WorldWideScience

Sample records for hydrocarbon emission properties

  1. 33 CFR 157.166 - Hydrocarbon emissions.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hydrocarbon emissions. 157.166 Section 157.166 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the...

  2. Emissions of hydrocarbons from combustion of biofuels

    International Nuclear Information System (INIS)

    Olsson, Mona; Persson, Eva Marie.

    1991-10-01

    Evaluations and measurements of emissions of hydrocarbons from power plants with a capacity exceeding 1 MW using biofuels (wood fuels and peat) have been studied in order to identify and quantify the emissions of incompletely combusted hydrocarbons. The influence of the type of fuel and the combustion technology applied were also studied, using literature references. The report summarizes monitoring results from a number of plants using biofuels. The reported emissions from the different plants can not be compared as they are relatively few and the test results have been obtained under various conditions using different methods of testing and analysis. The methods used are often poorly documented in the studied reports. Few investigations of emissions of hydrocarbons from plants in the range of 1 to 10 MW have been carried out. The plant and the technology used are important factors determining the amount and type of emissions of hydrocarbons. Larger temporary emissions can occur during start up, operational disturbances or when using fuel of inhomogeneous quality. In order to minimize the emissions the combustion process must be efficiently controlled, and a fuel of a hohogeneous quality must be used. The report also summarizes sampling and analysis methods used for monitoring emissions of hydrocarbons. (29 refs., 17 figs.)

  3. Towards Zero emissions. The challenge for hydrocarbons

    International Nuclear Information System (INIS)

    1999-01-01

    The limited availability of natural resources, a still rapidly rising world population combined with overall economic growth will be stretching the Earth's carrying capacity beyond its limit, unless a suitable strategy is set in place. This scenario renders the concept of Zero Emissions all the more relevant, stressing as it does that the problem of environmental pollution cannot be effectively solved simply by reducing the production of wastes. In practical terms Zero Emissions can be conceived along similar lines to already establish corporate programs aiming to achieve zero accidents. Although no one claims that accidents are never going to occur, unless a clear objective is established, systems will not evolve in that direction. The target of Zero Emissions is therefore to move towards achieving the highest possible level of material productivity and energy efficiency. Considering how the hydrocarbon industry could become ever more engaged in applying the concept of Zero Emissions, and what in practice this means, can therefore play an important role in defining an appropriate innovation policy, and promoting long term corporate competitiveness

  4. Formaldehyde, methanol and hydrocarbon emissions from methanol-fueled cars

    International Nuclear Information System (INIS)

    Williams, R.L.; Lipari, F.; Potter, R.A.

    1990-01-01

    Exhaust and evaporative emissions tests were conducted on several methanol- and gasoline-fueled vehicles. Separate samples for chromatographic analysis of formaldehyde, methanol, and individual hydrocarbons were collected in each of the three phases of the driving cycle and in each of the two portions of the evaporative emissions test. One vehicle, equipped with an experimental variable-fuel engine, was tested using methanol/gasoline fuel mixtures of 100, 85, 50, 15, and 0 percent methanol. Combustion-generated hydrocarbons were lowest using methanol fuel, and increased several-fold as the gasoline fraction was increased. Gasoline components in the exhaust increased from zero as the gasoline fraction of the fuel was increased. On the other hand, formaldehyde emissions were several times higher using methanol fuel than they were using gasoline. A dedicated methanol car and the variable-fuel car gave similar emissions patterns when they both were tested using methanol fuel. The organic-carbon composition of the exhaust was 85-90 percent methanol, 5-7 percent formaldehyde, and 3-9 percent hydrocarbons. Several cars that were tested using gasoline emitted similar distributions of hydrocarbons, even through the vehicles represented a broad range of current and developmental engine families and emissions control systems

  5. Polycyclic Aromatic Hydrocarbon Emission Toward the Galactic Bulge

    Science.gov (United States)

    Shannon, M. J.; Peeters, E.; Cami, J.; Blommaert, J. A. D. L.

    2018-03-01

    We examine polycyclic aromatic hydrocarbon (PAH), dust, and atomic/molecular emission toward the Galactic bulge using Spitzer Space Telescope observations of four fields: C32, C35, OGLE, and NGC 6522. These fields are approximately centered on (l, b) = (0.°0, 1.°0), (0.°0, ‑1.°0), (0.°4, ‑2.°4), and (1.°0, ‑3.°8), respectively. Far-infrared photometric observations complement the Spitzer/IRS spectroscopic data and are used to construct spectral energy distributions. We find that the dust and PAH emission are exceptionally similar between C32 and C35 overall, in part explained due to their locations—they reside on or near boundaries of a 7 Myr old Galactic outflow event and are partly shock-heated. Within the C32 and C35 fields, we identify a region of elevated Hα emission that is coincident with elevated fine-structure and [O IV] line emission and weak PAH feature strengths. We are likely tracing a transition zone of the outflow into the nascent environment. PAH abundances in these fields are slightly depressed relative to typical ISM values. In the OGLE and NGC 6522 fields, we observe weak features on a continuum dominated by zodiacal dust. SED fitting indicates that thermal dust grains in C32 and C35 have temperatures comparable to those of diffuse, high-latitude cirrus clouds. Little variability is detected in the PAH properties between C32 and C35, indicating that a stable population of PAHs dominates the overall spectral appearance. In fact, their PAH features are exceptionally similar to that of the M82 superwind, emphasizing that we are probing a local Galactic wind environment.

  6. Light hydrocarbon emissions from African savanna burnings

    International Nuclear Information System (INIS)

    Bonsang, B.; Lambert, G.; Boissard, C.C.

    1991-01-01

    A study was undertaken in West Africa to determine the background mixing ratio of nonmethane hydrocarbons (NMHC) during the dry season and to measure the composition of savanna burnings. The experiment was conducted from 13 to 22 January 1989 in the experimental station located at the border of the tropical rainforest and savanna. Samples were collected during aircraft flights at 2,400 m in the free troposphere, at 400 m in the haze layer and in a smoke plume at 200 m altitude. Samples representing the ground-level evolution of the local background were collected at 10 m altitude. Fire samples were collected at a short distance from the fires during the intensive experiments. Results are presented in tables and indicate that the effect of NMHC produced by biomass burning on the tropospheric photochemistry is limited to a few species, namely, C 2 -C 4 alkenes

  7. A New Global Open Source Marine Hydrocarbon Emission Site Database

    Science.gov (United States)

    Onyia, E., Jr.; Wood, W. T.; Barnard, A.; Dada, T.; Qazzaz, M.; Lee, T. R.; Herrera, E.; Sager, W.

    2017-12-01

    Hydrocarbon emission sites (e.g. seeps) discharge large volumes of fluids and gases into the oceans that are not only important for biogeochemical budgets, but also support abundant chemosynthetic communities. Documenting the locations of modern emissions is a first step towards understanding and monitoring how they affect the global state of the seafloor and oceans. Currently, no global open source (i.e. non-proprietry) detailed maps of emissions sites are available. As a solution, we have created a database that is housed within an Excel spreadsheet and use the latest versions of Earthpoint and Google Earth for position coordinate conversions and data mapping, respectively. To date, approximately 1,000 data points have been collected from referenceable sources across the globe, and we are continualy expanding the dataset. Due to the variety of spatial extents encountered, to identify each site we used two different methods: 1) point (x, y, z) locations for individual sites and; 2) delineation of areas where sites are clustered. Certain well-known areas, such as the Gulf of Mexico and the Mediterranean Sea, have a greater abundance of information; whereas significantly less information is available in other regions due to the absence of emission sites, lack of data, or because the existing data is proprietary. Although the geographical extent of the data is currently restricted to regions where the most data is publicly available, as the database matures, we expect to have more complete coverage of the world's oceans. This database is an information resource that consolidates and organizes the existing literature on hydrocarbons released into the marine environment, thereby providing a comprehensive reference for future work. We expect that the availability of seafloor hydrocarbon emission maps will benefit scientific understanding of hydrocarbon rich areas as well as potentially aiding hydrocarbon exploration and environmental impact assessements.

  8. Piston ring lubrication and hydrocarbon emissions from internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Froelund, K.

    1997-11-01

    Is it the intention with this project to improve the existing hydrocarbon emission model at the Institute by combining it with a model for predicting the piston ring lubrication. The piston ring lubrication model should be experimentally verified to ensure the validity of the model. The following items were the objectives of the current study: Develop a piston ring lubrication model. This implies the development of a ring-pack gas flow model; Examine the response of the piston ring lubrication model to changing engineer conditions. Especially, it would be interesting to look at the engine warm-up phase since this is the phase where the engine-out emissions are highest and where the commonly used three way catalyst is not capable of converting the engine-out emissions, thereby leading the engine-out emissions directly out in to the environment with the exhaust gases; In order to verify the piston ring lubrication model the lubricant distribution on the cylinder liner should be investigated experimentally. Here again it would be of great interesting to look at the engine warm-up phase; The piston ring lubrication model should be adjusted for application together with the new hydrocarbon emission model for SI-engines at the Institute in order to increase the accuracy of the latter; The piston ring lubrication model could be used for describing the transport of PAH`s in diesel engines. (EG)

  9. An Emission Inventory of Polycyclic Aromatic Hydrocarbons in China

    Science.gov (United States)

    Mu, Xilong; Zhu, Xianlei; Wang, Xuesong

    2015-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are among the most dangerous compounds due to their high carcinogenic and mutagenic character. Emission inventory provides the primary data to account for the sources of ambient PAHs and server as a necessary database for effective PAHs pollution control. China is experiencing fast economic growth and large energy consumption, which might result in a large amount of PAHs anthropogenic emissions. Therefore, based on the previous studies and combined recently field emission measurements as well as socio-economic activity data, the development of a nationwide PAHs emission inventory is needed. In this work, the emission inventory of 16 PAHs listed as U.S. Environmental Protection Agency priority pollutants in China in the year 2012 is compiled. The emission amounts of PAHs were estimated as annual rates of emission-related activities multiplied by respective emission factors. The activities such as fuel consumption, including fossil fuel and biofuel, and socio-economic statistics were obtained from yearbook released by Chinese central government and/or provincial governments, as well as related industry reports. Emission factors were derived from the related literature. Recently reported emission factors from local measurements were used. The total emissions of PAHs were 120611 ton in 2012. In China, PAHs were emitted predominantly from domestic combustion of coal and biofuel, coking industry and motor vehicles, accounting for 72% of the total amount. PAHs emission profiles were significantly different between China and the other countries. The emission profile in China featured a relatively higher portion of high molecular weight species with carcinogenic potential due to large contributions of domestic combustion and coking industry. Domestic combustion of straw, coal and firewood emitted 19464 ton, 8831 ton, and 5062 ton of PAHs, respectively, which were much higher than those in other countries. Emission per capita showed

  10. HYDROCARBON EMISSION RINGS IN PROTOPLANETARY DISKS INDUCED BY DUST EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Bergin, Edwin A.; Du, Fujun; Schwarz, K.; Zhang, K. [Department of Astronomy, University of Michigan, 311 West Hall, 1085 S. University Ave, Ann Arbor, MI 48109 (United States); Cleeves, L. Ilsedore [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Blake, G. A. [Division of Geological and Planetary Sciences, MC 150-21, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Visser, R. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching (Germany)

    2016-11-01

    We report observations of resolved C{sub 2}H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C{sub 3}H{sub 2} emission ring with an identical spatial distribution to C{sub 2}H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C{sub 2}H). Using a detailed thermo-chemical model we show that reproducing the emission from C{sub 2}H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.

  11. Biogenic nonmethane hydrocarbon emissions estimated from tethered balloon observations

    Science.gov (United States)

    Davis, K. J.; Lenschow, D. H.; Zimmerman, P. R.

    1994-01-01

    A new technique for estimating surface fluxes of trace gases, the mixed-layer gradient technique, is used to calculate isoprene and terpene emissions from forests. The technique is applied to tethered balloon measurements made over the Amazon forest and a pine-oak forest in Alabama at altitudes up to 300 m. The observations were made during the dry season Amazon Boundary Layer Experiment (ABLE 2A) and the Rural Oxidants in the Southern Environment 1990 experiment (ROSE I). Results from large eddy simulations of scalar transport in the clear convective boundary layer are used to infer fluxes from the balloon profiles. Profiles from the Amazon give a mean daytime emission of 3630 +/- 1400 micrograms isoprene sq m/h, where the uncertainty represents the standard deviation of the mean of eight flux estimates. Twenty profiles from Alabama give emissions of 4470 +/- 3300 micrograms isoprene sq m/h, 1740 +/- 1060 micrograms alpha-pinene sq m/h, and 790 +/- 560 micrograms beta-pinene sq m/h, respectively. These results are in agreement with emissions derived from chemical budgets. The emissions may be overestimated because of uncertainty about how to incorporate the effects of the canopy on the mixed-layer gradients. The large variability in these emission estimates is probably due to the relatively short sampling times of the balloon profiles, though spatially heterogeneous emissions may also play a role. Fluxes derived using this technique are representative of an upwind footprint of several kilometers and are independent of hydrocarbon oxidation rate and mean advection.

  12. Emission of Polycyclic Aromatic Hydrocarbons from the Exhalation Zones of Thermally Active Mine Waste Dumps

    Directory of Open Access Journals (Sweden)

    Patrycja Kuna-Gwoździewicz

    2013-01-01

    Full Text Available The article presents results of research carried out on the occurrence of polycyclic aromatic hydrocarbons (PAH in gases of exhalation zones, created on the surface of a thermally active coal mine waste dump. The oxidation and self-heating of mine waste are accompanied with the intensive emission of flue gases, including PAH group compounds. Taking into consideration the fact the hydrocarbons show strong genotoxic, mutagenic and carcinogenic properties, research was conducted to establish their content in the examined gases. The research object was a gangue dump located in Rybnik. The research was performed in 2012. In total, 24 samples of gas were collected with PUF (polyurethane foam sampling cartridges with a quartz fibre filter and an aspirator. The collected samples were analysed with the use of high performance liquid chromatography (HPLC and a fluorescence detector (FLD to evaluate the amount of PAH present.

  13. C2-C10 hydrocarbon emissions from a boreal wetland and forest floor

    Directory of Open Access Journals (Sweden)

    H. Hellén

    2006-01-01

    Full Text Available Emissions of various C2-C10 hydrocarbons (VOCs and halogenated hydrocarbons (VHOCs from a boreal wetland and a Scots pine forest floor in south-western Finland were measured by the static chamber technique. Isoprene was the main non-methane hydrocarbon emitted by the wetland, but small emissions of ethene, propane, propene, 1-butene, 2-methylpropene, butane, pentane and hexane were also detected. The isoprene emission from the wetland was observed to follow the commonly-used isoprene emission algorithm. The mean emission potential of isoprene was 224 µg m-2 h-1 for the whole season. This is lower than the emission potentials published earlier; that is probably at least partly due to the cold and cloudy weather during the measurements. No emissions were detected of monoterpenes or halogenated hydrocarbons from the wetland. The highest hydrocarbon emissions from the Scots pine forest floor were measured in spring and autumn. However, only a few measurements were conducted during summer. The main compounds emitted were monoterpenes. Isoprene emissions were negligible. The total monoterpene emission rates varied from zero to 373 µg m-2 h-1. The results indicated that decaying plant litter may be the source for these emissions. Small emissions of chloroform (100-800 ng m-2 h-1, ethene, propane, propene, 2-methylpropene, cis-2-butene, pentane, hexane and heptane were detected. Comparison with Scots pine emissions showed that the forest floor may be an important monoterpene source, especially in spring.

  14. Infrared absorption and emission characteristics of interstellar PAHs [Polycyclic Aromatic Hydrocarbon

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm -1 (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs

  15. Infrared absorption and emission characteristics of interstellar PAHs (Polycyclic Aromatic Hydrocarbon)

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3050, 1610, 1300, 1150, and 885 cm/sup -1/ (3.28, 6.2, 7.7, 8.7 and 11.3 microns) is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis. This hypothesis is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the ir and Raman properties are discussed. Interstellar ir band emission is due to relaxation from highly vibrationally excited PAHs which have been excited by ultraviolet photons. The excitation/emission process is described in general and the ir fluorescence from one PAH, chrysene, is traced in detail. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs containing between 20 and 30 carbon atoms are responsible for the emission. 43 refs., 11 figs.

  16. Estimating fair-market value for hydrocarbon producing properties

    International Nuclear Information System (INIS)

    Garb, F.A.

    1996-01-01

    The generally accepted appraisal methods used to evaluate hydrocarbon properties and prospects were described. Fair-market-value (FMV) estimates have been used in the petroleum industry in attempts to protect a purchaser against an unwise acquisition, or conversely, to establish a just price to compensate a seller. Four methods were identified for determining FMV for hydrocarbon producing properties. They are: (1) comparative sales, (2) rule of thumb, (3) income forecast, and (4) replacement cost. The differences between oil and gas FMV and real estate FMV were explained

  17. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide...

