WorldWideScience

Sample records for hydrocarbon gases trapped

  1. Hydrophobic encapsulation of hydrocarbon gases.

    Science.gov (United States)

    Leontiev, Alexander V; Saleh, Anas W; Rudkevich, Dmitry M

    2007-04-26

    [reaction: see text] Encapsulation data for hydrophobic hydrocarbon gases within a water-soluble hemicarcerand in aqueous solution are reported. It is concluded that hydrophobic interactions serve as the primary driving force for the encapsulation, which can be used for the design of gas-separating polymers with intrinsic inner cavities.

  2. Field theory for trapped atomic gases

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2001-01-01

    In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree—Fock theory for the properties of

  3. Field theory for trapped atomic gases

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2001-01-01

    In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree-Fock theory for the properties of

  4. A rapid column technique for trapping and collecting of volatile fungal hydrocarbons and hydrocarbon derivatives.

    Science.gov (United States)

    Booth, Eric; Strobel, Gary; Knighton, Berk; Sears, Joe; Geary, Brad; Avci, Recep

    2011-10-01

    A custom-made stainless steel column was designed to contain various materials that would trap the hydrocarbons and hydrocarbon derivatives during the processes of fungal fermentation ultimately yielding preparative amounts of volatile organic substances (VOCs). Trapping materials tested in the column were Carbotrap materials A and B (Supelco) as well as bentonite-shale from the oil bearing areas of Eastern Montana, the former allowed for the effective and efficient trapping of VOCs from purged cultures of Hypoxylon sp. Trapping efficiencies of various materials were measured by both gravimetric as well as proton transfer reaction mass spectroscopy with the Carbotraps A and B being 99% efficient when tested with known amounts of 1,8-cineole. Trapped fungal VOCs could effectively be removed and recovered via controlled heating of the stainless steel column followed by passage of the gases through a liquid nitrogen trap at a recovery rate of ca 65-70%. This method provides for the recovery of mg quantities of compounds normally present in the gas phase that may be needed for spectroscopy, bioassays and further separation and analysis and may have wide applicability for many other biological systems involving VOCs. Other available Carbotraps could be used for other applications.

  5. Nonlinear Transport In Gases, Traps And Surfaces

    Science.gov (United States)

    Šuvakov, M.; Marjanovic, S.

    2010-07-01

    We will present our numerical study of three different charge transport processes and we will compare properties, specially the nonlinearity, of these processes. First process is electron transport in gases in swarm regime. We used well tested Monte Carlo techique to investigate kinetic phenomena such as negative diferencial conductivity (NDC) or negative apsolute mobility (NAM). We explain these phenomena analysing the spatial profiles of the swarm and collision events. In the second part we will apply the same technique on positron transport to obtain the same level of understanding of positron transport as has been achieved for electrons. The influence of positronium formation, non-conservative process, is much larger than any comparable effects in electron transport due to attachment and/or ionisation. As a result several new phenomena have been observed, such as NDC for the bulk drift velocity. Additionaly, the same Monte Carlo technique is used for modeling and optimisation of Surko like positron traps in different geometries and field configurations. Third process we studied is the charge transport under voltage bias via single-electron tunnelings through the junctions between metallic particles on nanoparticle films. We show how the regular nanoparticle array and topologically inhomogeneous nanonetworks affect the charge transport. We find long-range correlations in the time series of charge fluctuation at individual nanoparticles and of flow along the junctions within the network. These correlations explain the occurrence of a large non-linearity in the simulated and experimentally measured current-voltage characteristics and non-Gaussian fluctuations of the current at the electrode.

  6. Collective excitations of harmonically trapped ideal gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show

  7. Improved Traps for Removing Gases From Coolant Liquids

    Science.gov (United States)

    Holladay, John; Ritchie, Stephen

    2006-01-01

    Two documents discuss improvements in traps for removing noncondensable gases (e.g., air) from heat-transfer liquids (e.g., water) in spacecraft cooling systems. Noncondensable gases must be removed because they can interfere with operation. A typical trap includes a cylindrical hydrophobic membrane inside a cylindrical hydrophilic membrane, all surrounded by an outer cylindrical impermeable shell. The input mixture of gas bubbles and liquid flows into the annular volume between the membranes. Bubbles pass into the central hollow of the hydrophobic membrane and are vented. The liquid flows outward through the hydrophilic membrane and is recirculated.

  8. Direct conversion of light hydrocarbon gases to liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, R.D.; Foral, M.J.

    1992-05-16

    Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

  9. Direct conversion of light hydrocarbon gases to liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, R.D.; Foral, M.J.

    1992-05-16

    Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

  10. Study of electron transport in hydrocarbon gases

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H. [Tomakomai National College of Technology, Tomakomai 059-1275 (Japan); Date, H. [Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan)

    2015-04-07

    The drift velocity and the effective ionization coefficient of electrons in the organic gases, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, C{sub 2}H{sub 5}OH, C{sub 6}H{sub 6}, and C{sub 6}H{sub 5}CH{sub 3}, have been measured over relatively wide ranges of density-reduced electric fields (E/N) at room temperature (around 300 K). The drift velocity was measured, based on the arrival-time spectra of electrons by using a double-shutter drift tube over the E/N range from 300 to 2800 Td, and the effective ionization coefficient (α − η) was determined by the steady-state Townsend method from 150 to 3000 Td. Whenever possible, these parameters were compared with those available in the literature. It has been shown that the swarm parameters for these gases have specific tendencies, depending on their molecular configurations.

  11. Microwave plasma torch for processing hydrocarbon gases

    Directory of Open Access Journals (Sweden)

    Alex G. Zherlitsyn

    2016-03-01

    Full Text Available We designed and developed an ultrahigh-frequency (microwave plasma torch with a combined (nitrogen, methane plasma-forming environment, and microwave output of up to 2 kW, continuously. We demonstrate the possibility of using it in order to process natural and associated petroleum (APG gas into valuable products (hydrogen and carbon nanomaterial CNM with up to 70% efficiency. Based on the developed microwave plasma torch, we developed an apparatus capable of converting hydrocarbon feedstock at a capacity of 50 g/h yielding CNM and hydrogen of up to 70 vol. %. In its mobile small-tonnage version, this technology can be used on gas-condensate fields.

  12. Disordered complex systems using cold gases and trapped ions

    CERN Document Server

    De, A S; Lewenstein, M; Ahufinger, V; Pons, M L; Sanpera, A; De, Aditi Sen; Sen, Ujjwal; Lewenstein, Maciej; Ahufinger, Veronica; Pons, Marisa Ll.; Sanpera, Anna

    2005-01-01

    We report our research on disordered complex systems using cold gases and trapped ions, and address the possibility of using complex systems for quantum information processing. Two simple paradigmatic models of disordered complex systems are revisited here. The first one corresponds to a short range disordered Ising Hamiltonian (spin glasses), which can be implemented with a Bose-Fermi (Bose-Bose) mixture in a disordered optical lattice. The second model we address here is a long range disordered Hamiltonian, characteristic of neural networks (Hopfield model), which can be implemented in a chain of trapped ions with appropriately designed interactions.

  13. Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mecha- nisms and from different sources in nature. It is demonstrated that the biodegradation or thermode- gradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ 13C1 value ranges from -110‰ to -50‰ for microbial gases but from -50‰ to -35‰ (even heavier) for thermogenic gases. Controlled by the kinetic isotope fractionation, both microbial and thermogenic gases have δ 13C and δ D values characterized by normal distribution, i.e. δ 13C1< δ 13C2< δ 13C3< δ 13C4 and δ DCH4< δ DC2H6< δ DC3H8<δ DC4H10, and by a positive correlation between the δ 13C and δ D values. Simple carbonbearing molecules (CH4, CO and CO2) can form abiogenic alkane gases via polymerization in the abiological chemical process in nature, with δ 13C1 heavier than -30‰. Moreover, controlled by the kinetic isotope fractionation, abiogenic alkane gases are characterized by a reverse distribution of δ 13C values and a normal trend of δ D values, namely δ 13C1> δ 13C2> δ 13C3> δ 13C4 and δ DCH4<δ DC2H6< δ DC3H8< δ DC4H10. The δ 13C values and δ D values are negatively correlated. Natural gases from 26 commercial gas wells distributed in the Xujiaweizi and Yingshan-Miaotaizi faulted depressions in the Songliao Basin, China, show δ13C1 values ranging from -30.5‰ to -16.7‰ with a very narrow δ D range between -203‰―-196‰. These gases are characterized by a reverse distribution of δ 13C values but a normal distribution of δ D values, and a negative correlation between their δ 13C and δ D values, indicating an abiological origin. The present study has revealed that abiogenic hydrocarbons not only exist in nature but also can make significant contribution to commercial gas reserviors. It is estimated that

  14. Bose Einstein condensation of gases in a harmonic potential trap

    Directory of Open Access Journals (Sweden)

    M. E. Zomorrodian

    2005-03-01

    Full Text Available One of the most interesting properties of boson gases is that under special conditions, there is a possibility of a phase transition, in a critical temperature  below  which  all bosons condensate into  the ground state. This phenomenon is called Bose – Einstein Condensation (BEC. In  this paper, we investigate BEC in a harmonic oscillator trap. We conclude that, in contrast to a free boson gas, there is no critical temperature for phase transition in a harmonic oscillator trap. However , by numerical and analytical calculation, it is possible to obtain a temperature at which the heat capacity is maximum. We call this the critical  temperature . Possible explanation for all these features will be explained in this paper.

  15. Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China

    Institute of Scientific and Technical Information of China (English)

    WANG XianBin; WANG LianSheng; LIU ChunXue; YAN Hong; LI LiWu; ZHOU XiaoFeng; WANG YongLi; YANG Hui; WANG Guang; GUO ZhanQian; TUO JinCai; GUO HongYan; LI ZhenXi; ZHUO ShengGuang; JIANG HongLiang; ZENG LongWei; ZHANG MingJie

    2009-01-01

    This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mecha-nisms and from different sources in nature. It is demonstrated that the biodegradation or thermode-gradation of complex high-molecule sedimentary organic material can form microbial gas or ther-mogenic gas. The δ13C1 value ranges from -110‰ to -50‰ for microbial gases but from -51‰ to -35‰ (even heavier) for thermogenic gases. Controlled by the kinetic isotope fractionation, both microbial and thermogenic gases have δ13C and δD values characterized by normal distribution, i.e. δ13C1 δ13C2> δ13C3> δ13C4 and δDCH4<δDC2H6< δDC3H8< δDC4H10. The δ13C values and δD values are negatively correlated. Natural gases from 26 commercial gas wells distributed in the Xujiaweizi and Yingshan-Miaotaizi faulted de-pressions in the Songliao Basin, China, show δ13C1 values ranging from -30.5‰. to -16.7‰, with a very narrow δD range between -203‰--196‰. These gases are characterized by a reverse distribution of δ13C values but a normal distribution of δD values, and a negative correlation between their δ13C and δD values, indicating an abiological origin. The present study has revealed that abiogenic hydrocar-bons not only exist in nature but also can make significant contribution to commercial gas reserviors. It is estimated that the reserve volume of alkane gases with abiogenic characteristics in these 26 gas wells in the Songliao Basin is over 500×108 m3, The prospecting practice in the Songliao Basin has demonstrated that abiogenic alkane gases are of a promising resource, and it provides an example for the investigation of and search for abiogenic commercial natural gases worldwide.

  16. The trapping system for the recirculated gases at different locations of the exhaust gas recirculation (EGR) pipe of a homogeneous charge compression ignition (HCCI) engine

    Science.gov (United States)

    Piperel, A.; Montagne, X.; Dagaut, P.

    2008-10-01

    Nowadays, in diesel engines, it is typical to recycle exhaust gases (EGR) in order to decrease pollutant emissions. However, few studies report the precisely measured composition of the recycled gases. Indeed, in order to know precisely the composition of the EGR gases, they have to be sampled hot and not diluted, in contrast to the usual practice. Thus, a new system to collect such samples was developed. With this new trapping system, it is possible to measure the concentrations of NOx, CO, CO2, O2, hydrocarbons (HCs) in the range C1-C9, aldehydes, ketones and PAHs. The trapping system and the analytical protocol used are described in this paper.

  17. The evolution of Devonian hydrocarbon gases in shallow aquifers of the northern Appalachian Basin: Insights from integrating noble gas and hydrocarbon geochemistry

    Science.gov (United States)

    Darrah, Thomas H.; Jackson, Robert B.; Vengosh, Avner; Warner, Nathaniel R.; Whyte, Colin J.; Walsh, Talor B.; Kondash, Andrew J.; Poreda, Robert J.

    2015-12-01

    groundwater (P(CH4) = ∼1 atmosphere) and elevated [Cl] and [Ba]. These data suggest that 4He is dominated by an exogenous (i.e., migrated) crustal source for these hydrocarbon gas- and salt-rich fluids. In combination with published inorganic geochemistry (e.g., 87Sr/86Sr, Sr/Ba, Br-/Cl-), new noble gas and hydrocarbon isotopic data (e.g., 20Ne/36Ar, C2+/C1, δ13C-CH4) suggest that a hydrocarbon-rich brine likely migrated from the Marcellus Formation (via primary hydrocarbon migration) as a dual-phase fluid (gas + liquid) and was fractionated by solubility partitioning during fluid migration and emplacement into conventional UD traps (via secondary hydrocarbon migration). Based on the highly fractionated 4He/CH4 data relative to Marcellus and UD production gases, we propose an additional phase of hydrocarbon gas migration where natural gas previously emplaced in UD hydrocarbon traps actively diffuses out into and equilibrates with modern shallow groundwater (via tertiary hydrocarbon migration) following uplift, denudation, and neotectonic fracturing. These data suggest that by integrating noble gas geochemistry with hydrocarbon and dissolved ion chemistry, one can better determine the source and migration processes of natural gas in the Earth's crust, which are two critical factors for understanding the presence of hydrocarbon gases in shallow aquifers.

  18. Phase Behavior of Light Gases in Hydrocarbon and Aqueous Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Gasem, K.A.M.; Robinson, R.L., Jr.; Trvedi, N.J., Gao, W.

    1997-09-01

    Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present reporting period, our solubility apparatus was refurbished and restored to full service. To test the experimental apparatus and procedures used, measurements were obtained for the solubility Of C0{sub 2} in benzene at 160{degrees}F. Having confirmed the accuracy of the newly acquired data in comparison with our previous measurements and data reported in the literature for this test system, we have begun to measure the solubility of hydrogen in hexane. The measurements

  19. Direct conversion of light hydrocarbon gases to liquid fuel. Final report No. 33

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, R.D.; Foral, M.J.

    1992-05-16

    Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

  20. Direct conversion of light hydrocarbon gases to liquid fuel. Final report No. 33

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, R.D.; Foral, M.J.

    1992-05-16

    Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

  1. Methane and other hydrocarbon gases in sediment from the southeastern North American continental margin

    Science.gov (United States)

    Kvenvolden, K.A.; Lorenson, T.D.

    2000-01-01

    Residual concentrations and distributions of hydrocarbon gases from methane to n-heptane were measured in sediments at seven sites on Ocean Drilling Program (ODP) Leg 164. Three sites were drilled at the Cape Fear Diapir of the Carolina Rise, and one site was drilled on the Blake Ridge Diapir. Methane concentrations at these sites result from microbial generation which is influenced by the amount of pore-water sulfate and possible methane oxidation. Methane hydrate was found at the Blake Ridge Diapir site. The other hydrocarbon gases at these sites are likely the produce of early microbial processes. Three sites were drilled on a transect of holes across the crest of the Blake Ridge. The base of the zone of gas-hydrate occurrence was penetrated at all three sites. Trends in hydrocarbon gas distributions suggest that methane is microbial in origin and that the hydrocarbon gas mixture is affected by diagenesis, outgassing, and, near the surface, by microbial oxidation. Methane hydrate was recovered at two of these three sites, although gas hydrate is likely present at all three sites. The method used here for determining amounts of residual hydrocarbon gases has its limitations and provides poor assessment of gas distributions, particularly in the stratigraphic interval below about ~ 100 mbsf. One advantage of the method, however, is that it yields sufficient quantities of gas for other studies such as isotopic determinations.

  2. Trapping ultracold gases near cryogenic materials with rapid reconfigurability

    CERN Document Server

    Naides, Matthew A; Lai, Ruby A; DiSciacca, Jack M; Lev, Benjamin L

    2013-01-01

    We demonstrate a novel atom chip trapping system that allows the placement and high-resolution imaging of ultracold atoms within microns from any <100 um-thin, UHV-compatible material, while also allowing sample exchange with minimal experimental downtime. The sample is not connected to the atom chip, allowing rapid exchange without perturbing the atom chip or laser cooling apparatus. Exchange of the sample and retrapping of atoms has been performed within a week turnaround, limited only by chamber baking. Moreover, the decoupling of sample and atom chip provides the ability to independently tune the sample temperature and its position with respect to the trapped ultracold gas, which itself may remain in the focus of a high-resolution imaging system. As a first demonstration of this new system, we have confined a 700-nK cloud of 8x10^4 87Rb atoms within 100 um of a gold-mirrored 100-um-thick silicon substrate. The substrate was cooled to 35 K without use of a heat shield, while the atom chip, 120 um away, ...

  3. On the Gross–Pitaevskii equation for trapped dipolar quantum gases

    KAUST Repository

    Carles, Rémi

    2008-09-29

    We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimension reduction for this nonlinear and nonlocal Schrödinger equation. © 2008 IOP Publishing Ltd and London Mathematical Society.

  4. Superfluid Thomas—Fermi approximation for trapped fermi gases

    Science.gov (United States)

    Hernández, E. S.; Capuzzi, P.; Szybisz, L.

    2009-02-01

    We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios.

  5. Superfluid Thomas-Fermi approximation for trapped fermi gases

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, E S; Capuzzi, P; Szybisz, L [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)], E-mail: shernand@df.uba.ar, E-mail: capuzzi@df.uba.ar, E-mail: szybisz@tandar.cnea.gov.ar

    2009-02-01

    We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios.

  6. First and second sound in cylindrically trapped gases.

    Science.gov (United States)

    Bertaina, G; Pitaevskii, L; Stringari, S

    2010-10-08

    We investigate the propagation of density and temperature waves in a cylindrically trapped gas with radial harmonic confinement. Starting from two-fluid hydrodynamic theory we derive effective 1D equations for the chemical potential and the temperature which explicitly account for the effects of viscosity and thermal conductivity. Differently from quantum fluids confined by rigid walls, the harmonic confinement allows for the propagation of both first and second sound in the long wavelength limit. We provide quantitative predictions for the two sound velocities of a superfluid Fermi gas at unitarity. For shorter wavelengths we discover a new surprising class of excitations continuously spread over a finite interval of frequencies. This results in a nondissipative damping in the response function which is analytically calculated in the limiting case of a classical ideal gas.

  7. Sideband Rabi spectroscopy of finite-temperature trapped Bose gases

    CERN Document Server

    Allard, Baptiste; Schmied, Roman; Treutlein, Philipp

    2016-01-01

    We use Rabi spectroscopy to explore the low-energy excitation spectrum of a finite-temperature Bose gas of rubidium atoms across the phase transition to a Bose-Einstein condensate (BEC). To record this spectrum, we coherently drive the atomic population between two spin states. A small relative displacement of the spin-specific trapping potentials enables sideband transitions between different motional states. The intrinsic non-linearity of the motional spectrum, mainly originating from two-body interactions, makes it possible to resolve and address individual excitation lines. Together with sensitive atom-counting, this constitutes a feasible technique to count single excited atoms of a BEC and to determine the temperature of nearly pure condensates. As an example, we show that for a nearly pure BEC of N = 800 atoms the first excited state has a population of less than 5 atoms, corresponding to an upper bound on the temperature of 30 nK.

  8. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    Science.gov (United States)

    Bahauddin, Shah Mohammad; Mehedi Faruk, Mir

    2016-09-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.

  9. Unitary Superfluidity Of Polarized Fermionic Gases In Highly Elongated Traps

    Science.gov (United States)

    Baksmaty, L.; Lu, H.; Bolech, C.; Pu, H.

    2010-03-01

    Recent groundbreaking experiments on resonantly interacting fermionic superfluids encountered qualitative and quantitative discrepancies which seem to be a function of the confining geometry. Despite long familiarity with BCS (Bardeen-Cooper-Schrieffer) superfluids in a wide range of physical systems such as nuclear matter, QCD, Astrophysics and Condensed Matter, these observations have defied theoretical explanation. Mindful of quantum rigidity and motivated by this impasse, we study the solution space for 3-dimensional fully self-consistent mean field formulation. Relying on numerical algorithms specifically developed for this purpose, we study realistic systems with up to 10^5 atoms. We find that for a large enough sample in a cigar-shaped trap, there are typically three types of solutions which are almost degenerate and have the ff. properties: (i) There is a solution very similar to the local density approximation (LDA) which is consistently the lowest in energy. (ii) However one of the other two solutions, connected by a smooth transition, and which are more consistent with experiment at high aspect ratio, supports a state very similar to the long sought FFLO (Fulde Ferrel Larkin Ovchinnikov) state. We submit that these solutions are relevant false vacua because, given high energy barriers and near degeneracy of the obtained solutions, the actual states observed in an experiment could be a strong function of the experimental procedure. Darpa OLE grant, ARO Grant no. W911NF-07-1-0464, Welch foundation (C-1669, C-1681) and NSF.

  10. Isotope reversals in hydrocarbon gases of natural shale systems and well head production data

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U.; Schloemer, S.; Stiller, E. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Marquardt, D. [Rijksuniversiteit Utrecht (Netherlands)

    2013-08-01

    Relationships between gas geochemical signatures and the thermal maturity of source rocks containing aquatic organic matter are based on on pyrolysis experiments and have been successfully used in conventional hydrocarbon exploration since long. We demonstrate how these models can be applied to the evaluation of unconventional shale resources. For this purpose hydrocarbon gases have been extracted from low and high mature source rocks (type II kerogens) using laboratory desorption techniques. We determined the molecular composition of the gases as well as the carbon isotope ratios of methane to propane. In the extracted gases we observe an increase of {sup 13}C content in methane with increasing dry gas ratio (C1/{Sigma}C1-6). The carbon isotope ratios of ethane and propane initially increase with increasing dryness but start to become isotopically lighter above a dry gas ratio of 0.8. We show that oil-to-gas cracking explains the observed gas geochemical data, and that mixing between gases from different processes is a key factor to describe natural hydrocarbon systems of shales. However, data from published case studies using well head gases which show 'isotope roll-over' effects indicate that the isotopic reversal observed in well head samples deviate from those observed in natural shale systems in a fundamental way. We show that isotope reversals related to well head gases are best explained by an additional isotope fractionation effect induced through hydraulic fracturing and gas migration from the shale to the well head. Although, this induced isotope fractionation is an artifact which obscures isotopic information of natural systems to a large extend, we suggest a simple classification scheme which allows distinguishing between hot and cool spot areas using well head or mud line gas data. (orig.)

  11. Quantum information entropies of ultracold atomic gases in a harmonic trap

    Indian Academy of Sciences (India)

    Tutul Biswas; Tarun Kanti Ghosh

    2011-10-01

    The position and momentum space information entropies of weakly interacting trapped atomic Bose–Einstein condensates and spin-polarized trapped atomic Fermi gases at absolute zero temperature are evaluated. We find that sum of the position and momentum space information entropies of these quantum systems containing atoms confined in a $D(≤ 3)$-dimensional harmonic trap has a universal form as $S^{(D)}_t = N(a D − b ln N)$, where ∼ 2.332 and = 2 for interacting bosonic systems and a ∼ 1.982 and = 1 for ideal fermionic systems. These results obey the entropic uncertainty relation given by Beckner, Bialynicki-Birula and Myceilski.

  12. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field

    Science.gov (United States)

    Barry, P. H.; Lawson, M.; Meurer, W. P.; Warr, O.; Mabry, J. C.; Byrne, D. J.; Ballentine, C. J.

    2016-12-01

    Noble gases are chemically inert and variably soluble in crustal fluids. They are primarily introduced into hydrocarbon reservoirs through exchange with formation waters, and can be used to assess migration pathways and mechanisms, as well as reservoir storage conditions. Of particular interest is the role groundwater plays in hydrocarbon transport, which is reflected in hydrocarbon-water volume ratios. Here, we present compositional, stable isotope and noble gas isotope and abundance data from the Sleipner Vest field, in the Norwegian North Sea. Sleipner Vest gases are generated from primary cracking of kerogen and the thermal cracking of oil. Gas was emplaced into the Sleipner Vest from the south and subsequently migrated to the east, filling and spilling into the Sleipner Ost fields. Gases principally consist of hydrocarbons (83-93%), CO2 (5.4-15.3%) and N2 (0.6-0.9%), as well as trace concentrations of noble gases. Helium isotopes (3He/4He) are predominantly radiogenic and range from 0.065 to 0.116 RA; reported relative to air (RA = 1.4 × 10-6; Clarke et al., 1976; Sano et al., 1988), showing predominantly (>98%) crustal contributions, consistent with Ne (20Ne/22Ne from 9.70 to 9.91; 21Ne/22Ne from 0.0290 to 0.0344) and Ar isotopes (40Ar/36Ar from 315 to 489). Air-derived noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe) are introduced into the hydrocarbon system by direct exchange with air-saturated water (ASW). The distribution of air-derived noble gas species are controlled by phase partitioning processes; in that they preferentially partition into the gas (i.e., methane) phase, due to their low solubilities in fluids. Therefore, the extent of exchange between hydrocarbon phases and formation waters - that have previously equilibrated with the atmosphere - can be determined by investigating air-derived noble gas species. We utilize both elemental ratios to address process (i.e., open vs. closed system) and concentrations to quantify the extent of hydrocarbon

  13. External meeting - Geneva University: A lab in a trap: quantum gases in optical lattices

    CERN Multimedia

    2007-01-01

    GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 - Tél: 022 379 62 73 - Fax: 022 379 69 92 Monday 16 April 2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium A lab in a trap: quantum gases in optical lattices by Prof. Tilman Esslinger / Department of Physics, ETH Zurich The field of ultra cold quantum gases has seen an astonishing development during the last ten years. With the demonstration of Bose-Einstein condensation in weakly interacting atomic gases a theoretical concept of unique beauty could be witnessed experimentally. Very recent developments have now made it possible to engineer atomic many-body systems which are dominated by strong interactions. A major driving force for these advances are experiments in which ultracold atoms are trapped in optical lattices. These systems provide anew avenue for designing and studying quantum many-body systems. Exposed to the crystal structure of interfering laser wave...

  14. Anisotropic pair superfluidity of trapped two-component Bose gases in an optical lattice

    Science.gov (United States)

    Li, Yongqiang; He, Liang; Hofstetter, Walter

    2013-09-01

    We theoretically investigate the pair-superfluid phase of two-component ultracold gases with attractive inter-species interactions in an optical lattice. We establish the phase diagram for filling n = 1 at zero and finite temperatures, by applying bosonic dynamical mean-field theory, and observe stable pair-superfluid and charge-density wave quantum phases for asymmetric hopping of the two species. While the pair superfluid is found to be robust in the presence of a harmonic trap, we observe that it is destroyed already by a small population imbalance of the two species.

  15. Lunar Meteorite QUE 93069: History Derived from Cosmic-Ray-Produced and Trapped Noble Gases

    Science.gov (United States)

    Thalmann, Ch.; Eugster, O.

    1995-09-01

    We obtained lunar meteorite QUE 93069,7 (0.304 g) from the NASA/MWG for the determination of its noble gas isotopic abundances and exposure history. The data relevant for the discussion of the exposure history and trapped noble gases are given in Tables 1 and 2. Exposure history: The duration of Moon-Earth transfer was determined by Nishiizumi et al. [1]. Based on 10Be these authors obtained 1.9 +/- 0.4 Ma for a 4 pi model (all radionuclides produced in 4 pi space) and MAC 88105 and ALHA 81005). QUE 93069 shows the longest exposure to cosmic rays (1100 +/- 400 Ma) of all lunar meteorites if we compare the T38 values. Based on 21Nec we obtain 420 +/- 60 Ma. Typically for lunar surface material the T21 are lower than those based on 38Arc, 83Krc, and 126Xec due to 21Ne loss. This effect is also observed for MAC 88105 and ALHA 81005. Characteristics of the trapped noble gases: The long lunar surface residence time and the shallow shielding depth are consistent with the very large amounts of trapped solar wind particles (20Ne and 36Ar, Table 1) for QUE 93069. The concentration of trapped 36Ar is quite similar to that of Y-791197: Takaoka [3] and Ostertag et al. [4] obtained 33900 and 36600 x 10-8 cm3 STP/g, respectively. The trapped ratio 40Ar/36Ar, an antiquity indicator for lunar soil, yields information on the time when the breccia was compacted from regolith material [5]. For QUE 93069 we obtain (40Ar/36Ar)trapped = 1.9 +/- 0.1 indicating exposure of the breccia material on the lunar surface about 600 Ma ago. Conclusions: Based on 38Arc the lunar surface exposure to cosmic rays for QUE 93069 lasted about 1100 +/- 400 Ma, similar to Y-791197, about twice as long as for ALHA 81005, and about seven times longer than for MAC 88104/5. The trapped 40Ar/36Ar ratio of 1.9 +/- 0.1 suggests that exposure to solar particles occured around 600 Ma ago. Since relatively large amounts of solar wind particles were accumulated, it is reasonable to assume that most cosmogenic noble

  16. Controls on the distribution of non-hydrocarbon gases in the Alberta Basin

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheon, I. [Calgary Univ., Dept, of Geology and Geophysics, AB (Canada)

    1999-12-01

    Patterns of the occurrence of the non-hydrocarbon gases hydrogen sulfide, carbon dioxide, helium and nitrogen in the Alberta Basin was investigated. Results show that hydrogen sulfide and carbon dioxide tend to increase to the west and with depth in Devonian and Mississippian strata. Concentrations are higher than in the Cretaceous units. Nitrogen and to some degree helium, tend to show an antipathetic relationship with high hydrogen sulfide and carbon dioxide in Devonian and Mississippian strata. Helium concentrations are relatively high in north central Alberta in the Devonian, and in southern Alberta in the Mannville. Nitrogen in southern Alberta is higher at shallow depths in the Mannville and Colorado groups. Hydrogen sulfide and carbon dioxide is considered to be the product of thermal reduction of sulphate, probably derived from Devonian anhydrite. In the Mannville group hydrogen sulfide is the product of the bacterial reduction of sulphate, driven by incursion of meteoric water from the south that causes mixing of waters from Mississippian carbonate rocks with waters from Mannville elastic rocks. Carbon dioxide in the Colorado group is believed to have been formed by oxidation of organic matter, while the helium observed in the Devonian stratum is likely the result of the mixing of deep crustal rock with atmospheric sources. Correlations with hydrocarbon gases in the Colorado Group suggests that the high nitrogen content is related to bacterial accumulation of natural gas. 63 refs., 36 figs.

  17. Hydrocarbon gases in Baikal bottom sediments: preliminary results of the Second international Class@Baikal cruise

    Science.gov (United States)

    Vidischeva, Olesya; Akhmanov, Grigorii; Khlystov, Oleg; Giliazetdinova, Dina

    2016-04-01

    In July 2015 the research cruise in the waters of Lake Baikal was carried out onboard RV "G.Yu. Vereshchagin". The expedition was organized by Lomonosov Moscow State University and Limnological Institute of Russian Academy of Sciences. The main purpose of the expedition was to study the modern sedimentation and natural geological processes on the bottom of Lake Baikal. One of the tasks of the cruise was to conduct gas-geochemical survey of bottom sediments. The samples of hydrocarbon gases were collected during the cruise. Subsequent study of the composition and origin of the sampled gas was carried out in the laboratories of Moscow State University. 708 samples from 61 bottom sampling stations were studied. Analyzed samples are from seven different areas located in the southern and central depressions of the lake: (1) "Goloustnoe" seepage area; (2) Bolshoy mud volcano; (3) Elovskiy Area; (4) "Krasny Yar" Seep; (5) "St. Petersburg" Seep; (6) Khuray deep-water depositional system; and (7) Kukuy Griva (Ridge) area. The results of molecular composition analysis indicate that hydrocarbon gases in bottom sediments from almost all sampling stations are represented mostly by pure methane. Ethane was detected only in some places within "Krasny Yar", "Goloustnoe" and "St. Petersburg" seepage areas. The highest concentrations of methane were registered in the sediments from the "Krasny Yar" area - 14 457 μl/l (station TTR-BL15-146G) - and from the "St. Petersburg" area - 13 684 μl/l (station TTR-BL15-125G). The sediments with high concentrations of gases were sampled from active fluid discharge areas, which also can be well distinguished on the seismic profiles. Gas hydrates were obtained in the areas of "Krasny Yar", "Goloustnoe", and "St. Petersburg" seeps and in the area of the Bolshoy mud volcano. Isotopic composition δ13C(CH4) was studied for 100 samples of hydrocarbon gases collected in areas with high methane concentration in bottom sediments. The average value is

  18. Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Chao, K.C.

    1990-01-01

    Phase equilibrium in mixtures of water + light gases and water + heavy hydrocarbons has been investigated with the development of new local composition theory, new equations of state, and new experimental data. The preferential segregation and orientation of molecules due to different energies of molecular interaction has been simulated with square well molecules. Extensive simulation has been made for pure square well fluids and mixtures to find the local composition at wide ranges of states. A theory of local composition has been developed and an equation of state has been obtained for square well fluids. The new local composition theory has been embedded in several equations of state. The pressure of water is decoupled into a polar pressure and non-polar pressure according to the molecular model of water of Jorgensen et al. The polar pressure of water is combined with the BACK equation for the general description of polar fluids and their mixtures. Being derived from the steam table, the Augmented BACK equation is particularly suited for mixtures of water + non-polar substances such as the hydrocarbons. The hydrophobic character of the hydrocarbons had made their mixtures with water a special challenge. A new group contribution equation of state is developed to describe phase equilibrium and volumetric behavior of fluids while requiring only to know the molecular structure of the components. 15 refs., 1 fig.

  19. Trapping of xenon in ice - Implications for the origin of the earth's noble gases

    Science.gov (United States)

    Wacker, J. F.; Anders, E.

    1984-01-01

    Although the earth's atmosphere contains Ne, Ar, and Kr in about C1,2-chondrite proportions, Xe is depleted about 20-fold. To test the suggestion that the 'missing' Xe is trapped in Antarctic ice, distribution coefficients for Xe in artifically formed frost at -20 to -60 C were measured, using Xe-127 tracer. The values are 0.098 + or - 0.004 cc STP/g atm for trapping and less than 5 cc STP/g atm for trapping plus adsorption. If these results are representative of natural ice, then the Antarctic ice cap contains less than 1 percent of the atmospheric Xe inventory, or not greater than about 0.001 the amount needed for a C1,2-chondrite pattern. Two possibilities remain for the 'missing' Xe, both on the premise that the earth's noble gases, along with other volatiles, came from chondritic material: (1) xenon is preferentially retained in the mantle and lower crust, due to the strong affinity of Xe for clean silicate surfaces and amorphous carbon; and (2) the source material of the earth's volatiles had high, relatively unfractionated, Ar/Xe and Kr/Xe ratios, like the non-carbonaceous noble gas carriers in C3O and E-chondrites.

  20. Do lagoon area sediments act as traps for polycyclic aromatic hydrocarbons?

    Science.gov (United States)

    Marini, Mauro; Frapiccini, Emanuela

    2014-09-01

    The coastal lagoons are vulnerable systems, located between the land and the sea, enriched by both marine and continental inputs and are among the most productive aquatic ecosystems. The purpose of this work is to understand the influence of the lagoon area sediments on the behaviour of polycyclic aromatic hydrocarbons, through the adsorption coefficient determination. In fact, the sorption of polycyclic aromatic hydrocarbons is an important process because it governs the fate, transport, bioavailability and toxicity of these compounds in sediments. It has been observed that the adsorption of polycyclic aromatic hydrocarbons in a transitional system is the outcome of different factors, such as their sources and physicochemical properties, salinity and sediment composition, hydrology and environmental conditions. The results showed that transitional areas contribute to the polycyclic aromatic hydrocarbon accumulation in the sediment turning it into a trap.

  1. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Rajan K., E-mail: rajan.chakrabarty@gmail.com [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130 (United States); Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Novosselov, Igor V. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Enertechnix Inc., Maple Valley, Washington 98068 (United States); Beres, Nicholas D.; Moosmüller, Hans [Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Sorensen, Christopher M. [Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Stipe, Christopher B. [TSI Incorporated, 500 Cardigan Rd, Shoreview, Minnesota 55126 (United States)

    2014-06-16

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10{sup 6} s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  2. Time-of-flight expansion of trapped dipolar Fermi gases: from collisionless to hydrodynamic regime

    CERN Document Server

    Veljic, Vladimir; Pelster, Axel

    2016-01-01

    A recent time-of-flight (TOF) expansion experiment with polarized fermionic erbium atoms measured a Fermi surface deformation from a sphere to an ellipsoid due to dipole-dipole interaction, thus confirming previous theoretical predictions. Here we perform a systematic study of the ground-state properties and TOF dynamics for trapped dipolar Fermi gases from the collisionless to the hydrodynamic regime at zero temperature. To this end we solve analytically the underlying Boltzmann-Vlasov equation within the relaxation-time approximation in the vicinity of equilibrium by using a suitable rescaling of the equilibrium distribution. The resulting ordinary differential equations for the respective scaling parameters are then solved numerically for experimentally realistic parameters and relaxation times that correspond to the collisionless, collisional, and hydrodynamic regime. The equations for the collisional regime are first solved in the approximation of a fixed relaxation time, and then this approach is extend...

  3. Correlations of the upper branch of 1D harmonically trapped two-component fermi gases.

    Science.gov (United States)

    Gharashi, Seyed Ebrahim; Blume, D

    2013-07-26

    We present highly accurate energy spectra and eigenfunctions of small 1D harmonically trapped two-component Fermi gases with interspecies δ-function interactions, and analyze the correlations of the so-called upper branch (i.e., the branch that describes a repulsive Fermi gas consisting of atoms but no molecules) for positive and negative coupling constants. Changes of the two-body correlations as a function of the interspecies coupling strength reflect the competition of the interspecies interaction and the effective repulsion due to the Pauli exclusion principle, and are interpreted as a few-body analog of a transition from a nonmagnetic to a magnetic phase. Moreover, we show that the eigenstate ψadia of the infinitely strongly interacting system with |n1+n2|>2 and |n1-n2|Fermi-Fermi mapping function to the eigenfunction of the noninteracting single-component Fermi gas.

  4. Origin and migration of hydrocarbon gases and carbon dioxide, Bekes Basin, southeastern Hungary

    Science.gov (United States)

    Clayton, J.L.; Spencer, C.W.; Koncz, I.; Szalay, A.

    1990-01-01

    The Bekes Basin is a sub-basin within the Pannonian Basin, containing about 7000 m of post-Cretaceous sedimentary rocks. Natural gases are produced from reservoirs (Precambrian to Tertiary in age) located on structural highs around the margins of the basin. Gas composition and stable carbon isotopic data indicate that most of the flammable gases were derived from humic kerogen contained in source rocks located in the deep basin. The depth of gas generation and vertical migration distances were estimated using quantitative source rock maturity-carbon isotope relationships for methane compared to known Neogene source rock maturity-depth relationships in the basin. These calculations indicate that as much as 3500 m of vertical migration has occured in some cases. Isotopically heavy (> - 7 > 0) CO2 is the predominant species present in some shallow reservoirs located on basin-margin structural highs and has probably been derived via long-distance vertical and lateral migration from thermal decompositon of carbonate minerals in Mesozoic and older rocks in the deepest parts of the basin. A few shallow reservoirs (isotopically light (-50 to -60%0) methane with only minor amounts of C2+ homologs (< 3% v/v). This methane is probably mostly microbial in origin. Above-normal pressures, occuring at depths greater than 1800 m, are believed to be the principal driving force for lateral and vertical gas migration. These pressures are caused in part by active hydrocarbon generation, undercompaction, and thermal decomposition of carbonates. 

  5. Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors.

    Science.gov (United States)

    Dilonardo, Elena; Penza, Michele; Alvisi, Marco; Cassano, Gennaro; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa; Cioffi, Nicola

    2017-01-01

    Pristine and electrochemically Pd-modified ZnO nanorods (ZnO NRs) were proposed as active sensing layers in chemiresistive gas sensors for hydrocarbon (HC) gas detection (e.g., CH4, C3H8, C4H10). The presence of Pd nanoparticles (NPs) on the surface of ZnO NRs, obtained after the thermal treatment at 550 °C, was revealed by morphological and surface chemical analyses, using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The effect of the Pd catalyst on the performance of the ZnO-based gas sensor was evaluated by comparing the sensing results with those of pristine ZnO NRs, at an operating temperature of 300 °C and for various HC gas concentrations in the range of 30-1000 ppm. The Pd-modified ZnO NRs showed a higher selectivity and sensitivity compared to pristine ZnO NRs. The mean sensitivity of Pd-modified ZnO NRs towards the analyzed HCs gases increased with the length of the hydrocarbon chain of the target gas molecule. Finally, the evaluation of the selectivity revealed that the presence or the absence of metal nanoparticles on ZnO NRs improves the selectivity in the detection of specific HCs gaseous molecules.

  6. Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors

    Science.gov (United States)

    Alvisi, Marco; Cassano, Gennaro; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa

    2017-01-01

    Summary Pristine and electrochemically Pd-modified ZnO nanorods (ZnO NRs) were proposed as active sensing layers in chemiresistive gas sensors for hydrocarbon (HC) gas detection (e.g., CH4, C3H8, C4H10). The presence of Pd nanoparticles (NPs) on the surface of ZnO NRs, obtained after the thermal treatment at 550 °C, was revealed by morphological and surface chemical analyses, using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The effect of the Pd catalyst on the performance of the ZnO-based gas sensor was evaluated by comparing the sensing results with those of pristine ZnO NRs, at an operating temperature of 300 °C and for various HC gas concentrations in the range of 30–1000 ppm. The Pd-modified ZnO NRs showed a higher selectivity and sensitivity compared to pristine ZnO NRs. The mean sensitivity of Pd-modified ZnO NRs towards the analyzed HCs gases increased with the length of the hydrocarbon chain of the target gas molecule. Finally, the evaluation of the selectivity revealed that the presence or the absence of metal nanoparticles on ZnO NRs improves the selectivity in the detection of specific HCs gaseous molecules. PMID:28144567

  7. Spatial shaping for generating arbitrary optical dipole traps for ultracold degenerate gases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeffrey G., E-mail: jglee@umd.edu [Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); Hill, W. T., E-mail: wth@umd.edu [Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2014-10-15

    We present two spatial-shaping approaches – phase and amplitude – for creating two-dimensional optical dipole potentials for ultracold neutral atoms. When combined with an attractive or repulsive Gaussian sheet formed by an astigmatically focused beam, atoms are trapped in three dimensions resulting in planar confinement with an arbitrary network of potentials – a free-space atom chip. The first approach utilizes an adaptation of the generalized phase-contrast technique to convert a phase structure embedded in a beam after traversing a phase mask, to an identical intensity profile in the image plane. Phase masks, and a requisite phase-contrast filter, can be chemically etched into optical material (e.g., fused silica) or implemented with spatial light modulators; etching provides the highest quality while spatial light modulators enable prototyping and realtime structure modification. This approach was demonstrated on an ensemble of thermal atoms. Amplitude shaping is possible when the potential structure is made as an opaque mask in the path of a dipole trap beam, followed by imaging the shadow onto the plane of the atoms. While much more lossy, this very simple and inexpensive approach can produce dipole potentials suitable for containing degenerate gases. High-quality amplitude masks can be produced with standard photolithography techniques. Amplitude shaping was demonstrated on a Bose-Einstein condensate.

  8. The quantum pressure correction to the excitation spectrum of the trapped superfluid Fermi gases in a BEC-BCS crossover

    Institute of Scientific and Technical Information of China (English)

    Dong Hang; Ma Yong-Li

    2009-01-01

    Using quantum hydrodynamic approaches, we study the quantum pressure correction to the collective excitation spectrum of the interacting trapped superfluid Fermi gases in the BEC-BCS crossover. Based on a phenomenological equation of state, we derive hydrodynamic equations of the system in the whole BEC-BCS crossover regime. Beyond the Thomas-Fermi approximation, expressions of the frequency corrections of collective modes for both spherical and axial symmetric traps excited in the BEC-BCS crossover are given explicitly. The corrections of the eigenfrequencies due to the quantum pressure and their dependence on the inverse interaction strength. Anisotropic parameter and particle numbers of the condensate are discussed in detail.

  9. Trapping of polycyclic aromatic hydrocarbons by amphiphilic cyclodextrin functionalized polypropylene nonwovens

    DEFF Research Database (Denmark)

    Lumholdt, Ludmilla; Nielsen, Ronnie Bo Højstrup; Larsen, Kim Lambertsen

    Recently, there has been an augmented focus on the increasing amount of pesticides, drug residues and endocrine disruptors present in waste and drinking water1. These pollutants represent a challenge in water purification since they may be hazardous to human health even in low doses2. Cyclodextrins...... of the textile fibers. In this study we present the ability of amphiphilic CD coated polypropylene nonwovens to trap 8 different polycyclic aromatic hydrocarbons/endocrine disruptors from aqueous solutions thus demonstrating the potential of using the amphiphilic cyclodextrins for water purification....

  10. Locations of nonstructural hydrocarbon traps on the shelf of the northern Barents Sea

    Science.gov (United States)

    Kazanin, G. S.; Pavlov, S. P.; Tarasov, G. A.; Schlykova, V. V.; Matishov, G. G.

    2016-11-01

    This paper considers the results of summarized integrated geophysical investigations that were carried out from 2006 to 2012. The investigations included common depth point (CDP) seismic reflection survey, over water gravity survey, and differential hydromagnetic exploration with a total work scope of 30 000 linear kilometers. The deep structural tectonic plan, the structural and lithofacies features of the sedimentary cover section on the basic reflecting boundaries, and the features of the seismogeological complexes and seismic sections on a depth scale have been studied, and geological oil-and-gas zoning of the Northern Barents shelf has been made. Seventy-nine local anticlinal highs have been revealed, and the zones with potential nonstructural hydrocarbon traps have been determined. Due to the lack of huge anticlinal highs in the northern Barents Sea region, nonstructural traps are of interest in studying and replacing the mineral raw material base of Russia, as well as for arranging marine exploration.

  11. System for trapping and storing gases for subsequent chemical reduction to solids

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, John S [San Jose, CA; Ognibene, Ted J [Oakland, CA; Bench, Graham S [Livermore, CA; Peaslee, Graham F [Holland, MI

    2009-11-03

    A system for quantitatively reducing oxide gases. A pre-selected amount of zinc is provided in a vial. A tube is provided in the vial. The zinc and the tube are separated. A pre-selected amount of a catalyst is provided in the tube. Oxide gases are injected into the vial. The vial, tube, zinc, catalyst, and the oxide gases are cryogenically cooled. At least a portion of the vial, tube, zinc, catalyst, and oxide gases are heated.

  12. Carbon isotopic characteristics of hydrocarbon gases from coal-measure source rocks--A thermal simulation experiment

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jianjing; HU Huifang; SUN Guoqiang; JI Limin

    2006-01-01

    Gaseous hydrocarbon geochemistry research through a thermal simulation experiment in combination with the natural evolution process in which natural gases were formed from coal-measure source rocks revealed that the δ13C1 values of methane vary from light to heavy along with the increase of thermal evolution degree of coal-measure source rocks, and the δ13C2 values of ethane range from -28.3‰ to -20‰ (PDB). δ13C2 value was -28‰± ( Ro= 0.45% - 0.65%) at the lower thermal evolution stage of coal-measure source rocks. After the rocks entered the main hydrocarbon-generating stage (Ro=0.65% - 1.50%), δ13C2 values generally varied within the range of -26‰ - -23‰±; with further thermal evolution of the rocks the carbon isotopes of ethane became heavier and heavier, but generally less than - 20‰.The partial carbon isotope sequence inversion of hydrogen gases is a characteristic feature of mixing of natural gases of different origins. Under the condition of specially designated type of organic matter, hydrogen source rocks may show this phenomenon via their own evolution.In the lower evolution stages of the rocks, it is mainly determined by organic precursors that gaseous hydrocarbons display partial inversion of the carbon isotope sequence and the carbon isotopic values of ethane are relatively low. These characteristic features also are related to the geochemical composition of primary soluble organic matter.

