76: 3850-3862, 2010). While these analyses are powerful and accurate, their labor-intensive nature makes them intractable to high-throughput screening; therefore, methods for rapid identification of bacterial strains that are overproducing hydrocarbons are needed. The use of high

  17. Formation mechanism of bimetal composite layer between LCS and HCCI

    Directory of Open Access Journals (Sweden)

    Yong-chang Zhu

    2016-11-01

    Full Text Available A low carbon steel (LCS/high chromium white cast iron (HCCI bimetal wear plate about 20 mm in thickness was prepared by liquid-liquid bimetal composite casting technology to substitute for the welding wear plate. A clear and distinguishable composite layer between the LCS and the HCCI was detected with SEM, and the composition and phase were analyzed through EDS and XRD. The composite layer was composed of three sublayers from the LCS to the HCCI: pearlite transition layer, composite layer, and HCCI transition layer. The Vickers hardness from the pearlite transition layer to the HCCI transition layer was 360 HV to 855 HV. The austenite grows as dendrites between the composite layer and the HCCI transition layer under constitutional undercooling. A large amount of C and Cr, and a small amount of Si and Mn dissolve in the matrix. Granular Cr7C3 is uniformly distributed. Due to the solute redistribution at the solid-liquid interface, the primary austenite grows from planar to cellular and finally to the distinct dendrite crystals. The dendrite crystals have an obvious growth direction perpendicular to the composite layer.

  18. Formation of positive ions in hydrocarbon containing dielectric barrier discharge plasmas

    Science.gov (United States)

    Mihaila, Ilarion; Pohoata, Valentin; Jijie, Roxana; Nastuta, Andrei Vasile; Rusu, Ioana Alexandra; Topala, Ionut

    2016-12-01

    Low temperature atmospheric pressure plasma devices are suitable experimental solutions to generate transitory molecular environments with various applications. In this study we present experimental results regarding the plasma chemistry of dielectric barrier discharges (DBD) in helium - hydrogen (0.1%) - hydrocarbons (1.2%) mixtures. Four types of hydrocarbon gases were studied: methane (CH4), ethane (C2H6), propane (C3H8), and butane (C4H10). Discharge diagnosis and monitoring was assured by electrical measurements and optical emission spectroscopy. Molecular beam mass spectrometry is engaged to sample positive ions populations from two different plasma sources. Dissociation and generation of higher-chain and cyclic (aromatic) hydrocarbons were discussed as a function of feed gas and discharge geometry. We found a strong influence of these parameters on both molecular mass distribution and recombination processes in the plasma volume.

  19. Evidence from SOFIA Imaging of Polycyclic Aromatic Hydrocarbon Formation along a Recent Outflow in NGC 7027

    Science.gov (United States)

    Lau, R. M.; Werner, M.; Sahai, R.; Ressler, M. E.

    2016-12-01

    We report spatially resolved (FWHM ˜ 3.″8-4.″6) mid-IR imaging observations of the planetary nebula (PN) NGC 7027 taken with the 2.5 m telescope on board the Stratospheric Observatory for Infrared Astronomy (SOFIA). Images of NGC 7027 were acquired at 6.3, 6.6, 11.1, 19.7, 24.2, 33.6, and 37.1 μ {{m}} using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). The observations reveal emission from polycyclic aromatic hydrocarbons (PAHs) and warm dust ({T}D˜ 90 K) from the illuminated inner edge of the molecular envelope surrounding the ionized gas and central star. The DustEM code was used to fit the spectral energy distribution of fluxes obtained by FORCAST and the archival infrared spectrum of NGC 7027 acquired by the Short Wavelength Spectrometer (SWS) on the Infrared Space Observatory (ISO). Best-fit dust models provide a total dust mass of {5.8}-2.6+2.3× {10}-3 {M}⊙ , where carbonaceous large (a = 1.5 μm) and very small (a˜ 12 \\mathringA ) grains, and PAHs (3.1 \\mathringA \\lt a\\lt 12 \\mathringA ) compose 96.5, 2.2, and 1.3% of the dust by mass, respectively. The 37 μm optical depth map shows minima in the dust column density at regions in the envelope that are coincident with a previously identified collimated outflow from the central star. The optical depth minima are also spatially coincident with enhancements in the 6.2 μm PAH feature, which is derived from the 6.3 and 6.6 μm maps. We interpret the spatial anti-correlation of the dust optical depth and PAH 6.2 μm feature strength and their alignment with the outflow from the central star as evidence of dust processing and rapid PAH formation via grain-grain collisions in the post-shock environment of the dense ({n}{{H}}˜ {10}5 {{cm}}-3) photo-dissociation region and molecular envelope.

  20. Dynamics of altered surface layer formation on dissolving silicates

    Science.gov (United States)

    Daval, Damien; Bernard, Sylvain; Rémusat, Laurent; Wild, Bastien; Guyot, François; Micha, Jean Sébastien; Rieutord, François; Magnin, Valérie; Fernandez-Martinez, Alejandro

    2017-07-01

    The extrapolation of mineral dissolution kinetics experiments to geological timescales has frequently been challenged by the observation that mineral dissolution rates decrease with time. In the present study, we report a detailed investigation of the early stages of wollastonite dissolution kinetics, linking time-resolved measurements of wollastonite dissolution rate as a function of crystallographic orientation to the evolution of physicochemical properties (i.e., diffusivity, density, and thickness) of amorphous silica-rich layers (ASSLs) that developed on each surface. Batch dissolution experiments conducted at room temperature and at far-from-equilibrium conditions revealed that the initial (i.e., ASSL-free) dissolution rate of wollastonite (R(hkl)) based on Ca release observe the following trend: R(010) ≈R(100) >R(101) >R(001) . A gradual decrease of the dissolution rate of some faces by up to one order of magnitude resulted in a modification of this trend after two days: R(010) ≫R(100) ⩾R(101) ≈R(001) . In parallel, the diffusivity of ASSLs developed on each face was estimated based on the measurement of the concentration profile of a conservative tracer (methylene blue) across the ASSL using nanoSIMS. The apparent diffusion coefficients of methylene blue as a function of the crystallographic orientation (Dapp(hkl)) observe the following trend: Dapp(010) ⩾Dapp(100) >Dapp(101) ≫Dapp(001) , and decreases as a function of time for the (1 0 0) and (1 0 1) faces. Finally, the density of ASSL was estimated based on the modeling of X-ray reflectivity patterns acquired as a function of time. The density of ASSLs developed on the (0 1 0) faces remains low and constant, whereas it increases for the ASSLs developed on the (0 0 1) faces. On the whole, our results suggest that the impact of the formation of ASSLs on the wollastonite dissolution rate is anisotropic: while some crystal faces are weakly affected by the formation of non-passivating ASSLs (e

  1. Lithofacies Architecturing and Hydrocarbon Reservoir Potential of Lumshiwal Formation: Surghar Range, Trans-Indus Ranges, North Pakistan

    Directory of Open Access Journals (Sweden)

    Iftikhar Alam

    2015-12-01

    directed Paleo-current system prevailed during deposition of Lumshiwal Formation. Diagenetic and tectonically induced fractures make the formation exceedingly porous and permeable as suitable reservoir horizon for the accumulation of hydrocarbon in the Trans-Indus ranges. The same formation has already been proven as potential reservoir horizon for hydrocarbon in the Kohat Plateau of northwest Pakistan. Secondly, the formation is dominantly comprised of silica/quartz sandstone (quartzarenite which can be used as silica sand, one of the essential raw materials for glass industries. The formation is also comprised of local coal seams which can be mined for production of coal in the region.

  2. Cake layer formation in anaerobic submerged membrane bioreactors (AnSMBR) for wastewater treatment

    NARCIS (Netherlands)

    Jeison, D.; Lier, van J.B.

    2006-01-01

    Cake layer formation in anaerobic gas-sparged submerged membrane bioreactors was studied using the critical flux concept, at 30 and 55 °C. The impact of biomass concentration, from 25 to 50 g TSS/L, and superficial gas velocity, up to 70 m/h, of over cake layer formation was studied, using response

  3. Nile red detection of bacterial hydrocarbons and ketones in a high-throughput format.

    Science.gov (United States)

    Pinzon, Neissa M; Aukema, Kelly G; Gralnick, Jeffrey A; Wackett, Lawrence P

    2011-01-01

    A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone production as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones.

  4. Polycyclic aromatic hydrocarbons and dust in regions of massive star formation

    NARCIS (Netherlands)

    Peeters, Els

    2002-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are known on earth as a large family of tarry materials naturally present in for example coal and crude oil. In addition, they are also formed in the combustion of all sorts of carbonaceous fuels and hence are found in auto exhaust, cigarette smoke, candle soo

  5. Polycyclic aromatic hydrocarbons and dust in regions of massive star formation

    NARCIS (Netherlands)

    Peeters, Els

    2002-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are known on earth as a large family of tarry materials naturally present in for example coal and crude oil. In addition, they are also formed in the combustion of all sorts of carbonaceous fuels and hence are found in auto exhaust, cigarette smoke, candle

  6. PRESSURE DRIVEN CONDUCTING POLYMER MEMBRANES DERIVED FROM LAYER BY LAYER FORMATION AND CHARACTERIZATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    IZZATI IZNI YUSOFF

    2016-08-01

    Full Text Available The layer-by-layer method is a technique used for the fabrication of ultra-thin defect free films which involves alternating sequential adsorption of polycations and polyanions, while conducting polymer is characterized by a conjugated structure of alternating single and double bonds. The use of layer-by-layer in producing a membrane for separation has received considerable interest due to its properties. However, the introduction of conducting polymer as a base membrane is relatively new. Therefore, in this review, we discuss in detail three types of LBL techniques (dip, spin and spray layer-by-layer along with their parameters. We will also summarize current developments on the characterization of modified membrane prepared using the layer-by-layer techniques in terms of morphology, physical and chemical properties, and separation performances.

  7. LOW TEMPERATURE FORMATION OF NITROGEN-SUBSTITUTED POLYCYCLIC AROMATIC HYDROCARBONS (PANHs)—BARRIERLESS ROUTES TO DIHYDRO(iso)QUINOLINES

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Dorian S. N.; Yang, Tao; Dangi, Beni B.; Kaiser, Ralf I. [Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Bera, Partha P.; Lee, Timothy J., E-mail: ralfk@hawaii.edu, E-mail: Timothy.J.Lee@nasa.gov [Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035 (United States)

    2015-12-20

    Meteorites contain bio-relevant molecules such as vitamins and nucleobases, which consist of aromatic structures with embedded nitrogen atoms. Questions remain over the chemical mechanisms responsible for the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) in extraterrestrial environments. By exploiting single collision conditions, we show that a radical mediated bimolecular collision between pyridyl radicals and 1,3-butadiene in the gas phase forms nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) 1,4-dihydroquinoline and to a minor amount 1,4-dihydroisoquinoline. The reaction proceeds through the formation of a van der Waals complex, which circumnavigates the entrance barrier implying it can operate at very low kinetic energy and therefore at low temperatures of 10 K as present in cold molecular clouds such as TMC-1. The discovery of facile de facto barrierless exoergic reaction mechanisms leading to PANH formation could play an important role in providing a population of aromatic structures upon which further photo-processing of ice condensates could occur to form nucleobases.

  8. Formation and growth model of B-Al permeation layer of Steel 45

    Institute of Scientific and Technical Information of China (English)

    吉泽升; 李庆芬; 李冬华

    2002-01-01

    The B-Al permeation layers of Steel 45 were studied by means of SEM, TEM and XRD. The formation and growth model of permeation layer was proposed. The layer formation, growth and the migration behaviors of B were discussed. It is suggested that the diffusion of Al is deferred when the surface was covered by borides and aluminize compounds are surrounded by borides with the further growing of borides.

  9. Field-induced layer formation in dipolar nanofilms.

    Science.gov (United States)

    Jordanovic, Jelena; Klapp, Sabine H L

    2008-07-18

    Using molecular dynamics simulations, we demonstrate that the layering of confined colloidal particles with dipolar interactions, such as ferrofluids, in slablike geometries can be controlled by homogeneous external fields. For suitable surface separations, strong fields directed perpendicular to the film plane do not only align the particles but create additional layers in the system. The reverse effect occurs with an in-plane field which can induce a collapse of layers. Both effects are accompanied by pronounced particle rearrangements in lateral directions. Our simulation results are consistent with recent experiments of ferrofluids at surfaces.

  10. Measurement of ion species produced due to bombardment of 450 eV N{sub 2}{sup +} ions with hydrocarbons-covered surface of tungsten: Formation of tungsten nitride

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Bhatt, P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Singh, B.K.; Singh, B.; Prajapati, S. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Shanker, R., E-mail: shankerorama@gmail.com [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India)

    2016-08-01

    A laboratory experiment has been performed to study the ions that are produced due to collisions of 450 eV N{sub 2}{sup +} ions with a hydrocarbons-covered surface of polycrystalline tungsten at room temperature. Using a TOF mass spectrometry technique, the product ions formed in these collisions have been detected, identified and analyzed. Different ion–surface reaction processes, namely, neutralization, reflection, surface induced dissociation, surface induced chemical reactions and desorption are observed and discussed. Apart from the presence of desorbed aliphatic hydrocarbon and other ions, the mass spectra obtained from the considered collisions show the formation and sputtering of tungsten nitride (WN). A layer of WN on tungsten surface is known to decrease the sputtering of bulk tungsten in fusion devices more effectively than when the tungsten is bombarded with other seeding gases (He, Ar). It is further noted that there is a negligible diffusion of N in the bulk tungsten at room temperature.

  11. Ab initio heats of formation for chlorinated hydrocarbons: Allyl chloride, cis- and trans-1-chloropropene, and vinyl chloride

    Science.gov (United States)

    Colegrove, Brenda Thies; Thompson, Tyler B.

    1997-01-01

    Ab initio molecular energies at several levels of theory (MP4/6-311G**//MP2/6-31G*, MP4/6-311+G**//MP2/6-31G*,G1, and G2) are used to determine the heats of formation of several chlorinated hydrocarbons (allyl chloride, cis- and trans-1-chloropropene, and vinyl chloride) from atomization and isodesmic reactions. More than one isodesmic reaction was investigated for each molecule. Inconsistencies between the results from isodesmic reactions for a given molecule indicated possible errors in the experimental heats of formation for some of the chlorinated molecules used as references in the isodesmic reactions (in particular 1-chloropropane and 2-chloropropane). To further examine this possibility we did a multivariate regression for the G2 calculated reaction enthalpies for the 30 isodesmic reactions. In the regression, the heats of formation of the hydrocarbons and CH3Cl were fixed at the experimental values. The heats of formation of all the other chlorinated hydrocarbons were varied. The heats of formation determined using this method were: ΔHf298(CH2Cl2)=-22.6 kcal/mole, ΔHf298(CHCl=Cl2)=5.0 kcal/mole, ΔHf298(CCl2=CH2)=-0.2 kcal/mole, ΔHf298(CH2Cl-CH3)=-27.0 kcal/mole, ΔHf298(c-CHCl=CH-CH3)=-3.1 kcal/mole, ΔHf298(t-CHCl=CH-CH3)=-2.8 kcal/mole, ΔHf298(CH2=CClCH3)=-5.4 kcal/mole, ΔHf298(CH2=CH-CH2Cl)=-0.8 kcal/mole, ΔHf298(CH2Cl-CH2-CH3) =-32.2 kcal/mole, ΔHf298(CH3-CHCl-CH3 )=-35.9 kcal/mole. The calculated heats of formation were used to derive the following Benson group enthalpy values: C-(Cl)(H)2(Cd)=-15.6 kcal/mole, Cd-(Cl)(H)=-1.3 kcal/mole, and cis-halogen-alkyl =-0.3 kcal/mole.

  12. Visualization and characterization of interfacial polymerization layer formation

    NARCIS (Netherlands)

    Zhang, Yali; Benes, Nieck E.; Lammertink, Rob G.H.

    2015-01-01

    We present a microfluidic platform to visualize the formation of free-standing films by interfacial polymerization. A microfluidic device is fabricated, with an array of micropillars to stabilize an aqueous–organic interface that allows a direct observation of the films formation process via optical

  13. Formation of the Surface Space Charge Layer in Fair Weather

    Science.gov (United States)

    Redin, Alexander; Kupovykh, Gennady; Boldyreff, Anton

    2014-05-01

    It is widely known that the positive space charge, caused by electrode effect action, is obtained near surface in fair weather. Space charge density depends on the different local features: meteorological conditions, aerosol particles concentration, convective transfer of the surface layer. Namely space charge determines the local variations of electric field. Space charge could be negative in condition of strong ionization rate in thin air layer near surface. The electrodynamic model, consisting of transfer equations of light ions and nucleuses, generated by interactions between lights ions and aerosol particles, and Poisson equation. The turbulent transfer members, electric field near the surface, the mobility of positive and negative ions, recombination coefficient, ionization rate, the number of elementary charges on the nuclei were took into account in the model equations. The time-space variations of positive and negative small and heavy ions, electric field, electrical conductivity, current density and space charge, depending on aerosol particles concentrations, turbulence and convective transfer ionization rate, aerosol particles size and number of charged on the particles are calculated. The mechanisms of turbulent and convection-turbulent surface layer electrodynamic structure forming in dependence of single and multi-charged aerosol particles for different physical and meteorological conditions are investigated. Increasing of turbulent mixing intensity leads to increasing of character electrode layer thickness, decreasing of space charge density value, decreasing of electric current conductivity value. The electrode effect of the whole layer remains constant. Increasing of aerosol particles concentration leads to decreasing of electrode effect within the whole electrode layer and increasing of electric field values, decreasing of space charge density values and current conductivity density. It was received that increasing of the aerosol particles

  14. Photoirradiation of representative polycyclic aromatic hydrocarbons and twelve isomeric methylbenz[a]anthracene with UVA light: formation of lipid peroxidation.

    Science.gov (United States)

    Xia, Qingsu; Chou, Ming W; Yin, Jun J; Howard, Paul C; Yu, Hongtao; Fu, Peter P

    2006-05-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread genotoxic environmental pollutants, which require metabolic activation in order to exert biological activities, including mutagenicity and carcinogenicity. Photoactivation is another activation pathway that can lead to PAH genotoxicity. In this paper, we demonstrate that photoirradiation of a series of representative PAHs, with and without bearing a methyl substituent, with UVA light in the presence of methyl linoleate resulted in the formation of methyl linoleate hydroperoxides (a lipid peroxide). The lipid peroxide formation was inhibited by dithiothreitol (DTT) (free radical scavenger), NaN3 (singlet oxygen and free radical scavenger), and superoxide dismutase (SOD) (superoxide scavenger), but was enhanced by the presence of deuterium oxide (D2O) (extends singlet oxygen lifetime). These results suggest that photoirradiation of PAHs by UVA light generates reactive oxygen species (ROS), which induce lipid peroxidation.

  15. Short-lived brominated hydrocarbons – observations in the source regions and the tropical tropopause layer

    Directory of Open Access Journals (Sweden)

    S. Brinckmann

    2012-02-01

    Full Text Available We conducted measurements of the five important short-lived organic bromine species in the marine boundary layer (MBL. Measurements were made in the Northern Hemisphere mid-latitudes (Sylt Island, North Sea in June 2009 and in the tropical Western Pacific during the TransBrom ship campaign in October 2009. For the one-week time series on Sylt Island, mean mixing ratios of CHBr3, CH2Br2, CHBr2Cl and CH2BrCl were 2.0, 1.1, 0.2, 0.1 ppt, respectively. We found maxima of 5.8 and 1.6 ppt for the two main components CHBr3 and CH2Br2. Along the cruise track in the Western Pacific (between 41° N and 13° S we measured mean mixing ratios of 0.9, 0.9, 0.2, 0.1 and 0.1 ppt for CHBr3, CH2Br2, CHBrCl2, CHBr2Cl and CH2BrCl. Air samples with coastal influence showed considerably higher mixing ratios than the samples with open ocean origin. Correlation analyses of the two data sets yielded strong linear relationships between the mixing ratios of four of the five species (except for CH2BrCl. Using a combined data set from the two campaigns and a comparison with the results from two former studies, rough estimates of the molar emission ratios between the correlated substances were: 9/1/0.35/0.35 for CHBr3/CH2Br2/CHBrCl2/CHBr2Cl. Additional measurements were made in the tropical tropopause layer (TTL above Teresina (Brazil, 5° S in June 2008, using balloon-borne cryogenic whole air sampling technique. Near the level of zero clear-sky net radiative heating (LZRH at 14.8 km about 2.25 ppt organic bromine was bound to the five short-lived species, making up 13% of total organic bromine (17.82 ppt. CH2Br2 (1.45 ppt and CHBr3 (0.56 ppt accounted for 90% of the budget of short-lived compounds in that region. Near the

  16. Defect formation in single layer graphene under extreme ultraviolet irradiation

    NARCIS (Netherlands)

    Gao, An; Zoethout, E.; Zoethout, E.; Sturm, Jacobus Marinus; Lee, Christopher James; Bijkerk, Frederik

    2014-01-01

    We study extreme ultraviolet (EUV) radiation induced defects in single-layer graphene. Two mechanisms for inducing defects in graphene were separately investigated: photon induced chemical reactions between graphene and background residual gases, and breaking sp2 bonds, due to photon and/or photoele

  17. WS2 layer formation on multi-walled carbon nanotubes

    Science.gov (United States)

    Whitby, R. L. D.; Hsu, W. K.; Boothroyd, C. B.; Brigatti, K. S.; Kroto, H. W.; Walton, D. R. M.

    Time-dependent powder X-ray-diffraction analyses reveal that the conversion of WO3 into WS2 on carbon nanotube surfaces in the presence of H2S is a one-step process. The WS2 layers grow simultaneously along the tube in the radial and axial directions.

  18. Estimation of subsurface formation temperature in the Tarim Basin, northwest China: implications for hydrocarbon generation and preservation

    Science.gov (United States)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2016-07-01

    Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the

  19. The salivary mucin MUC5B and lactoperoxidase can be used for layer-by-layer film formation.

    Science.gov (United States)

    Lindh, Liselott; Svendsen, Ida E; Svensson, Olof; Cárdenas, Marité; Arnebrant, Thomas

    2007-06-01

    In situ ellipsometry was used to study layer-by-layer film formation on hydrophilic and hydrophobized silica surfaces by alternating sequential adsorption of human mucin MUC5B and cationic proteins lysozyme, lactoferrin, lactoperoxidase or histatin 5, respectively. The stability of the multilayers was investigated by addition of sodium dodecyl sulfate solution (SDS). Atomic force microscopy was employed to investigate morphological structures on the surfaces during the layer-by-layer film build-up. It was clearly shown that, on both hydrophilic and hydrophobized silica, only MUC5B and lactoperoxidase showed the ability for multilayer formation, resulting in an approximately linear increase in adsorbed amount and film thickness with each deposition cycle. The net increase in amounts per cycle was larger on the hydrophilic silica. Further, MUC5B needs to be adsorbed first on the hydrophilic substrates to obtain this fast build-up behavior. Generally, addition of SDS solution showed that a large fraction of the adsorbed film could be desorbed. However, films on the hydrophobized silica were more resistant to surfactant elution. In conclusion, MUC5B-cationic protein multilayers can be formed on hydrophilic and hydrophobized silica, depending on the choice of the cationic protein as well as in which order the build-up is started on hydrophilic silica. Additionally, SDS disrupts the layer-by-layer film formed by MUC5B and lactoperoxidase.

  20. Paraselectivity and Formation of Aromatic Hydrocarbons over ZSM-5 Type Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Unneberg, E.

    1996-12-31

    The zeolite ZSM-5, patented by Mobil Oil Corporation in 1972, is able to convert methanol to gasoline (MTG) and water. Due to the size of the channels, undesired hydrocarbons larger than C{sub 11} are not present in the mixture, and a high octane gasoline is obtained. This has aroused a great deal of interest in the ZSM-5. Rather than being concerned with energy considerations, this doctoral thesis describes syntheses of ZSM-5 and discusses the ZSM-5 as such and studies the possible paraselectivities in various reactions over the catalyst ZSM-5. 774 refs., 113 figs., 54 tabs.

  1. Nanoparticle layer deposition for highly controlled multilayer formation based on high-coverage monolayers of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V., E-mail: andrewt@udel.edu

    2016-01-01

    This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers — nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. - Highlights: • We investigate the formation of high-coverage monolayers of nanoparticles. • We use “click chemistry” to form these monolayers. • We form multiple layers based on the same strategy. • We confirm the formation of covalent bonds

  2. Treating tar sands formations with dolomite

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J.; Karanikas, John Michael

    2013-10-15

    A method for treating a karsted formation containing heavy hydrocarbons and dolomite includes providing heat to at least part of one or more karsted layers in the formation from one or more heaters located in the karsted layers. A temperature in at least one of the karsted layers is allowed to reach a decomposition temperature of dolomite in the formation. The dolomite is allowed to decompose and at least some hydrocarbons are produced from at least one of the karsted layers of the formation.

  3. Formation of Polycyclic Aromatic Hydrocarbons and Nitrogen Containing Polycyclic Aromatic Compounds in Titan's Atmosphere, the Interstellar Medium and Combustion

    Science.gov (United States)

    Landera, Alexander

    2013-12-01

    Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards

  4. Formation mechanism of the protective layer in a blast furnace hearth

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng

    2015-10-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  5. Formation mechanism of the protective layer in a blast furnace hearth

    Institute of Scientific and Technical Information of China (English)

    Ke-xin Jiao; Jian-liang Zhang; Zheng-jian Liu; Meng Xu; Feng Liu

    2015-01-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy?energy dispersive spectroscopy, and X-ray dif-fraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of ti-tanium-bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  6. Nonlinear waves in stratified Taylor--Couette flow. Part 1. Layer formation

    CERN Document Server

    Leclercq, Colin; Augier, Pierre; Caulfield, Colm-Cille P; Dalziel, Stuart B; Linden, Paul F

    2016-01-01

    This paper is the first part of a two-fold study of mixing, i.e. the formation of layers and upwelling of buoyancy, in axially stratified Taylor--Couette flow, with fixed outer cylinder. Using linear analysis and direct numerical simulation, we show the critical role played by non-axisymmetric instability modes, despite the fact that the flow is centrifugally unstable in the sense of Rayleigh's criterion. Interactions between helical modes of opposite handedness leads to the formation of nonlinear coherent structures: (mixed)-ribbons and (mixed)-cross-spirals. These give birth to complex density interface patterns, seemingly appearing and disappearing periodically as the coherent structure slowly rotates around the annulus. These coherent structures seem to be responsible for the formation of layers reported in a recent experiment by Oglethorpe et al. (2013). We distinguish `dynamic layering', instantaneous, localized and caused by the vortical motions, from `static layering' corresponding to the formation of...

  7. Visualization and characterization of interfacial polymerization layer formation.

    Science.gov (United States)

    Zhang, Yali; Benes, Nieck E; Lammertink, Rob G H

    2015-01-21

    We present a microfluidic platform to visualize the formation of free-standing films by interfacial polymerization. A microfluidic device is fabricated, with an array of micropillars to stabilize an aqueous-organic interface that allows a direct observation of the films formation process via optical microscopy. Three different amines are selected to react with trimesoyl chloride: piperazine, JEFFAMINE(®)D-230, and an ammonium functionalized polyhedral oligomeric silsesquioxane. Tracking the formation of the free-standing films in time reveals strong effects of the characteristics of the amine precursor on the morphological evolution of the films. Piperazine exhibits a rapid reaction with trimesoyl chloride, forming a film up to 20 μm thick within half a minute. JEFFAMINE(®)D-230 displays much slower film formation kinetics. The location of the polymerization reaction was initially in the aqueous phase and then shifted into the organic phase. Our in situ real-time observations provide information on the kinetics and the changing location of the polymerization. This provides insights with important implications for fine-tuning of interfacial polymerizations for various applications.

  8. Sedimentary facies and hydrocarbon accumulation in the Third member of Shahejie Formation in Beijing-Tianjin Depression

    Energy Technology Data Exchange (ETDEWEB)

    Jin, X.; Zhang, Z.

    1986-01-01

    The exploration practice in the Beijing-Tianjin area shows that the key point of improving seismic interpretation level in a complex district lies in the high accuracy of seismic work, extraction of available seismic information and the use of the comprehensive interpretation method basing on both structure interpretation and seismic stratigraphy. This paper presents the geological interpretation results of analyzing the Third member of Shahejie Formation in Beijing-Tianjin Depression by using the method stated above. It describes the seismic facies, sedimentary facies as well as the generation, accumulation and distribution of hydrocarbons, and points out that the lower part of the member is a subaqueous fan and point bar deposit, while the middle part is a fan-delta deposit. According to the thermo-evolution-profile and TTI estimated, it is assumed that the lower part of the member is source rock with sandstone development and is also a very good reservoir rock because of having two sets of source rock reservoir and seal rock. Having structures such as Jiuzhou anticline and its down dip and Liuquan fault structure, it is favorable for hydrocarbon accumulation. 4 figures.

  9. N2Vision technology application for direct identification of commercial hydrocarbons in Trenton-Black River Formations of Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Agou, S. [Productive Geoscience Exploration Inc., Whitby, ON (Canada)

    2006-07-01

    N2Vision seismic signal interpretation technology has been used to evaluate the petroleum and natural gas potential in the Trenton-Black River (TBR) formations of Ontario. The technology was developed in Russia in the 1980s to solve complex problems in frontier exploration. The N2Vision neural networks algorithm is a multilayer feed-forward neural network (MFFN) for pattern recognition and is based on data from existing wells collected over 20 years of method application. The algorithm recognizes hydrocarbons by establishing relationships between all attributes of the seismic field and data from existing wells. In Ontario, the algorithm was trained on data from many productive and non-productive wells from the researched and adjacent fields, as well as on seismic patterns of geological features obtained from the Yurubchen-Tokhom oil field in easter Siberia. The 2D seismic data was collected by different companies. It targeted shallower horizons and had non-consistent quality. The results of N2Vision were shown to be well correlated with the objective data. The common geological features of southern Ontario, Yurubchen field and the Baltic Syneclise were presented in this paper. All 3 regions are found in specific geodynamically prestressed and heated up zones that are represented primarily by shallow carbonates, leaching dolomites and highly permeable reservoirs with vertical fracturing. This paper demonstrated that the technology can greatly reduce the risk of selecting drilling locations, while significantly decreasing the cost of hydrocarbon exploration. tabs., figs.

  10. Formation of Combustible Hydrocarbons and H2 during Photocatalytic Decomposition of Various Organic Compounds under Aerated and Deaerated Conditions

    Directory of Open Access Journals (Sweden)

    Sylwia Mozia

    2014-11-01

    Full Text Available A possibility of photocatalytic production of useful aliphatic hydrocarbons and H2 from various organic compounds, including acetic acid, methanol, ethanol and glucose, over Fe-modified TiO2 is discussed. In particular, the influence of the reaction atmosphere (N2, air was investigated. Different gases were identified in the headspace volume of the reactor depending on the substrate. In general, the evolution of the gases was more effective in air compared to a N2 atmosphere. In the presence of air, the gaseous phase contained CO2, CH4 and H2, regardless of the substrate used. Moreover, formation of C2H6 and C3H8 in the case of acetic acid and C2H6 in the case of ethanol was observed. In case of acetic acid and methanol an increase in H2 evolution under aerated conditions was observed. It was concluded that the photocatalytic decomposition of organic compounds with simultaneous generation of combustible hydrocarbons and hydrogen could be a promising method of “green energy” production.

  11. Molecular dynamics modeling of defect formation in many-layer hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-12-15

    Molecular dynamics simulations are conducted to examine lattice defect formation in a hexagonal boron nitride lattice by high-energy xenon ion impact. This work seeks to characterize the production of defects which occur under ion irradiation. Lattice defect formation is first examined in single-layer hexagonal boron nitride. Energetic xenon ions over a range of 10 eV–10 keV are used to randomly impact the central lattice at an angle of 90° (orthogonal to the lattice basal plane). The resulting defects are analyzed for 5000 ion impacts, and results are reported for average single and double vacancy formation per impact. A similar study is conducted for a many-layer hexagonal boron nitride lattice, to assess the influence of additional layers in the formation of point defects as a function of incident ion energy. Ion impacts at both 90° and 45° are examined. The defects formed in the top layer of the many-layer lattice are qualitatively similar to the single layer results, but the presence of the bulk lattice is found to reduce the single vacancy probability in the top-most layer. Point defects are prominent in the lattice sub-layers with increasing ion energy. Orthogonal ion impacts are found to cause the most damage, as measured by the number of vacancy defects produced; the number of vacancies increases linearly with energy, while the number of defects in the oblique impact configuration reaches an asymptotic limit with increasing energy.

  12. Creating and maintaining a gas cap in tar sands formations

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX); Dinkoruk, Deniz Sumnu (Houston, TX); Wellington, Scott Lee (Bellaire, TX)

    2010-03-16

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  13. On contribution of horizontal and intra-layer convection to the formation of the Baltic Sea cold intermediate layer

    Directory of Open Access Journals (Sweden)

    I. Chubarenko

    2010-02-01

    Full Text Available Seasonal cascades down the coastal slopes and intra-layer convection are considered as the two additional mechanisms contributing to the Baltic Sea cold intermediate layer (CIL formation along with conventional seasonal vertical mixing. Field measurements are presented, reporting for the first time the possibility of denser water formation and cascading from the Baltic Sea underwater slopes, which take place under fall and winter cooling conditions and deliver waters into intermediate layer of salinity stratified deep-sea area. The presence in spring within the CIL of water with temperature below that of maximum density (Tmd and that at the local surface in winter time allows tracing its formation: it is argued that the source of the coldest waters of the Baltic CIL is early spring (March–April cascading, arising due to heating of water before reaching the Tmd. Fast increase of the open water heat content during further spring heating indicates that horizontal exchange rather than direct solar heating is responsible for that. When the surface is covered with water, heated above the Tmd, the conditions within the CIL become favorable for intralayer convection due to the presence of waters of Tmd in intermediate layer, which can explain its well-known features – the observed increase of its salinity and deepening with time.

  14. Formation of Degenerate Band Gaps in Layered Systems

    Directory of Open Access Journals (Sweden)

    Alexey P. Vinogradov

    2012-06-01

    Full Text Available In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed.

  15. Arbuscular mycorrhizal fungi (AMF on a sandbank plant formation: ecology and potential for hydrocarbon oil mycorrhizoremediation

    Directory of Open Access Journals (Sweden)

    Ocimar Ferreira de Andrade

    2016-04-01

    Full Text Available The sources of contamination related to the exploration, production, storage, transport, distribution and disposal of petroleum, and its products, carry risks that threaten fragile coastal environments, little studied and, thus, in need of attention from the scientific community. On the other hand, symbiont mechanisms essential for the very existence of many plant species, and their relation to contaminated soils, remain unknown. Despite the identification of several species of AMF halophytes soil communities in sandbanks, one can infer their bioremediation potential from studies in other types of soil, which, however, report the same genera of fungi as participants in mycorrhizoremediation processes of polluted soil. This study focuses on the application of biotechnology using Arbuscular Mycorrhizal Fungi (AMF in soils impacted by petroleum hydrocarbons.

  16. A model for thin layer formation by delayed particle settling at sharp density gradients

    Science.gov (United States)

    Prairie, Jennifer C.; White, Brian L.

    2017-02-01

    Thin layers - regions where plankton or particles accumulate vertically on scales of a few meters or less - are common in coastal waters, and have important implications for both trophic dynamics and carbon cycling. These features can form by a variety of biological and physical mechanisms, including localized growth, shear-thinning, and directed swimming. An additional mechanism may result in the formation of thin layers of marine aggregates, which have been shown to decrease their settling velocity when passing through sharp density gradients, a behavior termed delayed settling. Here, we apply a simple vertical advection-diffusion model to predict the properties of aggregate thin layers formed by this process. We assume a constant vertical flux of particles from the surface, which is parameterized by observations from laboratory experiments with marine aggregates. The formation, maintenance, and shape of the layers are described in relation to non-dimensional numbers that depend on environmental conditions and particle settling properties. In particular, model results demonstrate layer intensity and sharpness both increase with higher Péclet number (Pe), that is, under conditions with weaker mixing relative to layer formation. Similarly, more intense and sharper layers are found when the delayed settling behavior of aggregates is characterized by a lower velocity minimum. The model also predicts layers that are vertically asymmetric and highly "peaky" when compared with a Gaussian distribution, features often seen in thin layers in natural environments. Lastly, by comparing model predictions with observations of thin layers in the field, we are able to gain some insight into the applicability of delayed settling as a thin layer formation mechanism in different environmental conditions.

  17. Surface films of short fluorocarbon-hydrocarbon diblocks studied by molecular dynamics simulations: Spontaneous formation of elongated hemimicelles.

    Science.gov (United States)

    Piñeiro, Angel; Prieto, Gerardo; Ruso, Juan M; Verdes, Pedro V; Sarmiento, Félix

    2009-01-15

    Using grazing incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy (AFM) it has been recently demonstrated that linear fluorocarbon-hydrocarbon diblocks (FnHm) self-assemble in water/air interfaces forming elongated and circular hemimicelles. Those structures have been observed for diblocks with at least eight fluorinated carbons. Based on the lack of a collapse pressure for F6H16, and due to the fact that no stable surface pressure values are reached under compression, it has been concluded that these molecules do not form stable monolayers. It has been also suggested that F6H16 and shorter diblocks desorb from the water surface under compression. It is not easy to accept that a significant concentration of so hydrophobic molecules can be stable in aqueous solution even when the employed experimental techniques were not able to clearly detect a well defined structure on the interface. In the present work the adsorption and arrangement of F6H16 and F6H10 at the water surface are studied by molecular dynamics (MD) simulations as a function of the available area per molecule. Starting from a random mixture, the spontaneous formation of elongated hemimicelles is observed for both systems when the area per molecule is higher than approximately 50 A(2). For intermediate areas two pseudo-phases, one rich in hydrocarbons and the other with higher fluorocarbon concentration, are formed. For the systems with less than approximately 30 A(2) available per molecule the formation of multilayers is observed. This is the first time that the dynamics and structure of perfluoroalkane (PFA) films, and in particular of hemimicelles on a liquid surface, are observed and characterized at atomic level.

  18. Effects of hydrocarbon physical properties on caprock’s capillary sealing ability

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new mechanics formula of caprock’s capillary sealing ability has been established in this paper, in which the boundary layer resistance was considered and characterized by starting pressure gradient. The formula shows that capillary sealing ability of caprock is determined not only by the capillary force of rock and the buoyancy of hydrocarbon column, but also by the starting pressure gradient of hydrocarbons and the thickness of caprock. The buoyancy of hydrocarbon column, the starting pressure gradient of hydrocarbon, and the capillary force of caprock are affected by hydrocarbon density, hydrocarbon viscosity, and hydrocarbon-water interface tension respectively. Based on hydrocarbon property data of reservoirs of Jiyang Depression and equations from literature, the effects of hydrocarbon density, hydrocarbon viscosity, and hydrocarbon-water interface tension on the sealing ability of caprock are analyzed. Under formational conditions, the sealing ability of oil caprock can vary up to dozens times because of the variations of the oil density, oil viscosity, and oil-water interface tension. Thus, the physical characters of hydrocarbon should be considered when evaluating the capillary sealing ability of caprocks. Study of the effects of physical characters on sealing ability of caprock can provide guidance to exploring special physical property hydrocarbon resources, such as viscous oils, and hydrocarbon resources in special pressure-temperature environments.

  19. The Eocene Rusayl Formation, Oman, carbonaceous rocks in calcareous shelf sediments: Environment of deposition, alteration and hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H.G.; Wehner, H.; Kus, J. [Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover (Germany); Botz, R. [University Kiel, Geological-Paleontological Department, Olshausenstrasse 40-60, D-24118 Kiel (Germany); Berner, Z.; Stueben, D. [Technical University Karlsruhe, Institute for Mineralogy and Geochemistry, Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Al-Sayigh, A. [Sultan Qaboos University, Geological Dept. PO Box 36, Al-Khod (Oman)

    2007-10-01

    incursions make up a greater deal of the sedimentary record than mangrove swamps. Terra rossa paleosols mark the end of accumulation of organic material (OM) and herald supratidal conditions at the passage of Rusayl Formation into the overlying Seeb Formation. In the subtidal-supratidal cycles of lithofacies unit VIII the terra rossa horizons are thining upwards and become gradually substituted for by deep-water middle ramp sediments of lithofacies unit IX. Framboidal pyrite, (ferroan) dolomite with very little siderite are indicative of an early diagenetic alteration stage I under rather moderate temperatures of formation. During a subsequent stage II, an increase in the temperature of alteration was partly induced by burial and a high heat flow from the underlying Semail Ophiolite. Type-III kerogen originating from higher plants and, in addition, some marine biota gave rise to the generation of small amounts of soluble organic matter during this stage of diagenesis. The average reflectance of humic particles marks the beginning of the oil window and the production index reveals the existence of free hydrocarbons. Further uplift of the Eocene strata and oxidation during stage IIII caused veins of satin spar to form from organic sulfur and pyrite in the carbonaceous material. Lowering of the pH value of the pore fluid led to the precipitation of jarosite and a set of hydrated aluminum sulfates dependant upon the cations present in the wall rocks. AMD minerals (= acid mine drainage) are not very widespread in this carbonaceous series intercalated among calcareous rocks owing to the buffering effect of carbonate minerals. These carbonate-hosted carbonaceous rocks are below an economic level as far as the mining of coal is concerned, but deserves particular attention as source rocks for hydrocarbons in the Middle East, provided a higher stage of maturity is reached. (author)

  20. Phosphate mineral formation on the supported dipalmitoylphosphatidylcholine (DPPC) layers.

    Science.gov (United States)

    Szcześ, Aleksandra

    2014-07-01

    Dipalmitoylphosphatidylcholine (DPPC) mono- and bilayers supported on mica surface were soaked for two weeks in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. Two solutions were investigated: with and without Tris. The experiment was conducted at 20°C and at a physiological temperature equal to 37°C. Raman spectroscopy was used for the characterization of the precipitated phosphate minerals. These studies may provide information about the physiological mineralization of cell membranes that are mainly composed of phospholipids. Findings from these experiments suggest that the DPPC bilayers enhance the formation of less soluble phosphate forms especially at a temperature of 37°C. In the solution without Tris temperature increase gives more mineral deposits. It is probably the hydrogen interactions between phosphate groups of the phospholipid and hydroxyl groups from Tris that lower exposure of the phosphate group to interact with calcium ions.

  1. New-particle formation events in a continental boundary layer: first results from the SATURN experiment

    Directory of Open Access Journals (Sweden)

    F. Stratmann

    2003-01-01

    Full Text Available During the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.

  2. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    Directory of Open Access Journals (Sweden)

    J. Lauros

    2010-08-01

    Full Text Available We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical profile of particle number distribution does not correspond to observations. Instead organic induced nucleation leads to good agreement confirming the relevance of the aerosol formation mechanism including organic compounds emitted by biosphere.

    Simulation of aerosol concentration inside the atmospheric boundary layer during nucleation days shows highly dynamical picture, where particle formation is coupled with chemistry and turbulent transport. We have demonstrated suitability of our turbulent mixing scheme in reproducing most important characteristics of particle dynamics inside the atmospheric boundary layer. Deposition and particle flux simulations show that deposition affects noticeably only the smallest particles at the lowest part of the atmospheric boundary layer.

  3. Formation and degradation of layer-by-layer-assembled polyelectrolyte polyrotaxane capsules.

    Science.gov (United States)

    Dam, Henk H; Caruso, Frank

    2013-06-18

    We report the preparation of degradable capsules via layer-by-layer assembly using polyelectrolyte (PE) polyrotaxanes (PRXs). The PRX capsules were prepared by the sequential deposition of PRXs onto silica particles followed by the dissolution of the silica cores. The colloidal stability of the PRX capsules that are formed depends on the salt/buffer solution used in the assembly process. Various salt/buffer combinations were examined to avoid aggregation of the core-shell particles during PRX assembly and core dissolution. Using appropriate assembly conditions, we prepared colloidally stable, robust capsules. PRX capsules consisting of eight layers of PE PRXs had a wall thickness of ~15 nm. The degradation of the PRX capsules was demonstrated through the disassembly of the PE PRXs using glutathione, which cleaves the disulfide bonds linking the end-capping groups of the PE PRXs. Given the supramolecular noncovalent structure of PRXs and their adjustable properties, it is expected that PRXs will be used as building blocks for assembling advanced capsules with unique and tailored properties.

  4. Evidence from SOFIA Imaging of Polycyclic Aromatic Hydrocarbon Formation along a Recent Outflow in NGC 7027

    CERN Document Server

    Lau, R M; Sahai, R; Ressler, M E

    2016-01-01

    We report spatially resolved (FWHM$\\sim3.8-4.6"$) mid-IR imaging observations of the planetary nebula (PN) NGC 7027 taken with the 2.5-m telescope aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Images of NGC 7027 were acquired at 6.3, 6.6, 11.1, 19.7, 24.2, 33.6, and 37.1 $\\mu\\mathrm{m}$ using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST).The observations reveal emission from Polycyclic Aromatic Hydrocarbon (PAH) and warm dust ($T_D\\sim90$ K) from the illuminated inner edge of the molecular envelope surrounding the ionized gas and central star. The DustEM code was used to fit the spectral energy distribution of fluxes obtained by FORCAST and the archival infrared spectrum of NGC 7027 acquired by the Short Wavelength Spectrometer (SWS) on the Infrared Space Observatory (ISO). Best-fit dust models provide a total dust mass of $5.8^{+2.3}_{-2.6}\\times10^{-3}$ $\\mathrm{M}_\\odot$, where carbonaceous large ($a=1.5$ $\\mu$m) and very small ($a \\sim12\\AA$) grains, and PAHs ($...

  5. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  6. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX

    Directory of Open Access Journals (Sweden)

    S. S. Brown

    2013-05-01

    Full Text Available Organic compounds are a large component of aerosol mass, but organic aerosol (OA sources remain poorly characterized. Recent model studies have suggested nighttime oxidation of biogenic hydrocarbons as a potentially large OA source, but analysis of field measurements to test these predictions is sparse. We present nighttime vertical profiles of nitrogen oxides, ozone, VOCs and aerosol composition measured during low approaches of the NOAA P-3 aircraft to airfields in Houston, TX. This region has large emissions of both biogenic hydrocarbons and nitrogen oxides. The latter serves as a source of the nitrate radical, NO3, a key nighttime oxidant. Biogenic VOCs (BVOC and urban pollutants were concentrated within the nocturnal boundary layer (NBL, which varied in depth from 100–400 m. Despite concentrated NOx at low altitude, ozone was never titrated to zero, resulting in rapid NO3 radical production rates of 0.2–2.7ppbv h-1 within the NBL. Monoterpenes and isoprene were frequently present within the NBL and underwent rapid oxidation (up to 1ppbv h−1, mainly by NO3 and to a lesser extent O3. Concurrent enhancement in organic and nitrate aerosol on several profiles was consistent with primary emissions and with secondary production from nighttime BVOC oxidation, with the latter equivalent to or slightly larger than the former. Ratios of organic aerosol to CO within the NBL ranged from 14 to 38 μg m−3 OA/ppmv CO. A box model simulation incorporating monoterpene emissions, oxidant formation rates and monoterpene SOA yields suggested overnight OA production of 0.5 to 9 μg m−3.

  7. Formation of complex Al-N-C layer in aluminium by successive carbon and nitrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Uglov, V.V.; Cherenda, N.N. E-mail: info@research.bsu.unibel.by; Khodasevich, V.V.; Sokol, V.A.; Abramov, I.I.; Danilyuk, A.L.; Wenzel, A.; Gerlach, J.; Rauschenbach, B

    1999-01-01

    The results of Auger electron spectroscopy and transmission electron microscopy of the surface layer of aluminium after successive implantation by carbon and nitrogen ions are presented in this work. The energy of implanted ions is 40 keV. The implantation dose varies in the range (3.3-6.5)x10{sup 17} ions/cm{sup 2}. The findings show that successive implantation leads to the formation of two main layers in aluminium. The first layer is AlNC{sub x} (0layer with violated hcp. AlN structure, where carbon atoms form bonds with nitrogen atoms. The second layer contains disoriented Al{sub 4}C{sub 3} precipitates and carbon atoms migrated from the first layer. The mechanism of migration is discussed.

  8. Formation of complex Al-N-C layer in aluminium by successive carbon and nitrogen implantation

    Science.gov (United States)

    Uglov, V. V.; Cherenda, N. N.; Khodasevich, V. V.; Sokol, V. A.; Abramov, I. I.; Danilyuk, A. L.; Wenzel, A.; Gerlach, J.; Rauschenbach, B.

    1999-01-01

    The results of Auger electron spectroscopy and transmission electron microscopy of the surface layer of aluminium after successive implantation by carbon and nitrogen ions are presented in this work. The energy of implanted ions is 40 keV. The implantation dose varies in the range (3.3-6.5) × 10 17 ions/cm 2. The findings show that successive implantation leads to the formation of two main layers in aluminium. The first layer is AlNC x (0 < x < 0.5) layer with violated hcp. AlN structure, where carbon atoms form bonds with nitrogen atoms. The second layer contains disoriented Al 4C 3 precipitates and carbon atoms migrated from the first layer. The mechanism of migration is discussed.