  18. Emission and source characterization of monoaromatic hydrocarbons from coke production

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.S.; Wang, X.M.; Sheng, G.Y.; Fu, J.M. [Chinese Academy of Sciences, Guangzhou (China). State Key Laboratory of Organic Geochemistry

    2005-09-15

    Monoaromatic hydrocarbons (MAHs) from indigenous and industrial coking processes are studied in Shanxi province. They are sampled on the top of coke ovens and in the chimneys using stainless steel canister and determined by GC/MSD after preconcentration with liquid nitrogen. Benzene, toluene and xylene are the main components among MAHs emitted from coking processes. Benzene and the total MAHs concentrations were as high as 3421.0 microg/m3 and 4 865.9 microg/m3 in the air from indigenous coking, 548.7 microg/m3 and 1 054.8 microg/m3 in the oventop air from industrial coking, and 1 376.4 microg/m3 and 1 819.4 microg/m3 in stack gas from industrial coking, respectively. The MAHs concentrations vary greatly during the indigenous coking process, which in the prophase (from firing to 10 days) is obviously higher than in the anaphase (10 days to quenching the coke). In industrial coking the MAHs in the oventop air are highest when charging the coal and next when transferring the hot coke, but in stack gas they are highest when charging coal and lowest when transferring the coke. Benzene, toluene, ethylbenzene and xylene (BTEX) in industrial coking samples show good linearity, indicating that MAHs in industrial coking might come predominantly from coal pyrolysis; but BTEX distribute dispersedly in indigenous coking samples, indicating that its emission might be affected by many factors. In all samples BTEX ratios especially high B/E ratio, is unique among MAHs sources, and might be helpful to characterize pollution from coking.

  19. [Emission and source characterization of monoaromatic hydrocarbons from coke production].

    Science.gov (United States)

    He, Qiu-Sheng; Wang, Xin-Ming; Sheng, Guo-Ying; Fu, Jia-Mo

    2005-09-01

    Monoaromatic hydrocarbons (MAHs) from indigenous and industrial coking processes are studied in Shanxi province. They are sampled on the top of coke ovens and in the chimneys using stainless steel canister and determined by GC/MSD after preconcentration with liquid nitrogen. Benzene, toluene and xylene are the main components among MAHs emitted from coking processes. Benzene and the total MAHs concentrations were as high as 3421.0 microg/m3 and 4 865.9 microg/m3 in the air from indigenous coking, 548.7 microg/m3 and 1 054.8 microg/m3 in the oventop air from industrial coking, and 1 376.4 microg/m3 and 1 819.4 microg/m3 in stack gas from industrial coking, respectively. The MAHs concentrations vary greatly during the indigenous coking process, which in the prophase (from firing to 10 days) is obviously higher than in the anaphase (10 days to quenching the coke). In industrial coking the MAHs in the oventop air are highest when charging the coal and next when transferring the hot coke, but in stack gas they are highest when charging coal and lowest when transferring the coke. Benzene, toluene, ethylbenzene and xylene (BTEX) in industrial coking samples show good linearity, indicating that MAHs in industrial coking might come predominantly from coal pyrolysis; but BTEX distribute dispersedly in indigenous coking samples, indicating that its emission might be affected by many factors. In all samples BTEX ratios especially high B/E ratio, is unique among MAHs sources, and might be helpful to characterize pollution from coking.

  20. Predicting the environmental fate properties of petroleum hydrocarbon mixtures

    International Nuclear Information System (INIS)

    Pisigan, R.A. Jr.; Tucker, W.A.

    1995-01-01

    The environmental fate and transport of petroleum products for risk assessment can be evaluated based on the physico-chemical properties of an indicator chemical or a surrogate compound, or the whole mixture. A study was conducted to develop a simple representation of the hydrocarbon mixture as if it contained only few constituents, each of which represents a large number of compounds. The products considered are gasoline, diesel fuel, and jet fuel (JP4). Each petroleum hydrocarbon was characterized as a mixture of six constituents: short chain alkanes, long chain alkanes, short chain cycloalkanes and alkenes, long chain cycloalkanes and alkenes, BTEX, and other aromatics. The carbon number used as a cut-off between short and long chain alkanes, alkenes, and cycloalkanes varies with the type of product. Each mixture has different average molecular weight, water solubility, vapor pressure, organic carbon partition coefficient, and air diffusivity. The properties of each constituent of gasoline were derived from the weighted average of all compounds belonging to each constituent group. For diesel fuel and JP4, the properties of each constituent were generated from the properties of the component most representative of the group. Any property that is missing or not available from common literature sources was derived from regression equations developed from the data base for gasoline. These regression equations express the property as function of the number of carbon atoms. The R 2 values of the regression equations range from 0.82--0.92. Some case studies involving petroleum product contamination in which the estimated properties were applied are presented

  1. EFFECT OF OXYGENATED HYDROCARBON ADDITIVES ON EXHAUST EMISSIONS OF A DIESEL ENGINE

    OpenAIRE

    C. Sundar Raj; S. Sendilvelan

    2010-01-01

    The use of oxygenated fuels seems to be a promising solution for reducing particulate emissions in existing and future diesel motor vehicles. In this work, the influence of the addition of oxygenated hydrocarbons to diesel fuels on performance and emission parameters of a diesel engine is experimentally studied. 3-Pentanone (C5H10O) and Methyl anon (C7H12O) were used as oxygenated fuel additives. It was found that the addition of oxygenated hydrocarbons reduced the production of soot precurs...

  2. Hydrocarbon emissions from gas engine CHP-units. 2011 measurement program

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, G.H.J. [KEMA, Arnhem (Netherlands)

    2012-06-15

    In December 2009, the Ministry of Infrastructure and Environment (IandM) issued the Decree on Emission Limits for Middle Sized Combustion Installations (BEMS). This decree imposes a first-time emission limit value (ELV) of 1500 mg C/m{sup 3}{sub o} at 3% O{sub 2} for hydrocarbons emitted by gas engines. IandM used the findings of two hydrocarbon emission measurement programs, executed in 2007 and 2009, as a guideline for this initial ELV. The programs did reveal substantial variation in the hydrocarbon emissions of the gas engines tested. This variation, and especially the uncertainty as to the role of engine and/or other parameters causing such variation, was felt to hamper further policy development. IandM therefore commissioned KEMA to perform follow-up measurements on ten gas engine CHP-units in 2011. Aim of this 2011 program is to assess hydrocarbon emission variation in relation to engine parameters and process conditions including maintenance status, and to atmospheric conditions. The 2011 program comprised two identical measurement sessions, one in spring and one in winter.

  3. ANALYSIS OF REAL-TIME VEHICLE HYDROCARBON EMISSIONS DATA

    Science.gov (United States)

    The report gives results of analyses using real-time dynamometer test emissions data from 13 passenger cars to examine variations in emissions during different speeds or modes of travel. The resulting data provided a way to separately identify idle, cruise, acceleration, and dece...

  4. [Experimental research on alcohols, aldehydes, aromatic hydrocarbons and olefins emissions from alcohols fuelled vehicles].

    Science.gov (United States)

    Zhang, Fan; Wang, Jian-Hai; Wang, Xiao-Cheng; Wang, Jian-Xin

    2013-07-01

    Using two vehicles fuelled with pure gasoline, M15, M30 and pure gasoline, E10, E20 separately, 25 degrees C normal temperature type I emission test, -7 degrees C low temperature type VI emission test and type IV evaporation emission test were carried out. FTIR, HPLC and GC-MS methods were utilized to measure alcohols, aldehydes, aromatic hydrocarbons and olefins emissions. The test results indicate that at the low as well as normal ambient temperature, as the alcohols proportion increasing in the fuel, unburned methanol, formaldehyde, acetaldehyde increase proportionally, benzene, toluene, ethylene, propylene, 1,3-butadiene and isobutene decrease slightly. The unregulated emissions at the low ambient temperature are significantly higher than those at the normal ambient temperature. The difference of HC emissions in the entire process of evaporative emission tests of E10, gasoline and M15 fuels is slight. There is a small difference of unregulated emissions in the diurnal test of three fuels.

  5. The spatial extent of polycyclic aromatic hydrocarbons emission in the Herbig star HD 179218

    Science.gov (United States)

    Taha, A. S.; Labadie, L.; Pantin, E.; Matter, A.; Alvarez, C.; Esquej, P.; Grellmann, R.; Rebolo, R.; Telesco, C.; Wolf, S.

    2018-04-01

    Aim. We investigate, in the mid-infrared, the spatial properties of the polycyclic aromatic hydrocarbons (PAHs) emission in the disk of HD 179218, an intermediate-mass Herbig star at 300 pc. Methods: We obtained mid-infrared images in the PAH-1, PAH-2 and Si-6 filters centered at 8.6, 11.3, and 12.5 μm, and N-band low-resolution spectra using CanariCam on the 10-m Gran Telescopio Canarias (GTC). We compared the point spread function (PSF) profiles measured in the PAH filters to the profile derived in the Si-6 filter, where the thermal continuum emission dominates. We performed radiative transfer modeling of the spectral energy distribution (SED) and produced synthetic images in the three filters to investigate different spatial scenarios. Results: Our data show that the disk emission is spatially resolved in the PAH-1 and PAH-2 filters, while unresolved in the Si-6 filter. Thanks to very good observing conditions, an average full width at half maximum (FWHM) of 0.232'', 0.280'' and 0.293'' is measured in the three filters, respectively. Gaussian disk fitting and quadratic subtraction of the science and calibrator PSFs suggests a lower-limit characteristic angular diameter of the emission of 100 mas, or 30 au. The photometric and spectroscopic results are compatible with previous findings. Our radiative transfer (RT) modeling of the continuum suggests that the resolved emission should result from PAH molecules on the disk atmosphere being UV-excited by the central star. Simple geometrical models of the PAH component compared to the underlying continuum point to a PAH emission uniformly extended out to the physical limits of the disk model. Furthermore, our RT best model of the continuum requires a negative exponent of the surface density power-law, in contrast with earlier modeling pointing to a positive exponent. Conclusions: We have spatially resolved - for the first time to our knowledge - the PAHs emission in the disk of HD 179218 and set constraints on its

  6. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions

    OpenAIRE

    Shen, Huizhong; Huang, Ye; Wang, Rong; Zhu, Dan; Li, Wei; Shen, Guofeng; Wang, Bin; Zhang, Yanyan; Chen, Yuanchen; Lu, Yan; Chen, Han; Li, Tongchao; Sun, Kang; Li, Bengang; Liu, Wenxin

    2013-01-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimate country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1°× 0.1° grids based on a newly developed global high-resolution fuel combustion inven...

  7. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    Science.gov (United States)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  8. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  9. THE GEOLOGICAL CONDITIONING OF HYDROCARBON EMISSIONS RESULTING FROM SOIL CONTAMINATION

    Directory of Open Access Journals (Sweden)

    Ewa J. Lipińska

    2014-12-01

    Full Text Available Synchronization economy of oil mining and mineral waters is associated with planning the functions of spa treatment. Environmental protection of the spa areas also applies to preserve their technical and cultural heritage. This article attempts to determine the places of natural and anthropogenic hydrocarbon pollution substances. Their presence in the soil affects the quality of the environment. As a result, maps are produced showing directions of research: (1 the natural background of biodiversity, and (2 potential anthropogenic pollution. They are assessed in the context of the health and human life, protection of the environment and the possibility of damage to the environment. Research is conducted in communes of the status of the spa – for special protection.

  10. Estimating the Biogenic Non-Methane Hydrocarbon Emissions over Greece

    Directory of Open Access Journals (Sweden)

    Ermioni Dimitropoulou

    2018-01-01

    Full Text Available Biogenic emissions affect the urban air quality as they are ozone and secondary organic aerosol (SOA precursors and should be taken into account when applying photochemical pollution models. The present study presents an estimation of the magnitude of non-methane volatile organic compounds (BNMVOCs emitted by vegetation over Greece. The methodology is based on computation developed with the aid of a Geographic Information System (GIS and theoretical equations in order to produce an emission inventory on a 6 × 6 km2 spatial resolution, in a temporal resolution of 1 h covering one year (2016. For this purpose, a variety of input data was used: updated satellite land-use data, land-use specific emission potentials, foliar biomass densities, temperature, and solar radiation data. Hourly, daily, and annual isoprene, monoterpenes, and other volatile organic compounds (OVOCs were estimated. In the area under study, the annual biogenic emissions were estimated up to 472 kt, consisting of 46.6% isoprene, 28% monoterpenes, and 25.4% OVOCs. Results delineate an annual cycle with increasing values from March to April, while maximum emissions were observed from May to September, followed by a decrease from October to January.

  11. Predicting the emissive power of hydrocarbon pool fires

    International Nuclear Information System (INIS)

    Munoz, Miguel; Planas, Eulalia; Ferrero, Fabio; Casal, Joaquim

    2007-01-01

    The emissive power (E) of a flame depends on the size of the fire and the type of fuel. In fact, it changes significantly over the flame surface: the zones of luminous flame have high emittance, while those covered by smoke have low E values. The emissive power of each zone (that is, the luminous or clear flame and the non-luminous or smoky flame) and the portion of total flame area they occupy must be assessed when a two-zone model is used. In this study, data obtained from an experimental set-up were used to estimate the emissive power of fires and its behaviour as a function of pool size. The experiments were performed using gasoline and diesel oil as fuel. Five concentric circular pools (1.5, 3, 4, 5 and 6 m in diameter) were used. Appropriate instruments were employed to determine the main features of the fires. By superimposing IR and VHS images it was possible to accurately identify the luminous and non-luminous zones of the fire. Mathematical expressions were obtained that give a more accurate prediction of E lum , E soot and the average emissive power of a fire as a function of its luminous and smoky zones. These expressions can be used in a two-zone model to obtain a better prediction of the thermal radiation. The value of the radiative fraction was determined from the thermal flux measured with radiometers. An expression is also proposed for estimating the radiative fraction

  12. Improving Dryer and Press Efficiencies Through Combustion of Hydrocarbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sujit Banerjee

    2005-10-31

    Emission control devices on dryers and presses have been legislated into the industry, and are now an integral part of the drying system. These devices consume large quantities of natural gas and electricity and down-sizing or eliminating them will provide major energy savings. The principal strategy taken here focuses on developing process changes that should minimize (and in some cases eliminate) the need for controls. A second approach is to develop lower-cost control options. It has been shown in laboratory and full-scale work that Hazardous Air Pollutants (HAPs) emerge mainly at the end of the press cycle for particleboard, and, by extension, to other prod-ucts. Hence, only the air associated with this point of the cycle need be captured and treated. A model for estimating terpene emissions in the various zones of veneer dryers has been developed. This should allow the emissions to be concentrated in some zones and minimized in others, so that some of the air could be directly released without controls. Low-cost catalysts have been developed for controlling HAPs from dryers and presses. Catalysts conventionally used for regenerative catalytic oxidizers can be used at much lower temperatures for treating press emissions. Fluidized wood ash is an especially inexpensive mate-rial for efficiently reducing formaldehyde in dryer emissions. A heat transfer model for estimating pinene emissions from hot-pressing strand for the manufacture of flakeboard has been constructed from first principles and validated. The model shows that most of the emissions originate from the 1-mm layer of wood adjoining the platen surface. Hence, a simple control option is to surface a softwood mat with a layer of hardwood prior to pressing. Fines release a disproportionate large quantity of HAPs, and it has been shown both theo-retically and in full-scale work that particles smaller than 400 µm are principally responsible. Georgia-Pacific is considering green

  13. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences

    2014-07-01

    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.

  14. Prediction of cold start hydrocarbon emissions of air cooled two wheeler spark ignition engines by simple fuzzy logic simulation

    Directory of Open Access Journals (Sweden)

    Samuel Raja Ayyanan

    2014-01-01

    Full Text Available The cold start hydrocarbon emission from the increasing population of two wheelers in countries like India is one of the research issues to be addressed. This work describes the prediction of cold start hydrocarbon emissions from air cooled spark ignition engines through fuzzy logic technique. Hydrocarbon emissions were experimentally measured from test engines of different cubic capacity, at different lubricating oil temperature and at different idling speeds with and without secondary air supply in exhaust. The experimental data were used as input for modeling average hydrocarbon emissions for 180 seconds counted from cold start and warm start of gasoline bike engines. In fuzzy logic simulation, member functions were assigned for input variables (cubic capacity and idling rpm and output variables (average hydrocarbon emission for first 180 seconds at cold start and warm start. The knowledge based rules were adopted from the analyzed experimental data and separate simulations were carried out for predicting hydrocarbon emissions from engines equipped with and without secondary air supply. The simulation yielded the average hydrocarbon emissions of air cooled gasoline engine for a set of given input data with accuracy over 90%.