  13. Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billion years

    Science.gov (United States)

    George, Simon C.; Volk, Herbert; Dutkiewicz, Adriana; Ridley, John; Buick, Roger

    2008-02-01

    Oil-bearing fluid inclusions occur in a ca. 2.45 Ga fluvial metaconglomerate of the Matinenda Formation at Elliot Lake, Canada. The oil, most likely derived from the conformably overlying deltaic McKim Formation, was trapped in quartz and feldspar during diagenesis and early metamorphism of the host rock, probably before ca. 2.2 Ga. Molecular geochemical analyses of the oil reveal a wide range of compounds, including CH 4, CO 2, n-alkanes, isoprenoids, monomethylalkanes, aromatic hydrocarbons, low molecular weight cyclic hydrocarbons, and trace amounts of complex multi-ring biomarkers. Maturity ratios show that the oil was generated in the oil window, with no evidence of extensive thermal cracking. This is remarkable, given that the oils were exposed to upper prehnite-pumpellyite facies metamorphism (280-350 °C) either during migration or after entrapment. The fluid inclusions are closed systems, with high fluid pressures, and contain no clays or other minerals or metals that might catalyse oil-to-gas cracking. These three attributes may all contribute to the thermal stability of the included oil and enable survival of biomarkers and molecular ratios over billions of years. The biomarker geochemistry of the oil in the Matinenda Formation fluid inclusions enables inferences about the organisms that contributed to the organic matter deposited in the Palaeoproterozoic source rocks from which the analysed oil was generated and expelled. The presence of biomarkers produced by cyanobacteria and eukaryotes that are derived from and trapped in rocks deposited before ca. 2.2 Ga is consistent with an earlier evolution of oxygenic photosynthesis and suggests that some aquatic settings had become sufficiently oxygenated for sterol biosynthesis by this time. The extraction of biomarker molecules from Palaeoproterozoic oil-bearing fluid inclusions thus establishes a new method, using low detection limits and system blank levels, to trace evolution through Earth's early history

  14. KFeSbTe3: A quaternary chalcogenide aerogel for preferential adsorption of polarizable hydrocarbons and gases

    KAUST Repository

    Ahmed, Ejaz

    2015-01-01

    The first telluride-based quaternary aerogel KFeSbTe3 is synthesized by a sol-gel metathesis reaction between Fe(OAc)2 and K3SbTe3 in dimethyl formamide. The aerogel has an exceptionally large surface area 652 m2 g-1 which is amongst the highest reported for chalcogenide-based aerogels. This predominantly mesoporous material shows preferential adsorption for toluene vapors over cyclohexane or cyclopentane and CO2 over CH4 or H2. The remarkably high adsorption capacity for toluene (9.31 mmol g-1) and high selectivity for gases (CO2/H2: 121 and CO2/CH4: 75) suggest a potential use of such materials in adsorption-based separation processes for the effective purification of hydrocarbons and gases. © The Royal Society of Chemistry 2015.

  15. Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants.

    Science.gov (United States)

    Jumpponen, M; Rönkkömäki, H; Pasanen, P; Laitinen, J

    2013-01-01

    The combustion of fuels produces air pollutants in the form of gases, organic compounds, and particulate matter. However, although the environmental aspect of these agents has been examined, workers' exposure to them is still a neglected issue. The purpose of this study was to measure maintenance and ash removal workers' multiple exposures to gases, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during their work tasks in biomass-fired power plants. Our hygienic measurements revealed that carbon monoxide, nitric oxide, ammonia and sulfur dioxide were the most common gases that the workers were exposed to during their tasks. Their average concentrations were 0.45 ppm, 0.06 ppm, 0.11 ppm and 0.42 ppm, respectively. Phenanthrene and naphthalene were the most prominent PAHs. At the same sampling points, the most commonly found VOCs were aromatic and aliphatic hydrocarbons and turpentines. The calculated total PAH concentrations were less than 7% of benzo[a]pyrene's eight-hour occupational exposure limit, and the total VOC concentrations were below the Finnish reference value for the normal industrial level in all measured work tasks. The most evident health effect caused by multiple exposures to gases was upper respiratory track irritation, followed by the disruption of oxygen transport, and finally central nervous system disorders. We recommend powered air respirators with ABEK+P3 cartridges and carbon monoxide gas detectors as the minimum requirement for those working inside biomass-fired power plant boilers, and compressed air breathing apparatus as the best form of protection.

  16. Trapping Characteristics of Off-gases from Voloxidation Process under Different Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Myeong; Park, J. J.; Park, G. I.; Song, K. C.; Kim, J. H.; Lee, H. H

    2007-06-15

    The objective of this report is to develop the trapping concepts for immobilizing the volatiles from voloxidation process. KAERI supplied fly ash filters for cesium, calcium filters for ruthenium and technetium, and AgX for I to INL. Based on KAERI's experimental results and experience on the trapping characteristics of each gaseous fission product in terms of carrier gas and chemical species, INL hot experiments will be performed in off-gas treatment system (OTS) for a voloxidizer. This report will be used as useful means for providing the trapping methods for trapping semi-volatile fission products under air, oxygen, and vacuum conditions. As results of trapping experiments, it was found that trapping efficiency of cesium volatilized from CsI by fly ash filter was decreased in the order of Air> Ar > O{sub 2} > vacuum conditions. It was also found that higher trapping temperature, close to 1100 .deg. C, tends to give an improved trapping efficiency even at vacuum condition.

  17. Quasi-Long-Range Order in Trapped 2D Bose Gases

    CERN Document Server

    Boettcher, Igor

    2016-01-01

    We study the fate of algebraic decay of correlations in a harmonically trapped two-dimensional degenerate Bose gas. The analysis is inspired by recent experiments on ultracold atoms where power-law correlations have been observed despite the presence of the external potential. We generalize the spin wave description of phase fluctuations to the trapped case and obtain an analytical expression for the one-body density matrix within this approximation. We show that algebraic decay of the central correlation function persists to lengths of about 20% of the Thomas--Fermi radius. We establish that the trap-averaged correlation function decays algebraically with a strictly larger exponent weakly changing with trap size and find indications that the recently observed enhanced scaling exponents receive significant contributions from the normal component of the gas. We discuss radial and angular correlations and propose a local correlation approximation which captures the correlations very well. Our analysis goes beyo...

  18. Pd-Doped SnO2-Based Sensor Detecting Characteristic Fault Hydrocarbon Gases in Transformer Oil

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2013-01-01

    Full Text Available Methane (CH4, ethane (C2H6, ethylene (C2H4, and acetylene (C2C2 are important fault characteristic hydrocarbon gases dissolved in power transformer oil. Online monitoring these gaseous components and their generation rates can present the operational state of power transformer timely and effectively. Gas sensing technology is the most sticky and tricky point in online monitoring system. In this paper, pure and Pd-doped SnO2 nanoparticles were synthesized by hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The gas sensors were fabricated by side-heated preparation, and their gas sensing properties against CH4, C2H6, C2H4, and C2H2 were measured. Pd doping increases the electric conductance of the prepared SnO2 sensors and improves their gas sensing performances to hydrocarbon gases. In addition based on the frontier molecular orbital theory, the highest occupied molecular orbital energy and the lowest unoccupied molecular orbital energy were calculated. Calculation results demonstrate that C2H4 has the highest occupied molecular orbital energy among CH4, C2H6, C2H4, and C2H2, which promotes charge transfer in gas sensing process, and SnO2 surfaces capture a relatively larger amount of electric charge from adsorbed C2H4.

  19. Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface

    Science.gov (United States)

    Amos, R.T.; Mayer, K.U.; Bekins, B.A.; Delin, G.N.; Williams, R.L.

    2005-01-01

    [1] At many sites contaminated with petroleum hydrocarbons, methanogenesis is a significant degradation pathway. Techniques to estimate CH4 production, consumption, and transport processes are needed to understand the geochemical system, provide a complete carbon mass balance, and quantify the hydrocarbon degradation rate. Dissolved and vapor-phase gas data collected at a petroleum hydrocarbon contaminated site near Bemidji, Minnesota, demonstrate that naturally occurring nonreactive or relatively inert gases such as Ar and N2 can be effectively used to better understand and quantify physical and chemical processes related to methanogenic activity in the subsurface. In the vadose zone, regions of Ar and N2 depletion and enrichment are indicative of methanogenic and methanotrophic zones, and concentration gradients between the regions suggest that reaction-induced advection can be an important gas transport process. In the saturated zone, dissolved Ar and N2 concentrations are used to quantify degassing driven by methanogenesis and also suggest that attenuation of methane along the flow path, into the downgradient aquifer, is largely controlled by physical processes. Slight but discernable preferential depletion of N2 over Ar, in both the saturated and unsaturated zones near the free-phase oil, suggests reactivity of N2 and is consistent with other evidence indicating that nitrogen fixation by microbial activity is taking place at this site. Copyright 2005 by the American Geophysical Union.

  20. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics

    KAUST Repository

    Sparber, Christof

    2010-01-01

    We numerically study the three dimensional Gross-Pitaevskii equation for dipolar quantum gases using a time-splitting algorithm. We are mainly concerned with numerical investigations of the possible blow-up of solutions, i.e. collapse of the condensate, and the dynamics of vortices. © American Institute of Mathematical Sciences.

  1. Carbon dioxide gas in hydrocarbon pools as a geochemical indicator of tapering traps (as in West Siberian fields)

    Energy Technology Data Exchange (ETDEWEB)

    Sidorenkov, A.T.

    1983-01-01

    Principal sources of carbon dioxide gas in oil pools of Western Siberia are carbonates, present in the makeup of the layer-collector horizons. All the hydrocarbon pools complicated by lithologic screens are characterized by increased concentrations of carbon dioxide in the gases dissolved in the oils. With a carbon dioxide content of more than 1 vol%, the probability of identifying the screen in the pools of Western Siberia is close to 100%.

  2. Carbon dioxide gas in hydrocarbon pools as a geochemical indicator of tapering traps (as in West Siberian fields)

    Energy Technology Data Exchange (ETDEWEB)

    Sidorenkov, A.T.

    1980-07-01

    Principal sources of carbon dioxide gas in oil pools of Western Siberia are carbonates, present in the makeup of the layer-collector horizons. All the hydrocarbon pools complicated by lithologic screens are characterized by increased concentrations of carbon dioxide in the gases dissolved in the oils. With a carbon dioxide content of more than 1 vol %, the probability of identifying the screen in the pools of Western Sibeia is close to 100%.

  3. Magnetostriction and exchange effects in trapped dipolar Bose and Fermi gases

    OpenAIRE

    Baillie, D; Blakie, P. B.

    2012-01-01

    We examine the magnetostrictive position and momentum space distortions that occur in harmonically confined dipolar Bose and Fermi gases. Direct interactions give rise to position space magnetostriction and exchange interactions give rise to momentum space magnetostriction. While the position space magnetostriction is similar in Bose and Fermi systems, the momentum space magnetostriction is markedly different: the Bose gas momentum distribution distorts in the opposite sense to that of the Fe...

  4. Thermally stimulated current observation of trapping centers in undoped GaSe layered single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gasanly, N.M.; Salihoglu, Oe. [Middle East Technical Univ., Ankara (Turkey). Dept. of Physics; Aydinli, A. [Middle East Technical Univ., Ankara (Turkey). Dept. of Physics; Bilkent Univ., Ankara (Turkey). Dept. of Physics

    2001-07-01

    Undoped p-GaSe layered single crystals were grown using Bridgman technique. Thermally stimulated current measurements in the temperature range of 10-300 K were performed at a heating rate of 0.18 K/s. The analysis of the data revealed three trap levels at 0.02, 0.10 and 0.26 eV. The calculation for these traps yielded 8.8 x 10{sup -27}, 1.9 x 10{sup -25}, and 3.2 x 10{sup -21} cm{sup 2} for capture cross sections and 3.2 x 10{sup 14}, 1.1 x 10{sup 16}, and 1.2 x 10{sup 16} cm{sup -3} for the concentrations, respectively. (orig.)

  5. Realization of inverse Kibble–Zurek scenario with trapped Bose gases

    Energy Technology Data Exchange (ETDEWEB)

    Yukalov, V.I., E-mail: yukalov@theor.jinr.ru [Instituto de Fisica de São Calros, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo (Brazil); Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Novikov, A.N. [Instituto de Fisica de São Calros, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo (Brazil); Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Bagnato, V.S. [Instituto de Fisica de São Calros, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo (Brazil)

    2015-07-03

    We show that there exists the inverse Kibble–Zurek scenario, when we start with an equilibrium system with broken symmetry and, by imposing perturbations, transform it to a strongly nonequilibrium symmetric state through the sequence of states with spontaneously arising topological defects. We demonstrate the inverse Kibble–Zurek scenario both experimentally, by perturbing the Bose–Einstein condensate of trapped {sup 87}Rb atoms, and also by accomplishing numerical simulations for the same setup as in the experiment, the experimental and numerical results being in good agreement with each other. - Highlights: • Inverse Kibble–Zurek scenario is demonstrated with trapped Bose gas. • Strongly perturbed Bose–Einstein condensate is created experimentally. • Numerical modeling is accomplished for the same setup as in the experiment. • Theoretical explanation is suggested. • Several turbulent regimes are studied, formed by vortices, grains, or waves.

  6. Development of a standard reference material containing 22 chlorinated hydrocarbon gases at 1 μmol/mol in nitrogen.

    Science.gov (United States)

    Li, Ning; Du, Jian; Yang, Jing; Fan, Qiang; Tian, Wen

    2017-09-08

    A gas standard mixture containing 22 chlorinated hydrocarbons in high purity nitrogen was prepared using a two-step weighing method and a gasifying apparatus developed in-house. The concentration of each component was determined using a gas chromatograph with flame ionization detection (GC/FID). Linear regression analysis of every component was performed using the gas standard mixture with concentrations ranging from 1 to 10 μmol/mol, showing the complete gasification of volatile organic compound (VOCs) species in a selected cylinder. Repeatability was also examined to ensure the reliability of the preparation method. In addition, no significant difference was observed between domestic treated and imported treated cylinders, which were conducive to reduction of the cost of raw materials. Moreover, the results of stability testing at different pressures and long-term stability tests indicated that the gas standard at 1 μmol/mol level with relative expanded uncertainties of 5% was stable above 2 MPa for a minimum of 12 months. Finally, a quantity comparison was conducted between the gas standard and a commercial gas standard from Scott Specialty Gases (now Air Liquide America Specialty Gases). The excellent agreement of every species suggested the favorable accuracy of our gas standard. Therefore, this reference material can be applied to routine observation of VOCs and for other purposes.

  7. The TF Limit for Rapidly Rotating Bose Gases in Anharmonic Traps

    CERN Document Server

    Bru, J -B; Pickl, P; Yngvason, J

    2007-01-01

    Starting from the full many body Hamiltonian we derive the leading order energy and density asymptotics for the ground state of a dilute, rotating Bose gas in an anharmonic trap in the ` Thomas Fermi' (TF) limit when the Gross-Pitaevskii coupling parameter and/or the rotation velocity tend to infinity. Although the many-body wave function is expected to have a complicated phase, the leading order contribution to the energy can be computed by minimizing a simple functional of the density alone.

  8. An Empirical Formula for the Measurement of Spatial Coherence of Trapped Bose Gases

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-Ji; CHEN Shuai; WANG Yi-Qiu; CHEN Xu-Zong; ZHANG Jian-Wei

    2001-01-01

    An empirical formula, which demonstrates the interference fringe visibility as a function of the slit separation and the temperature of thermal atoms, is obtained by analysing a recent experiment [B1och et al. Nature 403 (2000)166] that refers to the spatial correlation function of a trapped Bose gas below the critical temperature. We find that the decay rate of the coherence function for the non-condensed component is about two orders larger than that of the pure condensed component. The changes of the interference fringe visibility versus the falling time for different temperatures and slit separations are also discussed.

  9. Paleoecology reconstruction from trapped gases in a fulgurite from the late Pleistocene of the Libyan Desert

    Science.gov (United States)

    Navarro, Gonzalez R.; Mahan, S.A.; Singhvi, A.K.; Navarro-Aceves, R.; Rajot, J.-L.; McKay, C.P.; Coll, P.; Raulin, F.

    2007-01-01

    When lightning strikes the ground, it heats, melts, and fuses the sand in soils to form glass tubes known as fulgurites. We report here the composition of CO2, CO, and NO contained within the glassy bubbles of a fulgurite from the Libyan Desert. The results show that the fulgurite formed when the ground contained 0.1 wt% organic carbon with a C/N ratio of 10-15 and a ??13C of -13.96???, compositions similar to those found in the present-day semiarid region of the Sahel, where the vegetation is dominated by C4, plants. Thermoluminescence dating indicates that this fulgurite formed ???15 k.y. ago. These results imply that the semiarid Sahel (at 17??N) reached at least to 24??N at this time, and demonstrate that fulgurite gases and luminescence geochronology can be used in quantitative paleoecology. ?? 2007 Geological Society of America.

  10. Non intrusive spectroscopic investigations of soot and unburnt hydrocarbons in combustion gases

    Science.gov (United States)

    Hilton, Moira; Arrigone, Giovanni M.; Miller, Michael N.

    1999-09-01

    Fourier Transform Infrared (FTIR) spectroscopy was used to investigate the IR spectral absorption of soot particles from a Palas smoke generator. A TSI Condensation Particle Counter was used to quantify the number of soot particles produced and this was related to the intensity of the IR absorption. The broad band IR absorption increases with soot particle count but quantitative measurements of total soot mass were not obtained because accurate size distributions of the particles were not available. A sample of gas turbine engine exhaust gas was analyzed by Gas Chromatography-Mass Spectroscopy to determine the primary constituent unburnt hydrocarbon (UHC) species. Their relative proportions were measured with a Flame Ionization Detector (FID). These species are predominantly unsaturated C2 to C6 hydrocarbons. The infrared absorption spectrum of the exhaust gas sample was compared with that of combustion products from a laboratory kerosene burner using a multipass White cell. These were also compared with reference spectra and IR spectra of UHCs obtained non-intrusively from gas turbine engine tests. There are IR spectral band shape differences indicating that the relative proportions of the constituent UHCs in gas turbine exhaust are different from those in a kerosene burner plume.

  11. Spatial shaping for generating arbitrary optical dipoles traps for ultracold degenerate gases

    CERN Document Server

    Lee, Jeffrey G

    2014-01-01

    We present two spatial-shaping approaches -- phase and amplitude -- for creating two-dimensional optical dipole potentials for ultracold neutral atoms. When combined with an attractive or repulsive Gaussian sheet formed by an astigmatically focused beam, atoms are trapped in three dimensions resulting in planar confinement with an arbitrary network of potentials -- a free-space atom chip. The first approach utilizes an adaptation of the generalized phase-contrast technique to convert a phase structure embedded in a beam after traversing a phase mask, to an identical intensity profile in the image plane. Phase masks, and a requisite phase-contrast filter, can be chemically etched into optical material (e.g., fused silica) or implemented with spatial light modulators; etching provides the highest quality while spatial light modulators enable prototyping and realtime structure modification. This approach was demonstrated on an ensemble of thermal atoms. Amplitude shaping is possible when the potential structure ...

  12. Density-functional theory of strongly correlated Fermi gases in elongated harmonic traps

    Science.gov (United States)

    Xianlong, Gao; Polini, Marco; Asgari, Reza; Tosi, M. P.

    2006-03-01

    Two-component Fermi gases with tunable repulsive or attractive interactions inside quasi-one-dimensional (Q1D) harmonic wells may soon become the cleanest laboratory realizations of strongly correlated Luttiger and Luther-Emery liquids under confinement. We present a microscopic Kohn-Sham density-functional theory of these systems, with specific attention to a gas on the approach to a confinement-induced Feshbach resonance. The theory employs the one-dimensional Gaudin-Yang model as the reference system and transfers the appropriate Q1D ground-state correlations to the confined inhomogeneous gas via a suitable local-density approximation to the exchange and correlation energy functional. Quantitative understanding of the role of the interactions in the bulk shell structure of the axial density profile is thereby achieved. While repulsive intercomponent interactions depress the amplitude of the shell structure of the noninteracting gas, attractive interactions stabilize atomic-density waves through spin pairing. These should be clearly observable in atomic clouds containing of the order of up to 100 atoms.

  13. CARIBIC observations of greenhouse gases and non-methane hydrocarbons on flights between Germany and South Africa

    Science.gov (United States)

    Brenninkmeijer, C. A.; Schuck, T. J.; Baker, A. K.; van Velthoven, P.

    2012-12-01

    Since May 2005 the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com) has made near-monthly deployments of an atmospheric observatory making measurements from aboard a Lufthansa Airbus A340-600 during routine passenger flights. Flights originate in Frankfurt, Germany and serve a large number of destinations, among them Cape Town and Johannesburg in South Africa. On these flights, which took place primarily during northern hemisphere winter 2010/2011, a near-meridional profile was obtained over Europe and Africa, in similar fashion to HIPPO flight tracks over the Pacific, be it without vertical profiles. Over Central Africa, deep convection transports boundary layer air to the free troposphere, linking observations at cruise altitude to surface emissions and allowing for the investigation of emissions and sources of atmospherically relevant species in Africa. Mixing ratios of greenhouse gases (methane, carbon dioxide, sulfur hexafluoride and nitrous oxide) and a suite of C2-C8 non-methane hydrocarbons (NMHC) are measured from flask samples collected at cruise altitude during flight. Several tracers, for example methane, carbon monoxide, and various NMHC, exhibit enhanced mixing ratios over tropical Africa. Using tracer-tracer correlations to characterize methane emissions from Africa, we find that biomass burning made a major contribution to the methane burden, but that also biogenic sources, such as wetlands, play a significant role. We also compare these measurements to those conducted earlier over India, which were used to investigate sources and emissions of greenhouse gases during the South Asian summer monsoon.

  14. Recombination luminescence and trap levels in undoped and Al-doped ZnO thin films on quartz and GaSe (0 0 0 1) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Evtodiev, I. [Moldova State University, 60 A. Mateevici Str., Chisinau, MD 2009, Republic of Moldova (Moldova, Republic of); Caraman, I. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania); Leontie, L., E-mail: lleontie@uaic.ro [Alexandru Ioan Cuza University of Iasi, Bd. Carol I, Nr. 11, RO 700506 Iasi (Romania); Rusu, D.-I. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania); Dafinei, A. [Faculty of Physics, University of Bucharest, Platforma Magurele, Str. Fizicienilor nr. 1, CP Mg - 11, Bucharest-Magurele, RO 76900 (Romania); Nedeff, V.; Lazar, G. [Vasile Alecsandri University of Bacau, 157 Calea Marasesti, RO 600115 Bacau (Romania)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer ZnO films on GaSe create electron trapping states and PL recombination levels. Black-Right-Pointing-Pointer Zn and Al diffusion in GaSe produces low-energy widening of its PL emission. Black-Right-Pointing-Pointer ZnO:Al films on GaSe lamellas are suitable for gas-discharge lamp applications. -- Abstract: Photoluminescence spectra of ZnO and ZnO:Al (1.00, 2.00 and 5.00 at.%) films on GaSe (0 0 0 1) lamellas and amorphous quartz substrates, obtained by annealing, at 700 K, of undoped and Al-doped metal films, are investigated. For all samples, the nonequilibrium charge carriers recombine by radiative band-to-band transitions with energy of 3.27 eV, via recombination levels created by the monoionized oxygen atoms, forming the impurity band laying in the region 2.00 - 2.70 eV. Al doping induces an additional recombination level at 1.13 eV above the top of the valence band of ZnO films on GaSe substrates. As a result of thermal diffusion of Zn and Al into the GaSe interface layer from ZnO:Al/GaSe heterojunction, electron trap levels located at 0.22 eV and 0.26 eV below the conduction band edge of GaSe, as well as a deep recombination level, responsible for the luminescent emission in the region 1.10 - 1.40 eV, are created.

  15. Analysis of lightweight gases by quadrupole ion trap mass spectrometry for the safety of the American Space Shuttle program

    Science.gov (United States)

    Ottens, Andrew Keith

    The quadrupole ion trap mass spectrometer (QITMS) was patented nearly 50 years ago, when it was proposed for trace analysis of lightweight gas mixtures. Though a commercial success, QITMS has been used with analytes of ever-increasing size. We evaluated QITMS for quantifying lightweight gas mixtures with the performance compared to other mass analyzer technologies. The National Aeronautics and Space Administration (NASA) uses mass spectrometers to monitor the amount of hydrogen, helium, oxygen, and argon in the nitrogen-purged Space Shuttle. The explosive hazard of the cryogenic hydrogen and oxygen used to propel the Space Shuttle makes leak detection imperative. The two present-day leak detectors are remotely located because of their large size and sensitivity to vibration. Analysis is delayed by up to 45 s, and only two samples can be monitored simultaneously. In 2000, NASA initiated the Advanced Hazardous Gas Detection project to develop a compact, rugged, and fast mass spectrometer to be placed in multiple locations next to the Space Shuttle to provide real-time analysis with increased redundancy. The QITMS instrumentation was modified specifically for this application. The RF drive frequency was increased to 2.5 MHz to adequately trap lightweight hydrogen and helium ions. Internal ionization was preferred for use without a collision gas, along with an open source configuration that provided rapid sample replacement. The modern electronics incorporated were controlled by customized software. Analytes were found to react rapidly with abundant background gases. The QITMS operating conditions were optimized to minimize negative effects of ion-molecule reactions while maximizing analytical performance. A custom segmented scan function was developed with a total scan time of 14 ms, averaging 70 scans per data point at the required 1 Hz update rate. The QITMS met requirements for detection limits, accuracy, precision, response time, and recovery time. The linear

  16. Outlook for prospecting for lithological traps of nonanticlinal type of hydrocarbons in the lower-middle Jurassic deposits of central West Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Yasovich, G.S.; Myasnikova, G.P.; Sidorenkov, A.I.; Zmanovskaya, O.I.

    1981-01-01

    A study is made of the laws governing the arrangement and conditions of the formation of large and regional zones of formation of lithological traps of hydrocarbons. It made it possible to reveal four basic types of genetic roots of these tasks developed within the examined region. An analysis is made from these viewpoints of the features of the lower-middle Jurassic sedimentation and the potentialities for forming traps of the nonanyiclinal type on the territory of the main structural elements of the region. Considerations are expressed for the possible development of nonanticlinal traps of a certain type within the boundaries of these structural elements.

  17. The release of trapped gases from amorphous solid water films. I. "Top-down" crystallization-induced crack propagation probed using the molecular volcano.

    Science.gov (United States)

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-03-14

    In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013)), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the "molecular volcano." The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ∕mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization∕crack front into the film is in good agreement with the temperature programmed desorption results.

  18. H3(+) as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in X(n)H3(+) (n = 1-3).

    Science.gov (United States)

    Pauzat, F; Ellinger, Y; Pilmé, J; Mousis, O

    2009-05-07

    Recent studies on the formation of XH(3)(+) noble gas complexes have shown strategic implications for the composition of the atmospheres of the giant planets as well as for the composition of comets. One crucial factor in the astrophysical process is the relative abundances of the noble gases versus H(3)(+). It is the context in which the possibility for clustering with more than one noble gas (X(n)H(3)(+) up to n = 3) has been investigated for noble gases X ranging from neon to krypton. In order to assert our results, a variety of methods have been used including ab initio coupled cluster CCSD and CCSD(T), MP2, and density functional BH&HLYP levels of theory. All complexes with one, two, and three noble gases are found to be stable in the Ne, Ar, and Kr families. These stable structures are planar with the noble gases attached to the apices of the H(3)(+) triangle. The binding energy of the nth atom, defined as the X(n)H(3)(+) --> X(n-1)H(3)(+) + X reaction energy, increases slightly with n varying from 1 to 3 in the neon series, while it decreases in the argon series and shows a minimum for n = 2 in the krypton series. The origin of this phenomenon is to be found in the variations in the respective vibrational energies. A topological analysis of the electron localization function shows the importance of the charge transfer from the noble gases toward H(3)(+) as a driving force in the bonding along the series. It is also consistent with the increase in the atomic polarizabilities from neon to krypton. Rotational constants and harmonic frequencies are reported in order to provide a body of data to be used for the detection in laboratory prior to space observations. This study strongly suggests that the noble gases could be sequestered even in an environment where the H(3)(+) abundance is small.

  19. Comparison of hydrocarbon gases (C{sub 1}-C{sub 5}) production from Carboniferous Donets (Ukraine) and Cretaceous Sabinas (Mexico) coals

    Energy Technology Data Exchange (ETDEWEB)

    Alsaab, D.; Elie, M.; Izart, A.; Martinez, L. [G2R, Nancy - Universite, CNRS, CREGU, BP-239, 54506 Vandoeuvres-les-Nancy (France); Sachsenhofer, R.F. [Institut fuer Geowissenschaften, Montanuniversitaet Leoben, Peter-Tunner-Strasse 5, A-8700 Leoben (Austria); Privalov, V.A. [Donetsk National Technical University, Artem str., 58, UA-83000 Donetsk (Ukraine); Suarez-Ruiz, I. [Instituto Nacional del Carbon - (INCAR) - CSIC. Ap.Co., 73, 33080-Oviedo (Spain)

    2008-04-03

    The main purpose of this contribution is to compare the ability of Carboniferous coals from the Donets Basin of the Ukraine and Cretaceous coal from the Sabinas Basin of the Mexico to generate hydrocarbon gases (C{sub 1}-C{sub 5}). Two bituminous coals from the Donets Basin (2c10YD and 1l1Dim; 0.55 and 0.65%R{sub r} respectively) and one bituminous coal from the Sabinas Basin (Olmos, 0.92%R{sub r}) were studied using heating experiments in a confined-pyrolysis system. The highest rank reached during the heating experiments corresponds to the anthracite stage (2.78 and 2.57%R{sub r}) for the 2c10YD and 1l1Dim coals and (2.65%R{sub r}) for the Olmos coal. The composition of the generated (C{sub 1}-C{sub 5}) gases was evaluated using a thermodesorption-multidimensional gas chromatography. The results show that the Carboniferous Donets coals produced more wet gas and methane during pyrolysis than the Cretaceous Olmos coal. This is probably due to their higher liptinite (6-20%) and collodetrinite content and to the loss of a major part of the petroleum potential of the Olmos coal during natural coalification. C{sub 2}-C{sub 5} compounds are mainly derived from the cracking of liquid hydrocarbons. Ethane is the most stable compound and formed from the cracking of higher hydrocarbon component. Large amounts of methane (up to 81 mg/g coal for the Donets coals and 50 mg/g coal for the Sabinas coal) were formed at high temperatures by cracking of previously formed heavier hydrocarbons and by dealkylation of the coal matrix. A linear relationship was observed between methane generation and the maturity level of both coal types. (author)

  20. Unraveling the Timing of Fluid Migration and Trap Formation in the Brooks Range Foothills: A Key to Discovering Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Catherine L. Hanks

    2008-12-31

    location varies. Fracturing started in the southwest deep in the stratigraphic section during the Late Jurassic and Early Cretaceous, moving northeastward and upsection as the Colville basin filled from the west. Active fracturing is occurring today in the northeastern parts of the Colville basin, north of the northeastern Brooks thrust front. Across northern Alaska, the early deep basin fractures were probably synchronous with hydrocarbon generation. Initially, these early fractures would have been good migration pathways, but would have been destroyed where subsequently overridden by the advancing Brooks Range fold-and-thrust belt. However, at these locations younger fracture sets related to folding and thrusting could have enhanced reservoir permeability and/or served as vertical migration pathways to overlying structural traps.

  1. Geochemical characteristics of light hydrocarbons in cracking gases from chloroform bitumen A,crude oil and its fractions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The composition characteristics of light hydrocarbons from crude oil,chloroform bitumen A,saturated hydrocarbon fraction,aromatic hydrocarbon fraction,and asphaltene fraction during cracking have been studied systematically. The results revealed that the content of n-alkanes,branched alkanes and cycloalkanes in light hydrocarbons from the samples gradually decreased as the simulation temperature increased,and finally almost depleted completely,while the abundance of methane,benzene and its homologues increased obviously and became the main products. The ratios of benzene/n-hexane and toluene/n-heptane can be used as measures for oil cracking levels. Variation characteristics of maturity parameters of light hydrocarbons,for example,iC4/nC4,iC5/nC5,isoheptane value,2,2-DMC4/nC6,and 2-MC6+3-MC6/nC7 for different samples with increasing pyrolysis temperature,are consistent with those in petroleum reservoirs,indicating that these parameters may be efficient maturity index.

  2. Towards biomarker analysis of hydrocarbons trapped in individual fluid inclusions: First extraction by ErYAG laser

    Science.gov (United States)

    Hode, Tomas; Zebühr, Yngve; Broman, Curt

    2006-12-01

    Fluid inclusions act as sealed vessels containing information about the fluid environment in which the minerals precipitated, and until decrepitated, the chemical composition of the fluid inside the inclusion stays intact. In many cases fluid inclusions contain trapped hydrocarbons, which may provide useful information in paleontological, organic geochemical and astrobiological research since they act as containers of non-contaminated organic matter with a defined minimum age. Here we present a novel concept for extraction of fluid inclusions in preparation for application to extract single fluid inclusions. The method is based on the illumination of a sample with an ErYAG laser ( λ=2940nm). The wavelength of the laser is absorbed by water and organic material, and with the minerals encapsulating the inclusions transparent to the wavelength, the fluid will expand and the inclusion will decrepitate. The initial results of our study demonstrate that fluid inclusions can be extracted by the use of an ErYAG laser, and that organic biomarkers may survive the process, readily available for GC-MS analysis.

  3. Comparison of purge and trap GC/MS and purgeable organic chloride analysis for monitoring volatile chlorinated hydrocarbons

    Science.gov (United States)

    Barber, Larry B.; Thurman, E. Michael; Takahashi, Yoshi; Noriega, Mary C.

    1992-01-01

    A combined field and laboratory study was conducted to compare purge and trap gas chromatography/mass spectrometry (PT-GC/MS) and purgeable organic chloride (POCl) analysis for measuring volatile chlorinated hydrocarbons (VCH) in ground water. Distilled-water spike and recovery experiments using 10 VCH indicate that at concentrations greater than 1 ??g/l recovery is more than 80 percent for both methods with relative standard deviations of about 10 percent. Ground-water samples were collected from a site on Cape Cod, Massachusetts, where a shallow unconfined aquifer has been contaminated by VCH, and were analyzed by both methods. Results for PT-GC/MS and POCl analysis of the ground-water samples were not significantly different (alpha = 0.05, paired t-test analysis) and indicated little bias between the two methods. Similar conclusions about concentrations and distributions of VCH in the ground-water contamination plume were drawn from the two data sets. However, only PT-GC/MS analysis identified the individual compounds present and determined their concentrations, which was necessary for toxicological and biogeochemical evaluation of the contaminated ground water. POCl analysis was a complimentary method for use with PT-GC/MS analysis for identifying samples with VCH concentrations below the detection limit or with high VCH concentrations that require dilution. Use of POCl as a complimentary monitoring method for PT-GC/MS can result in more efficient use of analytical resources.

  4. Direct catalytic conversion of methane and light hydrocarbon gases. Final report, October 1, 1986--July 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.B. Jr.; Posin, B.M.; Chan, Yee-Wai

    1995-06-01

    This project explored conversion of methane to useful products by two techniques that do not involve oxidative coupling. The first approach was direct catalytic dehydrocoupling of methane to give hydrocarbons and hydrogen. The second approach was oxidation of methane to methanol by using heterogenized versions of catalysts that were developed as homogeneous models of cytochrome-P450, an enzyme that actively hydroxylates hydrocarbons by using molecular oxygen. Two possibilities exist for dehydrocoupling of methane to higher hydrocarbons: The first, oxidative coupling to ethane/ethylene and water, is the subject of intense current interest. Nonoxidative coupling to higher hydrocarbons and hydrogen is endothermic, but in the absence of coke formation the theoretical thermodynamic equilibrium yield of hydrocarbons varies from 25% at 827{degrees}C to 65% at 1100{degrees}C (at atmospheric pressure). In this project we synthesized novel, highly dispersed metal catalysts by attaching metal clusters to inorganic supports. The second approach mimics microbial metabolism of methane to produce methanol. The methane mono-oxygenase enzyme responsible for the oxidation of methane to methanol in biological systems has exceptional selectivity and very good rates. Enzyme mimics are systems that function as the enzymes do but overcome the problems of slow rates and poor stability. Most of that effort has focused on mimics of cytochrome P-450, which is a very active selective oxidation enzyme and has a metalloporphyrin at the active site. The interest in nonporphyrin mimics coincides with the interest in methane mono-oxygenase, whose active site has been identified as a {mu}-oxo dinuclear iron complex.We employed mimics of cytochrome P-450, heterogenized to provide additional stability. The oxidation of methane with molecular oxygen was investigated in a fixed-bed, down-flow reactor with various anchored metal phthalocyanines (PC) and porphyrins (TPP) as the catalysts.

  5. Supercritical fluid extraction with carbon nanotubes as a solid collection trap for the analysis of polycyclic aromatic hydrocarbons and their derivatives.

    Science.gov (United States)

    Han, Yehua; Ren, Limin; Xu, Kai; Yang, Fan; Li, Yongfeng; Cheng, Tingting; Kang, Xiaomeng; Xu, Chunming; Shi, Quan

    2015-05-22

    A supercritical fluid extraction (SFE) method with an online solid collection trap has been developed for the quantitative analysis of 16 polycyclic aromatic hydrocarbons (PAHs) and 15 typical PAH derivatives in solid matrix. Compared with liquid trapping and C18 solid-phase trapping, multi-walled carbon nanotubes (CNTs) were proved to be the most efficient trapping sorbent for the collection of PAHs and their nitro-, oxy- and alkyl-derivatives. The proposed extraction-collection procedure was systematically optimized in terms of pressure, temperature, extraction time, trapping materials, supercritical fluid flow rate, co-solvent type, and co-solvent percentage, taking into account the interaction between these variables. The whole extraction process could be completed in 15min followed by GC-MS analysis. Quantitative recoveries of PAHs and their derivatives from spiked soil samples (50ngg(-1)) were obtained in the range of 62.9-111.8% with the precisions (RSD, intra-day) ranged from 1.9% to 13.7%. The developed SFE method with online CNTs trapping followed by GC-MS analysis has been demonstrated to be an efficient way for quantitative analysis of trace-level PAHs and their nitro-, oxy-, and alkyl-derivatives in soil samples.

  6. Selective adsorption of volatile hydrocarbons and gases in high surface area chalcogels containing [ES3]3- anions (E = As, Sb)

    KAUST Repository

    Ahmed, Ejaz

    2014-11-25

    We describe the sol-gel synthesis of the two new chalcogels KFeSbS3 and NaFeAsS3, which demonstrate excellent adsorption selectivity for volatile hydrocarbons and gases. These predominantly mesoporous materials have been synthesized by reacting Fe(OAc)2 with K3SbS3 or Na3AsS3 in a formamide/water mixture at room temperature. Aerogels obtained after supercritical drying have BET surface areas of 636 m2/g and 505 m2/g for KFeSbS3 and NaFeAsS3, respectively, with pore sizes in the micro- (below 2 nm), meso- (2-50 nm), and macro- (above 50 nm) regions.

  7. Permeable membranes - a tool for simplified sampling of hydrocarbon gases?; Permeable Membranen - Ein Wekzeug zur vereinfachten Probenahme von Kohlenwasserstoff-Gasen?

    Energy Technology Data Exchange (ETDEWEB)

    Faber, E.; Hollerbach, A.; Poggenburg, J.; Stahl, W. [BGR, Hannover (Germany); Kaiser, H. [KaiserGEOconsult GmbH, Erlangen (Germany); Huebner, M. [Siemens AG, Erlangen (Germany); Tobschall, H.J. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Angewandte Geologie

    1998-12-31

    Tissue membranes are commonly used for leak detection in gas pipes. Another interesting application is in the isolation of hydrocarbons in water, sediments and soils. this requires knowledge of the time variations of the parameters of the diffusion gases, e.g. gas and isotope fractionations. Laboratory experiments were carried out in order to describe these parameters. (orig.) [Deutsch] Membranen haben die spezifische Eigenschaft fuer bestimmte Stoffe in der Gasphase durchlaessig, fuer andere mehr oder weniger undurchlaessig zu sein. Grundlage fuer ein derartiges Trennverhalten ist die Gasdiffusion durch Membranen, die mit unterschiedlichen Diffusionskoeffizienten der verschiedenen Komponenten erfolgt. Membranen in Schlauchform sind in industriellem Massstab verfuegbar und werden zur Erkennung von Ortung von Gas-Leckagen eingesetzt (Huebner und Lilie, 1997). Ueber die Leckage-Thematik hinaus besteht Interesse, das Membransystem fuer neue Anwendungsbereiche wie z.B. die Isolierung von Kohlenwasserstoffgasen aus Wasser, Sedimenten oder auch Boeden zu verwenden, um detaillierte Informationen ueber ihre Natur und ihre Herkunft aus der Gaszusammensetzung und den Kohlenstoff-Isotopenwerten (Faber, 1987) abzuleiten. Voraussetzung hierfuer ist die Kenntnis ueber die zeitlichen Aenderungen der Parameter der diffundierenden Gase, d.h. ueber die bei Diffusionsvorgaengen grundsaetzlich auftretenden Gas- und Isotopenfraktionierungen. Verschiedene Laborversuche wurden durchgefuehrt, um diese Parameter zu bestimmen. (orig.)

  8. Statistics of work and orthogonality catastrophe in discrete level systems: an application to fullerene molecules and ultra-cold trapped Fermi gases

    Directory of Open Access Journals (Sweden)

    Antonello Sindona

    2015-03-01

    Full Text Available The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.

  9. Statistics of work and orthogonality catastrophe in discrete level systems: an application to fullerene molecules and ultra-cold trapped Fermi gases.

    Science.gov (United States)

    Sindona, Antonello; Pisarra, Michele; Gravina, Mario; Vacacela Gomez, Cristian; Riccardi, Pierfrancesco; Falcone, Giovanni; Plastina, Francesco

    2015-01-01

    The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.

  10. Direct catalytic conversion of methane and light hydrocarbon gases. Quarterly report No. 6, January 16, 1988--April 15, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.B. Jr.; Chan, Yee Wai; Posin, B.M.

    1988-05-20

    The goal of this research is to develop catalysts that directly convert methane and light hydrocarbons to intermediates that later can be converted to either liquid fuels or value-added chemicals, as economics dictate. During this reporting period, we synthesized several phthalocyanine catalysts supported on magnesia (MgO) in Task 3. In Task 4 we have tested these catalysts for oxidation of methane and did a number of blank experiments to determine the cause of the low methanol yield we have observed. Magnesia supported catalysts were prepared by first synthesizing the various metal tetrasulfophthalocyanines (TSPCs), converting them to the acid form, and then supporting these complexes on a basic support (MgO) by a neutralization reaction. The metals used were Ru, Pd, Cu, Fe, Co, Mn, and Mo. CoTSPC was also synthesized in zeolite Y using our standard template techniques described in Quarterly Report No. 1. These complexes were examined for catalytic activity in the oxidation of methane. The PdTSPC/MgO had greater activity, and oxidized some of the methane (selectivity of 2.8% from the methane oxidized at 375{degrees}C) to ethane. This is a much lower temperature for this reaction than previously reported in the literature. We also examined the reactivity of various components of the system in the oxidation of the product methanol. The reactor showed some activity for the oxidation of methanol to carbon dioxide. When zeolite or magnesia were added, this activity increased. The magnesia oxidized most of the methanol to carbon dioxide, while the zeolite reduced some of the methanol to hydrocarbons. With oxygen in the feed gas stream (i.e., the conditions of our methane oxidation), a very large fraction of the methanol was oxidized to carbon dioxide when passed over magnesia. From this, we can conclude that any methanol formed in the oxidation of methane would probably be destroyed very quickly on the catalyst bed.

  11. Gas chromatography for in situ analysis of a cometary nucleus. II. Analysis of permanent gases and light hydrocarbons with a carbon molecular sieve porous layer open tubular column.

    Science.gov (United States)

    Szopa, C; Sternberg, R; Coscia, D; Raulin, F; Vidal-Madjar, C

    2000-12-22

    Considering the severe constraints of space instrumentation, a great improvement for the in situ gas chromatographic (GC) determination of permanent and noble gases in a cometary nucleus is the use of a new carbon molecular sieve porous layer open tubular (PLOT) column called Carbobond. No exhaustive data dealing with this column being available, studies were carried out to entirely characterize its analytical performances, especially when used under the operating conditions of the cometary sampling and composition (COSAC) experiment of the European Space Agency (ESA) Rosetta space mission to be launched in 2003 for a rendezvous with comet 46 P/Wirtanen in 2011. The high efficiency and speed of analysis of this column at both atmospheric and vacuum outlet column pressure is demonstrated, and the kinetic mass transfer contribution of this carbon molecular sieve adsorbent is calculated. Besides, differential adsorption enthalpies of several gases and light hydrocarbons were determined from the variation of retention volume with temperature. The data indicate close adsorption behaviors on the Carbobond porous layer adsorbent and on the carbon molecular sieve Carboxen support used to prepare the packed columns. Moreover, taking into account the in situ operating conditions of the experiment, a study of two columns with different porous layer thicknesses allowed one to optimize the separation of the target components and to select the column parameters compatible with the instrument constraints. Comparison with columns of similar selectivity shows that these capillary columns are the first ones able to perform the same work as the packed and micro-packed columns dedicated to the separation of this range of compounds in GC space exploration.

  12. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    Science.gov (United States)

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  13. Rare Earth Chalcogels NaLnSnS4 (Ln = Y, Gd, Tb) for Selective Adsorption of Volatile Hydrocarbons and Gases

    KAUST Repository

    Edhaim, Fatimah

    2017-06-28

    The synthesis and characterization of the rare earth chalcogenide aerogels NaYSnS4, NaGdSnS4, and NaTbSnS4 is reported. Rare earth metal ions like Y3+, Gd3+, and Tb3+ react with the chalcogenide clusters [SnS4]4– in aqueous formamide solution forming extended polymeric networks by gelation. Aerogels obtained after supercritical drying have BET surface areas of 649 m2·g–1 (NaYSnS4), 479 m2·g–1 (NaGdSnS4), and 354 m2·g–1 (NaTbSnS4). Electron microscopy and physisorption studies reveal that the new materials have pores in the macro (above 50 nm) and meso (2–50 nm) regions. These aerogels show higher adsorption of toluene vapor over cyclohexane vapor and CO2 over CH4 or H2. The notable adsorption capacity for toluene (NaYSnS4: 1108 mg·g–1; NaGdSnS4: 921 mg·g–1; and NaTbSnS4: 645 mg·g–1) and high selectivity for gases (CO2/H2: 172 and CO2/CH4: 50 for NaYSnS4, CO2/H2: 155 and CO2/CH4: 37 for NaGdSnS4, and CO2/H2: 75 and CO2/CH4: 28 for NaTbSnS4) indicate potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes.

  14. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-06-01

    Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  15. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  16. Nose Structure Delineation of Bouguer Anomaly as the Interpretation Basis of Probable Hydrocarbon Traps: A Case Study on the Mainland Area of Northwest Java Basin

    Directory of Open Access Journals (Sweden)

    Kamtono Kamtono

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i3.144Two important aspects in the exploration of oil and gas are technology and exploration concepts, but the use of technology is not always suitable for areas with geological conditions covered by young volcanic sediments or limestone. The land of the Northwest Java Basin is mostly covered by young volcanic products, so exploration using seismic methods will produce less clear image resolution. To identify and interpret the subsurface structure and the possibility of hydrocarbon trap, gravity measurements have been carried out. Delineation of nose structures of a Bouguer anomaly map was used to interpret the probability of hydrocarbon traps. The result of the study shows that the gravity anomalies could be categorized into three groups : low anomaly (< 34 mgal, middle anomaly (34 - 50 mgal, and high anomaly (> 50 mgal. The analysis of Bouguer anomaly indicates that the low anomaly is concentrated in Cibarusa area as a southern part of Ciputat Subbasin, and in Cikampek area. The result of delineation of the Bouguer anomaly map shows the nose structures existing on Cibinong-Cileungsi and Pangkalan-Bekasi Highs, while delineation of residual anomaly map shows the nose structures occurs on Cilamaya-Karawang high. Locally, the gas fields of Jatirangon and Cicauh areas exist on the flank of the nose structure of Pangkalan-Bekasi High, while the oil/gas field of Northern Cilamaya is situated on the flank of the nose structure of Cilamaya-Karawang High. The concept of fluid/gas migration concentrated on nose structures which are delineated from gravity data can be applied in the studied area. This concept needs to be tested in other oil and gas field areas.

  17. Total cross sections for ultracold neutrons scattered from gases

    Science.gov (United States)

    Seestrom, S. J.; Adamek, E. R.; Barlow, D.; Blatnik, M.; Broussard, L. J.; Callahan, N. B.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Dees, E. B.; Fox, W.; Hoffbauer, M.; Hickerson, K. P.; Holley, A. T.; Liu, C.-Y.; Makela, M.; Medina, J.; Morley, D. J.; Morris, C. L.; Pattie, R. W.; Ramsey, J.; Roberts, A.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S. K. L.; Slaughter, B. A.; Walstrom, P. L.; Wang, Z.; Wexler, J.; Womack, T. L.; Young, A. R.; Vanderwerp, J.; Zeck, B. A.