  9. Unraveling the Timing of Fluid Migration and Trap Formation in the Brooks Range Foothills: A Key to Discovering Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Catherine L. Hanks

    2008-12-31

    Naturally occurring fractures can play a key role in the evolution and producibility of a hydrocarbon accumulation. Understanding the evolution of fractures in the Brooks Range/Colville basin system of northern Alaska is critical to developing a better working model of the hydrocarbon potential of the region. This study addressed this problem by collecting detailed and regional data on fracture distribution and character, structural geometry, temperature, the timing of deformation along the Brooks Range rangefront and adjacent parts of the Colville basin, and the in situ stress distribution within the Colville basin. This new and existing data then were used to develop a model of how fractures evolved in northern Alaska, both spatially and temporally. The results of the study indicate that fractures formed episodically throughout the evolution of northern Alaska, due to a variety of mechanisms. Four distinct fracture sets were observed. The earliest fractures formed in deep parts of the Colville basin and in the underlying Ellesmerian sequence rocks as these rocks experienced compression associated with the growing Brooks Range fold-and-thrust belt. The orientation of these deep basin fractures was controlled by the maximum in situ horizontal stress in the basin at the time of their formation, which was perpendicular to the active Brooks Range thrust front. This orientation stayed consistently NS-striking for most of the early history of the Brooks Range and Colville basin, but changed to NW-striking with the development of the northeastern Brooks Range during the early Tertiary. Subsequent incorporation of these rocks into the fold-and-thrust belt resulted in overprinting of these deep basin fractures by fractures caused by thrusting and related folding. The youngest fractures developed as rocks were uplifted and exposed. While this general order of fracturing remains consistent across the Brooks Range and adjacent Colville basin, the absolute age at any one

  10. Zintl layer formation during perovskite atomic layer deposition on Ge (001)

    Science.gov (United States)

    Hu, Shen; Lin, Edward L.; Hamze, Ali K.; Posadas, Agham; Wu, HsinWei; Smith, David J.; Demkov, Alexander A.; Ekerdt, John G.

    2017-02-01

    Using in situ X-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and density functional theory, we analyzed the surface core level shifts and surface structure during the initial growth of ABO3 perovskites on Ge (001) by atomic layer deposition, where A = Ba, Sr and B = Ti, Hf, Zr. We find that the initial dosing of the barium- or strontium-bis(triisopropylcyclopentadienyl) precursors on a clean Ge surface produces a surface phase that has the same chemical and structural properties as the 0.5-monolayer Ba Zintl layer formed when depositing Ba by molecular beam epitaxy. Similar binding energy shifts are found for Ba, Sr, and Ge when using either chemical or elemental metal sources. The observed germanium surface core level shifts are consistent with the flattening of the initially tilted Ge surface dimers using both molecular and atomic metal sources. Similar binding energy shifts and changes in dimer tilting with alkaline earth metal adsorption are found with density functional theory calculations. High angle angular dark field scanning transmission microscopy images of BaTiO3, SrZrO3, SrHfO3, and SrHf0.55Ti0.45O3 reveal the location of the Ba (or Sr) atomic columns between the Ge dimers. The results imply that the organic ligands dissociate from the precursor after precursor adsorption on the Ge surface, producing the same Zintl template critical for perovskite growth on Group IV semiconductors during molecular beam epitaxy.

  11. Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace

    Science.gov (United States)

    Mitra, Tamoghna; Saxén, Henrik

    2016-11-01

    The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.

  12. Formation of Nanoscale Intermetallic Phases in Ni Surface Layer at High Intensity Implantation of Al Ions

    Institute of Scientific and Technical Information of China (English)

    I.A.Bozhko; S.V.Fortuna; I.A.Kurzina; I.B.Stepanov; E.V.Kozlov; Yu.P. Sharkeev

    2004-01-01

    The results of experimental study of nanoscale intermetallic formation in surface layer of a metal target at ion implantation are presented. To increase the thickness of the ion implanted surface layer the high intensive ion implantation is used. Compared with the ordinary ion implantation, the high intensive ion implantation allows a much thicker modified surface layer. Pure polycrystalline nickel was chosen as a target. Nickel samples were irradiated with Al ions on the vacuum-arc ion beam and plasma flow source "Raduga-5". It was shown that at the high intensity ion implantation the fine dispersed particles of Ni3Al, NiAl intermetallic compounds and solid solution Al in Ni are formed in the nickel surface layer of 200 nm and thicker. The formation of phases takes place in complete correspondence with the Ni-Al phase diagram.

  13. Hydrocarbon pneumonia

    Science.gov (United States)

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  14. Bone-like apatite layer formation on the new resin-modified glass-ionomer cement.

    Science.gov (United States)

    Nourmohammadi, Jhamak; Sadrnezhaad, S K; Ghader, A Behnam

    2008-12-01

    In this study, the apatite-forming ability of the new resin-modified glass-ionomer cement was evaluated by soaking the cement in the simulated body fluid. The Fourier Transform Infrared (FTIR) spectrometer and X-Ray Diffraction (XRD) patterns of the soaked cement pointed to the creation of poorly crystalline carbonated apatite. It was found that the releasing of calcium ions from the soaked cement will dominate the undesirable effect of polyacrylic acid on apatite formation. Consequently, the ionic activity products (IAPs) of the apatite in the surrounding medium increased which accelerated apatite nucleation induced by the presence of the Si-OH and COOH groups. Accordingly, the apatite nuclei started to form via primary heterogeneous nucleation and continued by secondary nucleation. Therefore, nucleation and growth occurs as in the layer-by-layer mode so that finite numbers of monolayers are produced. Subsequent formation of film occurs by formation of discrete nuclei (layer-plus-island or SK growth).

  15. The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins

    NARCIS (Netherlands)

    Claessen, Dennis; Stokroos, Ietse; Deelstra, Heine J.; Penninga, Nynke A.; Bormann, Christiane; Salas, José A.; Dijkhuizen, Lubbert; Wösten, Han A.B.; Wosten, H.A B

    2004-01-01

    Streptomycetes form hydrophobic aerial hyphae that eventually septate into hydrophobic spores. Both aerial hyphae and spores possess a typical surface layer called the rodlet layer. We present here evidence that rodlet formation is conserved in the streptomycetes. The formation of the rodlet layer i

  16. The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins

    NARCIS (Netherlands)

    Claessen, Dennis; Stokroos, Ietse; Deelstra, Heine J.; Penninga, Nynke A.; Bormann, Christiane; Salas, José A.; Dijkhuizen, Lubbert; Wösten, Han A.B.; Wosten, H.A B

    2004-01-01

    Streptomycetes form hydrophobic aerial hyphae that eventually septate into hydrophobic spores. Both aerial hyphae and spores possess a typical surface layer called the rodlet layer. We present here evidence that rodlet formation is conserved in the streptomycetes. The formation of the rodlet layer i

  17. Pattern Formation in a Vibrated Granular Layer on an Inclined Base

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-Dong; MIAO Guo-Qing

    2008-01-01

    We carry out the simulations of pattern formation in a two-dimensional vibrated granular layer on an inclined base by molecular dynamics.It is found that the maximum amplitude of the pattern is greater at the lower part than at the higher part of the base,and is proportional to the thickness of the layer.Meanwhile,the wavelength varies non-monotonically as the inclined angle of the base is increased.

  18. Measuring Star-Formation Rates of AGNs and QSOs using a new calibration from Polycyclic Aromatic Hydrocarbon Emission

    Science.gov (United States)

    Papovich, Casey

    Understanding the coevolution of star-formation and supermassive black hole accretion is one of the key questions in galaxy formation theory. This relation is important for understanding why at present the mass in galaxy bulges (on scales of kpc) correlates so tightly with the mass of galaxy central supermassive blackholes (on scales of AU). Feedback from supermassive black hole accretion may also be responsible for heating or expelling cold gas from galaxies, shutting off the fuel for star-formation and additional black hole growth. Did bulges proceed the formation of black holes, or vice versa, or are they contemporaneous? Therefore, understanding the exact rates of star-formation and supermassive black hole growth, and how they evolve with time and galaxy mass has deep implications for how galaxies form. It has previously been nearly impossible to study simultaneously both star-formation and accretion onto supermassive black holes in galaxies because the emission from black hole accretion contaminates nearly all diagnostics of star-formation. The "standard" diagnostics for the star-formation rate (the emission from hydrogen, UV emission, midIR emission, far-IR emission, etc) are not suitable for measuring star-formation rates in galaxies with actively accreting supermassive blackholes. In this proposal, the researchers request NASA/ADP funding for an archival study using spectroscopy with the Spitzer Space Telescope to measure simultaneously the star-formation rate (SFR) and bolometric emission from accreting supermassive blackholes to understand the complex relation between both processes. The key to this study is that they will develop a new calibrator for SFRs in galaxies with active supermassive black holes based on the molecular emission from polycyclic aromatic hydrocarbons (PAHs), which emit strongly in the mid-IR (3 - 20 micron) and are very strong in spectra from the Spitzer Space Telescope. The PAH molecules exist near photo-dissociation regions, and

  19. Formation and manipulation of regular metallic nanoparticle arrays on bacterial surface layers: an advanced TEM study

    Science.gov (United States)

    Mertig, M.; Wahl, R.; Lehmann, M.; Simon, P.; Pompe, W.

    The template-directed formation of regular nanoparticle arrays on two-dimensional crystalline protein layers after their treatment with metal salt complexes was studied by transmission electron microscopy. For these investigations, bacterial surface layers (S layers), recrystallized in vitro into sheets and tube-shaped protein crystals with typical dimensions in the micrometer range, were used as the template. As identified by electron holography and scanning force microscopy, the S-layer tubes form alternating double layers when deposited onto a solid substrate surface. Two distinct pathways for the metal particle formation at the templates have been found: the site-specific growth of metal clusters by chemical reduction of the metal salt complexes, and the electron-beam induced growth of nanoparticles in the transmission electron microscope. Both mechanisms lead to regular arrays with particle densities > 6×1011cm-2. Nanoparticle formation by electron exposure takes exclusively place in the flat-lying double-layered protein tubes, where a sufficient amount of metal complexes can be accumulated during sample preparation.

  20. Spatially Resolved 3 um Spectroscopy of IRAS 22272+5435 Formation and Evolution of Aliphatic Hydrocarbon Dust in Proto-Planetary Nebula

    CERN Document Server

    Goto, M; Hayano, Y; Iye, M; Kamata, Y; Kanzawa, T; Kobayashi, N; Minowa, Y; Saint-Jacques, D J; Takami, H; Takato, N; Terada, H

    2003-01-01

    We present medium-resolution 3 um spectroscopy of the carbon-rich proto-planetary nebula IRAS 22272+5435. Spectroscopy with the Subaru Telescope adaptive optics system revealed a spatial variation of hydrocarbon molecules and dust surrounding the star. The ro-vibrational bands of acetylene (C2H2) and hydrogen cyanide (HCN) at 3.0 um are evident in the central star spectra. The molecules are concentrated in the compact region near the center. The 3.3 and 3.4 um emission of aromatic and aliphatic hydrocarbons is detected at 600--1300 AU from the central star. The separation of spatial distribution between gas and dust suggests that the small hydrocarbon molecules are indeed the source of solid material, and that the gas leftover from the grain formation is being observed near the central star. The intensity of aliphatic hydrocarbon emission relative to the aromatic hydrocarbon emission decreases with distance from the central star. The spectral variation is well matched to that of a laboratory analog thermally ...

  1. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    Science.gov (United States)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  2. Formation of unsaturated hydrocarbons in interstellar ice analogs by cosmic rays

    OpenAIRE

    Pilling, S.; Andrade, D. P. P.; Da Silveira, E.F.; Rothard, H.; Domaracka, A.; Boduch, P.

    2012-01-01

    The formation of double and triple C-C bonds from the processing of pure c-C6H12 (cyclohexane) and mixed H2O:NH3:c-C6H12 (1:0.3:0.7) ices by highly-charged, and energetic ions (219 MeV O^{7+} and 632 MeV Ni^{24+}) is studied. The experiments simulate the physical chemistry induced by medium-mass and heavy-ion cosmic rays in interstellar ices analogs. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accel\\'erat\\'eur National d'Ions Lourds) ...

  3. Model compound study of the pathways for aromatic hydrocarbon formation in soot.

    Energy Technology Data Exchange (ETDEWEB)

    Winans, R. E.; Tomczyk, N. A.; Hunt, J. E.; Solum, M. S.; Pugmire, R. J.; Jiang, Y. J.; Fletcher, T. H.; Univ. of Utah; Brigham Young Univ.

    2007-09-01

    As a follow-up of previous work on the flame pyrolysis of biphenyl and pyrene, a more detailed analysis of the pyrolytic products has been done using additional NMR data obtained on the whole soot sample correlated with detailed high-resolution and GC mass spectrometry data on the solvent-extracted portion of the same samples. These latter data complement the earlier NMR data with details of the pre-sooting structures, referred to as 'young soot', in pyrolyzed biphenyl samples collected at 1365, 1410, and 1470 K and pyrene at 1410 and 1470 K. The data reveal the roles played by free-radical-assisted polymerization reactions as well as the hydrogen-abstraction carbon-addition (HACA) reactions for the biphenyl pyrolysis. The mass spectroscopy data of pyrene describe a much different set of reactions due to polymerization which employs free-radical reactions of the pyrene due primarily to hydrogen abstraction followed by the formation of biaryl linkages at mass numbers up to five times that of the parent pyrene. Conceptual schema of reaction mechanisms are proposed to explain the formation pathways to materials detected in the soot extracts.

  4. Model compound study of the pathways for aromatic hydrocarbon formation in soot

    Energy Technology Data Exchange (ETDEWEB)

    Randall E. Winans; Nancy A. Tomczyk; Jerry E. Hunt; Mark S. Solum; Ronald J. Pugmire; Yi Jin Jiang; Thomas H. Fletcher [University of Utah, Salt Lake City, UT (United States). Department of Chemistry

    2007-07-01

    A previous study was conducted to determine the early sooting pathways of biphenyl and pyrene. Soot/pah samples from biphenyl were collected in a fuel-rich flat-flame burner at temperatures of 1365, 1410, and 1470 K and from pyrene at 1410 and 1470K. A more detailed analysis of the pyrolitic products has been performed using additional NMR data obtained on the whole soot sample correlated with detailed high resolution as well as GC mass spectrometry data on the solvent extracted portion of the same samples. These latter data complement the earlier NMR data with details of the pre-sooting structures, referred to as 'young soot.' The data reveal the roles played by free radical assisted polymerization reactions as well as the hydrogen abstraction carbon addition (HACA) reactions for the biphenyl pyrolysis. The mass spectroscopy data of pyrene describe a much different set of reactions due to polymerization which employs free radical reactions of the pyrene due primarily to hydrogen abstraction followed by the formation of biaryl linkages at mass numbers up to five times that of the parent pyrene. Conceptual schema of reaction mechanisms are proposed to explain the formation pathways to materials detected in the soot extracts. 21 refs., 6 figs., 4 tabs.

  5. Heating tar sands formations to visbreaking temperatures

    Science.gov (United States)

    Karanikas, John Michael; Colmenares, Tulio Rafael; Zhang, Etuan; Marino, Marian; Roes, Augustinus Wilhelmus Maria; Ryan, Robert Charles; Beer, Gary Lee; Dombrowski, Robert James; Jaiswal, Namit

    2009-12-22

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  6. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2007-10-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitrogen oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to formation of SOA, with a total production nearly equal that of toluene and xylene combined. In total, while only 39% percent of the aromatic species react via the low-NOx pathway, 72% of the aromatic SOA is formed via this mechanism. Predicted SOA concentrations from aromatics in the Eastern United States and Eastern Europe are actually largest during the summer, when the [NO]/[HO2] ratio is lower. Global production of SOA from aromatic sources is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Compared to recent observations, it would appear there are additional pathways beyond those

  7. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2008-05-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2–12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for

  8. BMP-2 gene-fibronectin-apatite composite layer enhances bone formation

    Directory of Open Access Journals (Sweden)

    Sogo Yu

    2011-08-01

    Full Text Available Abstract Background Safe and efficient gene transfer systems are needed for tissue engineering. We have developed an apatite composite layer including the bone morphogenetic protein-2 (BMP-2 gene and fibronectin (FB, and we evaluated its ability to induce bone formation. Methods An apatite composite layer was evaluated to determine the efficiency of gene transfer to cells cultured on it. Cells were cultured on a composite layer including the BMP-2 gene and FB, and BMP-2 gene expression, BMP-2 protein concentrations, alkaline phosphatase (ALP activity, and osteocalcin (OC concentrations were measured. A bone defect on the cranium of rats was treated with hydroxyapatite (HAP-coated ceramic buttons with the apatite composite layer including the BMP-2 gene and FB (HAP-BMP-FB. The tissue concentration of BMP-2, bone formation, and the expression levels of the BMP-2, ALP, and OC genes were all quantified. Results The apatite composite layer provided more efficient gene transfer for the cultured cells than an apatite composite layer without FB. The BMP-2 concentration was approximately 100~600 pg/mL in the cell-culture medium. Culturing the cells on the apatite composite layer for 27 days increased ALP activity and OC concentrations. In animal experiments, the tissue concentrations of BMP-2 were over 100 pg/mg in the HAP-BMP-FB group and approximately 50 pg/mg in the control groups. Eight weeks later, bone formation was more enhanced in the HAP-BMP-FB group than in the control groups. In the tissues surrounding the HAP button, the gene expression levels of ALP and OC increased. Conclusion The BMP-2 gene-FB-apatite composite layer might be useful for bone engineering.

  9. Hydrocarbon source potential of the Santiago Formation, Oriente Basin, SE of Ecuador

    Science.gov (United States)

    Gaibor, J.; Hochuli, J. P. A.; Winkler, W.; Toro, J.

    2008-03-01

    The Santiago Formation (Late Hettangian-Sinemurian), described in the area of Santiago in the Oriente Basin of eastern Ecuador, consists of three distinct sedimentary members. The Santiago River Member is composed of limestones and calcareous sandstones. The Yuquianza Member is a monotonous sequence of black shales. The Patuca Member consists of a sequence of sandstones, greywackes, and shales, intercalated with lava flows and dikes. The fine-grained sediments of the three members are characterized by a high content of particulate organic matter (POM). Palynofacies and rock-eval analyses indicate the predominance of kerogen types II and III, with HI values that indicate a moderate to low source potential. At the type locality, the organic matter is thermally mature and locally overmatures.

  10. Formation of abnormal high pressure and its application in the study of oil-bearing property of lithologic hydrocarbon reservoirs in the Dongying Sag

    Institute of Scientific and Technical Information of China (English)

    ZHANG ShanWen; ZHANG LinYe; ZHANG ShouChun; LIU Qing; ZHU RiFang; BAO YouShu

    2009-01-01

    The mechanisms of abnormal high pressures are studied in this paper, and it is concluded that the undercompaction, hydrocarbon generation and stratum denudation are obviously effective to fluid pressure buildup. Because of the episodic difference, the hydrocarbon generation and stratum denu-dation are the main factors influencing oil-gas migration. On the basis of basin evolutionary analysis in the Dongying Sag, it is considered that the undercompaction mainly caused the abnormal pressure before the first denudation by the uplift in Late Paleogene, while hydrocarbon generation was the main factor of abnormal pressure after the denudation. The second denudation occurred in Late Neogene, which changed the pressure field and induced the fluid migration. The development of overpressures is the necessary condition to the formation of lithologic hydrocarbon reservoirs, which have positive correlations to overpressures. According to the fullness of the present reservoirs, the quantitative re-lations between oil-bearing property and driving forces of reservoir formation were determined, the latter were decided by dynamic source, reservoir capillary pressure, fluid pressure of surrounding rocks and the dynamic attenuation in different conducting systems.

  11. A New Star-Formation Rate Calibration from Polycyclic Aromatic Hydrocarbon Emission Features and Application to High Redshift Galaxies

    CERN Document Server

    Shipley, Heath V; Rieke, George H; Brown, Michael J I; Moustakas, John

    2016-01-01

    We calibrate the integrated luminosity from the polycyclic aromatic hydrocarbon (PAH) features at 6.2\\micron, 7.7\\micron\\ and 11.3\\micron\\ in galaxies as a measure of the star-formation rate (SFR). These features are strong (containing as much as 5-10\\% of the total infrared luminosity) and suffer minimal extinction. Our calibration uses \\spitzer\\ Infrared Spectrograph (IRS) measurements of 105 galaxies at $0 < z < 0.4$, infrared (IR) luminosities of $10^9 - 10^{12} \\lsol$, combined with other well-calibrated SFR indicators. The PAH luminosity correlates linearly with the SFR as measured by the extinction-corrected \\ha\\ luminosity over the range of luminosities in our calibration sample. The scatter is 0.14 dex comparable to that between SFRs derived from the \\paa\\ and extinction-corrected \\ha\\ emission lines, implying the PAH features may be as accurate a SFR indicator as hydrogen recombination lines. The PAH SFR relation depends on gas-phase metallicity, for which we supply an empirical correction for...

  12. Enhanced reactivity of hydroxylated polycyclic aromatic hydrocarbons to birnessite in soil: reaction kinetics and nonextractable residue formation.

    Science.gov (United States)

    Jung, Jae-Woong; Lee, Seunghwan; Ryu, Hyerim; Nam, Kyoungphile; Kang, Ki-Hoon

    2008-05-01

    Phenanthrene and pyrene were not transformed by birnessite (delta-MnO2) in the presence of phenol. The phenoxy radicals generated from phenol by birnessite did not act as a mediator for polycyclic aromatic hydrocarbon radical reaction under the studied conditions. In contrast, 9-hydroxyphenanthrene and 1-hydroxypyrene were remarkably sensitive to birnessite. The disappearance patterns of the test compounds both in the aqueous phase and soil followed first-order kinetics, with a linear relationship found between the rate constants and the surface area of birnessite. Moreover, the data indicated that the reaction was faster in the presence of soil than in the aqueous phase probably because of the presence of hydroxyl groups in soil organic matter. Sequential solvent extraction was not successful in the recovery of 9-hydroxyphenanthrene from the birnessite-treated soil samples, and capillary electrophoresis data suggest the formation of nonextractable residues of the compound in soil. In addition, the acute toxicity determined by Microtox declined approximately 8.3 times in the soil samples treated with birnessite compared to untreated samples, demonstrating that the toxic compound was no longer present as its parent form.

  13. An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, T.; Sharma, R.; Hajaligol, M. [Philip Morris USA, Richmond, VA (United States). Research Center

    2001-10-09

    The formation of polycyclic-aromatic hydrocarbons (PAH) from the pyrolysis of cellulose, pectin and chlorogenic acid was studied. The primary product, mostly primary volatile tar, was exposed to a higher thermal severity i.e. high temperatures and long residence times. The reactor setup consisted of a quartz tube with two zones, zone I and II, each heated and controlled separately. Zone I was used to first pyrolyse the substrate at 300{degree}C to produce a low temperature tar (LTT) as well as to pyrolyse the product char at 600{degree}C to produce a high temperature tar (HTT). The LTT and HTT were then subjected to a high thermal severity in the second zone (zone II) where the temperature was varied between 700 and 850{degree}C. The residence time of the volatiles in zone II was varied between ca. 90 and 1400 ms (calculated at 800{degree}C). The results show that the yield of most PAHs increased with temperature, except in a few cases where the yield of two- and three-ring PAHs exhibited a maximum. PAHs yields also generally increased as the residence time was increased from 90 to 1400 ms at 800{degree}C. 19 refs., 9 figs., 2 tabs.

  14. Distribution of some hydrocarbons in ambient air near Delft and the influence on the formation of secondary air pollutants

    NARCIS (Netherlands)

    Bos, R.; Guicherit, R.; Hoogeveen, A.

    1977-01-01

    The relative concentrations of hydrocarbons in the atmosphere may provide information concerning their origin. It appears that the hydrocarbon composition measured in Delft (The Netherlands) is entirely different for northern and southern wind directions. This points to different sources. The most

  15. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  16. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    Institute of Scientific and Technical Information of China (English)

    Ke-xin Jiao; Jian-liang Zhang; Zheng-jian Liu; Feng Liu; Li-sheng Liang

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face tem-perature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  17. The Study of Kinetics of Diffusion and Phase Formation in the Layered Iron-Beryllium System

    Science.gov (United States)

    Kuterbekov, K. A.; Nurkenov, S. A.; Kislitsin, S. B.; Kuketayev, T. A.; Nurakhmetov, T. N.

    2017-02-01

    The methods of Mössbauer spectroscopy with X-ray phase analysis and Rutherford backscattering of protons were used to study the kinetics of diffusion and phase transformations in the layered iron-beryllium system. For the first time, the authors suggested and implemented a method for retardation of diffusion and phase formation processes in the layered iron-beryllium system using the barrier layer. It was established that the barrier layer limits the zone of beryllium dissolution in the area of implanted layer. The impact of the barrier layer on kinetics of thermally induced processes of diffusion and phase transformations in the layered Fe-Be system was determined using the example of Fe (10 μm): O+ - Be (0.7 μm) - 57Fe (0.1 μm). The authors suggested and implemented a method for recovery of the distribution function of the admixture atom concentration in the solid matrix-admixture solution on the basis of the X-ray diffraction data. The kinetics of mutual diffusion was determined for Fe and Be atoms in the α-Fe(Be) solution for both sides of the layered systems with a barrier layer and without it using the suggested method for recovery of the distribution function of the Be atom concentration. It was established that for the system without a barrier layer, the share of iron atoms ends at tann 5 h on the coating side and at tann 7.5 h on the iron side, while for the barrier layer case - at tann 20 h on the coating side and at tann 40 h on the iron side.

  18. Anomalous double layer step formation on Si(100) in hydrogen ambient

    Energy Technology Data Exchange (ETDEWEB)

    Doescher, Henning; Kleinschmidt, Peter; Dobrich, Anja; Brueckner, Sebastian; Supplie, Oliver; Luczak, Johannes; Hannappel, Thomas [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany)

    2011-07-01

    Generation of double layer steps on Si(100) is desirable for subsequent anti-phase domain-free heteroepitaxy of III-V semiconductors. In UHV established procedures exist for the formation of double layer steps at the clean Si(100) surface. In the (metal-organic) vapour phase epitaxy environment the situation is more complicated due to the presence of hydrogen in the process ambient. Both theory and experiment of the hydrogenated surfaces suggest that under equilibrium conditions no preference for double layer steps is to be expected. Previously, we have shown that annealing in hydrogen at near atmospheric pressure leads to termination of the surface by monohydride. Here, we show that a process using Si(100) with an intermediate offcut of 2 in <011> can lead to a double layer stepped surface. Our process consists of deoxidation, homoepitaxial growth employing silane, annealing and slow cooling to 500 C in hydrogen ambient. We observe the formation of double layer steps using Fourier-transform infrared spectroscopy, low-energy electron diffraction and scanning tunneling microscopy. In sharp contrast to established UHV results, the double layer steps are of the D{sub A} type, where dimer rows of the reconstructed surface are parallel to the step edges.

  19. Formation of unsaturated hydrocarbons in interstellar ice analogs by cosmic rays

    CERN Document Server

    Pilling, S; da Silveira, E F; Rothard, H; Domaracka, A; Boduch, P

    2012-01-01

    The formation of double and triple C-C bonds from the processing of pure c-C6H12 (cyclohexane) and mixed H2O:NH3:c-C6H12 (1:0.3:0.7) ices by highly-charged, and energetic ions (219 MeV O^{7+} and 632 MeV Ni^{24+}) is studied. The experiments simulate the physical chemistry induced by medium-mass and heavy-ion cosmic rays in interstellar ices analogs. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accel\\'erat\\'eur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a polished CsI substrate previously cooled to 13 K. In-situ analysis was performed by a Fourier transform infrared (FTIR) spectrometry at different ion fluences. Dissociation cross section of cyclohexane and its half-life in astrophysical environments were determined. A comparison between spectra of bombarded ices and young stellar sources indicates that the initial composition of grains in theses environments should contain a mixture of H2O, NH3, CO (or CO2), simple al...

  20. Participation of a cyanobacterial S layer in fine-grain mineral formation.

    Science.gov (United States)

    Schultze-Lam, S; Harauz, G; Beveridge, T J

    1992-12-01

    Cyanobacteria belonging to the Synechococcus group are ubiquitous inhabitants of diverse marine and freshwater environments. Through interactions with the soluble constituents of their aqueous habitats, they inevitably affect the chemistry of the waters they inhabit. Synechococcus strain GL24 was isolated from Fayetteville Green Lake, New York, where it has a demonstrated role in the formation of calcitic minerals. In order to understand the detailed interactions which lead to mineral formation by this organism, we have undertaken detailed ultrastructural studies of its cell surface and the initial events in mineral growth using a variety of electron microscopic and computer image enhancement techniques. Synechococcus strain GL24 has a hexagonally symmetrical S layer as its outermost cell surface component. The constituent protein(s) of this structure appears as a double band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with M(r)s of 104,000 and 109,000. We demonstrate that the S layer acts as a template for fine-grain gypsum and calcite formation by providing discrete, regularly arranged nucleation sites for the critical initial events in the mineralization process. To our knowledge, this is the first time that a bacterial S layer has been shown to have a role in mineral formation in a natural environment, and this report provides conclusive evidence for the specific involvement of bacterial surfaces in natural mineral formation processes.

  1. Formation of organic solid phases in hydrocarbon reservoir fluids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I.; Lindeloff, N.; Stenby, E.H.

    1998-12-31

    The occurrence of solid phases during oil recovery is a potential problem. The present work has mainly been concerned with wax formation due to cooling of oils with a large paraffin content. 8 oils have been included in this project, although only a few of these have till now been subject to all the experimental techniques applied. The oils and wax fractions from these have been characterized using techniques such as GC-MS and Ftir. The goal has in part been to get a detailed description of the oil composition for use in model evaluation and development and in part to get a fundamental understanding of waxy oil properties and behaviour. A high pressure (200 bar) equipment has been developed for automatic detection of wax appearance using a filtration technique and laser light turbidimetry. The latter was found to be far superior to the filtration. The filtration was used to sample the incipient solid phase for characterization. However entrapment of liquid in the filters currently used have hampered this part. A number of model systems and one gas condensate have been investigated. The GC-MS procedure was found only to been able to detect molecules up to n-C45 and the group type analysis was not accurate enough for modelling purposes. Using Ftir it was obvious that incipient phases may contain very complex molecules (asphaltenes) which are not captured by GC-MS especially when fractionation is done using the acetone precipitation at elevated temperature. The latter fractionation procedure has been investigated thoroughly as a tool for understanding wax distribution etc. Within thermodynamic modelling a delta lattice parameter model has been developed which incorporates the non-ideality of the solid phases into the calculation of SLE. The non-ideality is estimated from pure component properties. A new algorithm for phase equilibria involving gas-liquid-solid has been developed. Currently both the model work and the experimental works are continued. (au)

  2. The Formation and Distribution of the Marine Hydrocarbon Source Rock in the Tarim Basin, NW China

    Institute of Scientific and Technical Information of China (English)

    CAI Xiyuan; WANG Yi

    2008-01-01

    There are significant differences in type and distribution between marine source rock and continental source rock. According to the lithology, the Cambrian-Ordovician source rock in the Tarim basin is divided into two types: the carbonate source rock and the mud source rock. The two sets of source rocks are developed mainly in three sets of formations, Lower-Middle Cambrian carbonate source rock and mud source rock, Lower-Middle Ordovician mud source rock and Upper Ordovician lime mud source rock. The stratigraphic and areal distributions of the source rocks are controlled by the altitude and the sedimentary facies respectively. The mud source rock is developed in slope-semi deep sea environment. The source rock developed in the slope sedimentary environment is related with the anoxic environment and the one developed in semi deep sea has a close relationship with the up-flowing sea water. The carbonate source rock is developed mainly in platform slope of highstand systems tract and it is usually intimately associated with the salt rock. The Lower-Middle Cambrian carbonate source rock is developed mainly in the Bachu, Tazhong, Taugguzibasi and Yingmaili areas. The Lower-Middle Cambrian mud source rock is mainly developed in the areas east of the line of Kunan 1-Tadong 1. The Lower-Middle Ordovician mud source rock is developed mainly in the east slope of the Manjiaer depression. The carbonate source rock of Early Ordovician is developed mainly in the platform slope of highstand systems tract, such as the south margin of Tabei, the north slope of Tazhong, the Bachu area and Keping area.

  3. Formation and Characterization of Stacked Nanoscale Layers of Polymers and Silanes on Silicon Surfaces

    Science.gov (United States)

    Ochoa, Rosie; Davis, Brian; Conley, Hiram; Hurd, Katie; Linford, Matthew R.; Davis, Robert C.

    2008-10-01

    Chemical surface patterning at the nanoscale is a critical component of chemically directed assembly of nanoscale devices or sensitive biological molecules onto surfaces. Complete and consistent formation of nanoscale layers of silanes and polymers is a necessary first step for chemical patterning. We explored methods of silanizing silicon substrates for the purpose of functionalizing the surfaces. The chemical functionalization, stability, flatness, and repeatability of the process was characterized by use of ellipsometry, water contact angle, and Atomic Force Microscopy (AFM). We found that forming the highest quality functionalized surfaces was accomplished through use of chemical vapor deposition (CVD). Specifically, surfaces were plasma cleaned and hydrolyzed before the silane was applied. A polymer layer less then 2 nm in thickness was electrostatically bound to the silane layer. The chemical functionalization, stability, flatness, and repeatability of the process was also characterized for the polymer layer using ellipsometry, water contact angle, and AFM.

  4. The formation of multiple layers of ice particles in the polar summer mesopause region

    Science.gov (United States)

    Li, H.; Wu, J.; Zhou, Z.

    2016-01-01

    This paper presents a two-dimensional theoretical model to study the formation process of multiple layers of small ice particles in the polar summer mesosphere as measured by rockets and associated with polar mesosphere summer echoes (PMSE). The proposed mechanism primarily takes into account the transport processes induced by gravity waves through collision coupling between the neutral atmosphere and the ice particles. Numerical solutions of the model indicate that the dynamic influence of wind variation induced by gravity waves can make a significant contribution to the vertical and horizontal transport of ice particles and ultimately transform them into thin multiple layers. Additionally, the pattern of the multiple layers at least partially depends on the vertical wavelength of the gravity wave, the ice particle size and the wind velocity. The results presented in this paper will be helpful to better understand the occurrence of multiple layers of PMSE as well as its variation process.

  5. A model for the formation of layered soda-straw stalactites

    Directory of Open Access Journals (Sweden)

    Bence Paul

    2013-07-01

    Full Text Available Climate records based upon instrumental data such as rainfall measurements are usually only available for approximately the last 150 years at most. To fully investigate decadal-scale climate variation, however, these records must be extended by the use of climate proxies. Soda-straw stalactites (straws are a previously under-utilised potential source of such data. In this contribution we investigate the structure and formation of straws and look at some issues that may affect the reliability of straw-based palaeoclimate records. We use laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS trace element analysis to document surface contamination features that have the potential to obscure annual trace element variations, and develop a method to reveal the underlying layering. We also use LA- ICP-MS to map the two-dimensional trace element distribution in straws. These maps reveal straw-layer geometry, in which layers are widest at the outside edge of the straw, narrowing and becoming almost parallel on the interior of the straw.Based upon these observations, we present a model for the formation of straws of this type, where rapid degassing of CO2 from the drip extending below the straw forms the wider outer layers. Summers are defined by increased layer widths and higher trace element contents relative to winter layers. In palaeoclimate studies, where such annual variations can be used to construct time-lines, we suggest that, ideally, the outside surface of the straw be analysed where the trace element content difference is greatest and layering is widest.The terminal phase of one straw (FC-02 shows decreasing layer widths and increased trace element contents. These features may also be representative of soda-straw responses to drought-induced decreases in percolation water.

  6. Time-scale estimation of unstirred layer formation in osmotically driven flow

    Science.gov (United States)

    Itano, Tomoaki; Inagaki, Taishi; Konno, Keito; Sugihara-Seki, Masako

    2016-11-01

    We study the osmotic solvent flow driven by solute concentration difference across a semi-permeable membrane. The concentration difference across the membrane drives the solvent flow penetrating from the low concentration side through pores of the membrane. This spontaneous solvent flow transports solutes away from the membrane in the opposite side, which locally reduces the solute concentration in the vicinity of the membrane. The concentration boundary layer developed locally near the membrane in the case of absence of external stirring process was termed as "unstirred layer" in the previous studies, which has been recognized as a key of the unfavorable virtual resistance and membrane fouling in the water filtration of the desalination process. In the previous studies, the formation of the unstirred layer was analyzed under the assumption that the thickness of the unstirred layer is steady, which however contradicts the smoothness of the solute concentration at the end of the layer. In the present study, in order to resolve the contradiction, we assume the unsteadiness in the layer development so that the thickness of the unstirred layer may be estimated analytically.

  7. Formation of CuxS Layers on Polypropylene Sulfurized by Molten Sulfur

    Directory of Open Access Journals (Sweden)

    Rasa ALABURDAITĖ

    2011-11-01

    Full Text Available The processes of formation of electrically conductive layers of copper sulfides CuxS by the sorption-diffusion method on polypropylene (PP using molten sulfur as sulfurizing agent was investigated. The amount of sorbed sulfur increased with the increase of the duration of treatment. Copper sulfide layers were formed on the surface of polypropylene after the treatment of sulfurized polymer with Cu(II/I salt solution. The amount of copper sulfide in layer increased with the increase of treatment duration in copper salt solution. XRD spectra of PP films treated for 3 min with molten sulfur and then with Cu(II/I salt solution for the different time showed that the copper sulfide phases, mostly digenite, Cu2-xS and a-chalcocite, Cu2S were formed in the layers. Electromotive force measurement results confirmed the composition of formed CuxS layers on PP. The phase composition of layers also changed after the annealing. The value of electrical resistance of copper sulfide layers on PP varied from 20 W/cm2 to 80 W/cm2 and after annealing at 80 °C - in the interval of 10 W/cm2 - 60 W/cm2.http://dx.doi.org/10.5755/j01.ms.17.4.776

  8. Formation of CuxS Layers on Polypropylene Sulfurized by Molten Sulfur

    Directory of Open Access Journals (Sweden)

    Rasa ALABURDAITĖ

    2011-11-01

    Full Text Available The processes of formation of electrically conductive layers of copper sulfides CuxS by the sorption-diffusion method on polypropylene (PP using molten sulfur as sulfurizing agent was investigated. The amount of sorbed sulfur increased with the increase of the duration of treatment. Copper sulfide layers were formed on the surface of polypropylene after the treatment of sulfurized polymer with Cu(II/I salt solution. The amount of copper sulfide in layer increased with the increase of treatment duration in copper salt solution. XRD spectra of PP films treated for 3 min with molten sulfur and then with Cu(II/I salt solution for the different time showed that the copper sulfide phases, mostly digenite, Cu2-xS and a-chalcocite, Cu2S were formed in the layers. Electromotive force measurement results confirmed the composition of formed CuxS layers on PP. The phase composition of layers also changed after the annealing. The value of electrical resistance of copper sulfide layers on PP varied from 20 W/cm2 to 80 W/cm2 and after annealing at 80 °C - in the interval of 10 W/cm2 - 60 W/cm2.http://dx.doi.org/10.5755/j01.ms.17.4.776

  9. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    Science.gov (United States)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  10. Electrochemical impedance spectroscopy on in-situ analysis of oxide layer formation in liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, M., E-mail: kondo.masatoshi@tokai-u.jp [Department of Nuclear Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Suzuki, N.; Nakajima, Y. [Department of Nuclear Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Tanaka, T.; Muroga, T. [National Institute for Fusion Science, Toki, Gifu 502-5292 (Japan)

    2014-10-15

    Graphical abstract: Some test materials (i.e. Fe, Cr, Y and JLF-1 steel) were immersed to liquid metal lead (Pb) mainly at 773 K as the working electrode of electrochemical impedance spectroscopy (EIS). Some oxide layers formed on the electrodes in liquid Pb were analyzed by EIS. The impedance response was summarized as semicircular Nyquist plot, and the electrical properties and the thickness of the oxide layers were evaluated in non-destructive manner. Large impedance due to the formation of Y oxide formed in liquid Pb was detected by EIS, though impedance of Fe oxide and Cr oxide could not be detected due to their small electro resistance. The time constant of the oxide layers was evaluated from the impedance information, and this value identified the types of oxides. The change of the time constant with the immersion time indicated the change of the electrical properties determined by the chemical composition and the crystal structure. The thickness of the oxide layer estimated by EIS agreed well with that evaluated by metallurgical analysis. The growth of Y oxide layer in the liquid Pb was successfully detected by EIS in non-destructive manner. - Highlights: • The electrical properties and the thickness of lead oxide layer formed in liquid Pb were obtained by electrochemical impedance spectroscopy (EIS). • The Fe oxide, Cr oxide and Fe–Cr oxide formed on the electrodes in liquid Pb were not detected by EIS due to their small electrical resistance. • The formation and the growth of Y oxide formed in liquid Pb was detected by EIS. - Abstract: Some test materials (i.e. Fe, Cr, Y and JLF-1 steel) were immersed to liquid metal lead (Pb) mainly at 773 K as the working electrode of electrochemical impedance spectroscopy (EIS). Some oxide layers formed on the electrodes in liquid Pb were analyzed by EIS. The impedance response was summarized as Nyquist plot, and the electrical properties and the thickness of the oxide layers were evaluated in non

  11. Formation of Lamellar Structured Oxide Dispersion Strengthening Layers in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Park, Jung-Hwan; Park, Dong-Jun; Kim, Hyun-Gil; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Yoon-Soo [Hanbat National University, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. The oxide dispersion strengthened (ODS) zirconium was proposed to increase the strength of the Zr-based alloy up to high temperatures. According to our previous investigations, the tensile strength of Zircaloy-4 was increased by up to 20% with the formation of a thin dispersed oxide layer with a thickness less than 10% of that of the Zircaloy-4 substrate. However, the tensile elongation of the samples decreased drastically. The brittle fracture was a major concern in development of the ODS Zircaloy-4. In this study, a lamellar structure of ODS layer was formed to increase ductility of the ODS Zircaloy-4. The mechanical properties were varied depending on the structure of ODS layer. For example, the partial formation of ODS layer with the thickness of 10% to the substrate thickness induced the increase in tensile strength up to about 20% than fresh Zircaloy-4.

  12. Irreversible fouling of membrane bioreactors due to formation of a non-biofilm gel layer

    DEFF Research Database (Denmark)

    Poorasgari, Eskandar; Larsen, Poul; Zheng, Xing

    2014-01-01

    Extra-cellular polymeric substances (EPS), known to contribute to fouling in membrane bio-reactors (MBRs), are generally divided into bound and free EPS. The free EPS are able to form a gel layer on the membrane active surface. The mechanisms involved in formation of such layer and its effects...... with the amount of the humic-like substances retained during filtration as predicted by gel growth theory. A low pressure backwash could re-establish the Water flux only up to 70%....

  13. Mixing and trapping of dissolved CO2 in deep geologic formations with shale layers

    Science.gov (United States)

    Agartan, Elif; Cihan, Abdullah; Illangasekare, Tissa H.; Zhou, Quanlin; Birkholzer, Jens T.

    2017-07-01

    For dissolution trapping, the spatial variability of the geologic properties of naturally complex storage formations can significantly impact flow patterns and storage mechanisms of dissolved CO2. The significance of diffusive mixing that occurs in low permeability layers embedded between relatively higher permeability materials was highlighted by Agartan et al. (2015) using a highly controlled laboratory experimental study on trapping of dissolved CO2 in multilayered systems. In this paper, we present a numerical modeling study on the impacts of low permeability layers on flow and storage of dissolved CO2 in realistic field-scale settings. The simulator of variable-density flow used in this study was first verified using the experimental data in Agartan et al. (2015) to capture the observed processes. The simulator was then applied to a synthetic, field-scale multilayered system, with 19 sensitivity cases having variable permeability and thickness of the shale layers as well as the source strength and geometry of the source zone of dissolved CO2. Simulation results showed that the presence of continuous shale layers in the storage system disrupts the convective mixing by enhancing lateral spreading of dissolved CO2 in sandstone layers and retarding the vertical mixing of dissolved CO2. The effectiveness of trapping of dissolved CO2 depends on the physical properties of the shale layers and configurations of the source zone. The comparison to homogeneous cases with effective vertical permeability shows that it is important to capture these continuous thin shale layers in a storage formation and include them in the models to enhance dissolution trapping.

  14. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  15. Comparison and characterization of different tunnel layers, suitable for passivated contact formation

    Science.gov (United States)

    Ling, Zhi Peng; Xin, Zheng; Ke, Cangming; Jammaal Buatis, Kitz; Duttagupta, Shubham; Lee, Jae Sung; Lai, Archon; Hsu, Adam; Rostan, Johannes; Stangl, Rolf

    2017-08-01

    Passivated contacts for solar cells can be realized using a variety of differently formed ultra-thin tunnel oxide layers. Assessing their interface properties is important for optimization purposes. In this work, we demonstrate the ability to measure the interface defect density distribution D it(E) and the fixed interface charge density Q f for ultra-thin passivation layers operating within the tunnel regime (deposited (ALD) AlO x ] are investigated for their potential application forming electron or hole selective tunnel layer passivated contacts. In particular, ALD AlO x is identified as a promising tunnel layer candidate for hole-extracting passivated contact formation, stemming from its high (negative) fixed interface charge density in the order of -6 × 1012 cm-2. This is an order of magnitude higher compared to wet chemically or UV photo-oxidized formed silicon oxide tunnel layers, while keeping the density of interface defect states D it at a similar level (in the order of ˜2 × 1012 cm-2 eV-1). This leads to additional field effect passivation and therefore to significantly higher measured effective carrier lifetimes (˜2 orders of magnitude). A surface recombination velocity of ˜40 cm/s has been achieved for a 1.5 nm thin ALD AlO x tunnel layer prior to capping by an additional hole transport material, like p-doped poly-Si or PEDOT:PSS.

  16. Formation of nanocrystalline layers by surface severe plastic deformation and pulsed plasma electrolytic carburizing.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2010-07-01

    Surfaces of various kinds of metallic materials spheres were treated by nanocrystalline surface severe plastic deformation and then pulsed nanocrystalline plasma electrolytic carburizing to study nanocrystalline substrate effect on formation and nano-hardness of hard nanocrystalline layer. The surface layers of the metallic materials developed by the nanocrystalline surface severe plastic deformation were characterized by means of high resolution scanning electron microscope. Nearly equiaxed nanocrystals with grain sizes ranging from 15 to 90 nm were observed in the near surface regions of all metallic materials, which are low carbon steel and commercially pure titanium. The effect of substrate nanocrystallization on growth kinetics and hardness of formed nanocrystalline carbide layer was studied with the means of figure analysis and nanohardness tests. Figure analysis show the length to diameter ratio and distribution curve of nanocrystals and it has been found that the achieved properties of hard layer (growth rate, nano-hardness, nanostructure...) are related to these factors. It was also clarified that these techniques and surface nanocrystallization can be easily achieved in most of metallic materials. Results indicate that the resultant hardened carburized layers exhibited excellent hardness profile. Investigation of the layer characteristics showed strong dependence followed from the treatment experimental parameters as well as the shape of nanocrystals.

  17. THE FORMATION AND CHARACTERIZATION OF SUSTAINABLE LAYERED FILMS INCORPORATING MICROFIBRILLATED CELLULOSE (MFC

    Directory of Open Access Journals (Sweden)

    Galina Rodionova,

    2012-06-01

    Full Text Available Microfibrillated cellulose (MFC, TEMPO-pretreated MFC, and hybrid polymer/MFC mix were used for the production of layered films with interesting properties for application in food packaging. The series of samples were prepared from MFC (base layers using a dispersion-casting method. The same procedure as well as a bar coating technique was applied to form top layers of different basis weights. The barrier properties and formation of the layered films were investigated in relationship to the preparation procedures, combination of layers, and areal weight (basis weight. Characterization was done with respect to oxygen transmission rates (OTR, water vapor transmission rates (WVTR, tensile properties, and contact angles (CA with water. The produced layered films yielded OTR values of 4 mL m-2 day-1 and fulfilled oxygen barrier requirements for a modified atmosphere packaging (MAP. Hornification of the MFC films, however, occurred during drying, which may result in a loss of the film’s beneficial properties.

  18. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    Science.gov (United States)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  19. Turbulent mixing and layer formation in double-diffusive convection: 3D numerical simulations and theory

    CERN Document Server

    Rosenblum, Erica; Traxler, Adrienne; Stellmach, Stephan

    2010-01-01

    Double-diffusive convection, often referred to as semi-convection in astrophysics, occurs in thermally and compositionally stratified systems which are stable according to the Ledoux-criterion but unstable according to the Schwarzchild criterion. This process has been given relatively little attention so far, and its properties remain poorly constrained. In this paper, we present and analyze a set of three-dimensional simulations of this phenomenon in a Cartesian domain under the Boussinesq approximation. We find that in some cases the double-diffusive convection saturates into a state of homogeneous turbulence, but with turbulent fluxes several orders of magnitude smaller than those expected from direct overturning convection. In other cases the system rapidly and spontaneously develops closely-packed thermo-compositional layers, which later successively merge until a single layer is left. We compare the output of our simulations with an existing theory of layer formation in the oceanographic context, and fi...