  15. The ir emission features: Emission from PAH (Polycyclic Aromatic Hydrocarbons) molecules and amorphous carbon particles

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs.

  16. The ir emission features: Emission from PAH [Polycyclic Aromatic Hydrocarbons] molecules and amorphous carbon particles

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs

  17. Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system

    Science.gov (United States)

    Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G; Spohn, Brian L

    2014-01-14

    A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.

  18. Quantification of variability and uncertainty in lawn and garden equipment NOx and total hydrocarbon emission factors.

    Science.gov (United States)

    Frey, H Christopher; Bammi, Sachin

    2002-04-01

    Variability refers to real differences in emissions among multiple emission sources at any given time or over time for any individual emission source. Variability in emissions can be attributed to variation in fuel or feedstock composition, ambient temperature, design, maintenance, or operation. Uncertainty refers to lack of knowledge regarding the true value of emissions. Sources of uncertainty include small sample sizes, bias or imprecision in measurements, nonrepresentativeness, or lack of data. Quantitative methods for characterizing both variability and uncertainty are demonstrated and applied to case studies of emission factors for lawn and garden (L&G) equipment engines. Variability was quantified using empirical and parametric distributions. Bootstrap simulation was used to characterize confidence intervals for the fitted distributions. The 95% confidence intervals for the mean grams per brake horsepower/hour (g/hp-hr) emission factors for two-stroke engine total hydrocarbon (THC) and NOx emissions were from -30 to +41% and from -45 to +75%, respectively. The confidence intervals for four-stroke engines were from -33 to +46% for THCs and from -27 to +35% for NOx. These quantitative measures of uncertainty convey information regarding the quality of the emission factors and serve as a basis for calculation of uncertainty in emission inventories (EIs).

  19. Novel techniques for characterization of hydrocarbon emission sources in the Barnett Shale

    Science.gov (United States)

    Nathan, Brian Joseph

    Changes in ambient atmospheric hydrocarbon concentrations can have both short-term and long-term effects on the atmosphere and on human health. Thus, accurate characterization of emissions sources is critically important. The recent boom in shale gas production has led to an increase in hydrocarbon emissions from associated processes, though the exact extent is uncertain. As an original quantification technique, a model airplane equipped with a specially-designed, open-path methane sensor was flown multiple times over a natural gas compressor station in the Barnett Shale in October 2013. A linear optimization was introduced to a standard Gaussian plume model in an effort to determine the most probable emission rate coming from the station. This is shown to be a suitable approach given an ideal source with a single, central plume. Separately, an analysis was performed to characterize the nonmethane hydrocarbons in the Barnett during the same period. Starting with ambient hourly concentration measurements of forty-six hydrocarbon species, Lagrangian air parcel trajectories were implemented in a meteorological model to extend the resolution of these measurements and achieve domain-fillings of the region for the period of interest. A self-organizing map (a type of unsupervised classification) was then utilized to reduce the dimensionality of the total multivariate set of grids into characteristic one-dimensional signatures. By also introducing a self-organizing map classification of the contemporary wind measurements, the spatial hydrocarbon characterizations are analyzed for periods with similar wind conditions. The accuracy of the classification is verified through assessment of observed spatial mixing ratio enhancements of key species, through site-comparisons with a related long-term study, and through a random forest analysis (an ensemble learning method of supervised classification) to determine the most important species for defining key classes. The hydrocarbon

  20. The Unusual Hydrocarbon Emission From the Early Carbon Star HD 100764: The Connection Between Aromatics and Aliphatics

    National Research Council Canada - National Science Library

    Sloan, G. C; Jura, M; Duley, W. W; Kraemer, K. E; Bernard-Salas, J; Forrest, W. J; Sargent, B; Li, A; Barry, D. J; Bohac, C. J

    2007-01-01

    .... The spectrum shows emission features from polycyclic aromatic hydrocarbons (PAHs) that are shifted to longer wavelengths than normally seen, a characteristic of "class C" systems in the classification scheme of Peeters et al...

  1. POLYCYCLIC AROMATIC HYDROCARBON AND EMISSION LINE RATIOS IN ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES

    International Nuclear Information System (INIS)

    Sales, Dinalva A.; Pastoriza, M. G.; Riffel, R.

    2010-01-01

    We study the polycyclic aromatic hydrocarbon (PAH) bands, ionic emission lines, and mid-infrared continuum properties in a sample of 171 emission line galaxies taken from the literature plus 15 new active galactic nucleus (AGN) Spitzer spectra. We normalize the spectra at λ = 23 μm and grouped them according to the type of nuclear activity. The continuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T ∼ 150-300 K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7 μm) and the forbidden emission lines of [Si II] 34.8 μm, [Ar II] 6.9 μm, [S III] 18.7 and 33.4 μm were detected in all the starbursts and in ∼80% of the Seyfert 2. Taking under consideration only the PAH bands at 7.7 μm, 11.3 μm, and 12.7 μm, we find that they are present in ∼80% of the Seyfert 1, while only half of this type of activity show the 6.2 μm and 8.6 μm PAH bands. The observed intensity ratios for neutral and ionized PAHs (6.2 μm/7.7 μm x 11.3 μm/7.7 μm) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH molecules (≥180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7 μm) and the neutral PAH bands (8.6 μm and 11.3 μm) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 μm and 11.3 μm bands is nearly constant with the increase of [Ne III]15.5 μm/[Ne II] 12.8 μm, indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence (strongly decreasing) with [Ne III]/[Ne II], suggesting that the PAH molecules, emitting either ionized (7.7 μm) or neutral (11.3 μm) bands, may be destroyed with the increase of the hardness of the radiation field.

  2. EFFECT OF OXYGENATED HYDROCARBON ADDITIVES ON EXHAUST EMISSIONS OF A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    C. Sundar Raj

    2010-12-01

    Full Text Available The use of oxygenated fuels seems to be a promising solution for reducing particulate emissions in existing and future diesel motor vehicles. In this work, the influence of the addition of oxygenated hydrocarbons to diesel fuels on performance and emission parameters of a diesel engine is experimentally studied. 3-Pentanone (C5H10O and Methyl anon (C7H12O were used as oxygenated fuel additives. It was found that the addition of oxygenated hydrocarbons reduced the production of soot precursors with respect to the availability of oxygen content in the fuel. On the other hand, a serious increase of NOx emissions is observed. For this reason the use of exhaust gas recirculation (EGR to control NOx emissions is examined. From the analysis of it is examined experimental findings, it is seen that the use of EGR causes a sharp reduction in NOx and smoke simultaneously. On the other hand, EGR results in a slight reduction of engine efficiency and maximum combustion pressure which in any case does not alter the benefits obtained from the oxygenated fuel.

  3. Emission properties of aluminium-lithium alloy

    International Nuclear Information System (INIS)

    Bondarenko, G.G.; Shishkov, A.V.

    1995-01-01

    High secondary emission properties at comparatively low operation temperatures were obtained when investigating aluminum-lithium alloy Al - 2.2 mass % Li. The maximal value of the coefficient of secondary electron emission for alloy, activated under optimal conditions, is achieved at comparatively low energy of primary electrons, equal to 600 eV. Low value of the first critical potential (15 ± 2 eV) was obtained. It is important for operation of secondary emission cathodes. 12 refs.; 4 figs

  4. Emissions of hydrocarbons from marine phytoplankton—Some results from controlled laboratory experiments

    Science.gov (United States)

    McKay, W. A.; Turner, M. F.; Jones, B. M. R.; Halliwell, C. M.

    Laboratory experiments have been carried out to help assess and quantify the role of marine phytoplankton in the production of non-methane hydrocarbons. Evidence is presented here that supports the hypothesis that some short-chain hydrocarbons are produced during diatom and dinoflagellate lifecycles. The pattern of their emissions to the air above axenic unicultures of diatoms and dinoflagellates has been followed. The results suggest that ethane, ethene, propane and propene are produced during the autolysis of some phytoplankton, possibly by the oxidation of polyunsaturated lipids released into their culture medium. In contrast, isoprene and hexane appear during phytoplankton growth and are thus most likely produced either directly by the plankton or through the oxidation of exuded dissolved organic carbon.

  5. Time trend of polycyclic aromatic hydrocarbon emission factors from motor vehicles

    Science.gov (United States)

    Tao, Shu; Shen, Huizhong; Wang, Rong; Sun, Kang

    2010-05-01

    Motor vehicle is an important emission source of polycyclic aromatic hydrocarbons (PAHs) and this is particularly true in urban areas. Motor vehicle emission factors (EFs) for individual PAH compound reported in the literature varied for 4 to 5 orders of magnitude, leading to high uncertainty in emission estimation. In this study, the major factors affecting EFs were investigated and characterized by regression models. Based on the model developed, a motor vehicle PAH emission inventory at country level was developed. It was found that country and model year are the most important factors affecting EFs for PAHs. The influence of the two factors can be quantified by a single parameter of per capita gross domestic production (purchasing power parity), which was used as the independent variables of the regression models. The models developed using randomly selected 80% of measurements and tested with the remained data accounted for 28 to 48% of the variations in EFs for PAHs measured in 16 countries over 50 years. The regression coefficients of the EF prediction models were molecular weight dependent. Motor vehicle emission of PAHs from individual countries in the world in 1985, 1995, 2005, 2015, and 2025 were calculated and the global emission of total PAHs were 470, 390, and 430 Gg in 1985, 1995, and 2005 and will be 290 and 130 Gg in 2015 and 2025, respectively. The emission is currently passing its peak and will decrease due to significant decrease in China and other developing countries.

  6. The emissions of monoaromatic hydrocarbons from small polymeric toys placed in chocolate food products.

    Science.gov (United States)

    Marć, Mariusz; Formela, Krzysztof; Klein, Marek; Namieśnik, Jacek; Zabiegała, Bożena

    2015-10-15

    The article presents findings on the emissions of selected monoaromatic hydrocarbons from children's toys placed in chocolate food products. The emission test system involved the application of a new type of microscale stationary emission chamber, μ-CTE™ 250. In order to determine the type of the applied polymer in the manufacture of the tested toys, Fourier transform infrared spectroscopy and thermogravimetric analysis coupled with differential scanning calorimetry were used. It was found that the tested toy components or the whole toys (figurines) are made of two main types of polymers: polyamide and acrylonitrile-butadiene-styrene copolymer. Total number of studied small polymeric toys was 52. The average emissions of selected monoaromatic hydrocarbons from studied toys made of polyamide were as follows: benzene: 0.45 ± 0.33 ng/g; toluene: 3.3 ± 2.6 ng/g; ethylbenzene: 1.4 ± 1.4 ng/g; p,m-xylene: 2.5 ± 4.5 ng/g; and styrene: 8.2 ± 9.9 ng/g. In the case of studied toys made of acrylonitrile-butadiene-styrene copolymer the average emissions of benzene, toluene, ethylbeznene, p,m-xylene and styrene were: 0.31 ± 0.29 ng/g; 2.5 ± 1.4 ng/g; 4.6 ± 8.9 ng/g; 1.4 ± 1.1 ng/g; and 36 ± 44 ng/g, respectively. Copyright © 2015. Published by Elsevier B.V.

  7. A Techno-Economic Analysis of Emission Controls on Hydrocarbon Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit; Zhang, Yimin; Davis, Ryan; Eberle, Annika; Heath, Garvin

    2016-06-23

    Biofuels have the potential to reduce our dependency on petroleum-derived transportation fuels and decrease greenhouse gas (GHG) emissions. Although the overall GHG emissions from biofuels are expected to be lower when compared to those of petroleum fuels, the process of converting biomass feedstocks into biofuels emits various air pollutants, which may be subject to federal air quality regulation or emission limits. While prior research has evaluated the technical and economic feasibility of biofuel technologies, gaps still exist in understanding the regulatory issues associated with the biorefineries and their economic implications on biofuel production costs (referred to as minimum fuel selling price (MFSP) in this study). The aim of our research is to evaluate the economic impact of implementing emission reduction technologies at biorefineries and estimate the cost effectiveness of two primary control technologies that may be required for air permitting purposes. We analyze a lignocellulosic sugars-to-hydrocarbon biofuel production pathway developed by the National Renewable Energy Laboratory (NREL) and implement air emission controls in Aspen Plus to evaluate how they affect the MFSP. Results from this analysis can help inform decisions about biorefinery siting and sizing, as well as mitigate the risks associated with air permitting.

  8. Decentralized production of hydrogen from hydrocarbons with reduced CO2 emission

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Cunping Huang; Ali T-Raissi

    2006-01-01

    Currently, most of the industrial hydrogen production is based on steam methane reforming process that releases significant amount of CO 2 into the atmosphere. CO 2 sequestration is one approach to solving the CO 2 emission problem for large centralized hydrogen plants, but it would be impractical for decentralized H 2 production units. The objective of this paper is to explore new routes to hydrogen production from natural gas without (or drastically reduced) CO 2 emissions. One approach analyzed in this paper is based on thermo-catalytic decomposition (TCD) of hydrocarbons (e.g., methane) to hydrogen gas and elemental carbon. The paper discusses some technological aspects of the TCD process development: (1) thermodynamic analysis of TCD using AspenPlus chemical process simulator, (2) heat input options to the endothermic process, (3) catalyst activity issues, etc. Production of hydrogen and carbon via TCD of methane was experimentally verified using carbon-based catalysts. (authors)

  9. Hydrocarbon emission fingerprints from contemporary vehicle/engine technologies with conventional and new fuels

    Science.gov (United States)

    Montero, Larisse; Duane, Matthew; Manfredi, Urbano; Astorga, Covadonga; Martini, Giorgio; Carriero, Massimo; Krasenbrink, Alois; Larsen, B. R.

    2010-06-01

    The present paper presents results from the analysis of 29 individual C 2-C 9 hydrocarbons (HCs) specified in the European Commission Ozone Directive. The 29 HCs are measured in exhaust from common, contemporary vehicle/engine/fuel technologies for which very little or no data is available in the literature. The obtained HC emission fingerprints are compared with fingerprints deriving from technologies that are being phased out in Europe. Based on the total of 138 emission tests, thirteen type-specific fingerprints are extracted (Mean ± SD percentage contributions from individual HCs to the total mass of the 29 HCs), essential for receptor modelling source apportionment. The different types represent exhaust from Euro3 and Euro4 light-duty (LD) diesel and petrol-vehicles, Euro3 heavy-duty (HD) diesel exhaust, and exhaust from 2-stroke preEuro, Euro1 and Euro2 mopeds. The fuels comprise liquefied petroleum gas, petrol/ethanol blends (0-85% ethanol), and mineral diesel in various blends (0-100%) with fatty acid methyl esters, rapeseed methyl esters palm oil methyl esters, soybean oil methyl or sunflower oil methyl esters. Type-specific tracer compounds (markers) are identified for the various vehicle/engine/fuel technologies. An important finding is an insignificant effect on the HC fingerprints of varying the test driving cycle, indicating that combining HC fingerprints from different emission studies for receptor modelling purposes would be a robust approach. The obtained results are discussed in the context of atmospheric ozone formation and health implications from emissions (mg km -1 for LD and mopeds and mg kW h -1 for HD, all normalised to fuel consumption: mg dm -3 fuel) of the harmful HCs, benzene and 1,3-butadiene. Another important finding is a strong linear correlation of the regulated "total" hydrocarbon emissions (tot-HC) with the ozone formation potential of the 29 HCs (ΣPO 3 = (1.66 ± 0.04) × tot-RH; r2 = 0.93). Tot-HC is routinely monitored in

  10. Greenhouse gas impacts of declining hydrocarbon resource quality: Depletion, dynamics, and process emissions

    Science.gov (United States)

    Brandt, Adam Robert

    This dissertation explores the environmental and economic impacts of the transition to hydrocarbon substitutes for conventional petroleum (SCPs). First, mathematical models of oil depletion are reviewed, including the Hubbert model, curve-fitting methods, simulation models, and economic models. The benefits and drawbacks of each method are outlined. I discuss the predictive value of the models and our ability to determine if one model type works best. I argue that forecasting oil depletion without also including substitution with SCPs results in unrealistic projections of future energy supply. I next use information theoretic techniques to test the Hubbert model of oil depletion against five other asymmetric and symmetric curve-fitting models using data from 139 oil producing regions. I also test the assumptions that production curves are symmetric and that production is more bell-shaped in larger regions. Results show that if symmetry is enforced, Gaussian production curves perform best, while if asymmetry is allowed, asymmetric exponential models prove most useful. I also find strong evidence for asymmetry: production declines are consistently less steep than inclines. In order to understand the impacts of oil depletion on GHG emissions, I developed the Regional Optimization Model for Emissions from Oil Substitutes (ROMEO). ROMEO is an economic optimization model of investment and production of fuels. Results indicate that incremental emissions (with demand held constant) from SCPs could be 5-20 GtC over the next 50 years. These results are sensitive to the endowment of conventional oil and not sensitive to a carbon tax. If demand can vary, total emissions could decline under a transition because the higher cost of SCPs lessens overall fuel consumption. Lastly, I study the energetic and environmental characteristics of the in situ conversion process, which utilizes electricity to generate liquid hydrocarbons from oil shale. I model the energy inputs and outputs

  11. Characterization and concentrations of polycyclic aromatic hydrocarbons in emissions from different heating systems in Damascus, Syria.