    2017-01-01

    We have followed up on our previous measurements of upscattering of ultracold neutrons (UCNs) from a series of gases by making measurements of total cross sections on the following gases hydrogen, ethane, methane, isobutene, n -butane, ethylene, water vapor, propane, neopentane, isopropyl alcohol, and 3He . The values of these cross sections are important for estimating the loss rate of trapped neutrons due to residual gas and are relevant to neutron lifetime measurements using UCNs. The effects of the UCN velocity and path-length distributions were accounted for in the analysis using a Monte Carlo transport code. Results are compared to our previous measurements and with the known absorption cross section for 3He scaled to our UCN energy. We find that the total cross sections for the hydrocarbon gases are reasonably described by a function linear in the number of hydrogen atoms in the molecule.

  18. Stable isotope signatures of gases liberated from fluid inclusions in bedrock at Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Eichinger, F. (Hydroisotop GmbH, Schweitenkirchen (DE)); Meier, D.; Haemmerli, J.; Diamond, L. (Bern Univ. (CH), RWI, Institute of Geological Sciences)

    2010-12-15

    Fluid inclusions in quartzes of the Olkiluoto bedrock contain gaseous N{sub 2}, CO{sub 2}, H{sub 2}, CH{sub 4}, and higher hydrocarbons in varying proportions. Stable carbon and hydrogen isotope signatures of the gas phases give valuable information on their origin and the formation conditions. In previous studies, a method to liberate and quantify the gases trapped in fluid inclusions was developed. It allowed determining the carbon isotope signatures of liberated CO{sub 2}, CH{sub 4} and higher hydrocarbons (HHC), but no hydrogen isotope data were acquired. The method was advanced and, in this study, also stable hydrogen isotopes of CH{sub 4} and H{sub 2} liberated from fluid inclusions could be analysed. The stable carbon signatures of methane and higher hydrocarbons, as well as the hydrogen isotope signatures of methane indicate a predominant thermogenic provenance for those gases. (orig.)

  19. High-resolution gas chromatographic analysis of polycyclic aromatic hydrocarbons and aliphatic hydrocarbons; Separacion por cromatografia de gases de alta eficiencia de hidrocarburos aromaticos policiclicos, (PAH) y alifaticos (AH) ambientales, empleado como fases estacionarias OV-1 y SE-54

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M.; Gonzalez, D.

    1988-07-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons and aliphatic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column in two different polar stationary phases OV-1 and SE-54. The limitation and the advantages of the procedure are discussed in terms of separation, sensitivity and precision. (Author) 20 refs.

  20. Late production of hydrocarbon gases in sedimentary basins: kinetic and isotopic study; Genese tardive des gaz hydrocarbures dans les bassins sedimentaires: etude cinetique et isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Lorant, F.

    1999-06-23

    the mechanisms of cracking and the isotopic processes. Following this concept, a general class-compound model for the production and the degradation of oil and gas, including the calculation of the isotopic compositions, was set up. The kinetic scheme, based on that proposed by Behar et at. (1992), comprises 10 first-order reactions whose pre exponential factors (A) are not all the same. The various kinetic and isotopic parameters were determined on the basis of pyrolysis experiments performed on an immature Type II kerogen. The first simulations at low temperature show that this model can reproduce isotopic trends that are consistent with natural observations. However the current uncertainty on the isotopic parameters does not yet allow a confident utilization of the model to predict the {delta}{sup 13}C of hydrocarbon gases is the geological conditions. (author)

  1. High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6-11 μm range

    Science.gov (United States)

    Heinrich, Robert; Popescu, Alexandru; Hangauer, Andreas; Strzoda, Rainer; Höfling, Sven

    2017-08-01

    The availability of accurate and fast hydrocarbon analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in the petro-chemical industry. Primarily gas chromatographs measure the composition of hydrocarbon process streams. Due to sophisticated gas sampling, these analyzers are limited in response time. As hydrocarbons absorb in the mid-infrared spectral range, the employment of fast spectroscopic systems is highly attractive due to significantly reduced maintenance costs and the capability to setup real-time process control. New developments in mid-infrared laser systems pave the way for the development of high-performance analyzers provided that accurate spectral models are available for multi-species detection. In order to overcome current deficiencies in the availability of spectroscopic data, we developed a laser-based setup covering the 6-11 μm wavelength range. The presented system is designated as laboratory reference system. Its spectral accuracy is at least 6.6× 10^{-3} cm^{-1} with a precision of 3× 10^{-3} cm^{-1}. With a "per point" minimum detectable absorption of 1.3× 10^{-3} cm^{-1} Hz^{{-}{1/2}} it allows us to perform systematic measurements of hydrocarbon spectra of the first 7 alkanes under conditions which are not tabulated in spectroscopic database. We exemplify the system performance with measured direct absorption spectra of methane, propane, iso-butane, and a mixture of methane and propane.

  2. An apparatus for vapor conversion of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, K.; Matsumoto, I.

    1983-03-23

    The installation for vapor conversion of hydrocarbons (Uv) with the formation of a mixture of H2 and C02 is a catalyst chamber (KK) filled with longitudinally disposed thin pipes (with thin walls) or with pipe units made of dolomite, MgO or potassium aluminate. These pipes have a multilayered coating (Pk) on their internal and external surfaces (Pv), which contain catalytically active components. Such pipes or pipe units form a honeycombed structure with through longitudinal channels. The catalyst chamber itself is made of a ceramic material and has a heating winding outside for heating the catalyst. To save fuel and to increase the efficiency (KPD) of the heating device, the catalyst chamber is in turn enclosed by two additional shells filled with heat conducting packings which are easily penetrated by the gases being processed. The hydrocarbon vapors or gaseous fuel from the natural gas or methane and the steam are fed through the above cited heat exchange layers with packings into the facial part of the catalytic chamber, in which the conversion of the hydrocarbons occurs with the production of H2 and C02. From the catalyzer layer the mixture of gases and steam goes through a refrigerator into a trap for the steam excess and when it is necessary, into a C02 absorber and then, pure H2 is discharged from the latter. Such a catalytic installation is convenient to use for producing pure H2 from natural gas, methane, propane or kerosene.

  3. Synthetic gases production

    Energy Technology Data Exchange (ETDEWEB)

    Mazaud, J.P.

    1996-06-01

    The natural gas or naphtha are the main constituents used for the production of synthetic gases. Several production ways of synthetic gases are industrially used as for example the natural gas or naphtha catalytic reforming, the selective oxidation of natural gas or heavy fuels and the coal oxy-vapo-gasification. The aim of this work is to study the different steps of production and treatment of the synthetic gases by the way of catalytic reforming. The first step is the desulfurization of the hydrocarbons feedstocks. The process used in industry is described. Then is realized the catalytic hydrocarbons reforming process. After having recalled some historical data on the catalytic reforming, the author gives the reaction kinetics and thermodynamics. The possible reforming catalysts, industrial equipments and furnaces designs are then exposed. The carbon dioxide is a compound easily obtained during the reforming reactions. It is a wasteful and harmful component which has to be extracted of the gaseous stream. The last step is then the gases de-carbonation. Two examples of natural gas or naphtha reforming reactions are at last given: the carbon monoxide conversion by steam and the carbon oxides reactions with hydrogen (methanization). (O.M.). 8 figs., 6 tabs.

  4. Particle number counting statistics in ideal Bose gases

    National Research Council Canada - National Science Library

    Christoph Weiss; Martin Wilkens

    1997-01-01

    We discuss the exact particle number counting statistics of degenerate ideal Bose gases in the microcanonical, canonical, and grand-canonical ensemble, respectively, for various trapping potentials...

  5. Phase equilibria at low temperature for light hydrocarbons-methanol-water-acid gases mixtures: measurements and modelling; Equilibres de phases a basse temperature de systemes complexes CO{sub 2} - hydrocarbures legers - methanol - eau: mesures et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Ruffine, L.

    2005-10-15

    The need to develop and improve natural gas treatment processes is real. The petroleum industry usually uses separation processes which require phase equilibrium phenomena. Yet, the complexity of the phase equilibria involved results in a lack of data, which in turn limits the development of thermodynamic models. The first part of this work is devoted to experimental investigations for systems containing light hydrocarbons, methanol, water and acid gases. We present a new apparatus that was developed to measure vapor-liquid and vapor-liquid-liquid equilibria. It allowed us to obtain new phase composition data for the methanol-ethane binary system and different mixtures, and also to determine a part of the three phases equilibrium envelope of the same systems. In the second part of this work, we have developed a thermodynamic model based on the CPA equation of state. This choice may be justified by the presence of associating components like methanol, hydrogen sulfide and water in the systems. Such model is necessary for the design of gas treatment plants. Our model provides good results for phase equilibrium calculations for binaries systems without binary interaction parameter in many cases, and describes correctly the vapour-liquid and vapor-liquid-liquid equilibria for complex mixtures. (author)

  6. Genetic classification of natural gases in the Bozhong Depression, Bohai Bay, China

    Institute of Scientific and Technical Information of China (English)

    TANG Youjun; WEN Zhigang

    2007-01-01

    The geochemical characteristics of natural gases discovered in the Bozhong Depression are systematically described in this paper. The natural gases are composed mainly of hydrocarbon gases. Natural gases occurring in the Paleogene and older reservoirs are wet gases, whereas those in the Neogene reservoirs are dry gases. Methane and ethane in the gases are significantly different in carbon isotopic composition. The methane carbon isotopic composition of the gases in structure BZ28-1 and the ethane carbon isotopic composition of the gases in structure QHD30-1 are characterized by the heaviest values, respectively. The natural gases are in the mature to highly mature stages. The hydrocarbon gases are of organic origin and can be classified as oil-type gases, coal-derived gases and mixed gases with the third one accounting for the major portion.

  7. Plant hydrocarbon recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  8. Hydrocarbon pneumonia

    Science.gov (United States)

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  9. Late production of hydrocarbon gases in sedimentary basins: kinetic and isotopic study; Genese tardive des gaz hydrocarbures dans les bassins sedimentaires: etude cinetique et isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Lorant, F.

    1999-06-23

    The thermal decomposition of sedimentary organic matter, or kerogen, within the metagenesis zone (T > 170 deg. C) leads to the formation of large amounts of late gas, mainly composed by methane. The work reported in this dissertation aims at understanding and quantifying the mechanisms of late methane generation and isotopic fractionation. With this purpose, natural samples of Type II and Type III mature kerogens (Ro > 1.3%, H/C < 0.65), were artificially heated in both open (T = 350 to 900 deg. C at 25 deg. C/min) and closed (T = 375 to 550 deg. C with t = 1 to 216 h) systems. For each experiment, mass and atomic (C, H, O) balances were obtained by recovering, fractionating and quantifying the entire pyrolysis effluents. Moreover, the isotopic compositions ({sup 13}C/{sup 12}C ratios) of methane and insoluble residue produced in closed system were measured. These experimental simulations have shown that the amounts of methane generated in an open-pyrolysis system (9 to 40 mg/gC) are systematically inferior to that observed in a closed-pyrolysis system (44 to 68 mg/gC), even after correction of the possible C{sub 2}-C{sub 5} and C{sub 6+} hydrocarbons secondary cracking. This shift, which is larger for Type II kerogens compared to coals and Type II-S kerogens, seems to be correlated with the pyrite content of the samples. Based on the closed-pyrolysis system data, a kinetic scheme, suitable for both Type II and Type III kerogens, was established. It includes three consecutive reactions, whose apparent kinetic parameters do not allow accounting for the corresponding rate constants observed in open system: E{sub 1} = 64.7 kcal/mol and A{sub 1} = 2.58 x 10{sup 15} s{sup -1}, E{sub 2} = 52.8 kcal/mol and A{sub 2} = 5.50 x 10{sup 10} s{sup -1}, E{sub 3} = 55-58 kcal/mol and A{sub 3} = 7.52 x 10{sup 9} s{sup -1}. By extrapolation to geological setting, it was thus predicted that kerogens might generate about 15 mg/gC of late methane between 170 and 200 deg. C. In order

  10. Mantle hydrocarbons: abiotic or biotic?

    Science.gov (United States)

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10.

  11. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Isoparaffinic petroleum hydrocarbons, synthetic... hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the production... isoparaffinic petroleum hydrocarbons, produced by synthesis from petroleum gases consist of a mixture of...

  12. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    Science.gov (United States)

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  13. Irritant gases

    NARCIS (Netherlands)

    Meulenbelt, J

    2016-01-01

    Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was i

  14. Greenhouse Gases

    Science.gov (United States)

    ... life. Governments all around the world ban and control production and use of several industrial gases that destroy atmospheric ozone and create a hole in the ozone layer . At lower elevations of the atmosphere (the troposphere), ozone is harmful to ... for Future Emissions FAQs How much carbon dioxide is produced when ...

  15. Irritant gases

    NARCIS (Netherlands)

    Meulenbelt, J

    Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was

  16. Noble Gases

    Science.gov (United States)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  17. Effect of convective transport in porous media on the conditions of organic matter maturation and generation of hydrocarbons in trap rocks complexes

    Science.gov (United States)

    Yurie Khachay, Professor; Mindubaev, Mansur

    2016-04-01

    One of the main problems of the study of the intrusion thermal effects on the maturation of the organic matter is to estimate the volume, intensity, thermal effects of the intrusion and its redistribution in porous media by convection. A numerical algorithm for solving the problem of the developed convection in two-dimensional and three-dimensional models of the porous medium depending on the incline angle is developed. It is defined that the convective stability in the medium decreases with increasing incline angle. It was found that depending on the incline angle the structure of convection from many cells for a flat horizontal layer changes and it transfers to more elongated structures along the layer. It is shown that depending on the incline angles, invading sill and imbedding volume of the porous medium it can be realized either stationary or non-stationary convection that provides a principal different thermal conditions of hydrocarbons maturation in the motherboard porous medium. We give numerical examples of the influence of the incline angle on the flow structure inside the porous inclusion. By the stationary convection the volume of the boundary layers between the convective sells increases. That can lead to increasing of the part of motherboard rocks that are outer the temperature conditions of oil catalysis and as a consequence to the overestimation of the deposits.

  18. An installation for steam conversion of gases

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, K.; Matsumoto, I.

    1983-01-28

    An installation is proposed for steam conversion of a hydrocarbon gas in order to produce an inorganic gas which chiefly consists of H2 and CO in which the line for feeding the hydrocarbon gas has a steam generator which has a microcapillary structure made of sponge metal, inorganic heat resistant fibers of glass, Si02, Al203 or carbon, inorganic heat resistant fibers twisted into a fiber or a cord of multipore ceramic material; the installation is equipped with a heater which regulates the water temperature, in which the steam generator is submerged. The installation is designed for converting natural gas, C3H8, other hydrocarbon gases and vapors of liquid hydrocarbons (Uv) into H2 and CO. The design and disposition of the steam generator simplify the design of the device, eliminating the pump for feeding the steam and the device for premixing of the steam and hydrocarbon gas.

  19. Surface geochemical data evaluation and integration with geophysical observations for hydrocarbon prospecting, Tapti graben, Deccan Syneclise, India

    Institute of Scientific and Technical Information of China (English)

    T. Satish Kumar; A.M. Dayal; V. Sudarshan

    2014-01-01

    The Deccan Syneclise is considered to have significant hydrocarbon potential. However, significant hydrocarbon discoveries, particularly for Mesozoic sequences, have not been established through conventional exploration due to the thick basalt cover over Mesozoic sedimentary rocks. In this study, near-surface geochemical data are used to understand the petroleum system and also investigate type of source for hydrocarbons generation of the study area. Soil samples were collected from favorable areas identified by integrated geophysical studies. The compositional and isotopic signatures of adsorbed gaseous hydrocarbons (methane through butane) were used as surface indicators of pe-troleum micro-seepages. An analysis of 75 near-surface soil-gas samples was carried out for light hydrocarbons (C1-C4) and their carbon isotopes from the western part of Tapti graben, Deccan Syneclise, India. The geochemical results reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases. High concentrations of adsorbed thermogenic methane (C1 =518 ppb) and ethane plus higher hydrocarbons (∑C2+=977 ppb) were observed. Statistical analysis shows that samples from 13% of the samples contain anomalously high concentrations of light hydrocarbons in the soil-gas constituents. This seepage suggests largest magnitude of soil gas anomalies might be generated/source from Mesozoic sedimentary rocks, beneath Deccan Traps. The carbon isotopic composition of methane, ethane and propane ranges are from -22.5‰ to -30.2‰PDB, -18.0‰ to 27.1‰ PDB and 16.9‰e-32.1‰ PDB respectively, which are in thermogenic source. Surface soil sample represents the intersection of a migration conduit from the deep subsurface to the surface connected to sub-trappean Mesozoic sedimentary rocks. Prominent hydrocarbon concentra-tions were associated with dykes, lineaments and presented on thinner basaltic cover in the study area, which probably acts as channel for the

  20. 40 CFR 89.312 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... ppm CO2, ≤ 0.1 ppm NO) (Oxygen content between 18-21 percent vol.) (c) Calibration and span gases. (1... of the NO content); (v) CO2 and purified nitrogen. (3) The true concentration of a span gas must be... approval of the Administrator. (f) Hydrocarbon analyzer burner air. The concentration of oxygen for...

  1. Automatic unattended sampling and analysis of background levels of C 2;C 5 hydrocarbons

    Science.gov (United States)

    Mowrer, Jacques; Lindskog, Anne

    As part of the European program for monitoring anthropogenic air pollutants (EUROTRAC), C 2C 5 hydrocarbons (gas phase) are being routinely measured at a background station at Rörvik, Sweden. A 2 ℓ air sample is taken every 4 h, and a compressed air standard and helium blank are analysed daily. The method is based on adsorption of the hydrocarbons onto an active charcoal based adsorbent, desorption/crofocusing onto a capillary trap, and analysis using capillary gas chromatography with a flame ionization detector. A Perma Pure dryer is used to remove water from the sample, and hydrocarbons > C 6 are removed using a Tenax adsorbent. The analytical instrument can be left unattended for up to 2 weeks at a time, depending on the consumption of liquid nitrogen and the compressed gases. Baseline or near baseline resolution is obtained for the 23 hydrocarbons monitored in this study. Reproducibility for the C 2C 4 isomers is 1-2%, and 2-15% for the C 5 isomers. The detection limit is 1-7 pptv. Preliminary mean hydrocarbon concentrations are presented for the period 21 February-9 April 1989.

  2. Analysis of polycyclic aromatic hydrocarbons I. Determination by gas chromatography with glass and fused silica capillary columns; Analisis de Hidrocarburos aromaticos policiclicos. I. Determinacion por cromatografia de gases con columnas capilares de vidrio de silice fundida

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M. M.; Gonzalez, D.

    1987-07-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column. The limitations and the advantages of the procedure are discussed in terms of separation efficiency, sensitivity and precision. (Author) 17 refs.

  3. Hydrocarbon potential of Blantyre-Mount Emu Region (Darling Basin)

    Energy Technology Data Exchange (ETDEWEB)

    Sinelnikov, Andrei

    1995-09-01

    Currently available geologic and seismic data demonstrates a significant hydrocarbon potential within the Darling Basin, Australia . This region`s tectonic evolution has resulted in complex geological structures in which a wide range of hydrocarbon traps can be interpreted. This interpretation of seismic data shows that there are at least two reflectors (stratigraphic surfaces) considered favourable for the formation of stratigraphic traps. Seismic data and the structural maps presented lead to a new interpretation of Devonian traps. (author). figs., refs.

  4. Measuring Viscosities of Gases at Atmospheric Pressure

    Science.gov (United States)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  5. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.

    1987-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  6. Mechanics of gases; Mechanik der Gase

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Dieter [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany). BESSY II

    2010-07-01

    Compact synopsis for natural scientists, engineers and vacuum specialists. Application-oriented presentation with many practical examples and exercises. Ideal for bachelor study programmes. Knowledge on the movement, speed and energy of gas particles are an important prerequisite for an understanding of modern technologies such as vacuum engineering, or, closely related to the former, of vacuum physics or the handling of gases. This book presents the mechanics of gases in a readily understandable manner. The mathematics used is no more complex than necessary. The material is presented in coherent manner and follows a logical progression. The book begins with a description of Maxwell's velocity distribution. This is followed by a derivation of the equations of state for ideal gases as well as a description of the most important equations of state for real gases. Next the author derives relationships for all important gas kinetic parameters and shows how they can be determined experimentally. The presentation ends with explanations of selected calculations and a synopsis of all important formulas. The book contains a number of examples which are oriented towards questions as they arise in engineering or applied physics. The content level is ''Upper Undergraduate''. Keywords: gas dynamics; gas kinetics; ideal and real gas; kinetic gases; textbook of gas dynamics; textbook of gas kinetics; textbook of gas mechanics; Maxwell's law; gas mechanics; fluid mechanics; equations of state for gases. [German] - Kompakte Zusammenfassung fuer Naturwissenschaftler, Ingenieure und Vakuumspezialisten. - Anwendungsorientierte Praesentation mit vielen Praxisbeispielen und Aufgaben. - Ideal fuer das Bachelor-Studium Kenntnisse ueber die Bewegung von Gasteilchen, deren Geschwindigkeit und Energie sind eine wichtige Voraussetzung zum Verstaendnis moderner Technologien, z. B. der Vakuumtechnik, und eng damit verknuepft der Vakuumphysik oder der Handhabung von

  7. Simulations of pulses in a buffer gas positron trap

    Energy Technology Data Exchange (ETDEWEB)

    Tattersall, W; Sullivan, J P; Buckman, S J [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); White, R D; Robson, R E, E-mail: wade.tattersall@anu.edu.au [ARC Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD (Australia)

    2011-01-01

    In this study we simulate positron transport properties for various configurations of the gases and electric fields used in the Australian Positron Beamline Facility positron trap, which is based on the Surko buffer-gas trap. In an attempt to further improve the time and energy resolution of the trap and thus the associated scattering experiments, we apply a Monte-Carlo simulation procedure to a variety of possible configurations of the dumping stage of the trap.

  8. Study on surface geochemistry and microbiology for hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. The device is capable of determining hydrocarbon gases in water to the concentration of less than 5 x 10{sup -4} ml/l of water. According to the results of microbiological studies, the plate count technique can be a useful supplementary method for hydrocarbon exploration. This is based on the facts that the average survival rate to hydrocarbons (pentane, hexane) for heterotrophs is higher in the area known as containing considerable hydrocarbon gases than other areas in the Pohang region. However, it is still necessary to develop techniques to treat the bacteria with gaseous hydrocarbons. (author). 2 figs., 41 tabs.

  9. Geochemical characteristics and origin of light hydrocarbons in biogenic gas

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The light hydrocarbon geochemical characteristics of biogenic gases from Sebei 1 gas field in the Qaidam Basin, Baoshan gas field in the Baoshan Basin and Alaxin gas field, Puqian gas pool, Aonan gas pool in the Songliao Basin are studied and the origin is discussed based on the composition and isotope data of gases. The isoalkane contents among light hydrocarbons in natural gas show a negative relationship with δ13C1 values. The isoalkane contents of the gases with δ13C1 values of less than ?60‰ are also high with more than 40% among light hydrocarbons in Sebei 1 gas field and Puqian gas pool. Moreover, the 2,2-dimethylbutane and 2-methylpentane, mainly sourced from bacteria, have predominance among isoalkanes, which suggests that light hydrocarbons in biogenic gases from these gas fields or pools were probably generated by microbial action. However, the cycloalkane contents among light hydrocarbons in biogenic gas are related to δ13C1 values positively. In Alaxin gas field and Aonan gas pool, where δ13C1 values of biogenic gases are less than ?60‰, the average contents of cycloalkane are higher than 44%. Light hydrocarbons among biogenic gases from these gas fields were probably generated by catalysis. The isoalkane and cycloalkane contents among light hydrocarbons from biogenic gases in the Baoshan gas field are both high, which might be generated by these two actions. The results show that the data of light hydrocarbons in biogenic gas can provide important information for understanding the generation mechanisms of light hydrocarbons during geological evolution and identifying biogenic gas and low mature gas.

  10. An installation for vapor conversion of gases

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, I.; Tabata, K.

    1983-01-28

    An installation is proposed for converting a mixture of hydrocarbon gases with steam in the presence of nickel, platinum, lead and cobalt catalysts (Kt) on a carrier of Si0/sub 2/, A1/sub 2/0/sub 3/, Ti0/sub 2/ and so on. The reaction tower (RK1) for conversion is made of an inorganic, heat resistant ceramic material (for instance, A1/sub 2/0/sub 3/ ceramic), heaters are located inside the walls of the reaction tower, while on the outside the reaction conversion tower is equipped with an external tubular housing made of heat resistant materials or of inorganic heat resistant ceramic material. Here, there is a space between the external walls of the reaction conversion tower and the walls of the housing along the entire circumference of the reaction conversion tower which serves for preheating of the hydrocarbon gas and the steam before their input into the reaction conversion tower. The installation is designed for conversion of natural gas, C/sub 3/H/sub 8/ and other hydrocarbon gases and of liquid hydrocarbons (Uv) into synthesis gas. The design provides for even heating of the catalyst during reforming. The use of ceramic materials for the reaction conversion tower prevents sedimentation of coke on the walls of the reaction tower.

  11. Hyperspectral reflectance of vegetation affected by underground hydrocarbon gas seepage

    NARCIS (Netherlands)

    Noomen, M.F.

    2007-01-01

    Anomalous concentrations of natural gas in the soil may be sourced from leaking underground gas pipelines or from natural microseepages. Due to the explosive nature of hydrocarbon gases, early detection of these gases is essential to avoid dangerous situations. It is known that natural gas in the

  12. Trapped antihydrogen

    Science.gov (United States)

    Butler, E.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jonsell, S.; Jørgensen, L. V.; Kemp, S. L.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Seif el Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ˜1 T (˜0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be `born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released—the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  13. Geochemical study on oil-cracked gases and kerogencracked gases (I)——Experimental simulation and products analysis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Eight types of samples:crude oil,chloroform bitumen A,oil fractions(saturated hydrocarbon,aromatic hydrocarbon,resin and asphaltene) ,source rock and kerogen,have been pyrolyzed in laboratory. The products have also been systematically analyzed. The results indicate that gaseous hydrocarbons yields for different types of samples at various temperatures are different,especially for different fractions of crude oil. There is difference for molecular compositions. The C2/C3 ratios of cracking gases in different types of samples have positive relationships with C2/iC4 as well as pyrolysis temperatures. Moreover,the ratios of C2/C3 and C2/iC4 are about 2 and 10,respectively,at the temperature of 500℃― 550℃. However,when the temperature is higher than 500℃,the ratios of C1/C2,C1/C3 and dryness index for gases cracking from source rock and kerogen are higher than those from oil and bitumen,indicating an important different feature between oil-cracked gases and kerogen-cracked gases at the high or over-mature stage. The ratios of C1/C2,C1/C3 vary more than 10% at 500℃―800℃. In this paper,experimental results can provide important academic foundation and useful geochemical parameters for distinguishing of oil-cracked gases and kerogen-cracked gases.

  14. Direct determination of atom and radical concentrations in thermal reactions of hydrocarbons and other gases. Progress report, June 1, 1976--December 31, 1976. [Design and construction of shock tube for measuring reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, G. B.; Lifshitz, A.

    1977-01-01

    A shock tube has been designed and constructed for the purpose of measuring atom and radical concentrations in thermal reactions of gases. Design features which lead to extremely low levels of contamination include a turbomolecular vacuum pump, metal O-rings in the test section, stainless steel bellows-seal valves, and provision for baking all components to 150 to 200/sup 0/C. The optical system consists of a microwave discharge lamp through which various gas mixtures may flow at low pressures, MgF/sub 2/ windows on the shock tube, and a photodetector. For initial measurements of H and O atoms, a solar blind photomultiplier sensitive at 110 to 140 nm is being used. During the balance of the contract year (January 1--May 31) testing of the shock tube will be completed, the light source will be characterized, and measurements of H atom concentrations in shock-heated mixtures of CH/sub 4/--Ar and H/sub 2/--O/sub 2/--Ar will be started.

  15. Innovative Swirl Injector for LOX and Hydrocarbon Propellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gases trapped in the propellant feed lines of space-based rocket engines due to cryogenic propellant boil-off or pressurant ingestion can result in poor combustion...

  16. Low-dimensional charged spin-1 Bose gases in uniform magnetic field and harmonic trap%匀强磁场与简谐势阱中的低维荷电自旋-1玻色气体

    Institute of Scientific and Technical Information of China (English)

    李玉山

    2015-01-01

    采用截断求和法和半经典近似,以二维理想玻色气体为例,研究了磁场和简谐势阱中低维荷电自旋-1玻色子的相变及磁性质。结果表明,电荷-磁场和自旋-磁场作用的竞争导致玻色-爱因斯坦凝聚临界温度随磁场的增大先略微上升后缓慢下降。截断求和法能够有效的改进半经典近似的不足。最后,讨论了磁化强度由抗磁性到顺磁性的转变及自旋因子临界值随磁场和温度的变化。%The phase transition and magnetic properties of low-dimensional charged spin-1 bosons under mag-netic field and harmonic trap are studied with truncated-summation approach ( TSA) and semi-classical ap-proximation ( SCA) , taking two dimensional ideal Bose gas as an example.It is indicated that the Bose-Einstein condensation ( BEC) critical temperature first slightly increases and then slowly decreases with the increasing magnetic field due to the competition between charge -and spin -magnetic field interactions.The TSA can make a well improvement to the SCA.Finally, a crossover from diamagnetism to paramagnetism and relations of the critical value of spin factor as a function of magnetic field and temperature are discussed.

  17. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  18. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  19. A toroidal trap for the cold $^{87}Rb$ atoms using a rf-dressed quadrupole trap

    CERN Document Server

    Chakraborty, A; Ram, S P; Tiwari, S K; Rawat, H S

    2015-01-01

    We demonstrate the trapping of cold $^{87}Rb$ atoms in a toroidal geometry using a rf-dressed quadrupole magnetic trap formed by superposing a strong radio frequency (rf) field on a quadrupole trap. This rf-dressed quadrupole trap has minimum of the potential away from the quadrupole trap centre on a circular path which facilitates the trapping in the toroidal geometry. In the experiments, the laser cooled atoms were first trapped in the quadrupole trap, then cooled evaporatively using a weak rf-field, and finally trapped in the rf-dressed quadrupole trap. The radius of the toroid could be varied by varying the frequency of the dressing rf-field. It has also been demonstrated that a single rf source and an antenna can be used for the rf-evaporative cooling as well as for rf-dressing of atoms. The atoms trapped in the toroidal trap may have applications in realization of an atom gyroscope as well as in studying the quantum gases in low dimensions.

  20. Avoidance of fluorinated greenhouse gases. Possibilities of an early exit; Fluorierte Treibhausgase vermeiden. Wege zum Ausstieg

    Energy Technology Data Exchange (ETDEWEB)

    Becken, Katja; Graaf, Daniel de; Elsner, Cornelia; Hoffmann, Gabriele; Krueger, Franziska; Martens, Kerstin; Plehn, Wolfgang; Sartorius, Rolf

    2010-11-15

    In comparison to carbon dioxide, fluorinated greenhouse gases are more harmful up to a factor of 24,000. Today the amount of fluorinated greenhouse gases of the world-wide emissions of climatic harmful gases amounts 2 % and increases to 6 % in the year 2050. The authors of the contribution under consideration report on possibilities for the avoidance of the emissions of fluorinated greenhouse gases. The characteristics and ecological effects of fluorinated gases as well as the development of the emission in Germany are presented. Subsequently, the applications of fluorinated hydrocarbons are described.

  1. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    hydrocarbon polluted sediments and water .... ecosystem may result in selective increase or decrease in microbial population (Okpokwasili ... been implicated in degradation of hydrocarbons such as crude oil, polyaromatic hydrocarbons and.

  2. Classification and origin of natural gases from Lishui Sag,the East China Sea Basin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Natural gases discovered up to now in Lishui Sag,the East China Sea Basin,differ greatly in gaseous compositions,of which hydrocarbon gases amount to 2%―94%while non-hydrocarbon gases are dominated by CO2.Their hydrocarbon gases,without exception,contain less than 90%of methane and over 10%of C2 + heavier hydrocarbons,indicating a wet gas.Carbon isotopic analyses on these hydrocarbon gases showed thatδ13C 1 ,δ13C 2 andδ13C 3 are basically lighter than-44‰,-29‰and-26‰, respectively.The difference in carbon isotopic values between methane and ethane is great,suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation.δ13C CO2 values of nonhydrocarbon gases are all heavier than-10‰,indicating a typical abiogenic gas.The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit,consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter.Moreover, δ13C 1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit whileδ13C 2 andδ13C 3 values of the former are over 9‰heavier than those of the latter.Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag,where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter

  3. Surface geochemical data evaluation and integration with geophysical observations for hydrocarbon prospecting, Tapti graben, Deccan Syneclise, India

    Directory of Open Access Journals (Sweden)

    T. Satish Kumar

    2014-05-01

    Full Text Available The Deccan Syneclise is considered to have significant hydrocarbon potential. However, significant hydrocarbon discoveries, particularly for Mesozoic sequences, have not been established through conventional exploration due to the thick basalt cover over Mesozoic sedimentary rocks. In this study, near-surface geochemical data are used to understand the petroleum system and also investigate type of source for hydrocarbons generation of the study area. Soil samples were collected from favorable areas identified by integrated geophysical studies. The compositional and isotopic signatures of adsorbed gaseous hydrocarbons (methane through butane were used as surface indicators of petroleum micro-seepages. An analysis of 75 near-surface soil-gas samples was carried out for light hydrocarbons (C1–C4 and their carbon isotopes from the western part of Tapti graben, Deccan Syneclise, India. The geochemical results reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases. High concentrations of adsorbed thermogenic methane (C1 = 518 ppb and ethane plus higher hydrocarbons (ΣC2+ = 977 ppb were observed. Statistical analysis shows that samples from 13% of the samples contain anomalously high concentrations of light hydrocarbons in the soil-gas constituents. This seepage suggests largest magnitude of soil gas anomalies might be generated/source from Mesozoic sedimentary rocks, beneath Deccan Traps. The carbon isotopic composition of methane, ethane and propane ranges are from −22.5‰ to −30.2‰ PDB, −18.0‰ to 27.1‰ PDB and 16.9‰–32.1‰ PDB respectively, which are in thermogenic source. Surface soil sample represents the intersection of a migration conduit from the deep subsurface to the surface connected to sub-trappean Mesozoic sedimentary rocks. Prominent hydrocarbon concentrations were associated with dykes, lineaments and presented on thinner basaltic cover in the study area

  4. Apparatus for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  5. Problem of nature of inert gases in lunar surface material

    Science.gov (United States)

    Levskiy, L. K.

    1974-01-01

    The origin of isotopes of inert gases in lunar surface material was investigated from the standpoint of the isotopic two-component status of inert gases in the solar system. Helium and neon represent the solar wind component, while krypton and xenon are planetary gases. Type A gases are trapped by the material of the regolith in the early stages of the existence of the solar system and were brought to the lunar surface together with dust. The material of the regolith therefore cannot be considered as the product of the erosion of the crystalline rocks of the moon and in this sense are extralunar. The regolith material containing type A gases must be identified with the high temperature minerals of the carbonaceous chondrites.

  6. Trapped antihydrogen

    CERN Document Server

    Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...

  7. Gas-phase infrared photodissociation spectroscopy of cationic polyaromatic hydrocarbons

    NARCIS (Netherlands)

    Oomens, J.; van Roij, A. J. A.; Meijer, G.; von Helden, G.

    2000-01-01

    Infrared spectra of gas-phase cationic naphthalene, phenanthrene, anthracene, and pyrene are recorded in the 500-1600 cm(-1) range using multiphoton dissociation in an ion trap. Gas-phase polyaromatic hydrocarbons are photoionized by an excimer laser and stored in a quadrupole ion trap. Subsequent i

  8. Evaluation of analytical methodology for hydrocarbons in high pressure air and nitrogen systems. [data aquisition

    Science.gov (United States)

    1977-01-01

    Information regarding the safety limits of hydrocarbons in liquid and gaseous oxygen, the steps taken for hydrocarbon removal from liquified gases, and the analysis of the contaminants was searched and the results are presented. The safety of hydrocarbons in gaseous systems was studied, and the latest hydrocarbon test equipment and methodology is reviewed. A detailed sampling and analysis plan is proposed to evaluate high pressure GN2 and LOX systems.

  9. Kinetic Modeling the Formation of Low-mature Gases and Analysis of the Possibility to Be Accumulated

    Institute of Scientific and Technical Information of China (English)

    SHUAI Yanhua; WANG Hui; ZHANG Shuichang; SU Aiguo

    2008-01-01

    At present, shallow gases have received much attention due to low cost in exploration and production. Low-mature gases, as one significant origin to shallow gas, turns to be an important research topic. The present understanding of low-mature gases is confined within some geological cases, and few laboratory studies have been reported. Therefore, the potential and characters of lowmature gases are not clear up to now. Here, two premature samples (one coal and the other shale) were pyrolyzed in a gold confined system. The gaseous components including hydrocarbon gases and non-hydrocarbon gases were analyzed. Based on kinetic modeling, the formation of low-mature gases was modeled. The results showed that during low mature stage, about 178 mL/gTOC gas was generated from the shale and 100 mL/gTOC from the coal. Two third to three fourth of the generated gases are non-hydrocarbon gases such as H2S and CO2. The total yields of C:_s for the two samples are almost the same, 30--40 mL/gTOC, but individual gaseous hydrocarbon is different. The shale has much lower C1 but higher C2-5, whereas the coal has higher C1 but lower C2-5. Hydrocarbon gases formed during low-mature stage are very wet. The stable carbon isotope ratios of methane range from -40‰ to -50‰ (PDB), in good consistence with empiric criterion for low-mature gases summed up by the previous researchers. The generation characters suggest that the low-mature gases could be accumulated to form an economic gas reservoir, but most of them occur only as associated gases.

  10. Methods for natural gas and heavy hydrocarbon co-conversion

    Science.gov (United States)

    Kong, Peter C.; Nelson, Lee O.; Detering, Brent A.

    2009-02-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  11. Blood Gases Test

    Science.gov (United States)

    ... known as: Arterial Blood Gases; ABGs Formal name: Arterial Blood Gas Analysis Related tests: Electrolytes , Bicarbonate , BUN , Creatinine , Emergency and ... lives higher than sea level. Results from an arterial blood gas analysis are not diagnostic; they should be used in ...

  12. Kinetic theory of gases

    CERN Document Server

    Kauzmann, Walter

    2012-01-01

    Monograph and text supplement for first-year students of physical chemistry focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. 1966 edition.

  13. On Classical Ideal Gases

    National Research Council Canada - National Science Library

    Jacques Arnaud; Laurent Chusseau; Fabrice Philippe

    2013-01-01

      We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent...

  14. Gases, liquids and solids

    CERN Document Server

    Tabor, David

    1969-01-01

    It has been tradional to treat gases, liquids and solids as if they were completely unrelated material. However, this book shows that many of their bulk properties can been explained in terms of intermolecular forces.

  15. How primitive are the gases in Titan's atmosphere?

    Science.gov (United States)

    Owen, T

    1987-01-01

    Titan's atmosphere contains a mixture of nitrogen, methane, argon, hydrogen, simple hydrocarbons and nitriles, carbon monoxide, and carbon dioxide. Sources of nitrogen may be as a product of the photodissociation of ammonia or trapped in the ices that formed the satellite. Reasons for the abundance of deuterium are examined and its association with nitrogen on Titan is explained.

  16. VACUUM TRAP

    Science.gov (United States)

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  17. Genetic Classification of Natural Gases in the Oil—Gas Zone and Its Application in the Sichuan Basin

    Institute of Scientific and Technical Information of China (English)

    黄籍中

    1993-01-01

    On the basis of the carbon isotopic compositions of methane(CH4) and its homologues and the differences in isotopic values for CH4 and ethane (C2H6) and the correlation and compositional char-acteristics of hydrocarbon gases, the author has proposed a genetic classification of natural gases in the oil-gas zone.They are classified as biogenetic and abiogenetic gases in terms of the types of hydrocarbon-generating precursors (or parent materials) and their thermal evolution stages.Biogenetic gases can also be further divided into two series: biochemical and thermochemical gases,with the lat-ter formed at different evolution stages.Gases generated from type-I and -II1 organic matter are called oil-series gases, those from type-III, coal -series ,and those type -II2,mixture-type gases.Gases generated from two or more than two types of precursors are called mixture-source gases.According to those mentioned above, natural gases from the major oil-gas pools in the Sichuan Basin have been discriminantly analyzed,and the results are concordant with the distribution and de-velopment of hydrocarbon-source rocks as well as with their characteristics, indicating a prospective application.

  18. Evidence for solar flare rare gases in the Khor Temiki aubrite.

    Science.gov (United States)

    Rajan, R. S.; Price, P. B.

    1973-01-01

    It has been found by studying a number of gas-rich meteorites, including Khor Temiki that there is a correlation between the abundance of 'track-rich' grains and the concentration of trapped rare gases. The amount of solar flare gas in Khor Temiki is examined. It is pointed out that the Khor Temiki enstatite is an ideal sample in which to look for evidence of solar flare gases because there has been little or no diffusion loss of solar wind gases.

  19. Identification of marine natural gases with different origin sources

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Kinetic experiments of gas generation for typical samples of marine gas precursors including low-maturity kerogen,residual kerogen and oil as well as dispersed liquid hydrocarbon(DLH)in source rocks were performed by closed system,and the evolution trends of molecular and isotopic compositions of natural gases from different precursors against the maturity(R0%)at laboratory conditions were analyzed.Several diagrams of gas origin were calibrated by using the experimental data.A diagram based on the ratio of normal and isomerous butane and pentane(i/nC4-i/nC5)was proposed and used to identify the origins of the typical marine natural gases in the Sichuan Basin and the Tarim Basin, China.And the maturities of natural gases were estimated by using the statistical relationships between the gaseous molecular carbon isotopic data and maturities(δ13C-R 0 %)with different origins.The results indicate that the molecular and isotopic compositions of simulated gases from different precursors are different from each other.For example,the dryness index of the oil-cracking gas is the lowest;the dryness indices of gases from DLH and kerogen in closed system are almost the same;and the dryness index of gases from residual kerogen is extremely high,indicating that the kerogen gases are very dry;the contents of non-hydrocarbon gases in kerogen-cracking gases are far higher than those in oil-cracking and DLH-cracking gases.The molecular carbon isotopes of oil-cracking gases are the lightest,those of kerogen in closed system and GLH-cracking gases are the second lightest,and those of cracking gases from residual kerogen are the heaviest.The calibration results indicate that the diagrams of ln(C1/C2)-ln(C2/C3)andδ13C2-δ13C3-ln(C2/C3)can discriminate primary and secondary cracking gases,but cannot be used to identify gas origin sources,while the diagram of i/nC4-i/nC5 can differentiate the gases from different precursors.The application results of these diagrams show that gas mixtures

  20. Trapped phonons

    CERN Document Server

    Mannarelli, Massimo

    2013-01-01

    We analyze the effect of restricted geometries on the contribution of Nambu-Goldstone bosons (phonons) to the shear viscosity, $\\eta$, of a superfluid. For illustrative purpose we examine a simplified system consisting of a circular boundary of radius $R$, confining a two-dimensional rarefied gas of phonons. Considering the Maxwell-type conditions, we show that phonons that are not in equilibrium with the boundary and that are not specularly reflected exert a shear stress on the boundary. In this case it is possible to define an effective (ballistic) shear viscosity coefficient $\\eta \\propto \\rho_{\\rm ph} \\chi R$, where $\\rho_{\\rm ph}$ is the density of phonons and $\\chi$ is a parameter which characterizes the type of scattering at the boundary. For an optically trapped superfluid our results corroborate the findings of Refs. \\cite{Mannarelli:2012su, Mannarelli:2012eg}, which imply that at very low temperature the shear viscosity correlates with the size of the optical trap and decreases with decreasing tempe...

  1. Isothermal currents in InSe, GaSe, and GaS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Micocci, G.; Rizzo, A.; Tepore, A.; Zuanni, F. (Lecce Univ. (Italy). Ist. di Fisica)

    1983-11-16

    Isothermal current-time measurements are performed on InSe, GaSe, and GaS single crystals. The results reveal the presence of trapping centres and their activation energies and capture cross-sections are determined. The limitations of this method for the determination of trapping parameters in crystals are also discussed.

  2. Bose gases in one-dimensional harmonic trap

    Indian Academy of Sciences (India)

    JI-XUAN HOU; JING YANG

    2016-10-01

    Thermodynamic quantities, occupation numbers and their fluctuations of a one-dimensional Bose gas confined by a harmonic potential are studied using different ensemble approaches. Combining number theory methods, a new approach is presented to calculate the occupation numbers of different energy levels in microcanonical ensemble. The visible difference of the ground state occupation number in grand-canonical ensemble and microcanonical ensemble is found to decrease by power law as the number of particles increases.

  3. Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary

    Science.gov (United States)

    Lorenson, T.D.; Kvenvolden, K.A.; Hostettler, F.D.; Rosenbauer, R.J.; Orange, D.L.; Martin, J.B.

    2002-01-01

    Samples from four geographically and tectonically discrete cold seeps named Clam Flat, Clamfield, Horseshoe Scarp South, and Tubeworm City, within the Monterey Bay National Marine Sanctuary were analyzed for their hydrocarbon content. The sediment contains gaseous hydrocarbons and CO2, as well as high molecular weight aliphatic and aromatic hydrocarbons with various combinations of thermogenic and biogenic contributions from petroleum, marine, and terrigenous sources. Of particular interest is the cold seep site at Clamfield which is characterized by the presence of thermogenic hydrocarbons including oil that can likely be correlated with oil-saturated strata at Majors Creek near Davenport, CA, USA. At Clam Flat, the evidence for thermogenic hydrocarbons is equivocal. At Horseshoe Scarp South and Tubeworm City, hydrocarbon gases, mainly methane, are likely microbial in origin. These varied sources of hydrocarbon gases highlight the diverse chemical systems that appear at cold seep communities. ?? 2002 Elsevier Science B.V. All rights reserved.

  4. A novel solution for reducing the transfer of particles and gases among adjacent apartments

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Afshari, Alireza

    2016-01-01

    A unique type of fabric membrane has been developed by a Swedish company. That membrane is design to trap the emission from surfaces. To test the performance of the said membrane for trapping particles and gases, a study was conducted by the Danish Building Research Institute (SBi). The study......, around 48% of UFP migrated to the exposed apartment. Similarly when gases were generated in the source apartment, 16.5% of the gases migrated to the exposed apartment. Then the sealing membrane was installed below the wooden flooring of the exposed apartment. It was noted that the inclusion...

  5. Oil cracking to gases: Kinetic modeling and geological significance

    Institute of Scientific and Technical Information of China (English)

    TIAN Hui; WANG Zhaoming; XIAO Zhongyao; LI Xianqing; XIAO Xianming

    2006-01-01

    ATriassic oil sample from LN14 of Tarim Basin was pyrolyzed using the sealed gold tubes at 200-620℃ under a constant pressure of 50 MPa.The gaseous and residual soluble hydrocarbons were analyzed. The results show that the cracking of oil to gas can be divided into two distinct stages: the primary generation of total C1-5 gases from liquid oil characterized by the dominance of C2-5 hydrocarbons and the secondary or further cracking of C2-5gases to methane and carbon-rich matters leading to the progressive dryness of gases. Based on the experimental data, the kinetic parameters were determined for the primary generation and secondary cracking of oil cracking gases and extrapolated to geological conditions to predict the thermal stability and cracking extent of crude oil. Finally, an evolution model for the thermal destruction of crude oil was proposed and its implications to the migration and accumulation of oil cracking gases were discussed.

  6. Multiple carriers of Q noble gases in primitive meteorites

    Science.gov (United States)

    Marrocchi, Yves; Avice, Guillaume; Estrade, Nicolas

    2015-04-01

    The main carrier of primordial heavy noble gases in chondrites is thought to be an organic phase, known as phase Q, whose precise characterization has resisted decades of investigation. Indirect techniques have revealed that phase Q might be composed of two subphases, one of them associated with sulfide. Here we provide experimental evidence that noble gases trapped within meteoritic sulfides present chemically and thermally driven behavior patterns that are similar to Q gases. We therefore suggest that phase Q is likely composed of two subcomponents: carbonaceous phases and sulfides. In situ decay of iodine at concentration levels consistent with those reported for meteoritic sulfides can reproduce the 129Xe excess observed for Q gases relative to fractionated solar wind. We suggest that the Q-bearing sulfides formed at high temperature and could have recorded the conditions that prevailed in the chondrule-forming region(s).