  20. Muonium formation by collisions of muons with solid rare-gas and solid nitrogen layers

    NARCIS (Netherlands)

    Prokscha, T; Morenzoni, E; Meyberg, M; Wutzke, T; Matthias, BE; Fachat, A; Jungmann, K; Putlitz, GZ

    1998-01-01

    We report an observation of the formation of muonium [Mu=(mu(+)e(-)) bound state] with kinetic energies between 1 and 40 keV on 500-nm-thick solid argon, xenon, and nitrogen (N-2) layers. The thin films are deposited on a 250-mu m-thick aluminum target which is bombarded with a 3.6-MeV mu(+) beam. W

  1. Insights into the Synthesis of Layered Double Hydroxide (LDH) Nanoparticles: Part 2. Formation Mechanisms of LDH

    OpenAIRE

    Sun, Xiaodi; Dey, Sandwip K.

    2015-01-01

    This study demonstrates the effect of (co)intercalated anion compositions on nanostructure evolution to understand the formation mechanisms of layered double hydroxide (LDH) nanoparticles following coprecipitation and hydrothermal treatments (HT). Initially, the room temperature coprecipitation resulted in amorphous primary nanoparticles that agglomerated at the edges due to low surface charge densities. The reversibility of such agglomeration was determined by the crystalline quality upon HT...

  2. Polycyclic aromatic hydrocarbons in soils and lower-layer plants of the southern shrub tundra under technogenic conditions

    Science.gov (United States)

    Yakovleva, E. V.; Gabov, D. N.; Beznosikov, V. A.; Kondratenok, B. M.

    2014-06-01

    In soils and plants of the southern shrub tundra, 15 polycyclic aromatic hydrocarbons (PAHs) have been detected by high-performance liquid chromatography. Polyarenes in emissions, soil organic horizons, and plants mainly include low-molecular-weight PAHs: naphthalene, fluorine, and pyrene. The contents of the total PAHs in soils and plants exceed the background levels by 3-5 times. The distribution of polyarenes among the organs of the studied plants is nonuniform and depends on the plant species and technogenic load on the area. The studied plants include both hyperaccumulators of polyarenes ( Pleurozium schreberi) and indicators of PAHs in the soil ( Polytrichum commune). Pleurozium schreberi is the most abundant species in the areas under study, and it accumulates the largest mass fraction of PAHs. The differences in the accumulation of PAHs by the plants of the tundra and taiga zones have been revealed.

  3. Formation, phase composition, texture and catalytic properties of Co-MgO-alumino-calcium catalysts in synthesis of hydrocarbons from CO and H/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Bruk, I.A.; Mal' tsev, V.V.; Iem, K.C.; Yakerson, V.I.; Golosman, Y.Z.; Mamayeva, I.A.; Kalacheva, N.B.; Danyushevskii, V.Y.; Nissenbaum, V.D.

    1981-01-01

    A study was made of the mechanism of formation of catalysts; a special feature of this mechanism is the interaction of components (calcium aluminates and basic carbonates of cobalt and magnesium); the carrier with a developed surface and the active component distributed on this surface are formed during this process. Catalysts show maximum selectivity in synthesis of liquid hydrocarbons from CO and H/sub 2/ with a degree of reduction of the metal of 65-84% and a dispersion (according to chemisorption of CO) of 6 x 10/sup -3/ - 10 x 10/sup -3/. Maximum yield of liquid hydrocarbons (114.1 g/nm/sup 3/) was obtained in the pressure of a system of 33Co-3MgO-64 talum treated with hydrogen at 550/sup 0/C.

  4. The relationship between ozone formation and air temperature in the atmospheric surface layer

    Science.gov (United States)

    Belan, Boris D.; Savkin, Denis; Tolmachev, Gennadii

    2016-04-01

    Studying the formation and dynamics of ozone in the atmosphere is important due to several reasons. First, the contribution of tropospheric ozone to the global greenhouse effect is only slightly less than that of water vapor, carbon dioxide, and methane. Second, tropospheric ozone acts as a strong poison that has negative effects on human health, animals, and vegetation. Third, being a potent oxidizer, ozone destroys almost all materials, including platinum group metals and compounds. Fourthly, ozone is formed in situ from precursors as a result of photochemical processes, but not emitted into the atmosphere by any industrial enterprises directly. In this work, we present some results of the study aimed at the revealing relationship between ozone formation rate and surface air temperature in the background atmosphere. It has been found that this relationship is nonlinear. Analysis of the possible reasons showed that the nonlinear character of this relationship may be due to a nonlinear increase in the reaction constants versus air temperature and a quadratic increase in the concentration of hydrocarbons with increasing temperature. This work was supported by the Ministry of Education and Science contract no.14.613.21.0013 (ID: RFMEFI61314X0013).

  5. The formation and potential importance of cemented layers in inactive sulfide mine tailings

    Science.gov (United States)

    Blowes, David W.; Reardon, Eric J.; Jambor, John L.; Cherry, John A.

    1991-04-01

    Investigations of inactive sulfide-rich tailings impoundments at the Heath Steele (New Brunswick) and Waite Amulet (Quebec) minesites have revealed two distinct types of cemented layers or "hardpans." That at Heath Steele is 10-15 cm thick, occurs 20-30 cm below the depth of active oxidation, is continuous throughout the tailings impoundment, and is characterized by cementation of tailings by gypsum and Fe(II) solid phases, principally melanterite. Hardpan at the Waite Amulet site is only 1-5 cm thick, is laterally discontinuous (10-100 cm), occurs at the depth of active oxidation, and is characterized by cementation of tailings by Fe(III) minerals, principally goethite, lepidocrocite, ferrihydrite, and jarosite. At Heath Steele, an accumulation of gas-phase CO 2, of up to 60% of the pore gas, occurs below the hardpan. The calculated diffusivity of the hardpan layer is only about 1/100 that of the overlying, uncemented tailings. The pore-water chemistry at Heath Steele has changed little over a 10-year period, suggesting that the cemented layer restricts the movement of dissolved metals through the tailings and also acts as a zone of metal accumulation. Generation of a cemented layer therefore has significant environmental and economic implications. It is likely that, in sulfide-rich tailings impoundments, the addition of carbonate-rich buffering material during the late stages of tailings deposition would enhance the formation of hardpan layers.

  6. Effect of impurity deposition layer formation on D retention in LHD plasma exposed W

    Directory of Open Access Journals (Sweden)

    Y. Oya

    2016-12-01

    Full Text Available Effect of carbon based mixed-material deposition layer formation on hydrogen isotope retention was studied. The tungsten (W samples were placed at four different positions, namely PI (sputtering erosion dominated area, DP (deposition dominated area, HL (higher heat load area, and ER (erosion dominated area during 2013 plasma experimental campaign in Large Helical Device (LHD at National Institute for Fusion Science (NIFS, Japan and were exposed to ∼ 4000 shots of hydrogen plasma in a 2013 plasma experimental campaign. Most of the sample surface except for ER was covered by a mixed-material deposition layer formed by plasma experimental campaign, which consisted of carbon, but some metal impurities were contained. For ER sample, He bubbles were formed due to long term He discharge cleaning and He plasma experiments during the plasma experimental campaign. The additional 1keV D2+ implantation was performed to evaluated the D retention enhancement by plasma exposure. It was found that both of H and D retentions were clearly increased. In particular, the H retention was controlled by the thickness of the carbon-dominated mixed-material deposition layer, indicating most of the H was trapped by this mixed-material deposition layer. It is concluded that the accumulation of low-Z mixed-material layer on the surface of the first wall is one of key issues for the determination of hydrogen isotope retention in first wall.

  7. The formation and potential importance of cemented layers in inactive sulfide mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Blowes, D.W.; Reardon, E.J.; Cherry, J.A. (Univ. of Waterloo, Ontario (Canada)); Jambor, J.L. (CANMET, Ontario (Canada))

    1991-04-01

    Investigations of inactive sulfide-rich tailings impoundments at the Heath Steele (New Brunswick) and Waite Amulet (Quebec) minesites have revealed two distinct types of cemented layers or hardpans. That at Heath Steele is 10-15 cm thick, occurs 20-30 cm below the depth of active oxidation, is continuous throughout the tailings impoundment, and is characterized by cementation of tailings by gypsum and Fe(II) solid phases, principally melanterite. Hardpan at the Waite Amulet site is only 1-5 cm thick, is laterally discontinuous (10-100 cm), occurs at the depth of active oxidation, and is characterized by cementation of tailings by Fe(III) minerals, principally goethite, lepidocrocite, ferrihydrite, and jarosite. At Heath Steele, an accumulation of gas-phase CO{sub 2}, of up to 60{percent} of the pore gas, occurs below the hardpan. The calculated diffusivity of the hardpan layer is only about 1/100 that of the overlying, uncemented tailings. The pore-water chemistry at Heath Steele has changed little over a 10-year period, suggesting that the cemented layer restricts the movement of dissolved metals through the tailings and also acts as a zone of metal accumulation. Generation of a cemented layer therefore has significant environmental and economic implications. It is likely that, in sulfide-rich tailings impoundments, the addition of carbonate-rich buffering material during the late stages of tailings deposition would enhance the formation of hardpan layers.

  8. Characterizing the formation and regeneration of hairpin vortices in a laminar boundary layer

    Science.gov (United States)

    Sabatino, Daniel R.; Maharjan, Rijan

    2015-12-01

    A free surface water channel is used to study hairpin vortex formation created by fluid injection through a narrow slot into a laminar boundary layer. Particle image velocimetry flow-field measurements of injections into quiescent cross-flow conditions confirm that elongated ring vortices are produced with a nondimensionalized circulation strength that is approximately linear with formation time. Unlike circular ring vortices, a limiting strength is not observed at a nondimensional formation time of 4 due to the proximity of the counter-rotating vortex pair. Identical injections are made into a laminar boundary layer at different free-stream velocities and streamwise slot positions (485 ≤ Reδ∗ ≤ 584) with average injection velocity ratios between 0.08 and 0.16. Visualizations indicate that the shear layer between the low x-momentum injected fluid and the boundary layer creates a Kelvin-Helmholtz instability that forms the hairpin vortex head which then monotonically decreases in circulation strength with downstream distance. A similar process can form, or regenerate, a secondary hairpin vortex upstream of the primary vortex with a circulation strength of the head that is comparable to the strength of the primary head at the time of regeneration. However, the legs of the primary vortex continue to strengthen up to regeneration. The peak circulation in the legs is not directly correlated to the strength of the original elongated ring vortex. However, when the circulation is scaled with the injection momentum ratio it is linearly related to scaled injection time. It is proposed that the injection momentum ratio and nondimensionalized injection time based on the wall normal penetration time can be used to identify threshold conditions which produce a secondary vortex. It is suggested that this criterion may be used to identify the minimum strength of flow structures that would be capable of regeneration and thus transition initiation.

  9. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Østberg, M.

    2004-01-01

    Conversion of methane to higher hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and soot was investigated under fuel-rich conditions in a laminar flow reactor. The effects of stoichiometry, dilution, and water vapor addition were studied at temperatures between 1073 and 1823 K. A chemical...... decrease with increasing addition of water vapor. The effect is described qualitatively by the reaction mechanism. The enhanced oxidation of acetylene is attributed to higher levels of hydroxyl radicals, formed from the reaction between the water vapor and hydrogen atoms....

  10. Understanding Passive Layer Formation for Further Corrosion Management in Gas Production Pipes

    Science.gov (United States)

    Santoso, R. K.; Rahmawati, S. D.; Gadesa, A.; Wahyuningrum, D.

    2017-07-01

    Corrosion is a critical issue during the development of a gas field, especially wet gas or retrograde gas field. Corrosion affects the management system of a field and further impacts the amount of investment. Therefore, accurate prediction of corrosion rate is needed to plan an effective preventive action before going further to the development phase. One of the important parameters that should be noticed to create an accurate prediction is the formation of the passive layer. In CO2-H2S environment, there will be three possibilities of passive layer: FeS, FeCO3 or no passive layer. In this study, we create mathematical models to determine the formed passive layer in each segment of the gas production tubing and pipeline. The model is built using Faraday’s Law and Thermodynamic approach to account the passive layer formation at different temperature, pH, corrosion rate and partial pressure of CO2 and H2S. From the simulation, it was found that there were three boundary conditions: no scale-FeS boundary, no scale-FeCO3 boundary and FeS-FeCO3 boundary. The first two boundaries evolved over a time as the concentration of Fe2+ ions was increasing. However, FeS-FeCO3 boundary remained steady as it was not affected by the addition of Fe2+ ions. Using sample case study, few variations were noticed at production pipeline and tubing. It was caused by the gas composition, which contained high CO2 and very low H2S. Boundary conditions only changed slightly over two days period.

  11. Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

    Science.gov (United States)

    Langlois, A.; Royer, A.; Montpetit, B.; Johnson, C. A.; Brucker, L.; Dolant, C.; Richards, A.; Roy, A.

    2015-12-01

    With the current changes observed in the Arctic, an increase in occurrence of rain-on-snow (ROS) events has been reported in the Arctic (land) over the past few decades. Several studies have established that strong linkages between surface temperatures and passive microwaves do exist, but the contribution of snow properties under winter extreme events such as rain-on-snow events (ROS) and associated ice layer formation need to be better understood that both have a significant impact on ecosystem processes. In particular, ice layer formation is known to affect the survival of ungulates by blocking their access to food. Given the current pronounced warming in northern regions, more frequent ROS can be expected. However, one of the main challenges in the study of ROS in northern regions is the lack of meteorological information and in-situ measurements. The retrieval of ROS occurrence in the Arctic using satellite remote sensing tools thus represents the most viable approach. Here, we present here results from 1) ROS occurrence formation in the Peary caribou habitat using an empirically developed ROS algorithm by our group based on the gradient ratio, 2) ice layer formation across the same area using a semi-empirical detection approach based on the polarization ratio spanning between 1978 and 2013. A detection threshold was adjusted given the platform used (SMMR, SSM/I and AMSR-E), and initial results suggest high-occurrence years as: 1981-1982, 1992-1993; 1994-1995; 1999-2000; 2001-2002; 2002-2003; 2003-2004; 2006-2007; 2007-2008. A trend in occurrence for Banks Island and NW Victoria Island and linkages to caribou population is presented.

  12. Formation of Titan's Lakes by Episodic Dissolution and Precipitation of a Surface Layer Under Semi-Arid Conditions: Comparison with the Pans and Calcretes of Etosha (Namibia)

    Science.gov (United States)

    Bourgeois, O.; Lopez, T.; Le Mouélic, S.; Fleurant, C.; Tobie, G.; Cornet, T.

    2009-12-01

    Radar images from the Cassini spacecraft reveal closed, smooth and flat depressions above northern and southern latitudes of 60° on Titan, Saturn’s largest moon. These depressions have been interpreted as lakes of liquid hydro-carbons and dissolved nitrogen, resting on the icy crust that covers this moon. The depressions include large (over 100,000 square kilometers) seas with dendritic or poorly defined contours, small (1-10 km wide) circular steep-sided depressions, and medium-sized (20-50 km wide) depressions, the contours of which are composed of adjacent circular segments. Some depressions are completely filled with radar-dark material, while others are partially filled and some are empty. Most of these depressions lie in flat plains. By comparison with a terrestrial analogue located in the Etosha Basin (Namibia), we introduce here a dissolution-precipitation model for the formation of these lakes at the expense of a superficial soluble layer. The Etosha Basin is a flat sedimentary basin located at the western border of the Kalahari desert. The climate is semi-arid, with an average annual precipitation rate of 400 mm/yr and an average annual potential evaporation rate of 2200 mm/yr. Sediments in the basin include clays and silts; they are covered by a layer of soluble calcrete a few meters in thickness. The calcrete has formed by precipitation, in the subsurface, of calcium carbonate dissolved in groundwater. Precipitation of calcium carbonate from groundwater is due to the average annual dominance of groundwater evaporation over precipitation. The calcrete layer is dotted with dozens of so-called pans: these are closed, steep-sided, flat and smooth depressions, 1 to 200 km wide and a few meters deep. Relict boulders of calcrete rest on the silty, clayey and evaporitic floors of the pans and provide evidence that the pans grow by radial regressive dissolution of the calcrete layer. By comparison with the development of pans at the expense of the calcrete

  13. Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits

    Science.gov (United States)

    Zolotov, Mikhail Yu.; Mironenko, Mikhail V.

    2016-09-01

    Numerical chemical models for water-basalt interaction have been used to constrain the formation of stratified mineralogical sequences of Noachian clay-bearing rocks exposed in the Mawrth Vallis region and in other places on cratered martian highlands. The numerical approaches are based on calculations of water-rock type chemical equilibria and models which include rates of mineral dissolution. Results show that the observed clay-bearing sequences could have formed through downward percolation and neutralization of acidic H2SO4-HCl solutions. A formation of weathering profiles by slightly acidic fluids equilibrated with current atmospheric CO2 requires large volumes of water and is inconsistent with observations. Weathering by solutions equilibrated with putative dense CO2 atmospheres leads to consumption of CO2 to abundant carbonates which are not observed in clay stratigraphies. Weathering by H2SO4-HCl solutions leads to formation of amorphous silica, Al-rich clays, ferric oxides/oxyhydroxides, and minor titanium oxide and alunite at the top of weathering profiles. Mg-Fe phyllosilicates, Ca sulfates, zeolites, and minor carbonates precipitate from neutral and alkaline solutions at depth. Acidic weathering causes leaching of Na, Mg, and Ca from upper layers and accumulation of Mg-Na-Ca sulfate-chloride solutions at depth. Neutral MgSO4 type solutions dominate in middle parts of weathering profiles and could occur in deeper layers owing to incomplete alteration of Ca minerals and a limited trapping of Ca to sulfates. Although salts are not abundant in the Noachian geological formations, the results suggest the formation of Noachian salty solutions and their accumulation at depth. A partial freezing and migration of alteration solutions could have separated sulfate-rich compositions from low-temperature chloride brines and contributed to the observed diversity of salt deposits. A Hesperian remobilization and release of subsurface MgSO4 type solutions into newly

  14. Theory of multiple quantum dot formation in strained-layer heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303 (United States)

    2016-07-11

    We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial film surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of “QD pairs” or “double QDs” and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.

  15. TOWARD THE FORMATION OF CARBONACEOUS REFRACTORY MATTER IN HIGH TEMPERATURE HYDROCARBON-RICH ATMOSPHERES OF EXOPLANETS UPON MICROMETEOROID IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Dangi, Beni B.; Kim, Yong S.; Krasnokutski, Serge A.; Kaiser, Ralf I. [Department of Chemistry, University of Hawai’i at Manoa, Honolulu, HI 96822 (United States); Bauschlicher Jr, Charles W. [Entry Systems and Technology Division, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2015-05-20

    We report on laboratory simulation experiments mimicking the chemical processing of model atmospheres of exoplanets containing C3 and C4 hydrocarbons at moderate temperatures of 400 K upon interaction of catalytic surfaces of micrometeoroids. By utilizing an ultrasonic levitator device and heating singly levitated particles under simulated microgravity conditions, Raman spectroscopy is utilized as a non-invasive tool to probe on line and in situ the conversion of C3 and C4 hydrocarbons to refractory carbonaceous matter on the surfaces of levitated particles. Secondary Ion Mass Spectrometry and electron microscopic imaging were also conducted to gain further insight into the elementary composition and structures of the refractories formed. Our results provide compelling evidence that in the presence of a catalytic surface, which can be supplied in the form of micrometeoroids and atmospheric dust particles, hydrocarbon gases present in the atmospheres of exoplanets can be converted to refractory, carbon-rich carbonaceous matter of mainly graphitic structure with a carbon content of at least 90% at elevated temperatures. This finding might explain the low methane to carbon monoxide (CH{sub 4}–CO) ratio in the hot Neptune GJ 436b, where the abundant methane photochemically converts to higher order hydrocarbons and ultimately to refractory graphite-like carbon in the presence of a silicon surface.

  16. Anthraphane: An Anthracene-Based, Propeller-Shaped D(3h)-Symmetric Hydrocarbon Cyclophane and Its Layered Single Crystal Structures.

    Science.gov (United States)

    Servalli, Marco; Trapp, Nils; Wörle, Michael; Klärner, Frank-Gerrit

    2016-03-18

    The novel hydrocarbon propeller-shaped D3h-symmetric cyclophane (3), "anthraphane", was prepared through a revisited and optimized gram-scale synthesis of the key building block anthracene-1,8-ditriflate 7. Anthraphane has a high tendency to crystallize and single crystals in size ranges of 100-200 μm are easily obtained from different solvents. The crystallization behavior of 3 was extensively studied to unravel packing motifs and determine whether the packing can be steered into a desired direction, so to allow topochemical photopolymerization. SC-XRD shows that anthraphane packs in layers irrespective of the solvent used for crystallization. However, within the layers, intermolecular arrangements and π-π interactions of the anthracene units vary strongly. Four interaction motifs for the anthracene moieties are observed and discussed in detail: two types of exclusively edge-to-face (etf), a mixture of edge-to-face and face-to-face (ftf), and no anthracene-anthracene interaction at all. To elucidate why an exclusive ftf stacking was not observed, electrostatic potential surface (EPS) calculations with the semiempirical PM3 method were performed. They show qualitatively that the anthracene faces bear a strong negative surface potential, which may be the cause for this cyclophane to avoid ftf interactions. This combined crystallographic and computational study provides valuable insights on how to create all-ftf packings.

  17. A supermolecular building layer approach for gas separation and storage applications: The eea and rtl MOF platforms for CO2 capture and hydrocarbon separation

    KAUST Repository

    Chen, Zhijie

    2015-01-01

    The supermolecular building layer (SBL) approach was employed to deliberately synthesize five novel metal-organic frameworks (1-5) with an exposed array of amide or amine functionalities within their pore system. The ability to decorate the pores with nitrogen donor moieties offers potential to evaluate/elucidate the structure-adsorption property relationship. Two MOF platforms, eea-MOF and rtl-MOF, based on pillaring of kgm-a or sql-a layers with heterofunctional 3-connected organic building blocks were targeted and constructed to purposely introduce and expose the desired amide or amine functionalities. Interestingly, gas adsorption properties of eea-MOF-4 (1) and eea-MOF-5 (2) showed that by simply altering the nitrogen donor position within the ligand, it is possible to relatively reduce the pore size of the related eea-MOF material and subsequently increase the associated CO2 uptake. The slightly confined pore space in 2, relative to 1, has enabled an enhancement of the pore local charge density and thus the observed relative increase in the CO2 and H2 isosteric heat of adsorption (Qst). In addition, light hydrocarbon adsorption studies revealed that 2 is more selective toward C2H6 and C3H8 over CH4 than 1, as exemplified for C2H6:CH4 (5:95) or C3H8:CH4 (5:95) binary gas mixtures. This journal is

  18. A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO 2 capture and hydrocarbon separation

    KAUST Repository

    Chen, Zhijie

    2015-02-11

    The supermolecular building layer (SBL) approach was employed to deliberately synthesize five novel metal–organic frameworks (1–5) with an exposed array of amide or amine functionalities within their pore system. The ability to decorate the pores with nitrogen donor moieties offers potential to evaluate/elucidate the structure–adsorption property relationship. Two MOF platforms, eea-MOF and rtl-MOF, based on pillaring of kgm-a or sql-a layers with heterofunctional 3-connected organic building blocks were targeted and constructed to purposely introduce and expose the desired amide or amine functionalities. Interestingly, gas adsorption properties of eea-MOF-4 (1) and eea-MOF-5 (2) showed that by simply altering the nitrogen donor position within the ligand, it is possible to relatively reduce the pore size of the related eea-MOF material and subsequently increase the associated CO2 uptake. The slightly confined pore space in 2, relative to 1, has enabled an enhancement of the pore local charge density and thus the observed relative increase in the CO2 and H2 isosteric heat of adsorption (Qst). In addition, light hydrocarbon adsorption studies revealed that 2 is more selective toward C2H6 and C3H8 over CH4 than 1, as exemplified for C2H6 : CH4 (5 : 95) or C3H8 : CH4 (5 : 95) binary gas mixtures.

  19. Comparison of Polythionates as Precursors for the Formation of Thallium Sulfide Layers

    Directory of Open Access Journals (Sweden)

    Vitalijus JANICKIS

    2011-11-01

    Full Text Available The processes of obtaining layers of thallium, sulfides, TlxSy, by the sorption-diffusion method on polyamide 6 using solutions of lower polythionates - sodium trithionate and tetrathionate, Na2S3O6, Na2S4O6, potassium pentathionate, K2S5O6, and of dodecathionic acid, H2S12O6, as precursors of sulfur are compared. The concentration of sorbed sulfur increases with increasing the duration of treatment, the concentration and temperature of precursor solution. It rather significantly also depends on the nature - sulfurity of polythionate, i. e. on the number of sulfur atoms in the polythionate anion: effectiveness of sulfurization using solutions of dodecathionic acid is significantly higher than that of lower polythionates. Thallium sulfide layers are formed on the surface of polyamide after the treatment of sulfurized polymer with Tl(I salt solution. The concentration of thallium in the layer increases with the increase of initial sulfurization duration and in case of H2S12O6 solution used - on the temperature of this process. The results of X-ray diffraction analysis confirmed the formation of thallium sulfide layers in the surface of polyamide 6. The phase composition of layer changes depending on the conditions of initial treatment in a H2S12O6 solution. Five thallium sulfide phases, two forms of TlS, Tl2S2, Tl4S3 and Tl2S5 were identified in the composition of the layers treated for different time with a solution of dodecathionic acid at the temperature of 20 °C and 30 °C and then with Tl(I salt solution by X-ray diffraction but the maxima of TlS and Tl2S5 phases predominate in the diffractograms.http://dx.doi.org/10.5755/j01.ms.17.4.774

  20. Formation of Diffusion Layers by Anode Plasma Electrolytic Nitrocarburizing of Low-Carbon Steel

    Science.gov (United States)

    Kusmanov, S. A.; Kusmanova, Yu. V.; Naumov, A. R.; Belkin, P. N.

    2015-08-01

    The structure of the low-carbon steel after plasma electrolytic nitrocarburizing in the electrolyte containing acetonitrile was investigated. The cross-sectional microstructure, composition, and phase constituents of a modified layer under different processing conditions were characterized. It is shown that the electrolyte that contained ammonium chloride and acetonitrile provides the saturation of steel with nitrogen and carbon and the formation of the Fe4N and FeN0.05 nitrides, Fe4C carbide and other phases. The nitrogen diffusion decreases the austenitization temperature and results in the formation of martensite after the sample cooling in the electrolyte. The formation of a carbon and nitrogen source in a vapor-gas envelope (VGE) is investigated. The proposed mechanism includes evaporation of acetonitrile in the VGE, its adsorption on an anode with the following thermal decomposition, and also the acetonitrile reduction to amine with subsequent hydrolysis to ethanol that is determined with the use of chromatographic method. The aqueous solution that contained 10 wt.% NH4Cl and 10 wt.% CH3CN allows one to obtain the nitrocarburized layer with the thickness of 0.22 mm and microhardness up to 740 HV during 10 min at 850 °C. This treatment regime leads to the decrease in the surface roughness of steel R a from 1.01 μm to 0.17 μm.

  1. Modelling of fast jet formation under explosion collision of two-layer alumina/copper tubes

    Directory of Open Access Journals (Sweden)

    I Balagansky

    2017-09-01

    Full Text Available Under explosion collapse of two-layer tubes with an outer layer of high-modulus ceramics and an inner layer of copper, formation of a fast and dense copper jet is plausible. We have performed a numerical simulation of the explosion collapse of a two-layer alumina/copper tube using ANSYS AUTODYN software. The simulation was performed in a 2D-axis symmetry posting on an Eulerian mesh of 3900x1200 cells. The simulation results indicate two separate stages of the tube collapse process: the nonstationary and the stationary stage. At the initial stage, a non-stationary fragmented jet is moving with the velocity of leading elements up to 30 km/s. The collapse velocity of the tube to the symmetry axis is about 2 km/s, and the pressure in the contact zone exceeds 700 GPa. During the stationary stage, a dense jet is forming with the velocity of 20 km/s. Temperature of the dense jet is about 2000 K, jet failure occurs when the value of effective plastic deformation reaches 30.

  2. Formation of hydrated layers in PMMA thin films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Akers, Peter W. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); Nelson, Andrew R.J. [The Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia); Williams, David E. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand); McGillivray, Duncan J., E-mail: d.mcgillivray@auckland.ac.nz [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand)

    2015-10-30

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  3. The role of goethite in the formation of the protective corrosion layer on steels

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.C. [Old Dominion University, Department of Physics (United States); Oh, S.J. [Pohang University of Science and Technology, Pohang, Department of Materials Science and Engineering (Korea, Republic of); Balasubramanian, R. [Old Dominion University, Department of Physics (United States); Yamashita, M. [Himeji Institute of Technology, Department of Mechanical Engineering (Japan)

    1999-11-15

    The corrosion products formed on carbon and weathering steels exposed in marine, industrial and rural environments in the United States for 16 years have been investigated using Moessbauer spectroscopy, Raman spectrometry and chemical analysis. Moessbauer spectroscopy was used to measure the fraction of each oxide in the corrosion coatings and micro-Raman spectrometry was used to locate and map the oxides to 2 {mu}m spatial resolution. Moessbauer spectroscopy identified the corrosion products in the weathering steels as 75% goethite, 20% lepidocrocite and 5% maghemite. Raman analysis showed that the corrosion products generally formed as alternating layers containing different oxides. For the weathering steels the protective inner-layer closest to the steel substrate consisted of nano-sized goethite ranging in size from 5-30 nm and having a mean particle size of about 12 nm. The outer-layer close to the coating surface, consisted of lepidocrocite and goethite with the former oxide being most abundant. Electron probe micro-analysis measured significant chromium in the goethite close to the steel substrate. Comparison of the goethite in the corrosion products was made with synthetic chromium substituted goethite with nearly identical microstructural characteristics being recorded. It is concluded that chromium inclusions in the goethite are important for formation of a nano-phase oxide layer which may help protect the weathering steel from further corrosion.

  4. Factors affecting the formation of zeolite seed layers and the effects of seed layers on the growth of zeolite silicalite-1 membranes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiongfu; LIU Hai'ou; WANG Anjie; WANG Jinqu

    2007-01-01

    The present study investigates the formation of silicalite-1 seed layers on a porous carbon support of 0.5 μm pore size and a-Al2O3 supports with different pore sizes (0.1 μm and 4 μm) via the slip-casting technique.The effects of support property,seed size and solvent on the formation of seed layers were investigated in detail.The growth of silicalite-1 membranes on different seeded supports by hydrothermal synthesis was also evaluated.The scanning electron microscopy (SEM) and X-ray diffraction (XRD) characterizations indicate that a continuous seed layer can be obtained on the smooth support of 0.1 μm pore size by using any seed of 100 nm,600 nm or 2.2 μm in size,whereas,on the coarse supports with either 0.5 μm or 4 μm pore size,a continuous seed layer cannot be formed using the above seed sizes and the same seeding time.At a longer contact time,a seed layer can also be formed using 100 nm seed on the supports with larger pore size.However,the layer is not uniform and smooth.For a hydrophobic porous carbon support,seeding ethanol suspension,which has weak polarity,favors the formation of a continuous seed layer.The seed layers and membranes grown from the smaller seed are more uniform and continuous and possess smoother surfaces than those from the larger seed.The seed layer and respective grown membrane formed from nanosized seed (100 nm) are the most uniform and compact.With this method of seeded secondary synthesis of zeolite membranes,the quality of a membrane mainly 、depends on the quality of the seed layer.

  5. Double Layers: Potential Formation and Related Nonlinear Phenomena in Plasmas: Proceedings of the 5th Symposium

    Science.gov (United States)

    Iizuka, S.

    1998-02-01

    The Table of Contents for the book is as follows: * PREFACE * INTERNATIONAL SCIENTIFIC COMMITTEE * LOCAL ORGANIZING COMMITTEE AT TOHOKU UNIVERSITY * CHAPTER 1: DOUBLE LAYERS, SHEATHS, AND POTENTIAL STRUCTURES * 1.1 Double Layers * On Fluid Models of Stationary, Acoustic Double Layers (Invited) * Particle Simulation of Double Layer (Invited) * Space-Time Dependence of Non-Steady Double Layers * The Role of Low Energy Electrons for the Generation of Anode Double Layers in Glow Discharges * Arbitrary Amplitude Ion-Acoustic Double Layers in a Dusty Plasma * 1.2 Sheaths * Bounded Plasma Edge Physics as Observed from Simulations in 1D and 2D (Invited) * Control of RF Sheath Structure in RF Diode Discharge * Observation of Density Gradients with Fine Structures and Low Frequency Wave Excitation at the Plasma-Sheath Boundary * Double Sheath Associated with an Electron Emission to a Plasma Containing Negative Ions * Sheath Edge and Floating Potential for Multi-Species Plasmas Including Dust Particles * 1.3 Potential Structures and Oscillations * Potential Structure Formed at a Constriction of a DC He Positive Column and its Coupling with Ionization Wave * Potential Structure in a New RF Magnetron Device with a Hollow Electrode * Potential Disruption in a RF Afterglow Electronegative Plasma * Potential Oscillation in a Strongly Asymmetry RF Discharge Containing Negative Ions * Effects of External Potential Control on Coulomb Dust Behavior * Potential Structure of Carbon Arc Discharge for High-Yield Fullerenes Formation * Control of Axial and Radial Potential Profiles in Tandem Mirrors (Invited) * CHAPTER 2: FIELD-ALIGNED ELECTRIC FIELDS AND RELATED PARTICLE ACCELERATIONS * 2.1 Field-Aligned Potential Formation * Formation of Large Potential Difference in a Plasma Flow along Converging Magnetic Field Lines (Invited) * Presheath Formation in front of an Oblique End-Plate in a Magnetized Sheet Plasma * Plasma Potential Formation Due to ECRH in a Magnetic Well * Electrostatic

  6. Deposits of the Peruvian Pisco Formation compared to layered deposits on Mars

    Science.gov (United States)

    Sowe, M.; Bishop, J. L.; Gross, C.; Walter, S.

    2013-09-01

    Deposits of the Peruvian Pisco Formation are morphologically similar to the mounds of Juventae Chasma at the equatorial region on Mars (Fig. 1). By analyzing these deposits, we hope to gain information about the environmental conditions that prevailed during sediment deposition and erosion, hence conditions that might be applicable to the Martian layered and hydrated deposits. Mariner 9 data of the Martian mid-latitudes have already shown evidence of the wind-sculptured landforms that display the powerful prevailing eolian regime [1]. In addition, [2] reported on similarities between Martian erosional landforms and those of the rainless coastal desert of central Peru from the Paracas peninsula to the Rio Ica. As indicated by similar erosional patterns, hyper-arid conditions and unidirectional winds must have dominated at least after deposition of the sediments, which are intermixed volcaniclastic materials and evaporate minerals at both locations. Likewise, variations in composition are displayed by alternating layers of different competence. The Pisco formation bears yardangs on siltstones, sandstones and clays with volcaniclastic admixtures [3] whereas the presence of sulphate minerals and the omnipresent mafic mineralogy has been reported for the layered mounds of Juventae Chasma equally [4]. Likewise, a volcanic airfall deposition and lacustrine formation have been proposed for the sulphate-rich deposits of Juventae Chasma [5,6]. In order to find out about potential spectral similarities, we performed a detailed spectral analysis of the surface by using LANDSAT and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) VNIR/ SWIR data (visible to near-infrared and shortwave infrared region).

  7. Investigation of void formation beneath thin AlN layers by decomposition of sapphire substrates for self-separation of thick AlN layers grown by HVPE

    Science.gov (United States)

    Kumagai, Yoshinao; Enatsu, Yuuki; Ishizuki, Masanari; Kubota, Yuki; Tajima, Jumpei; Nagashima, Toru; Murakami, Hisashi; Takada, Kazuya; Koukitu, Akinori

    2010-09-01

    Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50-200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H 2 and NH 3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×10 8 cm -2.

  8. Formation and removal of multi-layered fluorescence patterns in gold-ion doped glass

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jongho; Jang, Kyungsik [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lim, Ki-Soo, E-mail: kslim@chungbuk.ac.kr [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Youn-Shil; Lee, You-Lee; Choi, Jung-Hyun [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Sohn, Ik-Bu; Lee, Jongmin [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Myeongkyu [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2009-09-30

    We report the formation of fluorescence patterns inside gold-doped glass medium by femtosecond-laser fabrication. Strong fluorescence images appeared from the irradiated multi-layered region after low temperature annealing. We removed the images by exposing the glass to an electric furnace or a CO{sub 2} laser beam for high temperature annealing. The method was also applied to recording, reading, and erasing of fluorescence data by a femtosecond laser, a 405-nm laser diode, and a CO{sub 2} laser respectively.

  9. Enhanced High Temperature Corrosion Resistance in Advanced Fossil Energy Systems by Nano-Passive Layer Formation

    Energy Technology Data Exchange (ETDEWEB)

    Arnold R. Marder

    2007-06-14

    Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has highlighted the need for research into the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In the present work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 C and 700 C for both short (100 hours) and long (5,000 hours) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance in the short term tests. For longer exposures, increasing the aluminum concentration was beneficial to the corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in lower corrosion kinetics. A classification of the corrosion products that developed on these alloys is presented. Scanning transmission electron microscopy (STEM) of the as-corroded coupons revealed that chromium was able to form chromium sulfides only on the higher aluminum alloy, thereby preventing the formation of deleterious iron sulfides. When the aluminum concentration was too low to permit selective oxidation of only aluminum (upon initial exposure to the corrosion environment), the formation of chromium oxide alongside the aluminum oxide led to depletion of chromium beneath the oxide layer. Upon penetration of sulfur through the oxide into this depletion layer, iron sulfides (rather than chromium sulfides) were found to form on the low aluminum alloy. Thus, it was found in this work that the role of chromium on alloy corrosion resistance was strongly effected by the aluminum concentration of the alloy. STEM analysis also revealed the encapsulation of external iron sulfide products with a thin layer of aluminum oxide, which may provide a

  10. Pattern Formation in Double-Layer Kerr Resonators with Coupled Modes

    CERN Document Server

    Bois, Antoine

    2016-01-01

    A double-layer Kerr resonator in which both coupled modes are excited and interact with each other via incoherent cross-phase modulation is investigated to reveal stable localized solutions beyond the usual formation mechanism involving a single mode. Periodic solutions from modulational instability are found to occur at a slight penalty on the nonlinear efficiency, but they stabilize the spatial dynamics, leading to dissipative solitons in previously unattainable regimes. Numerical simulations show paired breather solitons in addition to temporally stable solutions. The results demonstrate coupled modes can increase the stability of Kerr frequency comb generation.

  11. Gas chromatography for in situ analysis of a cometary nucleus. II. Analysis of permanent gases and light hydrocarbons with a carbon molecular sieve porous layer open tubular column.

    Science.gov (United States)

    Szopa, C; Sternberg, R; Coscia, D; Raulin, F; Vidal-Madjar, C

    2000-12-22

    Considering the severe constraints of space instrumentation, a great improvement for the in situ gas chromatographic (GC) determination of permanent and noble gases in a cometary nucleus is the use of a new carbon molecular sieve porous layer open tubular (PLOT) column called Carbobond. No exhaustive data dealing with this column being available, studies were carried out to entirely characterize its analytical performances, especially when used under the operating conditions of the cometary sampling and composition (COSAC) experiment of the European Space Agency (ESA) Rosetta space mission to be launched in 2003 for a rendezvous with comet 46 P/Wirtanen in 2011. The high efficiency and speed of analysis of this column at both atmospheric and vacuum outlet column pressure is demonstrated, and the kinetic mass transfer contribution of this carbon molecular sieve adsorbent is calculated. Besides, differential adsorption enthalpies of several gases and light hydrocarbons were determined from the variation of retention volume with temperature. The data indicate close adsorption behaviors on the Carbobond porous layer adsorbent and on the carbon molecular sieve Carboxen support used to prepare the packed columns. Moreover, taking into account the in situ operating conditions of the experiment, a study of two columns with different porous layer thicknesses allowed one to optimize the separation of the target components and to select the column parameters compatible with the instrument constraints. Comparison with columns of similar selectivity shows that these capillary columns are the first ones able to perform the same work as the packed and micro-packed columns dedicated to the separation of this range of compounds in GC space exploration.

  12. Analysis of ray stability and caustic formation in a layered moving fluid medium

    CERN Document Server

    Bergman, David R

    2015-01-01

    Caustic formation occurs within a ray skeleton as optical or acoustic fields propagate in a medium with variable refractive properties and are unphysical, their presence being an artifact of the ray approximation of the field, and methods of correcting the field near a caustic are well known. Differential geometry provides a novel approach to calculating acoustic intensity, assessing ray stability and locating caustics in acoustic ray traces when the properties of medium are completely arbitrary by identifying points on the caustic with conjugate points along various rays. The method of geodesic deviation is applied to the problem of determining ray stability and locating caustics in 2-dimensional acoustic ray traces in a layered moving medium. Specifically, a general treatment of caustic formation in sound ducts and in piecewise continuous media is presented and applied to various idealized and realistic scenarios.

  13. EXPERIMENTALLY-STATISTICAL MODEL OF CLADDING LAYER FORMATION PROCESS ON SLIDE-WAYS

    Directory of Open Access Journals (Sweden)

    N. N. Maksimchenko

    2010-01-01

    Full Text Available The developed experimentally-statistical model of the cladding composite layer formation process on slide-ways allows to operate technological modes of cladding by flexible instrument (CFI in order to obtain the set properties of a coating (thickness, continuity, adhesion strength.The established optimum technological modes of CFI process providing formation of continuous, strongly adhered to a basis composite coatings of the required thickness have been used for applying coatings on working surfaces of slide-ways of metal-cutting machine tool beds that has allowed to lower friction factor in coupling on the average by 1.3–1.7-fold and to improve uniformity of slow moving of machine tool units by 1.74-fold in comparison with slide-ways without a coating. 

  14. Rapid method for hydrocarbon-type analysis of heavy oils and synthetic fuels by pyrolysis thin layer chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.A.; George, A.E.

    1982-09-01

    This work describes a rapid method for hydrocargon-type analysis applying thin layer chromatography (TLC) to the pentane-soluble fraction *malthenes) of the petroleum and synthetic fuels boiling above 200/sup 0/C. The principal component types encountered in this paper are saturates (SA), aromatics (AR), (mono and di together) polynuclear aromatics (PNA) and polar material (PO). The method uses a Iatroscan TLC pyrolyzer which combines the resolution capabilities of TLC with the possibility of quantification by using a flame-ionization detector (FID). Comparison of the results with those obtained by the API-60 procedure is presented.

  15. Distribution and geological significance of 17α(H)-diahopanes from different hydrocarbon source rocks of Yanchang Formation in Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    ZHANG WenZheng; YANG Hua; HOU LiHui; LIU Fei

    2009-01-01

    Based on GC-MS testing data of many saturated hydrocarbon samples, 17α(H)-30 diahopanes (C30*) are extensively distributed in the lacustrine hydrocarbon source rocks of the Yanchang Formation in Ordos Basin, but show remarkable differences in relative abundance among various source rocks. Generally, Chang 7 high-quality source rock (oil shale) developed in deep lake anoxic environment shows lower C30* content, whereas Chang 6-9 dark mudstone developed in shallow to semi-deep lake, sub-oxidiz- ing environment shows relatively high to high C30* value. Particularly, Chang 7 and Chang 9 black mudstones in Zhidan region in the northeast of the lake basin show extremely high C30* value. A com- parative analysis was made based on lithology, organic types and various geochemical parameters indicative of redox environment, and the results indicate that environmental factors such as redox set- tings and lithology are key factors that control the C30* relative abundance, while organic types and maturity may be minor factors. High to extremely high C30* values are indicative of sub-oxidizing envi- ronment of fresh-brackish water and shallow to semi-deep lake. Therefore, research on C30* relative content and distribution in lacustrine hydrocarbon source rocks in the Yanchang Formation, especially on the difference in C30* between Chang 7 high-quality source rocks (oil shale) and Chang 6-91 source rocks (dark mudstone), will provide an important approach for classification of Mesozoic lacustrine crudes and detailed oil-source correlation in the basin.

  16. Distribution and geological significance of 17α(H)-diahopanes from different hydrocarbon source rocks of Yanchang Formation in Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on GC-MS testing data of many saturated hydrocarbon samples, 17α(H)-C30 diahopanes (C30*) are extensively distributed in the lacustrine hydrocarbon source rocks of the Yanchang Formation in Ordos Basin, but show remarkable differences in relative abundance among various source rocks. Generally, Chang 7 high-quality source rock (oil shale) developed in deep lake anoxic environment shows lower C30* content, whereas Chang 6-9 dark mudstone developed in shallow to semi-deep lake, sub-oxidizing environment shows relatively high to high C30* value. Particularly, Chang 7 and Chang 9 black mudstones in Zhidan region in the northeast of the lake basin show extremely high C30* value. A comparative analysis was made based on lithology, organic types and various geochemical parameters indicative of redox environment, and the results indicate that environmental factors such as redox settings and lithology are key factors that control the C30* relative abundance, while organic types and maturity may be minor factors. High to extremely high C30* values are indicative of sub-oxidizing environment of fresh-brackish water and shallow to semi-deep lake. Therefore, research on C30* relative content and distribution in lacustrine hydrocarbon source rocks in the Yanchang Formation, especially on the difference in C30* between Chang 7 high-quality source rocks (oil shale) and Chang 6-91 source rocks (dark mudstone), will provide an important approach for classification of Mesozoic lacustrine crudes and detailed oil-source correlation in the basin.

  17. Formation of the seed layers for layer-transfer process silicon solar cells by zone-heating recrystallization of porous silicon structures

    Science.gov (United States)

    Lukianov, A.; Murakami, K.; Takazawa, C.; Ihara, M.

    2016-05-01

    Thin-film crystalline silicon is promising for photovoltaic application to reduce the cost of photovoltaic energy. Porous silicon structures have been intensively studied as a seed layer for epitaxial growth of thin Si film and layer-transfer process (LTP). In this article, another approach for LTP has been proposed. The seed layers for epitaxial silicon growth have been formed by zone-heating recrystallization of double-layer por-Si structures. The influence of annealing parameters on porous silicon structures was studied. The transformation of por-Si layer to crystalline Si was observed with the formation of smooth continuous surface with the roughness 0.3 nm, peak-to-valley distance around 3.5 nm, and reduced density of pores. The mechanism of the transformation of por-Si surface due to the action of hydrogen in the passivated pores with preventing surface oxidation was proposed.

  18. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    Science.gov (United States)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  19. Mechanisms for the formation of exhaust hydrocarbons in a single cylinder spark-ignition engine, fueled with deuterium-labeled ortho-, meta-, and para-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, D.; Jackson, R.A. [Univ. of Sussex, Brighton (United Kingdom). School of Chemistry, Physics and Environmental Science; Bennett, P.J. [BP Oil, Sunbury-on-Thames (United Kingdom)

    1999-08-01

    Combustion studies in engines have investigated the chemistry leading to the formation in the exhaust of aromatic hydrocarbons from deuterium-labeled isomeric xylenes. These fuels were: ortho-xylene-d{sub 0} and ortho-xylene=d{sub 10} (1:1); para-xylene-d{sub 0} and para-xylene-d{sub 10} (1:1); and meta-xylene-2,4,5,6-d{sub 4}. Isotopic distributions within the exhausted hydrocarbons establish the postflame chemistry involved. There is an isotope effect in the consumption of residual fuel in the postflame region. The residual fuel from each experiment exhibits minimal H-D exchange. Toluene is an intermediate in the formation of ethylbenzene, and is produced through X{sup {sm_bullet}} atom (X{sup {sm_bullet}} = H or D) displacement of methyl radicals from the xylene fuel. Benzene is formed by direct demethylation, but there are other routes. Styrene from o- and p-xylene fuels is formed intramolecularly, probably involving xylylene and methylcycloheptatetraene intermediates. Ethyltoluene is formed by combination of methyl and methylbenzyl radicals.

  20. Formation of PbTe nanofilms by electrochemical atomic layer deposition (ALD)

    Energy Technology Data Exchange (ETDEWEB)

    Banga, Dhego O.; Vaidyanathan, Raman; Xuehai, Liang [Department of Chemistry, University of Georgia, Athens, GA 30602-2556 (United States); Stickney, John L. [Department of Chemistry, University of Georgia, Athens, GA 30602-2556 (United States)], E-mail: Stickney@chem.uga.edu; Cox, Stephen; Happeck, Uwe [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602-2556 (United States)

    2008-10-01

    This article describes optimization of a cycle for the deposition of lead telluride (PbTe) nanofilms using electrochemical atomic layer deposition (ALD). PbTe is of interest for the formation of thermoelectric device structures. Deposits were formed using an ALD cycle on Au substrates, one atomic layer at a time, from separate solutions, containing Pb{sup 2+} or HTeO{sub 2}{sup +} ions. Single atomic layers were formed using surface limited reactions, referred to as underpotential deposition (UPD), so the deposition cycle consisted of alternating UPD of Te and Pb. The Pb deposition potential was maintained at -0.35 V throughout the 100 cycle-runs, while the Te deposition potential was ramped up from -0.55 V to -0.40 V over the first 20 cycles and then held constant for the remaining ALD cycles. Coulometry for the reduction of both Te and Pb indicated coverages near one monolayer, each cycle. Electron probe microanalysis (EPMA) indicated a uniform and stoichiometric deposit, with a Te/Pb ratio of 1.01. X-ray diffraction measurement showed that the thin films had the rock salt structure, with a preferential (2 0 0) orientation for the as formed deposits. No annealing was used. Infrared reflection absorption measurements of PbTe films formed with 50, 65, and 100 cycles indicated strong quantum confinement.