    Science.gov (United States)

    Alkurdi, Farouk; Karabet, François; Dimashki, Marwan

    2014-04-01

    Traffic has long been recognized as the major contributor to polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Stationary combustion sources, including residential space heating systems, are also a major contributor to PAH emissions. The aim of this study was to determine the profile and concentration of PAHs in stack flue gas emissions from different kinds of space heaters in order to increase the understanding of the scale of the PAH pollution problem caused by this source. This study set out to first assess the characteristics of PAHs and their corresponding benzo[a]pyrene equivalent emissions from a few types of domestic heaters and central heating systems to the urban atmosphere. The study, enabled for the first time, the characterization of PAHs in stationary combustion sources in the city of Damascus, Syria. Nine different types of heating systems were selected with respect to age, design, and type of fuel burned. The concentrations of 15 individual PAH compounds in the stack flue gas were determined in the extracts of the collected samples using high-performance liquid chromatography system (HPLC) equipped with ultraviolet-visible and fluorescence detectors. In general, older domestic wood stoves caused considerably higher PAH emissions than modern domestic heaters burning diesel oil. The average concentration of ΣPAH (sum of 15 compounds) in emissions from all types of studied heating systems ranged between 43 ± 0.4 and 316 ± 1.4 μg/m(3). Values of total benzo[a]pyrene equivalent ranged between 0.61 and 15.41 μg/m(3).

  12. Ambient air emissions of polycyclic aromatic hydrocarbons and female breast cancer incidence in US.

    Science.gov (United States)

    Stults, William Parker; Wei, Yudan

    2018-05-05

    To examine ambient air pollutants, specifically polycyclic aromatic hydrocarbons (PAHs), as a factor in the geographic variation of breast cancer incidence seen in the US, we conducted an ecological study involving counties throughout the US to examine breast cancer incidence in relation to PAH emissions in ambient air. Age-adjusted incidence rates of female breast cancer from the surveillance, epidemiology, and end results (SEER) program of the US National Cancer Institute were collected and analyzed using SEER*Stat 8.3.2. PAH emissions data were obtained from the Environmental Protection Agency. Linear regression analysis was performed using SPSS 23 software for Windows to analyze the association between PAH emissions and breast cancer incidence, adjusting for potential confounders. Age-adjusted incidence rates of female breast cancer were found being significantly higher in more industrialized metropolitan SEER regions over the years of 1973-2013 as compared to less industrialized regions. After adjusting for sex, race, education, socioeconomic status, obesity, and smoking prevalence, PAH emission density was found to be significantly associated with female breast cancer incidence, with the adjusted β of 0.424 (95% CI 0.278, 0.570; p < 0.0001) for emissions from all sources and of 0.552 (95% CI 0.278, 0.826; p < 0.0001) for emissions from traffic source. This study suggests that PAH exposure from ambient air could play a role in the increased breast cancer risk among women living in urban areas of the US. Further research could provide insight into breast cancer etiology and prevention.

  13. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.

    Science.gov (United States)

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

    2012-06-05

    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.

  14. [Size distribution of particle and polycyclic aromatic hydrocarbons in particle emissions from simulated emission sources].

    Science.gov (United States)

    Fu, Hai-Huan; Tian, Na; Shang, Hui-Bin; Zhang, Bin; Ye, Su-Fen; Chen, Xiao-Qiu; Wu, Shui-Ping

    2014-01-01

    Particles from cooking lampblack, biomass and plastics burning smoke, gasoline vehicular exhausts and gasoline generator exhausts were prepared in a resuspension test chamber and collected using a cascade MOUDI impactor. A total of 18 polycyclic aromatic hydrocarbons (PAHs) associated with particles were analyzed by GC-MS. The results showed that there were two peaks in the range of 0.44-1.0 microm and 2.5-10 microm for cooking lampblack, and only one peak in the range of 0.44-1.0 microm for straw and wood burning smoke. But there were no clear peak for plastics burning smoke. The peak for gasoline vehicular exhausts was found in the range of 2.5-10 microm due to the influence of water vapor associated with particles, while the particles from gasoline generator exhausts were mainly in the range of lampblack and gasoline vehicular exhausts. The peak in the range of 0.44-1.0 microm became more and more apparent with the increase of PAHs molecular weight. The fraction of PAH on particles less than 1.0 microm to that on the total particles increased along with PAH's molecular weight. Phenanthrene was the dominant compound for cooking lampblack and combustion smoke, while gasoline vehicular exhausts and generator exhausts were characterized with significantly high levels of naphthalene and benzo[g, h, i] perylene, respectively. The distribution of source characteristic ratios indicated that PAHs from cooking lampblack and biomass burning were close and they were different from those of vehicular exhausts and generator exhausts.

  15. Effect of hydrocarbon chain length of aliphatic diluents on hydrodynamic properties of irradiated solutions of extractant

    International Nuclear Information System (INIS)

    Gumenyuk, V.E.; Pribush, A.G.; Egorov, G.F.

    1990-01-01

    To optimize the composition of n-paraffin mixtures with different molecular weight, used as a diluent (D) of extractant during extraction reprocessing of spent fuel, interrelation between D hydrocarbon chain length and change in hydrodynamic properties of extraction mixture on D basis depending on the dose has been considered. It is shown that the value of threshold dose loading (D crit ), at which a sharp change in hydrodynamic properties of tri-n-butyl phosphate solutions in D is observed, decreases with hydrocarbon chain length growth. Empiric ratio relating D crit value and the number of carbon atoms of D is obtained

  16. Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han; Telesco, Charles M.; Pantin, Eric; Barnes, Peter [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hoang, Thiem [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Li, Aigen [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Wright, Christopher M. [School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, P.O. Box 7916, Canberra BC 2610 (Australia); Li, Dan, E-mail: hanzh0420@ufl.edu [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2017-07-20

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m commonly ascribed to the C–H and C–C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μ m in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. This poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.

  17. Investigation of the combustion kinetics and polycyclic aromatic hydrocarbon emissions from polycaprolactone combustion.

    Science.gov (United States)

    Chien, Y C; Yang, S H

    2013-01-01

    Polycaprolactone (PCL) is one of the most attractive biodegradable plastics that has been widely used in medicine and agriculture fields. Because of the large increase in biodegradable plastics usage, the production of waste biodegradable plastics will be increasing dramatically, producing a growing environmental problem. Generally, waste PCL is collected along with municipal solid wastes and then incinerated. This study investigates the combustion kinetics and emission factors of 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) in the PCL combustion. Experimentally, two reactions are involved in the PCL combustion process, possibly resulting in the emission of carbon dioxide, propanal, protonated caprolactone and very small amounts of PAH produced by incomplete combustion. The intermediate products may continuously be oxidized to form CO2. The emission factors for 16 US EPA priority PAHs are n.d. -2.95 microg/g, which are much lower than those of poly lactic acid and other plastics combustion. The conversion of PCL is 100%. Results from this work suggest that combustion is a good choice for the waste PCL disposal.

  18. Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula

    International Nuclear Information System (INIS)

    Zhang, Han; Telesco, Charles M.; Pantin, Eric; Barnes, Peter; Hoang, Thiem; Li, Aigen; Wright, Christopher M.; Li, Dan

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m commonly ascribed to the C–H and C–C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μ m in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. This poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.

  19. Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking

    Science.gov (United States)

    Gao, Jun; Jian, Yating; Cao, Changsheng; Chen, Lei; Zhang, Xu

    2015-11-01

    Cooking processes highly contribute to indoor polycyclic aromatic hydrocarbon (PAH) pollution. High molecular weight and potentially carcinogenic PAHs are generally found attached to small particles, i.e., particulate phase PAHs (PPAHs). Due to the fact that indoor particle dynamics have been clear, describing the indoor dynamics of cooking-generated PPAHs within a specific time span is possible. This paper attempted to quantify the dynamic emission rate, simultaneous spatial dispersion and individual exposure of PPAHs using a cooking source. Experiments were conducted in a real-scale kitchen chamber to elucidate the time-resolved emission and effect of edible oil temperature and mass. Numerical simulations based on indoor particle dynamics were performed to obtain the spatial dispersion and individual inhalation intake of PPAHs under different emission and ventilation conditions. The present work examined the preheating cooking stage, at which edible oil is heated up to beyond its smoke point. The dynamic emission rate peak point occurred much earlier than the oil heating temperature. The total PPAH emission ranged from 2258 to 6578 ng upon heating 40-85 g of edible oil. The overall intake fraction by an individual within a period of 10 min, including 3 min for heating and 7 min for natural cooling, was generally ∼1/10,000. An important outcome of this work was that the overall intake fraction could be represented by multiplying the range hood escape efficiency by the inhalation-to-ventilation rate ratio, which would be no greater than the same ratio. The methodology and results of this work were extendible for the number-based assessment of PPAHs. This work is expected to help us understand the health risks due to inhalation exposure to cooking-generated PPAHs in the kitchen.

  20. Emission properties of biomimetic composites for dentistry

    Directory of Open Access Journals (Sweden)

    P.V. Seredin

    Full Text Available Biocomposites based on carbonate-substituted hydroxyapatite synthesized from the biological source of calcium (Goloshchapov et al., 2013 and organic primer on the basis of amino acids found in the enamel tubules of teeth, namely, arginine, histidine, lysine and hyaluronic acid were obtained and studied in this work. Incorporation of organic primer into biocomposite formulation allowed us to obtain the emission characteristics (luminescence that were identical to those inherent to the native tissues of the human tooth (enamel and dentine. Keywords: Biocomposites, IR-spectroscopy, Optical and emission properties, Hydroxyapatite, Human tooth tissues

  1. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  2. Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire

    Science.gov (United States)

    T. G. Soares Neto; J. A. Carvalho; C. A. G. Veras; E. C. Alvarado; R. Gielow; E. N. Lincoln; T. J. Christian; R. J. Yokelson; J. C. Santos

    2009-01-01

    Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on...

  3. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons

    Science.gov (United States)

    Bauer, S. H.; Borchardt, D. B.

    1990-07-01

    We have extended the wavelength range of our previously constructed multichannel, fast recording spectrometer to the mid-infrared. With the initial configuration, using a silicon-diode (photovoltaic) array, we recorded light intensities simultaneously at 20 adjacent wavelengths, each with 20 μs time resolution. For studies in the infrared the silicon diodes are replaced by a 20 element PbSe (photoconducting) array of similar dimensions (1×4 mm/element), cooled by a three-stage thermoelectric device. These elements have useful sensitivities over 1.0-6.7 μm. Three interchangeable gratings in a 1/4 m monochromator cover the following spectral ranges: 1.0-2.5 μm (resolution 33.6 cm-1) 2.5-4.5 μm (16.8 cm-1) 4.0-6.5 μm (16.7 cm-1). Incorporated in the new housing there are individually controlled bias-power sources for each detector, two stages of analogue amplification and a 20-line parallel output to the previously constructed digitizer, and record/hold computer. The immediate application of this system is the study of emission and absorption spectra of shock heated hydrocarbons-C2H2, C4H4 and C6H6-which are possible precursors of species that generate infrared emissions in the interstellar medium. It has been recently proposed that these radiations are due to PAH that emit in the infrared upon relaxation from highly excited states. However, it is possible that such emissions could be due to shock-heated low molecular-weight hydrocarbons, which are known to be present in significant abundances, ejected into the interstellar medium during stellar outer atmospheric eruptions. The full Swan band system appeared in time-integrated emission spectra from shock heated C2H2 (1% in Ar; T5eq~=2500K) no soot was generated. At low resolution the profiles on the high frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no

  4. POLYCYCLIC AROMATIC HYDROCARBON EMISSION IN SPITZER/IRS MAPS. I. CATALOG AND SIMPLE DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D. J.; Choi, W. D.-Y.; Moya, L. G. V.; Otaguro, J. N.; Sorkhou, S.; Peeters, E. [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada); Allamandola, L. J. [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-0001 (United States); Tielens, A. G. G. M., E-mail: dstock4@uwo.ca [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA (Netherlands)

    2016-03-01

    We present a sample of resolved galactic H ii regions and photodissociation regions (PDRs) observed with the Spitzer infrared spectrograph in spectral mapping mode between the wavelengths of 5–15 μm. For each object we have spectral maps at a spatial resolution of ∼4″ in which we have measured all of the mid-infrared emission and absorption features. These include the polycyclic aromatic hydrocarbon (PAH) emission bands, primarily at 6.2, 7.7, 8.6, 11.2, and 12.7 μm, as well as the spectral emission lines of neon and sulfur and the absorption band caused by silicate dust at around 9.8 μm. In this work we describe the data in detail, including the data reduction and measurement strategies, and subsequently present the PAH emission band intensity correlations for each of the objects and the sample as a whole. We find that there are distinct differences between the sources in the sample, with two main groups: the first comprising the H ii regions and the second the reflection nebulae (RNe). Three sources—the reflection nebula NGC 7023, the Horsehead nebula PDR (an interface between the H ii region IC 434 and the Orion B molecular cloud), and M17—resist this categorization, with the Horsehead PDR points mimicking the RNe and the NGC 7023 fluxes displaying a unique bifurcated appearance in our correlation plots. These discrepancies seem to be due to the very low radiation field experienced by the Horsehead PDR and the very clean separation between the PDR environment and a diffuse environment in the NGC 7023 observations.

  5. Emission characteristics and size distribution of polycyclic aromatic hydrocarbons from coke production in China

    Science.gov (United States)

    Mu, Ling; Peng, Lin; Liu, Xiaofeng; He, Qiusheng; Bai, Huiling; Yan, Yulong; Li, Yinghui

    2017-11-01

    Coking is regarded as a major source of atmospheric polycyclic aromatic hydrocarbons (PAHs), but few researches have been conducted on the emission characteristics of PAHs from coke production. In this study, emissions of size-segregated particulate matter (PM) and particle-bound PAHs emitted from charging of coal (CC) and pushing of coke (PC) in four typical coke plants were determined. The emission factors on average, sums of CC and PC, were 4.65 mg/kg, 5.96 mg/kg, 19.18 μg/kg and 20.69 μg/kg of coal charged for PM2.1 (≤ 2.1 μm), PM, PAHs in PM2.1 and total-PAHs, respectively. PM and PAHs emission from plants using stamp charging were significantly more than those using top charging. The profile of PAHs in PM with size ≤ 1.4 μm (PM1.4) emitted from CC process were similar with that from PC, however, it revealed obviously different tendency for PAHs in PM with size > 1.4 μm, indicating the different formation mechanism for coarse particles emitted from CC and PC. Size distributions of PM and PAHs indicated that they were primarily connected with PM1.4, and the contributions of PM1.4 to PM and PAHs emitted from the plants using stamp charging were higher than those using top charging. Some improved technology in air-pollution control devices should be considered in coke production in future based on the considerable impacts of PM1.4 and PAHs on human health and ambient air quality.

  6. Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments

    Czech Academy of Sciences Publication Activity Database

    Rijal, M. L.; Appel, E.; Petrovský, Eduard; Blaha, U.

    2010-01-01

    Roč. 158, č. 5 (2010), s. 1756-1762 ISSN 0269-7491 Institutional research plan: CEZ:AV0Z30120515 Keywords : hydrocarbon contamination * groundwater table fluctuation * magnetic properties * environmental magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.395, year: 2010

  7. Short Communication: Emission of Oxygenated Polycyclic Aromatic Hydrocarbons from Biomass Pellet Burning in a Modern Burner for Cooking in China.

    Science.gov (United States)

    Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu

    2012-12-01

    Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EF oPAHs ) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EF oPAHs for raw fuels combusted in a traditional cooking stove were also measured. EF oPAHs were 348±305 and 396±387 µg/kg in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EF oPAHs were 77.7±49.4 and 189±118 µg/kg, respectively. EFs in mode II were higher (2-5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EF oPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EF oPAHs for the pellets in mode I were significantly lower ( p < 0.05 ), likely due to increased combustion efficiencies and change in fuel properties. However, the difference between raw biomass fuels and the pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents.

  8. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons. [in interstellar medium

    Science.gov (United States)

    Bauer, S. H.; Borchardt, D. B.

    1990-01-01

    The wavelength range of a previously constructed multichannel fast recording spectrometer was extended to the mid-infrared. With the initial configuration, light intensities were recorded simultaneously with a silicon-diode array simultaneously at 20 adjacent wavelengths, each with a 20-micron time resolution. For studies in the infrared, the silicon diodes were replaced by a 20-element PbSe array of similar dimensions, cooled by a three-stage thermoelectric device. It is proposed that infrared emissions could be due to shock-heated low molecular-weight hydrocarbons. The full Swan band system appeared in time-integrated emission spectra from shock-heated C2H2; no soot was generated. At low resolution, the profiles on the high-frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no conversion) and T5(eq).