  7. Multiple carriers of Q noble gases in primitive meteorites

    CERN Document Server

    Marrocchi, Yves; Estrade, Nicolas

    2015-01-01

    The main carrier of primordial heavy noble gases in chondrites is thought to be an organic phase, known as phase Q, whose precise characterization has resisted decades of investigation. Indirect techniques have revealed that phase Q might be composed of two subphases, one of them associated with sulfide. Here we provide experimental evidence that noble gases trapped within meteoritic sulfides present chemically- and thermally-driven behavior patterns that are similar to Q-gases. We therefore suggest that phase Q is likely composed of two subcomponents: carbonaceous phases and sulfides. In situ decay of iodine at concentrations levels consistent with those reported for meteoritic sulfides can reproduce the 129Xe excess observed for Q-gases relative to fractionated Solar Wind. We suggest that the Q-bearing sulfides formed at high temperature and could have recorded the conditions that prevailed in the chondrule-forming region(s).

  8. Strongly correlated Bose gases

    Science.gov (United States)

    Chevy, F.; Salomon, C.

    2016-10-01

    The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.

  9. Analytical system for stable carbon isotope measurements of low molecular weight (C2-C6 hydrocarbons

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-06-01

    Full Text Available We present setup, testing and initial results from a new automated system for stable carbon isotope ratio measurements on C2 to C6 atmospheric hydrocarbons. The inlet system allows analysis of trace gases from air samples ranging from a few liters for urban samples and samples with high mixing ratios, to many tens of liters for samples from remote unpolluted regions with very low mixing ratios. The centerpiece of the sample preparation is the separation trap, which is used to separate CO2 and methane from the compounds of interest. The main features of the system are (i the capability to sample up to 300 l of air, (ii long term (since May 2009 operational δ13C accuracy levels in the range 0.3–0.8 ‰ (1-σ, and (iii detection limits of order 1.5–2.5 ngC (collected amount of substance for all reported compounds. The first application of this system was the analysis of 21 ambient air samples taken during 48 h in August 2009 in Utrecht, the Netherlands. Results obtained are generally in good agreement with those from similar urban ambient air studies. Short sample intervals allowed by the design of the instrument help to illustrate the complex diurnal behavior of hydrocarbons in an urban environment, where diverse sources, dynamical processes, and chemical reactions are present.

  10. Annual Trapping Proposal 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1984-1985 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver and muskrat on the...

  11. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  12. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    OpenAIRE

    2016-01-01

    The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the sep...

  13. Hydrocarbon provinces and productive trends in Libya and adjacent areas

    Energy Technology Data Exchange (ETDEWEB)

    Missallati, A.A. (Agip (N.A.M.E.)Ltd., Tripoli (Libya))

    1988-08-01

    According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural relief and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.

  14. Influence of thin alien layers on hydrogen reflection and trapping by PFM

    Science.gov (United States)

    Golubeva, A. V.; Kurnaev, V. A.; Levchuk, D. V.; Trifonov, N. N.

    2003-03-01

    Investigations of the influence of carbon and hydrocarbon layers on the trapping and reflection of hydrogen isotopes by tungsten were carried out with BCA based computer code SCATTER. It is shown that for small layer thickness the trapping efficiency depends on the hydrocarbon film composition. At layer thickness of a few nanometers energy dependence of the trapping efficiency has a non-monotonous character with a minimum at primary energies about 100-1000 eV and continuous increment with energy at higher energies. The possible reason of this effect is briefly discussed. Comparison between the trapping efficiencies of different hydrogen isotopes in a C-W target is also presented.

  15. Influence of thin alien layers on hydrogen reflection and trapping by PFM

    Energy Technology Data Exchange (ETDEWEB)

    Golubeva, A.V.; Kurnaev, V.A. E-mail: kurnaev@plasma.mephi.ru; Levchuk, D.V.; Trifonov, N.N

    2003-03-01

    Investigations of the influence of carbon and hydrocarbon layers on the trapping and reflection of hydrogen isotopes by tungsten were carried out with BCA based computer code SCATTER. It is shown that for small layer thickness the trapping efficiency depends on the hydrocarbon film composition. At layer thickness of a few nanometers energy dependence of the trapping efficiency has a non-monotonous character with a minimum at primary energies about 100-1000 eV and continuous increment with energy at higher energies. The possible reason of this effect is briefly discussed. Comparison between the trapping efficiencies of different hydrogen isotopes in a C-W target is also presented.

  16. Noble gases, K, U, Th, and Pb in native gold

    Science.gov (United States)

    Engster, O.; Niedermann, S.; Thalmann, C.; Frei, R.; Kramers, J.; KräHenbühl, U.; Liu, Y. Z.; Hofmann, B.; Boer, R. H.; Reimold, W. U.; Bruno, L.

    1995-12-01

    We present determinations of the noble gas and Pb isotopic abundances and of K, Th, and U concentrations of native gold. Our results demonstrate that gold is an excellent carrier for crustal volatiles, but direct dating of gold using the U, Th-4He, 40K-40Ar, and U fission Xe methods was not successful for various reasons. The main significance of this work is the great sensitivity of gold for trapped gases as well as for gases that were produced in situ which gives the prospects of using gold and its fluid and solid inclusions for the study of paleogas composition. Numerous nuclear effects characterize the noble gas inventory of placer gold from Switzerland and Italy, vein gold from Italy, South Africa, and Venezuela, and lode gold from South Africa. The degassing patterns obtained by mass spectrometry show a low-temperature release of volatiles around 500°C from fluid inclusions mainly in vein gold and a high-temperature release from solid inclusions and the gold itself. The low-temperature volatiles represent species that were trapped when the gold crystallized. We investigated the following trapped species: the isotopes of He, Ne, Ar, Kr, Xe, and Pb, and the abundances of K, U, Th, H2O, and CO2. The crustal gases trapped by gold comprise 3He from 6Li(n,α)3H → β- → 3He, 4He and 40Ar from the U, Th, and K decay, and Xe from 238U fission. We observe 4He/40Ar = 3.9 for the radiogenic trapped gases of tertiary gold and a ratio of 1.4 for Archean gold. These ratios are consistent with the production ratios from U and K at the respective times and demonstrate that gold can be used as a sampler of ancient atmospheric gases. The concentrations of U and Th range from a few parts per billion to a few parts per million, and those of K and Pb range up to some tens of parts per million. The antiquity of trapped Pb is indicated by the Pb-Pb model age of about 3000 Ma for the lead extracted from vein gold and quartz of the Lily gold mine (South Africa). Gold also

  17. Seismic modelling and ava analysis of hidrocarbon traps

    OpenAIRE

    Faro Gómez, Ricardo J.

    2011-01-01

    In this study, forward seismic modelling of four geological models with Hydrocarbon (HC) traps were performed by ray tracing method to produce synthetic seismogram of each model. The idea is to identify the Hydrocarbon Indicators (HCI‟s) such as bright spot, flat spot, dim spot and Bottom Simulating Reflector (BSR) in the synthethic seismogram. The modelling was performed in DISCO/FOCUS 5.0 seismic data processing programme. Strong positive and negative reflection amplitudes and some artifact...

  18. Physics of ionized gases

    CERN Document Server

    Smirnov, Boris M

    2001-01-01

    A comprehensive textbook and reference for the study of the physics of ionized gasesThe intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces

  19. The greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, R.

    1987-01-01

    The main greenhouse gases are carbon dioxide, methane, nitrous oxide, CFCs and ozone. They are greenhouse gases as they absorb radiation from the Earth and thus impede its emission back to space. CO{sub 2} is responsible for about half the enhanced greenhouse effect. A global warming of only a few degrees would have a profound effect on climate. Increased levels of CO{sub 2} promote plant growth, but may not benefit agriculture overall. Sea levels may rise. It is difficult to predict the effects of global warming in society. It would be possible to reduce the scale of the greenhouse effect by energy conservation, using alternative energy sources, and possibly by capturing CO{sub 2} from fossil fuel power stations and disposing of it on the ocean floor. 13 refs., 19 figs., 1 tab.

  20. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap-ni...

  1. Dependence of the shape of graphene nanobubbles on trapped substance

    Science.gov (United States)

    Ghorbanfekr-Kalashami, H.; Vasu, K. S.; Nair, R. R.; Peeters, François M.; Neek-Amal, M.

    2017-06-01

    Van der Waals (vdW) interaction between two-dimensional crystals (2D) can trap substances in high pressurized (of order 1 GPa) on nanobubbles. Increasing the adhesion between the 2D crystals further enhances the pressure and can lead to a phase transition of the trapped material. We found that the shape of the nanobubble can depend critically on the properties of the trapped substance. In the absence of any residual strain in the top 2D crystal, flat nanobubbles can be formed by trapped long hydrocarbons (that is, hexadecane). For large nanobubbles with radius 130 nm, our atomic force microscopy measurements show nanobubbles filled with hydrocarbons (water) have a cylindrical symmetry (asymmetric) shape which is in good agreement with our molecular dynamics simulations. This study provides insights into the effects of the specific material and the vdW pressure on the microscopic details of graphene bubbles.

  2. Hydrocarbon accumulation in network and its application in the continental rift basin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The concept of hydrocarbon accumulation in network was presented on basis of the overall analysis of the formation and evolution characteristics of the continental faulted basin and of the systemic re-search on the major controlling factors on the hydrocarbon accumulation. The hydrocarbon accumu-lation in network can be defined as hydrocarbon accumulation in a three-dimensional network system which is constituted by the hydrocarbon migration passages under multiple dynamics,following the hydrocarbon generation from source rocks. The research shows that the hydrocarbon accumulation in network is composed of four elements,i.e.,hydrocarbon source (source rock kitchen),hydrocarbon accumulation terminal (trap),network pathway connecting source and terminal (transporting system),and network potential driving hydrocarbon migration in the network pathway (migration dynamics). Compared with other networks,hydrocarbon accumulation in network has three basic characteristics: the irreversible geological process of material and information flow in the network; the loss of material and information in the flow process in the network; the multiple dynamics in the flow process. Interac-tion of all the elements in the geological process can be called hydrocarbon accumulation in network. There are three basic models for hydrocarbon accumulation in network,that is,hydrocarbon accumu-lation in the network source area,hydrocarbon accumulation in the network pathway,and hydrocarbon accumulation in the network terminal. The key in the application of the hydrocarbon accumulation models in network in practice is to confirm the major accumulation stage and the function range of the four elements controlling the hydrocarbon firstly,to predict the profitable accumulation region by su-perposition of the favorable areas confirmed by four elements consequently,and to evaluate the oil-bearing property of the trap as well as confirm drilling targets. This paper takes the Dongying De-pression in the

  3. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nai; TIAN ZuoJi; LENG YingYing; WANG HuiTong; SONG FuQing; MENG JianHua

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2)branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4)phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hydrocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclusions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydrocarbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram.And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion,saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  4. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  5. Strongly interacting ultracold quantum gases

    Institute of Scientific and Technical Information of China (English)

    Hui ZHAI

    2009-01-01

    This article reviews recent progresses in ul- tracold quantum gases, and it includes three subjects which are the Fermi gases across a Feshbach resonance, quantum gases in the optical lattices and the fast ro- tating quantum gases. In this article, we discuss many basic physics pictures and concepts in quantum gases, for examples, the resonant interaction, universality and condensation in the lowest Landau level; we introduce fundamental theoretical tools for studying these systems, such as mean-field theory for BEC-BCS crossover and for the boson Hubbard model; also, we emphasize the im- portant unsolved problems in the forefront of this field, for instance, the temperature effect in optical lattices.

  6. Hydrocarbon-enhanced particulate filter regeneration via microwave ignition

    Science.gov (United States)

    Gonze, Eugene V.; Brown, David B.

    2010-02-02

    A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

  7. Continuous method to remove acid gases from a gas mixture supply

    Energy Technology Data Exchange (ETDEWEB)

    Butwell, K.F.; Kubek, D.J.

    1979-07-05

    It is proposed to remove acid gases - particularly CO/sub 2/ - from process gases (e.g. hydrocarbon mixtures, synthesis gas) by counter-current absorption with alcohol amines, to use monoethanol amine to which antimony and vanadium compounds are added as corrosion inhibitors. The patent claim includes a combination of 11 process steps, whose aim is to reduce the necessity of heating and cooling by external sources to a minimum. The method is described in detail.

  8. On Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Laurent Chusseau

    2013-02-01

    Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.

  9. All-optical production of 6Li quantum gases

    Science.gov (United States)

    Burchianti, A.; Seman, J. A.; Valtolina, G.; Morales, A.; Inguscio, M.; Zaccanti, M.; Roati, G.

    2015-03-01

    We report efficient production of quantum gases of 6Li using a sub-Doppler cooling scheme based on the D1 transition. After loading in a standard magneto-optical trap, an atomic sample of 109 atoms is cooled at a temperature of 40 μK by a bichromatic D1 gray-molasses. More than 2×107 atoms are then transferred into a high-intensity optical dipole trap, where a two-spin state mixture is evaporatively cooled down to quantum degeneracy. We observe that D1 cooling remains effective in the deep trapping potential, allowing an effective increase of the atomic phase-space density before starting the evaporation. In a total experimental cycle of 11 s, we produce weakly-interacting degenerate Fermi gases of 7×105 atoms at T/TF molecules. We further describe a simple and compact optical system both for high-resolution imaging and for imprinting a thin optical barrier on the atomic cloud; this represents a first step towards the study of quantum tunneling in strongly interacting superfluid Fermi gases.

  10. Physics of Ionized Gases

    Science.gov (United States)

    Reiss, Howard R.; Smirnov, Boris M.

    2001-03-01

    A comprehensive textbook and reference for the study of the physics of ionized gases The intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces. In all cases, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas are then treated with comprehensive clarity.

  11. Cold atom-ion experiments in hybrid traps

    CERN Document Server

    Härter, Arne

    2013-01-01

    In the last 5 years, a novel field of physics and chemistry has developed in which cold trapped ions and ultracold atomic gases are brought into contact with each other. Combining ion traps with traps for neutral atoms yields a variety of new possibilities for research and experiments. These range from studies of cold atom-ion collisions and atom-ion chemistry to applications in quantum information science and condensed matter related research. In this article we give a brief introduction into this new field and describe some of the perspectives for its future development.

  12. Wetting and superhydrophobic properties of PECVD grown hydrocarbon and fluorinated-hydrocarbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, D.K., E-mail: dsarkar@uqac.ca [Canada Research Chair on Atmospheric Icing Engineering of Power Networks (INGIVRE) and Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE), Universite du Quebec a Chicoutimi UQAC, 555 Boulevard de l' Universite, Chicoutimi, Quebec, G7H 2B1 (Canada); Farzaneh, M. [Canada Research Chair on Atmospheric Icing Engineering of Power Networks (INGIVRE) and Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE), Universite du Quebec a Chicoutimi UQAC, 555 Boulevard de l' Universite, Chicoutimi, Quebec, G7H 2B1 (Canada); Paynter, R.W. [INRS-EMT, 1650 boul. Lionel-Boulet, Varennes, Quebec, J3X 1S2 (Canada)

    2010-03-15

    Wetting characteristics of micro-nanorough substrates of aluminum and smooth silicon substrates have been studied and compared by depositing hydrocarbon and fluorinated-hydrocarbon coatings via plasma enhanced chemical vapor deposition (PECVD) technique using a mixture of Ar, CH{sub 4} and C{sub 2}F{sub 6} gases. The water contact angles on the hydrocarbon and fluorinated-hydrocarbon coatings deposited on silicon substrates were found to be 72 deg. and 105 deg., respectively. However, the micro-nanorough aluminum substrates demonstrated superhydrophobic properties upon coatings with fluorinated-hydrocarbon providing a water contact angle of {approx}165 deg. and contact angle hysteresis below 2 deg. with water drops rolling off from those surfaces while the same substrates showed contact angle of 135 deg. with water drops sticking on those surfaces. The superhydrophobic properties is due to the high fluorine content in the fluorinated-hydrocarbon coatings of {approx}36 at.%, as investigated by X-ray photoelectron spectroscopy (XPS), by lowering the surface energy of the micro-nanorough aluminum substrates.

  13. Analysis of hydrocarbons generated in coalbeds

    Science.gov (United States)

    Butala, Steven John M.

    This dissertation describes kinetic calculations using literature data to predict formation rates and product yields of oil and gas at typical low-temperature conditions in coalbeds. These data indicate that gas formation rates from hydrocarbon thermolysis are too low to have generated commercial quantities of natural gas, assuming bulk first-order kinetics. Acid-mineral-catalyzed cracking, transition-metal-catalyzed hydrogenolysis of liquid hydrocarbons, and catalyzed CO2 hydrogenation form gas at high rates. The gaseous product compositions for these reactions are nearly the same as those for typical natural coalbed gases, while those from thermal and catalytic cracking are more representative of atypical coalbed gases. Three Argonne Premium Coals (Upper-Freeport, Pittsburgh #8 and Lewiston-Stockton) were extracted with benzene in both Soxhlet and elevated pressure extraction (EPE) systems. The extracts were compared on the basis of dry mass yield and hydrocarbon profiles obtained by gas chromatography/mass spectrometry. The dry mass yields for the Upper-Freeport coal gave consistent results by both methods, while the yields from the Pittsburgh #8 and Lewiston-Stockton coals were greater by the EPE method. EPE required ˜90 vol. % less solvent compared to Soxhlet extraction. Single-ion-chromatograms of the Soxhlet extracts all exhibited bimodal distributions, while those of the EPE extracts did not. Hydrocarbons analyzed from Greater Green River Basin samples indicate that the natural oils in the basin originated from the coal seams. Analysis of artificially produced oil indicates that hydrous pyrolysis mimics generation of C15+ n-alkanes, but significant variations were found in the branched alkane, low-molecular-weight n-alkanes, and high-molecular-weight aromatic hydrocarbon distributions.

  14. Low-mature gases and their resource potentiality

    Institute of Scientific and Technical Information of China (English)

    XU Yongchang; WANG Xiaofeng; SHI Baoguang

    2009-01-01

    In the 80's of last century, based on the advances in natural gas exploration practice, the concepts of bio-thermocatalytic transitional-zone gas and early thermogenetic gas were proposed, and the lower limit Ro values for the formation and accumulation of thermogenetic natural gases of industrial importance have been extended to 0.3%-0.4%. In accordance with the two-stage model established on the basis of carbon isotope fractionation involved in the formation of coal-type natural gases, the upper limit Ro values of lowly evolved natural gases should be set at 0.8%-1.0%. This is the concept of low-mature gas which is commonly accepted at the present time. The Urengoy super-large gas field in western Siberian Basin is a typical example of low-mature gas field, where low-mature gas reserves account for 20% of the globally proven natural gas reserves, and this fully indicates the importance of this kind of resources. The proven reserves of natural gases in the Turpan-Hami Basin of China are approximate to 1000×108 m3, and the thermal evolution indices of source rocks are Ro=0.4%-0.8%. The δ13C1 values of methane are mainly within the range of -44‰- -39‰ (corresponding to Ro=0.6%-0.8%), and those of ethane are mainly within the range of -29‰- -26‰, indicating that these natural gases should be designated to the coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also provide strong evidence suggesting that they are the coal-type low-mature gases. If so, low-mature gas in the Turpan-Hami Basin has been accumulated to such an extent as to be equivalent to the total reserves of three large-sized gas fields, and their existence is of great significance in the study and exploration of China's low-mature gases. If it is evidenced that the source rocks of low-mature gases are related mainly to coal measures, China's abundant lowly evolved coal series resources will provide a huge resource potentiality for the generation of low

  15. Peltier cooling of fermionic quantum gases.

    Science.gov (United States)

    Grenier, Ch; Georges, A; Kollath, C

    2014-11-14

    We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.

  16. Peltier Cooling of Fermionic Quantum Gases

    Science.gov (United States)

    Grenier, Ch.; Georges, A.; Kollath, C.

    2014-11-01

    We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.

  17. Photon Bubble Turbulence in Cold Atomic Gases

    CERN Document Server

    Rodrigues, João D; Ferreira, António V; Terças, Hugo; Kaiser, Robin; Mendonça, José T

    2016-01-01

    Turbulent radiation flow is ubiquitous in many physical systems where light-matter interaction becomes relevant. Photon bubbling, in particular, has been identified as the main source of turbulent radiation transport in many astrophysical objects, such as stars and accretion disks. This mechanism takes place when radiation trapping in optically dense media becomes unstable, leading to the energy dissipation from the larger to the smaller bubbles. Here, we report on the observation of photon bubble turbulence in cold atomic gases in the presence of multiple scattering of light. The instability is theoretically explained by a fluid description for the atom density coupled to a diffusive transport equation for the photons, which is known to be accurate in the multiple scattering regime investigated here. We determine the power spectrum of the atom density fluctuations, which displays an unusual $\\sim k^{-4}$ scaling, and entails a complex underlying turbulent dynamics resulting from the formation of dynamical bu...

  18. Small Mammal Trapping 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Small mammal traps were placed in the Baring division and in the Edmunds division of Moosehom National Wildlife Refuge. There were a total of 98 traps set for up to...

  19. St. Croix trap study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains detailed information about the catch from 600 trap stations around St. Croix. Data fields include species caught, size data, trap location...

  20. Global Liquidity Trap

    OpenAIRE

    Fujiwara, Ippei; NAKAJIMA Tomoyuki; Sudo, Nao; Teranishi, Yuki

    2011-01-01

    In this paper we consider a two-country New Open Economy Macroeconomics model, and analyze the optimal monetary policy when countries cooperate in the face of a "global liquidity trap" -- i.e., a situation where the two countries are simultaneously caught in liquidity traps. The notable features of the optimal policy in the face of a global liquidity trap are history dependence and international dependence. The optimality of history dependent policy is confirmed as in local liquidity trap. A ...

  1. Genetic types of natural gases and their maturity discrimination in the east of Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    黄第藩; 刘宝泉; 王庭栋; 徐永昌; 陈世佳; 赵孟军

    1996-01-01

    A comprehensive study of maturity discrimination, genetic types and gas sources on lower Paleozoic marine hydrocarbon gases is carried out. All the lower Paleozoic strata-sourced gases are mainly composed of dry gas (dry coefficient>0.9), belonging to marine sapropelic type of cracking gases, which are characterized by low δ13C1 and △(δ13C2-δ13C1) values due to deficiency of terrestrial source input. According to the thermal simulation data of source rocks from upper Proterozoic to lower Paleozoic, a δ13C1-R0 regression equation is established, so the problem of how to distinguish maturities and sources of natural gases is resolved. These natural gases are divided into four genetic types In addition, the aspect of multi-sources and multi-stages of natural gas generation has also been discussed.

  2. Ion trap simulation tools.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  3. A new optical trap and repump system for ultracold Strontium

    Science.gov (United States)

    Huang, Y.; Yan, M.; Desalvo, B. J.; Killian, T. C.

    2013-05-01

    Atoms can be trapped at the foci of intense laser beams, which can enable the study of interactions and dynamics of ultracold gases. In this poster, we will describe our new trap design. A large volume pancake-shaped optical dipole trap is initially used for loading large numbers of atoms from a Magneto-Optical Trap. Atoms are then evaporatively cooled and compressed into a superimposed crossed-beam dimple trap. This combination improves the reproducibility of the experiment and shortens the time required to create quantum degenerate samples. In the second part of the poster, we will discuss a new repump scheme for laser cooling of Sr that uses the 5s5p3P2-5p23P2 transition at 481nm. The availability of laser diodes at this wavelength makes this an appealing alternative to other schemes.

  4. Second Hydrocarbon—Generation from Organic Matter Trapped in Fluid Inclusions in Carbonate Rocks

    Institute of Scientific and Technical Information of China (English)

    施继锡; 余孝颖

    1999-01-01

    The mechanism and significance of second hydrocarbon-generation from organic matter trapped in fluid inclusions in carbonate rocks are discussed.The types of organic matter and the relationship between them are also reviewed.The organic matter trapped in inclusions and crystals,which account for more than 20%of the total organic matter in carbonate rocks,may be of great significance in the generation of hydrocarbons.High-temperature oil resulting from second hydrocarbon-generation should be an important target,in addition to natural gas,in oilgas prospecting in regions of high-maturity carbonate rocks.

  5. Diffusive retention of atmospheric gases in chert

    Science.gov (United States)

    Pettitt, E.; Cherniak, D. J.; Watson, E. B.; Schaller, M. F.

    2016-12-01

    Throughout Earth's history, the volatile contents (N2, CO2, Ar) of both deep and shallow terrestrial reservoirs has been dynamic. Volatiles are important chemical constituents because they play a significant role in regulating Earth's climate, mediating the evolution of complex life, and controlling the properties of minerals and rocks. Estimating levels of atmospheric volatiles in the deep geological past requires interrogation of materials that have acquired and retained a chemical memory from that time. Cherts have the potential to trap atmospheric components during formation and later release those gases for analysis in the laboratory. However, cherts have been underexploited in this regard, partly because their ability to retain a record of volatile components has not been adequately evaluated. Before cherts can be reliably used as indicators of past levels of major atmospheric gases, it is crucial that we understand the diffusive retentiveness of these cryptocrystalline silica phases. As the first step toward quantifying the diffusivity and solubility of carbon dioxide and nitrogen in chert, we have performed 1-atmosphere diffusive-uptake experiments at temperatures up to 450°C. Depth profiles of in-diffusing gases are measured by nuclear reaction analysis (NRA) to help us understand the molecular-scale transport of volatiles and thus the validity of using chert-bound volatiles to record information about Earth history. Data collected to date suggest that at least some cherts are ideal storage containers and can retain volatiles for a geologically long time. In addition to these diffusion experiments, preliminary online-crush fast-scan measurements using a quadrupole mass spectrometer indicate that atmospheric volatiles are released upon crushing various chert samples. By coupling such volatile-release measurements made by mass spectrometry with diffusion experiments, we are uniquely able to address the storage and fidelity of volatiles bound in crustal

  6. Atom chip apparatus for experiments with ultracold rubidium and potassium gases

    Energy Technology Data Exchange (ETDEWEB)

    Ivory, M. K.; Ziltz, A. R.; Fancher, C. T.; Pyle, A. J.; Sensharma, A.; Chase, B.; Field, J. P.; Garcia, A.; Aubin, S., E-mail: saaubi@wm.edu [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187 (United States); Jervis, D. [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2014-04-15

    We present a dual chamber atom chip apparatus for generating ultracold {sup 87}Rb and {sup 39}K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10{sup 4} {sup 87}Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold {sup 39}K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the laser cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.

  7. Atom chip apparatus for experiments with ultracold rubidium and potassium gases.

    Science.gov (United States)

    Ivory, M K; Ziltz, A R; Fancher, C T; Pyle, A J; Sensharma, A; Chase, B; Field, J P; Garcia, A; Jervis, D; Aubin, S

    2014-04-01

    We present a dual chamber atom chip apparatus for generating ultracold (87)Rb and (39)K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10(4) (87)Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold (39)K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the laser cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.

  8. Elimination of alkanes from off-gases using biotrickling filters containing two liquid phases

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Lake, M.E.

    1999-01-01

    Biological techniques are highly cost-effective for the treatment of off-gases containing low concentrations of pollutants (<5 g/m3). They may also be attractive for the elimination of higher concentrations of explosive hydrocarbons (when compared to incineration). Conventional techniques such as bi

  9. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  10. Origin of inert gases in 'rusty rock' 66095. [lunar contamination hypothesis

    Science.gov (United States)

    Heymann, D.; Huebner, W.

    1974-01-01

    The amount of trapped inert gases present in rock 66095, as well as the elemental and isotopic composition of these gases can be explained by 'contamination' of this rock - on the lunar surface - with as little as 0.2% of fines. There is no compelling evidence that these gases come from the impact of a comet or a carbonaceous meteorite on the moon, or that they represent genuine primordial lunar gas. The Ne-21 radiation age of 66095 is 1.1 plus or minus 0.5 m.y., which strongly suggests that this rock was excavated by the South Ray Crater event.

  11. Migration, filling history and geochemical characteristics of Ordovician natural gases in the Tahe Oilfield, Tarim Basin, Northwest China

    Institute of Scientific and Technical Information of China (English)

    WANG Jie; LIU Wenhui; QIN Jianzhong; LIU Keyu; GU Yi

    2009-01-01

    Ordovician natural gases in the Tahe Oilfield are composed predominantly of hydrocarbon gases dominated by methane with a significant amount of heavy hydrocarbon gas component. The non-hydrocarbon gases include N2, CO2 and minor H2S. The Ordovician natural gases are believed to have originated from the same source rocks, and are composite of gases differing in thermal maturity. Carbon dioxide was derived from thermal metamorphism of Ordovician carbonate rocks. The generation of natural gases involves multiple stages from mature normal oil and condensate-associated gas to thermally cracked gas at the maturity to over-maturity stages. In the main part of the Tahe Oilfield, the Ordovician natural gases appear to be filled in two major phases with a typical petroleum-associated gas from southeast to northwest and from east to west in the early stage; and a thermally cracked gas from east to west in the late stage. At the same time, the oil/gas filling boundary has been primarily established between the two stages.

  12. Temporal dynamics of Bose-condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Martinez, Mauricio

    2014-03-19

    We perform a detailed quantum dynamical study of non-equilibrium trapped, interacting Bose-condensed gases. We investigate Josephson oscillations between interacting Bose-Einstein condensates confined in a finite size double-well trap and the non-trivial time evolution of a coherent state placed at the center of a two dimensional optical lattice. For the Josephson oscillations three time scales appear. We find that Josephson junction can sustain multiple undamped oscillations up to a characteristic time scale τ{sub c} without exciting atoms out of the condensates. Beyond the characteristic time scale τ{sub c} the dynamics of the junction are governed by fast, non-condensed particles assisted Josephson tunnelling as well as the collisions between non-condensed particles. In the non-condensed particles dominated regime we observe strong damping of the oscillations due to inelastic collisions, equilibrating the system leading to an effective loss of details of the initial conditions. In addition, we predict that an initially self-trapped BEC state will be destroyed by these fast dynamics. The time evolution of a coherent state released at the center of a two dimensional optical lattice shows a ballistic expansion with a decreasing expansion velocity for increasing two-body interactions strength and particle number. Additionally, we predict that if the two-body interactions strength exceeds a certain value, a forerunner splits up from the expanding coherent state. We also observe that this system, which is prepared far from equilibrium, can evolve to a quasistationary non-equilibrium state.

  13. Synthesis of hydrocarbon fluid inclusions at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pironon, J. (Centre de Recherche sur la Geologie de l' Uranium and GS-CNRS CREGU, Vandoeuvre-les-Nancy (France))

    Hydrocarbon fluid inclusions have been synthesized in halogenide and sulfate crystals at low temperature (<100C) and atmospheric pressure. Water-immiscible hydrocarbon droplets were either trapped separately or with an aqueous and/or a vapor phase. Impurities on the crystal surface were verified by infrared microspectrometry, and the similarity between the initial liquid and the liquid trapped in the inclusion was documented by Raman microspectrometry for nonfluorescent compounds. This inclusion type represents a new tool for understanding inclusion-formation phenomena and for the calibration of techniques used in hydrocarbon fluid-inclusion analysis ({mu}FT-IR, {mu}Raman, {mu}UV-fluorescence, gas chromatography, mass spectrometry); these inclusions allow one to obtain microthermometric calibration curves with a high precision at low temperature.

  14. A device for reforming a hydrocarbon fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kendzi, T.; Ikuo, M.

    1984-03-15

    In order to utilize the heat from the reaction of reforming of a hydrocarbon fuel and the heat scattered from a heater, a design is proposed for a fuel reforming reactor in which the gases entering the reactor first pass inside the reactor along the external wall and are heated by the heat dispersed inside the reactor. Then they go in the opposite direction along a clearance between the interior shell of the reactor and the internal body of the reactor itself with a catalyst (Kt) and a heated electrical cylindrical heater. Then the gases, already heated, go directly into the cavity of the reactor filled with the catalyst where the reforming reaction occurs and then the gases and the vapors of the reformed fuel are discharged, passing through a system of heat exchangers. The layout of such a reactor, which contains a cylindrical shell inside, a cylindrical sleeve coaxial with it and the body of the reactor itself with the heater, is given. A system for attaching the internal sleeve and the body of the reactor to the catalyst is cited. The course of the gases inside the reactor is also given.

  15. Determining Heats of Combustion of Gaseous Hydrocarbons

    Science.gov (United States)

    Singh, Jag J.; Sprinkle, Danny R.; Puster, Richard L.

    1987-01-01

    Enrichment-oxygen flow rate-ratio related to heat of combustion. Technique developed for determining heats of combustion of natural-gas samples. Based on measuring ratio m/n, where m is (volmetric) flow rate of oxygen required to enrich carrier air in which test gas flowing at rate n is burned, such that mole fraction of oxygen in combustion-product gases equals that in carrier air. The m/n ratio directly related to heats of combustion of saturated hydrocarbons present in natural gas.

  16. Origins of natural gases from marine strata in Northeastern Sichuan Basin (China) from carbon molecular moieties and isotopic data

    Science.gov (United States)

    Wang, Yunpeng; Zhao, Changyi; Wang, Hongjun; Wang, Zhaoyun; Wang, Zecheng

    2013-03-01

    To determine the origin, maturity, formation mechanism and secondary process of marine natural gases in Northeastern Sichuan area, molecular moieties and carbon isotopic data of the Carboniferous and Triassic gases have been analyzed. Typical samples of marine gas precursors including low-maturity kerogen, dispersed liquid hydrocarbons (DLHs) in source rocks, residual kerogen and oil have been examined in a closed system, and several published geochemical diagrams of gas origins have been calibrated by using laboratory data. Results show that both Carboniferous and Triassic gases in the study area have a thermogenic origin. Migration leads to stronger compositional and weak isotopic fractionation, and is path dependent. Carboniferous gases and low-H2S gases are mainly formed by secondary cracking of oil, whereas high-H2S gases are clearly related to the TSR (Thermal Sulfate Reduction) process. Gases in NE Sichuan show a mixture of heavy (13C-enriched) methane in comparison to the lower maturated ethane of Triassic gas samples, suggesting a similar source and maturity for ethane and propane of Carboniferous gases, and a mixture of heavy ethane to the propane for Triassic gases. Based on the data plotted in the diagram of Chung et al. (1988), the residual kerogen from Silurian marine shale and palaeo oil reservoirs are the main source for Carboniferous gases, and that the residual kerogen from Silurian and Permian marine rocks and Permian paleao oil reservoirs constitute the principal source of Triassic gases.

  17. Trap style influences wild pig behavior and trapping success

    Science.gov (United States)

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  18. Subtle traps in Cretaceous, Archuleta, Conejos, Mineral, and Rio Grande counties, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.T. Jr. (Coastal Oil and Gas Corp., Denver, CO (USA))

    1989-09-01

    Regional interpretation of the stratigraphy, faulting, fracturing, and hydrodynamics in Archuleta, Conejos, Mineral, and Rio Grande Counties in southern Colorado indicates that significant reserves of hydrocarbons could exist in subtle trapping situations within the Cretaceous sequences. The presence of Price-Gramps field (7 million bbl of oil ultimate recoverable), which produces primarily from the Dakota Formation, is presently anomalous in this area but is indicative of existing hydrocarbon potential. Hydrocarbon shows from drilled wells and outcrops suggest that significant quantities of hydrocarbons are present in this area, sourced both from the San Juan basin to the south and west, and from more local areas for fractured reservoirs.

  19. Flash pryolysis of biomass with reactive and nonreactive gases

    Science.gov (United States)

    Sundaram, M. S.; Steinberg, M.; Fallon, P. T.

    1982-10-01

    Studies were done on the flash pyrolysis of Douglas Fir wood in the presence of reactive and nonreactive gases including hydrogen, methane, and helium. Pyrolysis and gasification of the wood particles was done in one step, without catalysts. Almost complete (98%) gasification of the carbon in Douglas fir wood was achieved at 10000C and 500-psi hydrogen pressure. The reaction products were methane, ethane, ethylene, carbon monoxide, BTX, and water. Flash hydropyrolysis produced a large yield of hydrocarbon gases (up to 78% C) comprising methane and ethane. High yields of ethylene (up to 21% C) and BTX (up to 12% C) were obtained via methane pyrolysis of fir wood; a free radical mechanism is proposed to explain the enhanced yield of ethylene in a methane atmosphere.

  20. Composition and Origin of Shallow Biogenetic Gases in the Baise Basin, South China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the analytical data of over 30 gas samples, combined with geochemical and geological backgrounds, the composition and distribution characteristics of shallow biogenetic gases in the Baise Basin, a Tertiary residual basin in southern China, were extensively investigated, and the origin and formation mechanism tentatively approached. The shallow gases are primarily composed of gaseous hydrocarbons, generally accounting for over 90%. The abundances of methane and C2+homologues show a relatively wide range of variation, mainly 50%-100% and 0%-50%, respectively,depending on the mixing proportions between biogenetic and thermogenic gases. A highly negative carbon isotope is the significant signature for the shallow gases with δ13C1 values of -55‰ to -75‰.According to molecular and isotopic compositions and light hydrocarbon parameters, the shallow gases in the basin can be classified into three types of origins: biogenetic gas, biogenetic/thermogenic mixed gas, and oil-biodegraded gas. They exhibit regular distribution both spatially and temporally, and are believed to be associated with the maturity of adjoining gas source rocks and biodegraded oil accumulation. The Baigang and Nadu source rocks can be considered to have experienced early and late gas generation during early burial and after basin uplift respectively. A late accumulation mechanism of multiple gas sources is put forward for the formation of the shallow gas reservoirs, which is responsible for the variations in chemical and isotopic composition of the gases in depth profile.

  1. Isotopic abundance in atom trap trace analysis

    Science.gov (United States)

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  2. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  3. Determination of sulfur gases from Velenje coal stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Kozinc, J.; Treeby, M.; Zupancic-Kralj, L. [ERICo Velenje, Velenje (Slovenia)

    2004-07-01

    Dimethyl sulfide (DMS), carbonyl sulfide (COS) and carbon disulfide (CS{sub 2}) were detected at the Velenje coal stockpile. The gases were collected in a sampling tent placed on the stockpile. Several sampling and measuring techniques were tested for their determination. For direct analysis and solid phase micro extraction (SPME) the gases were pumped from the tent into Tedlar bags, while for cryogenic trapping the gas was pumped through a cryo-trap from the tent. The analyses were performed by gas chromatographs, equipped with a flame photometric detector (FPD) and a mass selective detector (MSD). It was found that direct gas analysis by GC-MSD is the method of choice for determination of the gases in the ppbv concentration level. DMS was rarely quantified, while concentrations of COS and CS{sub 2} were temperature dependant. It was confirmed that oxygen was necessary for the formation of COS and CS{sub 2}. The source of COS and CS{sub 2} is probably oxidation of pyrite in coal, which was determined by X-ray spectroscopy.

  4. Tunnel ionization, population trapping, filamentation and applications

    Science.gov (United States)

    Leang Chin, See; Xu, Huailiang

    2016-11-01

    The advances in femtosecond Ti-sapphire laser technology have led to the discovery of a profusion of new physics. This review starts with a brief historical account of the experimental realization of tunnel ionization, followed by high harmonic generation and the prediction of attosecond pulses. Then, the unique phenomenon of dynamic population trapping during the ionization of atoms and molecules in intense laser fields is introduced. One of the consequences of population trapping in the highly excited states is the neutral dissociation into simple molecular fragments which fluoresce. Such fluorescence could be amplified in femtosecond laser filamentation in gases. The experimental observations of filament-induced fluorescence and lasing in the atmosphere and combustion flames are given. Excitation of molecular rotational wave packets (molecular alignment) and their relaxation and revival in a gas filament are described. Furthermore, filament-induced condensation and precipitation inside a cloud chamber is explained. Lastly, a summary and future outlook is given.

  5. Neutral atom traps.

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  6. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  7. 吹扫捕集- GC/MS法测定水中卤代烃的质量控制指标研究%Research of Quality Control Index for Halogenated Hydrocarbons in Water Determined by Purge and Trap-GC/MS

    Institute of Scientific and Technical Information of China (English)

    胡冠九; 李娟; 袁力; 夏新; 王荟; 史啸勇

    2011-01-01

    采用吹扫捕集-气相色谱/质谱联用法,通过实际样品测试及全国多家实验室测定数据统计两种方法,针对水中三氯甲烷、四氯化碳、溴仿、二氯甲烷、1,2-二氯乙烷、1,1-二氯乙烯、三氯乙烯、四氯乙烯等8种卤代烃的平行样测定相对偏差、空白加标回收率及实际样品加标回收率等3个指标,研究了每种卤代烃的质控指标评价标准,提出其平行样测定允许最大相对偏差应控制为11.6% ~20.8%;当空白加标质量浓度为0μg/L~100μg/L时,回收率的控制范围为60%~123%;当样品质量浓度为0μg/L~20μg/L时,实际样品加标回收率的控制范围为46%~164%.%Three quality control indexes of eight kinds of halogenated hydrocarbons (Chloroform, Carbon tet-rachloride, Bromoform, Methylene chloride, 1, 2-Dichloroethane, 1, 1 -Dichloroethylene, Trichloroethylene, Tetrachloroethylene ) , including relative bias of duplicates, recovery of blank spike and sample spike, were studied by sample test using purge and trap-gas chromatography-mass spectroscopy, and also by evaluating data collected from many labs national-widely. The quality control index was produced according to every target. The results showed that the maximum relative bias should be within 11.6% ~20. 8% ; the blank recovery should be within 60% -123% when the spiking concentration was 0 μg/L ~ 100 μg/L; the sample recovery should be within 46% ~ 164% when the sample concentration was 0 μg/L ~20 μg/L.

  8. Towards trapped antihydrogen

    Science.gov (United States)

    Jørgensen, L. V.; Andresen, G.; Bertsche, W.; Boston, A.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hayano, R. S.; Hydomako, R.; Jenkins, M. J.; Kurchaninov, L.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration

    2008-02-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN's Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  9. Towards trapped antihydrogen

    CERN Document Server

    Jorgensen, L V; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN’s Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  10. NMR Hyperpolarization Techniques of Gases.

    Science.gov (United States)

    Barskiy, Danila A; Coffey, Aaron M; Nikolaou, Panayiotis; Mikhaylov, Dmitry M; Goodson, Boyd M; Branca, Rosa T; Lu, George J; Shapiro, Mikhail G; Telkki, Ville-Veikko; Zhivonitko, Vladimir V; Koptyug, Igor V; Salnikov, Oleg G; Kovtunov, Kirill V; Bukhtiyarov, Valerii I; Rosen, Matthew S; Barlow, Michael J; Safavi, Shahideh; Hall, Ian P; Schröder, Leif; Chekmenev, Eduard Y

    2017-01-18

    Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Noble Gases in Nakhla and Three Nakhlites Miller Range 090030, 090032, and 090136

    Science.gov (United States)

    Nagao, K.; Haba, M. K.; Park, J.; Choi, J.; Baek, J. M.; Park, C.; Lee, J. I.; Lee, M. J.; Mikouchi, T.; Nyquist, L. E.; Herzog, G. F.; Turrin, B. D.; Lindsay, F. N.; Delaney, J. S.; Swisher, C. C., III

    2016-08-01

    Noble gas compositions of the Miller Range nakhlites release Kr and Xe with low 84Kr/132Xe of ≤1 and high 129Xe/132Xe of 1.95-2.13 at low heating temperature (300-400°C). The gases would be heavily fractionated martian atmosphere trapped in aqueously altered materials.

  12. A New Model for the Genesis of Natural Gases--Multi-source Overlap, Multi-stage Continuity, Type Controlled by Main Source and Nomenclature by Main Stage (Ⅰ)--Multi-source Overlap and Type Controlled by Main Source

    Institute of Scientific and Technical Information of China (English)

    徐永昌; 沈平

    1994-01-01

    Based on the geochemical studies of natural gases in the past ten years in China, the authors have proposed a new model for their genesis--multi-source overlap, multi-stage continuity, main source-controlling type and nomenclature by the main stage.Multi-source refers to a diversity of material sources involved in the formation of natural gases, including abiogenic and biogenic material sources. In regard to biogenic sources, either oil-generating or coal-generating organic matter would produce gaseous hydrocarbon reservoirs of commercial importance. Generally, natural gases originating from these sources can overlap to form gas reservoirs. Under specific circumstances mantle-source abiogenic gases could overlap biogenic gases to form gas reservoirs. In nature, natural gases predominated by gaseous hydrocarbons may be formed from a single end-member source. However, multi-source overlap is more typical of the genesis of natural gases.

  13. Shock instability in dissipative gases

    OpenAIRE

    Radulescu, Matei I.; Sirmas, Nick

    2011-01-01

    Previous experiments have revealed that shock waves in thermally relaxing gases, such as ionizing, dissociating and vibrationally excited gases, can become unstable. To date, the mechanism controlling this instability has not been resolved. Previous accounts of the D'yakov-Kontorovich instability, and Bethe-Zel'dovich-Thompson behaviour could not predict the experimentally observed instability. To address the mechanism controlling the instability, we study the propagation of shock waves in a ...

  14. Quantitative Recognizing Dissolved Hydrocarbons with Genetic Algorithm-Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Qu Zhou

    2013-09-01

    Full Text Available Online monitoring of dissolved fault characteristic hydrocarbon gases, such as methane, ethane, ethylene and acetylene in power transformer oil has significant meaning for condition assessment of transformer. Recently, semiconductor tin oxide based gas sensor array has been widely applied in online monitoring apparatus, while cross sensitivity of the gas sensor array is inevitable due to same compositions and similar structures among the four hydrocarbon gases. Based on support vector regression (SVR with genetic algorithm (GA, a new pattern recognition method was proposed to reduce the cross sensitivity of the gas sensor array and further quantitatively recognize the concentration of dissolved hydrocarbon gases. The experimental data from a certain online monitoring device in China is used to illustrate the performance of the proposed GA-SVR model. Experimental results indicate that the GA-SVR method can effectively decrease the cross sensitivity and the regressed data is much more closed to the real values.

  15. Low-mature gases and typical low-mature gas fields in China

    Institute of Scientific and Technical Information of China (English)

    XU YongChang; WANG ZhiYong; WANG XiaoFeng; ZHENG JianJing; DU HongYu

    2008-01-01

    No natural gas pool of industrial importance could be formed at the low-evolution stage of organic matter. In the 1980s, on the basis of the development in exploration practice, the hypotheses of bio-thermo-catalytic transitional zone gases and early thermogenic gases were proposed. The lower-limit Ro values for the formation and accumulation of natural gases of industrial importance have been expanded to 0.3%-0.4%. In the light of the two-stage model established on the basis of carbon isotope fractionation in coal-type natural gases, the upper-limit Ro values have been set at 0.8%-1.0%.In terms of the geological practice in the low-mature gas zones and China's main coal-type gas fields, it is feasible and proper to set the upper-limit Ro value of low-mature gases at 0.8%. Supper-large gas fields such as the Urengoy gas field in western Siberian Basin should belong to low-mature gas fields,of which the natural gas reserves account for more than 20% of the global proven reserves, providing strong evidence for the significance of such a type of resources. The proven natural gas reserves in the Turpan-Hami Basin of China have almost reached 1000 X 108 m3. The main source rocks in this area are the Jurassic Xishanyao Formation, which occurs as a suite of coal series strata. The corresponding designated to coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also fall within the area of low evolution while the precursor type of light hydrocarbons also shows the characteristics of the coal-type. The geological background, carbon isotopic composition and light hydrocarbon index all provide strong evidence suggesting that the proven natural gases in the Turpan-Hami Basin are low-mature gases. In China a gas field with the gas reserves reaching 300 X108 m3 can be defined as a large gas field, and thus the proven low-mature gases in the Turpan-Hami Basin are equivalent to the reserves of three large gas fields. Its existence is of great

  16. Comparison of natural gases accumulated in Oligocene strata with hydrous pyrolysis gases from Menilite Shales of the Polish Outer Carpathians

    Science.gov (United States)

    Kotarba, M.J.; Curtis, John B.; Lewan, M.D.