  1. Formation of Porous Apatite Layer during In Vitro Study of Hydroxyapatite-AW Based Glass Composites

    Directory of Open Access Journals (Sweden)

    Pat Sooksaen

    2015-01-01

    Full Text Available This research discussed the fabrication, characterization, and in vitro study of composites based on the mixture of hydroxyapatite powder and apatite-wollastonite (AW based glass. AW based glass was prepared from the SiO2-CaO-MgO-P2O5-CaF2 glass system. This study focuses on the effect of composition and sintering temperature that influences the properties of these composites. Microstructural study revealed the formation of apatite layer on the composite surfaces when immersed in simulated body fluid (SBF solution at 37°C. Composites containing ≥50 wt% AW based glass showed good bioactivity after 7 days of immersion in the SBF. A porous calcium phosphate (potentially hydroxycarbonate apatite, HCA layer formed at the SBF-composite interface and the layer became denser at longer soaking period, for periods ranging from 7 to 28 days. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES analysis showed that early stage of soaking occurred with the release of Ca and Si ions from the composites and the decrease of P ions with slow exchange rate.

  2. The formation of standing cylinders in block copolymer films by irreversibly adsorbed polymer layers on substrates

    Science.gov (United States)

    Shang, Jun; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori

    2013-03-01

    Block copolymers offer a simple and effective route to produce standing cylindrical nanostructures with regularity on the order of 10-100 nm, the length scale that is desirable for many advanced applications. However, these formations have been especially troublesome due to the fact that preferential interactions between one of the blocks and the surfaces will induce parallel alignment of the cylinders in order to minimize interfacial and surface energy. Here we introduce an alternative simple method utilizing an irreversibly adsorbed polymer layer (a ``Guiselin'' brush) as a neutral ``substrate'' formed on solid substrates for the arrangement of standing cylindrical nanostructures. The effect of polymer adsorbed layer on the long range ordering of asymmetric cylinder forming poly(styrene-block-ethylene/butylene-block-styrene) (SEBS) triblock copolymer thin films were investigated by using a combination of grazing incidence small angle x-ray scattering and atomic force microscopy techniques. We found that the SEBS, which forms cylinders lying parallel to the surface when prepared on silicon substrates, show standing cylindrical structures on selected Guiselin brush layers after prolong thermal annealing. The details will be discussed in the presentation. We acknowledges the financial support from NSF Grant No. CMMI-084626

  3. Stainless steel protection by in-situ oxide layer formation in stagnant lead-bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Soler, L. [CIEMAT, Edificio 30, Dpto. Fision Nuclear, Avda. Complutense 22, 28040 Madrid, (Spain); Martin, F.J.; Hernandez, F.; Gomez-Briceno, D. [CIEMAT, Nuclear Fission Department, Structural Materials Project, Avda. Complutense 22, Building 30, 28040 Madrid (Spain)

    2004-07-01

    Accelerator Driven Systems (ADS) are designed to transmute long life and high activity nuclear wastes. The physico-chemical and nuclear characteristics of lead bismuth eutectic make this heavy liquid metal suitable to be used as spallation target and as coolant in ADS. However, heavy liquid metals, and particularly lead-bismuth eutectic, present a high aggressiveness to most of the structural materials. Nickel, chromium and iron, as constitutive elements of stainless steels, show a high solubility in lead-bismuth eutectic, that prevents their use as structural materials without any protection at temperatures higher than 400 deg. C for austenitic stainless steels and higher than 450 deg. C for martensitic steels. According to the available experience, proceeding from the former USSR, one of the possible ways to improve the performance of structural materials in Pb-Bi is the formation and maintenance of a protective oxide layer, which would constitute a barrier between the liquid metal and the steel. The corrosion resistance is determined by the oxygen thermodynamic activity in the liquid metal. For oxygen concentrations in the liquid metal below the equilibrium concentration for the formation of protective layers, the structural steels will suffer dissolution attack. On the contrary, if the oxygen concentration is higher than the necessary for the formation of oxide layers, the steels will experience an oxidation process, but very high concentrations provoke lead-bismuth oxides. Therefore, the oxygen content should be between these two limits in order to be able to form a protective oxide on the steel surface. The necessary oxygen content in the liquid metal may be obtained by gas injection, lead oxide interacting with the melt or the H{sub 2}/H{sub 2}O system. In this work, materials protection by 'in situ' oxidation has been studied in stagnant lead-bismuth, with different oxygen levels (H{sub 2}/H{sub 2}O ratios of 0.3, 0.03 and 0.003), at temperatures

  4. Interfacial micromorphological differences in hybrid layer formation between water- and solvent-based dentin bonding systems.

    Science.gov (United States)

    Gregoire, Geneviève L; Akon, Bernadette A; Millas, Arlette

    2002-06-01

    Many dentin bonding systems of different compositions, and in particular containing different solvents, have been introduced to the market. Their effect on the quality of the interface requires clarification by means of comparative trials. This study investigated micromorphological differences in hybrid layer formation with a variety of commercially available water- or solvent-based dentin bonding products and their recommended compomers. Five bonding systems were used on groups of 10 teeth each as follows: group I, acetone-based system used with 36% phosphoric acid; group II, a different acetone-based system containing nano-sized particles for filler loading and used with a non-rinsing conditioner containing maleic acid; group III, the acetone-based system of group II used with 36% phosphoric acid (the only difference in the treatment for groups II and III was the acid etching system); group IV, a mixed-solvent-based system (water/ethanol) used with 37% phosphoric acid; and group V, a water-based system used with 37% phosphoric acid. Each bonding system was covered with the recommended compomer. Class I occlusal preparations were made in extracted teeth and restored with one of the above systems. Five specimens of each group were studied with optical microscopy after staining. Scanning electron microscopy was used to examine the interface of the bonding system/dentin of the other 5 teeth in each group. The optical microscopy measurements were made with a 10 x 10 reticle. A micron mark with scale was used for the scanning electron microscope. All measurements were made in microm. The following criteria were used to define a good interface: absence of voids between the different parts of the interface, uniformity of the hybrid layer, good opening of the tubuli orifices, and tag adherence to the tubuli walls. Morphological differences were found at the interface depending on dentin treatment and adhesive composition. The acetone-containing systems were associated

  5. Magnetized graphene layers synthesized on the carbon nanofibers as novel adsorbent for the extraction of polycyclic aromatic hydrocarbons from environmental water samples.

    Science.gov (United States)

    Rezvani-Eivari, Mostafa; Amiri, Amirhassan; Baghayeri, Mehdi; Ghaemi, Ferial

    2016-09-23

    The application of magnetized graphene (G) layers synthesized on the carbon nanofibers (CNFs) (m-G/CNF) was investigated as novel adsorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). Six important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 5min for extraction time, 20mg for sorbent amount, dichloromethane as desorption solvent, 1mL for desorption solvent volume, 5min for desorption time and 15% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. The calibration curves were linear over the concentration ranges from 0.012 to 100ngmL(-1) with correlation coefficients (r) between 0.9950 and 0.9967 for all the analytes. The limits of detection (LODs, S/N=3) of the proposed method for the studied PAHs were 0.004-0.03ngmL(-1). The relative standard deviations (RSDs) for five replicates at two concentration levels (0.1 and 50ngmL(-1)) of PAHs were ranged from 3.4 to 5.7%. Appropriate relative recovery values, in the range of 95.5-99.9%, were also obtained for the real water sample analysis.

  6. Formation Characteristic of CO2 Corrosion Product Layer of P110 Steel Investigated by SEM and Electrochemical Techniques

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-xian; LU Xiang-hong; XIANG Jian-min; HAN Yong

    2009-01-01

    Formation characteristic of CO2 corrosion product layer on the surface of P110 steel was investigated in simulated oilfield environment using mass-loss experiment, potentiodynamic polarization curve, impedance spectroscopy, and SEM micrograph analysis. Samples of different times up to 240 h were tested during exposure. Corrosion product was primarily composed of Fe(Ca, Mg)(CO3)2, which was distinguished by two layers. With an increase in the exposure time, the charge transfer resistance and polarization resistance increased progressively, the uniform corrosion rate decreased, and the corrosion reaction was controlled by the diffusion process instead of the activation process. All phenomena were attributed to the formation of the protective corrosion product layer. More compact and lower porosity of the layer made it more difficult to transfer and diffuse through the corrosion product layer for the charges and ions. Similar results were obtained by electrochemical test and mass-loss experiment.

  7. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process—Uncoupling Material Synthesis and Layer Formation

    Directory of Open Access Journals (Sweden)

    Fabian Panzer

    2016-04-01

    Full Text Available We present the successful fabrication of CH3NH3PbI3 perovskite layers by the aerosol deposition method (ADM. The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  8. The boundary layer characteristics in the heavy fog formation process over Beijing and its adjacent areas

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Guangzhi; BIAN; Lingeng; WANG; Jizhi; YANG; Yuanqi

    2005-01-01

    By utilizing the Atmospheric Boundary Layer (ABL) observational data made available from the project "973" under the auspices of the Ministry of Science and Technology of the People's Republic of China - entitled the Beijing City Air Pollution Observation Field Experiment (BECAPEX), including the measurements by a wind profiler, captive airships, tower-based boundary layer wind and temperature gradient observational instruments (ultrasonic anemometers and electronic thermometers), air composition samplers, conventional upper-air, surface and Automatic Weather Stations (AWS) observations, this paper herewith analyzes, in a comprehensive manner, the occurrence of a heavy fog event over Beijing in February 2001, including its formation, development, persistence, dynamic and thermodynamic features as well as evolving stratification structures within the boundary layer at different stages. The results suggested: (i) as a typical case of urban heavy fog, before the fog onset over Beijing, a temperature inversion existed in the lower atmosphere, the smokes and the pollutants like SO2 and NO2 had been accumulated at a lower level. Proceeding the fog event, with the increase of SO2 and NO2 concentrations, condensability increased sharply. On the contrary, during the fog process, with increasing condensability, SO2 and NO2 concentrations decreased. This indicated that, acting as condensation nucleus, these accumulated pollutants were playing a key role in catalyzing the fog condensation. (ii) By analyzing mean gradient-, pulsation- and turbulence-distribution patterns derived from the wind measurements taken by the aforementioned tower-based instruments, they all indicated that about 10 hours before the fog onset, a signal foretelling potential strong disturbances in the lower boundary layer was detected, and a significant rise of both mean and disturbance kinetic energies was observed, revealing that the low-level wind shear was strengthened before the fog onset

  9. Methods for interpretation of tensor induction well logging in layered anisotropic formations

    Science.gov (United States)

    Peksen, Ertan

    instrument with coinciding positions of three mutually orthogonal transmitters at one point and all three receivers at the other point in a borehole. Formulas can be corrected for practical instrument design. Corrected formulas for a practical tensor induction well logging instrument are introduced. The numerical study shows, that for various anisotropy values, corrected apparent conductivities are practically the same as the theoretical apparent parameters. A new technique for interpretation of tensor induction well logging (TIWL) data is presented. This method is called sharp boundary inversion, based on using specially selected stabilizing functionals, which minimize the area where strong model parameter variations and discontinuities occur. The method recovers the sharp boundary between various anisotropic geoelectrical layers and reconstructs both horizontal and vertical resistivity profiles. The new TIWL interpretation methods are illustrated by application to the synthetic models of layered anisotropic formations. These methods are applied to the typical benchmark petrophysical models.

  10. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    Science.gov (United States)

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Formation of the intermediate semiconductor layer for the Ohmic contact to silicon carbide using Germanium implanttation

    Institute of Scientific and Technical Information of China (English)

    Guo Hui; Wang Yue-Hu; Zhang Yu-Ming; Qiao Da-Yong; Zhang Yi-Men

    2009-01-01

    By formation of an intermediate semiconductor layer(ISL)with a narrow band gap at the metallic contact/SiC interface, this paper realises a new method to fabricate the low-resistance Ohmic contacts for SiC. An array of transfer length method(TLM)test patterns is formed on N-wells created by P+ion implantation into Si-faced p-type 4H-SiC epilayer. The ISL of nickel-metal Ohmic contacts to n-tyDe 4H-SiC could be formed by using Germanium ion implantation into SiC. The specific contact resistance ρ_c as loW as 4.23×10~(-5) Ω·cm~2 is achieved after annealing in N_2 at 800℃ for 3 min, which iS much lower than that(>900℃)in the typical SiC metallisation process. The sheet resistance Rsh of the implanted layers is 1.5 kΩ/□. The technique for converting photoresist into nanocrystalline graphite is used to protect the SiC surface in the annealing after Ge~+ ion implantations.

  12. Formation of layer-shaped pores in TiC-Fe cermet by combustion synthesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To study the formation of layer-shaped pores in TiC-Fe cermet, two Ti-C-Fe powder compacts containing Ti powders with two size ranges (<44?μm and 135~154?μm) respectively were ignited in a special ignition mode. The combustion temperatures of the reactions were measured, the phase constituents of the combustion-synthesized products were inspected by X-ray diffractometry (XRD), and the structures of the products were observed with scanning electron microscope (SEM). In the case of the finer Ti powder used, TiC-Fe cermet and pore rank in an alternately laminar shape, and the shape of the pore is the same as that of the combustion wavefront, implying that the layer-shaped pore results from a gather of the retained gas into the combustion wavefront. While in the case of the coarser Ti powder used, the lower combustion temperature causes the gather of the retained gas to be difficult, the pore being present in an arbitrary shape and distributing randomly.

  13. An alternative method of gas boriding applied to the formation of borocarburized layer

    Energy Technology Data Exchange (ETDEWEB)

    Kulka, M., E-mail: michal.kulka@put.poznan.pl; Makuch, N.; Pertek, A.; Piasecki, A.

    2012-10-15

    The borocarburized layers were produced by tandem diffusion processes: carburizing followed by boriding. An alternative method of gas boriding was proposed. Two-stage gas boronizing in N{sub 2}-H{sub 2}-BCl{sub 3} atmosphere was applied to the formation of iron borides on a carburized substrate. This process consisted in two stages, which were alternately repeated: saturation by boron and diffusion annealing. The microstructure and microhardness of produced layer were compared to those-obtained in case of continuous gas boriding in H{sub 2}-BCl{sub 3} atmosphere, earlier used. The first objective of two-stage boronizing, consisting in acceleration of boron diffusion, has been efficiently implemented. Despite the lower temperature and shorter duration of boronizing, about 1.5 times larger iron borides' zone has been formed on carburized steel. Second objective, the absolute elimination of brittle FeB phase, has failed. However, the amount of FeB phase has been considerably limited. Longer diffusion annealing should provide the boride layer with single-phase microstructure, without FeB phase. - Highlights: Black-Right-Pointing-Pointer Alternative method of gas boriding in H{sub 2}-N{sub 2}-BCl{sub 3} atmosphere was proposed. Black-Right-Pointing-Pointer The process consisted in two stages: saturation by boron and diffusion annealing. Black-Right-Pointing-Pointer These stages of short duration were alternately repeated. Black-Right-Pointing-Pointer The acceleration of boron diffusion was efficiently implemented. Black-Right-Pointing-Pointer The amount of FeB phase in the boride zone was limited.

  14. 黄河口凹陷渤中34区明化镇组下段油气输导体系%Hydrocarbon migration of Bozhong34 in Lower Minghuazhcn Formation, Huanghekou sag, offshore Bohai sea

    Institute of Scientific and Technical Information of China (English)

    张新涛; 牛成民; 黄江波; 曾萱; 涂丹凤

    2012-01-01

    The characteristics of migration system and its relationship with the distribution of middle shallow hydrocarbon reservoir in the Bozhong34 block of the Huanghekou sag in the offshore Bohai Bay Basin show that, the faults and sandbodies dominate the hydrocarbon migration system in the block. The distribution of sandbodies and faults are not the only factor that controls hydrocarbon enrichment in the study area. The spatial and temporal configurations of faults and sandbodies also control the effectiveness of migration system, thus determine the formation and occurrence of the oil reservoirs in the middle shallow layers. Through the static model of faults and sandbodies, the contact area of faults and sandbodies is important parameter controlling oil-gas filling degree, reserves abundance, and oil column height. Moreover, it guides the well position of Bozhong34-B and reservoir prediction. Quantitative study about configurations of faults and sandbodies with petroleum accumulation model has important value in theory and field application for expanding exploration space and locating the potential reservoir.%通过对渤海湾盆地黄河口凹陷渤中34区输导体系特征及其与中浅层油气成藏规律关系的研究表明,对油气运移起重要作用的输导体系主要有断层和砂体,油气的富集受控于断层和砂体的分布,且断层与砂体耦合接触关系既决定了输导体系的有效性,也决定了浅层明化镇组下段(明下段)油气藏的形成与分布.通过建立断层与砂体耦合接触半定量静态模型,证实断层与砂体的接触面积是影响油气充满度、储量丰度和油柱高度的重要参数,指导了渤中34-B构造的井位部署,渤中34-B-3D井砂体的含油气性预测结果与实钻吻合较好.实践证实,断层与砂体耦合接触关系半定量描述方法对成熟探区开拓勘探空间、寻找潜在油气藏具有重要的理论和应用价值.

  15. Phase transitions during formation of Ag nanoparticles on In{sub 2}S{sub 3} precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: yang.liu@helmholtz-berlin.de; Fu, Yanpeng; Dittrich, Thomas; Sáez-Araoz, Rodrigo; Schmid, Martina; Hinrichs, Volker; Lux-Steiner, Martha Ch.; Fischer, Christian-Herbert

    2015-09-01

    Phase transitions have been investigated for silver deposition onto In{sub 2}S{sub 3} precursor layers by spray chemical vapor deposition from a trimethylphosphine (hexafluoroacetylacetonato) silver (Ag(hfacac)(PMe{sub 3})) solution. The formation of Ag nanoparticles (Ag NPs) on top of the semiconductor layer set on concomitant with the formation of AgIn{sub 5}S{sub 8}. The increase of the diameter of Ag NPs was accompanied by the evolution of orthorhombic AgInS{sub 2}. The formation of Ag{sub 2}S at the interface between Ag NPs and the semiconductor layer was observed. Surface photovoltage spectroscopy indicated charge separation and electronic transitions in the ranges of corresponding band gaps. The phase transition approach is aimed to be applied for the formation of plasmonic nanostructures on top of extremely thin semiconducting layers. - Highlights: • Silver nanoparticles were deposited onto In{sub 2}S{sub 3} precursor layer by spray pyrolysis. • The silver nanoparticle size and density could be controlled by deposition time. • Phase transitions during deposition and material properties were investigated. • The layers still show semiconducting properties after phase transitions. • Plasmonic absorption enhancement has been demonstrated.

  16. New Insight into the Formation Mechanism of Imidazolium-Based Ionic Liquids from N-Alkyl Imidazoles and Halogenated Hydrocarbons: A Polar Microenvironment Induced and Autopromoted Process.

    Science.gov (United States)

    Mu, Xueli; Jiang, Nan; Liu, Chengbu; Zhang, Dongju

    2017-02-09

    To illustrate the formation mechanism of imidazolium-based ionic liquids (ILs) from N-alkyl imidazoles and halogenated hydrocarbons, density functional theory calculations have been carried out on a representative system, the reaction of N-methyl imidazole with chloroethane to form 1-ethyl-3-methyl imidazolium chloride ([Emim]Cl) IL. The reaction is shown to proceed via an SN2 transition state with a free energy barrier of 34.4 kcal/mol in the gas phase and 27.6 kcal/mol in toluene solvent. The reaction can be remarkably promoted by the presence of ionic products and water molecules. The calculated barriers in toluene are 22.0, 21.7, and 19.9 kcal/mol in the presence of 1-3 ionic pairs of [Emim]Cl and 23.5, 21.3, and 19.4 kcal/mol in the presence of 1-3 water molecules, respectively. These ionic pairs and water molecules do not participate directly in the reaction but provide a polar environment that favors stabilizing the transition state with large charge separation. Hence, we propose that the synthesis of imidazolium-based ILs from N-alkyl imidazoles and halogenated hydrocarbons is an autopromoted process and a polar microenvironment induced reaction, and the existence of water molecules (a highly polar solvent) in the reaction may be mainly responsible for the initiation of reaction.

  17. 深部热流体对油气成藏的影响%Influences of Deeply Sourced Thermal Fluid on the Formation of Hydrocarbon Reservoirs

    Institute of Scientific and Technical Information of China (English)

    高波; 陶明信; 王万春

    2001-01-01

    Deeply sourced thermal fluid is a kind of supercritical fluidcomposed of several constituents. Rising upward, it can transmit energy and material, and regulate and redistribute them in the inner Earth. For the formation of oil and gas, hypogene hydrothermal fluid can increase the paleotemperature of depositional basin, accelerate the evolution history of source rocks and enlarge the volume of effective source rocks. It can also extract and enrich dispersive organic matter in sediments because of its higher dissolving and diffusing capacity, and obviously contribute hydrogen to hydrocarbon generation. So the deeply sourced thermal fluid provides part of material resources for hydrocarbon generation. In addition, the reaction between thermal fluid and surrounding rocks can improve their porosity and permeability. This is favorable for the migration and accumulation of hydrocarbons. Moreover, that the higher pressure and water content of thermal fluid can significantly retard the thermal destruction of hydrocarbon is advantageous to the preservation of oil and gas.%深部热流体是一种由多元组分构成的超临界流体,其上升活动可使地球内部的物质与能量发生调整或再分配。对油气而言,深部热流体携带的高热能可使沉积盆地的古地温升高,加快烃源岩的热演化进程,增加有效烃源岩的体积,促进烃类的生成;在上升过程中,因其具很强的溶解和扩散能力,故可萃取、富集沉积物中的分散有机质,同时又对生烃产生显著的加氢作用,从而为油气的形成补充物源。此外,热流体与围岩储层发生化学反应,可改善储层的孔渗条件,有利于油气的聚集成藏,而且因其具有较高的压力和含水量,可抑制烃类的热裂解而有利于油气的保存。

  18. Role of low-energy ion irradiation in the formation of an aluminum germanate layer on a germanium substrate by radical-enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Yukio, E-mail: y-fukuda@rs.suwa.tus.ac.jp; Yamada, Daichi; Yokohira, Tomoya; Yanachi, Kosei [Tokyo University of Science, Suwa, 5000-1 Toyohira, Chino, Nagano 391-0292 (Japan); Yamamoto, Chiaya; Yoo, Byeonghak; Sato, Tetsuya [University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Yamanaka, Junji [University of Yamanashi, 7-32 Miyamae, Kofu, Yamanashi 400-8511 (Japan); Takamatsu, Toshiyuki [SST Inc., 989-6 Shimadadai, Yachiyo, Chiba 276-0004 (Japan); Okamoto, Hiroshi [Hirosaki University, 3 Bunkyo, Hirosaki 036-8561 (Japan)

    2016-03-15

    Radical-enhanced atomic layer deposition uses oxygen radicals generated by a remote microwave-induced plasma as an oxidant to change the surface reactions of the alternately supplied trimethylaluminum precursor and oxygen radicals on a Ge substrate, which leads to the spontaneous formation of an aluminum germanate layer. In this paper, the effects that low-energy ions, supplied from a remote microwave plasma to the substrate along with the oxygen radicals, have on the surface reactions were studied. From a comparative study of aluminum oxide deposition under controlled ion flux irradiation on the deposition surface, it was found that the ions enhance the formation of the aluminum germanate layer. The plasma potential measured at the substrate position by the Langmuir probe method was 5.4 V. Assuming that the kinetic energy of ions arriving at the substrate surface is comparable to that gained by this plasma potential, such ions have sufficient energy to induce exchange reactions of surface-adsorbed Al atoms with the underlying Ge atoms without causing significant damage to the substrate. This ion-induced exchange reaction between Al and Ge atoms is inferred to be the background kinetics of the aluminum germanate formation by radical-enhanced atomic layer deposition.

  19. Numerical Simulation of Current Sheet Formation in a Quasi-Separatrix Layer using Adaptive Mesh Refinement

    CERN Document Server

    Effenberger, Frederic; Arnold, Lukas; Grauer, Rainer; Dreher, Jürgen

    2011-01-01

    The formation of a thin current sheet in a magnetic quasi-separatrix layer (QSL) is investigated by means of numerical simulation using a simplified ideal, low-$\\beta$, MHD model. The initial configuration and driving boundary conditions are relevant to phenomena observed in the solar corona and were studied earlier by Aulanier et al., A&A 444, 961 (2005). In extension to that work, we use the technique of adaptive mesh refinement (AMR) to significantly enhance the local spatial resolution of the current sheet during its formation, which enables us to follow the evolution into a later stage. Our simulations are in good agreement with the results of Aulanier et al. up to the calculated time in that work. In a later phase, we observe a basically unarrested collapse of the sheet to length scales that are more than one order of magnitude smaller than those reported earlier. The current density attains correspondingly larger maximum values within the sheet. During this thinning process, which is finally limite...

  20. The formation of sporadic E layers by a vortical perturbation excited in a horizontal wind shear flow

    Directory of Open Access Journals (Sweden)

    G. G. Didebulidze

    2008-06-01

    Full Text Available The formation of the mid-latitude sporadic E layers (Es layers by an atmospheric vortical perturbation excited in a horizontal shear flow (horizontal wind with a horizontal linear shear is investigated. A three-dimensional atmospheric vortical perturbation (atmospheric shear waves, whose velocity vector is in the horizontal plane and has a vertical wavenumber kz≠0, can provide a vertical shear of the horizontal wind. The shear waves influence the vertical transport of heavy metallic ions and their convergence into thin and dense horizontal layers. The proposed mechanism takes into account the dynamical influence of the shear wave velocity in the horizontal wind on the vertical drift velocity of the ions. It also can explain the multi-layer structure of Es layers. The pattern of the multi-layer structure depends on the value of the shear-wave vertical wavelength, the ion-neutral collision frequency and the direction of the background horizontal wind. The modelling of formation of sporadic E layers with a single and a double peak is presented. Also, the importance of shear wave coupling with short-period atmospheric gravity waves (AGWs on the variations of sporadic E layer ion density is examined and discussed.

  1. The deep chlorophyll layer in Lake Ontario: Extent, mechanisms of formation, and abiotic predictors

    Science.gov (United States)

    Scofield, Anne E.; Watkins, James M.; Weidel, Brian C.; Luckey, Frederick J.; Rudstam, Lars G.

    2017-01-01

    Epilimnetic production has declined in Lake Ontario, but increased production in metalimnetic deep chlorophyll layers (DCLs) may compensate for these losses. We investigated the spatial and temporal extent of DCLs, the mechanisms driving DCL formation, and the use of physical variables for predicting the depth and concentration of the deep chlorophyll maximum (DCM) during April–September 2013. A DCL with DCM concentrations 2 to 3 times greater than those in the epilimnion was present when the euphotic depth extended below the epilimnion, which occurred primarily from late June through mid-August. In situ growth was important for DCL formation in June and July, but settling and photoadaptation likely also contributed to the later-season DCL. Supporting evidence includes: phytoplankton biovolume was 2.4 × greater in the DCL than in the epilimnion during July, the DCL phytoplankton community of July was different from that of May and the July epilimnion (p = 0.004), and there were concurrences of DCM with maxima in fine particle concentration and dissolved oxygen saturation. Higher nutrient levels in the metalimnion may also be a necessary condition for DCL formation because July metalimnetic concentrations were 1.5 × (nitrate) and 3.5 × (silica) greater than in the epilimnion. Thermal structure variables including epilimnion depth, thermocline depth, and thermocline steepness were useful for predicting DCM depth; the inclusion of euphotic depth only marginally improved these predictions. However, euphotic depth was critical for predicting DCM concentrations. The DCL is a productive and predictable feature of the Lake Ontario ecosystem during the stratified period.

  2. Boundary layer new particle formation over East Antarctic sea ice – possible Hg-driven nucleation?

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2015-12-01

    Full Text Available Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m−2. Within the single air mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3 reached almost 7700 cm−3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h−1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2–1.1 ± 0.1 cm−3 s−1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with total gaseous mercury (TGM were found that, together with other data, suggest a mercury-driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (∼ 1.5 ng m−3 and ≥ 600 W m−2, respectively, such as those observed in the Antarctic sea ice boundary layer in this study or in the global free troposphere, particularly in the Northern Hemisphere.

  3. Crossed beam investigation of elementary reactions relevant to the formation of polycyclic aromatic hydrocarbon (PAH)-like molecules in extraterrestrial environments

    Science.gov (United States)

    Kaiser, R. I.; Asvany, O.; Lee, Y. T.

    2000-04-01

    The reactions of ground state carbon atoms, C( 3P j), with benzene, C 6H 6, and phenyl radicals, C 6H 5, with methylacetylene, CH 3CCH, were investigated in crossed beam experiments at collision energies of 21.8 and 140 kJ mol -1 to investigate elementary reactions relevant to the formation and chemistry of polycyclic aromatic hydrocarbons (PAHs) in extraterrestrial environments. The C( 3P j) reaction proceeds via complex formation and gives a cyclic, seven-membered C 7H 5 doublet radical plus atomic hydrogen. This pathway has neither an entrance nor exit barrier, and is exothermic. Together with the experimental verification of the carbon versus hydrogen exchange under single collision conditions, the findings have an important impact on the chemistry of aromatic molecules in interstellar clouds and outflow of carbon stars. Even in the coldest molecular clouds ( T=10 K), the benzene molecule can be destroyed upon reaction with carbon atoms, whereas they are resistant toward an attack of oxygen and nitrogen atoms. Since the aromatic benzene unit is ubiquitous in extraterrestrial, PAH-like material, our results suggest that PAHs might react with carbon atoms as well. On the other side, the reaction of C 6H 5 radicals with methylacetylene to form phenylmethylacetylene is direct. Since an entrance barrier inhibits the reaction in cold molecular clouds and in the atmospheres of hydrocarbon rich planets like Jupiter and Saturn and satellites such as Titan, this reaction is expected to play a role in PAH synthesis only in high temperature interstellar environments, such as circumstellar outflows of carbon stars.

  4. Effects of Parameters on Formation and Microstructure of Surface Composite Layer Prepared by Lost Foam Casting Technique

    Institute of Scientific and Technical Information of China (English)

    CHEN Dongfeng; DONG Xuanpu; FAN Zitian

    2012-01-01

    Surface composite layer was fabricated on the AZ91D substrate using the lost foam casting (LFC) process.The pre-coating layer rea.cted with melt substrate and formed the composite layer,and the coating was mainly consist of alloying aluminum powder and low-temperature glass powder (PbO-ZnO-Na2O).The vacuum degree,pouring temperature,mold filling process of melt,and pre-coating thickness played an important role during the formation process of composite layer.The results show that surface morphology of composite layer can be divided into three categories:alloying effect of bad and good ceramic layer,alloying effect of good and bad ceramic layer,composite layer of good quality.The main reason for bad alloying layer is that alloying pre-coating thickness is so thin that it is scoured easily and involved in the melt,in addition,it isdifficult for melt to infiltrate into the alloying coating owing to the surface tension of coating when the vacuum degree is excessively low.Bad ceramic layer is because of somewhat lower pouring temperature and the thicker alloying coating,due to the absorption of heat from the melt,making low temperature glass powder pre-coating layer fuse inadequate.Thus,to get good quality composite layer,the process conditions must be appropriate,the result shows that the optimum process parameters are as follows:at a pouring temperature of 800 ℃,vacuum degree of -0.06 MPa,alloying pre-coating thickness of 0.4 mm,and low glass powder pre-coating layer thickness of 1 mm.

  5. Effect of preliminary heat treatment on the formation of a boronized layer on steel 35

    Science.gov (United States)

    Biruk, N. G.; Kostenko, A. A.; Trakshinskii, R. B.; Demchenko, I. L.; Oleinik, N. L.; Guzova, I. L.

    1990-12-01

    Preliminary heat treatment of specimens leading to refinement of the austenite grain helps increase the thickness of the boronized layer on steel 35. The greatest thickness of the boronized layer is attained after HC, and this layer is thicker than the layer obtained without preliminary treatyment.

  6. Structure and chemical composition of hydrocarbons from semicoking tar of lignites from the near-Moscow fields

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Antonio, T.Z.; Ryltsova, S.V.; Platonova, M.V.; Shvykin, A.Y. [Lev Tolstoi State Pedagogical University, Tula (Russian Federation)

    1999-02-01

    Hydrocarbons from semicoking tar of lignites from the near-Moscow fields were separated by thin-layer chromatography and the molecular and hypothetical structural formulae of the components were determined. A genetic relationship between the components and the initial biological material was revealed. A contribution of `primary` hydrocarbons to formation of the qualitative composition of tars obtained by high-temperature processing of lignites was demonstrated.

  7. Formation and transport of electron-hole pairs in the oxide layer of MOS transistors after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gilar, O. (Tesla, Premysleni (Czechoslovakia). Vyzkumny Ustav Pristroju Jaderne Techniky); Petr, I. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Jaderna a Fysikalne Inzenyrska)

    1985-04-01

    The formation of electron-hole pairs in the SiO/sub 2/ layer after irradiation with gamma rays and fast electrons is analyzed. The energy per electron-hole pair formed in the SiO/sub 2/ layer has been estimated, the value obtained is compared with the results of other authors. Moreover, the transport of the electrons and holes formed in the SiO/sub 2/ layer is discussed. The distribution of the accumulated space charge is determined along the thickness of the oxide layer. The experimental data verify that the space charge in the SiO/sub 2/ layer is distributed in low depths of the Si-SiO/sub 2/ junction.

  8. N-Body Simulation of Planetesimal Formation through Gravitational Instability of a Dust Layer in Laminar Gas Disk

    CERN Document Server

    Michikoshi, Shugo; Inutsuka, Shu-ichiro

    2010-01-01

    We investigate the formation process of planetesimals from the dust layer by the gravitational instability in the gas disk using local $N$-body simulations. The gas is modeled as a background laminar flow. We study the formation process of planetesimals and its dependence on the strength of the gas drag. Our simulation results show that the formation process is divided into three stages qualitatively: the formation of wake-like density structures, the creation of planetesimal seeds, and their collisional growth. The linear analysis of the dissipative gravitational instability shows that the dust layer is secularly unstable although Toomre's $Q$ value is larger than unity. However, in the initial stage, the growth time of the gravitational instability is longer than that of the dust sedimentation and the decrease in the velocity dispersion. Thus, the velocity dispersion decreases and the disk shrinks vertically. As the velocity dispersion becomes sufficiently small, the gravitational instability finally become...

  9. UVA photoirradiation of nitro-polycyclic aromatic hydrocarbons-induction of reactive oxygen species and formation of lipid peroxides.

    Science.gov (United States)

    Xia, Qingsu; Yin, Jun-Jie; Zhao, Yuewei; Wu, Yuh-Sen; Wang, Yu-Qui; Ma, Liang; Chen, Shoujun; Sun, Xin; Fu, Peter P; Yu, Hongtao

    2013-03-14

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which nitro-PAHs induce genotoxicity. Although the metabolic activation of nitro-PAHs leading to toxicological activities has been well studied, the photo-induced activation of nitro-PAHs has seldom been reported. In this paper, we report photo-induced lipid peroxidation by 19 nitro-PAHs. The results indicated that all but two of the nitro-PAHs can induce lipid peroxidation. Mechanistic studies suggest that lipid peroxidation by nitro-PAHs is mediated by free radicals generated in the reaction. There was no structural correlation between the nitro-PAHs and their ability to induce lipid peroxidation upon UVA irradiation, or between the HOMO-LUMO gap and the ability to cause lipid peroxidation. Most of the nitro-PAHs are less potent in terms of causing lipid peroxidation than their parent PAHs. The lack of correlation is attributed to the complex photophysics and photochemistry of the nitro-PAHs and the yield of reactive oxygen species (ROS) and other factors.

  10. An apparatus for vapor conversion of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, K.; Matsumoto, I.

    1983-03-23

    The installation for vapor conversion of hydrocarbons (Uv) with the formation of a mixture of H2 and C02 is a catalyst chamber (KK) filled with longitudinally disposed thin pipes (with thin walls) or with pipe units made of dolomite, MgO or potassium aluminate. These pipes have a multilayered coating (Pk) on their internal and external surfaces (Pv), which contain catalytically active components. Such pipes or pipe units form a honeycombed structure with through longitudinal channels. The catalyst chamber itself is made of a ceramic material and has a heating winding outside for heating the catalyst. To save fuel and to increase the efficiency (KPD) of the heating device, the catalyst chamber is in turn enclosed by two additional shells filled with heat conducting packings which are easily penetrated by the gases being processed. The hydrocarbon vapors or gaseous fuel from the natural gas or methane and the steam are fed through the above cited heat exchange layers with packings into the facial part of the catalytic chamber, in which the conversion of the hydrocarbons occurs with the production of H2 and C02. From the catalyzer layer the mixture of gases and steam goes through a refrigerator into a trap for the steam excess and when it is necessary, into a C02 absorber and then, pure H2 is discharged from the latter. Such a catalytic installation is convenient to use for producing pure H2 from natural gas, methane, propane or kerosene.

  11. The layered subsurface - periglacial slope deposits as crucial elements for soil formation and variability

    Science.gov (United States)

    Völkel, Jörg; Huber, Juliane

    2014-05-01

    Still most concepts of soil formation, weathering production rates and weathering front ideas are dealing with a monolayered near-surface underground and subsoil. At best a line is given on so-called moved regolith. In fact the subsurface is often characterized by stratified and multilayered slope deposits with thicknesses exceeding 1 m. These stratified slope sediments play a significant role in the nature of the physical and chemical properties as well as on soil forming processes. Examples are given for sediment sourced chemical elements and common clay minerals, and the significance of slope sediments as both barriers and pathways for interflow that moves through the stratified sediments. The stratified subsurface is often datable by numeric age techniques (OSL) showing up how sediment features contradict weathering effects and meaning e.g. for soil genesis. In the mid latitudes, geomorphic and sedimentologic evidence supports a periglacial origin, involving solifluction, for the origin of these slope deposits. The study areas are situated within the Colorado Front Range, U.S. and the Bavarian Forest, Germany. The projects are currently financed and supported by the German Science Foundation DFG. Literature: Völkel, J., Huber, J. & Leopold, M. (2011): Significance of slope sediments layering on physical characteristics and interflow within the Critical Zone… - Applied Geochemistry 26: 143-145.

  12. Aluminium substitution in iron(II III)-layered double hydroxides: Formation and cationic order

    Science.gov (United States)

    Ruby, Christian; Abdelmoula, Mustapha; Aissa, Rabha; Medjahdi, Ghouti; Brunelli, Michela; François, Michel

    2008-09-01

    The formation and the modifications of the structural properties of an aluminium-substituted iron(II-III)-layered double hydroxide (LDH) of formula Fe4IIFe(2-6y)IIIAl6yIII (OH) 12 SO 4, 8H 2O are followed by pH titration curves, Mössbauer spectroscopy and high-resolution X-ray powder diffraction using synchrotron radiation. Rietveld refinements allow to build a structural model for hydroxysulphate green rust, GR(SO 42-), i.e. y=0, in which a bilayer of sulphate anions points to the Fe 3+ species. A cationic order is proposed to occur in both GR(SO 42-) and aluminium-substituted hydroxysulphate green rust when yhydroxides. Adsorption of more soluble Al III species onto the initially formed ferric oxyhydroxide may be responsible for this slowdown of crystal growth. Therefore, the insertion of low aluminium amount ( y˜0.01) could be an interesting way for increasing the surface reactivity of iron(II-III) LDH that maintains constant the quantity of the reactive Fe II species of the material.

  13. Forward modelling of multi-component induction logging tools in layered anisotropic dipping formations

    Science.gov (United States)

    Gao, Jie; Xu, Chenhao; Xiao, Jiaqi

    2013-10-01

    Multi-component induction logging provides great assistance in the exploration of thinly laminated reservoirs. The 1D parametric inversion following an adaptive borehole correction is the key step in the data processing of multi-component induction logging responses. To make the inversion process reasonably fast, an efficient forward modelling method is necessary. In this paper, a modelling method has been developed to simulate the multi-component induction tools in deviated wells drilled in layered anisotropic formations. With the introduction of generalized reflection coefficients, the analytic expressions of magnetic field in the form of a Sommerfeld integral were derived. The fast numerical computation of the integral has been completed by using the fast Fourier-Hankel transform and fast Hankel transform methods. The latter is so time efficient that it is competent enough for real-time multi-parameter inversion. In this paper, some simulated results have been presented and they are in excellent agreement with the finite difference method code's solution.

  14. Voltage-induced formation of accumulation layers at electrode interfaces in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stelzl, Felix F.; Wuerfel, Uli [Freiburg Material Research Center (FMF), University of Freiburg (Germany); Fraunhofer Institute for Solar Energy Systems (ISE), Freiburg (Germany); Schulz-Gericke, Jan [Fraunhofer Institute for Solar Energy Systems (ISE), Freiburg (Germany); Crossland, Ed [Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg (Germany); Ludwigs, Sabine [Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg (Germany); Institute of Polymer Chemistry, University of Stuttgart (Germany)

    2012-08-15

    This work reports on organic bulk heterojunction solar cells based on poly(3-hexylthiophene) (P3HT) blended with [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) in a configuration with so-called interdigital nanoelectrodes, i.e., vertical electrodes on substrates structured in the submicrometer range. In this setup, both electrodes are in place prior to the deposition of the photoactive blend solution and therefore allow for the application of a voltage during drying of the blend. A strong correlation is observed between the photovoltaic performance of these devices and the voltage that is applied during film formation. Even the polarity of the solar cells can be controlled with this method. It is suggested that this is a consequence of a strong segregation of donor and acceptor phases at the electrode interfaces induced by the applied voltage. Further experiments on planar solar cell geometries, including a solvent-vapor treatment and the introduction of an additional layer of pure P3HT, as well as numerical simulations, are presented. All results obtained are consistent with the suggested hypothesis. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. A kinetic and mechanistic study into the formation of the Cu-Cr layered double hydroxide.

    Science.gov (United States)

    Williams, Gareth R; Clout, Alexander; Burley, Jonathan C

    2013-06-14

    The formation of the layered double hydroxide [Cu2Cr(OH)6]Cl·yH2O from the reaction between CuO and aqueous CrCl3·6H2O was explored using synchrotron X-ray diffraction and ex situ analyses. The use of hard X-rays permitted time-resolved in situ studies to be performed as the reaction proceeded under a range of conditions. Additional information was obtained from ex situ experiments in which aliquots of the reaction mixture were removed, quenched, and subsequently analysed by laboratory X-ray diffraction, IR, UV-visible, and atomic emission spectroscopies. On the basis of these data, it is proposed that the reaction involves three steps. First, the solid CuO starting material is hydrolysed to give Cu(OH)2 chains, releasing Cu(2+) ions into solution. The Cu hydroxide chains subsequently condense with aqueous Cr(3+) species, Cl(-) ions and water molecules to give a hydrated form of the LDH. This material then extrudes some water to form a phase with a reduced interlayer spacing.

  16. Identifying proper agitation interval to prevent floating layers formation of corn stover and improve biogas production in anaerobic digestion.

    Science.gov (United States)

    Tian, Libin; Zou, Dexun; Yuan, Hairong; Wang, Linfeng; Zhang, Xin; Li, Xiujin

    2015-06-01

    Floating tests were conducted in anaerobic digestion with different OLR of corn stover to investigate formation of floating layers and to find proper agitation interval for preventing floating layer formation. Floating layers were formed in the early stage of no-agitation period. The daily biogas production was decreased by 81.87-87.90% in digesters with no agitation and feeding compared with digesters having agitation. Reduction of biogas production was mainly attributed to poor contact of substrate-microorganisms. Agitation intervals of 10 h, 6 h, and 2 h were found to be proper for eliminating floating layer at OLR of 1.44, 1.78 and 2.11 g(TS) L(-1) d(-1), respectively. The proper agitation interval was further validated by anaerobic experiments. It showed that proper agitation interval could not only prevent floating layer formation and achieve high biogas production but also increase energy efficiency of anaerobic digestion. The finding is useful for operating anaerobic digester with corn stover in a cost-effective way.

  17. Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): Degradation of polycyclic aromatic hydrocarbons exposed to O3, NO2, H2O, OH and NO3

    Science.gov (United States)

    Shiraiwa, Manabu; Garland, Rebecca M.; Pöschl, Ulrich

    2010-05-01

    We present a kinetic double-layer surface model (K2-SURF) that describes the degradation of polycyclic aromatic hydrocarbons (PAHs) on aerosol particles exposed to ozone, nitrogen dioxide, water vapor, hydroxyl and nitrate radicals [1]. The model is based on multiple experimental studies of PAH degradation and on the Pöschl-Rudich-Ammann (PRA) framework [2] for aerosol and cloud surface chemistry and gas-particle interactions. For a wide range of substrates, including solid and liquid organic and inorganic substances (soot, silica, sodium chloride, octanol/decanol, organic acids, etc.), the concentration- and time-dependence of the heterogeneous reaction between PAHs and O3 can be efficiently described with a Langmuir-Hinshelwood-type mechanism. Depending on the substrate material, the Langmuir adsorption constants for O3 vary over three orders of magnitude, and the second-order rate coefficients for the surface layer reaction of O3 with different PAH vary over two orders of magnitude. The available data indicate that the Langmuir adsorption constants for NO2 are similar to those of O3, while those of H2O are several orders of magnitude smaller. The desorption lifetimes and adsorption enthalpies suggest chemisorption of NO2 and O3 and physisorption of H2O. Note, however, that the exact reaction mechanisms, rate limiting steps and possible intermediates still remain to be resolved (e.g., surface diffusion and formation of O atoms or O3- ions at the surface). The K2-SURF model enables the calculation of ozone uptake coefficients, γO3, and of PAH concentrations in the quasi-static particle surface layer. Competitive adsorption and chemical transformation of the surface (aging) lead to a strong non-linear dependence of γO3 on time and gas phase composition, with different characteristics under dilute atmospheric and concentrated laboratory conditions. Under typical ambient conditions, γO3 of PAH-coated aerosol particles are expected to be in the range of 10-6 - 10

  18. Early diagenetic growth of carbonate concretions in the upper Doushantuo Formation in South China and their significance for the assessment of hydrocarbon source rock

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mineralogical and textural characteristics and organic carbon composition of the carbonate concretions from the upper Doushantuo Formation (ca. 551 Ma) in the eastern Yangtze Gorge area reveal their early diagenetic (shallow) growth in organic-rich shale. High organic carbon content (up to 10%) and abundance of framboidal pyrites in the hosting shale suggest an anoxic or euxinic depositional environment. Well-preserved cardhouse clay fabrics in the concretions suggest their formation at 0-3 m burial depth, likely associated with microbial decomposition of organic matter and anaerobic oxidation of methane. Gases through decomposition of organic matter and/or from methanogenesis created bubbles and cavities, and anaerobic methane oxidation at the sulfate reduction zone resulted in carbonate precipitation, filling in bubbles and cavities to form spherical structures of the concretions. Rock pyrolysis analyses show that the carbonate concretions have lower total organic carbon (TOC) content but higher effective carbon than those in the host rocks. This may be caused by enclosed organic matter in pores of the concretions so that organic matter was protected from further modification during deep burial and maintained high hydrocarbon generating potential even in over-matured source rock. As a microbialite sensu latu, concretions have special growth conditions and may provide important information on the microbial activities in depositional and early burial environments.

  19. Unexpected Scholl Reaction of 6,7,13,14-Tetraarylbenzo[k]tetraphene: Selective Formation of Five-Membered Rings in Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Liu, Junzhi; Narita, Akimitsu; Osella, Silvio; Zhang, Wen; Schollmeyer, Dieter; Beljonne, David; Feng, Xinliang; Müllen, Klaus

    2016-03-02

    Cyclodehydrogenation is a versatile reaction that has enabled the syntheses of numerous polycyclic aromatic hydrocarbons (PAHs). We now describe a unique Scholl reaction of 6,7,13,14-tetraarylbenzo[k]tetraphene, which "unexpectedly" forms five-membered rings accompanying highly selective 1,2-shift of aryl groups. The geometric and optoelectronic nature of the resulting bistetracene analogue with five-membered rings is comprehensively investigated by single-crystal X-ray, NMR, UV-vis absorption, and cyclic voltammetry analyses. Furthermore, a possible mechanism is proposed to account for the selective five-membered-ring formation with the rearrangement of the aryl groups, which can be rationalized by density functional theory (DFT) calculations. The theoretical results suggest that the formation of the bistetracene analogue with five-membered rings is kinetically controlled while an "expected" product with six-membered rings is thermodynamically more favored. These experimental and theoretical results provide further insights into the still controversial mechanism of the Scholl reaction as well as open up an unprecedented entry to extend the variety of PAHs by programing otherwise unpredictable rearrangements during the Scholl reaction.

  20. Dendritic Target Region-Specific Formation of Synapses Between Excitatory Layer 4 Neurons and Layer 6 Pyramidal Cells.