  9. Non-methane hydrocarbon characteristics of motor vehicular emissions in the Pearl River Delta region

    Science.gov (United States)

    Tsai, Wai Yan

    2007-12-01

    Air pollution problem in Hong Kong and the Pearl River Delta (PRD) region has raised much concern from the public in recent years. The primary aim of this research is to use field measurement data to characterize non-methane hydrocarbons (NMHCs) in emission from motor vehicles. Fuel vapor compositions for several commonly used vehicular fuels in Hong Kong, Macau, Guangzhou and Zhuhai were analyzed in 2003, and they are believed to be the first one reported for the PRD region. These profiles were used to study the impact of evaporative loss of the fuels on air quality. From the roadside and tunnel samples collected in the four cities mentioned above from 2000 to 2003, results showed that vehicular engine combustion was a main NMHC source, while gasoline evaporative losses also contributed much to the total NMHC emission, besides, LPG leakage was also found to be significant from the tunnel measurement data collected in Hong Kong. Characteristics of vehicular engine exhaust emissions were also studied. Measurements of diesel emission showed a large influence on the emission profile due to the change of diesel compositions. The E/E ratios implied that gasoline-powered vehicles in Hong Kong were equipped with well functioning catalysts, while those in Guangzhou and Zhuhai, especially the motorcycles, were found dirtier in NMHC emission. Although the E/E ratios showed that private cars in Hong Kong had high combustion efficiency, the existence of significant amounts of unburned gasoline in their exhaust stream pointed out that they still had low fuel economy. From the results of a simple model, it was found that the evaporative losses of gasoline and LPG contributed much to the total NMHC pollution from vehicle. The preliminary results from the dynamometer study conducted in Hong Kong showed large variations of exhaust characteristics for private cars and taxis during different driving speeds. The results can be used as scientific basis for regulatory parties in

  10. Emissions of polyciclic aromatic hydrocarbons and polyciclic carbonyl biphenils from electric arc furnaces

    Directory of Open Access Journals (Sweden)

    P. Gomes, J. F.

    2008-06-01

    Full Text Available This paper describes work done in order to determine the emissions of highly toxic organic micropollutants from electric arc furnaces used in the production of carbon steel from scrap. The study will be allowing to derive relationships between the levels of airborne micropollutants and the operational parameters of the production process so that an abatement of pollution could be achieved. By using the European standard method CEN 1948 for dioxin like compounds sampling and measurement, it was possible to determine the characteristic fingerprint of micropollutants such as polyciclic aromatic hydrocarbons (PAHs and polycyclic carbonyl biphenils (PCBs emitted by this particular stationary source.

    Este artículo contiene resultados del trabajo ejecutado para estudiar la determinación de las emisiones de los micropolutantes orgánicos muy tóxicos que se emiten por los hornos eléctricos de arco utilizados en la producción de acero. Este estudio inicial va a permitir relacionar las concentraciones de polutantes emitidos a la atmósfera con las condiciones de operación del horno eléctrico de arco. Utilizando el método normalizado CEN 1948 para captación y análisis de muestras de compuestos análogos a las dioxinas ha sido posible determinar el perfil característico de los micropolutantes tales como PAHs y PCBs emitidos por esta fuente.

  11. A Comprehensive Review of Effect of Biodiesel Additives on Properties, Performance, and Emission

    Science.gov (United States)

    Madiwale, S.; Karthikeyan, A.; Bhojwani, V.

    2017-05-01

    Objectives:- To presents the literature review on effect of biodiesel additives on properties, performance and on emission. Method:-In the current paper reviews are taken from previous years paper which necessitates the need of addition of additives in the blends of biodiesel and studied the its effect on properties, performance and emissions. Emissions from the diesel powered vehicles mostly damaged the earth’s environment and also increased the overall earth’s temperature. This attracts the need of alternative fuels in the field of transportation sector. Past inventions and research showed that Biodiesel can be used as an alternative fuel for the diesel engine. Biodiesel have good combustion characteristics because of their long chain hydrocarbon structure. However biodiesel possesses few disadvantages such as lower heating value, higher flow ability, much high density and not able to flow at low temperature. Higher rate of fuel consumption is identified and higher level of NOx emissions when biodiesel used in an engine as an alternative fuels. Findings:-Different additives such as antioxidants, improvers for cetane number, cold flow properties improver, etc were investigated by the many researcher and scientists and added in the different feedstock of biodiesel or blends of biodiesel with diesel in different proportions. Directly or indirectly fuel additives can improve the reduction in the emissions, improve the fuel economy, and reduce the dependency of the one’s nation on other. Performances of biodiesel vehicles were drastically improved because of additioninthe blends of biodiesel with diesel fuel in specific percentages to meet the international emission standards. Addition of additives in the biodiesel or in the blends of biodiesel basically changes the high temperature and low temperature flow properties of blends of biodiesel. Current paper finds and compares properties of different additives and its effect on blends of biodiesel properties

  12. [Compositions and residual properties of petroleum hydrocarbon in contaminated soil of the oilfields].

    Science.gov (United States)

    Hu, Di; Li, Chuan; Dong, Qian-Qian; Li, Li-Ming; Li, Guang-He

    2014-01-01

    The aims of this study were to determine the compositions and residual properties of petroleum hydrocarbon in soil, as well as to identify the source and weathering degree of the pollution. A total of 5 producing wells in Gudao and Hekou oil producing region of Shengli oilfields were analyzed. More than 50 individual target compounds including straight-and branched-chain alkanes( n-alkanes, pristine and phytane) and polycyclic aromatic hydrocarbons (PAHs) in soil samples and crude oil were determined by gas chromatography-mass spectrometry (GC-MS). The percentages of chain alkanes and PAHs in total solvent extractable matters(TSEM) of soil samples were both much lower than those in the crude oil samples. The compositions of petroleum hydrocarbon in soil samples differed from those in crude oil, which indicated the n-alkanes with carbon numbers contaminated soils, the relationship between the index and petroleum hydrocarbon compounds was analyzed using principal component analysis (PCA). The results showed that the n-alkanes with carbon numbers > 33 and the PAHs with rings between 3 and 5 were much harder to degrade. PCA of 4 indexes for source identification revealed more than 50% of the soil samples were polluted by crude oil, which needs more attention during remediation.

  13. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    Science.gov (United States)

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from

  14. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs.

    Science.gov (United States)

    Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E

    1994-10-01

    The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions.

  15. Properties, performance and emissions of biofuels in blends with gasoline

    Science.gov (United States)

    Eslami, Farshad

    The emission performance of fuels and their blends in modern combustion systems have been studied with the purpose of reducing regulated and unregulated emissions, understanding of exhaust products of fuels such as gasoline, ethanol and 2,5-dimethylfuran and comparison of results. A quantitative analysis of individual hydrocarbon species from exhaust emissions of these three fuels were carried out with direct injects spark ignition (DISI) single cylinder engine. The analysis of hydrocarbon species were obtained using gas chromatography-mass spectrometry (GCMS) connected on-line to SI engine. During this project, novel works have been done including the set up of on-line exhaust emission measurement device for detection and quantification of individual volatile hydrocarbons. Setting of a reliable gas chromatography mass spectrometry measurement system required definition and development of a precise method. Lubricity characteristics of biofuels and gasoline were investigated using High Frequency Reciprocating Rig (HFRR). Results showed great enhancing lubricity characteristics of biofuels when added to conventional gasoline. 2,5-dimenthylfuran was found to be the best among the fuels used, addition of this fuel to gasoline also showed better result compared with ethanol addition.

  16. Tuning electronic properties of graphene nanoflake polyaromatic hydrocarbon through molecular charge-transfer interactions

    Science.gov (United States)

    Sharma, Vaishali; Dabhi, Shweta D.; Shinde, Satyam; Jha, Prafulla K.

    2018-05-01

    By means of first principles calculation we have tuned the electronic properties of graphene nanoflake polyaromatic hydrocarbon via molecular charge transfer. Acceptor/donor Tetracyanoquinodimethane (TCNQ) and Tetrathiafulvalene (TTF) organic molecules are adsorbed on polyaromatic hydrocarbons (PAH) in order to introduce the charge transfer. The substrate's n- or p- type nature depends on the accepting/donating behavior of dopant molecules. Two different classes of PAH (extended form of triangulene) namely Bow-tie graphene nanoflake (BTGNF) and triangular zigzag graphene nanoflake (TZGNF). It is revealed that all the TCNQ and TTF modified graphene nanoflakes exhibit significant changes in HOMO-LUMO gap in range from 0.58 eV to 0.64 eV and 0.01 eV to 0.05 eV respectively. The adsorption energies are in the range of -0.05 kcal/mol to -2.6 kcal/mol. The change in work function is also calculated and discussed, the maximum charge transfer is for TCNQ adsorbed BTGNF. These alluring findings in the tuning of electronic properties will be advantageous for promoting graphene nanoflake polyaromatic hydrocarbon for their applications in electronic devices.

  17. Review of current results in computational studies of hydrocarbon phase and transport properties in nanoporous structures

    Science.gov (United States)

    Stroev, N.; Myasnikov, A.

    2017-12-01

    This article provides a general overview of the main simulation results on the behavior of gas/liquids under confinement conditions, namely hydrocarbons in shale formations, and current understanding of such phenomena. In addition to the key effects, which different research groups obtained and which have to be taken into account during the creation of reservoir simulation software, a list of methods is briefly covered. Comprehensive understanding of both fluid phase equilibrium and transport properties in nanoscale structures is of great importance for many scientific and technical disciplines, especially for petroleum engineering considering the hydrocarbon behavior in complex shale formations, the development of which increases with time. Recent estimations show that a significant amount of resources are trapped inside organic matter and clays, which has extremely low permeability and yet great economic potential. The issue is not only of practical importance, as the existing conventional approaches by definition are unable to capture complicated physics phenomena for effective results, but it is also of fundamental value. The research of the processes connected with such deposits is necessary for both evaluations of petroleum reservoir deposits and hydrodynamic simulators. That is why the review is divided into two major parts—equilibrium states of hydrocarbons and their transport properties in highly confined conditions.

  18. Effects of gasoline properties on exhaust emission and photochemical reactivity; Gasoline seijo ga haiki gas sosei, kokagaku hannosei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, R; Usui, K; Moriya, A; Sato, M; Nomura, T; Sue, H [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    In order to investigate the effects of fuel properties on emissions, four passenger cars were tested under Japanese 11 and 10-15 modes using two series gasoline fuels. The test results suggest that the distillation property (T90) affects A/F ratio which in turn influences exhaust emissions. The results of regression analysis show that both ozone forming potential and air toxics are highly corrected with the composition of aromatic hydrocarbons in gasoline. 3 refs., 10 figs., 6 tabs.

  19. Influence of performance characteristic of a gaseous fuel supply system on hydrocarbon emissions of a dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Ren, J.; Wang, Z.Y.; Zhong, H.; Hao, S.H. [Xi' an Jiaotong Univ., Dept. of Automobile Engineering, Xi' an (China)

    2000-11-01

    The performance of the gaseous fuel supply and its influence on hydrocarbon (HC) emissions of dual-fuel engines have been investigated. A new design of manifold respirators with mixers is also presented in the paper. The design of the gaseous fuel supply system has a great influence on HC emissions in the dual-fuel engine at light load. The problem of scavenging is discussed and solved by using the manifold respirators in the dual-fuel engine. It performs the function of retarding the gaseous fuel entry timing from the moment of intake valve opening, and its delaying effects have been measured and tested. Experimental results show that the manifold respirator gives the best performance in reducing HC emissions compared with a common pipe mixer and a respirator with bo miser. In addition, the mixing effects are sensitive to the mixer configuration. (Author)

  20. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  1. Effects of biodiesel on emissions of regulated air pollutants and polycyclic aromatic hydrocarbons under engine durability testing

    International Nuclear Information System (INIS)

    Hsi-Hsien Yang; Shu-Mei Chien; Mei-Yu Lo; John Chi-Wei Lan; Wen-Chang Lu; Yong-Yuan Ku

    2007-01-01

    An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NO x , particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 μg bhp h -1 for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 μg bhp h -1 for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency. (author)

  2. Effects of biodiesel on emissions of regulated air pollutants and polycyclic aromatic hydrocarbons under engine durability testing

    Energy Technology Data Exchange (ETDEWEB)

    Hsi-Hsien Yang; Shu-Mei Chien; Mei-Yu Lo [Chaoyang University of Technology, Wufong (China). Dept. of Environmental Engineering and Management; John Chi-Wei Lan [Yuan Ze University (China). Dept. of Chemical Engineering and Materials Science; Wen-Chang Lu [Industrial Technology Research Institute, Hsinchu (China). New Energy Div.; Yong-Yuan Ku [Automotive Research and Testing Center, Chunhwa (China). Diesel Vehicle Section

    2007-11-15

    An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NO{sub x}, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 {mu}g bhp h{sup -1} for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 {mu}g bhp h{sup -1} for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency. (author)

  3. Absorption and emission properties of photonic crystals and metamaterials

    International Nuclear Information System (INIS)

    Peng, Lili

    2007-01-01

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  4. Correlation of CVD Diamond Electron Emission with Film Properties

    Science.gov (United States)

    Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.

    1996-03-01

    Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.

  5. Mercury-free PVT apparatus for thermophysical property analyses of hydrocarbon reservoir fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lansangan, R.M.; Lievois, J.S.

    1992-08-31

    Typical reservoir fluid analyses of complex, multicomponent hydrocarbon mixtures include the volumetric properties, isothermal compressibility, thermal expansivity, equilibrium ratios, saturation pressure, viscosities, etc. These parameters are collectively referred to as PVT properties, an acronym for the primary state variables; pressure, volume, and temperature. The reservoir engineer incorporates this information together with the porous media description in performing material balance calculations. These calculations lead to the determination (estimation) of the initial hydrocarbon in-place, the future reservoir performance, the optimal production scheme, and the ultimate hydrocarbon recovery. About four years ago, Ruska Instrument Corporation embarked on a project to develop an apparatus designed to measure PVT properties that operates free of mercury. The result of this endeavor is the 2370 Hg-Free PVT system which has been in the market for the last three years. The 2370 has evolved from the prototype unit to its present configuration which is described briefly in this report. The 2370 system, although developed as a system-engineered apparatus based on existing technology, has not been exempt from this burden-of-proof Namely, the performance of the apparatus under routine test conditions with real reservoir fluids. This report summarizes the results of the performance and applications testing of the 2370 Hg-Free PVT system. Density measurements were conducted on a pure fluid. The results were compared against literature values and the prediction of an equation of state. Routine reservoir fluid analyses were conducted with a black oil and a retrograde condensate gas mixtures. Limited comparison of the results were performed based on the same tests performed on a conventional mercury-based PVT apparatus. The results of these tests are included in this report.

  6. Structures and electronic properties of thin-films of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Natsume, Yutaka; Minakata, Takashi; Aoyagi, Takeshi

    2009-01-01

    We report the fabrication and characterization of organic thin-film transistors (TFTs) using several polycyclic aromatic hydrocarbons (PAHs). Pentacene, ovalene, dibenzocoronene and hexabenzocoronene were deposited as organic semiconductors on silicon wafers with gold electrodes as the bottom-contact configuration of the TFTs. The pentacene TFT showed the highest field-effect mobility of more than 0.1 cm 2 /Vs in comparison with the other PAHs. The results clarified that the high field-effect mobility of the pentacene thin film is due to large grain size and intrinsic electronic properties

  7. Black carbon and polycyclic aromatic hydrocarbon emissions from vehicles in the United States-Mexico border region: pilot study.

    Science.gov (United States)

    Kelly, Kerry; Wagner, David; Lighty, JoAnn; Quintero Núñez, Margarito; Vazquez, F Adrian; Collins, Kimberly; Barud-Zubillaga, Alberto

    2006-03-01

    The investigators developed a system to measure black carbon (BC) and particle-bound polycyclic aromatic hydrocarbon (PAH) emission factors during roadside sampling in four cities along the United States-Mexico border, Calexico/Mexicali and El Paso/Juarez. The measurement system included a photoacoustic analyzer for BC, a photoelectric aerosol sensor for particle-bound PAHs, and a carbon dioxide (CO2) analyzer. When a vehicle with measurable emissions passed the system probe, corresponding BC, PAH, and CO2 peaks were evident, and a fuel-based emission factor was estimated. A picture of each vehicle was also recorded with a digital camera. The advantage of this system, compared with other roadside methods, is the direct measurement of particulate matter components and limited interference from roadside dust. The study revealed some interesting trends: Mexican buses and all medium-duty trucks were more frequently identified as high emitters of BC and PAH than heavy-duty trucks or passenger vehicles. In addition, because of the high daily mileage of buses, they are good candidates for additional study. Mexican trucks and buses had higher average emission factors compared with U.S. trucks and buses, but the differences were not statistically significant. Few passenger vehicles had measurable BC and PAH emissions, although the highest emission factor came from an older model passenger vehicle licensed in Baja California.