    2009-01-01

    This study examined the molecular and isotopic compositions of gases generated from different kerogen types (i.e., Types I/II, II, IIS and III) in Menilite Shales by sequential hydrous pyrolysis experiments. The experiments were designed to simulate gas generation from source rocks at pre-oil-cracking thermal maturities. Initially, rock samples were heated in the presence of liquid water at 330 ??C for 72 h to simulate early gas generation dominated by the overall reaction of kerogen decomposition to bitumen. Generated gas and oil were quantitatively collected at the completion of the experiments and the reactor with its rock and water was resealed and heated at 355 ??C for 72 h. This condition simulates late petroleum generation in which the dominant overall reaction is bitumen decomposition to oil. This final heating equates to a cumulative thermal maturity of 1.6% Rr, which represents pre-oil-cracking conditions. In addition to the generated gases from these two experiments being characterized individually, they are also summed to characterize a cumulative gas product. These results are compared with natural gases produced from sandstone reservoirs within or directly overlying the Menilite Shales. The experimentally generated gases show no molecular compositions that are distinct for the different kerogen types, but on a total organic carbon (TOC) basis, oil prone kerogens (i.e., Types I/II, II and IIS) generate more hydrocarbon gas than gas prone Type III kerogen. Although the proportionality of methane to ethane in the experimental gases is lower than that observed in the natural gases, the proportionality of ethane to propane and i-butane to n-butane are similar to those observed for the natural gases. ??13C values of the experimentally generated methane, ethane and propane show distinctions among the kerogen types. This distinction is related to the ??13C of the original kerogen, with 13C enriched kerogen generating more 13C enriched hydrocarbon gases than

  17. Oxygenated Derivatives of Hydrocarbons

    Science.gov (United States)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  18. Hydrocarbon Spectral Database

    Science.gov (United States)

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  19. Search for trapped antihydrogen

    Science.gov (United States)

    Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ∼30 ms. After a three-week experimental run in 2009 involving mixing of 10 7 antiprotons with 1.3×10 positrons to produce 6×10 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.

  20. Solar UV Irradiation-Induced Production of Greenhouse Gases from Plant Surfaces: From Leaf to Earth

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Ambus, Per

    2016-01-01

    During the past few decades it has been documented that the ultra-violet (UV) component of natural sunlight alone or in combination with visible light can instantaneously stimulate aerobic plant production of a range of important trace gases: CH4, CO2, CO, short-chain hydrocarbons/ non...... for CH4 production, but underlying mechanisms are not fully known. For other gases such generating processes have not been established yet and mechanisms remain hypothetical. Field measurements of UV-induced emissions of the gases under natural light conditions are scarce. Therefore, realistic upscaling...... to the ecosystem level is uncertain for all gases. Nevertheless, based on empirical response curves, we propose the first global upscaling of UV-induced N2O and CO to illustrate emission ranges from a global perspective and as a contribution to an ongoing quantification process. When scaled to the global level...

  1. Thermodynamics of ultracold Bose gases at a dimensional crossover

    Science.gov (United States)

    Labouvie, Ralf; Vogler, Andreas; Guarrera, Vera; Ott, Herwig

    2013-05-01

    We have studied the thermodynamics of ultracold Bose gases in the crossover from a three-dimensional to a one-dimensional regime. In our experiment, we use a focused electron-beam to probe in situ atomic density distributions with high temporal and spatial resolution. Starting with a Bose-Einstein-Condensate in a single beam optical dipole trap we can create one-dimensional systems by loading the atoms in a two-dimensional blue-detuned optical lattice. With increasing strength of the lattices we go from a three-dimensional into a one-dimensional system. Furthermore we tune the interaction strengths of the one-dimensional quantum-gases from weak (quasi-condensate) to strong (Tonks-Girardeau). By measuring the density profiles and applying an inverse Abel-Transformation we extract the equation of states of these systems and characterize the crossover from the three-dimensional to the one-dimensional regime.

  2. Exploring the Kibble-Zurek mechanism with homogeneous Bose gases

    CERN Document Server

    Beugnon, J

    2016-01-01

    Out-of-equilibrium phenomena is a subject of considerable interest in many fields of physics. Ultracold quantum gases, which are extremely clean, well-isolated and highly controllable systems, offer ideal platforms to investigate this topic. The recent progress in tailoring trapping potentials now allows the experimental production of homogeneous samples in custom geometries, which is a key advance for studies of the emergence of coherence in interacting quantum systems. Here we review recent experiments in which temperature quenches have been performed across the Bose-Einstein condensation (BEC) phase transition in an annular geometry and in homogeneous 3D and quasi-2D gases. Combined, these experiments give a comprehensive picture of the Kibble-Zurek (KZ) scenario through complementary measurements of correlation functions and topological defects density. They also allow the measurement of KZ scaling laws, the direct confirmation of the "freeze-out" hypothesis that underlies the KZ theory, and the extractio...

  3. Comparing and contrasting nuclei and cold atomic gases

    CERN Document Server

    Zinner, N T; 10.1088/0954-3899/40/5/053101

    2013-01-01

    The experimental revolution in ultracold atomic gas physics over the past decades have brought tremendous amounts of new insight to the world of degenerate quantum systems. Here we compare and constrast the developments of cold atomic gases with the physics of nuclei since many concepts, techniques, and nomenclatures are common to both fields. However, nuclei are finite systems with interactions that are typically much more complicated than those of ultracold atomic gases. The simularities and differences must therefore be carefully addressed for a meaningful comparison and to facilitate fruitful crossdisciplinary activity. Universal results from atomic physics should have impact in certain limits of the nuclear domain. In particular, with advances in the trapping of few-body atomic systems we expect a more direct exchange of ideas and results.

  4. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  5. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  6. Method for producing diene hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Tsaylingol' d, A.L.; Abayev, G.N.; Mikhaylov, R.K.; Stepanov, G.A.; Troitskiy, A.P.

    1980-04-28

    A method is claimed for producing diene hydrocarbons by oxidational dehydration of paraffin or olefin hydrocarbons in a fluidized bed of a concentrate with circulation of the latter between the zones of the reaction of regeneration with the help of circulation stand pipes. To increase the efectiveness of the process, it is proposed to circulate the concentrate between the zones of reaction and regeneration, sequentially disposed in a common apparatus with a difference in the concentration of the concentrate in the circulation stand pipes disposed in the same apparatus and the zone of the reaction equal to 20-700 kg/m/sup 3/. For example, the process of oxidational dehydration of butane through the proposed system is conducted in an apparatus with a diameter of 1,000 mm, a circulation stand pipe diameter of 500 mm, a linear gas speed in the reaction zone of 0.6 m/s, and in the circulation stand pipe of 0.15 m/s. The concentration of the concentrate in the dehydration zone is 640 kg/m/sup 3/ and in the stand pipe, 970 kg/m/sup 3/. The volumetric ratio of the n-C/sub 4/H/sub 10/:air, air:vapor vapor in the form of a condensate is 1:7.2:4.5:5.5. The output of the butadiene is: in the passed butane, 32.9% and in the broken down butane, 52.5%. The butane conversion is 62.6%. The losses of the concentrate with the contact gas and with the regeneration gases is 1/3 as much for the supplied butane, than in a known method. The method makes it possible to reduce the air expenditure by 60%, to reduce the concentrate losses by 2-3 times and to simplify the industrial system.

  7. Green Methodologies to Test Hydrocarbon Reservoirs

    Directory of Open Access Journals (Sweden)

    Francesca Verga

    2010-01-01

    Full Text Available Problem statement: The definition and the economic viability of the best development strategy of a hydrocarbon reservoir mainly depend on the quantity and type of fluids and on the well productivity. Well testing, consisting in producing hydrocarbon to the surface while measuring the pressure variations induced in the reservoir, has been used for decades to determine the fluid nature and well potential. In exploration and appraisal scenarios the hydrocarbons produced during a test are flared, contributing to the emissions of greenhouse gases. Approach: Due to more stringent environmental regulations and a general need for reduced operating expenses, the current industry drivers in today’s formation evaluation methodologies demand short, safe, cost-effective and environmentally friendly test procedures, especially when conventional tests are prohibitively expensive, logistically not feasible or no surface emissions are allowed. Different methods have been proposed or resuscitated in the last years, such as wireline formation tests, closed chamber tests, production/reinjection tests and injection tests, as viable alternatives to conventional well testing. Results: While various short-term tests, test procedures and interpretation methods are apparently available for conducting successful tests without hydrocarbon production at the surface, clarity is lacking for specific applications of these techniques. An attempt to clarify advantages and limitations of each methodology, particularly with respect to the main testing target is pursued in this study. Specific insight is provided on injection testing, which is one of the most promising methodology to replace traditional well testing in reservoir characterization, except for the possibility to sample the formation fluids. Conclusion/Recommendations: Not a single one method but a combination of more methodologies, in particular injection testing and wireline formation testing, is the most promising

  8. Aeromagnetics of southern Alberta within areas of hydrocarbon accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, G. E.; Morris, W. A. [McMaster Univ., School of Geography and Geology, Hamilton, ON (Canada)

    1999-12-01

    The relationship between the observed geomagnetic field and hydrocarbon pools is investigated by reviewing the sources of magnetic anomalies in sedimentary basins and the methods for isolating individual contributions, with specific reference to noise suppression. A recent high resolution aeromagnetic survey acquired by the Geological Survey of Canada in southern Alberta is used as the test case to demonstrate the method and the potential of aeromagnetic surveys to resolve structural controls on hydrocarbon emplacement. The investigation was undertaken in an effort to account for the fact that several features of the residual magnetic field appear to be common to a majority of hydrocarbon pools. Some of these commonalities are: (1) the long axis of the pool appears to be coincident with the strike of the basement-sourced magnetic signal, (2) hydrocarbon pools encompass areas of broad low amplitude magnetic anomalies, (3) cross-cutting fractures or faulting systems are located within areas of a majority of hydrocarbon pools, and (4) pools are associated with linear and/or curvilinear magnetic lineaments, of which a great number have topographic expression. These associations may arise as a result of eH/pH conditions of the hydrocarbons and the surrounding sediments, or they may arise purely as a result of the trapping structures. The physical extent of the interaction area of the pool with the surrounding sediment may be another factor in explaining the association of hydrocarbons and magnetics. 48 refs., 9 figs.

  9. 40 CFR 1065.750 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Analytical gases. 1065.750 Section... ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  10. Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone

    Science.gov (United States)

    Lahvis, Matthew A.; Baehr, Arthur L.

    1996-07-01

    The distribution of oxygen and carbon dioxide gases in the unsaturated zone provides a geochemical signature of aerobic hydrocarbon degradation at petroleum product spill sites. The fluxes of these gases are proportional to the rate of aerobic biodegradation and are quantified by calibrating a mathematical transport model to the oxygen and carbon dioxide gas concentration data. Reaction stoichiometry is assumed to convert the gas fluxes to a corresponding rate of hydrocarbon degradation. The method is applied at a gasoline spill site in Galloway Township, New Jersey, to determine the rate of aerobic degradation of hydrocarbons associated with passive and bioventing remediation field experiments. At the site, microbial degradation of hydrocarbons near the water table limits the migration of hydrocarbon solutes in groundwater and prevents hydrocarbon volatilization into the unsaturated zone. In the passive remediation experiment a site-wide degradation rate estimate of 34,400 gyr-1 (11.7 gal. yr-1) of hydrocarbon was obtained by model calibration to carbon dioxide gas concentration data collected in December 1989. In the bioventing experiment, degradation rate estimates of 46.0 and 47.9 gm-2yr-1 (1.45×10-3 and 1.51×10-3 gal.ft.-2yr-1) of hydrocarbon were obtained by model calibration to oxygen and carbon dioxide gas concentration data, respectively. Method application was successful in quantifying the significance of a naturally occurring process that can effectively contribute to plume stabilization.

  11. Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone

    Science.gov (United States)

    Lahvis, M.A.; Baehr, A.L.

    1996-01-01

    The distribution of oxygen and carbon dioxide gases in the unsaturated zone provides a geochemical signature of aerobic hydrocarbon degradation at petroleum product spill sites. The fluxes of these gases are proportional to the rate of aerobic biodegradation and are quantified by calibrating a mathematical transport model to the oxygen and carbon dioxide gas concentration data. Reaction stoichiometry is assumed to convert the gas fluxes to a corresponding rate of hydrocarbon degradation. The method is applied at a gasoline spill site in Galloway Township, New Jersey, to determine the rate of aerobic degradation of hydrocarbons associated with passive and bioventing remediation field experiments. At the site, microbial degradation of hydrocarbons near the water table limits the migration of hydrocarbon solutes in groundwater and prevents hydrocarbon volatilization into the unsaturated zone. In the passive remediation experiment a site-wide degradation rate estimate of 34,400 g yr-1 (11.7 gal. yr-1) of hydrocarbon was obtained by model calibration to carbon dioxide gas concentration data collected in December 1989. In the bioventing experiment, degradation rate estimates of 46.0 and 47.9 g m-2 yr-1 (1.45 x 10-3 and 1.51 x 10-3 gal. ft.-2 yr-1) of hydrocarbon were obtained by model calibration to oxygen and carbon dioxide gas concentration data, respectively. Method application was successful in quantifying the significance of a naturally occurring process that can effectively contribute to plume stabilization.

  12. Superfluidity versus Bloch oscillations in confined atomic gases.

    Science.gov (United States)

    Büchler, H P; Geshkenbein, V B; Blatter, G

    2001-09-01

    We study the superfluid properties of (quasi) one-dimensional bosonic atom gases/liquids in traps with finite geometries in the presence of strong quantum fluctuations. Driving the condensate with a moving defect we find the nucleation rate for phase slips using instanton techniques. While phase slips are quenched in a ring resulting in a superfluid response, they proliferate in a tube geometry where we find Bloch oscillations in the chemical potential. These Bloch oscillations describe the individual tunneling of atoms through the defect and thus are a consequence of particle quantization.

  13. 1985-86 Trapping Proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1985-1986 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver and muskrat on the...

  14. Particle number counting statistics in ideal Bose gases.

    Science.gov (United States)

    Weiss, C; Wilkens, M

    1997-11-10

    We discuss the exact particle number counting statistics of degenerate ideal Bose gases in the microcanonical, canonical, and grand-canonical ensemble, respectively, for various trapping potentials. We then invoke the Maxwell's Demon ensemble [Navez et el., Phys. Rev. Lett. (1997)] and show that for large total number of particles the root-mean-square fluctuation of the condensate occupation scales n0 / [T=Tc] r N s with scaling exponents r = 3=2, s = 1=2 for the3D harmonic oscillator trapping potential, and r = 1,s= 2=3 for the 3D box. We derive an explicit expression for r and s in terms of spatial dimension D and spectral index sigma of the single-particle energy spectrum. Our predictions also apply to systems where Bose-Einstein condensation does not occur. We point out that the condensate fluctuations in the microcanonical and canonical ensemble respect the principle of thermodynamic equivalence.

  15. Entanglement creation in cold molecular gases using strong laser pulses

    CERN Document Server

    Herrera, Felipe; Whaley, K Birgitta

    2013-01-01

    While many-particle entanglement can be found in natural solids and strongly interacting atomic and molecular gases, generating highly entangled states between weakly interacting particles in a controlled and scalable way presents a significant challenge. We describe here a one-step method to generate entanglement in a dilute gas of cold polar molecules. For molecules in optical traps separated by a few micrometers, we show that maximally entangled states can be created using the strong off-resonant pulses that are routinely used in molecular alignment experiments. We show that the resulting alignment-mediated entanglement can be detected by measuring laser-induced fluorescence with single-site resolution and that signatures of this molecular entanglement also appear in the microwave absorption spectra of the molecular ensemble. We analyze the robustness of these entangled molecular states with respect to intensity fluctuations of the trapping laser and discuss possible applications of the system for quantum ...

  16. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    Energy Technology Data Exchange (ETDEWEB)

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.

    2009-07-01

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  17. Occurrence of fungi degrading aromatic hydrocarbons in activated sludge biocenoses

    Directory of Open Access Journals (Sweden)

    Anna Grabińska-Łoniewska

    2014-08-01

    Full Text Available A set of 21 strains of yeast-like microorganisms isolated from biocenoses of aerobic and anaerobic wastewater treatment systems were assayed for their ability to utilize aromatic hydrocarbons as a sole C-source. Basing on the achieved results, the highly biochemically active strains for application in enhancing of wastewaters and exhaust gases purification as well as soil bioremediation were selected.

  18. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  19. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  20. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Moura Leila

    2016-03-01

    Full Text Available The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the separation of gaseous hydrocarbons – either by improving the capacity of the ionic liquid to absorb a given gas or by increasing the selectivity towards a particular hydrocarbon. Original results concerning the usage of olefin-complexing metal salts of lithium (I, nickel (II and copper (II dissolved in ionic liquids for selectively absorbing light olefins are presented. It is observed that the absorption capacity of an imidazolium-based ionic liquid is doubled by the addition of a copper (II salt. This result is compared with the effect of the functionalization of the ionic liquid and the advantages and difficulties of the two approaches are analyzed.

  1. Radiation trapping in a dense cold Rydberg gas

    CERN Document Server

    Sadler, D P; Boddy, D; Bounds, A D; Keegan, N C; Lochead, G; Jones, M P A; Olmos, B

    2016-01-01

    Cold atomic gases resonantly excited to Rydberg states can exhibit strong optical nonlinearity at the single photon level. We observe that in such samples radiation trapping leads to an additional mechanism for Rydberg excitation. Conversely we demonstrate that Rydberg excitation provides a novel in situ probe of the spectral, statistical, temporal and spatial properties of the trapped re-scattered light. We also show that absorption can lead to an excitation saturation that mimics the Rydberg blockade effect. Collective effects due to multiple scattering may co-exist with co-operative effects due to long-range interactions between the Rydberg atoms, adding a new dimension to quantum optics experiments with cold Rydberg gases.

  2. Removal of organic contaminants from water or wastewater with liquefied gases

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This study utilized liquefied gases (LG) as extractant to remove various organic contaminants including halogenated hydrocarbons and phenols as well as aromatic compounds from aqueousmatrices. Orthogonal experiments were performed to optimize theoperating conditions such as temperature, co-solvents and so on.Under favorable conditions, high removal efficiencies can bereadily achieved for a great number of representative model organiccontaminants, the removal efficiencies for most of the hydrophobiccontaminants were greater than 90% in a single extraction stage.Tentative effort was also done for the removal of extractedcontaminants from recycled liquefied gases.

  3. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu

    2017-09-01

    A nano - scale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon - atom interactions . A neutral - atom platf orm based on this microfabrication technology will be pre - aligned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano - waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  4. Quantum Impurity in a One-dimensional Trapped Bose Gas

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Zinner, N. T.

    2015-01-01

    We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles. To demonstrate our technique, we calculate...... the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases....

  5. Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon

    Science.gov (United States)

    Diener, Michael D.; Alford, J. Michael; Nabity, James; Hitch, Bradley D.

    2007-01-02

    The present invention provides a combustion apparatus for the production of carbon nanomaterials including fullerenes and fullerenic soot. Most generally the combustion apparatus comprises one or more inlets for introducing an oxygen-containing gas and a hydrocarbon fuel gas in the combustion system such that a flame can be established from the mixed gases, a droplet delivery apparatus for introducing droplets of a liquid hydrocarbon feedstock into the flame, and a collector apparatus for collecting condensable products containing carbon nanomaterials that are generated in the combustion system. The combustion system optionally has a reaction zone downstream of the flame. If this reaction zone is present the hydrocarbon feedstock can be introduced into the flame, the reaction zone or both.

  6. Geochemical assessment of light gaseous hydrocarbons in near-surface soils of Kutch–Saurashtra: Implication for hydrocarbon prospects

    Indian Academy of Sciences (India)

    P Lakshmi Srinivasa Rao; T Madhavi; D Srinu; M S Kalpana; D J Patil; A M Dayal

    2013-02-01

    Light hydrocarbons in soil have been used as direct indicators in geochemical hydrocarbon exploration, which remains an unconventional path in the petroleum industry. The occurrence of adsorbed soil gases, methane and heavier homologues were recorded in the near-surface soil samples collected from Kutch–Saurashtra, India. Soil gas alkanes were interpreted to be derived from deep-seated hydrocarbon sources and have migrated to the surface through structural discontinuities. The source of hydrocarbons is assessed to be thermogenic and could have been primarily derived from humic organic matter with partial contribution from sapropelic matter. Gas chromatographic analyses of hydrocarbons desorbed from soil samples through acid extraction technique showed the presence of methane through -butane and the observed concentrations (in ppb) vary from: methane (C1) from 4–291, ethane (C2) from 0–84, propane (C3) from 0–37, i-butane (iC4) from 0–5 and -butane (nC4) from 0–4. Carbon isotopes measured for methane and ethane by GC-C-IRMS, range between −42.9‰ to −13.3‰ (Pee Dee Belemnite – PDB) and −21.2‰ to −12.4‰ (PDB), respectively. The increased occurrence of hydrocarbons in the areas near Anjar of Kutch and the area south to Rajkot of Saurashtra signifies the area potential for oil and gas.

  7. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    Although thraustochytrid protists are known to be of widespread occurrence in the sea, their hydrocarbon-degrading abilities have never been investigated. We isolated thraustochytrids from coastal waters and sediments of Goa coast by enriching MPN...

  8. Search For Trapped Antihydrogen

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Bray, Crystal C; Butler, Eoin; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayano, Ryugo S; Hayden, Michael E; Humphries, Andrew J; Hydomako, Richard; Jonsell, Svante; Jørgensen, Lars V; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wilding, Dean; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...

  9. Microfabricated cylindrical ion trap

    Science.gov (United States)

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  10. Explosion limits for combustible gases

    Institute of Scientific and Technical Information of China (English)

    TONG Min-ming; WU Guo-qing; HAO Ji-fei; DAI Xin-lian

    2009-01-01

    Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of H2 increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.

  11. Imbalanced Fermi gases at unitarity

    NARCIS (Netherlands)

    Gubbels, K.B.; Stoof, H.T.C.

    2013-01-01

    We consider imbalanced Fermi gases with strong attractive interactions, for which Cooper-pair formation plays an important role. The two-component mixtures consist either of identical fermionic atoms in two different hyperfine states, or of two different atomic species both occupying only a single

  12. Hydrocarbon migration characteristics of the Lower Cretaceous in the Erlian Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The paper systematically analyzes the hydrocarbon migration characteristics of the Lower Cretaceous in the Erlian Basin, based on the geochemical data of mudstone and sandstone in the main hydrocarbon-generating sags. (1) The source rocks in K1ba and K1bt1 are estimated to be the mature ones, their hydrocarbon expulsion ratio can reach 32%-72%. The Type-I sags in oil windows possess good hydrocarbon generation and expulsion conditions, where commercial reservoirs can be formed. (2) According to the curves of the mudstone compaction and evolution of clay minerals, the rapid compaction stage of mudstones is the right time of hydrocarbon expulsion, i.e., primary migration. (3) The timing between hydrocarbon generation and expulsion is mainly related to the accordance of the oil window and the rapid compaction stage of mudstones in the hydrocarbon generation sags of Type-I. That forms the most matching relation between hydrocarbon generation and migration. (4) The faults and unconformities are the important paths for the secondary hydrocarbon migration. Especially, the unconformity between K1ba and K1bt1 has a favorable condition for oil accumulation, where the traps of all types are the main exploration targets. (5) Hydrocarbon migration effect, in the Uliastai sag, is most significant; that in the Saihan Tal and Anan sags comes next, and that in the Bayandanan and Jargalangt sags is worst.

  13. Isolation and characterization of ancient hydrocarbon biomarkers from crystalline minerals

    Science.gov (United States)

    Summons, R. E.; Carrasquillo, A.; Hallmann, C.; Sherman, L. S.; Waldbauer, J. R.

    2008-12-01

    Hydrocarbon biomarker analysis is conventionally conducted on bitumen (soluble fossilized organic matter) extracted from sedimentary rocks using organic solvents. Biomarkers can also be generated by pyrolysis of kerogen (insoluble organic matter) in the same rocks. These approaches have met with much success where the organic matter has not seen significant levels of thermal metamorphism but more limited success when applied to thermally mature Archean rocks. Biomarkers have also been isolated from fluid inclusions of crystalline minerals and this approach has found wide application in petroleum exploration because of the capability of minerals that form crystals in reservoir rocks to trap organics from different episodes of fluid migration. Lastly, biogenic crystalline minerals are well known to trap organics including amino acids, fatty acids or hydrocarbons from those organisms that laid down the minerals. In fact, recent observations suggest that hydrocarbon biomarkers can be abundantly preserved in crystalline minerals where they may be protected over long periods of time and also distinguished from more recent generations of organics from endolithic organisms (modern) or anthropogenic (fossil hydrocarbon) contaminants. Here we report analyses of biomarker lipids trapped in fluid inclusions or otherwise having a "tight association" with the minerals in sedimentary rocks from Neoarchean and Paleoproterozoic successions in Australia and Southern Africa. In particular, cores recovered from the Agouron Griqualand Drilling Project contain over 2500m of well-preserved late Archean Transvaal Supergroup sediments, dating from ca. 2.67 to 2.46Ga. Bitumen extracts of samples from these strata were obtained using clean drilling, sampling and handling protocols and without overprinting with contaminant hydrocarbons. Dissolution of the mineral matrix of extracted sediments, followed by another solvent extraction, yielded a second bitumen that comprised hydrocarbons that

  14. Transport of dissolved gases through unsaturated porous media

    Science.gov (United States)

    Maryshev, B. S.

    2017-06-01

    The natural porous media (e.g. soil, sand, peat etc.) usually are partially saturated by groundwater. The saturation of soil depends on hydrostatic pressure which is linearly increased with depth. Often some gases (e.g. nitrogen, oxygen, carbon dioxide, methane etc.) are dissolved into the groundwater. The solubility of gases is very small because of that two assumptions is applied: I. The concentration of gas is equal to solubility, II. Solubility depends only on pressure (for isothermal systems). In this way some part of dissolved gas transfers from the solution to the bubble phase. The gas bubbles are immovably trapped in a porous matrix by surface-tension forces and the dominant mechanism of transport of gas mass becomes the diffusion of gas molecules through the liquid. If the value of water content is small then the transport of gas becomes slow and gas accumulates into bubble phase. The presence of bubble phase additionally decreases the water content and slows down the transport. As result the significant mass of gas should be accumulated into the massif of porous media. We derive the transport equations and find the solution which is demonstrated the accumulation of gases. The influence of saturation, porosity and filtration velocity to accumulation process is investigated and discussed.

  15. Hydrocarbon anomaly in soil gas as near-surface expressions of upflows and outflows in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Ong, H.L.; Higashihara, M.; Klusman, R.W.; Voorhees, K.J.; Pudjianto, R.; Ong, J

    1996-01-24

    A variety of hydrocarbons, C1 - C12, have been found in volcanic gases (fumarolic) and in geothermal waters and gases. The hydrocarbons are thought to have come from products of pyrolysis of kerogen in sedimentary rocks or they could be fed into the geothermal system by the recharging waters which may contain dissolved hydrocarbons or hydrocarbons extracted by the waters from the rocks. In the hot geothermal zone, 300°+ C, many of these hydrocarbons are in their critical state. It is thought that they move upwards due to buoyancy and flux up with the upflowing geothermal fluids in the upflow zones together with the magmatic gases. Permeability which could be provided by faults, fissures, mini and micro fractures are thought to provide pathways for the upward flux. A sensitive technique (Petrex) utilizing passive integrative adsorption of the hydrocarbons in soil gas on activated charcoal followed by desorption and analysis of the hydrocarbons by direct introduction mass spectrometry allows mapping of the anomalous areas. Surveys for geothermal resources conducted in Japan and in Indonesia show that the hydrocarbon anomaly occur over known fields and over areas strongly suspected of geothermal potential. The hydrocarbons found and identified were n-paraffins (C7-C9) and aromatics (C7-C8). Detection of permeable, i.e. active or open faults, parts of older faults which have been reactivated, e.g. by younger intersecting faults, and the area surrounding these faulted and permeable region is possible. The mechanism leading to the appearance of the hydrocarbon in the soil gas over upflow zones of the geothermal reservoir is proposed. The paraffins seems to be better pathfinders for the location of upflows than the aromatics. However the aromatics may, under certain circumstances, give better indications of the direction of the outflow of the geothermal system. It is thought that an upflow zone can be

  16. Excitonic optical nonlinearities and transport in the layered compound semiconductor GaSe

    DEFF Research Database (Denmark)

    Mizeikis, V.; Vadim, Lyssenko; Østergaard, John Erland;

    1995-01-01

    Dephasing and transient grating experiments in the direct excitonic absorption region of GaSe at low temperatures show that a fast relaxation within the one-dimensionally disordered excitonic band results in band filling being the dominant mechanism of the optical nonlinearity. Correspondingly, we...... observe a blueshift of the nonlinear signal with excitation density. The temperature dependence of the exciton diffusion constant measured in directions parallel to the GaSe layer planes indicates that temperature-independent scattering (trapping) and scattering by acoustic phonons determine the exciton...

  17. Possible cometary origin of heavy noble gases in the atmospheres of Venus, earth, and Mars

    Science.gov (United States)

    Owen, Tobias; Bar-Nun, Akiva; Kleinfeld, Idit

    1992-01-01

    Due consideration of the probable history of the Martian atmosphere, as well as noble-gas data from the Mars-derived SNC meteorites and from laboratory tests on the trapping of noble gases in ice, are the bases of the presently hypothesized domination of noble gases in the atmospheres of all terrestrial planets by a mixture of internal components and a contribution from comets. If verified, this hypothesis would underscore the significance of impacts for these planets' volatile inventories. The sizes of the hypothesized comets are of the order of 120 km for Venus and only 80 km for that which struck the earth.

  18. Degassing and contamination of noble gases in Mid-Atlantic Ridge basalts

    OpenAIRE

    Burnard, P.; Harrison, D.; Turner, G.; Nesbitt, R

    2003-01-01

    New He, Ne, Ar and CO2 stepped-crushing data from the Mid-Atlantic Ridge show that contamination of basalts by atmospheric noble gases involves three or more components: unfractionated air, fractionated air with high 36Ar/22Ne (45) and fractionated air with low 36Ar/22Ne (5). In addition, the magmatic noble gases trapped in these basaltic glasses are variably fractionated such that 4He/40Ar* (where the asterisk indicates corrected for atmospheric contamination based on all 36Ar being atmosphe...

  19. Single atom detection in ultracold quantum gases: a review of current progress.

    Science.gov (United States)

    Ott, Herwig

    2016-05-01

    The recent advances in single atom detection and manipulation in experiments with ultracold quantum gases are reviewed. The discussion starts with the basic principles of trapping, cooling and detecting single ions and atoms. The realization of single atom detection in ultracold quantum gases is presented in detail and the employed methods, which are based on light scattering, electron scattering, field ionization and direct neutral particle detection are discussed. The microscopic coherent manipulation of single atoms in a quantum gas is also covered. Various examples are given in order to highlight the power of these approaches to study many-body quantum systems.

  20. Charge Exchange and Chemical Reactions with Trapped Th$^{3+}$

    CERN Document Server

    Churchill, L R; Chapman, M S

    2010-01-01

    We have measured the reaction rates of trapped, buffer gas cooled Th$^{3+}$ and various gases and have analyzed the reaction products using trapped ion mass spectrometry techniques. Ion trap lifetimes are usually limited by reactions with background molecules, and the high electron affinity of multiply charged ions such as Th$^{3+}$ make them more prone to loss. Our results show that reactions of Th$^{3+}$ with carbon dioxide, methane, and oxygen all occur near the classical Langevin rate, while reaction rates with argon, hydrogen, and nitrogen are orders of magnitude lower. Reactions of Th$^{3+}$ with oxygen and methane proceed primarily via charge exchange, while simultaneous charge exchange and chemical reaction occurs between Th$^{3+}$ and carbon dioxide. Loss rates of Th$^{3+}$ in helium are consistent with reaction with impurities in the gas. Reaction rates of Th$^{3+}$ with nitrogen and argon depend on the internal electronic configuration of the Th$^{3+}$.

  1. Analytical system for stable carbon isotope measurements of low molecular weight (C2-C6) hydrocarbons

    NARCIS (Netherlands)

    Zuiderweg, A.T.; Holzinger, R.; Roeckmann, T.

    2011-01-01

    We present setup, testing and initial results from a new automated system for stable carbon isotope ratio measurements on C2 to C6 atmospheric hydrocarbons. The inlet system allows analysis of trace gases from air samples ranging from a few liters for urban samples and samples with high mixing ratio

  2. Formation Dynamics and Quantitative Prediction of Hydrocarbons of the Superpressure System in the Dongying Sag

    Institute of Scientific and Technical Information of China (English)

    SUI Fenggui; HAO Xuefeng; LIU Qing; ZHUO Qingong; ZHANG Shouchun

    2008-01-01

    Based on the theory of formation dynamics of oil/gas pools, the Dongying sag can be divided into three dynamic systems regarding the accumulation of oil and gas: the superpressure closed system,the semi-closed system and the normal pressure open system. Based on the analysis of genesis of superpressure in the superpressure closed system and the rule of hydrocarbon expulsion,it is found that hydrocarbon generation is related to superpressure, which is the main driving factor of hydrocarbon migration. Micro fractures formed by superpressure are the main channels for hydrocarbon migration. There are three dynamic patterns for hydrocarbon expulsion: free water drainage, hydrocarbon accumulation and drainage through micro fissures. In the superpressure closed system, the oil-driving-water process and oil/gas accumulation were completed in lithologic traps by way of such two dynamic patterns as episodic evolution of superpressure systems and episodic pressure release of faults. The oil-bearing capacity of lithologic traps is intimately related to reservoir-forming dynamic force. Quantitative evaluation of dynamic conditions for pool formation can effectively predict the oil-bearing capability of traps.

  3. TSR promotes the formation of oil-cracking gases: Evidence from simulation experiments

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    TSR is an interaction between sulfate and hydrocarbons, occurring widely in carbonate reservoirs. Because this process can produce a large amount of noxious acidic gases like H2S, it has drawn seri- ous concern recently. This paper reports an experiment that simulated an interaction between different minerals and hydrocarbon fluids under different temperature and time using a confined gold-tube system. The results showed that the main mineral that initiates TSR is MgSO4, and adding a certain amount of NaCl into the reactive system can also promote TSR and yield more H2S. The H2S produced in TSR is an important incentive for the continuous oxidative degradation of crude oils. For instance, the yield of oil-cracking gases affected by TSR was twice of that not affected by TSR while the yield of TSR-affected methane was even higher, up to three times of that unaffected by TSR. The carbon iso- topes of wet gases also became heavier. All of the above illustrated that TSR obviously motivates the oxidative degradation of crude oils, which makes the gaseous hydrocarbon generation sooner and increases the gas dryness as well. The study on this process is important for understanding the TSR mechanism and the mechanism of natural gas generation in marine strata.

  4. Penning trap at IGISOL

    Energy Technology Data Exchange (ETDEWEB)

    Szerypo, J. E-mail: jerzy.szerypo@phys.jyu.fi; Jokinen, A.; Kolhinen, V.S.; Nieminen, A.; Rinta-Antila, S.; Aeystoe, J

    2002-04-22

    The IGISOL facility at the Department of Physics of the University of Jyvaeskylae (JYFL) is delivering radioactive beams of short-lived exotic nuclei, in particular the neutron-rich isotopes from the fission reaction. These nuclei are studied with the nuclear spectroscopy methods. In order to substantially increase the quality and sensitivity of such studies, the beam should undergo beam handling: cooling, bunching and isobaric purification. The first two processes are performed with the use of an RFQ cooler/buncher. The isobaric purification will be made by a Penning trap placed after the RF-cooler element. This contribution describes the current status of the Penning trap project and its future prospects. The latter comprise the precise nuclear mass measurements, nuclear spectroscopy in the Penning trap interior as well as the laser spectroscopy on the extracted beams.

  5. 40 CFR 90.312 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... expiration date stated by the gas supplier must be recorded. (b) Pure gases. The required purity of the gases... a concentration of propane higher than what a gas supplier considers to be safe may be substituted... choice of diluent (zero air or purified nitrogen) between the calibration and span gases. If...

  6. Trapping molecules on chips

    CERN Document Server

    Santambrogio, Gabriele

    2015-01-01

    In the last years, it was demonstrated that neutral molecules can be loaded on a microchip directly from a supersonic beam. The molecules are confined in microscopic traps that can be moved smoothly over the surface of the chip. Once the molecules are trapped, they can be decelerated to a standstill, for instance, or pumped into selected quantum states by laser light or microwaves. Molecules are detected on the chip by time-resolved spatial imaging, which allows for the study of the distribution in the phase space of the molecular ensemble.

  7. Atmospheric Chemistry and Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Ehhalt, D.; Prather, M.; Dentener, F.; Derwent, R.; Dlugokencky, Edward J.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; Midgley, P.; Wang, M.; Berntsen, T.; Bey, I.; Brasseur, G.; Buja, L.; Collins, W. J.; Daniel, J. S.; DeMore, W. B.; Derek, N.; Dickerson, R.; Etheridge, D.; Feichter, J.; Fraser, P.; Friedl, R.; Fuglestvedt, J.; Gauss, M.; Grenfell, L.; Grubler, Arnulf; Harris, N.; Hauglustaine, D.; Horowitz, L.; Jackman, C.; Jacob, D.; Jaegle, L.; Jain, Atul K.; Kanakidou, M.; Karlsdottir, S.; Ko, M.; Kurylo, M.; Lawrence, M.; Logan, J. A.; Manning, M.; Mauzerall, D.; McConnell, J.; Mickley, L. J.; Montzka, S.; Muller, J. F.; Olivier, J.; Pickering, K.; Pitari, G.; Roelofs, G.-J.; Rogers, H.; Rognerud, B.; Smith, Steven J.; Solomon, S.; Staehelin, J.; Steele, P.; Stevenson, D. S.; Sundet, J.; Thompson, A.; van Weele, M.; von Kuhlmann, R.; Wang, Y.; Weisenstein, D. K.; Wigley, T. M.; Wild, O.; Wuebbles, D.J.; Yantosca, R.; Joos, Fortunat; McFarland, M.

    2001-10-01

    Chapter 4 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 2414.1 Introduction 2434.2 Trace Gases: Current Observations, Trends and Budgets 2484.3 Projections of Future Emissions 2664.4 Projections of Atmospheric Composition for the 21st Century 2674.5 Open Questions 2774.6 Overall Impact of Global Atmospheric Chemistry Change 279

  8. Global warming and greenhouse gases

    OpenAIRE

    Belić Dragoljub S.

    2006-01-01

    Global warming or Climate change refers to long-term fluctuations in temperature, precipitation, wind, and other elements of the Earth's climate system. Natural processes such as solar-irradiance variations, variations in the Earth's orbital parameters, and volcanic activity can produce variations in climate. The climate system can also be influenced by changes in the concentration of various gases in the atmosphere, which affect the Earth's absorption of radiation.

  9. Theoretical Insight into Shocked Gases

    Energy Technology Data Exchange (ETDEWEB)

    Leiding, Jeffery Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-29

    I present the results of statistical mechanical calculations on shocked molecular gases. This work provides insight into the general behavior of shock Hugoniots of gas phase molecular targets with varying initial pressures. The dissociation behavior of the molecules is emphasized. Impedance matching calculations are performed to determine the maximum degree of dissociation accessible for a given flyer velocity as a function of initial gas pressure.

  10. The Reusable Astronomy Portal (TRAP)

    Science.gov (United States)

    Donaldson, T.; Rogers, A.; Wallace, G.

    2012-09-01

    The Reusable Astronomy Portal (TRAP) aims to provide a common platform for rapidly deploying Astronomy Archives to the web. TRAP is currently under development for both the VAO Data Discovery Portal and the MAST Multi-Mission Portal (Figure 1). TRAP consists of 2 major software packages: the TRAP Client and the TRAP Server. The TRAP framework allows developers to deploy the Server, connect to data resources, then focus on building custom tools for the Client. TRAP is built upon proven industry technologies including the Ext/JS JavaScript Component Library, Mono.NET Web Services, and JSON message based APIs. The multi-layered architecture of TRAP decouples each layer: Client, Service and Data Access, enabling each to evolve independently over time. Although currently deployed to provide astronomy science data access, the TRAP architecture is flexible enough to thrive in any distributed data environment.

  11. Degradation of organic gases using ultrasonic mist generated from TiO2 suspension.

    Science.gov (United States)

    Sekiguchi, Kazuhiko; Noshiroya, Daisuke; Handa, Misako; Yamamoto, Keisuke; Sakamoto, Kazuhiko; Namiki, Norikazu

    2010-09-01

    The photocatalytic degradation of organic gases with mist particles that were formed by ultrasonic atomization of a TiO(2) suspension was performed with three different ultraviolet light sources. Three aromatic volatile organic compounds (VOCs; toluene, p-xylene, and styrene) and aldehydes (formaldehyde and acetaldehyde) were chosen as model organic gases for the degradation experiment. Under UV(365) irradiation, toluene was decomposed by a photocatalytic reaction on the surface of mist particles. Under UV(254+185) irradiation, the removal efficiency and mineralization ratio of the VOC gases were higher than those under UV(365) or UV(254) irradiation. Under UV(254+185) irradiation, it was found that VOC gases were immediately degraded and converted to water-soluble intermediates by not only direct photolysis but also oxidation by OH radical, since the removal efficiency of several organic gases depended on the reaction rate with OH radical and the primary effect of generated ozone was to complete the mineralization of the intermediates. On the other hand, water-soluble aldehyde gases were rapidly trapped by mist particles before reaction on their surface. Furthermore, water-soluble intermediates that formed via the decomposition of VOC gases were completely trapped in the mist and were not detected at the reactor exit. Therefore, notable secondary particle generation was not observed, even under UV(254+185) irradiation. Based on these results as well as the size distribution of the mist droplets, it was found that primarily submicron-scale droplets contributed to the photocatalytic reaction. Lastly, we propose a mechanism for the degradation of organic gaseous pollutants on the surface of mist particles.

  12. Geological and geochemical characteristics of the secondary biogenic gas in coalbed gases, Huainan coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojun, Zhang; Zhenglin, Cao; Mingxin, Tao; Wanchun, Wang; Jinlong, Ma

    2010-09-15

    The research results show that the compositions of coalbed gases in Huainan coalfield have high content methane, low content heavy hydrocarbons and carbon dioxide, and special dry gas. The evolution coal is at the stage of generation of thermogenic gases, but the d13C1 values within the range of biogenic gas (d13C1 values from -56.7{per_thousand} to -67.9{per_thousand}). The d13C2 value of coalbed gases in Huainan coalfield shows not only the features of the thermogenic ethane, but also the mixed features of the biogenic methane and thermogenic ethane. In geological characteristics, Huainan coalfield has favorable conditions of generation of secondary biogenic gas.

  13. Genetic Types and Distribution of CO2 Gases in the Huanghua Depression

    Institute of Scientific and Technical Information of China (English)

    JinZhenkui; BaiWuhou; ZhangXiangxiang

    2005-01-01

    CO2 gas is a nonhydroearbon gas, with a high economic value and a broad prospect for application. In the Huanghua Depression, there exist many genetic types of CO2 gases, i.e. organic CO2, thermal metamorphic CO2 and crust-mantle mixed CO2. The distribution of different types of CO2 gases is controlled by different factors. Organic CO2 that occurs mainly around the oil-generating center is associated with hydrocarbon gases as a secondary product and commonly far away from large faults. Thermal metamorphic CO2 occurs mainly in areas where carbonate strata are developed and igneous activity is strong, and tends to accumulate near large faults. CO2 of such an origin is higher in concentration than organic CO2, but lower than crust-mantle mixed CO2. Crust-mantle mixed CO2 occurs mainly along large faults. Its distribution is limited, but its purity is the highest.

  14. Method and apparatus for synthesizing hydrocarbons

    Science.gov (United States)

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1985-04-16

    A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

  15. Quantitative Hydrocarbon Surface Analysis

    Science.gov (United States)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  16. Miscellaneous hydrocarbon solvents.

    Science.gov (United States)

    Bebarta, Vikhyat; DeWitt, Christopher

    2004-08-01

    The solvents discussed in this article are common solvents not categorized as halogenated, aromatic, or botanical. The solvents discussed are categorized into two groups: hydrocarbon mixtures and single agents. The hydrocarbon mixtures discussed are Stoddard solvent, naphtha, and kerosene. The remaining solvents described are n-hexane, methyl n-butyl ketone, dimethylformamide, dimethyl sulfoxide, and butyl mercaptans. Effects common to this group of agents and their unique effects are characterized. Treatment of exposures and toxic effects of these solvents is described, and physiochemical properties and occupational exposure levels are listed.

  17. Emission of Polycyclic Aromatic Hydrocarbons from the Exhalation Zones of Thermally Active Mine Waste Dumps

    Directory of Open Access Journals (Sweden)

    Patrycja Kuna-Gwoździewicz

    2013-01-01

    Full Text Available The article presents results of research carried out on the occurrence of polycyclic aromatic hydrocarbons (PAH in gases of exhalation zones, created on the surface of a thermally active coal mine waste dump. The oxidation and self-heating of mine waste are accompanied with the intensive emission of flue gases, including PAH group compounds. Taking into consideration the fact the hydrocarbons show strong genotoxic, mutagenic and carcinogenic properties, research was conducted to establish their content in the examined gases. The research object was a gangue dump located in Rybnik. The research was performed in 2012. In total, 24 samples of gas were collected with PUF (polyurethane foam sampling cartridges with a quartz fibre filter and an aspirator. The collected samples were analysed with the use of high performance liquid chromatography (HPLC and a fluorescence detector (FLD to evaluate the amount of PAH present.

  18. Hydrocarbon potential of Altiplano and northern Subandean, Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    Edman, J.D.; Kirkpatrick, J.R.; Lindsey, D.D.; Lowell, J.D.; Cirbian, M.; Lopez, M.

    1989-03-01

    Seismic, stratigraphic, structural, and geochemical data from the Altiplano, northern Subandean, and northern plains of Bolivia were interpreted in order to evaluate the exploration potential of each province. Identification of three possible source rock intervals, primarily the Devonian and secondarily the Permian and Cretaceous, was used as the basis for recognizing active hydrocarbon systems. For those areas containing source intervals, their analysis revealed that possible reservoir and seal units range in age from Paleozoic to Tertiary; the majority of structures, however, are Eocene or younger. With these general concepts in mind, traps were identified in all three sedimentary provinces. In the northern Altiplano, the most prospective area is along the eastern margin near a southwest and west-vergent thrust belt where hanging-wall anticlines and a warped Eocene-Oligocene(.) unconformity surface form the most likely potential traps. In the central and southern Altiplano, both thrust-related and wrench-related structures present possible exploration targets. In the northern Subandean and Beni plains north of the Isiboro-Chapare area, traps can be classified into two broad groups. First, there are a wide variety of structural traps within the northern Subandean thrust belt, the most attractive of which are footwall structures that have been shielded from surface flushing by hanging-wall strata. Second, in the plains just northeast of the thrust belt, hydrocarbons sourced from the remnant Paleozoic basin may have migrated onto the Isarsama and Madidi highs.

  19. Redesigning octopus traps

    Directory of Open Access Journals (Sweden)

    Eduarda Gomes

    2014-06-01

    In order to minimise the identified problems in the actual traps, the present work proposes a new design with the aim of reducing the volume and weight during transport, and also during onshore storage. Alternative materials to avoid corrosion and formation of encrustations were also proposed.

  20. Effects of unsaturated hydrocarbons on crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Hall, W.C.; Heck, W.W.

    1960-01-01

    Damage to cotton and other crops in the vicinity of a Gulf Coast polyethylene plant has led to studies on the causative agent or agents responsible for crop losses. Responses exhibited by both native and cultivated plants of the area led to an initial diagnosis that the symptoms were caused by ethylene present in relatively high amounts in the atmosphere. Analysis of the stack gas showed 1.5% ethylene, 0.3% ethane, 8.7% carbon dioxide, 0.3% ethylene oxide and minute amounts of methane. Field analyses have shown concentrations of ethylene aging from 0.04 to 3 ppm depending upon atmospheric conditions (wind direction and velocity) as well as distance from the polyethylene plant. Various mixtures of hydrocarbon gases have been tested using cotton, coleus, tomato and other plant species. Ethylene has been found to be the most biologically active of the hydrocarbon gases studied. Controlled experiments have confirmed field observations that monocotyledonous plants such as sorghum and corn are relatively insensitive to ethylene, whereas dicotyledonous plants such as cotton, coleus, corn pea and tomato are extremely sensitive. Flower petal abscission in periwinkle and flower bud abscission in cotton have been found to be excellent indicators of extremely low levels of ethylene air pollution in both the field and in controlled experiments. Typical responses of cotton to low levels of ethylene include: lost of apical dominance with the resulting prostrate growth habit, flattening of upper stem and growing point, forcing of lateral buds, weakening of main stem, compacting of internodes, earlier and more profuse flowering with the abscission of squares, total loss of yield. 2 references.

  1. Mapping trapped atomic gas with spin-orbit coupling to quantum Rabi-like model

    OpenAIRE

    Hu, Haiping; Chen, Shu

    2013-01-01

    We construct a connection of the ultracold atomic system in a harmonic trap with Raman-induced spin-orbit coupling to the quantum Rabi-like model. By mapping the trapped atomic system to a Rabi-like model, we can get the exact solution of the Rabi-like model following the methods to solve the quantum Rabi model. The existence of such a mapping implies that we can study the basic model in quantum optics by using trapped atomic gases with spin-orbit coupling.