    Science.gov (United States)

    Qi, Guanxiao; Feldmeyer, Dirk

    2016-04-01

    Excitatory connections between neocortical layer 4 (L4) and L6 are part of the corticothalamic feedback microcircuitry. Here we studied the intracortical element of this feedback loop, the L4 spiny neuron-to-L6 pyramidal cell connection. We found that the distribution of synapses onto both putative corticothalamic (CT) and corticocortical (CC) L6 pyramidal cells (PCs) depends on the presynaptic L4 neuron type but is independent of the postsynaptic L6 PC type. L4 spiny stellate cells establish synapses on distal apical tuft dendrites of L6 PCs and elicit slow unitary excitatory postsynaptic potentials (uEPSPs) in L6 somata. In contrast, the majority of L4 star pyramidal neurons target basal and proximal apical oblique dendrites of L6 PCs and show fast uEPSPs. Compartmental modeling suggests that the slow uEPSP time course is primarily the result of dendritic filtering. This suggests that the dendritic target specificity of the 2 L4 spiny neuron types is due to their different axonal projection patterns across cortical layers. The preferential dendritic targeting by different L4 neuron types may facilitate the generation of dendritic Ca(2+) or Na(+) action potentials in L6 PCs; this could play a role in synaptic gain modulation in the corticothalamic pathway.

  1. Formation and entrainment of fluid mud layers in troughs of subtidal dunes in an estuarine turbidity zone

    DEFF Research Database (Denmark)

    Becker, Marius; Schrottke, Kerstin; Bartholomä, Alexander

    2013-01-01

    The formation and entrainment of fluid mud layers in troughs of subtidal dunes were investigated in the Weser Estuary, North Sea, Germany, based on hydroacoustic measurements. Near-bed suspension layers were found to consist of a suspension of large mud flocs of variable concentration, ranging from...... 25 g/L below the lutocline to 70 g/L at the river bed, whereas the gelling concentration was below 70 g/L. Sites of fluid mud formation coincided with the location of the estuarine turbidity zone during slack water. On average, near-bed density gradients were initially observed in dune troughs 1.2 h...... before slack water, and all fluid mud layers were entrained 2.3 h after slack water. No shear instabilities occurred until 1.8 h after slack water. While the flow was oriented in the dune direction, rapid entrainment was related to the development of the turbulent flow field behind dunes and is explained...

  2. Modeling the formation, decay, and partitioning of semivolatile nitro-polycyclic aromatic hydrocarbons (nitronaphthalenes) in the atmosphere

    DEFF Research Database (Denmark)

    Feilberg, A.; Kamens, R.M.; Strommen, M.R.

    1999-01-01

    A nitronaphthalene kinetics mechanism has been implemented and added to the photochemical smog mechanism, Carbon Bond-4. This mechanism was used to simulate the formation, decay, and partitioning of 1- and 2-nitronaphthalene and compare it to outdoor smog chamber data. The results suggest that th...

  3. Observations of barrier layer formation in the Bay of Bengal during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Murty, V.S.N.; RameshBabu, V.

    of a new halocline and hence a barrier layer within the upper 30 m of the water column. The ensuing ocean-atmosphere interaction was restricted to the new thinner mixed layer. The cooling that was restricted to the mixed layer led to an inversion...

  4. Effect of SO2 concentration on SOA formation in a photorreactor from a mixture of anthropogenic hydrocarbons and HONO

    Science.gov (United States)

    García Vivanco, Marta; Santiago, Manuel; García Diego, Cristina; Borrás, Esther; Ródenas, Milagros; Martínez-Tarifa, Adela

    2010-05-01

    Sulfur dioxide (SO2) is an important urban atmospheric pollutant, mainly produced by the combustion of fossil fuels containing sulfur. In the atmosphere, SO2 can react with OH radicals to form sulfuric acid, which can condense to form acidic aerosol. Sulfuric acid particles act as an acid catalyst for some heterogeneous carbonyl reactions like hydration, polymerization or acetals formation, which may lead to a large increase on SOA mass. In order to evaluate the effect of the SO2 concentration on SOA formation, 3 experiments were performed during the campaign carried out by CIEMAT on the EUPHORE facility (CEAM, Valencia, Spain) during June- July 2008. The objective of the campaign was to evaluate the effect of different experimental conditions on SOA formation from the photooxidation of some anthropogenic and biogenic VOCs using HONO as oxidant. Experiment on 6/17/08 was selected as base case (no SO2 was introduced) and experiments 6/26/08 and 7/1/08 were selected as high SO2 (2600 ug/m3) and low SO2 (60 ug/m3) concentration experiments respectively. In the three experiments a mixture of toluene, 1,3,5-TMB (trimethylbenzene), o-xylene and octane was selected as the parent VOCs. Single and coupled to mass spectroscopy gas cromatography (GC and GC/MS), as well as high performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR) were used to measure the initial VOCs and oxidant concentrations decay and the formation of gas phase oxidation products through the experiments. Aerosol size distribution and concentration were measured with SMPS (scanning mobility particle sizer) and TEOM (tapered element oscillating monitor) respectively. In addition, analysis of the organic and inorganic aerosol content was also performed via filter sampling followed by GC/MS and ionic chromatography (for organic and inrganic content respectively). Comparing the filters collected in the three experiments, clearly the largest mass aerosol formation is observed

  5. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    Science.gov (United States)

    Garcia-Lechuga, Mario; Solis, Javier; Siegel, Jan

    2016-04-01

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  6. Formation of high-carbon abrasion-resistant surface layers when high-energy heating by high-frequency currents

    Science.gov (United States)

    Plotnikova, N. V.; Skeeba, V. Yu; Martyushev, N. V.; Miller, R. A.; Rubtsova, N. S.

    2016-11-01

    The paper shows the possibility of carburization of low-carbon steel surface layers using high-frequency currents. The mathematical modeling of carburization using high-energy heating by high-frequency currents (HEH HFC) has been carried out, the temperature fields formed during the given processing have been calculated, as well as the structural changes in the surface layers have been simulated. The features of the structure formation in the surface layers of low-carbon steel after carburizing via HEH HFC have been determined by optical and scanning microscopy, which is confirmed by the computational models. The rational mode of fusion via HEH HFC has also been determined (power density of the source qs = (1.5 ... 4.0) • 108 W m-2, (the relative travel speed of parts Vp = 5 ... 100 mm / sec), with forming the compressive retained stresses in the surface layer (σRS ≈ -300 ... -400 MPa).

  7. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es; Solis, Javier; Siegel, Jan, E-mail: mario@io.cfmac.csic.es, E-mail: j.siegel@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2016-04-25

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  8. Effect of hydrocarbons and nitrogen oxides on ozone formation in smog chambers exposed to solar irradiance of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval F, J; Marroquin de la R, O; Jaimes L, J. L; Zuniga L, V. A; Gonzalez O, E; Guzman Lopez-Figueroa, F [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2001-01-01

    Outdoor smog chambers experiments were performed on air to determine the answer of maximum ozone levels, to changes in the initial hydrocarbons, HC, and nitrogen oxide NO{sub x}. These captive-air experiments under natural irradiation were carried out. Typically, eight chambers were filled with Mexico city air in the morning. In some of those chambers, the initial HC and/or Nox concentrations were varied by {+-}25% to {+-}50% by adding various combinations of a mixture of HC, clean air, or NO{sub x} (perturbed chambers). The O{sub 3} and NO{sub x} concentration in each chamber was monitored throughout the day to determine O{sub 3} (max). The initial HC and NO{sub x} concentration effects were determined by comparing the maximum ozone concentrations measured in the perturbed and unperturbed chambers. Ozone isopleths were constructed from the empirical model obtained of measurements of the eight chambers and plotted in a graph whose axe were the initial HC and NO{sub x} values. For the average initial conditions that were measured in Mexico City, it was found that the most efficient strategy to reduce the maximum concentration of O{sub 3} is the one that reduces NO{sub x}. [Spanish] Se realizaron experimentos de camaras de esmog con el aire de la ciudad de Mexico para determinar las respuestas de los niveles maximos de ozono a los cambios en las concentraciones iniciales de hidrocarburos, HC y oxido de nitrogeno, NO{sub x}. Por lo general, se llenaron 8 bolsas con aire matutino de la Ciudad de Mexico. En algunas camaras, las concentraciones iniciales fueron cambiadas de 25% a 50%, anadiendo varias concentraciones de una mezcla de HC, aire limpio y/o NO{sub x}. La concentracion de O{sub 3} y NO{sub x}, en cada camara, fueron monitoreadas a lo largo del dia para determinar el maximo de O{sub 3}. El efecto de los HC y el NO{sub x} fue determinado por comparacion del maximo de ozono formado en las camaras, que fueron perturbadas por adicion o reduccion de HC y/o Nox

  9. Formation of a macro-porous SiO2 layer as an anti-reflective coating on glass substrates.

    Science.gov (United States)

    Park, No-Kuk; Kim, Yong Sul; Kim, Min Jung; Lee, Tae Jin; Lee, Seung Hyun; Lee, Seung Hun

    2013-11-01

    A macro-porous silica layer, consisting of a silica layer with macro-sized pores, was formed as an antireflective material on glass substrates. The silica layer and macro-pores were formed by the oxidative thermal decomposition of tetra-ethylorthorsilicate (TEOS) used as the precursor and polystyrene (PS) spherical beads used as the polymer template for the macro-pores at high temperatures. The size of pores was determined by the size of PS beads in the antireflective agent solution. The size of the PS spherical beads can be controlled by changing the concentration of styrene monomer, and the porosity of the macro pore in the silica layer could be controlled by the TEOS/PS ratio. The optimal thermal treating temperature for the formation of a macro-porous silica layer was found to be 650 degrees C. The size of the spherical type macro pores formed in the silica layer on the glass substrate was 100-150 nm. UV-Vis spectrophotometry confirmed the improved antireflective properties of the glass substrate with the macro-porous silica layer.

  10. Insights into the synthesis of layered double hydroxide (LDH) nanoparticles: Part 2. Formation mechanisms of LDH.

    Science.gov (United States)

    Sun, Xiaodi; Dey, Sandwip K

    2015-11-15

    This study demonstrates the effect of (co)intercalated anion compositions on nanostructure evolution to understand the formation mechanisms of layered double hydroxide (LDH) nanoparticles following coprecipitation and hydrothermal treatments (HT). Initially, the room temperature coprecipitation resulted in amorphous primary nanoparticles that agglomerated at the edges due to low surface charge densities. The reversibility of such agglomeration was determined by the crystalline quality upon HT and consequent surface charge density, which in turn were strongly influenced by the composition of the intercalated anions. Upon crystallization, the agglomerated Zn2Al(OH)6(NO3)0.3(CO3)0.35⋅xH2O primary nanoparticles re-dispersed, but the Zn2Al(OH)6(NO3)⋅xH2O nanoparticles with much lower stability and higher disorder (especially at the edges) exhibited irreversible agglomeration, and transformed into secondary nanoparticles via aggregational growth. Additionally, the stability studies on Zn2Al(OH)6(NO3)y(CO3)0.5(1-y)⋅xH2O nanoparticles (y=0-1) showed that the size difference between the cointercalated anions caused phase separation when 0.9⩾y⩾0.6, leading to bimodal size distributions. Moreover, the coarsening rates were controlled through the cointercalated anion compositions. By gradually varying the ratio of cointercalated NO3(-) to CO3(2-), monodispersed Zn2Al(OH)6(NO3)y(CO3)0.5(1-y)⋅xH2O (0.5⩾y⩾0) nanoparticles with systematic variation in the particle size of ∼200-400nm were obtained after HT at 85°C for 12h.

  11. Hydrocarbon potential of Early Cretaceous lacustrine sediments from Bima Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Insight from organic geochemistry and petrology

    Science.gov (United States)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Adegoke, Adebanji Kayode; Maigari, A. S.; Haruna, A. I.; Yaro, Usman Y.

    2017-05-01

    The Early Cretaceous lacustrine sediments from Bima Formation in the Yola Sub-basin, Northern Benue Trough, northeastern Nigeria were studied based on organic geochemistry and petrology. This is in other to provide information on hydrocarbon generation potential; organic matter type (quality), richness (quantity), origin/source inputs, redox conditions (preservation) and thermal maturation in relation to thermal effect of Tertiary volcanics. The total organic carbon (TOC) contents ranges from 0.38 to 0.86 wt % with extractable organic matter (EOM) below 1000 ppm and pyrolysis S2 yield values from 0.16 to 0.68 mg/g, suggesting poor to fair source rock richness. Based on kerogen pyrolysis and microscopy coupled with biomarker parameters, the organic matters contain Type I (lacustrine algae), Type III (terrestrially derived land-plants) and Type IV kerogens deposited in a mixed lacustrine-terrestrial environment under suboxic to relatively anoxic conditions. This suggest potential occurrence of Early Cretaceous lacustrine sediments (perhaps Lower Cretaceous petroleum system) in Yola Sub-basin of the Northern Benue Trough as present in the neighbouring basins of Chad, Niger and Sudan Republics that have both oil and gas generation potential within the same rift trend (WCARS). Vitrinite reflectance (%Ro) and Tmax values of the lacustrine shales ranges from 1.12 to 2.32 VRo% and 448-501 °C, respectively, indicating peak-late to post-maturity stage. This is supported by the presence of dark brown palynomorphs, amorphous organic matter and phytoclasts as well as inertinite macerals. Consequently, the organic matters in the lacustrine shales of Bima Formation in the Yola Sub-basin appeared as a source of oil (most likely even waxy) and gas prone at a relatively deeper part of the basin. However, the high thermal maturity enhanced the organic matters and most of the hydrocarbons that formed in the course of thermal maturation were likely expelled to the reservoir rock units

  12. Sedimentation and diagenesis of Barro Duro Formation sandstones (Albian), on the western part of the Barreirinhas Basin, Brazil; Sedimentologia e diagenese dos arenitos da Formacao Barro Duro (Albiano), area oeste da Bacia de Barreirinhas

    Energy Technology Data Exchange (ETDEWEB)

    Rossetti, D.F. [Museu Paraense Emilio Goeldi, Belem, PA (Brazil); Truckenbrodt, W. [Para Univ., Belem, PA (Brazil). Centro de Geociencias

    1992-07-01

    Localization, formation theories, geological formation of the Albian Barro Duro Formation, are presented. Its geological structure, rocks characteristics, its layers porosity, mineral occurrences, sediments deposition sequences, and diagenetic phenomena occurred during its formation are discussed. Some hydrocarbon were found on the rift section of those formation. 16 figs., 3 tabs., 34 refs.

  13. Coke Formation During Hydrocarbons Pyrolysis. Part One: Steam Cracking Formation de coke pendant la pyrolise des hydrocarbures. Première partie : vapocraquage

    Directory of Open Access Journals (Sweden)

    Weill J.

    2006-11-01

    Full Text Available Thermal cracking is always accompanied by coke formation, which becomes deposited on the wall and limits heat transfers in the reactor while increasing pressure drops and possibly even plugging up the reactor. This review article covers undesirable coking operations in steam craking reactors. These coking reactions may take place in the gas phase and/or on the surface of the reactor, with coke being produced during pyrolysis by a complex mechanism that breaks down into a catalytic sequence and a noncatalytic sequence. After a brief description of different experimental set-ups used to measure the coke deposition, on the basis of research described in the literature, the different factors and their importance for coke formation are listed. In particular, we describe the effects of surface properties of stainless-steel and quartz reactors as well as the influence of the cracked feedstock, of temperature, of dilution, of residence time and of the conversion on coke deposition. Some findings about the morphology of coke are described and linked to formation mechanisms. To illustrate this review, some particularly interesting research is referred to concerning models developed to assess coke formation during propane steam cracking. Le craquage thermique est toujours accompagné de la formation de coke qui, en se déposant à la paroi, limite les transferts de chaleur au réacteur, augmente les pertes de charges et même peut boucher celui-ci. Cet article fait le point sur les réactions indésirables de cokage dans les réacteurs de vapocraquage. Ces réactions de cokage peuvent avoir lieu en phase gazeuse et/ou sur la surface du réacteur, le coke étant produit pendant la pyrolyse par un mécanisme complexe qui se décompose en une séquence catalytique et une séquence non catalytique. Après une brève présentation des différents montages expérimentaux utilisés pour mesurer le dépôt de coke, il est mentionné, à partir de travaux de la

  14. Irreversible fouling of membrane bioreactors due to formation of a non-biofilm gel-like layer

    DEFF Research Database (Denmark)

    Poorasgari, Eskandar; Larsen, Poul; Zheng, Xing

    2013-01-01

    Extra-cellular polymeric substances (EPS), known to contribute to fouling in membrane bio-reactors (MBR)s, are generally divided into bound and free EPS. The free EPS are able to form a gel-like layer on the membrane active surface. The mechanisms involved in formation of such layer and its effects...... with the amount of the humic-like substances retained during filtration as predicted by gel growth theory. A low pressure backwash could re-establish the water flux only up to 70%....

  15. Single Crystal Growth and Formation of Defects in Deuterium-Tritium Ice Layers for Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, A A; Kozioziemski, B J; Koch, J A; Atherton, L J; Johnson, M A; Hamza, A V; Kucheyev, S O; Lugten, J B; Mapoles, E A; Moody, J D; Salmonson, J D; Sater, J D

    2008-09-05

    We identify vapor-etched grain boundary grooves on the solid-vapor interface as the main source of surface roughness in the Deuterium-Tritium (D-T) fuel layers which are solidified and then cooled. Current inertial confinement fusion target designs impose stringent limits to the cross sectional area and total volume of these grooves. Formation of these grain boundaries occurs over timescales of hours as the dislocation network anneals, and is inevitable in a plastically deformed material. Therefore, either cooling on a much shorter time scale or a technique that requires no cooling after solidification should be used to minimize the fuel layer surface roughness.

  16. Accelerated formation of sodium depletion layer on soda lime glass surface by corona discharge treatment in hydrogen atmosphere

    Science.gov (United States)

    Kawaguchi, Keiga; Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Uraji, Keiichiro; Yamamoto, Kiyoshi; Suzuki, Toshio; Harada, Kenji; Nishii, Junji

    2014-05-01

    Formation of a sodium depletion layer on a soda lime glass surface was accelerated efficiently using a corona discharge treatment in H2 atmosphere. One origin of such acceleration was the preferential generation of H+ with a larger mobility at an anode needle end with a lower applied voltage than that in air. The second origin was the applied voltage across the glass plate during the corona discharge treatment, which was estimated theoretically as 2.7 times higher than that in air. These two effects doubled the depletion layer thickness compared with that in air.

  17. Hydrocarbon source potential of the Tanezzuft Formation, Murzuq Basin, south-west Libya: An organic geochemical approach

    Science.gov (United States)

    El Diasty, W. Sh.; El Beialy, S. Y.; Anwari, T. A.; Batten, D. J.

    2017-06-01

    A detailed organic geochemical study of 20 core and cuttings samples collected from the Silurian Tanezzuft Formation, Murzuq Basin, in the south-western part of Libya has demonstrated the advantages of pyrolysis geochemical methods for evaluating the source-rock potential of this geological unit. Rock-Eval pyrolysis results indicate a wide variation in source richness and quality. The basal Hot Shale samples proved to contain abundant immature to early mature kerogen type II/III (oil-gas prone) that had been deposited in a marine environment under terrigenous influence, implying good to excellent source rocks. Strata above the Hot Shale yielded a mixture of terrigenous and marine type III/II kerogen (gas-oil prone) at the same maturity level as the Hot Shale, indicating the presence of only poor to fair source rocks.

  18. Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: Water and particle seed effects (II)

    Science.gov (United States)

    Zhou, Yang; Zhang, Haofei; Parikh, Harshal M.; Chen, Eric H.; Rattanavaraha, Weruka; Rosen, Elias P.; Wang, Wenxing; Kamens, Richard M.

    2011-07-01

    Secondary organic aerosol (SOA) formation from the photooxidation of o-, p-xylene, and toluene with xylene mixtures was investigated in the UNC dual outdoor smog chambers. Experiments were performed with different initial background aerosol concentrations and levels of relative humidity (RH) in the environment of an eleven component mixture of non-SOA-forming dilute urban hydrocarbon mixture, oxides of nitrogen and sunlight. Post-nucleation was observed in most of the experiments in the 14-20 nm range except under the conditions with high background aerosol (>5 μg m -3) and with low o-xylene concentrations (o-xylene varied from 0.8% to 6.5% depending on the RH and initial seed concentrations. p-Xylene had a lower SOA yield compared with o-xylene and the yields in experiments with toluene and xylene mixtures ranged from 1.1% to 10.3%. SOA yield was found to be positively correlated with the particle water (H 2Op) content. A new condensed aromatic kinetic mechanism employing uptake of organics in H 2Op as a key parameter was applied to all the experiments and the simulations showed reasonable fits to the observed data.

  19. Influence of oil and gas field operations on spatial and temporal distributions of atmospheric non-methane hydrocarbons and their effect on ozone formation in winter

    Directory of Open Access Journals (Sweden)

    R. A. Field

    2014-09-01

    Full Text Available Emissions from oil and natural gas development during winter in the Upper Green River Basin of Wyoming are known to drive episodic ozone (O3 production. Contrasting O3 distributions were observed in the winters of 2011 and 2012, with numerous episodes in 2011 compared to none in 2012. During 2011 wintertime O3 episodes at two sites near Boulder Wyoming, situated ∼5 km apart, were observed to sometimes differ. In 2012 the lack of O3 episodes coincided with a reduction in ambient levels of total non-methane hydrocarbons (NMHC. Measurements of speciated NMHC, and other air quality parameters, were performed to better understand emission sources and to determine which compounds are most active in promoting O3 formation. Positive Matrix Factorization (PMF analyses of the data were carried out to help achieve these goals. PMF analyses revealed three contributing factors that were identified with different emission source types: factor 1, combustion/traffic; factor 2, fugitive natural gas; and factor 3, fugitive condensate. Compositional signatures of three contributing factors were identified through comparison with independently derived emission source profiles. Fugitive emissions of natural gas and of condensate were the two principal emission source types for NMHC. A water treatment and recycling facility was found to be a significant source of condensate range NMHC, in particular toluene and m+p-xylene. Emissions from water treatment have an influence upon peak O3 mixing ratios at downwind measurement sites.

  20. Employing CO2 as reaction medium for in-situ suppression of the formation of benzene derivatives and polycyclic aromatic hydrocarbons during pyrolysis of simulated municipal solid waste.

    Science.gov (United States)

    Lee, Jechan; Choi, Dongho; Tsang, Yiu Fai; Oh, Jeong-Ik; Kwon, Eilhann E

    2017-05-01

    This study proposes a strategic principle to enhance the thermal efficiency of pyrolysis of municipal solid waste (MSW). An environmentally sound energy recovery platform was established by suppressing the formation of harmful organic compounds evolved from pyrolysis of MSW. Using CO2 as reaction medium/feedstock, CO generation was enhanced through the following: 1) expediting the thermal cracking of volatile organic carbons (VOCs) evolved from the thermal degradation of the MSWs and 2) directly reacting VOCs with CO2. This particular influence of CO2 on pyrolysis of the MSWs also led to the in-situ mitigation of harmful organic compounds (e.g., benzene derivatives and polycyclic aromatic hydrocarbons (PAHs)) considering that CO2 acted as a carbon scavenger to block reaction pathways toward benzenes and PAHs in pyrolysis. To understand the fundamental influence of CO2, simulated MSWs (i.e., various ratios of biomass to polymer) were used to avoid any complexities arising from the heterogeneous matrix of MSW. All experimental findings in this study suggested the foreseeable environmental application of CO2 to energy recovery from MSW together with disposal of MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Formation of a nanocrystalline layer on the surface of stone wool fibers

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; Korsgaard, Martin; Kirkegaard, Lise Frank;

    2009-01-01

    +. It is found that the diffusion of Mg2+ is dominant in the overall diffusion process. The main phase of the nanocrystalline layer is identified to be periclase (MgO) crystals. The thickness of the nanocrystalline layer can be varied by adjusting the temperature and the duration of preoxidation...

  2. Competition between winds and electric fields in the formation of blanketing sporadic E layers at equatorial regions

    Science.gov (United States)

    Resende, Laysa Cristina Araújo; Batista, Inez Staciarini; Denardini, Clezio Marcos; Carrasco, Alexander José; de Fátima Andrioli, Vânia; Moro, Juliano; Batista, Paulo Prado; Chen, Sony Su

    2016-12-01

    In the present work, we analyze the competition between tidal winds and electric fields in the formation of blanketing sporadic E layers (Esb) over São Luís, Brazil (2° 31' S, 44° 16' W), a quasi-equatorial station. To investigate this competition, we have used an ionospheric E region model (MIRE) that is able to model the Esb layers taking into account the E region winds and electric fields. The model calculates the densities for the main molecular and metallic ions by solving the continuity and momentum equations for each of the species. Thus, the main purpose of this analysis is to verify the electric fields role in the occurrence or disruption of Esb layers through simulations. The first results of the simulations show that the Esb layer is usually present when only the tidal winds were considered. In addition, when the zonal component of the electric field is introduced in the simulation, the Esb layers do not show significant changes. However, the simulations show the disruption of the Esb layers when the vertical electric field is included. In this study, we present two specific cases in which Esb layers appear during some hours over São Luís. We can see that these layers appear when the vertical electric field was weak, which means that the tidal components were more effective during these hours. Therefore, the vertical component of the electric field is the main agent responsible for the Esb layer disruption. [Figure not available: see fulltext. Caption: Ionograms from São Luís on January 5, 2005, show a clear case of the competition between electric fields and wind effects in the Es layer formation. In ionograms, the Esq trace is clearly seen and identified by a blue arrow. Besides the Esq, we can identify another Es trace at 1415 UT (identified by a black arrow) that persists until 1600 UT. This layer becomes stronger in each ionogram, as can be seen by its effect on partially blocking the reflection from the low-frequency end of F region above

  3. In Situ Interferometry of MOCVD-Grown ZnO for Nucleation-Layer-Based Optimization and Nanostructure Formation Monitoring

    Science.gov (United States)

    Biethan, J.-P.; Considine, L.; Pavlidis, D.

    2011-04-01

    A reliable in situ interferometry technique allowed accurate prediction of the change in ZnO morphology during growth on various substrate types. Interferometry results showed that a 40-nm-thick nucleation layer on top of GaN allows growth of smooth and monocrystalline ZnO layers, as also confirmed by x-ray diffractometry (XRD). Studies of ZnO growth on silicon indicated that the surface morphology changes during the high-temperature growth step, resulting in needle-shaped ZnO on top of a thin ZnO initial layer. The observed surface morphology change corresponded to the interferometer signature and allowed identification of nanostructure formation.

  4. Heterogeneous distribution of plankton within the mixed layer and its implications for bloom formation in tropical seas

    KAUST Repository

    Calbet, Albert

    2015-06-11

    Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.

  5. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    Science.gov (United States)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-10-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al2O3) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  6. Formation of Hard Composite Layer on Tool Steel by Laser Alloying

    Directory of Open Access Journals (Sweden)

    Bonek M.

    2016-06-01

    Full Text Available Investigations include alloying the PMHSS6-5-3 steel surface layer with carbide and ceramic powders WC, VC, TiC, SiC, Si3N4 and Al2O3, using the high power diode laser (HPDL. Laser treatment is especially promising for solving contemporary surface engineering problems making it possible to focus precisely the delivered energy in the form of heat in the surface layer. The structural mechanism was determined of surface layers development, effect was studied of alloying parameters, method on structure refinement and influence of these factors on the mechanical properties of surface layer, and especially on its abrasive wear resistance. The fine grained martensite structure is responsible for hardness increase of the alloyed layer. The tribological wear relationships were determined for laser treated surface layers, determining friction coefficient, and wear trace shape developed due to the abrasive wear of the investigated surfaces. Comparison of the laser treatment parameters and tribological properties of surface layer after remelting and alloying with hard particles of the PMHSS6-5-3 steel using the high power diode laser to obtain the optimum service properties is the outcome of the investigations carried out.

  7. Ageing behaviour of unary hydroxides in trivalent metal salt solutions: Formation of layered double hydroxide (LDH)-like phases

    Indian Academy of Sciences (India)

    Michael Rajamathi; P Vishnu Kamath

    2000-10-01

    The hydroxides of Mg, Ni, Cu and Zn transform into layered double hydroxide (LDH)-like phases on ageing in solutions of Al or Cr salts. This reaction is similar to acid leaching and proceeds by a dissolution–reprecipitation mechanism offering a simple method of LDH synthesis, with implications for the accepted theories of formation of LDH minerals in the earth’s crust.

  8. Fragmentation of a primordial flat layer, and the formation of internal cluster structure

    Energy Technology Data Exchange (ETDEWEB)

    Doroshkevich, A.G.

    1980-03-01

    A discussion is given of gravitational and hydrodynamic instability in a plane layer of matter that can be compressed by external pressure. The dependence of the instability growth rate on the boundary conditions and on shear flows of the material in the layer is established. Estimates are obtained for the parameters and the fragmentation rate of the thin, cool layer which, according to the nonlinear adiabatic theory of gravitational instability, should develop in the central part of the primordial ''pancake.''

  9. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  10. Approach to Recover Hydrocarbons from Currently Off-Limit Areas of the Antrim Formation, MI Using Low-Impact Technologies

    Energy Technology Data Exchange (ETDEWEB)

    James Wood; William Quinlan

    2008-09-30

    The goal of this project was to develop and execute a novel drilling and completion program in the Antrim Shale near the western shoreline of Northern Michigan. The target was the gas in the Lower Antrim Formation (Upper Devonian). Another goal was to see if drilling permits could be obtained from the Michigan DNR that would allow exploitation of reserves currently off-limits to exploration. This project met both of these goals: the DNR (Michigan Department of Natural Resources) issued permits that allow drilling the shallow subsurface for exploration and production. This project obtained drilling permits for the original demonstration well AG-A-MING 4-12 HD (API: 21-009-58153-0000) and AG-A-MING 4-12 HD1 (API: 21-009-58153-0100) as well as for similar Antrim wells in Benzie County, MI, the Colfax 3-28 HD and nearby Colfax 2-28 HD which were substituted for the AG-A-MING well. This project also developed successful techniques and strategies for producing the shallow gas. In addition to the project demonstration well over 20 wells have been drilled to date into the shallow Antrim as a result of this project's findings. Further, fracture stimulation has proven to be a vital step in improving the deliverability of wells to deem them commercial. Our initial plan was very simple; the 'J-well' design. We proposed to drill a vertical or slant well 30.48 meters (100 feet) below the glacial drift, set required casing, then angle back up to tap the resource lying between the base to the drift and the conventional vertical well. The 'J'-well design was tested at Mancelona Township in Antrim County in February of 2007 with the St. Mancelona 2-12 HD 3.

  11. Formation of Ti-N graded bioceramic layer by DC hollow-cathode plasma nitriding

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chuan-lin

    2004-01-01

    Ti-N graded ceramic layer was formed on titanium by using DC hollow-cathode plasma nitriding technique. The structure of Ti-N layer was analyzed using X-ray diffractometry(XRD) with Cu Kα radiation, and the microhardness( HV0.1) was measured from the surface to inner along the cross section of Ti-N layer. The results indicate that the Ti-N graded layer is composed of ε-Ti2 N, δ-TiN and α-Ti(N) phases. Mechanism discussion shows that hollow-cathode discharge can intensify gas ionization, increase current density and enhance the nitriding potential, which directly increases the thickness of the diffusion coatings compared with traditional nitriding methods.

  12. Study on the Formation Mechanism of the Solid Siliconized Layer on Ti-48Al Alloy

    Institute of Scientific and Technical Information of China (English)

    MAXiao-xia; LIANGWei; ZHAOXing-guo; SHIJu-yan; BIANLi-ping

    2004-01-01

    The microstructures of the siliconied specimens of Ti-48Al alloy were analyzed by SEM equipped with XEDS.The specimens were pack siliconized with the two different cementations,15%Si+85% Al2O3 and 15%Si+85%ZrO2.The results show that a composite siliconized layer is formed on the surface of the Tial alloy.The outer layer is the continuous Al2O3 where a lot of Si particles adhered;the inner layer is most of Ti5Si3 with amount of Al2O3 particles dispersed in.It was deduced that the Al2O3 in the cementation layer is formed by the Al atoms in the TiAl substrate react with the residual O in the fumace and in the TiAl substrate.

  13. Study on the Formation Mechanism of the Solid Siliconized Layer on Ti-48Al Alloy

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-xia; LIANG Wei; ZHAO Xing-guo; SHI Ju-yan; BIAN Li-ping

    2004-01-01

    The microstructures of the siliconized specimens of Ti-48Al alloy were analyzed by SEM equipped with XEDS.The specimens were pack siliconized with the two different cementations, 15%Si+85% Al2O3 and 15%Si+85%ZrO2. The results show that a composite siliconized layer is formed on the surface of the TiAl alloy. The outer layer is the continuous Al2O3 where a lot of Si particles adhered; the inner layer is most of Ti5Si3 with amount of Al2O3 particles dispersed in. It was deduced that the Al2O3 in the cementation layer is formed by the Al atoms in the TiAl substrate react with the residual O in the furnace and in the TiAl substrate.

  14. The influence of capping layers on pore formation in Ge during ion implantation

    Science.gov (United States)

    Alkhaldi, H. S.; Tran, Tuan T.; Kremer, F.; Williams, J. S.

    2016-12-01

    Ion induced porosity in Ge has been investigated with and without a cap layer for two ion species, Ge and Sn, with respect to ion fluence and temperature. Results without a cap are consistent with a previous work in terms of an observed ion fluence and temperature dependence of porosity, but with a clear ion species effect where heavier Sn ions induce porosity at lower temperature (and fluence) than Ge. The effect of a cap layer is to suppress porosity for both Sn and Ge at lower temperatures but in different temperatures and fluence regimes. At room temperature, a cap does not suppress porosity and results in a more organised pore structure under conditions where sputtering of the underlying Ge does not occur. Finally, we observed an interesting effect in which a barrier layer of a-Ge that is denuded of pores formed directly below the cap layer. The thickness of this layer (˜ 8 nm) is largely independent of ion species, fluence, temperature, and cap material, and we suggest that this is due to viscous flow of a-Ge under ion irradiation and wetting of the cap layer to minimize the interfacial free energy.

  15. Formation of separating layers under conditions of the thermal aging of sorbents modified by fluorinated polyimide

    Science.gov (United States)

    Yakovleva, E. Yu.; Shundrina, I. K.; Gerasimov, E. Yu.; Vaganova, T. A.

    2014-03-01

    Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study the effect of the content of perfluorinated polyimide when used as a stationary phase for modifying Chromosorb P NAW diatomite supports and aluminum oxide, and the effect of thermal aging conditions on changes in their texture and chromatographic characteristics. It is shown that Chromosorb P NAW + 5 wt % of polyimide (PI) adsorbent thermally aged at 700°C in a flow of inert gas exhibits properties of carbon molecular sieves, while aluminum oxide impregnated with 10 wt % of PI and thermally aged at 250°C allows us to selectively separate permanent and organic gases, as well separate saturated and unsaturated hydrocarbons.

  16. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    hydrocarbon polluted sediments and water .... ecosystem may result in selective increase or decrease in microbial population (Okpokwasili ... been implicated in degradation of hydrocarbons such as crude oil, polyaromatic hydrocarbons and.

  17. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment.

    Science.gov (United States)

    van Genuchten, Case M; Bandaru, Siva R S; Surorova, Elena; Amrose, Susan E; Gadgil, Ashok J; Peña, Jasquelin

    2016-06-01

    Extended field trials to remove arsenic (As) via Fe(0) electrocoagulation (EC) have demonstrated consistent As removal from groundwater to concentrations below 10 μg L(-1). However, the coulombic performance of long-term EC field operation is lower than that of laboratory-based systems. Although EC electrodes used over prolonged periods show distinct passivation layers, which have been linked to decreased treatment efficiency, the spatial distribution and mineralogy of such surface layers have not been investigated. In this work, we combine wet chemical measurements with sub-micron-scale chemical maps and selected area electron diffraction (SAED) to determine the chemical composition and mineral phase of surface layers formed during long-term Fe(0) EC treatment. We analyzed Fe(0) EC electrodes used for 3.5 months of daily treatment of As-contaminated groundwater in rural West Bengal, India. We found that the several mm thick layer that formed on cathodes and anodes consisted of primarily magnetite, with minor fractions of goethite. Spatially-resolved SAED patterns also revealed small quantities of CaCO3, Mn oxides, and SiO2, the source of which was the groundwater electrolyte. We propose that the formation of the surface layer contributes to decreased treatment performance by preventing the migration of EC-generated Fe(II) to the bulk electrolyte, where As removal occurs. The trapped Fe(II) subsequently increases the surface layer size at the expense of treatment efficiency. Based on these findings, we discuss several simple and affordable methods to prevent the efficiency loss due to the surface layer, including alternating polarity cycles and cleaning the Fe(0) surface mechanically or via electrolyte scouring.

  18. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    DEFF Research Database (Denmark)

    Lauros, J.; Sogachev, Andrey; Smolander, S.

    2011-01-01

    We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the simulated...

  19. Particle concentration and flux dynamics in the atmospheric boundary layer as the indicator of formation mechanism

    DEFF Research Database (Denmark)

    Lauros, J.; Sogachev, Andrey; Smolander, S.

    2010-01-01

    We carried out column model simulations to study particle fluxes and deposition and to evaluate different particle formation mechanisms at a boreal forest site in Finland. We show that kinetic nucleation of sulphuric acid cannot be responsible for new particle formation alone as the vertical...

  20. Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000

    Directory of Open Access Journals (Sweden)

    J. Merikanto

    2010-01-01

    Full Text Available We use a global aerosol microphysics model to estimate the effect of particle formation through activation nucleation in the boundary layer (BL on cloud droplet number concentration (CDNC on global and regional scales. The calculations are carried out for years 1850 and 2000 using historical emissions inventories for primary particles and aerosol precursor gases. Predicted CDNC in 2000 are in good agreement with in-situ observations when activation nucleation is included. We find that BL particle formation increases global annual mean CDNC by approximately the same relative amount in both years (16.0% in 1850 and 13.5% in 2000. As a result, global mean changes in cloud albedo are similar with and without BL particle formation. However, there are substantial regional effects of up to 50% enhancement or suppression of the 1850–2000 albedo change. Over most modern-day polluted northern hemisphere regions, including BL particle formation scheme suppresses the 1850–2000 increase in CDNC and cloud albedo because BL particle formation is already large in 1850. Over the Arctic the albedo change is suppressed by 23% in the annual mean and by 43% in summer when BL particle formation is taken into account. The albedo change of the persistent stratocumulus cloud deck west of Chile is enhanced by 49%.

  1. Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000

    Directory of Open Access Journals (Sweden)

    J. Merikanto

    2009-02-01

    Full Text Available We use a global aerosol microphysics model to estimate the effect of boundary layer particle formation on cloud droplet number concentration (CDNC on global and regional scales. The calculations are carried out for years 1850 and 2000 using historical emissions inventories for primary particles and aerosol precursor gases. Predicted CDNC in 2000 are in good agreement with in-situ observations when particle formation is included. We find that particle formation increases global annual mean CDNC by approximately the same amount in both years (16.0% in 1850 and 13.5% in 2000. Thus, global mean changes in cloud albedo are similar with and without particle formation. However, there are substantial regional effects of up to 50% enhancement or suppression of the 1850–2000 albedo change. Over most modern-day polluted Northern Hemisphere regions particle formation suppresses the 1850–2000 increase in CDNC and cloud albedo. Over the Arctic the albedo change is suppressed by 23% in the annual mean and by 43% in summer when particle formation is taken into account. The albedo change of the persistent stratocumulus cloud deck west of Chile is enhanced by 49%.

  2. The effects of cooking on wire and stone barbecue at different cooking levels on the formation of heterocyclic aromatic amines and polycyclic aromatic hydrocarbons in beef steak.

    Science.gov (United States)

    Oz, Fatih; Yuzer, M Onur

    2016-07-15

    The effects of type of barbecue (wire and stone) and cooking levels (rare, medium, well-done and very well-done) on the formation of heterocyclic aromatic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) in beef steak were investigated. Varying levels of IQx (up to 0.29 ng/g), IQ (up to 0.93 ng/g), MeIQx (up to 0.08 ng/g), MeIQ (up to 0.75 ng/g), 7,8-DiMeIQx (up to 0.08 ng/g), 4,8-DiMeIQx (up to 4.95 ng/g), PhIP (up to 6.24 ng/g) and AαC (up to 0.20 ng/g) were determined, while MeAαC was not detected. The total HCA amounts in wire barbecued samples were higher than stone barbecued samples. Total HCA contents of the samples ranged between nd and 13.52 ng/g. In terms of PAHs, varying levels of BaA (up to 0.34 ng/g), Chry (up to 0.28 ng/g), BbF (up to 0.39 ng/g), BkF (up to 0.90 ng/g), BaP (up to 0.29 ng/g) and Bghip (up to 0.43 ng/g) were determined, while DahA and IncdP were not detected. The total PAH amounts in stone barbecued samples were higher than those of wire barbecued samples. Total PAH amounts of the samples ranged between nd and 2.63 ng/g.

  3. Apparatus for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  4. A preliminary evaluation model for reservoir hydrocarbon-generating potential established based on dissolved hydrocarbons in oilfield water

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A large number of oilfield water samples were analyzed in this work. Research on the relationship between the concentrations and distribution of dissolved hydrocarbons sug gested that the contents and composition of dissolved hydrocarbons varied with the hydrocar bon-generating potential of reservoirs. The concentrations of dissolved hydrocarbons were low in dry layers, water layers and gas-water layers, but high in gas reservoirs and oil reservoirs, especially in gas reservoirs with condensed oil. Series of carbon-number alkanes were usually absent in oilfield water from dry layers, water layers and gas-water layers but abundant in oil field water from oil-water reservoirs, gas reservoirs and oil reservoirs, whose carbon numbers varied most widely in oil reservoirs and least in gas reservoirs. A preliminary evaluation model for reservoir hydrocarbon-generating potential was established based on the characteristics of dissolved hydrocarbons in oilfield water to assist hydrocarbon exploration.

  5. Method of producing drive fluid in situ in tar sands formations

    Energy Technology Data Exchange (ETDEWEB)

    Mudunuri, Ramesh Raju (Houston, TX); Jaiswal, Namit (Houston, TX); Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX)

    2010-03-23

    Methods of treating a tar sands formation are described herein. Methods for treating a tar sands may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. The heat may be allowed to transfer from the heaters to at least a portion of the formation such that a drive fluid is produced in situ in the formation. The drive fluid may move at least some mobilized, visbroken, and/or pyrolyzed hydrocarbons from a first portion of the formation to a second portion of the formation. At least some of the mobilized, visbroken, and/or pyrolyzed hydrocarbons may be produced from the formation.

  6. Formation Energies of Native Point Defects in Strained-Layer Superlattices (Postprint)

    Science.gov (United States)

    2017-06-05

    1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no...POSTPRINT) 5a. CONTRACT NUMBER FA8650-11-D-5800-0008 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) 1) Zhi-Gang Yu...native point defect (NPD) formation energies and absence of mid-gap levels. In this Letter we use first- principles calculations to study the formation

  7. CVD Delta-Doped Boron Surface Layers for Ultra-Shallow Junction Formation

    NARCIS (Netherlands)

    Sarubbi, F.; Nanver, L.K.; Scholtes, T.L.M.

    2006-01-01

    A new doping technique is presented that uses a pure boron atmospheric/low-pressure chemical vapor deposition (AP/LPCVD) in a commercially available epitaxial reactor to form less than 2-nm-thick δ-doped boron-silicide (BxSi) layers on the silicon surface. For long exposure B segregates at the surfa

  8. Modeling the barrier-layer formation in the South-Eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Durand, F.; Shankar, D.; DeBoyer Montegut, C.; Shenoi, S.S.C.; Blanke, B.; Madec, G.

    by two complementary processes, the arrival of low-salinity surface waters that are cooled en route to the SEAS and downwelling of waters mostly local to the SEAS in the subsurface layers. The surface waters are partly of Bay-of-Bengal origin...

  9. A mechanical model for surface layer formation on self-lubricating ceramic composites

    NARCIS (Netherlands)

    Song, Jiupeng; Valefi, Mahdiar; Rooij, de Matthijn; Schipper, Dirk J.

    2010-01-01

    To predict the thickness of a self-lubricating layer on the contact surface of ceramic composite material containing a soft phase during dry sliding test, a mechanical model was built to calculate the material transfer of the soft second phase in the composite to the surface. The tribological test,

  10. Formation of nematic liquid crystals of sterically stabilized layered double hydroxide platelets

    NARCIS (Netherlands)

    Mourad, M.C.D.; Devid, E.J.; van Schooneveld, M.M.; Vonk, Ch.; Lekkerkerker, H.N.W.

    2008-01-01

    Colloidal platelets of hydrotalcite, a layered double hydroxide, have been prepared by coprecipitation at pH 11−12 of magnesium nitrate and aluminum nitrate at two different magnesium to aluminum ratios. Changing the temperature and ionic strength during hydrothermal treatment, the platelets were ta

  11. Influence of layering on the formation and growth of solution pipes

    Directory of Open Access Journals (Sweden)

    Karine ePetrus

    2016-01-01

    Full Text Available In karst systems, hydraulic conduits called solution pipes (or wormholes are formed as a result of the dissolution of limestone rocks by the water surcharged with CO2. The solution pipes are the end result of a positive feedback between spatial variations in porosity in the rock matrix and the local dissolution rate. Here, we investigate numerically the effect of rock stratification on the solution pipe growth, using a simple model system with a number of horizontal layers, which are less porous than the rest of the matrix. Stratification is shown to affect the resulting piping patterns in a variety of ways. First of all, it enhances the competition between the pipes, impeding the growth of the shorter ones and enhancing the flow in the longer ones, which therefore grow longer. This is reflected in the change of the pipe length distribution, which becomes steeper as the porosity contrast between the layers is increased. Additionally, stratification affects the shapes of individual solution pipes, with characteristic widening of the profiles in between the layers and narrowing within the layers. These results are in qualitative agreement with the piping morphologies observed in nature.

  12. The formation of organic (propolis films)/inorganic (layered crystals) interfaces for optoelectronic applications

    Science.gov (United States)

    Drapak, S. I.; Bakhtinov, A. P.; Gavrylyuk, S. V.; Kovalyuk, Z. D.; Lytvyn, O. S.

    2008-10-01

    Propolis (honeybee glue) organic films were prepared from an alcoholic solution on the surfaces of inorganic layered semiconductors (indium, gallium and bismuth selenides). Atomic force microscopy (AFM) and X-ray diffraction (XRD) are used to characterize structural properties of an organic/inorganic interfaces. It is shown that nanodimensional linear defects and nanodimensional cavities of various shapes are formed on the van der Waals (VDW) surfaces of layered crystals as a result of chemical interaction between the components of propolis (flavonoids, aminoacids and phenolic acids) and the VDW surfaces as well as deformation interaction between the VDW surfaces and propolis films during their polymerization. The nanocavities are formed as a result of the rupture of strong covalent bonds in the upper layers of layered crystals and have the shape of hexagons or triangles in the (0001) plane. The shape, lateral size and distribution of nanodimensional defects on the VDW surfaces depends on the type of crystals, the magnitude and distribution of surface stresses. We have obtained self-organized nanofold structures of propolis/InSe interface. It is established that such heterostructures have photosensitivity in the infrared range hνpropolis films at room temperature).

  13. High-resolution studies of double-layered ejecta craters: Morphology, inherent structure, and a phenomenological formation model

    Science.gov (United States)

    Wulf, Gerwin; Kenkmann, Thomas

    2015-02-01

    The ejecta blankets of impact craters in volatile-rich environments often possess characteristic layered ejecta morphologies. The so-called double-layered ejecta (DLE) craters are characterized by two ejecta layers with distinct morphologies. The analysis of high-resolution image data, especially HiRISE and CTX, provides new insights into the formation of DLE craters. A new phenomenological excavation and ejecta emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim—a well-preserved DLE crater—and studies of other DLE craters. The observations show that the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a debris avalanche or (if saturated with water) a debris flow mode after landing, overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits during the emplacement stage that overrun and superimpose parts of the outer ejecta layer. Based on our model, DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice, leading to high ejection angles, proximal landing positions, and an ejecta curtain with relatively wet (in terms of water in liquid form) composition in the distal part versus dryer composition in the proximal part. As a consequence, basal melting of ice components in the ejecta at the transient crater rim, which is induced by frictional heating and the enhanced pressure at depth, initiates an outwards directed collapse of crater rim material in a translational slide mode. Our results indicate that similar processes may also be applicable for other planetary bodies with volatile-rich environments, such as Ganymede, Europa, and the Earth.

  14. Formation of charge-nanopatterned templates with flexible geometry via layer by layer deposition of polyelectrolytes for directed self-assembly of gold nanoparticles

    Science.gov (United States)

    Sayin, Mustafa; Dahint, Reiner

    2017-03-01

    Nanostructure formation via self-assembly processes offers a fast and cost-effective approach to generate surface patterns on large lateral scale. In particular, if the high precision of lithographic techniques is not required, a situation typical of many biotechnological and biomedical applications, it may be considered as the method of choice as it does not require any sophisticated instrumentation. However, in many cases the variety and complexity of the surface structures accessible with a single self-assembly based technique is limited. Here, we report on a new approach which combines two different self-assembly strategies, colloidal lithography and layer-by-layer deposition of polyelectrolytes, in order to significantly expand the spectrum of accessible patterns. In particular, flat and donut-like charge-patterned templates have been generated, which facilitate subsequent deposition of gold nanoparticles in dot, grid, ring, out-of-ring and circular patch structures. Potential applications are e.g. in the fields of biofunctional interfaces with well-defined lateral dimensions, optical devices with tuned properties, and controlled three-dimensional material growth.