  8. Tuning biomimetic membrane barrier properties by hydrocarbon, cholesterol and polymeric additives

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Skovgaard, Nils; Hansen, Jesper Søndergaard

    2017-01-01

    The barrier properties of cellular membranes are increasingly attracting attention as a source of inspiration for designing biomimetic membranes. The broad range of potential technological applications makes the use of lipid and lately also polymeric materials a popular choice for constructing...... biomimetic membranes, where the barrier properties can be controlled by the composition of the membrane constituent elements. Here we investigate the membrane properties reported by the light-induced proton pumping activity of bacteriorhodopsin (bR) reconstituted in three vesicle systems of different...... membrane composition. Specifically we quantify how the resulting proton influx and efflux rates are influenced by the membrane composition using a variety of membrane modulators. We demonstrate that by adding hydrocarbons to vesicles with reconstituted bR formed from asolectin lipids the resulting...

  9. Probing the spin multiplicity of gas-phase polycyclic aromatic hydrocarbons through their infrared emission spectrum: a theoretical study.

    Science.gov (United States)

    Falvo, Cyril; Calvo, Florent; Parneix, Pascal

    2012-08-14

    The anharmonic infrared emission spectrum following an optical excitation has been calculated for a variety of polycyclic aromatic hydrocarbon molecules in their ground singlet electronic state or in their triplet state. The computational protocol relies on second-order perturbation theory and involves a quartic vibrational Hamiltonian, the vibrational quantum numbers being sampled according to a Monte Carlo procedure. In the case of neutral naphthalene, the IR spectrum obtained in the (ground) singlet state differs significantly from the spectrum in the triplet state, especially for out-of-plane CH bending modes. Although not as prominent, spectral differences in larger molecules are still observable.

  10. Efficiency Analysis of Technological Methods for Reduction of NOx Emissions while Burning Hydrocarbon Fuels in Heat and Power Plants

    Directory of Open Access Journals (Sweden)

    S. M. Kabishov

    2013-01-01

    Full Text Available The paper contains a comparative efficiency analysis pertaining to application of existing technological methods for suppression of nitric oxide formation in heating boilers of heat generators. A special attention has been given to investigation of NOx  emission reduction while burning hydrocarbon fuel with the help of oxygen-enriched air. The calculations have demonstrated that while enriching oxidizer with the help of oxygen up to 50 % (by volume it is possible to reduce volume of NOx formation (while burning fuel unit by 21 %.

  11. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets.

    Science.gov (United States)

    Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model

    Science.gov (United States)

    Parajulee, Abha; Wania, Frank

    2014-01-01

    Emissions of organic substances with potential toxicity to humans and the environment are a major concern surrounding the rapid industrial development in the Athabasca oil sands region (AOSR). Although concentrations of polycyclic aromatic hydrocarbons (PAHs) in some environmental samples have been reported, a comprehensive picture of organic contaminant sources, pathways, and sinks within the AOSR has yet to be elucidated. We sought to use a dynamic multimedia environmental fate model to reconcile the emissions and residue levels reported for three representative PAHs in the AOSR. Data describing emissions to air compiled from two official sources result in simulated concentrations in air, soil, water, and foliage that tend to fall close to or below the minimum measured concentrations of phenanthrene, pyrene, and benzo(a)pyrene in the environment. Accounting for evaporative emissions (e.g., from tailings pond disposal) provides a more realistic representation of PAH distribution in the AOSR. Such indirect emissions to air were found to be a greater contributor of PAHs to the AOSR atmosphere relative to reported direct emissions to air. The indirect pathway transporting uncontrolled releases of PAHs to aquatic systems via the atmosphere may be as significant a contributor of PAHs to aquatic systems as other supply pathways. Emission density estimates for the three PAHs that account for tailings pond disposal are much closer to estimated global averages than estimates based on the available emissions datasets, which fall close to the global minima. Our results highlight the need for improved accounting of PAH emissions from oil sands operations, especially in light of continued expansion of these operations. PMID:24596429

  13. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils.

    Science.gov (United States)

    Sui, Hong; Hua, Zhengtao; Li, Xingang; Li, Hong; Wu, Guozhong

    2014-05-01

    Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76-94 % of the total petroleum hydrocarbons including 25 alkanes (C11-C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol-water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 10(5) mg kg(-1) in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.

  14. Estimating Emissions of Toxic Hydrocarbons from Natural Gas Production Sites in the Barnett Shale Region of Northern Texas.

    Science.gov (United States)

    Marrero, Josette E; Townsend-Small, Amy; Lyon, David R; Tsai, Tracy R; Meinardi, Simone; Blake, Donald R

    2016-10-04

    Oil and natural gas operations have continued to expand and move closer to densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples collected downwind of oil and gas sites revealed enhancements in several potentially toxic volatile organic compounds (VOCs) when compared to background values. Molar emissions ratios relative to methane were determined for hexane, benzene, toluene, ethylbenzene, and xylene (BTEX compounds). Using methane leak rates measured from the Picarro mobile flux plane (MFP) system and a Barnett Shale regional methane emissions inventory, the rates of emission of these toxic gases were calculated. Benzene emissions ranged between 51 ± 4 and 60 ± 4 kg h -1 . Hexane, the most abundantly emitted pollutant, ranged from 642 ± 45 to 1070 ± 340 kg h -1 . While observed hydrocarbon enhancements fall below federal workplace standards, results may indicate a link between emissions from oil and natural gas operations and concerns about exposure to hazardous air pollutants. The larger public health risks associated with the production and distribution of natural gas are of particular importance and warrant further investigation, particularly as the use of natural gas increases in the United States and internationally.

  15. Top-down constraints on methane and non-methane hydrocarbon emissions in the US Four Corners

    Science.gov (United States)

    Petron, G.; Miller, B. R.; Vaughn, B. H.; Kofler, J.; Mielke-Maday, I.; Sherwood, O.; Schwietzke, S.; Conley, S.; Sweeney, C.; Dlugokencky, E. J.; White, A. B.; Tans, P. P.; Schnell, R. C.

    2017-12-01

    A NASA and NOAA supported field campaign took place in the US Four Corners in April 2015 to further investigate a regional "methane hotspot" detected from space. The Four Corners region is home to the fossil fuel rich San Juan Basin, which extends between SE Colorado and NE New Mexico. The area has been extracting coal, oil and natural gas for decades. Degassing from the Fruitland coal outcrop on the Colorado side has also been reported. Instrumented aircraft, vans and ground based wind profilers were deployed for the campaign with the goal to quantify and attribute methane and non-methane hydrocarbon emissions in the region. A new comprehensive analysis of the campaign data sets will be presented and top-down emission estimates for methane and ozone precursors will be compared with available bottom-up estimates.

  16. Identification of emission sources of particle-bound polycyclic aromatic hydrocarbons in the vicinity of the industrial zone of the city of Novi Sad

    OpenAIRE

    Jovčić Nataša S.; Radonić Jelena R.; Turk-Sekulić Maja M.; Vojinović-Miloradov Mirjana B.; Popov Srđan B.

    2013-01-01

    Data on polycyclic aromatic hydrocarbons (PAHs) in ambient air accessed at selected locations in the vicinity of the industrial zone of the city of Novi Sad, Serbia, have been presented and analyzed in order to determine seasonal and spatial variations and to identify emission sources of particle-bound PAHs. Previous studies have demonstrated that the major contributors of PAHs in urban areas are the emissions from vehicle exhaust, and emissions releases from industrial processes like a...

  17. The bulk isotopic composition of hydrocarbons in subaerial volcanic-hydrothermal emissions from different tectonic settings

    Science.gov (United States)

    Fiebig, J.; Tassi, F.; Vaselli, O.; Viveiros, M. F.; Silva, C.; Lopez, T. M.; D'Alessandro, W.; Stefansson, A.

    2015-12-01

    Assuming that methane and its higher chain homologues derive from a common source, carbon isotope patterns have been applied as a criterion to identify occurrences of abiogenic hydrocarbons. Based on these, it has been postulated that abiogenic hydrocarbon production occurs within several (ultra)mafic environments. More evolved volcanic-hydrothermal systems may also provide all the prerequisites necessary for abiogenic hydrocarbon production, such as availability of inorganic CO2, hydrogen and heat. We have investigated the chemical and isotopic composition of n-alkanes contained within subaerial hydrothermal discharges emitted from a range of hot spot, subduction and rift-related volcanoes to determine the origin of hydrocarbons in these systems. Amongst these are Nisyros (Greece), Vesuvio, Campi Flegrei, Ischia, Pantelleria and Vulcano (all Italy), Mt. Mageik and Trident (USA), Copahue (Argentina), Teide (Spain), Furnas and Fogo (Portugal). The carbon isotopic composition of methane emitted from these sites varies from -65 to -8‰ , whereas δ13C of ethane and propane exhibit a much narrower variation from -17‰ to -31‰. Methane that occurs most enriched in 13C is also characterized by relatively positive δD values ranging up to -80‰. Carbon isotope reversals between methane and ethane are only observed for locations exhibiting δ13C-CH4 values > -20‰, such as Teide, Pantelleria, Trident and Furnas. At Furnas, δ13C-CH4 varies by 50‰ within a relatively short distance of <50m between two vents, whereas δ13C-C2H6 varies by less than 2‰ only. For some of the investigated locations apparent carbon isotopic temperatures between methane and CO2 are in agreement with those derived from gas concentration geothermometers. At these locations methane, however seems to be in disequilibrium with ethane and propane. These findings imply that methane on the one hand and the C2+ hydrocarbons on the other hand often might derive from distinct sources.

  18. On-line database of the spectral properties of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Malloci, Giuliano; Joblin, Christine; Mulas, Giacomo

    2007-01-01

    We present an on-line database of computed molecular properties for a large sample of polycyclic aromatic hydrocarbons in four charge states: -1, 0, +1, and +2. At present our database includes 40 molecules ranging in size from naphthalene and azulene (C 10 H 8 ) up to circumovalene (C 66 H 20 ). We performed our calculations in the framework of the density functional theory (DFT) and the time-dependent DFT to obtain the most relevant molecular parameters needed for astrophysical applications. For each molecule in the sample, our database presents in a uniform way the energetic, rotational, vibrational, and electronic properties. It is freely accessible on the web at (http://astrochemistry.ca.astro.it/database/) and (http://www.cesr.fr/~joblin/database/)

  19. Effects of fuel properties and oxidation catalyst on diesel exhaust emissions; Keiyu seijo oyobi sanka shokubai no diesel haishutsu gas eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S; Morihisa, H; Tamanouchi, M; Araki, H; Yamada, S [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    Effects of fuel properties (T90 and Poly-Aromatic Hydrocarbons: PAH) and oxidation catalyst on diesel exhaust emissions were studied using three DI diesel engines and two diesel passenger cars. (IDI engine) PM emissions were found to increase as T90 and PAH increased and could be decreased considerably for each fuel if an oxidation catalyst was installed. 5 refs., 9 figs., 3 tabs.

  20. Urban air chemistry and diesel vehicles emissions: Quantifying small and big hydrocarbons by CIMS to improve emission inventories

    Science.gov (United States)

    Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.

    2017-10-01

    Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.

  1. Study of the properties of plasma of CH4/H2 and its interactions with liquid hydrocarbons

    International Nuclear Information System (INIS)

    Gambus, G.; Patino, P.

    2003-01-01

    Properties of a CH 4 /H 2 plasma, as a reducing agent in heterogeneous reactions with one olefin hydrocarbon, were studied in this work. The characterization of the plasma was carried out by means of optical emission spectroscopy, by varying the gas composition (CH 4 /H 2 ) and the working pressure, in a radio frequency discharge. The variation of the relative populations of H and CH radicals was followed, at pressures between 0.001 and 0.4 mbar and CH 4 /H 2 proportions 1:1 to 1:5. The conditions selected for treating squalene were 0.1 mbar and CH 4 /H 2 of 1:5. Although these conditions did not yield the maximum intensities for the two signals, these were strong enough and black carbon and polymers ceased from being produced under this regime. At 5 C, more than two double bonds per molecule, out of six, were hydrogenated with the plasma in 12 hours. (Author)

  2. Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading

    International Nuclear Information System (INIS)

    Shemfe, Mobolaji B.; Whittaker, Carly; Gu, Sai; Fidalgo, Beatriz

    2016-01-01

    Highlights: • GHG emissions from the upgrading of pyrolysis-derived bio-oil is quantified.. • Soil organic carbon sequestration rate had a significant effect on GHG emission. • Increasing plant scale could improve the environmental performance of the system. • Nitrogen to the pyrolysis reactor had significant impact on GHG emissions. - Abstract: This study examines the GHG emissions associated with producing bio-hydrocarbons via fast pyrolysis of Miscanthus. The feedstock is then upgraded to bio-oil products via hydroprocessing and zeolite cracking. Inventory data for this study were obtained from current commercial cultivation practices of Miscanthus in the UK and state-of-the-art process models developed in Aspen Plus®. The system boundary considered spans from the cultivation of Miscanthus to conversion of the pyrolysis-derived bio-oil into bio-hydrocarbons up to the refinery gate. The Miscanthus cultivation subsystem considers three scenarios for soil organic carbon (SOC) sequestration rates. These were assumed as follows: (i) excluding (SOC), (ii) low SOC and (iii) high (SOC) for best and worst cases. Overall, Miscanthus cultivation contributed moderate to negative values to GHG emissions, from analysis of excluding SOC to high SOC scenarios. Furthermore, the rate of SOC in the Miscanthus cultivation subsystem has significant effects on total GHG emissions. Where SOC is excluded, the fast pyrolysis subsystem shows the highest positive contribution to GHG emissions, while the credit for exported electricity was the main ‘negative’ GHG emission contributor for both upgrading pathways. Comparison between the bio-hydrocarbons produced from the two upgrading routes and fossil fuels indicates GHG emission savings between 68% and 87%. Sensitivity analysis reveals that bio-hydrocarbon yield and nitrogen gas feed to the fast pyrolysis reactor are the main parameters that influence the total GHG emissions for both pathways.

  3. Vehicle fleet emissions of black carbon, polycyclic aromatic hydrocarbons, and other pollutants measured by a mobile laboratory in Mexico City

    Directory of Open Access Journals (Sweden)

    M. Jiang

    2005-01-01

    Full Text Available Black carbon (BC and polycyclic aromatic hydrocarbons (PAHs are of concern due to their effects on climate and health. The main goal of this research is to provide the first estimate of emissions of BC and particle-phase PAHs (PPAHs from motor vehicles in Mexico City. The emissions of other pollutants including carbon monoxide (CO, oxides of nitrogen (NOx, volatile organic compounds (VOCs, and particulate matter of diameter 2.5 μm and less (PM2.5 are also estimated. As a part of the Mexico City Metropolitan Area field campaign in April 2003 (MCMA-2003, a mobile laboratory was driven throughout the city. The laboratory was equipped with a comprehensive suite of gas and particle analyzers, including an aethalometer that measured BC and a photoionization aerosol sensor that measured PPAHs. While driving through traffic, the mobile lab continuously sampled exhaust plumes from the vehicles around it. We have developed a method of automatically identifying exhaust plumes, which are then used as the basis for calculation of fleet-average emissions. In the approximately 75 h of on-road sampling during the field campaign, we have identified ~30 000 exhaust measurement points that represent a variety of vehicle types and driving conditions. The large sample provides a basis for estimating fleet-average emission factors and thus the emission inventory. Motor vehicles in the Mexico City area are estimated to emit 1700±200 metric tons BC, 57±6 tons PPAHs, 1 190 000±40 000 tons CO, 120 000±3000 tons NOx, 240 000±50 000 tons VOCs, and 4400±400 tons PM2.5 per year, not including cold start emissions. The estimates for CO, NOx, and PPAHs may be low by up to 10% due to the slower response time of analyzers used to measure these species. Compared to the government's official motor vehicle emission inventory for the year 2002, the estimates for CO, NOx, VOCs, and PM2.5 are 38% lower, 23% lower, 27% higher, and 25% higher, respectively. The

  4. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Sagarika; Mukherji, Suparna [Indian Institute of Technology Bombay, Mumbai (India). Centre for Environmental Science and Engineering (CESE)

    2012-04-15

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52 ) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75 and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  5. Infrared emission from a polycyclic aromatic hydrocarbon (PAH) excited by ultraviolet laser

    International Nuclear Information System (INIS)

    Cherchneff, I.; Barker, J.R.