  2. The components and carbon isotope of the gases in inclusions in reservoir layers of Upper Paleozoic gas pools in the Ordos Basin,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The components and carbon isotope of gases in inclusions are one of the most important geochemical indexes for gas pools.The analysis results of the components and carbon isotope of gases from inclusions in reservoir layers of Upper Palaeozoic gas pools in the Ordos Basin show that most inclusions grown in reservoir sandstone are primary inclusions.There is only a little difference about the components and carbon isotope between the well gases and the secondary inclusions gases.This indicated that the epigenetic change of gas pools is little.This difference between the well gases and the secondary inclusions gases is caused by two reasons:(i)The well gases come from several disconnected sand bodies buried in a segment of depth,while the inclusion gases come from a point of depth.(ii)The secondary inclusions trapped the gases generated in the former stage of source rock gas generation,and the well gases are the mixed gases generated in all the stages.It is irresponsible to reconstruct the palaeo-temperature and palaeo-pressure under which the gas pool formed using carbon dioxide inclusions.

  3. Apparatus and methods for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2016-04-26

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  4. The Paleobiosphere: a novel device for the in vivo testing of hydrocarbon producing-utilizing microorganisms.

    Science.gov (United States)

    Strobel, Gary; Booth, Eric; Schaible, George; Mends, Morgan Tess; Sears, Joe; Geary, Brad

    2013-04-01

    The construction and testing of a unique instrument, the Paleobiosphere, which mimics some of the conditions of the ancient earth, is described. The instrument provides an experimental testing system for determining if certain microbes, when provided an adequate environment, can degrade biological materials to produce fuel-like hydrocarbons in a relatively short time frame that become trapped by the shale. The conditions selected for testing included a particulate Montana shale (serving as the "Trap Shale"), plant materials (leaves and stems of three extant species whose origins are in the late Cretaceous), a water-circulating system, sterile air, and a specially designed Carbotrap through which all air was passed as exhaust and volatile were hydrocarbons trapped. The fungus for initial testing was Annulohypoxylon sp., isolated as an endophyte of Citrus aurantifolia. It produces, in solid and liquid media, a series of hydrocarbon-like molecules. Some of these including 1,8-cineole, 2-butanone, propanoic acid, 2-methyl-, methyl ester, benzene (1-methylethyl)-, phenylethyl alcohol, benzophenone and azulene, 1,2,3,5,6,7,8,8a-octahydro-1,4-dimethyl-7-(1-methylethenyl), [1S-(1α,7α,8aβ)]. These were the key signature compounds used in an initial Paleobiosphere test. After 3 weeks, incubation, the volatiles associated with the harvested "Trap Shale" included each of the signature substances as well as other fungal-associated products: some indanes, benzene derivatives, some cyclohexanes, 3-octanone, naphthalenes and others. The fungus thus produced a series of "Trap Shale" products that were representative of each of the major classes of hydrocarbons in diesel fuel (Mycodiesel). Initial tests with the Paleobiosphere offer some evidence for a possible origin of hydrocarbons trapped in bentonite shale. Thus, with modifications, numerous other tests can also be designed for utilization in the Paleobiosphere.

  5. Research Of Polytropic Exponent Changing For Influence Evaluation Of Actual Mixture Composition On Hydrocarbons Concentration Decreasing On Deep Throttling Operation

    Science.gov (United States)

    Smolenskaya, N. M.; Smolenskii, V. V.; Bobrovskij, I.

    2017-01-01

    The purpose of this article is to present study of polytropic exponent as rating of thermodynamic process in internal combustion motor operating to deep throttling in a subcase of idle running. It is necessary to consider the influence of hydrocarbon part in exhaust gases in a process of development a new internal combustion engines especially on deep throttling operation: on combustion procedure, on irregularity of exhaust gases composition.

  6. Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air

    OpenAIRE

    Pszenny, A. A. P.; W. C. Keene; Jacob, Daniel James; S. Fan; J. R. Maben; Zetwo, M. P.; Springer-Young, M.; J. N. Galloway

    1993-01-01

    We report the first measurements of inorganic chlorine gases in the marine atmosphere using a new tandem mist chamber method. Surface air was sampled during four days including one diel cycle in January, 1992, at Virginia Key, Florida. Concentrations of HCl* (including HCl, ClNO3, ClNO2, and NOCl) were in the range 40 to 268 pptv and concentrations of Cl2* (including Cl2 and any HOCl not trapped in the acidic mist chamber) were in the range

  7. Kinetic approach to granular gases.

    Science.gov (United States)

    Puglisi, A; Loreto, V; Marini Bettolo Marconi, U; Vulpiani, A

    1999-05-01

    We address the problem of the so-called "granular gases," i.e., gases of massive particles in rapid movement undergoing inelastic collisions. We introduce a class of models of driven granular gases for which the stationary state is the result of the balance between the dissipation and the random forces which inject energies. These models exhibit a genuine thermodynamic limit, i.e., at fixed density the mean values of kinetic energy and dissipated energy per particle are independent of the number N of particles, for large values of N. One has two regimes: when the typical relaxation time tau of the driving Brownian process is small compared with the mean collision time tau(c) the spatial density is nearly homogeneous and the velocity probability distribution is Gaussian. In the opposite limit tau>tau(c) one has strong spatial clustering, with a fractal distribution of particles, and the velocity probability distribution strongly deviates from the Gaussian one. Simulations performed in one and two dimensions under the Stosszahlansatz Boltzmann approximation confirm the scenario. Furthermore, we analyze the instabilities bringing to the spatial and the velocity clusterization. Firstly, in the framework of a mean-field model, we explain how the existence of the inelasticity can lead to a spatial clusterization; on the other hand, we discuss, in the framework of a Langevin dynamics treating the collisions in a mean-field way, how a non-Gaussian distribution of velocity can arise. The comparison between the numerical and the analytical results exhibits an excellent agreement.

  8. Simultaneous analysis of noble gases, sulfur hexafluoride, and other dissolved gases in water.

    Science.gov (United States)

    Brennwald, Matthias S; Hofer, Markus; Kipfer, Rolf

    2013-08-06

    We developed an analytical method for the simultaneous measurement of dissolved He, Ne, Ar, Kr, Xe, SF6, N2, and O2 concentrations in a single water sample. The gases are extracted from the water using a head space technique and are transferred into a vacuum system for purification and separation into different fractions using a series of cold traps. Helium is analyzed using a quadrupole mass spectrometer (QMS). The remaining gas species are analyzed using a gas chromatograph equipped with a mass spectrometer (GC-MS) for analysis of Ne, Ar, Kr, Xe, N2, and O2 and an electron capture detector (GC-ECD) for SF6 analysis. Standard errors of the gas concentrations are approximately 8% for He and 2-5% for the remaining gas species. The method can be extended to also measure concentrations of chlorofluorocarbons (CFCs). Tests of the method in Lake Lucerne (Switzerland) showed that dissolved gas concentrations agree with measurements from other methods and concentrations of air saturated water. In a small artificial pond, we observed systematic gas supersaturations, which seem to be linked to adsorption of solar irradiation in the pond and to water circulation through a gravel bed.

  9. Mechanics of liquids and gases

    CERN Document Server

    Loitsyanskii, L G; Jones, W P

    1966-01-01

    Mechanics of Liquids and Gases, Second Edition is a 10-chapter text that covers significant revisions concerning the dynamics of an ideal gas, a viscous liquid and a viscous gas.After an expanded introduction to the fundamental properties and methods of the mechanics of fluids, this edition goes on dealing with the kinetics and general questions of dynamics. The next chapters describe the one-dimensional pipe flow of a gas with friction, the elementary theory of the shock tube; Riemann's theory of the wave propagation of finite intensity, and the theory of plane subsonic and supersonic flows.

  10. Characterizing optical dipole trap via fluorescence of trapped cesium atoms

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; GENG Tao; YAN Shubin; LI Gang; ZHANG Jing; WANG Junmin; PENG Kunchi; ZHANG Tiancai

    2006-01-01

    Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.

  11. Traps for neutral radioactive atoms

    CERN Document Server

    Sprouse, G D; Grossman, J S; Orozco, L A; Pearson, M R

    2002-01-01

    We describe several methods for efficiently injecting a small number of radioactive atoms into a laser trap. The characteristics of laser traps that make them desirable for physics experiments are discussed and several different experimental directions are described. We describe recent experiments with the alkali element Fr and point to future directions of the neutral atom trapping program.

  12. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  13. Bacterial sources for phenylalkane hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, L.; Winans, R.E. [Argonne National Lab., IL (United States); Langworthy, T. [Univ. of South Dakota, Vermillion, SD (United States)

    1996-10-01

    The presence of phenylalkane hydrocarbons in geochemical samples has been the source of much controversy. Although an anthropogenic input from detergent sources always appears likely, the distribution of phenylalkane hydrocarbons in some cases far exceeding that attributed to detergent input has led to a reappraisal of this view. Indeed, recent work involving analysis of the lipid hydrocarbon extracts from extant Thermoplasma bacteria has revealed the presence of phenylalkane hydrocarbons. The presence of phenylalkane hydrocarbons in sedimentary organic matter may therefore represent potential biological markers for thermophilic bacteria.

  14. Distribution of inert gases in fines from the Cayley-Descartes region

    Science.gov (United States)

    Walton, J. R.; Lakatos, S.; Heymann, D.

    1973-01-01

    The inert gases in 14 different fines and in one sample of 2 to 4 mm fines from Apollo 16 were measured by mass spectroscopy with respect to trapped solar wind gases, cosmogenic gases, and 'parentless' Ar-40. Such studies are helpful for the understanding of regolith evolution, of transport of regolith fines, and of the lunar atmosphere. The Apollo 16 soils are unique because they represent, after Luna 20, the second and much more extensive record from the lunar highlands. The landing site presents the problem of materials from the Cayley Formation vs those from the Descartes Formation. There are two large, relatively fresh craters in the area, North Ray and South Ray, whose ejecta patterns may be recognized in the inert-gas record.

  15. Distribution of inert gases in fines from the Cayley-Descartes region

    Science.gov (United States)

    Walton, J. R.; Lakatos, S.; Heymann, D.

    1973-01-01

    The inert gases in 14 different fines and in one sample of 2 to 4 mm fines from Apollo 16 were measured by mass spectroscopy with respect to trapped solar wind gases, cosmogenic gases, and 'parentless' Ar-40. Such studies are helpful for the understanding of regolith evolution, of transport of regolith fines, and of the lunar atmosphere. The Apollo 16 soils are unique because they represent, after Luna 20, the second and much more extensive record from the lunar highlands. The landing site presents the problem of materials from the Cayley Formation vs those from the Descartes Formation. There are two large, relatively fresh craters in the area, North Ray and South Ray, whose ejecta patterns may be recognized in the inert-gas record.

  16. String Theory Based Predictions for Novel Collective Modes in Strongly Interacting Fermi Gases

    CERN Document Server

    Bantilan, H; Ishii, T; Lewis, W E; Romatschke, P

    2016-01-01

    Very different strongly interacting quantum systems such as Fermi gases, quark-gluon plasmas formed in high energy ion collisions and black holes studied theoretically in string theory are known to exhibit quantitatively similar damping of hydrodynamic modes. It is not known if such similarities extend beyond the hydrodynamic limit. Do non-hydrodynamic collective modes in Fermi gases with strong interactions also match those from string theory calculations? In order to answer this question, we use calculations based on string theory to make predictions for novel types of modes outside the hydrodynamic regime in trapped Fermi gases. These predictions are amenable to direct testing with current state-of-the-art cold atom experiments.

  17. Coherent tunneling of atoms from Bose-condensed gases at finite temperatures

    Science.gov (United States)

    Luxat, David L.; Griffin, Allan

    2002-04-01

    Tunneling of atoms between two trapped Bose-condensed gases at finite temperatures is explored using a many-body linear-response tunneling formalism similar to that used in superconductors. To lowest order, the tunneling currents can be expressed quite generally in terms of the single-particle Green's functions of isolated Bose gases. A coherent first-order tunneling Josephson current between two atomic Bose-Einstein condensates is found, in addition to coherent and dissipative contributions from second-order condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is a generalization of Meier and Zwerger, who recently treated tunneling between uniform atomic Bose gases. We apply our formalism to the analysis of an out-coupling experiment induced by light wave fields, using a simple Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For tunneling into the vacuum, we recover the results of Japha, Choi, Burnett, and Band, who recently pointed out the usefulness of studying the spectrum of out-coupled atoms. In particular, we show that the small tunneling current of noncondensate atoms from a trapped Bose gas has a broad spectrum of energies, with a characteristic structure associated with the Bogoliubov quasiparticle u2 and v2 amplitudes.

  18. Geochemistry of drill core headspace gases and its significance in gas hydrate drilling in Qilian Mountain permafrost

    Science.gov (United States)

    Lu, Zhengquan; Rao, Zhu; He, Jiaxiong; Zhu, Youhai; Zhang, Yongqin; Liu, Hui; Wang, Ting; Xue, Xiaohua

    2015-02-01

    Headspace gases from cores are sampled in the gas hydrate drilling well DK-8 in the Qilian Mountain permafrost. Gas components and carbon isotopes of methane from headspace gas samples are analyzed. The geochemical features of the headspace gases along the well profile are compared with occurrences of gas hydrate, and with the distribution of faults or fractures. Their geochemical significance is finally pointed out in gas hydrate occurrences and hydrocarbon migration. Results show high levels of hydrocarbon concentrations in the headspace gases at depths of 149-167 m, 228-299 m, 321-337 m and 360-380 m. Visible gas hydrate and its associated anomalies occur at 149-167 m and 228-299 m; the occurrence of high gas concentrations in core headspace gases was correlated to gas hydrate occurrences and their associated anomalies, especially in the shallow layers. Gas compositions, gas ratios of C1/ΣC1-5, C1/(C2 + C3), iC4/nC4, and iC5/nC5, and carbon isotopic compositions of methane (δ13C1, PDB‰) indicate that the headspace gases are mainly thermogenic, partly mixed with biodegraded thermogenic sources with small amounts derived from microbial sources. Faults or fracture zones are identified at intervals of 149-167 m, 228-299 m, 321-337 m, and near 360-380 m; significantly higher gas concentrations and lower dryness ratio were found in the headspace gases within the fault or fracture zones compared with areas above these zones. In the shallow zones, low dryness ratios were observed in headspace gases in zones where gas hydrate and faults or fracture zones were found, suggesting that faults or fracture zones serve as migration paths for gases in the deep layers and provide accumulation space for gas hydrate in the shallow layers of the Qilian Mountain permafrost.

  19. Magneto-optical Trapping of a Diatomic Molecule

    Science.gov (United States)

    Demille, Dave

    2014-05-01

    The magneto-optical trap (MOT) is the workhorse technique for atomic physics in the ultracold regime, serving as the starting point in applications from optical clocks to quantum-degenerate gases. Although MOTs have been used with a wide array of atomic species, realization of a molecular MOT was long considered infeasible. In this talk we will describe the first magneto-optical trap for a molecule, strontium monofluoride (SrF). Our MOT produces the coldest trapped sample of directly-cooled molecules to date, with temperature T ~2.5 mK. The SrF MOT is loaded from a cryogenic buffer-gas beam slowed by laser radiation pressure. Images of laser-induced fluorescence allow us to characterize the trap's properties. Although magneto-optical trapping of diatomic molecules is in its infancy, our results indicate that access to the ultracold regime may be possible for several molecular species, with potential applications from quantum simulation to tests of fundamental symmetries to ultracold chemistry.

  20. Detection of Trapped Antihydrogen

    CERN Document Server

    Hydomako, Richard Allan

    The ALPHA experiment is an international effort to produce, trap, and perform precision spectroscopic measurements on antihydrogen (the bound state of a positron and an antiproton). Based at the Antiproton Decelerator (AD) facility at CERN, the ALPHA experiment has recently magnetically confined antihydrogen atoms for the first time. A crucial element in the observation of trapped antihydrogen is ALPHA’s silicon vertexing detector. This detector contains sixty silicon modules arranged in three concentric layers, and is able to determine the three-dimensional location of the annihilation of an antihydrogen atom by reconstructing the trajectories of the produced annihilation products. This dissertation focuses mainly on the methods used to reconstruct the annihilation location. Specifically, the software algorithms used to identify and extrapolate charged particle tracks are presented along with the routines used to estimate the annihilation location from the convergence of the identified tracks. It is shown...

  1. Trapping ions with lasers

    CERN Document Server

    Cormick, Cecilia; Morigi, Giovanna

    2010-01-01

    This work theoretically addresses the trapping an ionized atom with a single valence electron by means of lasers, analyzing qualitatively and quantitatively the consequences of the net charge of the particle. In our model, the coupling between the ion and the electromagnetic field includes the charge monopole and the internal dipole, within a multipolar expansion of the interaction Hamiltonian. Specifically, we perform a Power-Zienau-Woolley transformation, taking into account the motion of the center of mass. The net charge produces a correction in the atomic dipole which is of order $m_e/M$ with $m_e$ the electron mass and $M$ the total mass of the ion. With respect to neutral atoms, there is also an extra coupling to the laser field which can be approximated by that of the monopole located at the position of the center of mass. These additional effects, however, are shown to be very small compared to the dominant dipolar trapping term.

  2. Coherence in Microchip Traps

    CERN Document Server

    Treutlein, P; Steinmetz, T; Hänsch, T W; Reichel, J; Treutlein, Philipp; Hommelhoff, Peter; Steinmetz, Tilo; H\\"ansch, Theodor W.; Reichel, Jakob

    2003-01-01

    We report the coherent manipulation of internal states of neutral atoms in a magnetic microchip trap. Coherence lifetimes exceeding 1 s are observed with atoms at distances of $4-130 \\mu$m from the microchip surface. The coherence lifetime in the microtrap is independent of atom-surface distance and agrees well with the results of similar measurements in macroscopic magnetic traps. Due to the absence of surface-induced decoherence, a miniaturized atomic clock with a relative stability in the $10^{-13}$ range can be realized. For applications in quantum information processing, we propose to use microwave near-fields in the proximity of chip wires to create potentials that depend on the internal state of the atoms.

  3. Microbial degradation of petroleum hydrocarbons.

    Science.gov (United States)

    Varjani, Sunita J

    2017-01-01

    Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Alteration and Reformation of Hydrocarbon Reservoirs and Prediction of Remaining Potential Resources in Superimposed Basins

    Institute of Scientific and Technical Information of China (English)

    PANG Hong; PANG Xiongqi; YANG Haijun; LIN Changsong; MENG Qingyang; WANG Huaijie

    2010-01-01

    Complex hydrocarbon reservoirs developed widely in the superimposed basins of China formed from multiple structural alterations,reformation and destruction of hydrocarbon reservoirs formed at early stages.They are characterized currently by trap adjustment,component variation,phase conversion,and scale reformation.This is significant for guiding current hydrocarbon exploration by revealing evolution mechanisms after hydrocarbon reservoir formation and for predicting remaining potential resources.Based on the analysis of a number of complex hydrocarbon reservoirs,there are four geologic features controlling the degree of destruction of hydrocarbon reservoirs formed at early stages:tectonic event intensity,frequency,time and caprock sealing for oil and gas during tectonic evolution.Research shows that the larger the tectonic event intensity,the more frequent the tectonic event,the later the last tectonic event,the weaker the caprock sealing for oil and gas,and the greater the volume of destroyed hydrocarbons in the early stages.Based on research on the main controlling factors of hydrocarbon reservoir destruction mechanisms,a geological model of tectonic superimposition and a mathematical model evaluating potential remaining complex hydrocarbon reservoirs have been established.The predication method and technical procedures were applied in the Tazhong area of Tarim Basin,where four stages of hydrocarbon accumulation and three stages of hydrocarbon alteration occurred.Geohistorical hydrocarbon accumulation reached 3.184billion tons,of which 1.271 billion tons were destroyed.The total volume of remaining resources available for exploration is~1.9 billion tons.

  5. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    an inspiring speech at the MIT Physics of Computation 1st Conference in 1981, Feynman proposed the development of a computer that would obey the...on ion trap based 36 quantum computing for physics and computer science students would include lecture notes, slides, lesson plans, a syllabus...reading lists, videos, demonstrations, and laboratories. 37 LIST OF REFERENCES [1] R. P. Feynman , “Simulating physics with computers,” Int. J

  6. Capturing Gases in Carbon Honeycomb

    Science.gov (United States)

    Krainyukova, Nina V.

    2017-04-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2-bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  7. Cloud processing of soluble gases

    Science.gov (United States)

    Laj, P.; Fuzzi, S.; Facchini, M. C.; Lind, J. A.; Orsi, G.; Preiss, M.; Maser, R.; Jaeschke, W.; Seyffer, E.; Helas, G.; Acker, K.; Wieprecht, W.; Möller, D.; Arends, B. G.; Mols, J. J.; Colvile, R. N.; Gallagher, M. W.; Beswick, K. M.; Hargreaves, K. J.; Storeton-West, R. L.; Sutton, M. A.

    Experimental data from the Great Dun Fell Cloud Experiment 1993 were used to investigate interactions between soluble gases and cloud droplets. Concentrations of H 2O 2, SO 2, CH 3COOOH, HCOOH, and HCHO were monitored at different sites within and downwind of a hill cap cloud and their temporal and spatial evolution during several cloud events was investigated. Significant differences were found between in-cloud and out-of-cloud concentrations, most of which could not be explained by simple dissolution into cloud droplets. Concentration patterns were analysed in relation to the chemistry of cloud droplets and the gas/liquid equilibrium. Soluble gases do not undergo similar behaviour: CH 3COOH simply dissolves in the aqueous phase and is outgassed upon cloud dissipation; instead, SO 2 is consumed by its reaction with H 2O 2. The behaviour of HCOOH is more complex because there is evidence for in-cloud chemical production. The formation of HCOOH interferes with the odd hydrogen cycle by enhancing the liquid-phase production of H 2O 2. The H 2O 2 concentration in cloud therefore results from the balance of consumption by oxidation of SO 2 in-cloud production, and the rate by which it is supplied to the system by entrainment of new air into the clouds.

  8. Capturing Gases in Carbon Honeycomb

    Science.gov (United States)

    Krainyukova, Nina V.

    2016-12-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2 -bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  9. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  10. Water-Trapped Worlds

    CERN Document Server

    Menou, Kristen

    2013-01-01

    Although tidally-locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO2 as dayside ocean basins dry-up. Water-tr...

  11. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark

    DEFF Research Database (Denmark)

    Feilberg, A.; Poulsen, M.W.B.; Nielsen, T.

    2001-01-01

    The occurrence of selected nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) associated with atmospheric particulate matter has been investigated at an urban site and at a semi-rural site. For this purpose an analysis method based on gas chromatography and tandem ion trap mass spectrometry has...

  12. Flow around fault zones in siliciclastic reservoirs based on limited available data during hydrocarbon exploration

    NARCIS (Netherlands)

    Heege, J.H. ter; Bruin, G. de

    2015-01-01

    The sealing capacity of faults is one of the main controlling factors determining column heights of hydrocarbons in structural traps and potentially bypassed gas in undrained reservoir compartments. Limited available data in early exploration phases often hampers full incorporation of fault seal ana

  13. Low-mature gases and typical low-mature gas fields in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    No natural gas pool of industrial importance could be formed at the low-evolution stage of organic matter. In the 1980s, on the basis of the development in exploration practice, the hypotheses of bio-thermo-catalytic transitional zone gases and early thermogenic gases were proposed. The lower-limit Ro values for the formation and accumulation of natural gases of industrial importance have been expanded to 0.3%―0.4%. In the light of the two-stage model established on the basis of carbon isotope fractionation in coal-type natural gases, the upper-limit Ro values have been set at 0.8%―1.0%. In terms of the geological practice in the low-mature gas zones and China’s main coal-type gas fields, it is feasible and proper to set the upper-limit Ro value of low-mature gases at 0.8%. Supper-large gas fields such as the Urengoy gas field in western Siberian Basin should belong to low-mature gas fields, of which the natural gas reserves account for more than 20% of the global proven reserves, providing strong evidence for the significance of such a type of resources. The proven natural gas reserves in the Turpan-Hami Basin of China have almost reached 1000 × 108 m3. The main source rocks in this area are the Jurassic Xishanyao Formation, which occurs as a suite of coal series strata. The corresponding thermal evolution indices (Ro ) are mainly within the range of about 0.4%―0.8%, the δ 13C1 values of methane vary between-44‰ and-39‰ (correspondingly Ro =0.6%―0.8%), and those of ethane are within the range of-29‰―-26‰, indicating that natural gases in the Turpan-Hami Basin should be designated to coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also fall within the area of low evolution while the precursor type of light hydrocarbons also shows the characteristics of the coal-type. The geological background, carbon isotopic composition and light hydrocarbon index all provide strong evidence suggesting that the proven

  14. Methods for determining the efficacy of radical-trapping antioxidants.

    Science.gov (United States)

    Li, Bo; Pratt, Derek A

    2015-05-01

    Hydrocarbon autoxidation is the free radical chain reaction primarily responsible for the oxidative degradation of organic materials, including those that make up cells, tissues, and organs. The identification of compounds that slow this process (antioxidants) and the quantitation of their efficacies have long been goals of academic and industrial researchers. Antioxidants are generally divided into two types: preventive and radical-trapping (also commonly referred to as chain-breaking). Preventive antioxidants slow the rate of initiation of autoxidation, whereas radical-trapping antioxidants slow the rate of propagation by reacting with chain-propagating peroxyl radicals. The purpose of this review is to provide a comprehensive overview of different approaches to measure the kinetics of the reactions of radical-trapping antioxidants with peroxyl radicals, and their use to study the inhibition of hydrocarbon (lipid) autoxidation in homogeneous solution, as well as biphasic media (lipid bilayers) and cell culture. Direct and indirect approaches are presented and advantages and disadvantages of each are discussed in order to facilitate method selection for investigators seeking to address particular questions in this immensely popular field. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effective conversion of biomass tar into fuel gases in a microwave reactor

    Science.gov (United States)

    Anis, Samsudin; Zainal, Z. A.

    2016-06-01

    This work deals with conversion of naphthalene (C10H8) as a biomass tar model compound by means of thermal and catalytic treatments. A modified microwave oven with a maximum output power of 700 W was used as the experimental reactor. Experiments were performed in a wide temperature range of 450-1200°C at a predetermined residence time of 0.24-0.5 s. Dolomite and Y-zeolite were applied to convert naphthalene catalytically into useful gases. Experimental results on naphthalene conversion showed that conversion efficiency and yield of gases increased significantly with the increase of temperature. More than 90% naphthalene conversion efficiency was achieved by thermal treatment at 1200°C and 0.5 s. Nevertheless, this treatment was unfavorable for fuel gases production. The main product of this treatment was soot. Catalytic treatment provided different results with that of thermal treatment in which fuel gases formation was found to be the important product of naphthalene conversion. At a high temperature of 900°C, dolomite had better conversion activity where almost 40 wt.% of naphthalene could be converted into hydrogen, methane and other hydrocarbon gases.

  16. Effective conversion of biomass tar into fuel gases in a microwave reactor

    Energy Technology Data Exchange (ETDEWEB)

    Anis, Samsudin, E-mail: samsudin-anis@yahoo.com [Department of Mechanical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, 50229 Semarang, 8508101 (Indonesia); Zainal, Z. A., E-mail: mezainal@usm.my [School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2016-06-03

    This work deals with conversion of naphthalene (C{sub 10}H{sub 8}) as a biomass tar model compound by means of thermal and catalytic treatments. A modified microwave oven with a maximum output power of 700 W was used as the experimental reactor. Experiments were performed in a wide temperature range of 450-1200°C at a predetermined residence time of 0.24-0.5 s. Dolomite and Y-zeolite were applied to convert naphthalene catalytically into useful gases. Experimental results on naphthalene conversion showed that conversion efficiency and yield of gases increased significantly with the increase of temperature. More than 90% naphthalene conversion efficiency was achieved by thermal treatment at 1200°C and 0.5 s. Nevertheless, this treatment was unfavorable for fuel gases production. The main product of this treatment was soot. Catalytic treatment provided different results with that of thermal treatment in which fuel gases formation was found to be the important product of naphthalene conversion. At a high temperature of 900°C, dolomite had better conversion activity where almost 40 wt.% of naphthalene could be converted into hydrogen, methane and other hydrocarbon gases.

  17. Utilization of the Net Heat Process Tail Gases in the Reactor for the Production of Oil-Furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2011-02-01

    Full Text Available Tail gases of low calorific value, which are the by-product of oil-furnace carbon black industrial production, can be efficiently used as energy before their final release into the atmosphere. Apart from being used mainly for heating dryers, production of steam, electricity, or flared, they can also be used as a substitute for fuel in the reactor for the production of oil-furnace carbon blacks, thus increasing the efficiency of the hydrocarbon raw feedstock.This technical paper represents the technical-technological solution for applying the waste heat of the low calorific tail gases in the reactor for the production of "hard" grade oil-furnace carbon blacks with savings of the hydrocarbon raw feedstock.The introduction of the preheated low calorific tail gases in the reactor for the production of "hard" grade oil-furnace carbon blacks is achieved by serial cascading of four fans. The system consists of fans designed to pneumatically transport the mixture of process tail gases and oil-furnace carbon black dust particles. This ensures a stable technological process for the introduction of the low calorific process tail gases into the reaction zone where the natural gas and preheated air are combusted.In the production of oil-furnace carbon black N220, it is shown that by using low calorific process tail gases in the amount from 1000 to 2000 m3 h–1 per reactor, savings from 10 to 20 % of natural gas and simultaneously 7 to 9 % of the hydrocarbon raw feedstoks were achieved.

  18. Membrane separation of hydrocarbons

    Science.gov (United States)

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  19. Fluctuation capture in non-polar gases and liquids

    CERN Document Server

    Cocks, D G

    2016-01-01

    We present a new model to identify natural fluctuations in fluids, allowing us to describe localization phenomena in the transport of electrons, positrons and positronium through non-polar fluids. The theory contains no free parameters and allows for the calculation of capture cross sections $\\sigma_{cap}(\\epsilon)$ of light-particles in any non-polar fluid, required for non-equilibrium transport simulations. We postulate that localization occurs through large shallow traps before stable bound states are formed. Our results allow us to explain most of the experimental observations of changes in mobility and annihilation rates in the noble gases and liquids as well as make predictions for future experiments. Quantities which are currently inaccessible to experiment, such as positron mobilities, can be obtained from our theory. Unlike other theoretical approaches to localization, the outputs of our theory can be applied in non-equilibrium transport simulations and an extension to the determination of waiting ti...

  20. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  1. Gases in steam from Cerro Prieto geothermal wells with a discussion of steam/gas ratio measurements

    Science.gov (United States)

    Nehring, N.L.; Fausto, L.J.J.

    1979-01-01

    As part of a joint USGS-CFE geochemical study of Cerro Prieto, steam samples were collected for gas analyses in April, 1977. Analyses of the major gas components of the steam were made by wet chemistry (for H2O,CO2,H2S and NH3) and by gas chromatography (He,H2,Ar,O2,N2 and hydrocarbons). The hydrocarbon gases in Cerro Prieto steam closely resemble hydrocarbons in steam from Larderello, Italy and The Geysers, California which, although they are vapor-dominated rather than hot-water geothermal systems, also have sedimentary aquifer rocks. These sedimentary geothermal hydrocarbons are characterized by the presence of branched C4-6 compounds and a lack of unsaturated compounds other than benzene. Relatively large amounts of benzene may be characteristic of high-temperature geothermal systems. All hydrocarbons in these gases other than methane most probably originate from the thermal metamorphosis of organic matter contained in the sediments. ?? 1979.

  2. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    Energy Technology Data Exchange (ETDEWEB)

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  3. New perspectives for noble gases in oceanography

    Science.gov (United States)

    Aeschbach, Werner

    2016-08-01

    Conditions prevailing in regions of deep water formation imprint their signature in the concentrations of dissolved noble gases, which are conserved in the deep ocean. Such "recharge conditions" including temperature, salinity, and interactions with sea ice are important in view of ocean-atmosphere CO2 partitioning. Noble gases, especially the temperature sensitive Kr and Xe, are well-established tracers to reconstruct groundwater recharge conditions. In contrast, tracer oceanography has traditionally focused on He isotopes and the light noble gases Ne and Ar, which could be analyzed at the required high precision. Recent developments of analytical and data interpretation methods now provide fresh perspectives for noble gases in oceanography.

  4. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  5. On bacterial role in hydrocarbon generation mechanism,Banqiao Sag

    Institute of Scientific and Technical Information of China (English)

    王铁冠; 钟宁宁; 侯读杰; 黄光辉; 于志海; 杨池银; 廖前进

    1995-01-01

    Terrestrial organic matter is a main primary source material for oil and gas generation in theEogene Shahejie Formation in Banqiao Sag,bacterial degradation and reworking of sedimentary organic matterwould be conducive to the enhancement of its sapropelification level and to the early generation of immatureoil.Bacteria-derived short-chain alkanes are a major material base for the light hydrocarbon formation ofcondensate and crude oil in Banqiao Sag,certain thermal maturation,formation temperature and pressure areexternal conditions for the condemate formation.The establishment of hydrocarbon generation model shouldbe favorable to the resource prediction of deep-lying high-mature and shallow-lying immature oils and gases.

  6. Direct hydrocarbon exploration and gas reservoir development technology

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Hoon; Oh, Jae Ho; Jeong, Tae Jin [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)] [and others

    1995-12-01

    In order to enhance the capability of petroleum exploration and development techniques, three year project (1994 - 1997) was initiated on the research of direct hydrocarbon exploration and gas reservoir development. This project consists of four sub-projects. (1) Oil(Gas) - source rock correlation technique: The overview of bio-marker parameters which are applicable to hydrocarbon exploration has been illustrated. Experimental analysis of saturated hydrocarbon and bio-markers of the Pohang E and F core samples has been carried out. (2) Study on surface geochemistry and microbiology for hydrocarbon exploration: the test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. (3) Development of gas and gas condensate reservoirs: There are two types of reservoir characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. (4) Numerical modeling of seismic wave propagation and full waveform inversion: Three individual sections are presented. The first one is devoted to the inversion theory in general sense. The second and the third sections deal with the frequency domain pseudo waveform inversion of seismic reflection data and refraction data respectively. (author). 180 refs., 91 figs., 60 tabs.

  7. Instability in Shocked Granular Gases

    CERN Document Server

    Sirmas, Nick; Radulescu, Matei

    2013-01-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  8. Instability in shocked granular gases

    Science.gov (United States)

    Sirmas, Nick; Falle, Sam; Radulescu, Matei

    2014-05-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  9. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    Science.gov (United States)

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates. © 2012 American Institute of Physics

  10. Exploring the Kibble-Zurek mechanism with homogeneous Bose gases

    Science.gov (United States)

    Beugnon, Jérôme; Navon, Nir

    2017-01-01

    Out-of-equilibrium phenomena are a subject of considerable interest in many fields of physics. Ultracold quantum gases, which are extremely clean, well-isolated and highly controllable systems, offer ideal platforms to investigate this topic. The recent progress in tailoring trapping potentials now allows the experimental production of homogeneous samples in custom geometries, which is a key advance for studies of the emergence of coherence in interacting quantum systems. Here we review recent experiments in which temperature quenches have been performed across the Bose-Einstein condensation phase transition in an annular geometry and in homogeneous 3D and quasi-2D gases. Combined, these experiments comprehensively explore and validate the Kibble-Zurek (KZ) scenario through complementary measurements of correlation functions and density of topological defects. They allow the measurement of KZ scaling laws, the direct confirmation of the ‘freeze-out’ hypothesis that underlies the KZ theory, and the extraction of critical exponents of the Bose-Einstein condensation transition.

  11. Atomic Coherent Trapping and Properties of Trapped Atom

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-Jian; XIA Li-Xin; XIE Min

    2006-01-01

    Based on the theory of velocity-selective coherent population trapping, we investigate an atom-laser system where a pair of counterpropagating laser fields interact with a three-level atom. The influence of the parametric condition on the properties of the system such as velocity at which the atom is selected to be trapped, time needed for finishing the coherent trapping process, and possible electromagnetically induced transparency of an altrocold atomic medium,etc., is studied.

  12. Cryogenic resonator design for trapped ion experiments in Paul traps

    CERN Document Server

    Brandl, Matthias F; Monz, Thomas; Blatt, Rainer

    2016-01-01

    Trapping ions in Paul traps requires high radio-frequency voltages, which are generated using resonators. When operating traps in a cryogenic environment, an in-vacuum resonator showing low loss is crucial to limit the thermal load to the cryostat. In this study, we present a guide for the design and production of compact, shielded cryogenic resonators. We produced and characterized three different types of resonators and furthermore demonstrate efficient impedance matching of these resonators at cryogenic temperatures.

  13. Nonresonance adiabatic photon trap

    CERN Document Server

    Popov, S S; Burdakov, A V; Ushkova, M Yu

    2016-01-01

    Concept of high efficiency photon storage based on adiabatic confinement between concave mirrors is presented and experimentally investigated. The approach is insensitive to typical for Fabri-Perot cells requirements on quality of accumulated radiation, tolerance of resonator elements and their stability. Experiments have been carried out with the trap, which consists from opposed concave cylindrical mirrors and conjugated with them spherical mirrors. In result, high efficiency for accumulation of radiation with large angular spread and spectrum width has been confirmed. As radiation source a commercial fiber laser has been used.

  14. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  15. Technical Note: A fully automated purge and trap GC-MS system for quantification of volatile organic compound (VOC fluxes between the ocean and atmosphere

    Directory of Open Access Journals (Sweden)

    S. J. Andrews

    2015-04-01

    Full Text Available The oceans are a key source of a number of atmospherically important volatile gases. The accurate and robust determination of trace gases in seawater is a significant analytical challenge, requiring reproducible and ideally automated sample handling, a high efficiency of seawater–air transfer, removal of water vapour from the sample stream, and high sensitivity and selectivity of the analysis. Here we describe a system that was developed for the fully automated analysis of dissolved very short-lived halogenated species (VSLS sampled from an under-way seawater supply. The system can also be used for semi-automated batch sampling from Niskin bottles filled during CTD (conductivity, temperature, depth profiles. The essential components comprise a bespoke, automated purge and trap (AutoP & T unit coupled to a commercial thermal desorption and gas chromatograph mass spectrometer (TD-GC-MS. The AutoP & T system has completed five research cruises, from the tropics to the poles, and collected over 2500 oceanic samples to date. It is able to quantify >25 species over a boiling point range of 34–180 °C with Henry's law coefficients of 0.018 and greater (CH22l, kHcc dimensionless gas/aqueous and has been used to measure organic sulfurs, hydrocarbons, halocarbons and terpenes. In the eastern tropical Pacific, the high sensitivity and sampling frequency provided new information regarding the distribution of VSLS, including novel measurements of a photolytically driven diurnal cycle of CH22l within the surface ocean water.

  16. New data on the Geochemistry of Gases in the Potash Deposits

    Directory of Open Access Journals (Sweden)

    I. I. Chaykovskiy

    2014-12-01

    Full Text Available The composition of the gas phase of salt rocks from a number of potash deposits located in Europe (Verkhnekamskoe, Starobinskoe and Asia (Tubegatanskoe, Zhylyanskoe Satimolinskoe was studied. It allowed dividing them into two groups. In Asian deposits, only authigenic dry gases were formed by diagenetic decomposition of organic matter. Structural exposure of these deposits led to the oxidation of methane and hydrogen and enrichment by carbon dioxide. European deposits were not structurally exposed to the oxidation process, but were exposed during salt rock formation. They experienced influx of heavy hydrocarbons from the underlying strata. The history of the formation of gas regime at the Verkhnekamskoe potash deposit could be divided into three stages. First stage may be characterized by a syngenetic capture of deep gases and authigenic organic matter converted during diagenesis to methane, which percentage gradually increases with an increase of the thickness of impermeable salt strata. Then the deep gases invaded the salt formation during sedimentation of the upper carnallite layers and top salt rock. Third stage was associated with folding processes accompanied by a mobilization of fluids scattered in the gas-fluid inclusions, and with probable influx of heavy hydrocarbons and carbon dioxide resulted in formation of the secondary salt zones. Replacement of carnallite layers leads to the release of isomorphous ammonium ion and formation of a hydrogen.

  17. Quantum optics with ultracold quantum gases: towards the full quantum regime of the light-matter interaction

    Science.gov (United States)

    Mekhov, Igor B.; Ritsch, Helmut

    2012-05-01

    Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles.

  18. Dimensional BCS-BEC crossover in ultracold Fermi gases

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, Igor

    2014-12-10

    We investigate thermodynamics and phase structure of ultracold Fermi gases, which can be realized and measured in the laboratory with modern trapping techniques. We approach the subject from a both theoretical and experimental perspective. Central to the analysis is the systematic comparison of the BCS-BEC crossover of two-component fermions in both three and two dimensions. A dimensional reduction can be achieved in experiments by means of highly anisotropic traps. The Functional Renormalization Group (FRG) allows for a description of both cases in a unified theoretical framework. In three dimensions we discuss with the FRG the influence of high momentum particles onto the density, extend previous approaches to the Unitary Fermi Gas to reach quantitative precision, and study the breakdown of superfluidity due to an asymmetry in the population of the two fermion components. In this context we also investigate the stability of the Sarma phase. For the two-dimensional system scattering theory in reduced dimension plays an important role. We present both the theoretically as well as experimentally relevant aspects thereof. After a qualitative analysis of the phase diagram and the equation of state in two dimensions with the FRG we describe the experimental determination of the phase diagram of the two-dimensional BCS-BEC crossover in collaboration with the group of S. Jochim at PI Heidelberg.

  19. Nanofriction in cold ion traps.

    Science.gov (United States)

    Benassi, A; Vanossi, A; Tosatti, E

    2011-01-01

    Sliding friction between crystal lattices and the physics of cold ion traps are so far non-overlapping fields. Two sliding lattices may either stick and show static friction or slip with dynamic friction; cold ions are known to form static chains, helices or clusters, depending on the trapping conditions. Here we show, based on simulations, that much could be learnt about friction by sliding, through, for example, an electric field, the trapped ion chains over a corrugated potential. Unlike infinite chains, in which the theoretically predicted Aubry transition to free sliding may take place, trapped chains are always pinned. Yet, a properly defined static friction still vanishes Aubry-like at a symmetric-asymmetric structural transition, found for decreasing corrugation in both straight and zig-zag trapped chains. Dynamic friction is also accessible in ringdown oscillations of the ion trap. Long theorized static and dynamic one-dimensional friction phenomena could thus become accessible in future cold ion tribology.

  20. Specific heats of degenerate ideal gases

    OpenAIRE

    Caruso, Francisco; Oguri, Vitor; Silveira, Felipe

    2017-01-01

    From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.

  1. 40 CFR 86.1514 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide on a dry basis. (b) If the raw CO sampling system specified in 40 CFR part 1065 is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used. (c) If a CVS sampling system is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used....

  2. 40 CFR 91.312 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... stated by the gas supplier for each calibration gas. (b) Pure gases. The required purity of the gases is... purified synthetic air which contains a concentration of propane higher than what a gas supplier considers... manufacturer must be consistent in the choice of diluent (zero air or purified nitrogen) between...

  3. Hydrocarbon status of soils under atmospheric pollution from a local industrial source

    Science.gov (United States)

    Gennadiev, A. N.; Zhidkin, A. P.; Pikovskii, Yu. I.; Kovach, R. G.; Koshovskii, T. S.; Khlynina, N. I.

    2016-09-01

    Contents and compositions of bitumoids, polycyclic aromatic hydrocarbons (PAHs), and free and retained hydrocarbon gases in soils along a transect at different distances from the local industrial source of atmospheric pollution with soot emissions have been studied. The reserves of PAHs progressively decrease when the distance from the source increases. Among the individual PAHs, the most significant decrease is observed for benzo[ a]pyrene, tetraphene, pyrene, chrysene, and anthracene. On plowlands, the share of heavy PAHs—benzo[ ghi]perylene, benzo[ a]pyrene, perylene, etc.—is lower than in the forest soils. In automorphic soils of the park zone adjacent to the industrial zone, the penetration depth of four-, five-, and sixring PAHs from the atmosphere is no more than 25 cm. In soils under natural forest vegetation, heavy PAHs do not penetrate deeper than 5 cm; in tilled soils, their penetration depth coincides with the lower boundary of plow horizons. Analysis of free gases in the soil air revealed hydrocarbons only under forest. From the quantitative and qualitative parameters of the content, reserves, and compositions of different hydrocarbons, the following modification types of hydrocarbon status in the studied soils were revealed: injection, atmosedimentation-injection, atmosedimentation-impact, atmosedimentation-distant, and biogeochemical types.

  4. CARCINOGENICITY OF EXHAUST GASES OF AUTOMOBILES

    Directory of Open Access Journals (Sweden)

    N. Vnukova

    2011-01-01

    Full Text Available Motor transport is the basic consumer of fuel from oil and determining in ecological pollu-tion of atmosphere in urban areas. The most dangerous to the person are joint influences of super toxins: oxides of nitrogen, cancerogenic hydrocarbons and firm particles. It is shown that the use of modern fuel with increased contents of aromatic hydrocarbons aggravates this environmental problem.

  5. Thermalization of Gases: A First Principles Approach

    CERN Document Server

    Chafin, Clifford

    2015-01-01

    Previous approaches of emergent thermalization for condensed matter based on typical wavefunctions are extended to generate an intrinsically quantum theory of gases. Gases are fundamentally quantum objects at all temperatures, by virtue of rapid delocalization of their constituents. When there is a sufficiently broad spread in the energy of eigenstates, a well-defined temperature is shown to arise by photon production when the samples are optically thick. This produces a highly accurate approximation to the Planck distribution so that thermalization arises from the initial data as a consequence of purely quantum and unitary dynamics. These results are used as a foil for some common hydrodynamic theory of ultracold gases. It is suggested here that strong history dependence typically remains in these gases and so limits the validity of thermodynamics in their description. These problems are even more profound in the extension of hydrodynamics to such gases when they are optically thin, even when their internal ...

  6. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    Directory of Open Access Journals (Sweden)

    Mudtorlep Nisoa

    2010-03-01

    Full Text Available Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effects on the cellulose membranes. When appropriated conditions are used, a thin brownish film of hydrocarbon was formed on the membrane, and the water contact angle increased from 35 to 130 degrees.

  7. Development of Nature Protection Technologies of Hydrocarbon Wastes Disposal on the Basis of High- Temperature Pyrolysis

    Science.gov (United States)

    Shantarin, V. D.; Zemenkova, M. Yu; Zemenkov, Yu D.

    2016-10-01

    The research shows the thermal balance of low-temperature pyrolysis of birch sawdust with the possibility of further development of nature protection technology of hydrocarbon wastes disposal with secondary useful products production. The actual problem was solved by preventing environmental pollution by greenhouse gases using pyrolysis process as a method of disposal of hydrocarbon wastes with secondary useful products production. The objective of paper is to study features of the processes of thermal processing of wastes and development of environmentally sound technology of disposal C-containing wastes, contributing to the implementation of the pollution prevention concept.

  8. Main Controls on Hydrocarbon Accumulation in the Paleozoic in Central Saudi Arabia

    Institute of Scientific and Technical Information of China (English)

    Bai Guoping

    2007-01-01

    Saudi Arabia is renown for its rich oil and gas resources with the bulk of the reserves reservoired in the Mesozoic.However,the discovery of Paleozoic fields in the late 1980s has encouraged further exploration in the Paleozoic.This paper reviews the salient features of the Paleozoic petroleum geology in central Saudi Arabia and discusses the main factors controlling hydrocarbon accumulation in the Paleozoic.The Lower Silurian Qusaiba hot shale is the principal source rock for the hydrocarbons discovered in the Ordovician to Permian reservoirs.Of them,the Permo-Carboniferous Unayzah and Upper Ordovician Sarah Formations have the best exploration potential.The key factors controlling hydrocarbon accumulation in the Unayzah Formation are migration pathways and reservoir petrophysics.The key factors controlling hydrocarbon accumulation in the Sarah Formation are reservoir petrophysics and the development of structural traps.