  15. Effects of A Top SiO2 Surface Layer on Cavity Formation and Helium Desorption in Silicon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Cz n-type Si (100) samples with and without a top SiO2 layer were implanted with 40 keV helium ions at the same dose of 5×1016 cm-2. Cross-sectional transmission electron microscopy (XTEM) and thermal desorption spectroscopy (THDS) were used to study the thermal evolution of cavities upon and helium thermal release, respectively. XTEM results show that the presence of the top SiO2 layer could suppress the thermal growth of cavities mainly formed in the region close to the SiO2/Si interface, which leads to the reduction in both the cavity band and cavity density. THDS results reveal that the top oxide layer could act as an effective barrier for the migration of helium atoms to the surface, and it thus gives rise to the formation of more overpresurrized bubbles and to the occurrence of a third release peak located at about 1100 K. The results were qualitively discussed by considering the role of the oxide surface layer in defect migration and evolution upon annealing.

  16. Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme

    Directory of Open Access Journals (Sweden)

    A. H. Berner

    2013-07-01

    Full Text Available A large-eddy simulation (LES coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of

  17. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    DEFF Research Database (Denmark)

    Rossander, Lea Hildebrandt; Zawacka, Natalia Klaudia; Dam, Henrik Friis

    2014-01-01

    The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording...... scattering measurements in situ, enabling us to follow the crystal formation during drying. By varying the distance between the coating head and the point where the X-ray beam hits the film, we obtained measurements of 4 different stages of drying. For each of those stages, the scattering from as long a foil...... as possible is summed together, with the distance from coating head to scattering point kept constant. The results are average crystallographic properties for the active layer coated on a 30 m long foil. With this insight into the dynamics of crystallization in a roll-coated polymer film, we find...

  18. Simultaneous shunt protection and back contact formation for CdTe solar cells with single wall carbon nanotube layers

    Science.gov (United States)

    Phillips, Adam B.; Khanal, Rajendra R.; Song, Zhaoning; Watthage, Suneth C.; Kormanyos, Kenneth R.; Heben, Michael J.

    2015-12-01

    Thin film photovoltaic (PV) devices and modules prepared by commercial processes can be severely compromised by through-device low resistance electrical pathways. The defects can be due to thin or missing semiconductor material, metal diffusion along grain boundaries, or areas containing diodes with low turn-on potentials. We report the use of single wall carbon nanotube (SWCNT) layers to enable both protection against these defects and back contact formation for CdTe PV devices. Samples prepared with a SWCNT back contact exhibited good efficiency and did not require shunt protection, while devices prepared without shunt protection using a standard metal back contact performed poorly. We describe the mechanism by which the SWCNT layer functions. In addition to avoiding the need for shunt protection by other means, the SWCNT film also provides a route to higher short circuit currents.

  19. PHYSICAL BASIS OF ISOTOPE-ENRICHED LAYERS FORMATION IN FIBER OPTICS

    Directory of Open Access Journals (Sweden)

    Myshkin V. F.

    2015-06-01

    Full Text Available It is known that transmission coefficient of quartz glass containing the same amount of 28Si and 30Si in the silicon optical fiber is lesser than in commercial LEDs for telecommunications. Therefore it is topical to develop the method of optical glass formation with specified isotope composition in the core and in the shell. The article provides an analysis of physical and chemical processes occurring at the formation of quartz optical fiber blanks by vapor deposition from the gas phase. It is shown that the part of the silicon tetrachloride oxidation stages passes through the radical processes. Therefore for quartz glass formation with specified isotope composition it is possible to use the paramagnetic phenomena caused by the external magnetic field in a high-temperature flow at the quartz glass chemical deposition from the vapor phase. In this case alloy additive using is not necessary. Alloy additives can form density inhomogeneities in the glass. Simultaneous silicon glass formation and silicon isotope separation process bring to significant reduction of the fiber cost in comparison with isotope-enriched materials using. The permanent magnets can be used for magnetic field formation at existing process units

  20. Immiscibility of Fluid Phases at Magmatic-hydrothermal Transition: Formation of Various PGE-sulfide Mineralization for Layered Basic Intrusions

    Science.gov (United States)

    Zhitova, L.; Borisenko, A.; Morgunov, K.; Zhukova, I.

    2007-12-01

    Fluid inclusions in quartz of the Merensky Reef (Bushveld Complex, South Africa) and the Chineisky Pluton (Transbaikal Region, Russia) were studied using cryometry, microthermometry, Raman-spectroscopy, LA ICP- MS, scanning electronic microscopy, gas-chromatography and isotopic methods. This allowed us to document some examples of fluid phase separation resulting in formation of different types of PGE-sulfide mineralization for layered basic intrusions. The results obtained show at least three generations of fluid separated from boiling residual alumosilicate intercumulus liquid of the Merensky Reef. The earliest fluid phase composed of homogenous high-dense methane and nitrogen gas mixture was identified in primary gas and co-existing anomalous fluid inclusions from symplectitic quartz. The next generation, heterophase fluid, composed of brines containing a free low-dense (mostly of carbon dioxide) gas phase, was observed in primary multiphase and coexisting gas-rich inclusions of miarolitic quartz crystals. The latest generation was also a heterophase fluid (low salinity water-salt solution and free low-dense methane gas phase) found in primary water-salt and syngenetic gas inclusions from peripheral zones of miarolitic quartz crystals. For the Chineisky Pluton reduced endocontact magmatogene fluids changed to oxidized low salinity hydrothermal fluids in exocontact zone. This resulted in formation of sulfide-PGE enrichment marginal zones of intrusion. The results obtained give us a possibility to suggest that: 1) Fluid phase separation is a typical feature of magmatogene fluids for layered basic intrusions. 2) Reduced fluids can extract and transport substantial PGE and sulfide concentrations. 3) Oxidation of reduced fluids is one of the most important geochemical barriers causing abundant PGE minerals and sulfides precipitation. This in turn results in both formation of PGE reefs or enriched contact zones of layered basic intrusions. This work was supported by

  1. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  2. Multi-layered Spectral Formation in SNe Ia Around Maximum Light

    Energy Technology Data Exchange (ETDEWEB)

    Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

    2008-09-02

    We use the radiative transfer code \\phx\\ to study the line formation of the wavelength region 5000-7000 Angstrom. This is the region where the SNe Ia defining Si II feature occurs. This region is important since the ratio of the two nearby silicon lines has been shown to correlate with the absolute blue magnitude. We use a grid of LTE synthetic spectral models to investigate the formation of line features in the spectra of SNe Ia. By isolating the main contributors to the spectral formation we show that the ions that drive the spectral ratio are FeIII, FeII, SiII and SII. While the first two strongly dominate the flux transfer, the latter two form in the same physical region inside of the supernova. We also show that the naive blackbody that one would derive from a fit to the observed spectrum is far different than the true underlying continuum.

  3. Formation of infinite 2D water layers in a crystal host

    Institute of Scientific and Technical Information of China (English)

    Cai Hua Zhou; Li Jun Zhou; Long Tang; Yao Yu Wang

    2009-01-01

    A self-assembled, (H2O)38 cluster stabilized by a mono-nuclear copper(Ⅱ) complex 1 namely {[Cu(phen)2(CO3)].7H2O} is characterized by X-ray diffraction studies. The adjacent (H2O)38 clusters connect together resulting in an infinite 2D water layer structure. The water morphology is stable at room temperature, but upon thermal decomposition, the water loss is irreversible.

  4. Asymptotic Modelling of Crystallisation in Two Layers Systems. Application to Methane Hydrate Formation in Batch Reactor.

    OpenAIRE

    Cournil, Michel; Herri, Jean-Michel

    2002-01-01

    6 pages; This paper proposes to re-visit the problem of gas-liquid crystallization in the framework of a two-layer model and with the help of data coming from experiments on methane hydrate crystallization in a semi-batch reactor. Preliminary quantitative discussion of the order of magnitude of different effects makes possible realistic simplifications in the theoretical models. In particular, the role of the interfacial film is clearly defined. As previous authors did, we use a formulation i...

  5. Layer Formation and Annihilation in an Immiscible Polymer Blend under Electric and Shear Flow Fields

    OpenAIRE

    Na, Yang-Ho; Yoshino, Ayaka; Tominaga, Shinsuke; Orihara, Hiroshi; Ujie, Seiji; Nagaya, Tomoyuki

    2006-01-01

    Simultaneous observation of morphological change and measurement of shear stress in an immiscible polymer blend of a liquid crystalline polymer (LCP) and a methyl phenyl silicone oil (MPS) were carried out in electric and shear flow fields by using a system combining a rheometer and a confocal scanning laser microscope (CSLM). Under shear flow and no electric field a thin MPS layer with low viscosity was formed between two parallel plates of the rheometer, which reduced the app...

  6. Formating double layer mechanism by electric charged particle stream in plasma

    Science.gov (United States)

    Shan-jun, Ma; Qian-li, Yang; Xiao-qing, Li

    1998-08-01

    In this paper, two-fluid equations have been solved after having considered magnetic field generated by charged particle stream. Finally, the distribution of electric field Ez(z, r) and its growth rate γ in plasma have been obtained. From the expression of Ez(z, r) it can be known that the double layer has been formed. With the increase of disturbance γ will be larger, and finally this will result in the interruption of electric current and occurrence of burst.

  7. Ultrathin coatings from isocyanate-terminated star PEG prepolymers: layer formation and characterization.

    Science.gov (United States)

    Groll, Juergen; Ameringer, Thomas; Spatz, Joachim P; Moeller, Martin

    2005-03-01

    In this study we present the preparation of thin and ultrathin coatings from six-arm star-shaped isocyanate-terminated prepolymers on amino-functionalized silicon wafers. The backbone of the stars is a statistical copolymer of ethylene oxide and propylene oxide in the ratio 80:20 (Star PEG). Film preparation by spin coating from aqueous THF resulted in a variety of film morphologies that are determined by the water content of the solvent. Water is indispensable for activation of the isocyanate-terminated stars in solution and for proper cross-linking of the coatings on the substrate. This cross-linking results in a dense network of PEG chains on the substrate linked via urea groups with a mesh size of the network that corresponds to the arm length of the stars. Layer thickness variations between 3 and 500 nm revealed a strong dependence of the contact angle with water on the layer thickness which is explained by the chemical composition of the coatings. Due to the high functionality of the star-shaped prepolymers, free amino groups remain in the films that were detected by fluorescence microscopy after reaction with 4-chloro-7-nitrobenzofurazan (NBF). To test the system for the ability to prevent unspecific interaction with proteins, adsorption of fluorescence-labeled avidin was examined with fluorescence microscopy. For layer thicknesses between 3 and 50 nm, no protein adsorption could be detected.

  8. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  9. FISSION-TRACK DATING OF A TEPHRA LAYER IN THE ALAT FORMATION OF THE DANDIERO GROUP (DANAKIL DEPRESSION, ERITREA)

    OpenAIRE

    2004-01-01

    Attempts to date a biotite separate from a tephra layer recognized near Buia (Danakil Depression, Eritrea) in the liwer part of the Homo remains – bearing Dandiero group (formerly attributed to the Danakil Formation) using the 39Ar/40Ar method failed because of xenocrystic contamination. For this reason it was applied the fission-track method on glass, since no other phases datable with this technique were present. The quality of glass was very poor for fission-track dating, because of the sm...

  10. Formation and Detection of Clay Network Structure in Poly(propylene)/Layered Silicate Nanocomposites

    NARCIS (Netherlands)

    Abranyi, Agnes; Szazdi, Laszlo; Pukanszky Jr., Bela; Vancso, G. Julius; Pukanszky, Bela

    2006-01-01

    The study of the structure and the rheological properties of poly(propylene) (PP)/montmorillonite (MMT)/maleinated PP (MAPP) composites strongly suggests that a silicate network may form under certain conditions. Network formation could not be proven unambiguously with the usual techniques, i.e., wi

  11. Formation and Detection of Clay Network Structure in Poly(propylene) /Layered Silicate Nanocomposites

    NARCIS (Netherlands)

    Abranyi, Agnes; Szazdi, Laszlo; Pukanszky Jr., Bela; Vancso, Gyula J.; Pukanszky, B.; Pukanszky, Bela

    2006-01-01

    The study of the structure and the rheological properties of poly(propylene) (PP)/montmorillonite (MMT)/maleinated PP (MAPP) composites strongly suggests that a silicate network may form under certain conditions. Network formation could not be proven unambiguously with the usual techniques, i.e.,

  12. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    Energy Technology Data Exchange (ETDEWEB)

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  13. A Facile Method to Prepare Double-Layer Isoporous Hollow Fiber Membrane by In Situ Hydrogen Bond Formation in the Spinning Line.

    Science.gov (United States)

    Noor, Nazia; Koll, Joachim; Radjabian, Maryam; Abetz, Clarissa; Abetz, Volker

    2016-03-01

    A double-layer hollow fiber is fabricated where an isoporous surface of polystyrene-block-poly(4-vinylpyridine) is fixed on a support layer by co-extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope-energy-dispersive X-ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in-process H-bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double-layer hollow fiber.

  14. Yolk syncytial layer formation is a failure of cytokinesis mediated by Rock1 function in the early zebrafish embryo

    Directory of Open Access Journals (Sweden)

    Lee-Thean Chu

    2012-06-01

    The yolk syncytial layer (YSL performs multiple critical roles during zebrafish development. However, little is known about the cellular and molecular mechanisms that underlie the formation of this important extraembryonic structure. Here, we demonstrate by timelapse confocal microscopy of a transgenic line expressing membrane-targeted GFP that the YSL forms as a result of the absence of cytokinesis between daughter nuclei at the tenth mitotic division and the regression of pre-existing marginal cell membranes, thus converting the former margin of the blastoderm into a syncytium. We show that disruption of components of the cytoskeleton induces the formation of an expanded YSL, and identify Rock1 as the regulator of cytoskeletal dynamics that lead to YSL formation. Our results suggest that the YSL forms as a result of controlled cytokinesis failure in the marginal blastomeres, and Rock1 function is necessary for this process to occur. Uncovering the cellular and molecular mechanisms underlying zebrafish YSL formation offers significant insight into syncytial development in other tissues as well as in pathological conditions.

  15. First-principles study of the dipole layer formation at metal-organic interfaces

    OpenAIRE

    2009-01-01

    We study the dipole layer formed at metal-organic interfaces by means of first-principles calculations. Interface dipoles are monitored by calculating the work function change of Au, Ag, Al, Mg and Ca surfaces upon adsorption of a monolayer of PTCDA (3,4,9,10-perylene-tetra-carboxylic-di-anhydride), perylene or benzene molecules. Adsorption of PTCDA leads to pinning of the work function for a range of metal substrates. It gives interface dipoles that compensate for the difference in the clean...

  16. Novel genes participating in the formation of prismatic and nacreous layers in the pearl oyster as revealed by their tissue distribution and RNA interference knockdown.

    Directory of Open Access Journals (Sweden)

    Daisuke Funabara

    Full Text Available In our previous publication, we identified novel gene candidates involved in shell formation by EST analyses of the nacreous and prismatic layer-forming tissues in the pearl oyster Pinctada fucata. In the present study, 14 of those genes, including two known genes, were selected and further examined for their involvement in shell formation using the RNA interference. Molecular characterization based on the deduced amino acid sequences showed that seven of the novel genes encode secretory proteins. The tissue distribution of the transcripts of the genes, as analyzed by RT-PCR and in situ hybridization, was mostly consistent with those obtained by the EST analysis reported previously. Shells in the pearl oysters injected with dsRNAs targeting genes 000027, 000058, 000081, 000096, 000113 (nacrein, 000118, 000133 and 000411 (MSI60, which showed expression specific to the nacreous layer forming tissues, showed abnormal surface appearance in this layer. Individuals injected with dsRNAs targeting genes 000027, 000113 and 000133 also exhibited abnormal prismatic layers. Individuals injected with dsRNAs targeting genes 000031, 000066, 000098, 000145, 000194 and 000200, which showed expression specific to prismatic layer forming tissues, displayed an abnormal surface appearance in both the nacreous and prismatic layers. Taken together, the results suggest that the genes involved in prismatic layer formation might also be involved in the formation of the nacreous layers.

  17. Formation of titanium carbide layer by laser alloying with a light-transmitting resin

    Science.gov (United States)

    Yamaguchi, Takuto; Hagino, Hideki

    2017-01-01

    The weight reduction of mechanical components is becoming increasingly important, especially in the transportation industry, as fuel efficiency continues to improve. Titanium and titanium alloys are recognized for their outstanding potential as lightweight materials with high specific strength. Yet they also have poor tribological properties that preclude their use for sliding parts. Improved tribological properties of titanium would expand the application of titanium into different fields. Laser alloying is an effective process for improving surface properties such as wear resistance. The process has numerous advantages over conventional surface modification techniques. Many researchers have reported the usefulness of laser alloying as a technique to improve the wear resistance of titanium. The process has an important flaw, however, as defects such as cracks or voids tend to appear in the laser-alloyed zone. Our group performed a novel laser-alloying process using a light-transmitting resin as a source for the carbon element. We laser alloyed a surface layer of pure titanium pre-coated with polymethyl methacrylate (PMMA) and investigated the microstructure and wear properties. A laser-alloyed zone was formed by a reaction between the molten titanium and thermal decomposition products of PMMA at the interface between the substrate and PMMA. The cracks could be eliminated from the laser-alloyed zone by optimizing the laser alloying conditions. The surface of the laser-alloyed zone was covered with a titanium carbide layer and exhibited a superior sliding property and wear resistance against WC-Co.

  18. Study of interface formation on the cleavage surfaces of A3{B}6 layered semiconductors

    Science.gov (United States)

    Galiy, P. V.; Nenchuk, T. M.; Stakhira, J. M.

    2001-01-01

    The adsorption activity of In4Se3, In4Se3(Ag), InSe, GaSe and TlGaSe2 semiconductor crystal interlayer cleavage surfaces relatively to N2, O2, CO gases and water vapour has been studied by Auger electron spectroscopy and mass spectrometry. It has been determined that atomically clean layered crystal surfaces do not adsorb N2 and water vapour but reveal a low activity with respect to O2. The kinetics of CO adsorption on surfaces obtained by cleavage in an UHV have been investigated. Indium and gallium selenides adsorb CO with the tendency increasing in the sequence GaSe→TlGaSe2→ InSe→In4Se3 crystals; In4Se3 is essentially more active than the others. The adsorption model with dissociations of the CO molecule and carbon adsorption resulting from the layered structure and peculiarities in the electron-energy spectra of the crystals and their surfaces is discussed with the In4Se3 crystal serving as example.

  19. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    Energy Technology Data Exchange (ETDEWEB)

    Rossander, Lea H.; Zawacka, Natalia K.; Dam, Henrik F.; Krebs, Frederik C.; Andreasen, Jens W., E-mail: jewa@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 (Denmark)

    2014-08-15

    The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording scattering measurements in situ, enabling us to follow the crystal formation during drying. By varying the distance between the coating head and the point where the X-ray beam hits the film, we obtained measurements of 4 different stages of drying. For each of those stages, the scattering from as long a foil as possible is summed together, with the distance from coating head to scattering point kept constant. The results are average crystallographic properties for the active layer coated on a 30 m long foil. With this insight into the dynamics of crystallization in a roll-coated polymer film, we find that the formation of textured and untextured crystallites seems uncorrelated, and happens at widely different rates. Untextured P3HT crystallites form later in the drying process than expected which may explain previous studies speculating that untextured crystallization depends on concentration. Textured crystallites, however, begin forming much earlier and steadily increases as the film dries, showing a development similar to other in situ studies of these materials.

  20. In situ monitoring of structure formation in the active layer of polymer solar cells during roll-to-roll coating

    Directory of Open Access Journals (Sweden)

    Lea H. Rossander

    2014-08-01

    Full Text Available The active layer crystallization during roll-to-roll coating of organic solar cells is studied in situ. We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording scattering measurements in situ, enabling us to follow the crystal formation during drying. By varying the distance between the coating head and the point where the X-ray beam hits the film, we obtained measurements of 4 different stages of drying. For each of those stages, the scattering from as long a foil as possible is summed together, with the distance from coating head to scattering point kept constant. The results are average crystallographic properties for the active layer coated on a 30 m long foil. With this insight into the dynamics of crystallization in a roll-coated polymer film, we find that the formation of textured and untextured crystallites seems uncorrelated, and happens at widely different rates. Untextured P3HT crystallites form later in the drying process than expected which may explain previous studies speculating that untextured crystallization depends on concentration. Textured crystallites, however, begin forming much earlier and steadily increases as the film dries, showing a development similar to other in situ studies of these materials.

  1. Calcium dependent formation of tubular assemblies by recombinant S-layer proteins in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, Nuriye; Ostermann, Kai; Roedel, Gerhard, E-mail: nuriye_korkmaz@yahoo.com, E-mail: kai.ostermann@tu-dresden.de, E-mail: gerhard.roedel@tu-dresden.de [Institut fuer Genetik, Technische Universitaet Dresden, Zellescher Weg 20b, 01217 Dresden (Germany)

    2011-03-04

    Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca{sup 2+}) ions, with an optimal concentration of 10 mM. Further increase of the Ca{sup 2+} concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 {mu}m compared to 2.69 {mu}m at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.

  2. Calcium dependent formation of tubular assemblies by recombinant S-layer proteins in vivo and in vitro

    Science.gov (United States)

    Korkmaz, Nuriye; Ostermann, Kai; Rödel, Gerhard

    2011-03-01

    Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca2 + ) ions, with an optimal concentration of 10 mM. Further increase of the Ca2 + concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.

  3. Chitin-binding proteins of Artemia diapause cysts participate in formation of the embryonic cuticle layer of cyst shells.

    Science.gov (United States)

    Ma, Wen-Ming; Li, Hua-Wei; Dai, Zhong-Min; Yang, Jin-Shu; Yang, Fan; Yang, Wei-Jun

    2013-01-01

    The brine shrimp Artemia reproduces either ovoviviparously, producing free-swimming nauplii, or oviparously, producing encysted embryos (diapause cysts) able to cope with harsh and complex habitats. When the cysts enter diapause they are encased in a complex external shell that protects them from certain extreme environments. The genomic comparison of oviparous and ovoviviparous ovisacs has been described previously. We isolated three significantly up-regulated genes in oviparous oocytes and identified them as Arp-CBP (Artemia parthenogenetica chitin-binding protein) genes. Quantitative real-time PCR indicated that the expression of Arp-CBP genes gradually increases during diapause cyst formation and significant mRNA accumulation occurs during the ovisac stage of oviparous development. Moreover, in situ hybridization results demonstrated that Arp-CBP mRNAs are expressed in the embryo. Interestingly, the results of immune electron microscopy showed that all three Arp-CBPs are distributed throughout the cellular ECL (embryonic cuticle layer) of the cyst shell. Furthermore, knockdown of Arp-CBP by RNA interference resulted in marked changes in the composition of the embryonic cuticular layer. The fibrous layer of the cyst shell adopted a loose conformation and the inner and outer cuticular membranes exhibited marked irregularities when Arp-CBP expression was suppressed. Finally, an in vitro recombinant protein-binding assay showed that all three Arp-CBPs have carbohydrate-binding activities. These findings provide significant insight into the mechanisms by which the ECL of Artemia cyst shell is formed, and demonstrate that Arp-CBPs are involved in construction of the fibrous lattice and are required for formation of the ECL of the cyst shell.

  4. Coke Formation During Hydrocarbons Pyrolysis. Part Two: Methane Thermal Cracking Formation de coke pendant la pyrolyse des hydrocarbures. Deuxième partie : pyrolyse du méthane

    Directory of Open Access Journals (Sweden)

    Billaud F.

    2006-11-01

    Full Text Available Part one of this article dealt with coking in a steam cracking furnace. In this process, coke deposition is a very complex phenomenon due to the number of parameters involved. Nevertheless, for this process, coke deposition is a secondary reaction which does not affect steam cracking yields. It is completely different for methane thermal cracking. Coke is one of the main products of this reaction. Part two of this article deals with coke deposition on the walls of the reactors used for methane thermal cracking. After a brief description of the different set-ups used to study coke deposition, the main parameters involved are listed. The importance of temperature, conversion, type of diluent, and hydrocarbon partial pressure will be enhanced. To conclude, two approaches to the mechanism are proposed to explain coke formation during methane thermal cracking. La première partie de cet article faisait le point sur les réactions indésirables de cokage dans les réacteurs de vapocraquage : dans le cadre de ce procédé, la formation de coke est un phénomène complexe du fait du nombre important de paramètres mis en jeu. Toutefois, pour ce procédé, la réaction de formation du coke à la paroi des réacteurs est une réaction secondaire qui n'affecte pas les rendements de vapocraquage. Ceci est complètement différent dans le cas de la pyrolyse thermique du méthane, procédé pour lequel le coke est un produit principal et indésirable de la réaction. La seconde partie de cet article est consacrée plus particulièrement à la formation du coke, lors de la pyrolyse du méthane et présente les principaux résultats expérimentaux décrits dans la littérature. Parmi les différents montages expérimentaux utilisés pour mesurer le dépôt de coke, il est mentionné, à partir des travaux de la littérature, les 2 techniques suivantes : - la technique de la paroi chaude, - la technique du fil chaud. Pour la première technique, les montages exp

  5. Double layer formation in the expanding region of an inductively coupled electronegative plasma

    CERN Document Server

    Plihon, N; Chabert, P

    2015-01-01

    Double-layers (DLs) were observed in the expanding region of an inductively coupled plasma with $\\text{Ar}/\\text{SF}\\_6$ gas mixtures. No DL was observed in pure argon or $\\text{SF}\\_6$ fractions below few percent. They exist over a wide range of power and pressure although they are only stable for a small window of electronegativity (typically between 8\\% and 13\\% of $\\text{SF}\\_6$ at 1mTorr), becoming unstable at higher electronegativity. They seem to be formed at the boundary between the source tube and the diffusion chamber and act as an internal boundary (the amplitude being roughly 1.5$\\frac{kT\\_e}{e}$)between a high electron density, high electron temperature, low electronegativity plasma upstream (in the source), and a low electron density, low electron temperature, high electronegativity plasma downstream.

  6. Up and down translocation events and electric double-layer formation inside solid-state nanopores.

    Science.gov (United States)

    Zanjani, Mehdi B; Engelke, Rebecca E; Lukes, Jennifer R; Meunier, Vincent; Drndić, Marija

    2015-08-01

    We present a theoretical study of nanorod translocation events through solid-state nanopores of different sizes which result in positive or negative ion conductance changes. Using theoretical models, we show that positive conductance changes or up events happen for nanopore diameters smaller than a transition diameter dt, and negative conductance changes or down events occur for nanopore diameters larger than dt. We investigate the underlying physics of such translocation phenomena and describe the significance of the electric double-layer effects for nanopores with small diameters. Furthermore, for nanopores with large diameters, it is shown that a geometric model, formulated based on the nanoparticle blockade inside the nanopore, provides a straightforward and reasonably accurate prediction of ion conductance change. Based on this concept, we also implement a method to distinguish and detect nanorods of different sizes by focusing solely on the sign and not the exact value of the conductance change.

  7. Barrier layer in the northeastern South China Sea and its formation mechanism

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Robust evidence for the barrier layer (BL) in the northeastern South China Sea (SCS) (16°-25°N, 112°-124°E) is presented. The occurrence rate of the BL peaks in the autumn (45.7%) and then the summer (31.1%) and the spring (23.3%), sequently. It is estimated that the annual occurrence rate of the BL reaches about 40.0% in the central northeastern SCS (18°-22°N, 112°-120°E) and the Luzon Strait. Stratification-formed (Rain-formed) mechanism is the major factor responsible for the occurrence of the BL in the northeastern SCS in the spring (the summer and autumn), respectively. The rainfall observation from TRMM provides reliable evidence for the latter.

  8. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  9. Formation of Silver Nanoplates Layer on Amino Group Grafted Silica Coatings

    Directory of Open Access Journals (Sweden)

    Jurgis PILIPAVICIUS

    2016-05-01

    Full Text Available In this study the self-arrangement of Ag nanoplates on (3-Aminopropyltriethoxysilane (APTES silanized silica coatings was investigated. Silica coatings were made by sol-gel method and silanized in two different ways. The first one includes silanization in acidic 2-propanol solution, the other one – in dry toluene. Coatings were silanized by using different amounts of APTES in case of silanization in 2-propanol. Silver nanoplates layer of functionalized silica coatings was obtained via self-assembly. Coatings were investigated by atomic force microscopy (AFM, water contact angle measurements (CA, FT-IR analysis, and scanning electron microscopy (SEM. Research showed that dense Ag nanoplates arrangement occurs when there is a high amount of amino groups on the surface.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8405

  10. Soil surface organic layers in Arctic Alaska: Spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-06-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500-700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  11. Soil surface organic layers in Arctic Alaska: spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-01-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500–700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  12. Experience-driven formation of parts-based representations in a model of layered visual memory

    Directory of Open Access Journals (Sweden)

    Jenia Jitsev

    2009-09-01

    Full Text Available Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character modulated by an oscillatory rhythm. These neural mechanisms lay down the basis for cooperation and competition between the distributed units and their synaptic connections. Choosing human face recognition as a test task, we show that, under the condition of open-ended, unsupervised incremental learning, the system is able to form memory traces for individual faces in a parts-based fashion. On a lower memory layer the synaptic structure is developed to represent local facial features and their interrelations, while the identities of different persons are captured explicitly on a higher layer. An additional property of the resulting representations is the sparseness of both the activity during the recall and the synaptic patterns comprising the memory traces.

  13. Formation of palladium nanofilms using electrochemical atomic layer deposition (E-ALD) with chloride complexation.

    Science.gov (United States)

    Sheridan, Leah B; Gebregziabiher, Daniel K; Stickney, John L; Robinson, David B

    2013-02-05

    Pd thin films were formed by electrochemical atomic layer deposition (E-ALD) using surface-limited redox replacement (SLRR) of Cu underpotential deposits (UPD) on polycrystalline Au substrates. An automated electrochemical flow deposition system was used to deposit Pd atomic layers using a sequence of steps referred to as a cycle. The initial step was Cu UPD, followed by its exchange for Pd ions at open circuit, and finishing with a blank rinse to complete the cycle. Deposits were formed with up to 75 cycles and displayed proportional deposit thicknesses. Previous reports by this group indicated excess Pd deposition at the flow cell ingress, from electron probe microanalysis (EPMA). Those results suggested that the SLRR mechanism did not involve direct transfer between a Cu(UPD) atom and a Pd(2+) ion that would take its position. Instead, it was proposed that electrons are transferred through the metallic surface to reduce Pd(2+) ions near the surface where their activity is highest. It was proposed that if the cell was filled completely before a significant fraction of the Cu(UPD) atoms had been oxidized then the deposit would be homogeneous. Previous work with EDTA indicated that the hypothesis had merit, but it proved to be very sensitive to the EDTA concentration. In the present study, chloride was used to complex Pd(2+) ions, forming PdCl(4)(2-), to slow the exchange rate. Both complexing agents led to a decrease in the rate of replacement, producing more homogeneous films. Although the use of EDTA improved the homogeneity, it also decreased the deposit thickness by a factor of 3 compared to the thickness obtained via the use of chloride.

  14. Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se [Department of Chemical Engineering, Stanford University, Stanford, California 94305 and Department of Engineering Sciences, Division of Solid State Electronics, Uppsala University, 75121 Uppsala (Sweden); Grehl, Thomas; Brongersma, Hidde H. [ION-TOF GmbH, Heisenbergstraße 15, 48149 Münster (Germany); Tanskanen, Jukka T.; Mullings, Marja N.; Mackus, Adriaan J. M.; MacIsaac, Callisto; Bent, Stacey Francine, E-mail: sbent@stanford.edu [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States); Yee, Ye Sheng [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Clemens, Bruce M. [Department of Material Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-03-15

    A broad and expanding range of materials can be produced by atomic layer deposition at relatively low temperatures, including both oxides and metals. For many applications of interest, however, it is desirable to grow more tailored and complex materials such as semiconductors with a certain doping, mixed oxides, and metallic alloys. How well such mixed materials can be accomplished with atomic layer deposition requires knowledge of the conditions under which the resulting films will be mixed, solid solutions, or laminated. The growth and lamination of zinc oxide and tin oxide is studied here by means of the extremely surface sensitive technique of low energy ion scattering, combined with bulk composition and thickness determination, and x-ray diffraction. At the low temperatures used for deposition (150 °C), there is little evidence for atomic scale mixing even with the smallest possible bilayer period, and instead a morphology with small ZnO inclusions in a SnO{sub x} matrix is deduced. Postannealing of such laminates above 400 °C however produces a stable surface phase with a 30% increased density. From the surface stoichiometry, this is likely the inverted spinel of zinc stannate, Zn{sub 2}SnO{sub 4}. Annealing to 800 °C results in films containing crystalline Zn{sub 2}SnO{sub 4}, or multilayered films of crystalline ZnO, Zn{sub 2}SnO{sub 4}, and SnO{sub 2} phases, depending on the bilayer period.

  15. Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg(OH)2 layer

    Science.gov (United States)

    Gong, Fubao; Shen, Jun; Gao, Runhua; Xie, Xiong; Luo, Xiong

    2016-03-01

    A novel organic-inorganic Mg(OH)2/silane surface layer has been developed for corrosion protection of AZ31 magnesium alloy. The results of electrochemical impedance spectroscopy (EIS), the immersion tests, Fourier-transform infrared spectroscopy (FTIR) and sellotape tests showed that the Mg(OH)2/silane-based composite surface layer possessed excellent corrosion resistance and very good adhesion due to the formation of Si-O-Mg bond between Mg(OH)2 layer and silane layer. Electrochemical impedance spectroscopy tests results indicated that for the long-term corrosion protection of AZ31 the increase of the curing temperature improved the impedance of the composited layer when the curing temperature was lower than 130 °C. However, the impedance of the composited layer deceased when the curing temperature was more than 130 °C due to the carbonization of the silane layer.

  16. Electrochemistry of metal complexes applications from electroplating to oxide layer formation

    CERN Document Server

    Survila, Arvydas

    2015-01-01

    This book aims to sequentially cover all the major stages of electrochemical processes (mass transport, adsorption, charge transfer), with a special emphasis on their deep interrelation. Starting with general considerations on equilibria in solutions and at interfaces as well as on mass transport, the text acquaints readers with the theory and common experimental practice for studying electrochemical reactions of metals complexes. The core part of the book deals with all important aspects of electroplating, including a systematic discussion of co-deposition of metals and formation of alloys.

  17. Interactions between polycyclic aromatic hydrocarbons in binary mixtures: Effects on gene expression and DNA adduct formation in precision-cut rat liver slices

    NARCIS (Netherlands)

    Staal, Y.C.M.; Pushparajah, D.S.; Herwijnen, M.H.M. van; Gottschalk, R.W.H.; Maas, L.M.; Ioannides, C.; Schooten, F.J. van; Delft, J.H.M. van

    2008-01-01

    Although exposure to polycyclic aromatic hydrocarbons (PAHs) occurs mostly through mixtures, hazard and risk assessment are mostly based on the effects caused by individual compounds. The objective of the current study was to investigate whether interactions between PAHs occur, focusing on gene expr

  18. Substrate selective patterning on lithography defined gold on silica: Effect of end-group functionality on intermolecular layer formation

    Science.gov (United States)

    Bergkvist, Magnus; Niamsiri, Nuttawee; Strickland, Aaron D.; Batt, Carl A.

    2008-06-01

    An increasing number of applications in nanobiotechnology and other areas call for defined regions of different chemical functionality to achieve site-specific attachment while minimizing any unwanted surface interactions. In order to generate spatially defined chemical patterns on planar surfaces, standard nanofabrication methods are typically employed. However, when incorporating biological and chemical molecules into complex nanofabricated structures the micro/nanofabrication methods needed are often incompatible with the standard approaches used to achieve chemical patterning. An alternative strategy is to use substrate selective patterning (SSP) where two different organic molecules each have a specific affinity to a particular substrate material via a surface anchoring group. Here we use imaging ellipsometry, an ideally suited technique for measuring monolayer films on patterned substrates, and infrared spectroscopy to investigate SSP of alkanethiols with hydrophilic/hydrophobic moieties in combination with a methoxypolyethylenoxypropyltrichlorosilane reagent (mPEGTCS) on patterned gold on native silicon oxide substrates. One central aspect of SSP that was investigated was the cross-reactivity between the various substrate specific molecules, which can cause multilayer formation. Results showed that when the mPEGTCS reagent was used subsequently after formation of hydrophilic self-assembled alkanethiol monolayers (SAMs), there was an additional layer build-up of silane. No multilayer formation was observed for a hydrophobic alkanethiol SAM. SSP can be a practical method to effectively create localized functional chemistry on spatially defined nanofabricated devices.

  19. Production from multiple zones of a tar sands formation

    Energy Technology Data Exchange (ETDEWEB)

    Karanikas, John Michael; Vinegar, Harold J

    2013-02-26

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.

  20. Method for reducing formation of electrically resistive layer on ferritic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, James M.

    2017-02-28

    A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.

  1. Experimental study of boundary layers formation by thin film colorimetric interferometry

    Institute of Scientific and Technical Information of China (English)

    MartinHartl; IvanKrupka; MiroslavLiska

    2001-01-01

    Thin film colorimetric interferometry was applied to the preliminary study of boundarylayers formation for a several liquids of known molecular structure that have been previously stud-ied by the force balance method. This technique intended for the study of very thin lubrication filmsdown to a few nanometers in a point contact between a steel ball and a transparent disk combinespowerful film thickness mapping capabilities with high accuracy. Central and minimum film thick-ness as well as film shape in the dependence on rolling speed was studied for hexadecane, oc-tamethylcyclotetrasiloxane (OMCTS) and n-tetradecane. Results are compared with data obtainedfrom surface force apparatus measurements. OMCTS and n-tetradecane were found to formboundary films that result in a considerable enhancement in film thickness at slow speeds.

  2. Cell lineage, axis formation, and the origin of germ layers in the amphipod crustacean Orchestia cavimana.

    Science.gov (United States)

    Wolff, Carsten; Scholtz, Gerhard

    2002-10-01

    Embryos of the amphipod crustacean Orchestia cavimana are examined during cleavage, gastrulation, and segmentation by using in vivo labelling. Single blastomeres of the 8- and 16-cell stages were labelled with DiI to trace cell lineages. Early cleavage follows a distinct pattern and the a/p and d/v body axes are already determined at the 4- and 8-cell stages, respectively. In these stages, the germinal rudiment and the naupliar mesoderm can be traced back to a single blastomere each. In addition, the ectoderm and the postnaupliar mesoderm are separated into right and left components. At the16-cell stage, naupliar ectoderm is divided from the postnaupliar ectoderm, and extraembryonic lineages are separated from postnaupliar mesoderm and endoderm. From our investigation, it is evident that the cleavage pattern and cell lineage of Orchestia cavimana are not of the spiral type. Furthermore, the results of the labelling show many differences to cleavage patterns and cell lineages in other crustaceans, in particular, other Malacostraca. The cleavage and cell lineage patterns of the amphipod Orchestia are certainly derived within Malacostraca, whose ancestral cleavage mode was most likely of the superficial type. On the other hand, Orchestia exhibits a stereotyped cell division pattern during formation and differentiation of the germ band that is typical for malacostracans. Hence, a derived (apomorphic) early cleavage pattern is the ontogenetic basis for an evolutionarily older cell division pattern of advanced developmental stages. O. cavimana offers the possibility to trace the lineages and the fates of cells from early developmental stages up to the formation of segmental structures, including neurogenesis at a level of resolution that is not matched by any other arthropod system.

  3. Formation of a Molecular Wire Using the Chemically Adsorbed Monomolecular Layer Having Pyrrolyl Groups

    Directory of Open Access Journals (Sweden)

    Kazufumi Ogawa

    2011-01-01

    Full Text Available A molecular wire containing polypyrrolyl conjugate bonds has been prepared by a chemical adsorption technique using 1,1,1-trichloro-12-pyrrolyl-1-siladodecane (PNN and an electrooxidative polymerization technique, and the conductivity of the molecular wire without any dopant has been measured by using AFM/STM at room temperature. When sample dimension measured was about 0.3 nm (thickness of the conductive portion in the PNN monomolecular layer ×100 μm (the average width of an electric path ×2 mm (the distance between Pt positive electrode and the AFM tip covered with Au, the conductivity of the polymerized PNN molecular wire at room temperature was larger than 1.6 × 105 S/cm both in an atmosphere and in a vacuum chamber of 10−5 Torr. The activation energy obtained by Arrhenius' plots was almost zero in the temperature range between 320 and 450 K.

  4. Cavity formation and surface modeling of laser milling process under a thin-flowing water layer

    Science.gov (United States)

    Tangwarodomnukun, Viboon

    2016-11-01

    Laser milling process normally involves a number of laser scans over a workpiece to selectively remove the material and then to form cavities with shape and dimensions required. However, this process adversely causes a heat accumulation in work material, which can in turn damage the laser-milled area and vicinity in terms of recast deposition and change of material properties. Laser milling process performing in a thin-flowing water layer is a promising method that can overcome such damage. With the use of this technique, water can flush away the cut debris and at the same time cool the workpiece during the ablation. To understand the potential of this technique for milling application, the effects of process parameters on cavity dimensions and surface roughness were experimentally examined in this study. Titanium sheet was used as a workpiece to be milled by a nanosecond pulse laser under different water flow velocities. A smooth and uniform cut feature can be obtained when the metal was ablated under the high laser pulse frequency and high water flow velocity. Furthermore, a surface model based on the energy balance was developed in this study to predict the cavity profile and surface roughness. By comparing to the experiments, the predicted profiles had a good agreement with the measured ones.

  5. Protoporphyrin IX formation and photobleaching in different layers of normal human skin

    DEFF Research Database (Denmark)

    Togsverd-Bo, Katrine; Idorn, Luise W; Philipsen, Peter A

    2012-01-01

    human skin was tape-stripped and incubated with 20% methylaminolevulinate (MAL) or 20% hexylaminolevulinate (HAL) for 3 h. Fluorescence microscopy quantified PpIX accumulation in epidermis, superficial, mid and deep dermis, down to 2 mm. PpIX photobleaching by light-emitting diode (LED, 632 nm, 18......Topical photodynamic therapy (PDT) is used for various skin disorders, and selective targeting of specific skin structures is desirable. The objective was to assess accumulation of PpIX fluorescence and photobleaching within skin layers using different photosensitizers and light sources. Normal...... and 37 J/cm(2)), intense pulsed light (IPL, 500-650 nm, 36 and 72 J/cm(2)) and long-pulsed dye laser (LPDL, 595 nm, 7.5 and 15 J/cm(2)) was measured using fluorescence photography and microscopy. We found higher PpIX fluorescence intensities in epidermis and superficial dermis in HAL-incubated skin than...

  6. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    Science.gov (United States)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  7. Mechanism of Thin Layers Graphite Formation by 13C Implantation and Annealing

    Directory of Open Access Journals (Sweden)

    Gaelle Gutierrez

    2014-04-01

    Full Text Available The mechanism of thin layers graphite (TLG synthesis on a polycrystalline nickel film deposited on SiO2 (300 nm thick/Si(100 has been investigated by 13C implantation of four equivalent graphene monolayers and annealing at moderate temperatures (450–600 °C. During this process, the implanted 13C segregates to the surface. Nuclear Reaction Analyses (NRA are used for the first time in the topic of graphene synthesis to separate the isotopes and to determine the 12C and 13C concentrations at each step. Indeed, a significant part of carbon in the TLG also comes from residual 12C carbon absorbed into the metallic matrix. Raman spectroscopy and imaging are used to determine the main location of each carbon isotope in the TLG. The Raman mappings especially emphasize the role of 12C previously present at the surface that first diffuses along grain boundaries. They play the role of nucleation precursors. Around them the implanted 13C or a mixture of bulk 12C–13C aggregate and further precipitate into graphene-like fragments. Graphenization is effective at around 600 °C. These results point out the importance of controlling carbon incorporation, as well as the importance of preparing a uniform nickel surface, in order to avoid heterogeneous nucleation.

  8. Biexciton formation and exciton coherent coupling in layered GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Dey, P.; Paul, J.; Stevens, C. E.; Glikin, N.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Moody, G. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colarado 80305 (United States); Kovalyuk, Z. D.; Kudrynskyi, Z. R. [Chernivtsi Department, Frantsevich Institute of Material Sciences Problems, The National Academy of Sciences of Ukraine, 5, Iryna Vilde St., 58001 Chernivtsi (Ukraine); Romero, A. H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Cantarero, A. [Materials Science Institute, University of Valencia, P.O. Box 2205, 46071 Valencia (Spain); Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States)

    2015-06-07

    Nonlinear two-dimensional Fourier transform (2DFT) and linear absorption spectroscopy are used to study the electronic structure and optical properties of excitons in the layered semiconductor GaSe. At the 1s exciton resonance, two peaks are identified in the absorption spectra, which are assigned to splitting of the exciton ground state into the triplet and singlet states. 2DFT spectra acquired for co-linear polarization of the excitation pulses feature an additional peak originating from coherent energy transfer between the singlet and triplet. At cross-linear polarization of the excitation pulses, the 2DFT spectra expose a new peak likely originating from bound biexcitons. The polarization dependent 2DFT spectra are well reproduced by simulations using the optical Bloch equations for a four level system, where many-body effects are included phenomenologically. Although biexciton effects are thought to be strong in this material, only moderate contributions from bound biexciton creation can be observed. The biexciton binding energy of ∼2 meV was estimated from the separation of the peaks in the 2DFT spectra. Temperature dependent absorption and 2DFT measurements, combined with “ab initio” theoretical calculations of the phonon spectra, indicate strong interaction with the A{sub 1}{sup ′} phonon mode. Excitation density dependent 2DFT measurements reveal excitation induced dephasing and provide a lower limit for the homogeneous linewidth of the excitons in the present GaSe crystal.

  9. The Origin of the Terra Meridiani Sediments: Volatile Transport and the Formation of Sulfate Bearing Layered Deposits on Mars

    Science.gov (United States)

    Niles, P.B.

    2008-01-01

    The chemistry, sedimentology, and geology of the Meridiani sedimentary deposits are best explained by eolian reworking of the sublimation residue of a large scale ice/dust deposit. This large ice deposit was located in close proximity to Terra Meridiani and incorporated large amounts of dust, sand, and SO2 aerosols generated by impacts and volcanism during early martian history. Sulfate formation and chemical weathering of the initial igneous material is hypothesized to have occurred inside of the ice when the darker mineral grains were heated by solar radiant energy. This created conditions in which small films of liquid water were created in and around the mineral grains. This water dissolved the SO2 and reacted with the mineral grains forming an acidic environment under low water/rock conditions. Subsequent sublimation of this ice deposit left behind large amounts of weathered sublimation residue which became the source material for the eolian process that deposited the Terra Meridiani deposit. The following features of the Meridiani sediments are best explained by this model: The large scale of the deposit, its mineralogic similarity across large distances, the cation-conservative nature of the weathering processes, the presence of acidic groundwaters on a basaltic planet, the accumulation of a thick sedimentary sequence outside of a topographic basin, and the low water/rock ratio needed to explain the presence of very soluble minerals and elements in the deposit. Remote sensing studies have linked the Meridiani deposits to a number of other martian surface features through mineralogic similarities, geomorphic similarities, and regional associations. These include layered deposits in Arabia Terra, interior layered deposits in the Valles Marineris system, southern Elysium/Aeolis, Amazonis Planitia, and the Hellas basin, Aram Chaos, Aureum Chaos, and Ioni Chaos. The common properties shared by these deposits suggest that all of these deposits share a common

  10. Tropopause inversion layer formation and stratosphere-troposphere exchange during idealized baroclinic wave life cycle experiments

    Science.gov (United States)

    Kunkel, Daniel; Wirth, Volkmar; Hoor, Peter

    2014-05-01

    Recent simulations of baroclinic wave life cycles revealed that the tropopause inversion layer (TIL), commonly situated just above the thermal tropopause, is evident in such experiments and emerges after the onset of wave breaking. Furthermore, bidirectional stratosphere-troposphere exchange (STE) occurs during this non-linear stage of the wave evolution and might be affected by the appearance of the TIL. We study the evolution and the impact of the TIL on STE by using the COSMO model in an idealized mid-latitude channel geometry configuration without physical sub-grid scale parameterizations. We initialize the model with a geostrophically balanced upper level jet stream which is disturbed by an anomaly of potential vorticity to trigger the evolution of the baroclinic waves. Moreover, we use passive tracers of tropospheric or stratospheric origin to identify regions of potential STE. Our results show that the static stability is low in regions of stratosphere to troposphere exchange (STT), while it is high in regions dominated by exchange in the opposite direction (TST). Furthermore, inertia gravity waves, originating from regions with strong ageostrophic wind components, modulate the static stability as well as the vertical shear of the horizontal wind near and above the tropopause. While propagating away from their source, the inertia gravity waves lead to large values of the squared Brunt Vaisala frequency in regions which are simultaneously characterized by low bulk Richardson numbers. Thus, these regions are statically stable and turbulent at the same time and might be crucial for TST, thereby explaining tropospheric mixing ratio changes of e.g. CO across the tropopause which commonly change from tropospheric to stratospheric values a few hundred meters above the local thermal tropopause.