    1989-01-01

    The infrared fluorescence spectrum from the C-H stretch modes of vibrationally excited azulene (C10H8), a PAH was measured in the laboratory. PAHs are candidates as carriers of the unidentified infrared emission bands that are observed in many astronomical objects associated with dust and ultraviolet light. In the present experiment, gas phase azulene was excited with light from a 308 nm pulsed laser, and the infrared emission spectrum was time-resolved and wavelength-resolved. Moreover, the infrared absorption spectrum of gas phase azulene was obtained using an FTIR spectrometer. The laboratory emission spectrum resembles observed infrared emission spectra from the interstellar medium, providing support for the hypothesis that PAHs are the responsible carriers. The azulene C-H stretch emission spectrum is more asymmetric than the absorption spectrum, probably due to anharmonicity of levels higher than nu = 1. 36 refs

  6. Effect of annealing on field emission properties of nanodiamond coating

    International Nuclear Information System (INIS)

    Zhai, C.X.; Yun, J.N.; Zhao, L.L.; Zhang, Z.Y.; Wang, X.W.; Chen, Y.Y.

    2011-01-01

    Field electron emission of detonation nanodiamond (ND) coated on a titanium substrate by electrophoretic deposition is investigated. It is found that thermal annealing can significantly improve the field emission properties of the ND layer, which can be mainly attributed to the formation of the TiC phase between diamond and Ti. The first-principles calculated results show that the formation of transition layers can lower the interface barrier and enhance the field electron emission of ND coating. Besides, the transformation of diamond to graphite after annealing has been revealed by Raman spectra. This transformation also benefits the electron emission enhancement.

  7. Effect of annealing on field emission properties of nanodiamond coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, C.X., E-mail: zhaicatty@126.co [School of Information Science and Technology, Northwest University, Xi' an 710127, Shaanxi (China); Yun, J.N.; Zhao, L.L.; Zhang, Z.Y.; Wang, X.W.; Chen, Y.Y. [School of Information Science and Technology, Northwest University, Xi' an 710127, Shaanxi (China)

    2011-03-01

    Field electron emission of detonation nanodiamond (ND) coated on a titanium substrate by electrophoretic deposition is investigated. It is found that thermal annealing can significantly improve the field emission properties of the ND layer, which can be mainly attributed to the formation of the TiC phase between diamond and Ti. The first-principles calculated results show that the formation of transition layers can lower the interface barrier and enhance the field electron emission of ND coating. Besides, the transformation of diamond to graphite after annealing has been revealed by Raman spectra. This transformation also benefits the electron emission enhancement.

  8. Characterizing Methane Emissions at Local Scales with a 20 Year Total Hydrocarbon Time Series, Imaging Spectrometry, and Web Facilitated Analysis

    Science.gov (United States)

    Bradley, Eliza Swan

    Methane is an important greenhouse gas for which uncertainty in local emission strengths necessitates improved source characterizations. Although CH4 plume mapping did not motivate the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) design and municipal air quality monitoring stations were not intended for studying marine geological seepage, these assets have capabilities that can make them viable for studying concentrated (high flux, highly heterogeneous) CH4 sources, such as the Coal Oil Point (COP) seep field (˜0.015 Tg CH4 yr-1) offshore Santa Barbara, California. Hourly total hydrocarbon (THC) data, spanning 1990 to 2008 from an air pollution station located near COP, were analyzed and showed geologic CH4 emissions as the dominant local source. A band ratio approach was developed and applied to high glint AVIRIS data over COP, resulting in local-scale mapping of natural atmospheric CH4 plumes. A Cluster-Tuned Matched Filter (CTMF) technique was applied to Gulf of Mexico AVIRIS data to detect CH4 venting from offshore platforms. Review of 744 platform-centered CTMF subsets was facilitated through a flexible PHP-based web portal. This dissertation demonstrates the value of investigating municipal air quality data and imaging spectrometry for gathering insight into concentrated methane source emissions and highlights how flexible web-based solutions can help facilitate remote sensing research.

  9. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    International Nuclear Information System (INIS)

    Gómez-Cuenca, F.; Gómez-Marín, M.; Folgueras-Díaz, M.B.

    2013-01-01

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  10. PROBLEMS WITH DETERMINATION OF FUGITIVE EMISSION OF POLYCYCLIC AROMATIC HYDROCARBONS FROM COKE OVEN BATTERY

    Directory of Open Access Journals (Sweden)

    Rafał Bigda

    2017-03-01

    Full Text Available Coke oven battery is complex and multifaceted facility in terms of air pollutant emissions. As far as stack or quenching tower does not cause major difficulties of emission measurement, the fugitive emission measurement from sources such as battery top elements (charging holes, ascension pipes or oven doors is still complicated and not fully solved problem. This article presents the discussion concerning main problems and errors likely to be made in particular stages of procedure of fugitive emissions characterization from coke oven battery (selection of sampling points, sampling itself, measurement of air velocity over battery top and laboratory analyses. In addition, results of concentrations measurements of selected substances characteristic for the coking process (naphthalene, anthracene, 4 PAHs and TSP originating from fugitive sources of coke oven battery and subjected to reporting under the E-PRTR are presented. The measurements were carried out on coke oven battery top in points selected on the basis of the preceding detailed air convection velocity measurements over battery top. Results of the velocity measurements were compared with results of numerical modelling using CFD software. The presented material is an attempt to cross-sectional presentation of issues related to the quantitative evaluation of fugitive emission from coke oven battery, discussed on the example of PAHs emission as a group of substances characteristic for coking of coal.

  11. Polycyclic Aromatic Hydrocarbon Emission in Spitzer /IRS Maps. II. A Direct Link between Band Profiles and the Radiation Field Strength

    Energy Technology Data Exchange (ETDEWEB)

    Stock, D. J.; Peeters, E., E-mail: dstock84@gmail.com [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2017-03-10

    We decompose the observed 7.7 μ m polycyclic aromatic hydrocarbon (PAH) emission complexes in a large sample of over 7000 mid-infrared spectra of the interstellar medium using spectral cubes observed with the Spitzer /IRS-SL instrument. In order to fit the 7.7 μ m PAH emission complex we invoke four Gaussian components, which are found to be very stable in terms of their peak positions and widths across all of our spectra, and subsequently define a decomposition with fixed parameters, which gives an acceptable fit for all the spectra. We see a strong environmental dependence on the interrelationships between our band fluxes—in the H ii regions all four components are intercorrelated, while in the reflection nebulae (RNs) the inner and outer pairs of bands correlate in the same manner as previously seen for NGC 2023. We show that this effect arises because the maps of RNs are dominated by emission from strongly irradiated photodissociation regions, while the much larger maps of H ii regions are dominated by emission from regions much more distant from the exciting stars, leading to subtly different spectral behavior. Further investigation of this dichotomy reveals that the ratio of two of these components (centered at 7.6 and 7.8 μ m) is linearly related to the UV-field intensity (log G {sub 0}). We find that this relationship does not hold for sources consisting of circumstellar material, which are known to have variable 7.7 μ m spectral profiles.

  12. Geographic variations in female breast cancer incidence in relation to ambient air emissions of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Large, Courtney; Wei, Yudan

    2017-07-01

    A significant geographic variation of breast cancer incidence exists, with incidence rates being much higher in industrialized regions. The objective of the current study was to assess the role of environmental factors such as exposure to ambient air pollution, specifically carcinogenic polycyclic aromatic hydrocarbons (PAHs) that may be playing in the geographic variations in breast cancer incidence. Female breast cancer incidence and ambient air emissions of PAHs were examined in the northeastern and southeastern regions of the USA by analyzing data from the Surveillance, Epidemiology, and End Results (SEER) Program and the State Cancer Profiles of the National Cancer Institute and from the Environmental Protection Agency. Linear regression analysis was conducted to evaluate the association between PAH emissions and breast cancer incidence in unadjusted and adjusted models. Significantly higher age-adjusted incidence rates of female breast cancer were seen in northeastern SEER regions, when compared to southeastern regions, during the years of 2000-2012. After adjusting for potential confounders, emission densities of total PAHs and four carcinogenic individual PAHs (benzo[a]pyrene, dibenz[a,h]anthracene, naphthalene, and benzo[b]fluoranthene) showed a significantly positive association with annual incidence rates of breast cancer, with a β of 0.85 (p = 0.004), 58.37 (p = 0.010), 628.56 (p = 0.002), 0.44 (p = 0.041), and 77.68 (p = 0.002), respectively, among the northeastern and southeastern states. This study suggests a potential relationship between ambient air emissions of carcinogenic PAHs and geographic variations of female breast cancer incidence in the northeastern and southeastern US. Further investigations are needed to explore these interactions and elucidate the role of PAHs in regional variations of breast cancer incidence.

  13. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations

    Directory of Open Access Journals (Sweden)

    M. Bauwens

    2016-08-01

    Full Text Available As formaldehyde (HCHO is a high-yield product in the oxidation of most volatile organic compounds (VOCs emitted by fires, vegetation, and anthropogenic activities, satellite observations of HCHO are well-suited to inform us on the spatial and temporal variability of the underlying VOC sources. The long record of space-based HCHO column observations from the Ozone Monitoring Instrument (OMI is used to infer emission flux estimates from pyrogenic and biogenic volatile organic compounds (VOCs on the global scale over 2005–2013. This is realized through the method of source inverse modeling, which consists in the optimization of emissions in a chemistry-transport model (CTM in order to minimize the discrepancy between the observed and modeled HCHO columns. The top–down fluxes are derived in the global CTM IMAGESv2 by an iterative minimization algorithm based on the full adjoint of IMAGESv2, starting from a priori emission estimates provided by the newly released GFED4s (Global Fire Emission Database, version 4s inventory for fires, and by the MEGAN-MOHYCAN inventory for isoprene emissions. The top–down fluxes are compared to two independent inventories for fire (GFAS and FINNv1.5 and isoprene emissions (MEGAN-MACC and GUESS-ES. The inversion indicates a moderate decrease (ca. 20 % in the average annual global fire and isoprene emissions, from 2028 Tg C in the a priori to 1653 Tg C for burned biomass, and from 343 to 272 Tg for isoprene fluxes. Those estimates are acknowledged to depend on the accuracy of formaldehyde data, as well as on the assumed fire emission factors and the oxidation mechanisms leading to HCHO production. Strongly decreased top–down fire fluxes (30–50 % are inferred in the peak fire season in Africa and during years with strong a priori fluxes associated with forest fires in Amazonia (in 2005, 2007, and 2010, bushfires in Australia (in 2006 and 2011, and peat burning in Indonesia (in 2006 and 2009, whereas

  14. Polycyclic aromatic hydrocarbons, elemental and organic carbon emissions from tire-wear.

    Science.gov (United States)

    Aatmeeyata; Sharma, Mukesh

    2010-09-15

    Tire-wear is an important source of PAHs, elemental carbon (EC) and organic carbon (OC). The emissions of these pollutants have been studied in an experimental set-up, simulating a realistic road-tire interaction (summer tire-concrete road). The large particle non-exhaust emissions (LPNE; diameter greater than 10 microm) have been evaluated over 14,500 km run of the tire. An increasing linear trend with cumulative km run was observed for emissions of PAHs and carbon. Amongst PAHs in LPNE, pyrene has been observed to be the highest (30+/-4 mg kg(-1)) followed by benzo[ghi]perylene (17+/-2 mg kg(-1)). Different fractions of EC-OC for tire-wear have been analyzed, and unlike exhaust emissions, EC1 was observed to be 99% of EC whereas more than 70% of the OC was the high temperature carbon (OC3 and OC4). The overall emission factors (mass tire(-1) km(-1)) for PAHs, EC and OC from tire-wear are 378 ng tire(-1) km(-1), 1.46 mg tire(-1) km(-1) and 2.37 mg tire(-1) km(-1) for small cars. Copyright 2010 Elsevier B.V. All rights reserved.

  15. The characterisation of polycyclic aromatic hydrocarbons emissions from burning of different firewood species in Australia

    International Nuclear Information System (INIS)

    Zou, Linda Y.; Zhang Weidong; Atkiston, Steven

    2003-01-01

    Emission levels for PAHs varied with the type of wood burned. - Four kinds of woods used for residential heating in Australia were selected and burned under two burning conditions in a domestic wood heater installed in a laboratory. The selected wood species included pine (Pinus radiata), red gum (Eucalyptus camaldulensis), sugar gum (Eucalyptus cladocalyx) and yellow box (Eucalyptus melliodora). The two different burning conditions represented fast burning and slow burning, with the air inlet of the combustion chamber respectively 'full open' and 'half open'. By sampling and analysing particulate and gaseous emissions from the burning of each load of wood under defined experimental conditions, PAHs emissions and their profiles in the particulate and gaseous phases were obtained. 16 species out of the 18 selected PAHs were detected. Of these, seven species were detected in the gaseous phase and most were lower molecular weight compounds. Similarly, more than 10 species of PAHs were detected in the particulate phase and these were mostly heavier molecular weight compounds. Under both burning conditions, emission levels for total PAHs and total genotoxic PAHs were the highest for pine and lowest for sugar gum, with red gum being the second highest, followed by yellow box. Using the specific sampling method, gaseous PAHs accounted for above 90% mass fraction of total PAHs in comparison to particulate PAHs (10%). The majority of the genotoxic PAHs were present in the particulate phase. PAHs emission levels in slow burning conditions were generally higher than those in fast burning conditions

  16. Computational investigation of the effects of perfluorination on the charge-transport properties of polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Cardia, R.; Malloci, G.; Bosin, A.; Serra, G.; Cappellini, G.

    2016-01-01

    We present a systematic computational study of the effects of perfluorination on the charge-transport properties of three homologous classes of polyaromatic hydrocarbons of interest for molecular electronics: acenes, pyrenes, and circumacenes. By means of Density Functional Theory calculations we first obtained the key molecular properties for transport of both holes and electrons. We then used these parameters in the framework of Marcus theory to compare charge-transfer rates in the high temperatures regime for both unsubstituted and perfluorinated molecules. We additionally estimated the relative charge-mobility of each unsubstituted (perfluorinated) molecule with respect to unsubstituted (perfluorinated) pentacene. We found in all cases that perfluorination reduces the charge-transfer rate in absolute terms. This is largely due to the higher values of the molecular reorganization energies predicted for perfluorinated compounds. Interestingly, however, the charge-transfer rates for both holes and electrons of perfluorinated species are remarkably similar, especially for the larger species. In addition, in the case of the larger circumacenes the charge-mobility values relative to pentacene values are found to increase upon perfluorination.

  17. Computational investigation of the effects of perfluorination on the charge-transport properties of polyaromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardia, R. [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Istituto Officina dei Materiali (CNR – IOM), UOS di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari (Italy); Malloci, G., E-mail: giuliano.malloci@dsf.unica.it [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Bosin, A.; Serra, G. [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Cappellini, G., E-mail: giancarlo.cappellini@dsf.unica.it [Università degli studi di Cagliari, Dipartimento di Fisica, Cittadella Universitaria, I-09042 Monserrato (Cagliari) (Italy); Istituto Officina dei Materiali (CNR – IOM), UOS di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari (Italy)

    2016-10-20

    We present a systematic computational study of the effects of perfluorination on the charge-transport properties of three homologous classes of polyaromatic hydrocarbons of interest for molecular electronics: acenes, pyrenes, and circumacenes. By means of Density Functional Theory calculations we first obtained the key molecular properties for transport of both holes and electrons. We then used these parameters in the framework of Marcus theory to compare charge-transfer rates in the high temperatures regime for both unsubstituted and perfluorinated molecules. We additionally estimated the relative charge-mobility of each unsubstituted (perfluorinated) molecule with respect to unsubstituted (perfluorinated) pentacene. We found in all cases that perfluorination reduces the charge-transfer rate in absolute terms. This is largely due to the higher values of the molecular reorganization energies predicted for perfluorinated compounds. Interestingly, however, the charge-transfer rates for both holes and electrons of perfluorinated species are remarkably similar, especially for the larger species. In addition, in the case of the larger circumacenes the charge-mobility values relative to pentacene values are found to increase upon perfluorination.