  9. Recent developments in trapping and manipulation of atoms with adiabatic potentials

    Science.gov (United States)

    Garraway, Barry M.; Perrin, Hélène

    2016-09-01

    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau-Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

  10. Ordovician Basement Hydrocarbon Reservoirs in the Tarim Basin, China

    Institute of Scientific and Technical Information of China (English)

    YAN Xiangbin; LI Tiejun; ZHANG Tao

    2004-01-01

    Ordovician marine carbonate basement traps are widely developed in the paleo-highs and paleo-slopes in the Tarim Basin. Reservoirs are mainly altered pore-cavity-fissure reservoirs. Oil sources are marine carbonate rocks of the Lower Paleozoic. Thus, the paleo-highs and paleo-slopes have good reservoiring conditions and they are the main areas to explore giant and large-scale oil reservoirs. The main factors for their reservoiring are: (1) Effective combination of fenestral pore-cavity-fracture reservoirs, resulting from multi-stage, multi-cyclic karstification (paleo-hypergene and deep buried) and fracturing, with effective overlying seals, especially mudstone and gypsum mudstone in the Carboniferous Bachu Formation, is essential to hydrocarbon reservoiring and high and stable production; (2) Long-term inherited large rises and multi-stage fracture systems confine the development range of karst reservoirs and control hydrocarbon migration, accumulation and reservoiring; (3) Long-term multi-source hydrocarbon supply, early reservoiring alteration and late charging adjustment are important reservoiring mechanisms and determine the resource structure and oil and gas properties. Favorable areas for exploration of Ordovician carbonate basement hydrocarbon reservoirs in the Tarim Basin are the Akekule rise, Katahe uplift, Hetianhe paleo-high and Yakela faulted rise.

  11. Magneto-optical trapping of a diatomic molecule

    Science.gov (United States)

    Barry, J. F.; McCarron, D. J.; Norrgard, E. B.; Steinecker, M. H.; Demille, D.

    2014-08-01

    Laser cooling and trapping are central to modern atomic physics. The most used technique in cold-atom physics is the magneto-optical trap (MOT), which combines laser cooling with a restoring force from radiation pressure. For a variety of atomic species, MOTs can capture and cool large numbers of particles to ultracold temperatures (less than ~1 millikelvin) this has enabled advances in areas that range from optical clocks to the study of ultracold collisions, while also serving as the ubiquitous starting point for further cooling into the regime of quantum degeneracy. Magneto-optical trapping of molecules could provide a similarly powerful starting point for the study and manipulation of ultracold molecular gases. The additional degrees of freedom associated with the vibration and rotation of molecules, particularly their permanent electric dipole moments, allow a broad array of applications not possible with ultracold atoms. Spurred by these ideas, a variety of methods has been developed to create ultracold molecules. Temperatures below 1 microkelvin have been demonstrated for diatomic molecules assembled from pre-cooled alkali atoms, but for the wider range of species amenable to direct cooling and trapping, only recently have temperatures below 100 millikelvin been achieved. The complex internal structure of molecules complicates magneto-optical trapping. However, ideas and methods necessary for creating a molecular MOT have been developed recently. Here we demonstrate three-dimensional magneto-optical trapping of a diatomic molecule, strontium monofluoride (SrF), at a temperature of approximately 2.5 millikelvin, the lowest yet achieved by direct cooling of a molecule. This method is a straightforward extension of atomic techniques and is expected to be viable for a significant number of diatomic species. With further development, we anticipate that this technique may be employed in any number of existing and proposed molecular experiments, in applications

  12. Magneto-optical trapping of a diatomic molecule

    CERN Document Server

    Barry, J F; Norrgard, E B; Steinecker, M H; DeMille, D

    2014-01-01

    Laser cooling and trapping are central to modern atomic physics. The workhorse technique in cold-atom physics is the magneto-optical trap (MOT), which combines laser cooling with a restoring force from radiation pressure. For a variety of atomic species, MOTs can capture and cool large numbers of particles to ultracold temperatures (<1 mK); this has enabled the study of a wide range of phenomena from optical clocks to ultracold collisions whilst also serving as the ubiquitous starting point for further cooling into the regime of quantum degeneracy. Magneto-optical trapping of molecules could provide a similarly powerful starting point for the study and manipulation of ultracold molecular gases. Here, we demonstrate three-dimensional magneto-optical trapping of a diatomic molecule, strontium monofluoride (SrF), at a temperature of approximately 2.5 mK. This method is expected to be viable for a significant number of diatomic species. Such chemical diversity is desired for the wide array of existing and prop...

  13. Improved magneto-optical trapping of a diatomic molecule

    Science.gov (United States)

    Norrgard, Eric; McCarron, Daniel; Steinecker, Matthew; Demille, David

    2015-05-01

    The magneto-optical trap (MOT) is the workhorse technique for atomic physics in the ultracold regime, serving as the starting point in applications from optical clocks to quantum-degenerate gases. Recently, our group demonstrated the first magneto-optical trap for a molecule, strontium monofluoride (SrF). Here, we present experimental results of two variant trapping schemes which improve upon the original work. In the first, recent insights into the origin of the restoring force in Type-II MOTs (rarely used for atoms but requisite for SrF and other candidate molecules) led to a simple change in polarization scheme for the MOT lasers. In the second, states dark to the restoring MOT beams are diabatically transferred to bright states by synchronously reversing the magnetic field gradient and the laser polarization at RF frequencies. Although magneto-optical trapping of diatomic molecules is in its infancy, our results indicate that access to the ultracold regime may be possible for several molecular species, with potential applications from quantum simulation to tests of fundamental symmetries to ultracold chemistry. We acknowledge funding from ARO and ARO (MURI). E.B.N. acknowledges funding from the NSF GRFP.

  14. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia.

    Science.gov (United States)

    Gadani, Hina; Vyas, Arun

    2011-01-01

    Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs). Hazardous chemicals enter the air we breathe as a result of dozens of activities carried out during a typical day at a healthcare facility like processing lab samples, burning fossil fuels etc. We sometimes forget that anesthetic agents are also greenhouse gases (GHGs). Anesthetic agents used today are volatile halogenated ethers and the common carrier gas nitrous oxide known to be aggressive GHGs. With less than 5% of the total delivered halogenated anesthetic being metabolized by the patient, the vast majority of the anesthetic is routinely vented to the atmosphere through the operating room scavenging system. The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia.

  15. Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel.

    Science.gov (United States)

    Zhao, Xianhui; Wei, Lin; Julson, James; Qiao, Qiquan; Dubey, Ashish; Anderson, Gary

    2015-03-25

    Non-edible sunflower oils that were extracted from sunflower residual wastes were catalytically cracked over a ZSM-5 catalyst in a fixed-bed reactor at three different reaction temperatures: 450°C, 500°C and 550°C. The catalyst was characterized using XRD, FT-IR, BET and SEM. Characterizations of the upgraded sunflower oils, hydrocarbon fuels, distillation residues and non-condensable gases were carried out. The effect of the reaction temperature on the yield and quality of liquid products was discussed. The results showed that the reaction temperature affected the hydrocarbon fuel yield but had a minor influence on its properties. The highest conversion efficiency from sunflower oils to hydrocarbon fuels was 30.1%, which was obtained at 550°C. The reaction temperature affected the component content of the non-condensable gases. The non-condensable gases generated at 550°C contained the highest content of light hydrocarbons (C1-C5), CO, CO2 and H2. Compared to raw sunflower oils, the properties of hydrocarbon fuels including the dynamic viscosity, pH, moisture content, density, oxygen content and heating value were improved.

  16. Exploring for subtle traps with high-resolution paleogeographic maps

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, T.B.; Breyer, J.A.

    1988-01-01

    High-resolution paleogeographic maps depicting the depositional history of the Reklaw 1 interval provide a basis for prospecting for subtle traps in the updip Reklaw trend in south Texas. The Reklaw 1 interval began with sand being carried southwest by longshore currents to form the barrier bar that forms the reservoir in Atkinson field. The hydrocarbons are trapped by the updip pinch-out of barrier-bar sand into lagoonal mud. Stratigraphic traps similar to Atkinson field could be present along depositional strike if the sand in the field were part of a more extensive-bar system. After the barrier bar formed, distributary-mouth bars prograded seaward depositing the bar-finger sands that are the reservoirs in Hysaw and Flax fields. Subtle structural traps could be present where small down-to-the-north faults associated with the Sample fault system cut the bar-finger sands downdip from the established production. Farther down paleoslope, the distributary channels began to bifurcate and the distributary-mouth bar coalesced to form a broad delt-front sheet sand. Burnell, Hondo Creek, and Runge West fields produce from this sheet sand near the unstable shelf margin. A rapid rise in relative sea level terminated deposition of the Reklaw 1 interval. Many of the oil and gas fields remaining to be discovered in the United States are in mature petroleum provinces where much of the remaining oil and gas probably resides in subtle traps. High-resolution paleogeographic maps may be a key to finding these subtle traps.

  17. Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H.T.; Mandoc, M.M.; Blom, P.W.M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  18. Electron traps in semiconducting polymers : Exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H. T.; Mandoc, M. M.; Blom, P. W. M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  19. Infrared multiple photon dissociation spectroscopy of ions in Penning traps.

    Science.gov (United States)

    Eyler, John R

    2009-01-01

    The ability of Paul and Penning traps to contain ions for time periods ranging from milliseconds to minutes allows the trapped ions to be subjected to laser irradiation for extended lengths of time. In this way, relatively low-powered tunable infrared lasers can be used to induce ion fragmentation when a sufficient number of infrared photons are absorbed, a process known as infrared multiple photon dissociation (IRMPD). If ion fragmentation is monitored as a function of laser wavelength, a photodissociation action spectrum can be obtained. The development of widely tunable infrared laser sources, in particular free electron lasers (FELs) and optical parametric oscillators/amplifiers (OPO/As), now allows spectra of trapped ions to be obtained for the entire "chemically relevant" infrared spectral region. This review describes experiments in which tunable infrared lasers have been used to irradiate ions in Penning traps. Early studies which utilized tunable carbon dioxide lasers with a limited output range are first reviewed. More recent studies with either FEL or OPO/A irradiation sources are then covered. The ionic systems examined have ranged from small hydrocarbons to multiply charged proteins, and they are discussed in approximate order of increasing complexity.

  20. Driven fragmentation of granular gases.

    Science.gov (United States)

    Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio

    2008-06-01

    The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.

  1. Greenhouse Trace Gases in Deadwood

    Science.gov (United States)

    Covey, Kristofer; Bueno de Mesquita, Cliff; Oberle, Brad; Maynard, Dan; Bettigole, Charles; Crowther, Thomas; Duguid, Marlyse; Steven, Blaire; Zanne, Amy; Lapin, Marc; Ashton, Mark; Oliver, Chad; Lee, Xuhui; Bradford, Mark

    2016-04-01

    Deadwood, long recognized as playing an important role in carbon cycling in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. We report data from four independent studies measuring internal gas concentrations in deadwood in in three Quercus dominated upland forest systems in the Northeastern and Central United States. Mean methane concentrations in deadwood were 23 times atmospheric levels, indicating a lower bound, mean radial wood surface area flux of ~6 x 10-4 μmol CH4 m-2 s-1. Site, decay class, diameter, and species were all highly significant predictors of methane abundance in deadwood, and log diameter and decay stage interacted as important controls limiting methane concentrations in the smallest and most decayed logs. Nitrous oxide concentrations were negatively correlated with methane and on average ~25% lower than ambient, indicating net consumption of nitrous oxide. These data suggest nonstructural carbohydrates fuel archaeal methanogens and confirm the potential for widespread in situ methanogenesis in both living and deadwood. Applying this understanding to estimate methane emissions from microbial activity in living trees implies a potential global flux of 65.6±12.0 Tg CH4 yr-1, more than 20 times greater than currently considered.

  2. Hydrocarbon conversion catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1989-08-15

    This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting a hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.35A, a water absorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of at least 8% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; an alumina binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

  3. The Honey Trap

    DEFF Research Database (Denmark)

    Wagner, Michael

    Michael F. Wagner: The Honey Trap –The democratization of leisure through automobilism The automobile has achieved a central position in modern everyday life as an essential artefact to mobility. This raises the question how automobiles have been mediated for mass consumption? The central thesis...... in the article is that the culture of Danish automobilism was constructed around and appropriated through leisure activities conducted primarily by the automobile consumer’s organisation Touring Club de Danemark (FDM). The general purpose for the consumer organisation has been to create a cultural identity...... and a material reality of democratic participation linking ‘Car and Leisure’, a term that has been a central motto for the organization during many decades. The keyword in this activity was ‘Free’ celebrating the manner in which the privately owned automobile secured a maximum of freedom to the owner. The paper...

  4. Gas geochemistry: a new technology to evaluate petroleum systems; Geoquimica de gases: uma nova tecnologia em avaliacao de sistemas petroliferos

    Energy Technology Data Exchange (ETDEWEB)

    Santos Neto, Eugenio Vaz dos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Gerencia de Geoquimica]. E-mail: eugenioneto@petrobras.com.br

    2004-11-01

    In the last decade hydrocarbon gas geochemistry has significantly evolved especially regarding to the widespread use of GC-C-IRMS (Gas chromatography-combustion-ion ratio monitoring system) techniques that allowed accurate measurements of {delta}{sup 13} C in the C{sub 1}-C{sub 4} fraction. Also, due to the improvement of the sampling procedures, sample collection - relatively small amounts of gas samples at low pressure - has become easier, sample transportation has become safer - the risk of accidents has been reduced - and analysis has become faster. The 'state-of-the-art' of the use of gas geochemistry to study processes within petroleum systems is discussed in this paper. The discussion is mainly focused on the identification of the hydrocarbon gas origin (biogenesis versus thermo genesis, mixing) and hydrocarbon gas generation (primary versus secondary cracking), including the inference of the relative thermal evolution and possible secondary alterations caused by biodegradation, secondary migration and eventually leakage from petroleum accumulations. Brief comments were also made about the new technologies involving noble gases and their potential use as tracers of processes in petroleum systems. Additionally, the origin of non-hydrocarbon gases in petroleum accumulations is succinctly discussed, as well as their possible economic impacts. The use of gas geochemistry techniques has brought a significant improvement in the understanding of petroleum systems under exploration in Brazil and in other parts of the world. Besides, on-going research projects suggest that there is a great potential for technological advances, e.g., adding the hydrogen isotopic composition of hydrocarbons to the interpretations, and also integrating the available results to the isotopic variations of noble gases. (author)

  5. Deep cooling of optically trapped atoms implemented by magnetic levitation without transverse confinement

    Science.gov (United States)

    Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong

    2017-05-01

    We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ˜ 6 nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.

  6. Thermophysical Properties of Hydrocarbon Mixtures

    Science.gov (United States)

    SRD 4 NIST Thermophysical Properties of Hydrocarbon Mixtures (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  7. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein

  8. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting

  9. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  10. The ALPHA antihydrogen trapping apparatus

    Science.gov (United States)

    Amole, C.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Capra, A.; Carpenter, P. T.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Escallier, J.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Isaac, C. A.; Jenkins, M. J.; Jonsell, S.; Jørgensen, L. V.; Kerrigan, S. J.; Kurchaninov, L.; Madsen, N.; Marone, A.; McKenna, J. T. K.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Parker, B.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seddon, D.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; Thornhill, J.; Wells, D.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2014-01-01

    The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.

  11. Cryogenic silicon surface ion trap

    CERN Document Server

    Niedermayr, Michael; Kumph, Muir; Partel, Stefan; Edlinger, Johannes; Brownnutt, Michael; Blatt, Rainer

    2014-01-01

    Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $\\dot{\\bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $\\mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.

  12. Accretion discs trapped near corotation

    NARCIS (Netherlands)

    D'Angelo, C.R.; Spruit, H.C.

    2012-01-01

    We show that discs accreting on to the magnetosphere of a rotating star can end up in a trapped state, in which the inner edge of the disc stays near the corotation radius, even at low and varying accretion rates. The accretion in these trapped states can be steady or cyclic; we explore these states

  13. The ALPHA antihydrogen trapping apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC Canada, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); The Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Bowe, P.D. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Carpenter, P.T. [Department of Physics, Auburn University, Auburn, AL 36849-5311 (United States); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Escallier, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary AB, Canada, T2N 1N4 (Canada); Fujiwara, M.C.; Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada V6T 1Z4 (Canada); and others

    2014-01-21

    The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.

  14. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  15. A kinetic approach to granular gases

    OpenAIRE

    Puglisi, A.; Loreto, V.; Marconi, U. Marini Bettolo; Vulpiani, A.

    1998-01-01

    We address the problem of the so-called ``granular gases'', i.e. gases of massive particles in rapid movement undergoing inelastic collisions. We introduce a class of models of driven granular gases for which the stationary state is the result of the balance between the dissipation and the random forces which inject energies. These models exhibit a genuine thermodynamic limit, i.e. at fixed density the mean values of kinetic energy and dissipated energy per particle are independent of the num...

  16. Distribution of Heavy Hydrocarbon in Coal Seams and Its Use in Predicting Outburst of Coal

    Institute of Scientific and Technical Information of China (English)

    蒋承林; 李增华; 韩颖

    2003-01-01

    In order to verify whether any special gas component exists in outburst samples or not, coal samples from both outburst coal seams and non-outburst coal seams were collected. Some gases were extracted from the samples and analyzed qualitatively and quantitatively on chromatogram-mass spectrograph. The qualitative analysis show that there is no special gases in coal seams. And the quantitative analysis indicates that the heavy hydrocarbon content in coal samples from outburst coal seams is apparently higher than that from non-outburst district ones, which reflects the damage of geological tectonic movement to coal body in history. Therefore, the heavy hydrocarbon content of coal sample can be used as an index to predict coal outburst.

  17. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  18. Evaluation of Near-Surface Gases in Marine Sediments to Assess Subsurface Petroleum Gas Generation and Entrapment

    Directory of Open Access Journals (Sweden)

    Michael A. Abrams

    2017-05-01

    Full Text Available Gases contained within near-surface marine sediments can be derived from multiple sources: shallow microbial activity, thermal cracking of organic matter and inorganic materials, or magmatic-mantle degassing. Each origin will display a distinctive hydrocarbon and non-hydrocarbon composition as well as compound-specific isotope signature and thus the interpretation of origin should be relatively straightforward. Unfortunately, this is not always the case due to in situ microbial alteration, non-equilibrium phase partitioning, mixing, and fractionation related to the gas extraction method. Sediment gases can reside in the interstitial spaces, bound to mineral or organic surfaces and/or entrapped in carbonate inclusions. The interstitial sediment gases are contained within the sediment pore space, either dissolved in the pore waters (solute or as free (vapour gas. The bound gases are believed to be attached to organic and/or mineral surfaces, entrapped in structured water or entrapped in authigenic carbonate inclusions. The purpose of this paper is to provide a review of the gas types found within shallow marine sediments and examine issues related to gas sampling and extraction. In addition, the paper will discuss how to recognise mixing, alteration and fractionation issues to best interpret the seabed geochemical results and determine gas origin to assess subsurface petroleum gas generation and entrapment.

  19. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.

    Science.gov (United States)

    Al-Rahbi, Amal S; Onwudili, Jude A; Williams, Paul T

    2016-03-01

    Chars produced from the pyrolysis of different waste materials have been investigated in terms of their use as a catalyst for the catalytic cracking of biomass pyrolysis gases during the two-stage pyrolysis-gasification of biomass. The chars were produced from the pyrolysis of waste tyres, refused derived fuel and biomass in the form of date stones. The results showed that the hydrocarbon tar yields decreased significantly with all the char materials used in comparison to the non-char catalytic experiments. For example, at a cracking temperature of 800°C, the total product hydrocarbon tar yield decreased by 70% with tyre char, 50% with RDF char and 9% with biomass date stones char compared to that without char. There was a consequent increase in total gas yield. Analysis of the tar composition showed that the content of phenolic compounds decreased and polycyclic aromatic hydrocarbons increased in the product tar at higher char temperatures.

  20. Can hydrocarbons entrapped in seep carbonates serve as gas geochemistry recorder?

    Science.gov (United States)

    Blumenberg, Martin; Pape, Thomas; Seifert, Richard; Bohrmann, Gerhard; Schlömer, Stefan

    2017-08-01

    The geochemistry of seep gases is useful for an understanding of the local petroleum system. Here it was tested whether individual light hydrocarbons in seep gases are representatively entrapped in authigenic carbonates that formed near active seep sites. If applicable, it would be possible to extract geochemical information not only on the origin but also on the thermal maturity of the hydrocarbon source rocks from the gases entrapped in carbonates in the past. Respective data could be used for a better understanding of paleoenvironments and might directly serve as calibration point for, amongst others, petroleum system modeling. For this approach, (sub)-recent seep carbonates from the Black Sea (Paleodnjepr region and Batumi seep area), two sites of the Campeche Knoll region in the Gulf of Mexico, and the Venere mud volcano (Mediterranean Sea) were selected. These seep carbonates derive from sites for which geochemical data on the currently seeping gases exist. During treatment with phosphoric acid, methane and higher hydrocarbons were released from all carbonates, but in low concentrations. Compositional studies demonstrate that the ratio of methane to the sum of higher hydrocarbons (C1/(C2+C3)) is (partly strongly) positively biased in the entrapped gas fraction. δ13C values of C1 were determined for all samples and, for the samples from the Gulf of Mexico and the Mediterranean Sea, also of C2 and C3. The present dataset from six seep sites indicates that information on the seeped methane can be—although with a scatter of several permil—recorded in seep carbonate matrices, but other valuable information like the composition and δ13C of ethane and propane appears to be modified or lost during, for example, enclosure or at an early stage of diagenesis.

  1. Treatment of tritiated exhaust gases at the Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, E.; Besserer, U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Jacqmin, G. [NUKEM GmbH, Industreistr, Alzenau (Germany)

    1995-02-01

    The Tritium Laboratory Karlsruhe (TLK) accomplished commissioning; tritium involving activities will start this year. The laboratory is destined mainly to investigating processing of fusion reactor fuel and to developing analytic devices for determination of tritium and tritiated species in view of control and accountancy requirements. The area for experimental work in the laboratory is about 800 m{sup 2}. The tritium infrastructure including systems for tritium storage, transfer within the laboratory and processing by cleanup and isotope separation methods has been installed on an additional 400 m{sup 2} area. All tritium processing systems (=primary systems), either of the tritium infrastructure or of the experiments, are enclosed in secondary containments which consist of gloveboxes, each of them connected to the central depressurization system, a part integrated in the central detritiation system. The atmosphere of each glovebox is cleaned in a closed cycle by local detritiation units controlled by two tritium monitors. Additionally, the TLK is equipped with a central detritiation system in which all gases discharged from the primary systems and the secondary systems are processed. All detritiation units consist of a catalyst for oxidizing gaseous tritium or tritiated hydrocarbons to water, a heat exchanger for cooling the catalyst reactor exhaust gas to room temperature, and a molecular sieve bed for adsorbing the water. Experiments with tracer amounts of tritium have shown that decontamination factors >3000 can be achieved with the TLK detritiation units. The central detritiation system was carefully tested and adjusted under normal and abnormal operation conditions. Test results and the behavior of the tritium barrier preventing tritiated exhaust gases from escaping into the atmosphere will be reported.

  2. Treatment of industrial exhaust gases by a dielectric barrier discharge

    Science.gov (United States)

    Schmidt, Michael; Hołub, Marcin; Jõgi, Indrek; Sikk, Martin

    2016-08-01

    Volatile organic compounds (VOCs) in industrial exhaust gases were treated by a dielectric barrier discharge (DBD) operated with two different mobile power supplies. Together with the plasma source various gas diagnostics were used, namely fourier transform infrared (FTIR) spectroscopy, flame ionization detector (FID) and GC-MS. The analysis revealed that some exhaust gases consist of a rather complex mixture of hydrocarbons and inorganic compounds and also vary in pollutants concentration and flow rate. Thus, analysis of removal efficiencies and byproduct concentrations is more demanding than under laboratory conditions. This contribution presents the experimental apparatus used under the harsh conditions of industrial exhaust systems as well as the mobile power source used. Selected results obtained in a shale oil processing plant, a polymer concrete production facility and a yacht hull factory are discussed. In the case of total volatile organic compounds in oil processing units, up to 60% were removed at input energy of 21-37 J/L when the concentrations were below 500 mg/m3. In the yacht hull factory up to 74% of styrene and methanol were removed at specific input energies around 300 J/L. In the polymer concrete production site 195 ppm of styrene were decomposed with the consumption of 1.8 kJ/L. These results demonstrate the feasibility of plasma assisted methods for treatment of VOCs in the investigated production processes but additional analysis is needed to improve the energy efficiency. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  3. The trapped human experiment.

    Science.gov (United States)

    Huo, R; Agapiou, A; Bocos-Bintintan, V; Brown, L J; Burns, C; Creaser, C S; Devenport, N A; Gao-Lau, B; Guallar-Hoyas, C; Hildebrand, L; Malkar, A; Martin, H J; Moll, V H; Patel, P; Ratiu, A; Reynolds, J C; Sielemann, S; Slodzynski, R; Statheropoulos, M; Turner, M A; Vautz, W; Wright, V E; Thomas, C L P

    2011-12-01

    This experiment observed the evolution of metabolite plumes from a human trapped in a simulation of a collapsed building. Ten participants took it in turns over five days to lie in a simulation of a collapsed building and eight of them completed the 6 h protocol while their breath, sweat and skin metabolites were passed through a simulation of a collapsed glass-clad reinforced-concrete building. Safety, welfare and environmental parameters were monitored continuously, and active adsorbent sampling for thermal desorption GC-MS, on-line and embedded CO, CO(2) and O(2) monitoring, aspirating ion mobility spectrometry with integrated semiconductor gas sensors, direct injection GC-ion mobility spectrometry, active sampling thermal desorption GC-differential mobility spectrometry and a prototype remote early detection system for survivor location were used to monitor the evolution of the metabolite plumes that were generated. Oxygen levels within the void simulator were allowed to fall no lower than 19.1% (v). Concurrent levels of carbon dioxide built up to an average level of 1.6% (v) in the breathing zone of the participants. Temperature, humidity, carbon dioxide levels and the physiological measurements were consistent with a reproducible methodology that enabled the metabolite plumes to be sampled and characterized from the different parts of the experiment. Welfare and safety data were satisfactory with pulse rates, blood pressures and oxygenation, all within levels consistent with healthy adults. Up to 12 in-test welfare assessments per participant and a six-week follow-up Stanford Acute Stress Response Questionnaire indicated that the researchers and participants did not experience any adverse effects from their involvement in the study. Preliminary observations confirmed that CO(2), NH(3) and acetone were effective markers for trapped humans, although interactions with water absorbed in building debris needed further study. An unexpected observation from the NH(3

  4. 1986-87 Annual Trapping Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1986-87 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver, muskrat, raccoon,...

  5. Phase space methods for degenerate quantum gases

    CERN Document Server

    Dalton, Bryan J; Barnett, Stephen M

    2015-01-01

    Recent experimental progress has enabled cold atomic gases to be studied at nano-kelvin temperatures, creating new states of matter where quantum degeneracy occurs - Bose-Einstein condensates and degenerate Fermi gases. Such quantum states are of macroscopic dimensions. This book presents the phase space theory approach for treating the physics of degenerate quantum gases, an approach already widely used in quantum optics. However, degenerate quantum gases involve massive bosonic and fermionic atoms, not massless photons. The book begins with a review of Fock states for systems of identical atoms, where large numbers of atoms occupy the various single particle states or modes. First, separate modes are considered, and here the quantum density operator is represented by a phase space distribution function of phase space variables which replace mode annihilation, creation operators, the dynamical equation for the density operator determines a Fokker-Planck equation for the distribution function, and measurable...

  6. Optical anisotropy in GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Seyhan, A.; Karabulut, O.; Akinoglu, B.G.; Aslan, B.; Turan, R. [Department of Physics, Middle East Technical University, 06531, Ankara (Turkey)

    2005-09-01

    Optical anisotropy of the layer semiconductor GaSe has been studied by photoluminescence (PL) and Fourier Transform Infrared Spectroscopy (FTIR). The PL spectra are dominated by two closely positioned emission bands resulting from the free exciton and the bound exciton connected direct band edge of GaSe. Photoluminescence and transmission spectra of GaSe crystals have been measured for two cases in which the propagation vector k is perpendicular (k perpendicular to c) and parallel to the c-axis (k//c). Peak position of the PL emission band and the onset of the transmission have been found to be significantly different for these two cases. This observed anisotropy is related to anisotropic band structure and the selection rules for the optical absorption in layered GaSe. FTIR transmission spectrum is in good agreement with PL results. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Voluntary reporting of greenhouse gases, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  8. Noble Gases in the Lunar Regolith

    Institute of Scientific and Technical Information of China (English)

    邹永廖; 徐琳; 欧阳自远

    2003-01-01

    The most fundamental character of lunar soil is its high concentrations of solar-windimplanted dements,and the concentrations and behavior of the noble gases He,Ne,Ar,and Xe,which provide unique and extensive information about a broad range of fundamental problems. In this paper,the authors studied the forming mechanism of lunar regolith,and proposed that most of the noble gases in lunar regolith come from the solar wind. Meteoroid bombardment controls the maturity of lunar soil,with the degree of maturation decreasing with grain size; the concentrations of the noble gases would be of slight variation with the depth of lunar soil but tend to decrease with grain size. In addition,the concentrations of noble gases in lunar soil also show a close relationship with its mineral and chemical compositions. The utilization prospects of the noble gas s He in lunar regolith will be further discussed.

  9. Formation and migration of Natural Gases: gas composition and isotopes as monitors between source, reservoir and seep

    Science.gov (United States)

    Schoell, M.; Etiope, G.

    2015-12-01

    Natural gases form in tight source rocks at temperatures between 120ºC up to 200ºC over a time of 40 to 50my depending on the heating rate of the gas kitchen. Inferring from pyrolysis experiments, gases after primary migration, a pressure driven process, are rich in C2+ hydrocarbons (C2 to C5). This is consistent with gas compositions of oil-associated gases such as in the Bakken Shale which occur in immediate vicinity of the source with little migration distances. However, migration of gases along porous rocks over long distances (up to 200km in the case of the Troll field offshore Norway) changes the gas composition drastically as C2+ hydrocarbons tend to be retained/sequestered during migration of gas as case histories from Virginia and the North Sea will demonstrate. Similar "molecular fractionation" is observed between reservoirs and surface seeps. In contrast to gas composition, stable isotopes in gases are, in general, not affected by the migration process suggesting that gas migration is a steady state process. Changes in isotopic composition, from source to reservoir to surface seeps, is often the result of mixing of gases of different origins. Examples from various gas provinces will support this notion. Natural gas basins provide little opportunity of tracking and identifying gas phase separation. Future research on experimental phase separation and monitoring of gas composition and gas ratio changes e.g. various C2+ compound ratios over C1 or isomer ratios such as iso/n ratios in butane and pentane may be an avenue to develop tracers for phase separation that could possibly be applied to natural systems of retrograde natural condensate fields.

  10. The Spectrum of Particles with Short-Ranged Interactions in a Harmonic Trap

    Directory of Open Access Journals (Sweden)

    Metsch B. Ch.

    2010-04-01

    Full Text Available The possibility to control short-ranged interactions of cold gases in optical traps by Feshbachresonances makes these systems ideal candidates to study universal scaling properties and Efimov physics. The spectrum of particles in a trap, idealised by a harmonic oscillator potential, in the zero range limit with 2- and 3-particle contact interactions is studied numerically. The Hamiltonian is regularised by restricting the oscillator basis and the coupling constants are tuned such that the ground state energies of the 2- and 3-particle sector are reproduced [1],[2]. Results for 2-, 3-, and 4 particle systems are presented and compared to exact results [3],[4].

  11. Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer

    Science.gov (United States)

    Tan, Kui; Zuluaga, Sebastian; Fuentes, Erika; Mattson, Eric C.; Veyan, Jean-François; Wang, Hao; Li, Jing; Thonhauser, Timo; Chabal, Yves J.

    2016-12-01

    The main challenge for gas storage and separation in nanoporous materials is that many molecules of interest adsorb too weakly to be effectively retained. Instead of synthetically modifying the internal surface structure of the entire bulk--as is typically done to enhance adsorption--here we show that post exposure of a prototypical porous metal-organic framework to ethylenediamine can effectively retain a variety of weakly adsorbing molecules (for example, CO, CO2, SO2, C2H4, NO) inside the materials by forming a monolayer-thick cap at the external surface of microcrystals. Furthermore, this capping mechanism, based on hydrogen bonding as explained by ab initio modelling, opens the door for potential selectivity. For example, water molecules are shown to disrupt the hydrogen-bonded amine network and diffuse through the cap without hindrance and fully displace/release the retained small molecules out of the metal-organic framework at room temperature. These findings may provide alternative strategies for gas storage, delivery and separation.

  12. Classical and quantum filaments in the ground state of trapped dipolar Bose gases

    Science.gov (United States)

    Cinti, Fabio; Boninsegni, Massimo

    2017-07-01

    We study, by quantum Monte Carlo simulations, the ground state of a harmonically confined dipolar Bose gas with aligned dipole moments and with the inclusion of a repulsive two-body potential of varying range. Two different limits can clearly be identified, namely, a classical one in which the attractive part of the dipolar interaction dominates and the system forms an ordered array of parallel filaments and a quantum-mechanical one, wherein filaments are destabilized by zero-point motion, and eventually the ground state becomes a uniform cloud. The physical character of the system smoothly evolves from classical to quantum mechanical as the range of the repulsive two-body potential increases. An intermediate regime is observed in which ordered filaments are still present, albeit forming different structures from the ones predicted classically; quantum-mechanical exchanges of indistinguishable particles across different filaments allow phase coherence to be established, underlying a global superfluid response.

  13. Trapping Planetary Noble Gases During the Fischer-Tropsch-Type Synthesis of Organic Materials

    Science.gov (United States)

    Nuth, Joseph A.; Johnson, N. M.; Meshik, A.

    2010-01-01

    When hydrogen, nitrogen and CO arc exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions!, Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these rcactions:u . The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic materiaL Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.

  14. First Attempts at Antihydrogen Trapping in ALPHA

    Science.gov (United States)

    Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; El Nasr, S. Seif; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2008-08-01

    The ALPHA apparatus is designed to produce and trap antihydrogen atoms. The device comprises a multifunction Penning trap and a superconducting, neutral atom trap having a minimum-B configuration. The atom trap features an octupole magnet for transverse confinement and solenoidal mirror coils for longitudinal confinement. The magnetic trap employs a fast shutdown system to maximize the probability of detecting the annihilation of released antihydrogen. In this article we describe the first attempts to observe antihydrogen trapping.

  15. Feedback traps for virtual potentials

    CERN Document Server

    Gavrilov, Momčilo

    2016-01-01

    Feedback traps are tools for trapping and manipulating single charged objects, such as molecules in solution. An alternative to optical tweezers and other single-molecule techniques, they use feedback to counteract the Brownian motion of a molecule of interest. The trap first acquires information about a molecule's position and then applies an electric feedback force to move the molecule. Since electric forces are stronger than optical forces at small scales, feedback traps are the best way to trap single molecules without "touching" them. Feedback traps can do more than trap molecules: They can also subject a target object to forces that are calculated to be the gradient of a desired potential function U(x). If the feedback loop is fast enough, it creates a virtual potential whose dynamics will be very close to those of a particle in an actual potential U(x). But because the dynamics are entirely a result of the feedback loop--absent the feedback, there is only an object diffusing in a fluid--we are free to ...

  16. Discrimination of abiogenic and biogenic alkane gases

    Institute of Scientific and Technical Information of China (English)

    DAI JinXing; MI JingKui; LI ZhiSheng; HU AnPing; YANG Chun; ZHOU QingHua; SHUAI YanHua; ZHANG Ying; MA ChengHua; ZOU CaiNeng; ZHANG ShuiChang; LI Jian; NI YunYan; HU GuoYi; LUO Xia; TAO ShiZhen; ZHU GuangYou

    2008-01-01

    We have combined the analytical data of the carbon isotope distribution pattern, R/Ra and cliche values of abiogenic and biogenic (referring to the therrnogenic and bacterial or microbial) alkane gases in China with those of alkane gases from USA, Russia, Germany, Australia and other countries. Four discrimination criteria are derived from this comparative study: 1) Carbon isotopic composition is generally greater than -30‰ for abiogenic methane and less than -30‰ for biogenic methane; 2)Abiogenic alkane gases have a carbon isotopic reversal trend (Δ13c1>Δ13c2>Δ13c3>Δ13c4) with Δ13c1>-30‰ in general; 3) Gases with R/Ra>0.5 and Δ13c1- Δ13c2>0 are of abiogenic origin; 4) Gases (methane) with CH4/3He≤106 are of abiogenic origin, whereas gases with CH4/3He≥1011 are of biogenic origin.

  17. Discrimination of abiogenic and biogenic alkane gases

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We have combined the analytical data of the carbon isotope distribution pattern, R/Ra and CH4/3He values of abiogenic and biogenic (referring to the thermogenic and bacterial or microbial) alkane gases in China with those of alkane gases from USA, Russia, Germany, Australia and other countries. Four discrimination criteria are derived from this comparative study: 1) Carbon isotopic composition is generally greater than -30‰ for abiogenic methane and less than -30‰ for biogenic methane; 2) Abiogenic alkane gases have a carbon isotopic reversal trend (δ 13C1> δ 13C2> δ 13C3> δ 13C4) with δ 13C1>-30‰ in general; 3) Gases with R/Ra >0.5 and δ 13C11 δ 13C2>0 are of abiogenic origin; 4) Gases (meth- ane) with CH4/3He≤106 are of abiogenic origin, whereas gases with CH4/3He≥1011 are of biogenic origin.

  18. Polycyclic aromatic hydrocarbons produced by electrocautery smoke and the use of personal protective equipment 1

    Science.gov (United States)

    Claudio, Caroline Vieira; Ribeiro, Renata Perfeito; Martins, Júlia Trevisan; Marziale, Maria Helena Palucci; Solci, Maria Cristina; Dalmas, José Carlos

    2017-01-01

    ABSTRACT Objective: analyze the concentration of polycyclic aromatic hydrocarbons in electrocautery smoke in operating rooms and the use of personal protective equipment by the intraoperative team when exposed to hydrocarbons. Method: exploratory and cross-sectional field research conducted in a surgery center. Gases were collected by a vacuum suction pump from a sample of 50 abdominal surgeries in which an electrocautery was used. A form was applied to identify the use of personal protective equipment. Gases were analyzed using chromatography. Descriptive statistics and Spearman's test were used to treat data. Results: there were 17 (34%) cholecystectomies with an average duration of 136 minutes, while the average time of electrocautery usage was 3.6 minutes. Airborne hydrocarbons were detected in operating rooms in 100% of the surgeries. Naphthalene was detected in 48 (96.0%) surgeries and phenanthrene in 49 (98.0%). The average concentration of these compounds was 0.0061 mg/m3 and a strong correlation (0.761) was found between them. The intraoperative teams did not use respirator masks such as the N95. Conclusion: electrocautery smoke produces gases that are harmful to the health of the intraoperative team, which is a concern considering the low adherence to the use of personal protective equipment. PMID:28301033

  19. The Hydrocarbon Pool in Ethanol-to-Gasoline over HZSM-5 Catalysts

    DEFF Research Database (Denmark)

    Johansson, Roger; Hruby, S.L.; Hansen, Jeppe Rass

    2009-01-01

    It is shown that the conversion of ethanol-to-gasoline over an HZSM-5 catalyst yields essentially the same product distribution as for methanol-to-gasoline performed over the same catalyst. Interestingly, there is a significant difference between the identity of the hydrocarbon molecules trapped...... inside the HZSM-5 catalyst when ethanol is used as a feed instead of methanol. In particular, the hydrocarbon pool contains a significant amount of ethylsubstituted aromatics when ethanol is used as feedstock, but there remains only methyl-substituted aromatics in the product slate....

  20. Trapping tsetse flies on water

    Directory of Open Access Journals (Sweden)

    Laveissière C.

    2011-05-01

    Full Text Available Riverine tsetse flies such as Glossina palpalis gambiensis and G. tachinoides are the vectors of human and animal trypanosomoses in West Africa. Despite intimate links between tsetse and water, to our knowledge there has never been any attempt to design trapping devices that would catch tsetse on water. In mangrove (Guinea one challenging issue is the tide, because height above the ground for a trap is a key factor affecting tsetse catches. The trap was mounted on the remains of an old wooden dugout, and attached with rope to nearby branches, thereby allowing it to rise and fall with the tide. Catches showed a very high density of 93.9 flies/”water-trap”/day, which was significantly higher (p < 0.05 than all the catches from other habitats where the classical trap had been used. In savannah, on the Comoe river of South Burkina Faso, the biconical trap was mounted on a small wooden raft anchored to a stone, and catches were compared with the classical biconical trap put on the shores. G. p. gambiensis and G. tachinoides densities were not significantly different from those from the classical biconical one. The adaptations described here have allowed to efficiently catch tsetse on the water, which to our knowledge is reported here for the first time. This represents a great progress and opens new opportunities to undertake studies on the vectors of trypanosomoses in mangrove areas of Guinea, which are currently the areas showing the highest prevalences of sleeping sickness in West Africa. It also has huge potential for tsetse control using insecticide impregnated traps in savannah areas where traps become less efficient in rainy season. The Guinean National control programme has already expressed its willingness to use such modified traps in its control campaigns in Guinea, as has the national PATTEC programme in Burkina Faso during rainy season.

  1. Study of impurities immersed in a trapped Bose-Einstein condensate*

    Science.gov (United States)

    Nho, Kwangsik; Landau, D. P.

    2007-03-01

    Using path integral Monte Carlo simulation methods[1], we have studied properties of impurities immersed in Bose-Einstein Condensates harmonically trapped in low dimemsion. For two-body interactions, we use a hard-sphere potential whose core radius equals its corresponding scattering length. We assume that the impurities experience the external trapping potential. We have tightly confined the motion of trapped particles in one or more direction by increasing the trap anisotropy in order to simulate lower dimensional atomic gases. By varying the strength of the boson-impurity interactions and the number of impurities, we have investigated the effect of impurities on the energetics and structural properties such as the total energy, the density profile, and the superfluid fraction. Our results show that for impurities with larger two-body interactions than the boson-boson interactions, the impurities move away from the trap center and surround the trapped bosons, and the density profile is found to get narrower, with the peak density getting larger. The total superfluid fraction decreases due to the impurities, although the difference becomes smaller and smaller by increasing the trap anisotropy. *Research supported by NASA[1] K. Nho and D. P. Landau, Phys. Rev. A. 72, 023615 (2005).

  2. Hydrocarbons emissions from Cerro Prieto Geothermal Power Plant, Mexico

    Science.gov (United States)

    Navarro, Karina; Navarro-González, Rafael; de la Rosa, José; Peralta, Oscar; Castro, Telma; Imaz, Mireya

    2014-05-01

    One of the most important environmental issues related to the use of geothermal fluids to generate electricity is the emission of non-condensable gases to the atmosphere. Mexico has one of the largest geothermal plants in the world. The facility is located at Cerro Prieto, Baja California, roughly 30 km south of Mexicali and the international boundary between Mexico and United States. The Cerro Prieto power plant has 13 units grouped on four individual powerhouses. Gas samples from 9 units of the four powerhouses were collected during 4 campaigns conducted in May-July, 2010, February, 2012, December, 2012, and May, 2013. Gas samples from the stacks were collected in 1000 ml Pyrex round flasks with Teflon stopcocks, and analyzed by gas chromatography-mass spectrometry. Methane was the most abundant aliphatic hydrocarbon, with a concentration that ranged from less than 1% up to 3.5% of the total gas mixture. Normal alkanes represented the second most abundant species, and displayed a decreasing abundance with increasing carbon number in the homologous series. Isoalkanes were also present as isobutane and isopentane. Cycloalkanes occurring as cyclopentane and cyclohexane, were detected only at trace level. Unsaturated hydrocarbons (alkenes and alkynes) were not detected. Benzene was detected at levels ranging from less than 1% up to 3.4% of the total gas mixture. Other aromatic hydrocarbons detected were toluene, and xylenes, and were present at lower concentrations (

  3. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  4. Pattern formation with trapped ions

    CERN Document Server

    Lee, Tony E

    2010-01-01

    We propose an experiment to study collective behavior in a nonlinear medium of trapped ions. Using laser cooling and heating and an anharmonic trap potential, one can turn an ion into a nonlinear van der Pol-Duffing oscillator. A chain of ions interacting electrostatically has stable plane waves for all parameters. The system also behaves like an excitable medium, since a sufficiently large perturbation generates a travelling pulse. Small chains exhibit multistability and limit cycles. We account for noise from spontaneous emission in the amplitude equation and find that the patterns are observable for realistic experimental parameters. The tunability of ion traps makes them an exciting setting to study nonequilibrium statistical physics.

  5. Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E. [Oak Ridge National Lab., TN (United States); Dearth, M.A. [Ford Motor Co., Dearborn, MI (United States). Environmental Research Consortium

    1997-09-01

    Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

  6. A New Atom Trap The Annular Shell Atom Trap (ASAT)

    CERN Document Server

    Pilloff, H S; Pilloff, Herschel S.; Horbatsch, Marko

    2002-01-01

    In the course of exploring some aspects of atom guiding in a hollow, optical fiber, a small negative potential energy well was found just in front of the repulsive or guiding barrier. This results from the optical dipole and the van der Waals potentials. The ground state for atoms bound in this negative potential well was determined by numerically solving the Schrodinger eq. and it was found that this negative well could serve as an atom trap. This trap is referred to as the Annular Shell Atom Trap or ASAT because of the geometry of the trapped atoms which are located in the locus of points defining a very thin annular shell just in front of the guiding barrier. A unique feature of the ASAT is the compression of the atoms from the entire volume to the volume of the annular shell resulting in a very high density of atoms in this trap. This trap may have applications to very low temperatures using evaporative cooling and possibly the formation of BEC. Finally, a scheme is discussed for taking advantage of the d...

  7. Fully Deuterated Aliphatic Hydrocarbons Obtained From Iron Carbide Treated with DCl and D2O

    Science.gov (United States)

    Marquez, C.; Lazcano, A.; Miller, S. L.; Oro, J.

    1966-01-01

    According to Oparin, Mendeleev thought that the origin of petroleum was the result of the hydrolysis of iron carbides by superheated steam under pressure from the deep interior of the Earth through geological formations where the metal carbides exist. As early as 1877, Mendeleev described the reaction leading to the synthesis of hydrocarbons according to the general equation 3Fe(sub m)C(sub n) + mH2O yields mFe3O4 + C(sub 3n)H(sub 8m). Other experimental studies on the production of hydrocarbons from cast iron have been reported. Because of the possibility that hydrocarbons may have been trapped within the carbon matrix of the cast iron, which usually has a high content of carbon, we have studied the reaction of pure iron carbide with deuterium chloride and deuterated water. This was done in order to distinguish any newly formed deuterated hydrocarbons from any possible impurities of trapped hydrocarbons. The experiments were carried out by simply allowing iron carbide to react with concentrated deuterium chloride in D2O. The volatile hydrocarbon fraction examined by gas chromatography-mass spectrometry (GC/MS), using a Finnigan 1020/OWA instrument. contained low molecular weight hydrocarbons in a range C3 to C7. Lower molecular weight hydrocarbons were not detected by GC/MS because the MS scanning mode was preset above mass 40 to exclude components of air. The identified hydrocarbons are similar to those obtained under prebiotic conditions using high frequency discharge. The hydrocarbons found in common were propane, butane, pentane, 3-methylpentane, hexane, and heptane. The percent yields decline with increasing carbon number (propane 11%, n-heptane 1%). Similar results have been obtained by the direct treatment of metal carbides by pulse laser vaporization mass spectrometry. These results show that the hydrolysis of iron carbides may have been a significant source of hydrocarbons on the primitive Earth. There appears to be a predominance of straight chain

  8. Observation of the Efimovian expansion in scale-invariant Fermi gases

    Science.gov (United States)

    Deng, Shujin; Shi, Zhe-Yu; Diao, Pengpeng; Yu, Qianli; Zhai, Hui; Qi, Ran; Wu, Haibin

    2016-07-01

    Scale invariance plays an important role in unitary Fermi gases. Discrete scaling symmetry manifests itself in quantum few-body systems such as the Efimov effect. Here, we report on the theoretical prediction and experimental observation of a distinct type of expansion dynamics for scale-invariant quantum gases. When the frequency of the harmonic trap holding the gas decreases continuously as the inverse of time t, the expansion of the cloud size exhibits a sequence of plateaus. The locations of these plateaus obey a discrete geometric scaling law with a controllable scale factor, and the expansion dynamics is governed by a log-periodic function. This marked expansion shares the same scaling law and mathematical description as the Efimov effect.

  9. Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality

    CERN Document Server

    Adams, Allan; Schaefer, Thomas; Steinberg, Peter; Thomas, John E

    2012-01-01

    Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of N...

  10. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico.