  11. Potential contributions of extremophiles to hydrocarbon resources in marine extreme environments:A review

    Institute of Scientific and Technical Information of China (English)

    WANG Jiasheng; WANG Yongbiao; LI Qing

    2007-01-01

    To understand the potential mechanism of marine extremophiles participating in the formation and the evolution of hydrocarbon resources in marine extreme environments,some typical kinds of extremophiles and their distributions in marine hydrothermal and cold vents are discussed and evaluated respectively.The potential relationship between extremophile activities and hydrocarbon resources in marine extreme environments are then discussed in details.It could be now preliminary concluded that archaea and bacteria are the two main kinds of extremophiles in marine extreme environments.The dominating microbe communities in hydrothermal vents are heterotrophic zymogens,sulfate reducers and methanogens,while the ANME-2 group(Methanosarcinales) surrounded by sulfate-reducing bacteria and ANME-1 group dominate in cold vents.Marine extremophiles would be able to use CH,and H2S to synthesize energy for metabolism and to support food chains for other unique macrobiota nearby,which together present a high abundance but a low diversity with distinct characteristics of horizontal and vertical distributions.Marine extremophiles might play an important role either directly or indirectly in the processes of hydrocarbon formation and subsequent alteration,and could indicate the evolution of hydrocarbon resources in marine extreme environments.Our research thus has a great significance both in theoretical approach of potential hydrocarbon resources formed by marine extremophile activities and in practical exploration of the potential hydrocarbonsource sedimentary layers formed in the Earth history or the potential strata in southern China.

  12. SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system

    Science.gov (United States)

    Joung, Yeun-Ho; Kang, Hyun Il; Kim, Jung Hyun; Lee, Hae-Seok; Lee, Jaehyung; Choi, Won Seok

    2012-01-01

    In this paper, we describe a method of amorphous silicon carbide film formation for a solar cell passivation layer. The film was deposited on p-type silicon (100) and glass substrates by an RF magnetron co-sputtering system using a Si target and a C target at a room-temperature condition. Several different SiC [Si1-xCx] film compositions were achieved by controlling the Si target power with a fixed C target power at 150 W. Then, structural, optical, and electrical properties of the Si1-xCx films were studied. The structural properties were investigated by transmission electron microscopy and secondary ion mass spectrometry. The optical properties were achieved by UV-visible spectroscopy and ellipsometry. The performance of Si1-xCx passivation was explored by carrier lifetime measurement.

  13. Exploring Pore Formation of Atomic Layer Deposited Overlayers by In Situ Small- and Wide-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tao; Karwal, Saurabh; Aoun, Bachir; Zhao, Haiyan; Ren, Yang; Canlas, Christian; Elam, Jeffrey W.; Winans, Randall E.

    2016-10-11

    In this work, we explore the pore structure of overcoated materials by in situ synchrotron small- and wide-angle X-ray scattering (SAXS)/(WAXS). Thin films of aluminum oxide (Al2O3) and titanium dioxide (TiO2) with thicknesses of 4.9 and 2.5 nm, respectively, are prepared by atomic layer deposition (ALD) on non-porous nanoparticles. In situ X-ray measurements reveal that porosity is induced in the ALD films by annealing the samples at high temperature. Moreover, this pore formation can be attributed to densification resulting from an amorphous to crystalline phase transition of the ALD films as confirmed by high resolution X-ray diffraction (XRD) and pair distribution function (PDF). Simultaneous SAXS/WAXS results not only show that the porosity is formed by this phase transition but also that the pore size increases with temperature.

  14. Parallel heater system for subsurface formations

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  15. Effect of temperature on deposition layer formation in HBr/N2/fluorocarbon-based plasma

    Science.gov (United States)

    Iwase, Taku; Yokogawa, Kenetsu; Mori, Masahito

    2017-06-01

    The effects of wafer temperature on etching rate and surface composition were investigated to clarify the surface reaction mechanism under HBr/N2/fluorocarbon-based gas plasma for developing a process for three-dimensional NAND flash devices. The etching rates of both polycrystalline silicon (poly-Si) and SiO2 were found to increase at a wafer temperature of 20 °C as compared with those at 60 °C. Comparing the gas combination of fluorocarbon/N2 and HBr/N2 mixtures, the temperature dependence of SiO2 etching rates was considered to relevant to the sticking probability of fluorocarbon polymers. To determine the cause of the temperature dependence of the poly-Si etching rate, surface composition was evaluated by thermal-desorption-spectroscopy and laser-sputtered-neutral-mass-spectrometry analyses. Ammonium bromide was confirmed in the deposition film at a wafer temperature of 20 °C. The observed increase in poly-Si etching rate at lower temperatures was possibly caused by increased amounts of nitrogen, hydrogen, and bromine fixed to the surface with the formation of ammonium bromide.

  16. 鄂尔多斯盆地富县—正宁地区延长组油气成藏期次%Classification of hydrocarbon accumulation phases of the Yanchang Formation in the Fuxian-Zhengning area, Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    梁宇; 任战利; 史政; 赵筱燕; 于强; 吴晓青

    2011-01-01

    鄂尔多斯盆地富县—正宁地区延长组砂岩储层主要成岩作用有压实作用、胶结作用、溶蚀作用和裂隙作用,成岩自生矿物以绿泥石、自生石英和方解石为主.根据油气包裹体寄主成岩矿物的形成时间序列,识别出两期油气包裹体:第1期油气包裹体主要分布在石英、长石粒内愈合的、未切穿次生加大边的微裂隙及石英次生加大边内侧;第2期油气包裹体分布在晚期微裂隙和晚期亮晶方解石胶结物中.油气包裹体均一温度分布呈双峰型:早期峰值温度为110~120℃;晚期峰值温度为140~150℃.对油气包裹体均一温度、盐度、密度分析表明,研究区延长组油气为“一期两幕”成藏,且具有“边致密,边成藏”的特点.结合研究区延长组热演化史及储层伊利石K-Ar同位素定年结果研究表明,研究区主要油气成藏期为早白垩世(距今95~120Ma).%The main diagenesis of the Yanchang Formation sandstone reservoirs in the Fuxian-Zhengning area, Ordos Basin, includes compaction, cementation, corrosion and fracturation, and diagenetic authigenic minerals in these reservoirs are dominated by chlorite, authigenetic quartz and calcite. Two phases of hydrocarbon inclusions have been identified according to the time sequence of the formation of host diagenetic minerals, the earlier one composed of mostly brine inclusions that contain gaseous or liquid hydrocarbons either occurs along healed microfractures wrapped up by secondary growth edges of quartz or feldspar, or is trapped at the bottom of secondary growth edges of quartz or feldspar, while the later one mostly consisting of gas-liquid or liquid hydrocarbon inclusions occurs along the late-formed microfractures or in sparry calcite cements. Homogenization temperatures measured from brine inclusions associated with hydrocarbon ones show a bimodal distribution in the ranges with 110~120'C and 140~150'C as peak temperatures

  17. Effects of outer membrane vesicle formation, surface-layer production and nanopod development on the metabolism of phenanthrene by Delftia acidovorans Cs1-4.

    Directory of Open Access Journals (Sweden)

    Ameesha Shetty

    Full Text Available Nanopods are extracellular structures arising from the convergence of two widely distributed bacterial characteristics: production of outer membrane vesicles (OMV and formation of surface layers (S-layers. Nanopod production is driven by OMV formation, and in Delftia acidovorans Cs1-4 growth on phenanthrene induces OMV/nanopod formation. While OMV production has been associated with many functions, particularly with pathogens, linkage to biodegradation has been limited to a membrane stress response to lipophilic compounds. The objectives of this study were to determine: 1. Whether induction of nanopod formation was linked to phenanthrene metabolism or a non-specific membrane stress response, and 2. The relative importance of OMV/nanopod formation vs. formation of the S-layer alone to phenanthrene utilization. Membrane stress response was investigated by quantifying nanopod formation following exposure to compounds that exceeded phenanthrene in membrane stress-inducing potential. Naphthalene did not induce nanopod formation, and toluene was a weak inducer compared to phenanthrene (two- vs. six-fold increase, respectively. Induction of nanopod formation by growth on phenanthrene was therefore linked to phenanthrene metabolism and not a membrane stress response. Impacts on phenanthrene biodegradation of OMV/nanopod production vs. S-layer formation were assessed with D. acidovorans Cs1-4 mutants deficient in S-layer formation or OMV/nanopod production. Both mutants had impaired growth on phenanthrene, but the loss of OMV/nanopod production was more significant than loss of the S-layer. The S-layer of D. acidovorans Cs1-4 did not affect phenanthrene uptake, and its primary role in phenanthrene biodegradation process appeared to be enabling nanopod development. Nanopods appeared to benefit phenanthrene biodegradation by enhancing cellular retention of metabolites. Collectively, these studies established that nanopod/OMV formation was an essential

  18. Effects of outer membrane vesicle formation, surface-layer production and nanopod development on the metabolism of phenanthrene by Delftia acidovorans Cs1-4.

    Science.gov (United States)

    Shetty, Ameesha; Hickey, William J

    2014-01-01

    Nanopods are extracellular structures arising from the convergence of two widely distributed bacterial characteristics: production of outer membrane vesicles (OMV) and formation of surface layers (S-layers). Nanopod production is driven by OMV formation, and in Delftia acidovorans Cs1-4 growth on phenanthrene induces OMV/nanopod formation. While OMV production has been associated with many functions, particularly with pathogens, linkage to biodegradation has been limited to a membrane stress response to lipophilic compounds. The objectives of this study were to determine: 1.) Whether induction of nanopod formation was linked to phenanthrene metabolism or a non-specific membrane stress response, and 2.) The relative importance of OMV/nanopod formation vs. formation of the S-layer alone to phenanthrene utilization. Membrane stress response was investigated by quantifying nanopod formation following exposure to compounds that exceeded phenanthrene in membrane stress-inducing potential. Naphthalene did not induce nanopod formation, and toluene was a weak inducer compared to phenanthrene (two- vs. six-fold increase, respectively). Induction of nanopod formation by growth on phenanthrene was therefore linked to phenanthrene metabolism and not a membrane stress response. Impacts on phenanthrene biodegradation of OMV/nanopod production vs. S-layer formation were assessed with D. acidovorans Cs1-4 mutants deficient in S-layer formation or OMV/nanopod production. Both mutants had impaired growth on phenanthrene, but the loss of OMV/nanopod production was more significant than loss of the S-layer. The S-layer of D. acidovorans Cs1-4 did not affect phenanthrene uptake, and its primary role in phenanthrene biodegradation process appeared to be enabling nanopod development. Nanopods appeared to benefit phenanthrene biodegradation by enhancing cellular retention of metabolites. Collectively, these studies established that nanopod/OMV formation was an essential characteristic of

  19. Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities

    Energy Technology Data Exchange (ETDEWEB)

    Karanikas, John Michael; Vinegar, Harold J

    2014-03-04

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. A viscosity of one or more zones of the hydrocarbon layer is assessed. The heating rates in the zones are varied based on the assessed viscosities. The heating rate in a first zone of the formation is greater than the heating rate in a second zone of the formation if the viscosity in the first zone is greater than the viscosity in the second zone. Fluids are produced from the formation through the production wells.

  20. Research of influence of gas nitriding duration on formation of diffusion layer of steel 20Kh2N4A

    Directory of Open Access Journals (Sweden)

    Kateryna O. Kostyk

    2015-06-01

    Full Text Available The research of the gas nitriding process, which allows to obtain a high surface quality of steel parts and has a wide application in mass production, is relevant. Aim of the research is to study the influence of gas nitriding modes on the structure and properties of alloy steel. The research material in this work is steel 20Kh2N4A. Nitriding of the samples is carried out in a shaft furnace at the temperature of 510…530 °C during 35, 40, 46 and 48 h. It is found that the alloy steel 20Kh2N4A preliminary heat treatment before nitriding provides the hardness of products core to 279...321 HV due to the formation of perlite-sorta structure with carbides of alloying elements. The results show that increasing the duration of nitriding from 35 to 48 hours at 510…530 °С increases the depth of nitrided layer from 0,35 to 0,55 mm with surface hardness up to 648 MPa at the maximum depth of the layer. The results of this research can be used in industry and research works.

  1. Heuristic Analysis Model of Nitrided Layers' Formation Consisting of the Image Processing and Analysis and Elements of Artificial Intelligence.

    Science.gov (United States)

    Wójcicki, Tomasz; Nowicki, Michał

    2016-04-01

    The article presents a selected area of research and development concerning the methods of material analysis based on the automatic image recognition of the investigated metallographic sections. The objectives of the analyses of the materials for gas nitriding technology are described. The methods of the preparation of nitrided layers, the steps of the process and the construction and operation of devices for gas nitriding are given. We discuss the possibility of using the methods of digital images processing in the analysis of the materials, as well as their essential task groups: improving the quality of the images, segmentation, morphological transformations and image recognition. The developed analysis model of the nitrided layers formation, covering image processing and analysis techniques, as well as selected methods of artificial intelligence are presented. The model is divided into stages, which are formalized in order to better reproduce their actions. The validation of the presented method is performed. The advantages and limitations of the developed solution, as well as the possibilities of its practical use, are listed.

  2. 鄂尔多斯盆地延长组下组合油气来源及成藏模式%Hydrocarbon origin and reservoir forming model of the Lower Yanchang Formation, Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    李相博; 刘显阳; 周世新; 刘化清; 陈启林; 王菁; 廖建波; 黄军平

    2012-01-01

    通过生物标志化合物对比、流体包裹体分析及盆地模拟研究,对鄂尔多斯盆地延长组长9与长10油层组的油源、成藏期次及成藏模式进行了探讨.陇东与姬塬地区长9油层组的原油分为2种类型,第Ⅰ类来源于长7烃源岩,第Ⅱ类来源于长9烃源岩;陕北地区长10油层组的原油主要来源于长9烃源岩.陇东与姬塬地区长9油藏均发生过2期油气充注,但前者在第1期(中侏罗统直罗组沉积期)就达到了油气充注的高峰期,而后者在第2期(下白垩统志丹组沉积期)才达到油气充注高峰期;陕北长10油层组也存在2期成藏,但2期油气呈连续充注,大致从中侏罗统直罗组沉积早期一直持续到下白垩统志丹组沉积中后期.长9与长10油藏有“上生下储”、“侧生旁储”及“自生自储”3种成藏模式.图10参22%According to the comparison of biomarkers in source rocks and crude oil, fluid inclusion analysis, and basin modeling, this paper discusses the oil source, hydrocarbon accumulation period and reservoir forming model of the Chang 9 and Chang 10 oil-bearing formations, Yanchang Formation, Ordos Basin. The crude oil of Chang 9 in the Longdong and Jiyuan areas can be divided into two types, type I crude oil originated from the source rocks within Chang 7, while type II crude oil came from the source rocks within Chang 9. The crude oil of Chang 10 in Northern Shaanxi originated mainly from the source rocks of Chang 9. The Chang 9 oil reservoirs in both the Longdong and Jiyuan areas experienced two periods of hydrocarbon injection. The former reached the peak period of hydrocarbon injection in the first period (the depositional period of Middle Jurassic Zhiluo Formation), while the latter in the second period (the depositional period of Lower Cretaceous Zhidan Formation). There are two periods of continuous hydrocarbon injection in Chang 10 of Northern Shaanxi, generally from the early depositional period of

  3. Reaction of niobium and tantalum neutral clusters with low pressure, unsaturated hydrocarbons in a pickup cell: From dehydrogenation to Met-Car formation

    Science.gov (United States)

    He, S.-G.; Xie, Y.; Dong, F.; Bernstein, E. R.

    2006-10-01

    Neutral niobium and tantalum clusters (Nbn and Tan) are generated by laser ablation and supersonic expansion into a vacuum and are reacted in a pickup cell with various low pressure (˜1mTorr) unsaturated hydrocarbons (acetylene, ethylene, propylene, 1-butene, 1,3-butadiene, benzene, and toluene) under nearly single collision conditions. The bare metal clusters and their reaction products are ionized by a 193nm laser and detected by a time of flight mass spectrometer. Partially and fully dehydrogenated products are observed for small (n⩽m) and large (n⩾m) neutral metal clusters, respectively, with m ranging from 2 to 5 depending on the particular hydrocarbon. In addition to primary, single collision products, sequential addition products that are usually fully dehydrogenated are also observed. With toluene used as the reactant gas, carbon loss products are observed, among which Nb8C12 and Ta8C12 are particularly abundant, indicating that the Met-Car molecule M8C12 can be formed from the neutral metal cluster upon two collisions with toluene molecules. The dehydrogenation results for low pressure reactions are compared with those available from previous studies employing flow tube (high pressure) reactors. Low pressure and high pressure cluster ion reactions are also compared with the present neutral metal cluster reactions. Reactions of unsaturated hydrocarbons and metal surfaces are discussed in terms of the present neutral cluster results.

  4. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  5. A modified microbial adhesion to hydrocarbons assay to account for the presence of hydrocarbon droplets.

    Science.gov (United States)

    Zoueki, Caroline Warne; Tufenkji, Nathalie; Ghoshal, Subhasis

    2010-04-15

    The microbial adhesion to hydrocarbons (MATH) assay has been used widely to characterize microbial cell hydrophobicity and/or the extent of cell adhesion to hydrophobic liquids. The classical MATH assay involves spectrophotometric absorbance measurements of the initial and final cell concentrations in an aqueous cell suspension that has been contacted with a hydrocarbon liquid. In this study, microscopic examination of the aqueous cell suspension after contact with hexadecane or a hexadecane/toluene mixture revealed the presence of hydrocarbon droplets. The hydrocarbon droplets contributed to the absorbance values during spectrophotometric measurements and caused erroneous estimates of cell concentrations and extents of microbial adhesion. A modified MATH assay that avoids such artefacts is proposed here. In this modified assay, microscopic examination of the aqueous suspension and direct cell counts provides cell concentrations that are free of interference from hydrocarbon droplets. The presence of hydrocarbon droplets was noted in MATH assays performed with three bacterial strains, and two different hydrocarbons, at ionic strengths of 0.2 mM and 20 mM and pH 6. In these experiments, the formation of quasi-stable hydrocarbon droplets cannot be attributed to the presence of biosurfactants, or stabilization by biocolloids. The presence of surface potential at the hydrocarbon-water interface that was characterized by electrophoretic mobility of up to -1 and -2 microm cm/Vs, likely caused the formation of the quasi-stable hydrocarbon droplets that provided erroneous results using the classical MATH assay.

  6. Formation Dynamics of CH3NH3PbI3 Perovskite Following Two-Step Layer Deposition.

    Science.gov (United States)

    Patel, Jay B; Milot, Rebecca L; Wright, Adam D; Herz, Laura M; Johnston, Michael B

    2016-01-07

    Hybrid metal-halide perovskites have emerged as a leading class of semiconductors for optoelectronic devices because of their desirable material properties and versatile fabrication methods. However, little is known about the chemical transformations that occur in the initial stages of perovskite crystal formation. Here we follow the real-time formation dynamics of MAPbI3 from a bilayer of lead iodide (PbI2) and methylammonium iodide (MAI) deposited through a two-step thermal evaporation process. By lowering the substrate temperature during deposition, we are able to initially inhibit intermixing of the two layers. We subsequently use infrared and visible light transmission, X-ray diffraction, and photoluminescence lifetime measurements to reveal the room-temperature transformations that occur in vacuum and ambient air, as MAI diffuses into the PbI2 lattice to form MAPbI3. In vacuum, the transformation to MAPbI3 is incomplete as unreacted MAI is retained in the film. However, exposure to moist air allows for conversion of the unreacted MAI to MAPbI3, demonstrating that moisture is essential in making MAI more mobile and thus aiding perovskite crystallization. These dynamic processes are reflected in the observed charge-carrier lifetimes, which strongly fluctuate during periods of large ion migration but steadily increase with improving crystallinity.

  7. The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation.

    Science.gov (United States)

    Acosta, Helena; Iliev, Dobromir; Grahn, Tan Hooi Min; Gouignard, Nadège; Maccarana, Marco; Griesbach, Julia; Herzmann, Svende; Sagha, Mohsen; Climent, Maria; Pera, Edgar M

    2015-03-15

    Germ layer formation and primary axis development rely on Fibroblast growth factors (FGFs). In Xenopus, the secreted serine protease HtrA1 induces mesoderm and posterior trunk/tail structures by facilitating the spread of FGF signals. Here, we show that the serpin Protease nexin-1 (PN1) is transcriptionally activated by FGF signals, suppresses mesoderm and promotes head development in mRNA-injected embryos. An antisense morpholino oligonucleotide against PN1 has the opposite effect and inhibits ectodermal fate. However, ectoderm and anterior head structures can be restored in PN1-depleted embryos when HtrA1 and FGF receptor activities are diminished, indicating that FGF signals negatively regulate their formation. We show that PN1 binds to and inhibits HtrA1, prevents degradation of the proteoglycan Syndecan 4 and restricts paracrine FGF/Erk signaling. Our data suggest that PN1 is a negative-feedback regulator of FGF signaling and has important roles in ectoderm and head development.

  8. Morphology, composition, age and spatial extent of a layered superficial formation covering the plains around Valles Marineris, Mars

    Science.gov (United States)

    Le Deit, L.; Bourgeois, O.; Le Mouélic, S.; Quantin-Nataf, C.; Mège, D.; Sotin, C.; Massé, M.; Sarago, V.

    2008-09-01

    Introduction An extensive light-toned layered formation covers the plains surrounding Valles Marineris on Mars. It is particularly visible south of Ius Chasma and of Melas Chasma [1], southwest of Juventae Chasma [2,3], north of Tithonium Chasma and west of Ganges Chasma. Some deposits of this formation may be enriched in hydrated silicates such as hydrated glasses, chalcedony, opal or other hydrated Si-rich phases according to CRISM data [1]. From an analysis of HRSC, THEMIS, MOC, HiRISE, MOLA PEDR, OMEGA and CRISM data, we discuss the morphology, the composition, the age, the spatial extent and the emplacement processes of these layered deposits (LDs). Here we focus on two regions where the LDs are particularly spectacular: Ganges Chasma and Juventae Chasma. Regional map We have compiled a regional map of the LDs around Valles Marineris (orange in Fig. 1a). In some cases their spatial extent is unclear due to their being covered either by dark material or by dust that appears yellow on IRB color HiRISE images (Fig 1b). Dashed contours on Fig. 1a outline these poorly constrained boundaries, whereas plain contours correspond to regions where the stratigraphic contact between the LDs and the underlying basement is unambiguous. The light-toned LDs are located stratigraphically and topographically above the basaltic basement that constitutes the plains surrounding Valles Marineris. The total thickness of the LDs does not exceed a hundred meters on average. They consist of subparallel light-toned layers of various thicknesses that are apparently interbedded with darker beds (Fig. 1b). This difference in albedo can be due to variations in mineralogical composition, topographic slope, roughness, grain size or state of erosion of the different layers, or to partial covering of certain layers by a dark mantle. Ganges Chasma West of Ganges Chasma, the LDs rest topographically and stratigraphically above the Noachian plains that have been defined as the Npl2 unit [4] (Fig. 1

  9. The Role of Carbides in Formation of Surface Layer on Steel X153CrMoV12 Due to Low-Pressure Nitriding (Vacuum Nitriding)

    Science.gov (United States)

    Januszewicz, B.; Wołowiec, E.; Kula, P.

    2015-05-01

    The mechanism of formation of surface layer on steel X153CrMoV12 in the process of vacuum nitriding (low-pressure nitriding) in a universal vacuum furnace in an atmosphere of dissociated ammonia at a pressure of 30 × 102 Pa (30 mbar) is studied by the methods of light microscopy and measurement of microhardness. The chemical composition of the nitrided layers is determined.

  10. In situ TEM observation of the Boudouard reaction: multi-layered graphene formation from CO on cobalt nanoparticles at atmospheric pressure.

    Science.gov (United States)

    Bremmer, G Marien; Zacharaki, Eirini; Sjåstad, Anja O; Navarro, Violeta; Frenken, Joost W M; Kooyman, Patricia J

    2017-02-09

    Using a MEMS nanoreactor in combination with a specially designed in situ Transmission Electron Microscope (TEM) holder and gas supply system, we imaged the formation of multiple layers of graphene encapsulating a cobalt nanoparticle, at 1 bar CO : N2 (1 : 1) and 500 °C. The cobalt nanoparticle was imaged live in a TEM during the Boudouard reaction. The in situ/operando TEM studies give insight into the behaviour of the catalyst at the nanometer-scale, under industrially relevant conditions. When switching from Fischer-Tropsch syngas conditions (CO : H2 : N2 1 : 2 : 3 at 1 bar) to CO-rich conditions (CO : N2 1 : 1 at 1 bar), we observed the formation of multi-layered graphene on Co nanoparticles at 500 °C. Due to the high temperature, the surface of the Co nanoparticles facilitated the Boudouard reaction, causing CO dissociation and the formation of layers of graphene. After the formation of the first patches of graphene at the surface of the nanoparticle, more and more layers grew over the course of about 40 minutes. In its final state, around 10 layers of carbon capped the nanoparticle. During this process, the carbon shell caused mechanical stress in the nanoparticle, inducing permanent deformation.

  11. Role of crystallographic anisotropy in the formation of surface layers of single NiTi crystals after ion-plasma alloying

    Energy Technology Data Exchange (ETDEWEB)

    Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: llm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, L. L., E-mail: girs@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Shulepov, I. A., E-mail: iashulepov@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.

  12. Formation of stable nanocomposite clays from small peptides reacted with montmorillonite and illite-smectite mixed layer clays

    Science.gov (United States)

    Block, K. A.; Katz, A.; LeBlanc, J.; Peña, S.; Gottlieb, P.

    2015-12-01

    Understanding how organic compounds interact with clay minerals and which functional groups result in the strongest bonds is pivotal to achieving a better understanding of how mineral composition affects the residence time of carbon and nitrogen in soils. In this work, we describe how small peptides derived from tryptone casein digest are dissolved and suspended with clay minerals to examine the nature of OM adsorption to mineral surfaces and the resulting effect on clay mineral structure. XRD analyses indicate that peptides intercalation results in expansion of the d001 spacing of montmorillonite (Mt) and the smectite component of a 70-30 illite-smectite mixed layer clay (I-S) and poorer crystallinity overall as a result of exfoliation of tactoids. Peptide adsorption is concentration-dependent, however, surface adsorption appears to mediate interlayer adsorption in Mt reaching a maximum of 16% of the mass of the organoclay complex, indicating that at a critical concentration, peptide intercalation will supersede surface adsorption resulting in a more stable attachment. In I-S the degree of surface adsorption and intercalation is proportional to concentration, however, surface adsorption is not a priming mechanism for interlayer adsorption. Thermogravimetric analysis of the organoclay complexes determined by TGA coupled to GC-MS indicate that the most prominent product species measured was 1-(1-Trimethylsiloxyethenyl)-3-trimethylsiloxy-benzene, likely from tryptophan monomer decomposition. The compound was detected over a broad temperature range, greater than 300 oC, during pyrolysis and suggests a carbon-silicon covalent bond formed between the peptide and tetrahedral layers in the clay. An additional silicon-bearing VOC detected at lower pyrolysis temperature by GC was N,N-Diethyl-1-(trimethylsilyl)-9,10-didehydroergoline-8-carboxamide, likely derived from a lysine-bearing peptide derivative. We hypothesize that hydrophobic (non-ionic) peptides react with silanol

  13. Physical processes in an electron current layer causing intense plasma heating and formation of x-lines

    Science.gov (United States)

    Singh, Nagendra; Khazanov, Igor; Wells, B. E.

    2015-05-01

    We study the evolution of an electron current layer (ECL) through its several stages by means of three-dimensional particle-in-cell (PIC) simulations with ion to electron mass ratio M/me = 400. An ECL evolves through the following stages: (i) Electrostatic (ES) current-driven instability (CDI) soon after its formation with half width w about 2 electron skin depth (de), (ii) current disruption in the central part of the ECL by trapping of electrons and generation of anomalous resistivity, (iii) electron tearing instability (ETI) with significantly large growth rates in the lower end of the whistler frequency range, (iv) widening of the ECL and modulation of its width by the ETI, (v) gradual heating of electrons by the CDI-driven ES ion modes create the condition that the electrons become hotter than the ions, (vi) despite the reduced electron drift associated with the current disruption by the CDI, the enhanced electron temperature continues to favor a slow growth of the ion waves reaching nonlinear amplitudes, (vii) the nonlinear ion waves undergo modulation and collapse into localized density cavities containing spiky electric fields like in double layers (DLs), (viii) such spiky electric fields are very effective in further rapid heating of both electrons and ions. As predicted by the electron magnetohydrodynamic (EMHD) theories, the ETI growth rate maximizes at wave numbers in the range 0.4 field and w is the evolving half width of the ECL. The developing ETI generates in-plane currents that support out-of-plane magnetic fields around the emerging x-lines. The ETI and the spiky electrostatic structures are accompanied by fluctuations in the magnetic fields near and above the lower-hybrid (ion plasma) frequency, including the whistler frequency range. We compare our results with experimental results and satellite observation.

  14. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. V. Chemical dynamics of n-C4H3 formation from reaction of C(3Pj) with allene, H2CCCH2(X 1A1)

    Science.gov (United States)

    Kaiser, R. I.; Mebel, A. M.; Chang, A. H. H.; Lin, S. H.; Lee, Y. T.

    1999-06-01

    The crossed molecular beams technique was employed to investigate the reaction between ground state carbon atoms, C(3Pj), and allene, H2CCCH2(X 1A1), at two averaged collision energies of 19.6 and 38.8 kJ mol-1. Product angular distributions and time-of-flight spectra of C4H3 were recorded. Forward-convolution fitting of the data yields weakly polarized center-of-mass angular flux distributions isotropic at lower, but forward scattered with respect to the carbon beam at a higher collision energy. The maximum translational energy release and the angular distributions combined with ab initio and RRKM calculations are consistent with the formation of the n-C4H3 radical in its electronic ground state. The channel to the i-C4H3 isomer contributes less than 1.5%. Reaction dynamics inferred from the experimental data indicate that the carbon atom attacks the π-orbitals of the allenic carbon-carbon double bond barrierless via a loose, reactant-like transition state located at the centrifugal barrier. The initially formed cyclopropylidene derivative rotates in a plane almost perpendicular to the total angular momentum vector around its C-axis and undergoes ring opening to triplet butatriene. At higher collision energy, the butatriene complex decomposes within 0.6 ps via hydrogen emission to form the n-C4H3 isomer and atomic hydrogen through an exit transition state located 9.2 kJ mol-1 above the products. The explicit identification of the n-C4H3 radical under single collision represents a further example of a carbon-hydrogen exchange in reactions of ground state carbon atoms with unsaturated hydrocarbons. This channel opens a barrierless route to synthesize extremely reactive hydrocarbon radicals in combustion processes, interstellar chemistry, and hydrocarbon-rich atmospheres of Jupiter, Saturn, Titan, as well as Triton.

  15. Analysis of polynuclear aromatic hydrocarbons in olive oil after solid-phase extraction using a dual-layer sorbent cartridge followed by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Stenerson, Katherine K; Shimelis, Olga; Halpenny, Michael R; Espenschied, Ken; Ye, Maochun M

    2015-05-27

    A simple and easy direct solid-phase extraction (SPE) method was developed for the analysis of polynuclear aromatic hydrocarbons (PAHs) in olive oil using a dual-layer cartridge containing activated Florisil and a mixture of octadecyl (C18)-bonded and zirconia-coated silicas. Undiluted olive oil was applied directly to the SPE cartridge, and the sample was eluted with acetonitrile solvent. Background in the extract was found to be low enough for either gas chromatography-mass spectrometry (GC-MS) or high-performance liquid chromatography with fluorescence detection (HPLC-FLD) analysis. Average recoveries for 16 different PAHs from spiked olive oil replicates were >75%, with intraday precisions of <20% relative standard deviation (% RSD). Detection limits ranged from 0.2 to 1.0 μg/kg and, specifically for the PAHs listed in EC Regulation 835/2011, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, and benzo(a)pyrene, were from 0.3 to 0.7 μg/kg. The method was then applied to determine the PAH content present in commercial samples of refined versus extra-virgin olive oils.

  16. Use of a sub-gasket and soft gas diffusion layer to mitigate mechanical degradation of a hydrocarbon membrane for polymer electrolyte fuel cells in wet-dry cycling

    Science.gov (United States)

    Ishikawa, Hiroshi; Teramoto, Takeshi; Ueyama, Yasuhiro; Sugawara, Yasushi; Sakiyama, Yoko; Kusakabe, Masato; Miyatake, Kenji; Uchida, Makoto

    2016-09-01

    The mechanical durability of hydrocarbon (HC) membranes, used for polymer electrolyte fuel cells (PEFCs), was evaluated by the United States Department of Energy (USDOE) stress protocol involving wet-dry cycling, and the degradation mechanism is discussed. The HC membrane ruptured in the edge region of the membrane electrode assembly (MEA) after 300 cycles due to a concentration of the mechanical stress. Post-test analysis of stress-strain measurements revealed that the membrane mechanical strain decreased more than 80% in the edge region of the MEA and about 50% in the electrode region, compared with the pristine condition. Size exclusion chromatography (SEC) indicated that the average molecular weight of the HC polymer increased slightly, indicating some cross-linking, while the IEC decreased slightly, indicating ionomer degradation. As a result of two types of modifications, a sub-gasket (SG) and a soft gas diffusion layer (GDL) in the MEA edge region, the mechanical stress decreased, and the durability increased, the membrane lasting more than 30,000 cycles without mechanical failure.

  17. Suitability of thin-layer chromatography-flame ionization detection with regard to quantitative characterization of different fossil fuel products. II. Calibration methods concerning quantitative hydrocarbon-group type analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vela, J.; Membrado, L.; Cebolla, V.L.; Ferrando, A.C. [CSIC, Zaragoza (Spain). Inst. de Carboquimica, Dept. de Procesos Quimicos

    1998-10-01

    Time-consuming external standard-based calibration methods are usually performed for hydrocarbon group type analysis (HGTA) of fossil fuels, regardless of the instrumental chromatographic technique. HGTA of a broad variety of coal and petroleum products was performed using a modern thin-layer chromatography-flame ionization detection (TLC-FID) system and a rapid method based on internal normalization. Repeatability, linear intervals, and sample load ranges for quantitative application of this method are given, namely a heavy oil and its derived hydrocracked products, raw and chemically-modified petroleum asphaltenes, a coal-tar pitch, several coal extracts, and coal hydroliquefaction products. Results from external standard calibration and a normalization method (both obtained by TLC-FID) are in agreement, and they are validated using TLC-ultraviolet scanning. The use of the latter demonstrates that TLC-FID can also be applied to products such as coal extracts and hydroliquefaction products, despite these products being more volatile than petroleum asphaltenes or heavy oils. 14 refs., 3 figs., 5 tabs.

  18. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nai; TIAN ZuoJi; LENG YingYing; WANG HuiTong; SONG FuQing; MENG JianHua

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2)branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4)phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hydrocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclusions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydrocarbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram.And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion,saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  19. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  20. Formation of crystalline Zn-Al layered double hydroxide precipitates on γ-alumina: the role of mineral dissolution.

    Science.gov (United States)

    Li, Wei; Livi, Kenneth J T; Xu, Wenqian; Siebecker, Matthew G; Wang, Yujun; Phillips, Brian L; Sparks, Donald L

    2012-11-06

    To better understand the sequestration of toxic metals such as nickel (Ni), zinc (Zn), and cobalt (Co) as layered double hydroxide (LDH) phases in soils, we systematically examined the presence of Al and the role of mineral dissolution during Zn sorption/precipitation on γ-Al(2)O(3) (γ-alumina) at pH 7.5 using extended X-ray absorption fine structure spectroscopy (EXAFS), high-resolution transmission electron microscopy (HR-TEM), synchrotron-radiation powder X-ray diffraction (SR-XRD), and (27)Al solid-state NMR. The EXAFS analysis indicates the formation of Zn-Al LDH precipitates at Zn concentration ≥0.4 mM, and both HR-TEM and SR-XRD reveal that these precipitates are crystalline. These precipitates yield a small shoulder at δ(Al-27) = +12.5 ppm in the (27)Al solid-state NMR spectra, consistent with the mixed octahedral Al/Zn chemical environment in typical Zn-Al LDHs. The NMR analysis provides direct evidence for the existence of Al in the precipitates and the migration from the dissolution of γ-alumina substrate. To further address this issue, we compared the Zn sorption mechanism on a series of Al (hydr)oxides with similar chemical composition but differing dissolubility using EXAFS and TEM. These results suggest that, under the same experimental conditions, Zn-Al LDH precipitates formed on γ-alumina and corundum but not on less soluble minerals such as bayerite, boehmite, and gibbsite, which point outs that substrate mineral surface dissolution plays an important role in the formation of Zn-Al LDH precipitates.

  1. Methane Conversion to C2 Hydrocarbons Using Glow Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    HU Miao; CHEN Jierong

    2007-01-01

    The infrared emission spectra of methane, H', CH and C2 hydrocarbons in natural gas were measured. The process of methane decomposition and C2 hydrocarbons formation was investigated. The experiment showed that the time and conditions of methane decomposition and C2 hydrocarbons formation were different. Methane conversion rate increased with the increase in the current and decrease in the amount of methane. Furthermore, an examination of the reaction mechanisms revealed that free radicals played an important role in the chain reaction.

  2. FISSION-TRACK DATING OF A TEPHRA LAYER IN THE ALAT FORMATION OF THE DANDIERO GROUP (DANAKIL DEPRESSION, ERITREA

    Directory of Open Access Journals (Sweden)

    GIULIO BIGAZZI

    2004-12-01

    Full Text Available Attempts to date a biotite separate from a tephra layer recognized near Buia (Danakil Depression, Eritrea in the liwer part of the Homo remains – bearing Dandiero group (formerly attributed to the Danakil Formation using the 39Ar/40Ar method failed because of xenocrystic contamination. For this reason it was applied the fission-track method on glass, since no other phases datable with this technique were present. The quality of glass was very poor for fission-track dating, because of the small size of grains. In addition, after polishing only few glass shards showed useful surfaces for track counting and only 25 spontaneous tracks were counted. The determined fission-track age - 0.75 +/- 0.16 Ma - is a rejuvenated age due to the presence of a certain amount of annealing of spontaneous tracks. An attempt to apply the plateau method for correcting this apparent age failed. A corrected age of 1.3 +/- 0.3 Ma was computed using the size-correction method. In spite of its low precision, this fission-track age represents a significant result, since it corroborates the attribution to Jaramillo Subchron of the normal magnetozone near the base of which the tephra is located. 

  3. Morphological effects of single-layer graphene oxide in the formation of covalently bonded polypyrrole composites using intermediate diisocyanate chemistry

    Science.gov (United States)

    Whitby, Raymond L. D.; Korobeinyk, Alina; Mikhalovsky, Sergey V.; Fukuda, Takahiro; Maekawa, Toru

    2011-10-01

    Single-layer graphene oxide (SLGO) possesses carboxylic and hydroxyl groups suitable for reactions with aliphatic or aromatic diisocyanate molecules. TEM analysis reveals that aliphatic diisocyanate molecules caused SLGO to scroll into star-like formations, whereas aromatic diisocyanate molecules retained SGLO in a flat-sheet morphology. TGA confirms the stabilisation of the formed urea and urethane groups on SLGO, but the onset of sheet pyrolysis occurs at a lower temperature due to isocyanate reactions with anhydride and epoxide groups embedded in the sheet. Pendant isocyanate groups act as bridging units to facilitate the attachment of pyrrole molecules, which are then used as anchor sites for the covalent polymerisation of pyrrole to polypyrrole (PPy). The use of FeCl3 as the polymerisation catalyst generated both covalent and free PPy, but also iron hydroxide nanoparticles were observed decorating the SLGO surface. When using ammonium persulfate as a catalyst and dodecylbenzenesulfonate as a dopant, free PPy could be removed under treatment with solvents to leave a purely covalent system. Discrete regions of SLGO were observed decorated with nanoparticles of PPy along the edge or across the surface of individual sheets. It was found that the flexibility of the SLGO sheet and the type of diisocyanate used directly affected the electrical resistance of the final composite.

  4. Physical defect formation in few layer graphene-like carbon on metals: influence of temperature, acidity, and chemical functionalization.

    Science.gov (United States)

    Schumacher, Christoph M; Grass, Robert N; Rossier, Michael; Athanassiou, Evagelos K; Stark, Wendelin J

    2012-03-06

    A systematical examination of the chemical stability of cobalt metal nanomagnets with a graphene-like carbon coating is used to study the otherwise rather elusive formation of nanometer-sized physical defects in few layer graphene as a result of acid treatments. We therefore first exposed the core-shell nanomaterial to well-controlled solutions of altering acidity and temperature. The release of cobalt into these solutions over time offered a simple tool to monitor the progress of particle degradation. The results suggested that the oxidative damage of the graphene-like coatings was the rate-limiting step during particle degradation since only fully intact or entirely emptied carbon shells were found after the experiments. If ionic noble metal species were additionally present in the acidic solutions, the noble metal was found to reduce on the surface of specific, defective particles. The altered electrochemical gradients across the carbon shells were however not found to lead to a faster release of cobalt from the particles. The suggested mechanistic insight was further confirmed by the covalent chemical functionalization of the particle surface with chemically inert aryl species, which leads to an additional thickening of the shells. This leads to reduced cobalt release rates as well as slower noble metal reduction rates depending on the augmentation of the shell thickness.

  5. ZnO nano-tree active layer as heavy hydrocarbon sensor: From material synthesis to electrical and gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Mohammad Arab Pour, E-mail: mohammad.arab-pour-yazdi@utbm.fr [Univ. Bourgogne Franche-Comté, UTBM, IRTES EA7274, F-90100 Belfort (France); Martin, Nicolas [FEMTO-ST, Département MN2S, UMR 6174 CNRS, Université de Franche-Comté, ENSMM, UTBM, 15B, Avenue des montboucons, 25030 Besancon Cedex (France); Monsifrot, Eric [SARL DEPHIS, 75 Avenue Oehmichen, Bat. Q, 25460 Etupes (France); Briois, Pascal [Univ. Bourgogne Franche-Comté, UTBM, IRTES EA7274, F-90100 Belfort (France); Billard, Alain [Univ. Bourgogne Franche-Comté, UTBM, IRTES EA7274, F-90100 Belfort (France); LRC CEA-IRTES-LERMPS-UTBM, site de Montbéliard, 90010 Belfort Cedex (France)

    2015-12-01

    ZnO with dense, porous, nano-wire and nano-tree morphologies was successfully synthesized via reactive magnetron sputtering at high pressure (10 Pa) and with different deposition temperatures (RT → 1273 K). The morphological properties of prepared ZnO coatings were revealed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis was performed to determine crystalline structure of the films in relation with their deposition temperature. Hall effect measurements were used to investigate the electrical resistivity, free carrier concentration and mobility in the coatings as a function of their morphology in a temperature range from 293 K to 473 K. Finally, C{sub 12}H{sub 26} dodecane gas sensing properties of ZnO nano-trees were investigated at different temperatures (from 323 K to 566 K) and the results were discussed depending on dodecane concentration. A remarkable response of 39% was observed at 415 K for a low concentration of dodecane in air [1 ppm(v)]. High response to low concentrations of C{sub 12}H{sub 26} as well as good chemical stability of ZnO nano-trees make this kind of structure a potential candidate as sensing layer for practical sensor applications. - Highlights: • ZnO nano-trees were deposited by DC reactive sputtering. • The influence of substrate temperature on films morphologies. • Dodecane sensing property of ZnO nano-trees was measured and high relative response of 39% for detection of 1 ppm(V) dodecane in air at operating temperature of 415 K was obtained.

  6. Layer-block tectonics of Cenozoic basements and formation of intra-plate basins in Nansha micro-plate,southern South China Sea

    Institute of Scientific and Technical Information of China (English)

    LIU Hailing; XIE Guofa; LIN Qiujin; ZHENG Hongbo; LIU Yingchun

    2009-01-01

    Layer-block tectonics (LBT) concept, with the core of pluralistic geodynamic outlook and multi-layer-sliding tectonic outlook, is one of new keys to study 3-dimensional solid and its 4-dimensional evolution history of global tectonic system controlled by global geodynamics system. The LBT concept is applied to study the lithospheric tectonics of the southern South China Sea (SCS). Based on the analysis of about 30 000 km of geophysical and geological data, some layer-blocks in the Nansha micro-plate can be divided as Nansha ultra-crustal layer-block, Zengmu crustal layer-block, Nanwei (Rifleman bank)-Andu (Ardasier bank) and Liyue (Reed bank)-North Palawan crustal layer-blocks, Andu-Bisheng and Liyue-Banyue basemental layer-blocks. The basic characteristics of the basemental layer-blocks have been dicussed, and three intra-plate basin groups are identified. The intra-plate basins within Nansha micro-plate can be divided into three basin groups of Nanwei-Andu, Feixin-Nanhua, and Liyue-North Palawan based on the different geodynamics. In the light of pluralistic geodynamic concept, the upheaving force induced by the mid-crust plastic layer is proposed as the main dynamical force which causes the formation of the intra-plate basins within the Nansha micro-plate. Finally, models of a face-to-face dip-slip-detachment of basemental layer-block and a unilateral dip-slip-detachment of basemental layer-block are put forward for the forming mechanisms of the Nanwei-Andu and Liyue-North Palawan intra-plate basin groups, respectively.

  7. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  8. CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions.

    Science.gov (United States)

    Robin, I C; Aichele, T; Bougerol, C; André, R; Tatarenko, S; Bellet-Amalric, E; Van Daele, B; Van Tendeloo, G

    2007-07-01

    CdSe/ZnSe quantum dot formation is investigated by studying different steps of the growth. To precisely control the critical thickness of CdSe grown on a ZnSe buffer layer, the CdSe self-regulated growth rate in atomic layer epitaxy growth mode is determined by reflection high-energy electron diffraction (RHEED) measurements for a temperature range between 180 and 280 °C. Then, the two-dimensional-three-dimensional (2D-3D) transition of a strained CdSe layer on (001)-ZnSe induced by the use of amorphous selenium is studied. The formation of CdSe islands is found when 3 monolayers (ML) of CdSe are deposited. When only 2.5 ML of CdSe are deposited, another relaxation mechanism is observed, leading to the appearance of strong undulations on the surface. We also studied the evolution of the surface morphology when 2.7 ML are deposited, to study the boundary between those two phenomena. The influence of capping on quantum dot morphology is investigated. It is found that cadmium is redistributed within the layer during capping. Our results show that the cadmium distribution after capping depends on the capping temperature and on the strain of the CdSe layer. Cadmium incorporation after capping is also studied. It is found that the amount of incorporated cadmium depends on the strain of the CdSe layer before capping.

  9. CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions

    Energy Technology Data Exchange (ETDEWEB)

    Robin, I C [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group Laboratoire de Spectrometrie Physique/CNRS UMR5588, Universite J. Fourier, Grenoble, BP87, 38402 St Martin d' Heres (France); Aichele, T [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group Laboratoire de Spectrometrie Physique/CNRS UMR5588, Universite J. Fourier, Grenoble, BP87, 38402 St Martin d' Heres (France); Bougerol, C [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group Laboratoire de Spectrometrie Physique/CNRS UMR5588, Universite J. Fourier, Grenoble, BP87, 38402 St Martin d' Heres (France); Andre, R [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group Laboratoire de Spectrometrie Physique/CNRS UMR5588, Universite J. Fourier, Grenoble, BP87, 38402 St Martin d' Heres (France); Tatarenko, S [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group Laboratoire de Spectrometrie Physique/CNRS UMR5588, Universite J. Fourier, Grenoble, BP87, 38402 St Martin d' Heres (France); Bellet-Amalric, E [CEA-CNRS-UJF ' Nanophysics and Semiconductors' Group, Departement de Recherche Fondamentale sur la Matiere Condensee/SP2M CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Daele, B Van [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Tendeloo, G van [EMAT University of Antwerp (RUCA), Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2007-07-04

    CdSe/ZnSe quantum dot formation is investigated by studying different steps of the growth. To precisely control the critical thickness of CdSe grown on a ZnSe buffer layer, the CdSe self-regulated growth rate in atomic layer epitaxy growth mode is determined by reflection high-energy electron diffraction (RHEED) measurements for a temperature range between 180 and 280 deg. C. Then, the two-dimensional-three-dimensional (2D-3D) transition of a strained CdSe layer on (001)-ZnSe induced by the use of amorphous selenium is studied. The formation of CdSe islands is found when 3 monolayers (ML) of CdSe are deposited. When only 2.5 ML of CdSe are deposited, another relaxation mechanism is observed, leading to the appearance of strong undulations on the surface. We also studied the evolution of the surface morphology when 2.7 ML are deposited, to study the boundary between those two phenomena. The influence of capping on quantum dot morphology is investigated. It is found that cadmium is redistributed within the layer during capping. Our results show that the cadmium distribution after capping depends on the capping temperature and on the strain of the CdSe layer. Cadmium incorporation after capping is also studied. It is found that the amount of incorporated cadmium depends on the strain of the CdSe layer before capping.

  10. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates.