    Science.gov (United States)

    Des Marais, D J; Stallard, M L; Nehring, N L; Truesdell, A H

    1988-01-01

    Hydrocarbon abundances and stable-isotopic compositions were measured in wells M5, M26, M35 and M102, which represent a range of depths (1270-2000 m) and temperatures (275-330 degrees C) in the field. In order to simulate the production of the geothermal hydrocarbons, gases were collected from the pyrolysis of lignite in the laboratory. This lignite was obtained from a well which sampled rock strata which are identical to those occurring in the field, but which have experienced much lower subsurface temperatures. In both the well and the laboratory observations, high-temperature environments favored higher relative concentrations of methane, ethane and benzene and generally higher delta 13C-values in the individual hydrocarbons. The best correlation between the laboratory and well data is obtained when laboratory-produced gases from experiments conducted at lower (400 degrees C) and higher (600 degrees C) temperatures are mixed. This improved correlation suggests that the wells are sampling hydrocarbons produced from a spectrum of depths and temperatures in the sediments.

  11. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico

    Science.gov (United States)

    Des Marais, D. J.; Stallard, M. L.; Nehring, N. L.; Truesdell, A. H.

    1988-01-01

    Hydrocarbon abundances and stable-isotopic compositions were measured in wells M5, M26, M35 and M102, which represent a range of depths (1270-2000 m) and temperatures (275-330 degrees C) in the field. In order to simulate the production of the geothermal hydrocarbons, gases were collected from the pyrolysis of lignite in the laboratory. This lignite was obtained from a well which sampled rock strata which are identical to those occurring in the field, but which have experienced much lower subsurface temperatures. In both the well and the laboratory observations, high-temperature environments favored higher relative concentrations of methane, ethane and benzene and generally higher delta 13C-values in the individual hydrocarbons. The best correlation between the laboratory and well data is obtained when laboratory-produced gases from experiments conducted at lower (400 degrees C) and higher (600 degrees C) temperatures are mixed. This improved correlation suggests that the wells are sampling hydrocarbons produced from a spectrum of depths and temperatures in the sediments.

  12. Formation of positive ions in hydrocarbon containing dielectric barrier discharge plasmas

    Science.gov (United States)

    Mihaila, Ilarion; Pohoata, Valentin; Jijie, Roxana; Nastuta, Andrei Vasile; Rusu, Ioana Alexandra; Topala, Ionut

    2016-12-01

    Low temperature atmospheric pressure plasma devices are suitable experimental solutions to generate transitory molecular environments with various applications. In this study we present experimental results regarding the plasma chemistry of dielectric barrier discharges (DBD) in helium - hydrogen (0.1%) - hydrocarbons (1.2%) mixtures. Four types of hydrocarbon gases were studied: methane (CH4), ethane (C2H6), propane (C3H8), and butane (C4H10). Discharge diagnosis and monitoring was assured by electrical measurements and optical emission spectroscopy. Molecular beam mass spectrometry is engaged to sample positive ions populations from two different plasma sources. Dissociation and generation of higher-chain and cyclic (aromatic) hydrocarbons were discussed as a function of feed gas and discharge geometry. We found a strong influence of these parameters on both molecular mass distribution and recombination processes in the plasma volume.

  13. Development of Nitrogen-Hydrocarbon Atmospheric Carburizing and Process Control Methods

    Science.gov (United States)

    Wang, Xiaolan; Zurecki, Zbigniew; Sisson, Richard D.

    2013-07-01

    Atmospheric pressure carburizing and neutral carbon potential annealing in nitrogen containing small additions of hydrocarbon gases can offer cost and steel surface quality alternatives to the comparable, endothermic atmosphere, or vacuum operations. An experimental program was conducted for refining real-time process control methods in carburizing of AISI 8620 steel under N2-CH4, N2-C3H8 blends containing <5 vol.% of hydrocarbon gas at 900 and 930 °C. Multiple types of gas analyzers were used to monitor residual concentrations of H2, CO, CO2, H2O, O2, CH4, C3H8, and other hydrocarbons inside furnace. A modified shim stock technique was additionally evaluated for correlation with gas analysis and diffusional modeling using measured carbon mass flux values (g/cm2/s). Results of this evaluation work are presented.

  14. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    Science.gov (United States)

    Muradov, Nazim Z.

    2011-08-23

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  15. Cost analysis model for catalytic conversion of syngas in to light hydrocarbon gases

    Directory of Open Access Journals (Sweden)

    Yangyang Deng

    2015-05-01

    Full Text Available Bio-gasification is a new technology and considered as a more efficient way to utilize bio-energy. The economic feasibility becomes one of the greatest issues when we apply this new technology. Evaluation of economic feasibility of a bio-gasification facility needs better understanding of its production unit cost under different capacities and different working shift modes. The objective of this study was to evaluate the unit cost of biofuel products (Liquid HCs, Light HCs and Oxygenates CxHyOz under different capacities using a modeling method. The cost analysis model was developed using Visual Basic Microsoft 2008, computer programming language and mathematical equations. The modeling results showed that the unit costs of biofuel product from bio-gasification facility were significantly affected by production capacities of facilities. As the facility capacity increased from 65 to 10,000 N m3 h−1, the biofuel production unit cost of gas (Light HCs, oil (Liquid HCs, and aqueous (Oxygenates CxHyOz decreased from $38.92 per MMBTU, $30.89 per gallon and $25.74 per gallon to $2.01 per MMBTU, $1.59 per gallon, and $1.33 per gallon, respectively. The results of the sensitivity analysis showed that feedstock cost was the most sensitive cost factor on unit costs for all biofuel products at high capacity. The cost analysis model developed in this study could be used to optimize production unit costs of bio-fuel products from bio-gasification facility.

  16. Thermodynamic Functions of Solvation of Hydrocarbons, Noble Gases, and Hard Spheres in Tetrahydrofuran-Water Mixtures.

    Science.gov (United States)

    Sedov, I A; Magsumov, T I

    2015-07-16

    Thermodynamic solvation properties of mixtures of water with tetrahydrofuran at 298 K are studied. The Gibbs free energies and enthalpies of solvation of n-octane and toluene are determined experimentally. For molecular dynamics simulations of the binary solvent, we have modified a TraPPE-UA model for tetrahydrofuran and combined it with the SPC/E potential for water. The excess thermodynamic functions of neon, xenon, and hard spheres with two different radii are calculated using the particle insertion method. Simulated and real systems share the same characteristic trends for the thermodynamic functions. A maximum is present on dependencies of the enthalpy of solvation from the composition of solvent at 70-90 mol % water, making it higher than in both of the cosolvents. It is caused by a high enthalpy of cavity formation in the mixtures rich with water due to solvent reorganization around the cavity, which is shown by calculation of the enthalpy of solvation of hard spheres. Addition of relatively small amounts of tetrahydrofuran to water effectively suppresses the hydrophobic effect, leading to a quick increase of both the entropy and enthalpy of cavity formation and solvation of low polar molecules.

  17. Innovation: the classic traps.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2006-11-01

    these traps.

  18. Hydrocarbon Leak Detection Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT is proposing the development of a sensor to detect the presence of hydrocarbons in turbopump Inter-Propellant Seals (IPS). The purpose of the IPS is to prevent...

  19. Growth of hydrocarbon utilizing microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Mavinkurve, S.

    Two isolates from marine mud having broad spectrum hydrocarbon utilizing profile were identified as Arthrobacter simplex and Candida tropicalis.Both the organisms grew exponentially on crude oil. The cell yield of the organisms was influenced...

  20. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  1. Magneto optical trapping of Barium

    CERN Document Server

    De, S; Jungmann, K; Willmann, L

    2008-01-01

    First laser cooling and trapping of the heavy alkaline earth element barium has been achieved based on the strong 6s$^2$ $^1$S$_0$ - 6s6p $^1$P$_1$ transition for the main cooling. Due to the large branching into metastable D-states several additional laser driven transitions are required to provide a closed cooling cycle. A total efficiency of $0.4(1) \\cdot 10^{-2}$ for slowing a thermal atomic beam and capturing atoms into a magneto optical trap was obtained. Trapping lifetimes of more than 1.5 s were observed. This lifetime is shortened at high laser intensities by photo ionization losses. The developed techniques will allow to extend significantly the number of elements that can be optically cooled and trapped.

  2. Seismic fault zone trapped noise

    National Research Council Canada - National Science Library

    Hillers, G; Campillo, M; Ben‐Zion, Y; Roux, P

    2014-01-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics...

  3. Heterogeneity of lithologically-screened hydrocarbon formations governed by carbonate concretions

    Energy Technology Data Exchange (ETDEWEB)

    Vysotskiy, V.N.; Lyudofun, F.N.; Sidorenkov, A.I.

    1979-01-01

    The complex structure of sections of thinning of bed-collectors governed by the constant presence of a lens of carbonate-terrigenous rocks is examined. It is indicated that the thinning traps have higher concretion carbonate content than the bed arc. The closer to the lateral lithological screen in the thinning traps, the more the concretion coefficient has a directed changing gradient of increase. The conclusion is drawn that this empirical law can be used at the stage of exploring hydrocarbon formations or for tracing the thinning line of the bed collector.

  4. Libyan Paleozoic: A review of the factors limiting hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Kanes, W.H.; Mairn, A.E.M.; Aburawi, R.M.

    1988-08-01

    Of the three main Paleozoic basins - Ghadames, Murquz, and Kufra - only the Ghadames and its continuation into Algeria, the Illizi (or Fort Polignac) basin, has yielded hydrocarbons in significant quantity. The Paleozoic on the Cyrenaica platform and basement of the Sirte basin has a potential not fully considered. The paleogeography of the Paleozoic system is reviewed to illustrate the extent to which inherited and reactivated basement-controlled structures have influenced later Paleozoic sedimentation and hence the distribution of source rocks, reservoirs, and seals. In all instances, the source rocks are restricted to shales of the Tanezufft Formation or occur in the Upper Devonian Aouinet Oeunine Formation. Multiple fine-grained sequences serve as seals in all the fields. The reservoirs range from the well-cemented but highly fractured Cambrian-Ordovician Gargaf sandstones to the Acacus-Tadrart clastics to the fine-grained Lower Carboniferous Tahara Sandstone. The principal plays are associated with minor structures, and stratigraphic trapping mechanisms play a minor role. The average field size (excluding the Sirte basin) is approximately 80 million bbl of recoverable oil. Paleozoic structural plays in the Sirte basin and the Cyrenaica platform include reactivated infra-Cambrian faults. The lower Paleozoic accumulations of the Murzuq basin are tied to large structures. With the exception of local areas in the Ghadames basin, the Paleozoic succession remains a stratigraphic frontier province - still incompletely explored but with several interesting possibilities for large amounts of stratigraphically trapped hydrocarbons.

  5. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  6. Electrochemical decomposition of chlorinated hydrocarbons

    OpenAIRE

    McGee, Gerard Anthony

    1993-01-01

    This work involves the characterisation of the electrochemical decomposition of chlorinated hydrocarbons. A variety of methods were employed involving the use of catalytic reagents to enhance the rate at which chlorinated organic compounds are reduced. The first reagent used was oxygen which was electrochemically reduced to superoxide in nonaqueous solvents. Superoxide is a reactive intermediate and decomposes chlorinated hydrocarbons. However it was found that since the rate of reaction betw...

  7. Aliphatic hydrocarbons of the fungi.

    Science.gov (United States)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  8. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  9. Geology and potential hydrocarbon play system of Lower Karoo Group in the Maamba Coalfield Basin, southern Zambia

    Science.gov (United States)

    Phiri, Cryton; Wang, Pujun; Nyambe, Imasiku Anayawa

    2016-06-01

    expulsion possibly gases and gas condensates. Sandstones are moderate to poor sorted sublitharenites. Total porosity in sandstones range between 0 and 6.3%, averaging 2.5%, and is mainly secondary porosity resulting from dissolution of labile minerals and fracture. Deposition and diagenetic related controls influenced much of the reservoir quality in sandstones. Lacustrine mudstones are the potential seal rocks. The major Structural traps are faults (e.g. normal and reverse faults) and the stratigraphic traps are sandstones. In this study, our area of focus is in the north and central part of Maamba Coalfield Basin where coal mining and exploration activities are currently taking place. The southernmost part of the basin is under developed such that the hydrocarbon play system potential is still unknown. However, recent coal exploration drilling has revealed the presence of source rocks at depth overlain by extensive overburden seal rocks. Based on the play concept analysis, it is possible to find more encouraging results from this area.

  10. 40 CFR 86.514-78 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.514-78 Section 86.514-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases...

  11. 40 CFR 86.114-94 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.114-94 Section 86.114-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...-Duty Vehicles; Test Procedures § 86.114-94 Analytical gases. (a) Analyzer gases. (1) Gases for the...

  12. 40 CFR 86.1214-85 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Analytical gases. 86.1214-85 Section 86.1214-85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Methanol-Fueled Heavy-Duty Vehicles § 86.1214-85 Analytical gases. (a) Analyzer gases. (1) Gases for...

  13. Arrangement of tapering traps in the main oil and gas complexes of West Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Vysotskiy, V.M.; Malykh, A.G.; Pikulevich, V.D.; Sidorenkov, A.I.

    1982-01-01

    Based on evaluation of the densities of distribution of traps formed by lithological and stratigraphic screens, in the main oil and gas masses of West Siberia an isolation is made of the intervals of the section which are the most promising for detecting screened formations. These include the Berrias-Valanzhinskiy, Valanzhin-Gotherivian and upper Jurassic oil and gas complexes which are included among the primary objects for setting up prospecting and exploration aimed at finding screened hydrocarbon formations.

  14. Purification of the off-gases of the process of radioactive waste vitrification in induction melter

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, V. A.; Katannikov, I. S.; Knyasev, O. A.; Kornev, V. I.; Lifanov, F. A.; Polkanov, M. A.; Savkin, A. E. [Moscow Scientific and Inndustrial Association RADON, Moscow (Russian Federation)

    1999-07-01

    Moscow SIA RADON has developed the method of vitrifying both radioactive ashes, arising from radioactive waste incineration, and liquid radioactive waste in induction melter. In the experimental plant the characteristics of off-gases were determined and various constructions of filters and filtering materials for dust trapping were tested. On the base of test results the plant for liquid radioactive waste vitrification has been constructed on the base of induction melter {sup c}old crucible{sup ,} equipped with modern effective dust and gas purification system, consisting of filtration unit, absorption unit and unit for nitrogen oxide catalytic reduction. (author). 3 refs., 9 tabs., 3 figs.

  15. HYDROCARBONS RESERVES IN VENEZUELA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Cruz, D.J.

    2007-07-01

    Venezuela is an important player in the energy world, because of its hydrocarbons reserves. The process for calculating oil and associated gas reserves is described bearing in mind that 90% of the gas reserves of Venezuela are associated to oil. Likewise, an analysis is made of the oil reserves figures from 1975 to 2003. Reference is also made to inconsistencies found by international experts and the explanations offered in this respect by the Ministry of Energy and Petroleum (MENPET) and Petroleos de Venezuela (PDVSA) regarding the changes that took place in the 1980s. In turn, Hubbert's Law is explained to determine peak production of conventional oil that a reservoir or field will reach, as well as its relationship with remaining reserves. Emphasis is placed on the interest of the United Nations on this topic. The reserves of associated gas are presented along with their relationship with the different crude oils that are produced and with injected gas, as well as with respect to the possible changes that would take place in the latter if oil reserves are revised. Some recommendations are submitted so that the MENPET starts preparing the pertinent policies ruling reserves. (auth)

  16. Evaluation of hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Cashman, P.H.; Trexler, J.H. Jr. [Univ. of Nevada, Reno, NV (United States)

    1992-09-30

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the {open_quotes}Eleana Formation{close_quotes} are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock.

  17. Gas geochemistry of the Valles caldera region, New Mexico and comparisons with gases at Yellowstone, Long Valley and other geothermal systems

    Science.gov (United States)

    Goff, F.; Janik, C.J.

    2002-01-01

    Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210-300??C) consist of roughly 98.5 mo1% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas ??13C-CO2 values (-3 to -5???) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ???1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982-1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987-1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone). Published by Elsevier Science B.V.

  18. Even-odd spatial nonequivalence for atomic quantum gases with isotropic spin-orbit couplings

    Science.gov (United States)

    Singh, G. S.; Gupta, Reena

    2014-05-01

    A general expression for the density of states (DOS) of power-law trapped d-dimensional ideal quantum gases with isotropic spin-orbit couplings (SOCs) is derived and is found to bifurcate into even- dand odd- d classes. The expressions for the grand potential and hence for several thermodynamic quantities are then shown to be amenable to exact analytical forms provided d is an odd integer. Also, a condition γ transition temperature and the condensate fraction in a 3D Bose gas under combined presence of the harmonic trapping and the Weyl coupling shows that the condensation is favored by the former but disfavored by the latter. This countering behavior is discussed to be in conformity with the exchange-symmetry-induced statistical interactions resulting from these two entities as enunciated recently [Phys. Rev. A 88, 053607 (2013)].

  19. A High-Resolution Time-of-Flight Mass Spectrometer for Experiments with Ultracold Gases

    CERN Document Server

    Kraft, S D; Staanum, P; Fioretti, A; Lange, J; Wester, R; Weidemüller, M; Kraft, Stephan D.; Mikosch, Jochen; Staanum, Peter; Fioretti, Andrea; Lange, Joerg; Wester, Roland; Weidemueller, Matthias

    2005-01-01

    We have realized a high-resolution time-of-flight mass spectrometer combined with a magneto-optical trap. The spectrometer enables excellent optical access to the trapped atomic cloud using properly devised acceleration and deflection electrodes. The ions are extracted along a laser axis and deflected onto an off axis detector. The setup is applied to detect atoms and molecules photoassociated from ultracold atoms. The detection is based on resonance-enhanced multi-photon ionization. The versatile setup can easily be implemented in more complex experiments with ultracold atomic and molecular gases. Mass resolution up to $m/\\Delta m_{rms} = 1000$ at the mass of $^{133}$Cs is achieved.

  20. All-optical cooling of Fermi gases via Pauli inhibition of spontaneous emission

    CERN Document Server

    Onofrio, Roberto

    2016-01-01

    A technique is proposed to cool Fermi gases to the regime of quantum degeneracy based on the expected inhibition of spontaneous emission due to the Pauli principle. The reduction of the linewidth for spontaneous emission originates a corresponding reduction of the Doppler temperature, which under specific conditions may give rise to a runaway process through which fermions are progressively cooled. The approach requires a combination of a magneto-optical trap as a cooling system and an optical dipole trap to enhance quantum degeneracy. This results in expected Fermi degeneracy factors $T/T_F$ comparable to the lowest values recently achieved, with potential for a direct implementation in optical lattices. The experimental demonstration of this technique should also indirectly provide a macroscopic manifestation of the Pauli exclusion principle at the atomic physics level.

  1. Nanoporous clay with carbon sink and pesticide trapping properties

    Science.gov (United States)

    Woignier, T.; Duffours, L.; Colombel, P.; Dieudonné, P.

    2015-07-01

    A thorough understanding of the mechanisms and factors involved in the dynamics of organic carbon in soils is required to identify and enhance natural sinks for greenhouse gases. Some tropical soils, such as Andosols, have 3-6 fold higher concentrations of organic carbon than other kinds of soils containing classical clays. In the tropics, toxic pesticides permanently pollute soils and contaminate crops, water resources, and ecosystems. However, not all soils are equal in terms of pesticide contamination or in their ability to transfer pollution to the ecosystem. Andosols are generally more polluted than the other kinds of soils but, surprisingly, they retain and trap more pesticides, thereby reducing the transfer of pesticides to ecosystems, water resources, and crops. Andosols thus have interesting environmental properties in terms of soil carbon sequestration and pesticide retention. Andosols contain a nano porous clay (allophane) with unique structures and physical properties compared to more common clays; these are large pore volume, specific surface area, and a tortuous and fractal porous arrangement. The purpose of this mini review is to discuss the importance of the allophane fractal microstructure for carbon sequestration and pesticide trapping in the soil. We suggest that the tortuous microstructure (which resembles a labyrinths) of allophane aggregates and the associated low accessibility partly explain the poor availability of soil organic matter and of any pesticides trapped in andosols.

  2. Broader perspectives for comparing different greenhouse gases.

    Science.gov (United States)

    Manning, Martin; Reisinger, Andy

    2011-05-28

    Over the last 20 years, different greenhouse gases have been compared, in the context of climate change, primarily through the concept of global warming potentials (GWPs). This considers the climate forcing caused by pulse emissions and integrated over a fixed time horizon. Recent studies have shown that uncertainties in GWP values are significantly larger than previously thought and, while past literature in this area has raised alternative means of comparison, there is not yet any clear alternative. We propose that a broader framework for comparing greenhouse gases has become necessary and that this cannot be addressed by using simple fixed exchange rates. From a policy perspective, the framework needs to be clearly aligned with the goal of climate stabilization, and we show that comparisons between gases can be better addressed in this context by the forcing equivalence index (FEI). From a science perspective, a framework for comparing greenhouse gases should also consider the full range of processes that affect atmospheric composition and how these may alter for climate stabilization at different levels. We cover a basis for a broader approach to comparing greenhouse gases by summarizing the uncertainties in GWPs, linking those to uncertainties in the FEIs consistent with stabilization, and then to a framework for addressing uncertainties in the corresponding biogeochemical processes.

  3. The pulsed migration of hydrocarbons across inactive faults

    Directory of Open Access Journals (Sweden)

    S. D. Harris

    1999-01-01

    Full Text Available Geological fault zones are usually assumed to influence hydrocarbon migration either as high permeability zones which allow enhanced along- or across-fault flow or as barriers to the flow. An additional important migration process inducing along- or across-fault migration can be associated with dynamic pressure gradients. Such pressure gradients can be created by earthquake activity and are suggested here to allow migration along or across inactive faults which 'feel' the quake-related pressure changes; i.e. the migration barriers can be removed on inactive faults when activity takes place on an adjacent fault. In other words, a seal is viewed as a temporary retardation barrier which leaks when a fault related fluid pressure event enhances the buoyancy force and allows the entry pressure to be exceeded. This is in contrast to the usual model where a seal leaks because an increase in hydrocarbon column height raises the buoyancy force above the entry pressure of the fault rock. Under the new model hydrocarbons may migrate across the inactive fault zone for some time period during the earthquake cycle. Numerical models of this process are presented to demonstrate the impact of this mechanism and its role in filling traps bounded by sealed faults.

  4. Geology and hydrocarbon potential of the Oued Mya basin, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Benamrane, O.; Messaoudi, M.; Messelles, H. (Sonatrach Division Exploration, Algiers (Algeria))

    1993-09-01

    The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rock in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.

  5. Microinstrument gradient-force optical trap.

    Science.gov (United States)

    Collins, S D; Baskin, R J; Howitt, D G

    1999-10-01

    A micromachined fiber-optic trap is presented. The trap consists of four single-mode, 1064-nm optical intersection. The beam fibers mounted in a micromachined silicon and glass housing. Micromachining provides the necessary precision to align the four optical fibers so that the outputs have a common intersection forms a strong three-dimensional gradient-force trap with trapping forces comparable with that of optical tweezers. Characterization of the multibeam fiber trap is illustrated for capture of polystyrene microspheres, computer simulations of the trap stiffness, and experimental determination of the trapping forces.

  6. Methanol production from fermentor off-gases

    Science.gov (United States)

    Dale, B. E.; Moreira, A. R.

    The off gases from an acetone butanol fermentation facility are composed mainly of CO2 and H2. Such a gas stream is an ideal candidate as a feed to a methanol synthesis plant utilizing modern technology recently developed and known as the CDH-methanol process. A detailed economic analysis for the incremental cost of a methanol synthesis plant utilizing the off gases from an acetone butanol fermentation indicates a profitable rate of return of 25 to 30% under the most likely production conditions. Bench scale studies at different fermentor mixing rates indicate that the volume of gases released during the fermentation is a strong function of the agitation rate and point to a potential interaction between the volume of H2 evolved and the levels of butanol present in the final fermented broth. Such interaction may require establishing optimum operating conditions for an integrated butanol fermentation methanol synthesis plant.

  7. Absorption of Soluble Gases by Atmospheric Nanoaerosols

    CERN Document Server

    Elperin, Tov; Krasovitov, Boris; Lushnikov, Alexey

    2012-01-01

    We investigate mass transfer during absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO2), dinitrogen trioxide (N2O3) and chlorine (Cl2) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols the kinetic effects play significant role, and neglecting kinetic effects leads to significant overestimation of the soluble gas flux into a...

  8. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanović

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  9. Dark lump excitations in superfluid Fermi gases

    Institute of Scientific and Technical Information of China (English)

    Xu Yan-Xia; Duan Wen-Shan

    2012-01-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases.A Kadomtsev Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen-Cooper-Schrieffer (BCS) regime,Bose-Einstein condensate (BEC) regime,and unitarity regime.Onelump solution as well as one-line soliton solutions for the KPI equation are obtained,and two-line soliton solutions with the same amplitude are also studied in the limited cases.The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  10. Live trapping of hawks and owls

    Science.gov (United States)

    Stewart, R.E.; Cope, J.B.; Robbins, C.S.

    1945-01-01

    1. Hawks of six species (80 individuals) and owls of five species (37 individuals) were trapped for banding from November 1, 1943, to. May 26,1944. 2. In general, pole traps proved better than hand-operated traps or automatic traps using live bait. 3. Verbail pole traps proved very efficient, and were much more humane than padded steel traps because they rarely injured a captured bird. 4: Unbaited Verbail traps took a variety of raptors, in rough proportion to their local abundance, although slightly more of beneficial species were caught than of harmful types. 5. Hawks and owls were retrapped more readily in Verbail traps than in other types tried. 6. The number of song birds caught in Verbail traps was negligible. 7. Crows and vultures were not taken in Verbail traps, but possibly could be caught with bait.

  11. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  12. Zeolites for Sensors for Reducing Gases

    Institute of Scientific and Technical Information of China (English)

    Ralf Moos; Kathy Sahner; Gunter Hagen; Andreas Dubbe

    2006-01-01

    Due to their unique properties, zeolites can be used either as passive filters to greatly enhance selectivity or as very selective sensor materials. Some well known principles are briefly reviewed and the following three novel application modes are discussed. Zeolites can be applied as cover layers for specificity improvement of p-type semiconducting hydrocarbon sensors. Furthermore, a novel combination of metal oxides with zeolites leading to a very selective hydrocarbon sensor is described. In this application, it is shown that the interface chromium oxide / zeolite plays an essential role. And, in a very recent approach, Na+ ion conducting zeolites are applied as an auxiliary phase in a potentiometric gas sensor. The cell voltage shows a Nernstian response, which is selective towards propane. Here, the proposed mechanism assumes Na+ activity changes in the zeolite pores due to hydrocarbon sorption.

  13. Lowering detection limits for 1,2,3-trichloropropane in water using solid phase extraction coupled to purge and trap sample introduction in an isotope dilution GC-MS method.

    Science.gov (United States)

    Liao, Wenta; Ghabour, Miriam; Draper, William M; Chandrasena, Esala

    2016-09-01

    Purge and trap sample introduction (PTI) has been the premier sampling and preconcentration technique for gas chromatographic determination of volatile organic compounds (VOCs) in drinking water for almost 50 years. PTI affords sub parts-per-billion (ppb) detection limits for purgeable VOCs including fixed gases and higher boiling hydrocarbons and halocarbons. In this study the coupling of solid phase extraction (SPE) to PTI was investigated as a means to substantially increase enrichment and lower detection limits for the emerging contaminant, 1,2,3-trichloropropane (TCP). Water samples (500 mL) were dechlorinated, preserved with a biocide, and spiked with the isotope labeled internal standard, d5-TCP. The entire 500 mL sample was extracted with activated carbon or carbon molecular sieve SPE cartridges, and then eluted with dichloromethane -- excess solvent was removed in a nitrogen evaporator and diethylene glycol "keeper" remaining was dispersed in 5 mL of water for PTI GC-MS analysis. The experimental Method Detection Limit (MDL) for TCP was 0.11 ng/L (ppt) and accuracy was 95-103% in sub-ppt determinations. Groundwater samples including impaired California sources and treated water (n = 21) were analyzed with results ranging from below the method reporting limit (0.30 ng/L) to > 250 ng/L. Coupling of SPE with PTI may provide similar reductions in detection limits for other VOCs with appropriate physical-chemical properties.

  14. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-01-08

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  15. Nanoclusters and Microparticles in Gases and Vapors

    CERN Document Server

    Smirnov, Boris M

    2012-01-01

    Research of processes involving Nanoclusters and Microparticleshas been developing fastin many fields of rescent research, in particular in materials science. To stay at the cutting edge of this development, a sound understanding of the processes is needed. In this work, several processes involving small particles are described, such as transport processes in gases, charging of small particles in gases, chemical processes, atom attachment and quenching of excited atomic particles on surfaces, nucleation, coagulation, coalescence and growth processes for particles and aggregates. This work pres

  16. Blackbody Radiation in Optically Thick Gases?

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2014-07-01

    Full Text Available In this work, the claim that optically thick gases can emit as blackbodies is refuted. The belief that such behavior exists results from an improper consideration of heat transfer and reflection. When heat is injected into a gas, the energy is primarily redistributed into translational degrees of freedom and is not used to drive emission. The average kinetic energy of the particles in the system simply increases and the temperature rises. In this respect, it is well-know that the emissivity of a gas can drop with increasing temperature. Once reflection and translation are properly considered, it is simple to understand why gases can never emit as blackbodies.

  17. Investigations into electrical discharges in gases

    CERN Document Server

    Klyarfel'D, B N

    2013-01-01

    Investigations into Electrical Discharges in Gases is a compilation of scientific articles that covers the advances in the investigation of the fundamental processes occurring in electrical discharges in gases and vapors. The book details the different aspects of the whole life cycle of an arc, which include the initiation of a discharge, its transition into an arc, the lateral spread of the arc column, and the recovery of electric strength after extinction of an arc. The text also discusses the methods for the dynamic measurement of vapor density in the vicinity of electrical discharges, alon

  18. Greenhouse gases and the metallurgical process industry

    Energy Technology Data Exchange (ETDEWEB)

    Lupis, C.H.P.

    1999-10-01

    The present lecture offers a brief review of the greenhouse effect, the sources of greenhouse gases, the potential effect of these gases on global warming, the response of the international community, and the probable cost of national compliance. The specific emissions of the metallurgical process industry, particularly those of the steel and aluminum sectors, are then examined. The potential applications of life-cycle assessments and of an input-output model in programs of emissions' abatement are investigated, and, finally, a few remarks on some implications for education are presented.

  19. Composition of gases vented from a condenser

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, R.N.

    1980-08-01

    Designers of systems that involve condensers often need to predict the amount of process vapor that accompanies the noncondensable gases that are vented from the condensers. An approximation is given that appears to provide, in many cases, reasonably accurate values for the mole ratio of process vapor to noncondensable gases in the vented mixture. The approximation is particularly applicable to flash and direct-contact power systems for geothermal brines and ocean thermal energy conversion (OTEC). More regorous relationships are available for exceptional cases.

  20. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  1. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua presents three major topics, which are the fourth to sixth parts of this volume. These topics are the remarks on units of physical quantities; kinetic theory of gases and gaseous flow; and theory of vacuum diffusion pumps. The first topic aims to present concisely the significance of units of physical quantities, catering the need and interest of those who take measurements and make calculations in different fields of vacuum sciences. The technique and applications of this particular topic are also provided. The second main topic focuses sp

  2. Origins of geothermal gases at Yellowstone

    Science.gov (United States)

    Lowenstern, Jacob B.; Bergfeld, Deborah; Evans, William C.; Hunt, Andrew G.

    2015-01-01

    Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long- stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added

  3. Origin and Accumulation of Natural Gases in the Upper Paleozoic Strata of the Ordos Basin in Central China

    Institute of Scientific and Technical Information of China (English)

    ZHU Yangming; WANG Jibao; LIU Xinse; ZHANG Wenzheng

    2009-01-01

    The natural gases in the Upper Paleozoic strata of the Ordos basin are characterized by relatively heavy C isotope of gaseous alkanes with δ13C1 and δ13C2 values ranging mainly from-35‰ to -30‰ and-27‰ to-22‰,respectively,high δ13C excursions (round 10)between ethane and methane and predominant methane in hydrocarbon gases with most C1/(C1-C5)ratios in excess of 0.95, suggesting an origin of coal-derived gas.The gases exhibit different carbon isotopic profiles for C1.C4 alkanes with those of the natural gases found in the Lower Paleozoic of this basin.and believed to be originated from Carboniferous-Permian coal measures.The occurrence of regionally pervasive gas accumulation iS distinct in the gently southward-dipping Shanbei slope of the central basin.It is noted that molecular and isotopic composition changes of the gases in various gas reservoirs are associated With the thermal maturities of gas source rocks.The abundances and δ13C values of methane generally decline northwards and from the basin center to its margins.and the effects of hydrocarbon migration on compositional modification seem insignificant.However, C isotopes of autogenetic calcites in the vertical and lateral section of reservoirs show a regular variation,and are as a whole depleted upwards and towards basin margins.Combination with gas maturity gradient, the analysis could be considered to be a useful tool for gas migration.

  4. Evaluation of analytical methodology for hydrocarbons in high pressure air and nitrogen systems. [evaluation of methodology

    Science.gov (United States)

    1977-01-01

    Samples of liquid oxygen, high pressure nitrogen, low pressure nitrogen, and missile grade air were studied to determine the hydrocarbon concentrations. Concentration of the samples was achieved by adsorption on a molecular sieve and activated charcoal. The trapped hydrocarbons were then desorbed and transferred to an analytical column in a gas chromatograph. The sensitivity of the method depends on the volume of gas passed through the adsorbent tubes. The value of the method was verified through recoverability and reproducibility studies. The use of this method enables LOX, GN2, and missile grade air systems to be routinely monitored to determine low level increases in specific hydrocarbon concentration that could lead to potentially hazardous conditions.

  5. Pumping-induced ebullition: a unified and simplified method for measuring multiple dissolved gases.

    Science.gov (United States)

    Browne, Bryant A

    2004-11-01

    The incorporation of multiple dissolved gas measurements in biogeochemical studies remains a difficult and expensive challenge. Incompatibilities in collection, handling, and storage procedures generally force the application of multiple sampling procedures for multiple gases. This paper introduces the concept and application of pumping-induced ebullition (PIE), a unified approach for routine measurement of multiple dissolved gases in natural waters and establishes a new platform for development of in situ real-time dissolved gas monitoring tools. Ebullition (spontaneous formation of bubbles) is induced by pumping a water sample through a narrow-diametertube (a "restrictor") to decrease hydrostatic pressure (PH) below total dissolved gas pressure (PT). Buoyancy is used to trap bubbles within a collection tower where gas accumulates rapidly (1 mL/min) to support multiple chemical analyses. Providing for field collection of an essentially unlimited and unified volume of gas sample, PIE afforded accurate and precise measurements of major (N2, 02, Ar), trace (CO2, N20, CH4) and ultratrace (CFC11, CFC12, CFC113, SF6) dissolved gases in Wisconsin groundwater, revealing interrelationships between denitrification, apparent recharge age-dates, and historical land use. Compared to conventional approaches, PIE eliminates multiple gas-specific sampling methods, reduces data computations, simplifies laboratory instrumentation, and avoids aqueous production and consumption of biogenic gases during sample storage. A lake depth profile for CO2 demonstrates PIE's flexibility as an in situ real-time platform for dissolved gas measurements. The apparent departures of some gases (SF6, H2, N2O, CO2) from solubility equilibrium behavior warrant further confirmation and theoretical investigation.

  6. Method for measurement of volatile oxygenated hydrocarbons in ambient air

    Science.gov (United States)

    Leibrock, E.; Slemr, J.

    An automated gas chromatographic method for the quantitative determination of oxygenated (C 2C 5 carbonyls and C 1C 2 alcohols) and some non-oxygenated (C 5C 8) hydrocarbons in ambient air has been developed. The analytical system consists of a gas chromatograph with a cryogenic sampling trap, a precolumn for the separation of water and other interfering compounds, a cryogenic focusing trap and two analytical columns connected in series. Substances are detected either by flame ionization or by a mass spectrometer. Ozone is removed by a potassium iodide scrubber placed upstream the sampling trap. External gas standards generated by a permeation device are used for calibration. The detection limits range between 0.03 and 0.08 ng (depending on the compound), equivalent to 5 to 56 ppt in 1 l of sampled air. The method was tested by an intercomparison with a different gas chromatographic technique for the determination of NMHC. The system has been applied since 1994 for measurements in ambient air. Data obtained during an intensive campaign in summer 1995 at the field station Wank (1778 m a.s.l.) near Garmisch-Partenkirchen, Germany, are reported and compared with NMHC mixing ratios measured simultaneously in the same air masses.

  7. Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices

    Science.gov (United States)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2004-01-01

    In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system

  8. Trap induction and trapping in eight nematode-trapping fungi (Orbiliaceae) as affected by juvenile stage of Caenorhabditis elegans.

    Science.gov (United States)

    Xie, Hongyan; Aminuzzaman, F M; Xu, Lingling; Lai, Yiling; Li, Feng; Liu, Xingzhong

    2010-06-01

    This study measured trap induction and trapping on agar disks as affected by juvenile stages (J1, J2, J3, and J4) of the nematode Caenorhabditis elegans and by species of nematode-trapping fungi. Eight species of nematode-trapping fungi belonging to the family Orbiliaceae and producing four kinds of traps were studied: adhesive network-forming Arthrobotrys oligospora, A. vermicola, and A. eudermata, constricting ring-forming Drechslerella brochopaga, and Dr. stenobrocha, adhesive column-forming Dactylellina cionopaga, and adhesive knob-forming Da. ellipsospora, and Da. drechsleri. The number of traps induced generally increased with increasing juvenile stages of C. elegans. The ability to capture the juveniles tended to be similar among isolates that produced the same kind of trap but differed among species that produced different kinds of traps. Trapping by Dr. stenobrocha and Da. cionopaga was correlated with trap number and with juvenile stage. A. oligospora and A. vermicola respectively captured more than 92 and 88% of the J1, J3, and J4 but captured a lower percentage of J2. The knob-producing isolates captured more younger than elder juveniles. Partial correlation analyses demonstrated that the trap induction of the most fungal species positively correlated with the juvenile size and motility, which was juvenile stage dependent. Overall, trap induction and trapping correlated with C. elegans juvenile stage (size and motility) in six species of trapping fungi.

  9. Bose-Einstein Condensate in a Linear Trap with a Dimple Potential

    Institute of Scientific and Technical Information of China (English)

    Haydar Uncu; Devrim Tarhan

    2013-01-01

    We study Bose-Einstein condensation in a linear trap with a dimple potential where we model dimple potentials by Dirac δ function.Attractive and repulsive dimple potentials are taken into account.This model allows simple,explicit numerical and analytical investigations of noninteracting gases.Thus,the Schr(o)dinger equation is used instead of the Gross-Pitaevski equation.We calculate the atomic density,the chemical potential,the critical temperature and the condensate fraction.The role of the relative depth of the dimple potential with respect to the linear trap in large condensate formation at enhanced temperatures is clearly revealed.Moreover,we also present a semi-classical method for calculating various quantities such as entropy analytically.Moreover,we compare the results of this paper with the results of a previous paper in which the harmonic trap with a dimple potential in 1D is investigated.

  10. Exploring for subtle traps with high-resolution paleogeographic maps: Reklaw 1 interval (Eocene), south Texas

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, T.P.; Breyer, J.A.

    1989-01-01

    High-resolution paleogeographic maps depicting the depositional history of the Reklaw 1 interval provide a basis for prospecting for subtle traps in the updip Reklaw trend in south Texas. The Reklaw 1 interval began with sand being carried southwestward by longshore currents to form the barrier bar that became Atkinson field. The hydrocarbons were trapped by the updip pinch-out of barrier-bar sand into lagoonal mud. Stratigraphic traps similar to Atkinson field could be present along depositional strike if the sand in the field were part of an extensive barrier-bar system. After the barrier bar formed, distributary mouth bars prograded seaward, depositing the bar-finger sands that became the Hysaw and Flax fields. Subtle structural traps could be present today where small up-to-the-coast faults associated with the sample fault system cut the bar-finger sands downdip from established production. Farther down paleoslope, the distributary channels began to bifurcate and the distributary mouth bars coalesced to form a broad delta-front sheet sand. Burnell, Hondo Creek, and Runge West fields produce from this sheet sand at the unstable shelf margin. A rapid rise in relative sea level terminated the Reklaw 1 interval. Many of the oil and gas fields still to be discovered in the US are in mature petroleum provinces where much of the remaining oil and gas probably resides in subtle traps. High-resolution paleogeographic maps are the key to finding these subtle traps. 11 figures, 2 tables.

  11. Composition and origin of coalbed gases in the Lower Silesian basin, southwest Poland

    Energy Technology Data Exchange (ETDEWEB)

    Kotarba, M.J.; Rice, D.D. [Stanislaw Staszic University of Mining and Metallurgy, Krakow (Poland). Faculty of Geology, Geophysics and Environmental Protection

    2001-07-01

    Coalbed gases in the Lower Silesian Coal Basin (LSCB) of Poland are highly variable in both their molecular and stable isotope compositions. Isotopic studies reveal the presence of 3 genetic types of natural gases: thermogenic (CH{sub 4}, higher gaseous hydrocarbons, and CO{sub 2}), endogenic CO{sub 2}, and microbial CH{sub 4} and CO{sub 2}. Thermogenic gases resulted from coalification processes, which were probably completed by Late Carboniferous and Early Permian time. Endogenic CO{sub 2} migrated along the deep-seated faults from upper mantle and/or magma chambers, Minor volumes of microbial CH{sub 4} and CO{sub 2} occur at shallow depths close to the abandoned mine workings. 'Late-stage' microbial processes have commenced in the Upper Cretaceous and are probably active at present. However, depth-related isotopic fractionation which has resulted from physical and physicochemical (e.g. diffusion and adsorption/desorption) processes during gas migration cannot be neglected. The strongest rock and gas outbursts occur only in those parts of coal deposits of the LSCB which are dominated by large amounts of endogenic CO{sub 2}.

  12. Thermodynamic property of gases in the sonoluminescing bubble

    Institute of Scientific and Technical Information of China (English)

    AN Yu; LI Guiqin; ZHOU Tieying

    2001-01-01

    With the theory of statistical physics dealing with chemical reaction (the law of mass action), the different thermodynamic property of noble gases (mono-atomic gases) in a small bubble and diatomic gases in a small bubble semi-quantitatively are analyzed. As bubbles of the mono-atomic and the diatomic gases are compressed, shock waves are produced in both bubbles. Though shock wave leads to sharp increase of pressure and temperature of gases in the bubble, diatomic gas will excitated vibrations and dissociate themselves to mono-atomic gas,these processes will consume many accumulated heat energy and block the further increase of the temperature. Therefore, compare with the mono-atomic gases in the bubble, there will be no enough charged particles ionized to flash for diatomic gases in the bubble, this may be the reason why a bubble of diatomic gases has no single bubble sonoluminescence while a bubble of noble gases has.

  13. The phenomenology of trapped inflation

    CERN Document Server

    Pearce, Lauren; Sorbo, Lorenzo

    2016-01-01

    Trapped inflation is a mechanism in which particle production from the moving inflaton is the main source of friction in the inflaton equation of motion. The produced fields source inflaton perturbations, which dominate over the vacuum ones. We employ the set of equations for the inflaton zero mode and its perturbations which was developed in the original work on trapped inflation, and which we extend to second order in the perturbations. We build on this study by updating the experimental constraints, and by replacing the existing approximate solutions with more accurate ones. We obtain a different numerical value for the amplitude of the scalar power spectrum, and a parametrically different result for the bispectrum. This has implications for the allowed region of parameter space in models of trapped inflation, and for some of the phenomenological results obtained in this region. The main results in the allowed region are the following: monomial inflaton potentials, such as $V \\propto \\varphi,\\, \\varphi^2$ ...

  14. Promoter trapping in Magnaporthe grisea

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-hong; LU Jian-ping; WANG Jiao-yu; MIN Hang; LIN Fu-cheng

    2006-01-01

    Application of promoter trapping based on transformation in Magnaporthe grisea is reported in this paper. Two promoter-trapping vectors, designated as pCBGFP and pEGFPHPH, were constructed and transformed into protoplasts of M.grisea. A library of 1077 transformants resistant to hygromycin B was generated. Of which, 448 transformants were found to express eGFP gene in different structures ofM. grisea. Three transformants grew slowly, 5 transformants decreased in conidiafion and 7 transformants reduced in pathogenicity greatly among these 448 transformants. Eleven transformants were checked by genomic southern blot randomly, and 9 of which were single-copy insertions. The promoter trapping technique has been applied successfully in M. grisea and can be used as a tool for functional genomic analysis.

  15. Control of facies/potential on hydrocarbon accumulation:a geological model for Iacustrine rift basins

    Institute of Scientific and Technical Information of China (English)

    Chen Dongxia; Pang Xiongqi; Zhang Shanwen; Wang Yongshi; Zhang Jun

    2008-01-01

    The formation and distribution of hydrocarbon accumulations are jointly controlled by"stratigraphic facies"and"fluid potential",which can be abbreviated in"control of facies/potential on hydrocarbon accumulation".Facies and potential control the time-space distribution of hydrocarbon accumulation macroscopically and the petroliferous characteristics of hydrocarbon accumulation microscopically.Tectonic facies and sedimentary facies control the time-space distribution.Lithofacies and petrophysical facies control the petroliferous characteristics.Favorable facies and high porosity and permeability control hydrocarbon accumulation in the lacustrine rift basins in China.Fluid potential is represented by the work required,which comprises the work against gravity,pressure,interfacial energy and kinetic energy.Hydrocarbon migration and accumulation are controlled by the joint action of multiple driving forces,and are characterized by accumulation in the area of low potential.At the structural high,low geopotential energy caused by buoyancy control anticlinal reservoir.The formation of lithological oil pool is controlled by low interfacial energy caused by capillary force.Low compressive energy caused by overpressure and faulting activity control the formation of the faulted block reservoir.Low geopotential energy of the basin margin caused by buoyancy control stratigraphic reservoir.The statistics of a large number of oil reservoirs show that favorable facies and low potential control hydrocarbon accumulation in the rift basin.where over 85% of the discovered hydrocarbon accumulations are distributed in the trap with favorable facies and lOW potentials.The case study showed that the prediction of favorable areas by application of the near source-favorable facies-low potential accumulation model correlated well with over 90% of the discovered oil pools' distribution of the middle section of the third member of the Shahejie Formation in the Dongying Depression,Bohai Bay

  16. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales.

    Science.gov (United States)

    Darrah, Thomas H; Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel R; Poreda, Robert J

    2014-09-30

    Horizontal drilling and hydraulic fracturing have enhanced energy production but raised concerns about drinking-water contamination and other environmental impacts. Identifying the sources and mechanisms of contamination can help improve the environmental and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells overlying the Marcellus and Barnett Shales, respectively, examining hydrocarbon abundance and isotopic compositions (e.g., C2H6/CH4, δ(13)C-CH4) and providing, to our knowledge, the first comprehensive analyses of noble gases and their isotopes (e.g., (4)He, (20)Ne, (36)Ar) in groundwater near shale-gas wells. We addressed two questions. (i) Are elevated levels of hydrocarbon gases in drinking-water aquifers near gas wells natural or anthropogenic? (ii) If fugitive gas contamination exists, what mechanisms cause it? Against a backdrop of naturally occurring salt- and gas-rich groundwater, we identified eight discrete clusters of fugitive gas contamination, seven in Pennsylvania and one in Texas that showed increased contamination through time. Where fugitive gas contamination occurred, the relative proportions of thermogenic hydrocarbon gas (e.g., CH4, (4)He) were significantly higher (P well failure. Noble gas data appear to rule out gas contamination by upward migration from depth through overlying geological strata triggered by horizontal drilling or hydraulic fracturing.

  17. Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Tobias

    2010-08-27

    In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe

  18. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang; Dali; Devlin, David; Barbero, Robert S.; Carrera, Martin E.; Colling, Craig W.

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  19. Escape of atmospheric gases from the Moon

    Indian Academy of Sciences (India)

    Da Dao-an; Yang Ya-tian

    2005-12-01

    The escape rate of atmospheric molecules on the Moon is calculated.Based on the assumption that the rates of emission and escape of gases attain equilibrium, the ratio of molecular number densities during day and night, 0/0, can be explained. The plausible emission rate of helium and radioactive elements present in the Moon has also been calculated.

  20. Deviations from Fick's law in Lorentz gases

    NARCIS (Netherlands)

    Lowe, C.P.; Frenkel, D.; Hoef, M.A. van der

    1997-01-01

    We have calculated the self-dynamic structure factorF(k,t) for tagged particle motion in hopping Lorentz gases. We find evidence that, even at long times, the probability distribution function for the displacement of the particles is highly non-Gaussian. At very small values of the wave vector this