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N; Vajtai, Robert; Yu, Aaron Z; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J A; Ajayan, Pulickel M

    2016-12-13

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  11. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Science.gov (United States)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  12. Optimization of MoSe{sub 2} formation for Cu(In,Ga)Se{sub 2}-based solar cells by using thin superficial molybdenum oxide barrier layers

    Energy Technology Data Exchange (ETDEWEB)

    Duchatelet, A., E-mail: aurelien.duchatelet@edf.fr [Institute of Research and Development on Photovoltaic Energy (IRDEP), UMR 7174 EDF-CNRS-Chimie ParisTech, 6 quai Watier 78401, Chatou Cedex (France); Savidand, G. [Institute of Research and Development on Photovoltaic Energy (IRDEP), UMR 7174 EDF-CNRS-Chimie ParisTech, 6 quai Watier 78401, Chatou Cedex (France); Vannier, R.N. [Unité de Catalyse et Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Bat C7a-BP 90108, F-59652, Villeneuve d' Ascq (France); Lincot, D., E-mail: Daniel-Lincot@chimie-paristech.fr [Institute of Research and Development on Photovoltaic Energy (IRDEP), UMR 7174 EDF-CNRS-Chimie ParisTech, 6 quai Watier 78401, Chatou Cedex (France)

    2013-10-31

    During the formation of Cu(In,Ga)Se{sub 2} thin films deposited on Mo substrate by the selenization of Cu-In-Ga precursor, the reaction of Mo with Se can lead to a high consumption of Mo back contact and the formation of a thick MoSe{sub 2} layer, thus deteriorating the electrical properties of the back contact. In this study, the effect of thermal oxidation pre-treatment on Mo has been investigated to control the growth of MoSe{sub 2}. It has been demonstrated that a thin and covering MoO{sub 2} layer can block the selenization of Mo. Using this effect, a MoSe{sub 2} layer with controlled thickness can be formed by adding a thin and controlled Mo layer on top of an oxidized Mo substrate. In this configuration, only the Mo added on top of oxidized Mo forms MoSe{sub 2} and the whole Mo protected by MoO{sub 2} remains after selenization. Thanks to this Glass/Mo/MoO{sub 2}/Mo substrate configuration and the metallic behavior of MoO{sub 2}, the good electrical properties of the back contact are kept after selenization. - Highlights: • Selenization of Cu-In-Ga on Mo substrate produces thick detrimental MoSe{sub 2} layer. • MoO{sub 2} layer on Mo surface blocks MoSe{sub 2} formation. • Mo layer on top of MoO{sub 2}/Mo substrate enables to control MoSe{sub 2}.

  13. Current Situation and Application in Coal- Generated Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    YANG Guang; XU Hongdong

    2001-01-01

    The characteristics and research methods of terrigenous organic hydrocarbon - generated source rock in coal measures are studied in this thesis. After abundance of organic matters, pyrolysis parameter of rocks and hydrocarbon generated capacity of macerals are basically discussed in coal measures of the Cretaceous Muleng- Chengzihe formation in Suibin depression in Sanjang basin, the hydrocarbon generated grade in coal- generated source rock is ascertained in this depression. At last, we think that it is a main attack prospect in coal - generated hydrocarbons study in the future to research the macerals of coal measures organic source rock and to build a criterion to classify the coal- generated hydrocarbons in Northeast region.

  14. Physical processes in an electron current layer causing intense plasma heating and formation of x-lines

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nagendra; Wells, B. E. [Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States); Khazanov, Igor [CSPAR, University of Alabama, Huntsville, Alabama 35899 (United States)

    2015-05-15

    We study the evolution of an electron current layer (ECL) through its several stages by means of three-dimensional particle-in-cell (PIC) simulations with ion to electron mass ratio M/m{sub e} = 400. An ECL evolves through the following stages: (i) Electrostatic (ES) current-driven instability (CDI) soon after its formation with half width w about 2 electron skin depth (d{sub e}), (ii) current disruption in the central part of the ECL by trapping of electrons and generation of anomalous resistivity, (iii) electron tearing instability (ETI) with significantly large growth rates in the lower end of the whistler frequency range, (iv) widening of the ECL and modulation of its width by the ETI, (v) gradual heating of electrons by the CDI-driven ES ion modes create the condition that the electrons become hotter than the ions, (vi) despite the reduced electron drift associated with the current disruption by the CDI, the enhanced electron temperature continues to favor a slow growth of the ion waves reaching nonlinear amplitudes, (vii) the nonlinear ion waves undergo modulation and collapse into localized density cavities containing spiky electric fields like in double layers (DLs), (viii) such spiky electric fields are very effective in further rapid heating of both electrons and ions. As predicted by the electron magnetohydrodynamic (EMHD) theories, the ETI growth rate maximizes at wave numbers in the range 0.4 < k{sub x}W < 0.8 where k{sub x} is the wave number parallel to the ECL magnetic field and w is the evolving half width of the ECL. The developing ETI generates in-plane currents that support out-of-plane magnetic fields around the emerging x-lines. The ETI and the spiky electrostatic structures are accompanied by fluctuations in the magnetic fields near and above the lower-hybrid (ion plasma) frequency, including the whistler frequency range. We compare our results with experimental results and satellite observation.

  15. On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact

    Science.gov (United States)

    Shin, Byungha; Bojarczuk, Nestor A.; Guha, Supratik

    2013-03-01

    We have studied the temperature dependent kinetics of MoSe2 formation between molybdenum and Cu2ZnSnSe4 (CZTSe) films during annealing in the presence of Se. CZTSe is an emerging light-absorbing material for thin film solar cell applications, and thermal treatment of this layer constitutes a critical part of the device processing. The formation of MoSe2 in this system is modeled using a three step mechanism—diffusion of Se through CZTSe, diffusion of Se through MoSe2, and reaction between Se and Mo. Applying the results of the model to experimental results reveals that the MoSe2 formation is limited by the diffusion of Se through the CZTSe layer.

  16. SPR investigations of the formation of intermediate layer of the immunosensor bioselective element based on the recombinant Staphylococcal protein A

    Directory of Open Access Journals (Sweden)

    Rachkov A. E.

    2015-08-01

    Full Text Available Aim. To investigate the formation of an intermediate layer of the immunosensor bioselective element based on the recombinant protein A from Staphylococcus aureus with cysteine residue (SPA-Cys and its interactions with human IgG using the SPR spectrometer «Plasmon». Methods. The activity of the immune components applied was tested by ELISA. The spectrometry of surface plasmon resonance was used for studying protein immobilization on a gold sensor surface and interactions between the immobilized SPA-Cys and human immunoglobulin. Results. A direct dependence of the sensor response on the concentration of SPA-Cys in the range of 0.2 to 2 µM at its immobilization was demonstrated. The efficiency of blocking nonspecific adsorption sites on the sensor surface with milk proteins and the direct dependence of the sensor response on IgG concentration and surface density of immobilized SPA-Cys were shown. Fitting the experimental data to a Langmuir plot yields a Kd value for SPA-Cys/IgG binding 8.5 ± 0.7× 10-8 M (Ka = 1.2 ± 0.1× 107 M–1. The determined equilibrium binding constant indicates a quite strong interaction and its value is consistent with the literature data. Conclusions. A successful immobilization of SPA-Cys on a gold surface of the SPR spectrometer while preserving its high immunoglobulin-binding activity, selectivity and stability of the sensor response confirms the efficiency of SPA-Cys as an intermediate component for the creation of the immunosensor bioselective elements.

  17. A formation mechanism for concentric ridges in ejecta surrounding impact craters in a layer of fine glass beads

    Science.gov (United States)

    Suzuki, Ayako I.; Nakamura, Akiko M.; Kadono, Toshihiko; Wada, Koji; Yamamoto, Satoru; Arakawa, Masahiko

    2013-07-01

    Ejecta patterns are experimentally examined around craters formed in a layer of glass beads by vertical impacts at low velocities. The diameters of the constituent glass beads of three different targets range 53-63 μm, 90-106 μm, and 355-500 μm. The impact velocities and ambient pressures range from a few to 240 m s-1 and from 500 Pa to the atmospheric pressure, respectively. Various ejecta patterns are observed around craters and are classified into two major classes based on whether they have concentric ridges or not. We propose a possible formation model for the ridges in which the wake created by a projectile as it passes through the atmosphere causes the crater rim to collapse: The model can explain the observation that the degree of collapse of the resultant crater rim depends on the impact velocity and ambient pressure. Using the ratio between the hydrodynamic drag of the airflow induced by the wake and the gravitational force of the degraded part of the rim, we calculate the critical conditions of the impact velocity and ambient pressure necessary for the wake to erode the rim. The conditions turn out to be roughly consistent with the boundary between the two morphological classes. As a result, it is possible that the projectile wake triggers the collapse of the crater rim, leading to a ground-hugging flow that settles to form the distal ridge observed in this study. This mechanism may play a role in producing ejecta morphologies on planetary bodies with atmosphere.

  18. Macroporous polymer foams by hydrocarbon templating

    OpenAIRE

    Shastri, Venkatram Prasad; Martin, Ivan; Langer, Robert

    2000-01-01

    Porous polymeric media (polymer foams) are utilized in a wide range of applications, such as thermal and mechanical insulators, solid supports for catalysis, and medical devices. A process for the production of polymer foams has been developed. This process, which is applicable to a wide range of polymers, uses a hydrocarbon particulate phase as a template for the precipitation of the polymer phase and subsequent pore formation. The use of a hydrocarbon template allows for enhanced control ov...

  19. Alr5068, a Low-Molecular-Weight protein tyrosine phosphatase, is involved in formation of the heterocysts polysaccharide layer in the cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Tan, Hui; Wan, Shuang; Liu, Pi-Qiong; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2013-10-01

    The filamentous cyanobacterium Anabaena sp. PCC 7120 forms nitrogen-fixing heterocysts after deprivation of combined nitrogen. Under such conditions, vegetative cells provide heterocysts with photosynthate and receive fixed nitrogen from the latter. Heterocyst envelope contains a glycolipid layer and a polysaccharide layer to restrict the diffusion of oxygen into heterocysts. Low-Molecular-Weight protein tyrosine phosphatases (LMW-PTPs) are involved in the biosynthesis of exopolysaccharides in bacteria. Alr5068, a protein from Anabaena sp. PCC 7120, shows significant sequence similarity with LMW-PTPs. In this study we characterized the enzymatic properties of Alr5068 and showed that it can dephosphorylate several autophosphorylated tyrosine kinases (Alr2856, Alr3059 and All4432) of Anabaena sp. PCC 7120 in vitro. Several conserved residues among LMW-PTPs are shown to be essential for the phosphatase activity of Alr5068. Overexpression of alr5068 results in a strain unable to survive under diazotrophic conditions, with the formation of morphologically mature heterocysts detached from the filaments. Overexpression of an alr5068 allele that lost phosphatase activity led to the formation of heterocyst with an impaired polysaccharide layer. The alr5068 gene was upregulated after nitrogen step-down and its mutation affected the expression of hepA and hepC, two genes necessary for the formation of the heterocyst envelope polysaccharide (HEP) layer. Our results suggest that Alr5068 is associated with the production of HEP in Anabaena sp. PCC 7120.

  20. Formation and destruction of Polycyclic Aromatic Hydrocarbons (PAHs in the flaring of the biogas collected from an automotive shredded residues landfill

    Directory of Open Access Journals (Sweden)

    Massimo Raboni

    2016-03-01

    Full Text Available The paper shows the results of the combustion in an enclosed flare of the biogas collected from an automotive shredded residues landfill. The results demonstrate that at 1,000°C and long combustion, several synthesis reactions lead to the formation of 4 to 6 rings of PAHs. This formation also involves the formation of compounds such as benzo(g,h,iperylene, indeno(1,2,3-cdpyrene and dibenzo(a,hanthracene not present in raw biogas. However, the compounds most likely to form in combustion are benzo (a anthracene and benzo (b fluoranthene. The only exception is chrysene which is significantly destroyed. The experience has proved the total lack of formation of PAHs with only 2 and 3 aromatic rings.

  1. In site formation and growth of Prussian blue nanoparticles anchored to multiwalled carbon nanotubes with poly(4-vinylpyridine) linker by layer-by-layer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li Na; He Bo; Xu Shaoya [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Yuan Junhua, E-mail: jhyuan@zjnu.cn [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Miao Jigen [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Niu Li, E-mail: lniu@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Song Jixia [Jilin City Institute of Testing on Product Quality, Jilin 132013 (China)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Carbon nanotubes were grafted with poly(4-vinylpyridine). Black-Right-Pointing-Pointer Prussian blue nanoparticles were deposited on carbon nanotubes by complextion. Black-Right-Pointing-Pointer The size of these nanoparticles can be controlled by layer-by-layer assembly. Black-Right-Pointing-Pointer The compoistes show a superior catalytic activity to the oxidation of L-cysteine. Black-Right-Pointing-Pointer The efficiency is dependent on the capacity of Prussian blue nanoparticles loaded. - Abstract: Poly(4-vinylpyridine) (P4VB) was grafted to multiwalled carbon nanotubes (MWCNTs) by an in situ polymerization. This grafted polymer plays two roles in the synthesis of Prussian Blue (PB)/MWCNT composites: (1) a stabilizer to protect PB nanoparticles from aggregation; (2) a linker to anchor these nanoparticles on the surface of MWCNTs. The size of PB nanoparticles deposited on MWCNTs can be controlled by in site layer-by-layer coordination of Fe{sup 3+} and [Fe(CN){sub 6}]{sup 4-} ions in aqueous solution. The as-prepared PB/P4VP-g-MWCNT composites were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray powder diffraction, which revealed that these PB nanoparticles were uniformly distributed on the surface of MWCNTs, and grew upon layer-by-layer assembly. A potential use of PB/P4VP-g-MWCNT composites was demonstrated as an electrocatalyst used in the electrochemical detection of L-cysteine. The as-prepared electrodes modified with PB/P4VP-g-MWCNT composites showed two reversible redox waves assigned to a fast surface-controlled processes. The analytical performance for L-cysteine detection is associated with the load of PB nanoparticles onto MWCNTs. In an optimal experiment, for these as-prepared electrodes, their detection limit of L-cysteine can be measured as low as 0.01 {mu}M with a sensitivity 778.34 nA {mu}M{sup -1} cm{sup -2}.

  2. Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Bon-Heun KOO; Chan-Gyu LEE; Young-Joo KIM; Sung-Hun LEE; Eungsun BYON

    2009-01-01

    Plasma electrolytic oxidation(PEO) processes were carried out to produce ceramic layers on 6061 aluminum substrates in four kinds of electrolytes such as silicate and aluminate solution with and without sodium fluorosilicate. The PEO processes were carried out under a hybrid voltage (260 V DC combined with 200 V, 60 Hz AC amplitude) at room temperature for 5 min. The composition, microstructure and element distribution analyses of the PEO-treated layers were carried out by XRD and SEM & EDS. The effect of the electrolyte contents on the growth mechanism, element distribution and properties of oxide layers were studied. It is obvious that the layers generated in aluminate solutions show smoother surfaces than those in silicate solutions. Moreover, an addition of fluorine ion can effectively control the layer porosity; therefore, it can enhance the properties of the layers.

  3. Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: Quantification, statistical analysis and mechanisms of formation.

    Science.gov (United States)

    Llamas, Alberto; Al-Lal, Ana-María; García-Martínez, María-Jesús; Ortega, Marcelo F; Llamas, Juan F; Lapuerta, Magín; Canoira, Laureano

    2017-05-15

    Polycyclic Aromatic Hydrocarbons (PAHs) are pollutants of concern due to their carcinogenic and mutagenic activity. Their emissions are mainly related with the combustion or pyrolysis of the organic matter, such as in fossil fuels combustion. It is important to characterize PAHs in the combustions of biofuels due to their increasing importance in the actual energetic setting. There is a lot of research focused in PAHs emission due to the combustion in diesel engines; but only few of them have analyzed the effect of raw material and type of alcohol used in the transesterification process. Different raw materials (i.e. animal fat, palm, rapeseed, linseed, peanut, coconut, and soybean oils) have been used for obtaining FAME and FAEE. A method for measuring PAHs generated during combustion in a bomb calorimeter has been developed. Combustion was made at different oxygen pressures and the samples were taken from the bomb after each combustion. Samples were extracted and the PAHs amounts formed during combustion were analyzed by GC-MS. This research shows the statistical relationships among the 16 PAHs of concern, biodiesel composition and oxygen pressure during combustion. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cube Texture Formation of Cu-33at.%Ni Alloy Substrates and CeO2 Buffer Layer for YBCO Coated Conductors

    DEFF Research Database (Denmark)

    Tian, Hui; Li, Suo Hong; Ru, Liang Ya

    2014-01-01

    Cube texture formation of Cu-33 at.%Ni alloy substartes and CeO2 buffer layer prepared by chemical solution deposition on the textured substrate were investigated by electron back scattered diffraction (EBSD) and XRD technics systematically. The results shown that a strong cube textured Cu-33at.%...... of epitaxially grown CeO2 buffer layer was 95 % (omega-scan being 6.98° and 5.92°, respectively........%Ni alloy substrate with the cube texture fraction of 99.8 % (omega-scan in this substrate were 7.31° and 5.51°, respectively. Furthermore, the cube texture fraction...

  5. Lateral variation of interface disorder in wetting layer on formation of InAs/InP quantum dots visualized by near-field imaging spectroscopy

    Science.gov (United States)

    Tojinbara, Hiroki; Takahashi, Motoki; Tsumori, Nobuhiro; Mizuno, Dai; Kubota, Ryosuke; Sakuma, Yoshiki; Saiki, Toshiharu

    2012-01-01

    Near-field photoluminescence imaging spectroscopy of a wetting layer of InAs/InP quantum dots (QDs) at the critical thickness of 2.4 monolayers (ML) is used to visualize the spatial variation of the interface disorder. The wetting layer has a significantly lower density of carrier localization centers than a 2-ML thick InAs/InP quantum well, particularly in the vicinity of the QDs. This indicates that atomic-scale interface disorder is reduced during the initial stages of QD formation; in contrast, disorder remained far from the QDs.

  6. Initial stage growth of GexSi1-x layers and Ge quantum dot formation on GexSi1-x surface by MBE.

    Science.gov (United States)

    Nikiforov, Aleksandr I; Timofeev, Vyacheslav A; Teys, Serge A; Gutakovsky, Anton K; Pchelyakov, Oleg P

    2012-10-09

    Critical thicknesses of two-dimensional to three-dimensional growth in GexSi1-x layers were measured as a function of composition for different growth temperatures. In addition to the (2 × 1) superstructure for a Ge film grown on Si(100), the GexSi1-x layers are characterized by the formation of (2 × n) reconstruction. We measured n for all layers of Ge/GexSi1-x/Ge heterosystem using our software with respect to the video recording of reflection high-energy electron diffraction (RHEED) pattern during growth. The n reaches a minimum value of about 8 for clear Ge layer, whereas for GexSi1-x films, n is increased from 8 to 14. The presence of a thin strained film of the GexSi1-x caused not only the changes in critical thicknesses of the transitions, but also affected the properties of the germanium nanocluster array for the top Ge layer. Based on the RHEED data, the hut-like island form, which has not been previously observed by us between the hut and dome islands, has been detected. Data on the growth of Ge/GexSi1-x/Ge heterostructures with the uniform array of islands in the second layer of the Ge film have been received.

  7. Formation of extended defects in SiGe/Si heterostructures with SiGeC intermediate layers

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V.I.; Reznik, V.Ya. [Institute for Chemical Problems of Microelectronics, Moscow (Russian Federation); Torack, T.A.; Fei, Lu [MEMC Inc, St Peters, MO (United States); Mil' vidskii, M.G. [Institute of Rare Metals ' Giredmet' , Moscow (Russian Federation); Falster, R. [MEMC Electronic Materials SpA, Novara (Italy)

    2007-07-01

    The generation of misfit dislocations (MDs) and stacking faults (SFs) was studied by TEM and preferential chemical etching in multilayer Si(001)/SiGe/SiGeC(10 nm)/SiGe/Si heterostructures grown by CVD at 650 C. Prior to growth of Si layer, the other part of heterostructure was annealed at 950 C in the growth chamber to get relaxed buffer layers and strained Si layer free of extended defects. We used SiGe alloys with Ge content of 24 at.% and C content of 0.5 at.%. Carbon in the strained SiGe matrix was found to promote high rates of strain relaxation through the nucleation of perfect dislocation loops close to the interface with Si substrate. For Si layer thickness >10 nm, threading dislocations split in these layers under tensile strain to form SFs. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. A case study of cumulus formation beneath a stratocumulus sheet: Its structure and effect on boundary layer budgets

    Science.gov (United States)

    Barlow, Roy W.; Nicholls, S.

    1990-01-01

    On several occasions during the FIRE Marine Stratocumulus IFO off the California coast, small cumulus were observed to form during the morning beneath the main stratocumulus (Sc) deck. This occurs in the type of situation described by Turton and Nicholls (1987) in which there is insufficient generation of turbulent kinetic energy (TKE) from the cloudtop or the surface to sustain mixing throughout the layer, and a separation of the surface and cloud layers occurs. The build up of humidity in the surface layer allows cumuli to form, and the more energetic of these may penetrate back into the Sc deck, reconnecting the layers. The results presented were collected by the UKMO C-130 aircraft flying in a region where these small cumulus had grown to the extent that they had penetrated into the main Sc deck above. The structure of these penetrative cumulus are examined and their implications on the layer flux and radiation budget discussed.

  9. Hydrocarbon-degradation by Isolate Pseudomonas lundensis UTAR FPE2

    Directory of Open Access Journals (Sweden)

    Adeline, S. Y. Ting

    2009-01-01

    Full Text Available In this study, the potential of isolate Pseudomonas lundensis UTAR FPE2 as a hydrocarbon degrader was established. Their biodegradation activity was first detected with the formation of clearing zones on Bushnell-Hass agar plates, with the largest diameter observed on plates supplemented with paraffin, followed by mineral oil and petrol. Utilization of hydrocarbon sources were again detected in broth cultures supplemented with similar hydrocarbon substrates, where the mean viable cell count recovered from hydrocarbon-supplemented broth cultures were higher than the initial inoculum except for napthalene. In both tests, the isolate showed higher degradability towards aliphatic hydrocarbon sources, and the least activity towards the aromatic hydrocarbon naphthalene. The isolate P. lundensis UTAR FPE2 (8 log10 cfu/mL also degraded crude diesel sample, with 69% degradation during the first three days. To conclude, this study suggests the potential use of this isolate for bioremediation of hydrocarbon-contaminated environments.

  10. [An investigation of the formation of] polycyclic aromatic hydrocarbon (PAH) emissions when firing pulverized coal in a bench-scale drop tube reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pisupati, S.V.; Wasco, R.S.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.

    1998-12-31

    The Clean Air Act Amendments (CAAA) of 1990 contain provisions which will set standards for the allowable emissions of 188 analytes designated as hazardous air pollutants (HAPs). This list of HAPs was used to establish an initial list of source categories for which EPA would be required to establish technology-based emission standards, which would result in regulated sources sharply reducing routine emissions of toxic air pollutants. Polycyclic organic matter (POM) has also been referred to as polynuclear or polycyclic aromatic compounds (PACs). Nine major categories of POM have been defined by EPA. The study of organic compounds from coal combustion is complex and the results obtained so far are inconclusive with respect to emission factors. The most common organic compounds in the flue gas of coal-fired power plants are polycyclic aromatic hydrocarbons (PAHs). Furthermore, EPA has specified 16 PAH compounds as priority pollutants. These are naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, and dibenz[ah]anthracene. Penn State`s Combustion Laboratory is equipped to collect and analyze the HAPs in the flue gas from fossil fuels combustion. The overall objective of this study was to examine the effect of unit temperature on PAH emissions. A Modified Method 5 sampling train was used to isokinetically collect samples at desired locations in flue gas streams. The collected sample can be separated into solid, condensed liquid and gaseous phases. The PAHs of interest are extracted from the collected sample, concentrated, then separated and quantified by gas chromatography/mass spectrometry (GC/MS). This study was conducted using a bench-scale drop-tube reactor (DTR). The fuel selected for this study was a Middle Kittanning seam coal pulverized to 80% passing US Standard 200 mesh (commonly

  11. Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils

    Energy Technology Data Exchange (ETDEWEB)

    Jacquat, Olivier; Voegelin, Andreas; Villard, Andre; Marcus, Matthew A.; Kretzschmar, Ruben

    2007-10-15

    Recent studies demonstrated that Zn-phyllosilicate- and Zn-layered double hydroxide-type (Zn-LDH) precipitates may form in contaminated soils. However, the influence of soil properties and Zn content on the quantity and type of precipitate forming has not been studied in detail so far. In this work, we determined the speciation of Zn in six carbonate-rich surface soils (pH 6.2 to 7.5) contaminated by aqueous Zn in the runoff from galvanized power line towers (1322 to 30090 mg/kg Zn). Based on 12 bulk and 23 microfocused extended X-ray absorption fine structure (EXAFS) spectra, the number, type and proportion of Zn species were derived using principal component analysis, target testing, and linear combination fitting. Nearly pure Zn-rich phyllosilicate and Zn-LDH were identified at different locations within a single soil horizon, suggesting that the local availabilities of Al and Si controlled the type of precipitate forming. Hydrozincite was identified on the surfaces of limestone particles that were not in direct contact with the soil clay matrix. With increasing Zn loading of the soils, the percentage of precipitated Zn increased from {approx}20% to {approx}80%, while the precipitate type shifted from Zn-phyllosilicate and/or Zn-LDH at the lowest studied soil Zn contents over predominantly Zn-LDH at intermediate loadings to hydrozincite in extremely contaminated soils. These trends were in agreement with the solubility of Zn in equilibrium with these phases. Sequential extractions showed that large fractions of soil Zn ({approx}30% to {approx}80%) as well as of synthetic Zn-kerolite, Zn-LDH, and hydrozincite spiked into uncontaminated soil were readily extracted by 1 M NH{sub 4}NO{sub 3} followed by 1 M NH{sub 4}-acetate at pH 6.0. Even though the formation of Zn precipitates allows for the retention of Zn in excess to the adsorption capacity of calcareous soils, the long-term immobilization potential of these precipitates is limited.

  12. Computer simulation for the formation of the insulator layer of silicon-on-insulator devices by N sup + and O sup + Co-implantation

    CERN Document Server

    Lin Qing; Xie Xin Yun; Lin Chenglu; Liu Xiang Hua

    2002-01-01

    A buried sandwiched layer consisting of silicon dioxide (upper part), silicon oxynitride (medium part) and silicon nitride (lower part) is formed by N sup + and O sup + co-implantation in silicon wafers at a constant temperature of 550 degree C. The microstructure is performed by cross-sectional transmission electron microscopy. To predict the quality of the buried sandwiched layer, the authors study the computer simulation for the formation of the SIMON (separated by implantation of oxygen and nitrogen) structure. The simulation program for SIMOX (separated by implantation of oxygen) is improved in order to be applied in O sup + and N sup + co-implantation on the basis of different formation mechanism between SIMOX and SIMNI (separated by implantation of nitrogen) structures. There is a good agreement between experiment and simulation results verifying the theoretical model and presumption in the program

  13. The influence of polymer content on early gel-layer formation in HPMC matrices: The use of CLSM visualisation to identify the percolation threshold.

    Science.gov (United States)

    Mason, Laura Michelle; Campiñez, María Dolores; Pygall, Samuel R; Burley, Jonathan C; Gupta, Pranav; Storey, David E; Caraballo, Isidoro; Melia, Colin D

    2015-08-01

    Percolation theory has been used for several years in the design of HPMC hydrophilic matrices. This theory predicts that a minimum threshold content of polymer is required to provide extended release of drug, and that matrices with a lower polymer content will exhibit more rapid drug release as a result of percolation pathways facilitating the faster penetration of the aqueous medium. At present, percolation thresholds in HPMC matrices have been estimated solely through the mathematical modelling of dissolution data. This paper examines whether they can be also identified in a novel way: through the use of confocal laser scanning fluorescence microscopy (CLSM) to observe the morphology of the emerging gel layer during the initial period of polymer hydration and early gel formation at the matrix surface. In this study, matrices have been prepared with a polymer content of 5-30% w/w HPMC 2208 (Methocel K4M), with a mix of other excipients (a soluble drug (caffeine), lactose, microcrystalline cellulose and magnesium stearate) to provide a typical industrially realistic formulation. Dissolution studies, undertaken in water using USP apparatus 2 (paddle) at 50rpm, provided data for the calculation of the percolation threshold through relating dissolution kinetic parameters to the excipient volumetric fraction of the dry matrix. The HPMC percolation threshold estimated this way was found to be 12.8% v/v, which was equivalent to a matrix polymer content of 11.5% w/w. The pattern of polymer hydration and gel layer growth during early gel layer formation was examined by confocal laser scanning fluorescence microscopy (CLSM). Clear differences in gel layer formation were observed. At polymer contents above the estimated threshold a continuous gel layer was formed within 15min, whereas matrices with polymer contents below the threshold were characterised by irregular gel layer formation with little evidence of HPMC particle coalescence. According to percolation theory, this

  14. Si{sub 3}N{sub 4} whisker upper layer formation on a SiC-Al{sub 2}O{sub 3} porous body

    Energy Technology Data Exchange (ETDEWEB)

    Toro, P.; Perez, A.; Baeza, G. [Univ. de Chile, Santiago (Chile). Dept. Quimica Basica; Piderit, G.; Rojas, P. [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1996-12-31

    A thin upper layer on a SiC-Al{sub 2}O{sub 3} porous substrate was formed by spray deposition of a Si-C composite or SiC fine powder 55.0 wt% total powder suspension. The formation of a compact layer of Si{sub 3}N{sub 4} whisker or a SiC smaller pore size than the porous substrate was obtained under thermal treatment up to 1,400 C for 3--4 h in a nitrogen or argon gas environment, respectively. SEM microstructure observations and a qualitative (DRX-EDAX) analysis of both sintered porous bodies were performed to confirm the nature of both layers.

  15. Formation and Physical Properties of h-BN Atomic Layers: A First-Principles Density-Functional Study

    Directory of Open Access Journals (Sweden)

    Yoshitaka Fujimoto

    2017-01-01

    Full Text Available Hexagonal boron nitride (h-BN atomic layers have attracted much attention as a potential device material for future nanoelectronics, optoelectronics, and spintronics applications. This review aims to describe the recent works of the first-principles density-functional study on h-BN layers. We show physical properties induced by introduction of various kinds of defects in h-BN layers. We further discuss the relationship among the defect size, the strain, and the magnetic as well as the electronic properties.

  16. Temperature dependence of protection layer formation on organic trench sidewall in H2/N2 plasma etching with control of substrate temperature

    Science.gov (United States)

    Fukunaga, Yusuke; Tsutsumi, Takayoshi; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru

    2017-07-01

    For the etching of organic films in H2/N2 plasma, etched profiles are significantly determined by substrate temperature. Here, we control the substrate temperature variation within 3 °C during processing by modulating the plasma-discharge time. The evolution of the cross-sectional profile of line-and-space patterns was observed every 10 s. At 60 and 100 °C, sidewall etching was observed during overetching, but not at 20 °C. During the main etching, the sidewalls were protected by the adsorption of by-products at various temperatures. Moreover, we investigated the temperature dependence of protection layer formation by analyzing the surface components of the organic film. The CN layer formed by N radicals has a protective effect that depends on the components of the CN layer. It was found that the ratio of C-N sp3 to C-N sp2 in the sidewall was highest at 100 °C. By evaluating the radical contribution to CN layer formation, C-N sp3 bonds were observed to be formed by ions and radiation-assisted reaction.

  17. Visible light activity of pulsed layer deposited BiVO{sub 4}/MnO{sub 2} films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation

    Energy Technology Data Exchange (ETDEWEB)

    Trzciński, Konrad, E-mail: trzcinskikonrad@gmail.com [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Szkoda, Mariusz [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Sawczak, Mirosław [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Fiszera 14, 80-231 Gdansk (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Lisowska-Oleksiak, Anna [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2016-11-01

    Highlights: • The BiVO{sub 4} + MnO{sub 2} photoactive layers were prepared by pulsed laser deposition method. • Prepared layers can act as photoanodes for water splitting. • The thin BiVO{sub 4} + MnO{sub 2} film can be used as photocatalyst for methylene blue degradation. • The formation of hydroxyl radicals during photocatalys illumination has been proved. • The dropcasted GNP improved significantly photocatalytic properties of tested layers. - Abstract: Thin films containing BiVO{sub 4} and MnO{sub 2} deposited on FTO and modified by Au nanoparticles were studied towards their photoelectrochemical and photocatalytical activities in an aqueous electrolyte. Electrodes were prepared by the pulsed laser deposition (PLD) method. The surfactant-free ablation process was used for preparation of the gold nanoparticles (GNP) water suspension. Obtained layers of varied thicknesses (27–115 nm) were characterized using Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy. Electrochemical methods such as electrochemical impedance spectroscopy, linear voltammetry and chronoamperometry under visible light illumination and in the dark were applied to characterize layers as photoanodes. Simple modification of the BiVO{sub 4} + MnO{sub 2} layer by drop-casting of small amount of colloidal gold (1.5 × 10{sup −14} mol of GNP on 1 cm{sup 2}) leads to enhancement of the generated photocurrent recorded at E = 0.5 V vs. Ag/AgCl (0.1 M KCl) from 63 μA/cm{sup 2} to 280 μA/cm{sup 2}. Photocatalytical studies were also exploited towards decomposition of methylene blue (MB). A possible mechanism of MB photodegradation was proposed. The formation of hydroxyl radicals was detected by photoluminescence spectra using terephthalic acid as the probe molecule.

  18. Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster.

    Directory of Open Access Journals (Sweden)

    Shigeharu Kinoshita

    Full Text Available BACKGROUND: Despite its economic importance, we have a limited understanding of the molecular mechanisms underlying shell formation in pearl oysters, wherein the calcium carbonate crystals, nacre and prism, are formed in a highly controlled manner. We constructed comprehensive expressed gene profiles in the shell-forming tissues of the pearl oyster Pinctada fucata and identified novel shell formation-related genes candidates. PRINCIPAL FINDINGS: We employed the GS FLX 454 system and constructed transcriptome data sets from pallial mantle and pearl sac, which form the nacreous layer, and from the mantle edge, which forms the prismatic layer in P. fucata. We sequenced 260477 reads and obtained 29682 unique sequences. We also screened novel nacreous and prismatic gene candidates by a combined analysis of sequence and expression data sets, and identified various genes encoding lectin, protease, protease inhibitors, lysine-rich matrix protein, and secreting calcium-binding proteins. We also examined the expression of known nacreous and prismatic genes in our EST library and identified novel isoforms with tissue-specific expressions. CONCLUSIONS: We constructed EST data sets from the nacre- and prism-producing tissues in P. fucata and found 29682 unique sequences containing novel gene candidates for nacreous and prismatic layer formation. This is the first report of deep sequencing of ESTs in the shell-forming tissues of P. fucata and our data provide a powerful tool for a comprehensive understanding of the molecular mechanisms of molluscan biomineralization.

  19. Renewable synthesis-gas-production. Do hydrocarbons in the reactant flow of the reverse water-gas shift reaction cause coke formation?

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In a two-step synthetic fuel production process based on carbon dioxide and renewable hydrogen, the best possible selectivity towards liquid hydrocarbons (Hc) shall be implemented. The process consists of a combination of the Reverse Water-Gas Shift reaction and the Fischer-Tropsch synthesis. To achieve this goal, gaseous short-chained Hc from the FTS reactor are recycled in the RWGS unit. In this paper, challenges coming up with the implementation of a recycle loop are discussed. First of all, it has to be examined whether Hc are converted under conditions present in the RWGS reactor. The coking caused by the recycle of Hc is regarded, including thermal coking in the heating zone of the reactor and catalytic coking in the catalyst bed. Coking of course is unwanted, as it deactivates the catalyst. The scope of this work is to find out to which extent and under which conditions gaseous Hc can be recycled. Therefore, experiments were carried out in both, a quartz glass reactor using a commercial Ni-catalyst at ambient pressure and in a pressurized steel reactor (without catalyst) to examine coking during the thermal decomposition of Hc. The catalytic experiments at atmospheric pressure showed that a recycle of CH{sub 4} did not cause coking up to a ratio of CH{sub 4}/CO{sub 2} below one. For these conditions, long term stability was proved. The reaction rates of the CH{sub 4} conversion were below those of the RWGS reaction. However, replacing CH{sub 4} by C{sub 3}H{sub 8} leads to thermal and catalytic coking. Catalytic coking hits the maximum level at about 700 C and decreases for higher temperatures and, thus is not regarded as a problem for the RWGS reactor. In contrast to that, thermal coking raises with higher temperatures, but it can be supressed efficiently with additional injection of H{sub 2}O, which of course shifts the equilibrium towards the undesired reactant side. (orig.)

  20. Oxygenated, nitrated, methyl and parent polycyclic aromatic hydrocarbons in rivers of Haihe River System, China: occurrence, possible formation, and source and fate in a water-shortage area.

    Science.gov (United States)

    Qiao, Meng; Qi, Weixiao; Liu, Huijuan; Qu, Jiuhui

    2014-05-15

    Substituted polycyclic aromatic hydrocarbons (SPAHs) occur ubiquitously in the whole global environment as a result of their persistence and widely-spread sources. Some SPAHs show higher toxicities and levels than the corresponding PAHs. Three types of most frequently existing SPAHs, oxygenated-PAHs (OPAHs), nitrated-PAHs (NPAHs), and methyl-PAHs (MPAHs), as well as the 16 priority PAHs were investigated in this study. The purpose was to identify the occurrence, possible transformation, and source and fate of these target compounds in a water shortage area of North China. We took a river system in the water-shortage area in China, the Haihe River System (HRS), as a typical case. The rivers are used for irrigating the farmland in the North of China, which probably introduce these pollutants to the farmland of this area. The MPAHs (0.02-0.40 μg/L in dissolved phase; 0.32-16.54 μg/g in particulate phase), OPAHs (0.06-0.19 μg/L; 0.41-17.98 μg/g), and PAHs (0.16-1.20 μg/L; 1.56-79.38 μg/g) were found in the water samples, but no NPAHs were detected. The concentrations of OPAHs were higher than that of the corresponding PAHs. Seasonal comparison results indicated that the OPAHs, such as anthraquinone and 2-methylanthraquinone, were possibly transformed from the PAHs, particularly at higher temperature. Wastewater treatment plant (WWTP) effluent was deemed to be the major source for the MPAHs (contributing 62.3% and 87.6% to the receiving river in the two seasons), PAHs (68.5% and 89.4%), and especially OPAHs (80.3% and 93.2%) in the rivers. Additionally, the majority of MPAHs (12.4 kg, 80.0% of the total input), OPAHs (16.2 kg, 83.5%), and PAHs (65.9 kg, 93.3%) in the studied months entered the farmland through irrigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Heuristic Analysis Model of Nitrided Layers' Formation Consisting of the Image Processing and Analysis and Elements of Artificial Intelligence

    National Research Council Canada - National Science Library

    Tomasz Wójcicki; Michal Nowicki

    2016-01-01

    .... The objectives of the analyses of the materials for gas nitriding technology are described. The methods of the preparation of nitrided layers, the steps of the process and the construction and operation of devices for gas nitriding are given...

  2. Formation of carburized layer structure with reverted austenite on low-carbon martensitic steel 12Kh2G2NMFT

    Science.gov (United States)

    Ivanov, A. S.; Bogdanova, M. V.

    2013-03-01

    The structure of surface layer in low-carbon martensitic steel 12Kh2G2NMFT obtained by carburizing followed by high-temperature tempering and quenching from the intercritical temperature range is investigated.

  3. Electrochemical removal of NOx and hydrocarbons

    DEFF Research Database (Denmark)

    Friedberg, Anja Zarah

    on the electrodes during polarisation, probably because of strong adsorption of the hydrocarbon relative to NO. On LSF/CGO electrode the impregnation of ionic conducting material increased the oxidation of NO to NO2 which is an important step before nitrogen formation. The propene inhibited this reaction because....... This could only be done if the electrode was impregnated with BaO. The nitrate formation did not seem to be inhibited by the presence of the hydrocarbon. However, the oxidation of propene was inhibited by the BaO because the active sites for oxidations were partially covered by the BaO nanoparticles...

  4. 准噶尔盆地西北缘风城组白云岩成因及油气富集因素%Dolomites genesis and hydrocarbon enrichment of the Fengcheng Formation in the northwestern margin of Junggar Basin

    Institute of Scientific and Technical Information of China (English)

    冯有良; 张义杰; 王瑞菊; 张光亚; 吴卫安

    2011-01-01

    Using the data of cores, well logging interpretations, seismic sections and experimental geochemistry, this paper analyzes the sedimentary environment, genesis, and distribution of dolomites, as well as the hydrocarbon enrichment factors of dolomite reservoirs in the Permian Fengcheng Formation. According to attitude and structure, the dolomites of the Fengcheng Formation are divided into lamina dolomites, thin-bed dolomites, and spotted dolomites. They are mainly the penecontemporaneous and epigenetic dolomites, the former was deposited in a saline semi-deep lake, while the latter results from the dolomitization of lime mud that was deposited in a saline semi-deep lake during the diagenetic stage. The dolomites are distributed at the palaeoslopes formed by volcano eruption and movement of thrust faults and the main dolomite reservoir spaces are dissolved pores and fractures. The factors controlling hydrocarbon enrichment are fractures and structural background.%利用钻井、岩心、地震、测井及地球化学资料,分析准噶尔盆地西北缘二叠系风城组白云岩沉积环境、成因、分布规律及白云岩储集层油气富集高产因素.风城组白云岩按产状和沉积构造可分为纹层状泥质白云岩、薄层状白云岩和斑状白云岩,主要为准同生白云岩和后生白云石化白云岩.准同生白云岩形成于半深湖咸水环境;后生白云石化白云岩是发育在半深湖咸水环境下的碳酸盐岩灰泥在成岩期经后生白云石化作用形成.白云岩主要分布在火山喷发或逆冲断裂活动形成的古地貌斜坡上.白云岩储集层的储集空间主要为溶蚀孔隙和裂隙.白云岩储集层富集高产的控制因素是裂缝及构造背景.

  5. Treating tar sands formations with dolomite

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J.; Karanikas, John Michael

    2010-06-08

    Methods for treating a tar sands formation are described herein. The tar sands formation may include dolomite and hydrocarbons. Methods may include providing heat at less than the decomposition temperature of dolomite from one or more heaters to at least a portion of the formation. At least some of the hydrocarbon fluids are mobilized in the formation. At least some of the hydrocarbon fluids may be produced from the formation.

  6. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors.

    Science.gov (United States)

    Mainz, Roland; Walker, Bryce C; Schmidt, Sebastian S; Zander, Ole; Weber, Alfons; Rodriguez-Alvarez, Humberto; Just, Justus; Klaus, Manuela; Agrawal, Rakesh; Unold, Thomas

    2013-11-07

    The selenization of Cu-Zn-Sn-S nanocrystals is a promising route for the fabrication of low-cost thin film solar cells. However, the reaction pathway of this process is not completely understood. Here, the evolution of phase formation, grain size, and elemental distributions is investigated during the selenization of Cu-Zn-Sn-S nanoparticle precursor thin films by synchrotron-based in situ energy-dispersive X-ray diffraction and fluorescence analysis as well as by ex situ electron microscopy. The precursor films are heated in a closed volume inside a vacuum chamber in the presence of selenium vapor while diffraction and fluorescence signals are recorded. The presented results reveal that during the selenization the cations diffuse to the surface to form large grains on top of the nanoparticle layer and the selenization of the film takes place through two simultaneous reactions: (1) a direct and fast formation of large grained selenides, starting with copper selenide which is subsequently transformed into Cu2ZnSnSe4; and (2) a slower selenization of the remaining nanoparticles. As a consequence of the initial formation of copper selenides at the surface, the subsequent formation of CZTSe starts under Cu-rich conditions despite an overall Cu-poor composition of the film. The implications of this process path for the film quality are discussed. Additionally, the proposed growth model provides an explanation for the previously observed accumulation of carbon from the nanoparticle precursor beneath the large grained layer.

  7. Enhanced electrochemical performance of Li-rich layered cathode materials via chemical activation of Li2MnO3 component and formation of spinel/carbon coating layer

    Science.gov (United States)

    Pang, Shengli; Xu, Kaijie; Wang, Yonggang; Shen, Xiangqian; Wang, Wenzhi; Su, Yanjing; Zhu, Meng; Xi, Xiaoming

    2017-10-01

    Li-rich layered oxides are promising cathode materials for advanced Li-ion batteries because of their high specific capacity and operating potential. In this work, the Li-rich layered oxide Li1·2Mn0·54Ni0·13Co0·13O2 (LMNC), is modified via a carbonization-reduction process (yielding the corresponding reduced compound denoted LMNC-R). Compared to the pristine oxide, LMNC-R delivers significantly enhanced initial discharge capacity/columbic efficiency, remarkably improved rate performance with an accelerated Li+ diffusion rate, and significantly increased capacity/voltage retention. The specific energy density and energy retention after 100 cycles increase from 378.2 Wh kg-1 and 47.7% for LMNC to 572.0 Wh kg-1 and 71.3%, respectively, for LMNC-R. The enhancement in the electrochemical performance of LMNC-R can be attributed to the synchronous formation of the oxygen non-stoichiometric Li2MnO3-δ component and to the carbon/spinel double coating layer in the material that resulted from the post-treatment process. Thus, the carbonization-reduction modification process can be used to tailor the structural evolution procedure and to suppress the metal ion dissolution of the Li-rich layered oxide during cycling.

  8. Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets

    KAUST Repository

    SCHLEGEL, FABRICE

    2011-04-08

    Using high-resolution 3-D vortex simulations, this study seeks a mechanistic understanding of vorticity dynamics in transverse jets at a finite Reynolds number. A full no-slip boundary condition, rigorously formulated in terms of vorticity generation along the channel wall, captures unsteady interactions between the wall boundary layer and the jet - in particular, the separation of the wall boundary layer and its transport into the interior. For comparison, we also implement a reduced boundary condition that suppresses the separation of the wall boundary layer away from the jet nozzle. By contrasting results obtained with these two boundary conditions, we characterize near-field vortical structures formed as the wall boundary layer separates on the backside of the jet. Using various Eulerian and Lagrangian diagnostics, it is demonstrated that several near-wall vortical structures are formed as the wall boundary layer separates. The counter-rotating vortex pair, manifested by the presence of vortices aligned with the jet trajectory, is initiated closer to the jet exit. Moreover tornado-like wall-normal vortices originate from the separation of spanwise vorticity in the wall boundary layer at the side of the jet and from the entrainment of streamwise wall vortices in the recirculation zone on the lee side. These tornado-like vortices are absent in the case where separation is suppressed. Tornado-like vortices merge with counter-rotating vorticity originating in the jet shear layer, significantly increasing wall-normal circulation and causing deeper jet penetration into the crossflow stream. © 2011 Cambridge University Press.

  9. Formation of silicon-on-insulator layer with midair cavity for meniscus force-mediated layer transfer and high-performance transistor fabrication on glass

    Science.gov (United States)

    Akazawa, Muneki; Sakaike, Kohei; Higashi, Seiichiro

    2015-08-01

    We attempted to transfer a phosphorus ion (P+)-implanted oxidized silicon-on-insulator (SOI) layer with a midair cavity to a glass substrate using meniscus force at a low temperature. The SiO2 column size was controlled by etching time and the minimum column size was 104 nm. The transfer yield of the implanted sample was significantly improved by decreasing the column size, and the maximum transfer yield was 95% when the implantation dose was 1 × 1015 cm-2. The causes of increasing transfer yield are considered to be the tapered SiO2 column shape and the hydrophilicity of the surface of oxidized samples with implantation. N-channel thin-film transistors (TFTs) fabricated using the films on glass at 300 °C showed a field-effect mobility of 505 cm2 V-1 s-1, a threshold voltage of 2.47 V and a subthreshold swing of 324 mV/dec. on average.

  10. Formation and investigation of ultrathin layers of Co{sub 2}FeSi ferromagnetic alloy synthesized on silicon covered with a CaF{sub 2} barrier layer

    Energy Technology Data Exchange (ETDEWEB)

    Grebenyuk, G.S.; Gomoyunova, M.V. [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Pronin, I.I., E-mail: Igor.Pronin@mail.ioffe.ru [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); ITMO University, 197101 St. Petersburg (Russian Federation); Vyalikh, D.V. [Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden (Germany); Saint Petersburg State University, 198504 St. Petersburg (Russian Federation); Molodtsov, S.L. [ITMO University, 197101 St. Petersburg (Russian Federation); European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Institute of Experimental Physics, Technische Universitat Bergakademie Freiberg, 09599 Freiberg (Germany)

    2016-03-01

    Highlights: • Formation of Co{sub 2}FeSi alloy films on the CaF{sub 2}/Si(111) substrate is studied in situ. • 5 nm CaF{sub 2} layer inhibits the diffusion of the alloy components into a substrate. • Annealing of deposited Co/Fe/Si layers at 200 °C leads to formation of the alloy. • The alloy is characterized by the mode with energy of 99.01 eV in Si 2p spectra. • 2 nm Co{sub 2}FeSi film is ferromagnetic and stable at temperatures below 450 °C. - Graphical abstract: - Abstract: Ultrathin (∼2 nm) films of Co{sub 2}FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF{sub 2} barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co{sub 2}FeSi ferromagnetic alloy occurs in the temperature range of 200–400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF{sub 2} barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.

  11. Formation of Al/B4C Surface Nano-composite Layers on 7075 Al Alloy Employing Friction Stir Processing

    Science.gov (United States)

    Kashani-Bozorg, S. F.; Jazayeri, K.

    2009-06-01

    Al/B4C surface nano-composite layers was achieved on commercial 7075 Al substrate employing f