  18. Measuring Star-Formation Rates of AGNs and QSOs using a new calibration from Polycyclic Aromatic Hydrocarbon Emission

    Science.gov (United States)

    Papovich, Casey

    Understanding the coevolution of star-formation and supermassive black hole accretion is one of the key questions in galaxy formation theory. This relation is important for understanding why at present the mass in galaxy bulges (on scales of kpc) correlates so tightly with the mass of galaxy central supermassive blackholes (on scales of AU). Feedback from supermassive black hole accretion may also be responsible for heating or expelling cold gas from galaxies, shutting off the fuel for star-formation and additional black hole growth. Did bulges proceed the formation of black holes, or vice versa, or are they contemporaneous? Therefore, understanding the exact rates of star-formation and supermassive black hole growth, and how they evolve with time and galaxy mass has deep implications for how galaxies form. It has previously been nearly impossible to study simultaneously both star-formation and accretion onto supermassive black holes in galaxies because the emission from black hole accretion contaminates nearly all diagnostics of star-formation. The "standard" diagnostics for the star-formation rate (the emission from hydrogen, UV emission, midIR emission, far-IR emission, etc) are not suitable for measuring star-formation rates in galaxies with actively accreting supermassive blackholes. In this proposal, the researchers request NASA/ADP funding for an archival study using spectroscopy with the Spitzer Space Telescope to measure simultaneously the star-formation rate (SFR) and bolometric emission from accreting supermassive blackholes to understand the complex relation between both processes. The key to this study is that they will develop a new calibrator for SFRs in galaxies with active supermassive black holes based on the molecular emission from polycyclic aromatic hydrocarbons (PAHs), which emit strongly in the mid-IR (3 - 20 micron) and are very strong in spectra from the Spitzer Space Telescope. The PAH molecules exist near photo-dissociation regions, and

  19. Molecular simulations of hydrocarbon lubricants: Impact of molecular architecture on performance properties

    Science.gov (United States)

    Kioupis, Loukas I.

    2000-07-01

    With the increased power of modern computers, molecular modeling has been used widely and proven to be a valuable tool for elucidating the physical processes important in many industrial and engineering problems. Of particular interest to us is the rheology and physical chemistry of complex fluids, such as hydrocarbon lubricants and polymers. The goal is to provide qualitative and quantitative molecular-level explanations for the behavior of such fluids, and provide guidance in the development of new improved materials. For example, during the production of poly-α-olefin (PAO) synthetic lubricants, the number of the isomer skeletal structures that can be obtained is staggering. Which of the countless PAO isomers produce a lubricant with superior performance properties? How does it behave under different operational conditions of temperature, pressure, and shear rate? A fundamental understanding of the effect that molecular structure has on the oil's rheological and lubricant performance is first needed, in order to answer these questions. To serve this purpose, we have developed efficient molecular dynamics (MD) simulation programs, which utilize multiple time step algorithms and parallel computational techniques. This enables us to conduct simulations of typical PAO isomers and compute the viscosity, as well as several other dynamic and static properties, as a function of temperature, pressure, and shear rate. The key molecular mechanisms that determine important macroscopic properties, such as viscosity index, viscosity-pressure coefficient, traction coefficient, and shear thinning behavior are discussed. Based on this analysis, lubricant and traction fluid structures that have a high likelihood of having desirable properties are proposed. In addition, studies on simple alkane mixtures are presented, in an attempt to understand the more complex polydisperse lubricant fluids, their blends, and their interaction with additives.

  20. Properties of polycyclic aromatic hydrocarbons in the northwest photon dominated region of NGC 7023. II. Traditional PAH analysis using k-means as a visualization tool

    International Nuclear Information System (INIS)

    Boersma, C.; Bregman, J.; Allamandola, L. J.

    2014-01-01

    Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer-IRS spectral map of the northwest photon dominated region (PDR) in NGC 7023 is analyzed using the 'traditional' approach in which the PAH bands and plateaus between 5.2-19.5 μm are isolated by subtracting the underlying continuum and removing H 2 emission lines. The spectra are organized into seven spectroscopic bins by using k-means clustering. Each cluster corresponds to, and reveals, a morphological zone within NGC 7023. The zones self-organize parallel to the well-defined PDR front that coincides with an increase in intensity of the H 2 emission lines. PAH band profiles and integrated strengths are measured, classified, and mapped. The morphological zones revealed by the k-means clustering provides deeper insight into the conditions that drive variations in band strength ratios and evolution of the PAH population that otherwise would be lost. For example, certain band-band relations are bifurcated, revealing two limiting cases; one associated with the PDR, the other with the diffuse medium. Traditionally, PAH band strength ratios are used to gain insight into the properties of the emitting PAH population, i.e., charge, size, structure, and composition. Insights inferred from this work are compared and contrasted to those from Boersma et al. (first paper in this series), where the PAH emission in NGC 7023 is decomposed exclusively using the PAH spectra and tools made available through the NASA Ames PAH IR Spectroscopic Database.

  1. Decreasing polycyclic aromatic hydrocarbons emission from bitumen using alternative bitumen production process

    International Nuclear Information System (INIS)

    Rasoulzadeh, Y.; Mortazavi, S.B.; Yousefi, A.A.; Khavanin, A.

    2011-01-01

    In 1988, the National Institute for Occupational Safety and Health (NIOSH) recommended that bitumen fumes should also be considered a potential occupational carcinogen and management practices such as engineering controls should be implemented. Changing the production process of bitumen, as a source control method, was investigated in our study. For the first time, a novel alternative process was used to produce paving grade bitumen with decreased PAH emissions as well as improved bitumen performance grade (PG). Post-consumer latex and natural bitumen (NB) were used as additives to obtain 60/70 modified bitumen directly from the vacuum bottom (VB) without any need for air-blowing. The emissions were produced by a laboratory fume generation rig and were sampled and analyzed by GC-Mass and GC-FID as described in NIOSH method 5515. The PG of the resulting modified 60/70 bitumen in this study covers a wider range of climatic conditions and has higher total resistance against deformation than conventional 60/70 bitumen. The total PAH emissions from modified 60/70 bitumen (100.2619 ng/g) were decreased approximately to 50% of PAHs emitted from conventional 60/70 bitumen (197.696 ng/g). Therefore, it is possible to obtain modified bitumen with lower PAH emissions and better quality than conventional bitumen via additives and without air-blowing.

  2. The characterisation of polycyclic aromatic hydrocarbons emissions from burning of different firewood species in Australia.

    Science.gov (United States)

    Zou, Linda Y; Zhang, Weidong; Atkiston, Steven

    2003-01-01

    Four kinds of woods used for residential heating in Australia were selected and burned under two burning conditions in a domestic wood heater installed in a laboratory. The selected wood species included pine (Pinus radiata), red gum (Eucalvptus camaldulensis), sugar gum (Eucalyptus cladocalyx) and yellow box (Eucalyptus melliodora). The two different burning conditions represented fast burning and slow burning, with the air inlet of the combustion chamber respectively 'full open' and 'half open'. By sampling and analysing particulate and gaseous emissions from the burning of each load of wood under defined experimental conditions, PAHs emissions and their profiles in the particulate and gaseous phases were obtained. 16 species out of the 18 selected PAHs were detected. Of these, seven species were detected in the gaseous phase and most were lower molecular weight compounds.Similarly, more than 10 species of PAHs were detected in the particulate phase and these were mostly heavier molecular weight compounds. Under both burning conditions, emission levels for total PAHs and total genotoxic PAHs were the highest for pine and lowest for sugar gum, with red gum being the second highest, followed by yellow box. Using the specific sampling method, gaseous PAHs accounted for above 90% mass fraction of total PAHs in comparison to particulate PAHs (10%). The majority of the genotoxic PAHs were present in the particulate phase. PAHs emission levels in slow burning conditions were generally higher than those in fast burning conditions.

  3. Fugitive hydrocarbon emissions from pacific OCS facilities. Volume 1. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    In January 1989, the Minerals Management Service (MMS) conducted a study using the latest approved methods for emission screening and sampling solely on Outer Continental Shelf (OCS) oil and gas platforms in the Santa Barbara Channel in order to determine platform emission rates more representative of that region. The study was designed and reviewed throughout its conduct by a Quality Review Board (QRB) composed of air resource agencies and industry. Representatives from the Tri-county Air Pollution Control Districts and the MMS actively participated at these meetings. Some participants expressed concerns about some of the methods used and the study results. ABB's thorough responses to these questions and comments were submitted to all reviewers before the printing of the final report, and are contained in appendices of the study final report now available to the public. The results of the MMS study show that the average emission factors for the Pacific OCS oil and gas facilities measured in 1989 are 3.5 times lower than those Pacific OCS facilities sampled in the 1979 API/Rockwell study, and 7.8 times lower than the Gulf of Mexico OCS facilities sampled in the same 1979 study. Efforts to determine the quantitative effect of inspection and maintenance programs on controlling emissions were inconclusive

  4. Study on the combustion and hydrocarbon emission characteristics of direct injection spark-ignition engines during the direct-start process

    International Nuclear Information System (INIS)

    Shi, Lei; Xiao, Maoyu; Deng, Kangyao

    2015-01-01

    Highlights: • Mixture concentration in first-combustion cylinder of direct start is measured. • Factors that affect direct start performances are investigated. • Combustion characteristics of first-combustion cylinder are analyzed. • Hydrocarbon emission is considered to determined control strategies of direct start. - Abstract: This study was conducted to investigate the combustion and emissions characteristics of the first-combustion cylinder in a direct-start process. The explosive energy of the first combustion is important for the success of a direct start, but this combustion was rarely addressed in recent research. For a 2.0 L direct-injection spark-ignition engine, the in-cylinder mixture concentration, cylinder pressure, engine speed and exhaust hydrocarbon concentration were detected to analyze the fuel evaporation, combustion, engine movement and engine emissions, respectively. In the first-combustion cylinder of the direct-start process, the injected fuel was often enriched to ensure that an appropriate mixture concentration was obtained for ignition without misfiring. Approximately one-third of the injected fuel would not participate in the combustion process and would therefore reduce the exhaust hydrocarbon emissions. The start position determined the amount of the total explosive energy in the first-combustion cylinder, and an optimal start position for a direct start was found to be at a 70–80° crank angle before the top dead center to obtain a better combustion performance and lower emissions. A lower coolant temperature increased the maximum explosion energy of the first combustion, but additional hydrocarbon emissions were generated. Because there was almost no problem in the direct-start capability with different coolant temperatures after an idling stop, it was necessary to maintain the coolant temperature when the engine was stopped

  5. Emission of oxygenated polycyclic aromatic hydrocarbons from biomass pellet burning in a modern burner for cooking in China

    Science.gov (United States)

    Shen, Guofeng; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Wei, Wen; Tao, Shu

    2012-12-01

    Biomass pellets are undergoing fast deployment widely in the world, including China. To this stage, there were limited studies on the emissions of various organic pollutants from the burning of those pellets. In addition to parent polycyclic aromatic hydrocarbons, oxygenated PAHs (oPAHs) have been received increased concerns. In this study, emission factors of oPAHs (EFoPAHs) were measured for two types of pellets made from corn straw and pine wood, respectively. Two combustion modes with (mode II) and without (mode I) secondary side air supply in a modern pellet burner were investigated. For the purpose of comparison, EFoPAHs for raw fuels combusted in a traditional cooking stove were also measured. EFoPAHs were 348 ± 305 and 396 ± 387 μg kg-1 in the combustion mode II for pine wood and corn straw pellets, respectively. In mode I, measured EFoPAHs were 77.7 ± 49.4 and 189 ± 118 μg kg-1, respectively. EFs in mode II were higher (2-5 times) than those in mode I mainly due to the decreased combustion temperature under more excess air. Compared to EFoPAHs for raw corn straw and pine wood burned in a traditional cooking stove, total EFoPAHs for the pellets in mode I were significantly lower (p pellets burned in mode II was not statistically significant. Taking both the increased thermal efficiencies and decreased EFs into consideration, substantial reduction in oPAH emission can be expected if the biomass pellets can be extensively used by rural residents.

  6. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Wenjun, E-mail: wenjunzhou@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310028 (China); Yang Juanjuan; Lou Linjie [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhu Lizhong [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310028 (China)

    2011-05-15

    The enhanced solubilization of polycyclic aromatic hydrocarbons (PAHs) by saponin, a plant-derived non-ionic biosurfactant, was investigated. The results indicated that the solubilization capabilities of saponin for PAHs were greater than some representative synthetic non-ionic surfactants and showed strong dependence on solution pH and ionic strength. The molar solubilization ratio (MSR) of saponin for phenanthrene was about 3-6 times of those of the synthetic non-ionic surfactants, and decreased by about 70% with the increase of solution pH from 4.0 to 8.0, but increased by approximately 1 times with NaCl concentration increased from 0.01 to 1.0 M. Heavy metal ions can enhance saponin solubilization for phenanthrene and the corresponding MSR values increased by about 25% with the presence of 0.01 M of Cd{sup 2+} or Zn{sup 2+}. Saponin is more effective in enhancing PAHs solubilization than synthetic non-ionic surfactants and has potential application in removing organic pollutants from contaminated soils. - Highlights: > The enhanced solubilization of PAHs by saponin was investigated in this study. > Saponin showed great solubilization capability for PAHs. > Saponin is more effective in enhancing HOCs solubilization at lower solution pH. > Increasing ionic strength can enhance HOCs solubilization in saponin solution. > Heavy metal ions can also enhance phenanthrene solubilization in saponin solution. - Saponin showed different solubilization properties for PAHs from the synthetic non-ionic surfactants and anionic rhamnolipid biosurfactants.

  7. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant

    International Nuclear Information System (INIS)

    Zhou Wenjun; Yang Juanjuan; Lou Linjie; Zhu Lizhong

    2011-01-01

    The enhanced solubilization of polycyclic aromatic hydrocarbons (PAHs) by saponin, a plant-derived non-ionic biosurfactant, was investigated. The results indicated that the solubilization capabilities of saponin for PAHs were greater than some representative synthetic non-ionic surfactants and showed strong dependence on solution pH and ionic strength. The molar solubilization ratio (MSR) of saponin for phenanthrene was about 3-6 times of those of the synthetic non-ionic surfactants, and decreased by about 70% with the increase of solution pH from 4.0 to 8.0, but increased by approximately 1 times with NaCl concentration increased from 0.01 to 1.0 M. Heavy metal ions can enhance saponin solubilization for phenanthrene and the corresponding MSR values increased by about 25% with the presence of 0.01 M of Cd 2+ or Zn 2+ . Saponin is more effective in enhancing PAHs solubilization than synthetic non-ionic surfactants and has potential application in removing organic pollutants from contaminated soils. - Highlights: → The enhanced solubilization of PAHs by saponin was investigated in this study. → Saponin showed great solubilization capability for PAHs. → Saponin is more effective in enhancing HOCs solubilization at lower solution pH. → Increasing ionic strength can enhance HOCs solubilization in saponin solution. → Heavy metal ions can also enhance phenanthrene solubilization in saponin solution. - Saponin showed different solubilization properties for PAHs from the synthetic non-ionic surfactants and anionic rhamnolipid biosurfactants.

  8. Structural and dynamical properties of chlorinated hydrocarbons studied with resonant inelastic x-ray scattering

    Science.gov (United States)

    Bohinc, R.; Žitnik, M.; Bučar, K.; Kavčič, M.; Carniato, S.; Journel, L.; Guillemin, R.; Marchenko, T.; Kawerk, E.; Simon, M.; Cao, W.

    2016-04-01

    We present a theoretical and experimental study of resonant inelastic x-ray scattering on a large group of chlorinated hydrocarbons: CH3Cl, CH2Cl2, CHCl3, CCl4, CH3CH2Cl, ClCH2CH2Cl, CH3CHCl2, CH3CCl3, C2H2Cl2-iso, C2H2Cl2-cis, C2H2Cl2-trans, and C6H5Cl. Differences in structural and dynamical properties of the molecules generated by diverse chemical environments are observed in the measured Cl(Kα) spectral maps as well as in the Cl(K) total fluorescence yield spectra. The energy position, relative intensity, and the width of the Franck-Condon distribution of low-lying σ∗ and π∗ resonances are extracted by a fitting procedure taking into account the experimental broadening. The theoretical values obtained with the transition potential and Δ Kohn-Sham methods are in good agreement with the experimental parameters indicating subtle differences due to variations in the molecular structure.

  9. Emissions of polycyclic aromatic hydrocarbons from the combustion of crude oil on water

    International Nuclear Information System (INIS)

    Benner, B.A. Jr.; Bryner, N. P.; Wise, S.A.; Mulholland, G.W.; Evans, D.D.; Fingas, M.F.; Li, K.

    1991-01-01

    A study was conducted to examine some of the factors necessary to assess the environmental impact of an in-situ burn of an oil spill on water. These factors include the fraction of an oil layer which can be burned, the quantity of smoke emitted, and the concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) in the smoke, crude oil, and burn residue. Alberta sweet mixed blend crude in 1, 3, 5, 10, and 30 mm layers on water was burned in the laboratory and smoke samples were collected at elevated and ambient temperatures and analyzed by two independent laboratories. While burning the crude oil produced less total PAHs than was in the original crude, the concentrations of PAHs with 5 or more rings were 10-20 times greater in the smoke than in the oil. The organic carbon fraction of the smoke was in the 14-21% range. As the fuel layer thickness was increased from 2 to 10 mm, the smoke yield increased from 0.035 g smoke/g fuel and the percentage of oil residue decreased from 46% to 17%. By consuming much of the oil spill and reducing the amount of PAHs in the water, and by dispersing the combustion products over a larger area, in-situ burning can mitigate the local environmental impact of an oil spill. There appears to be a range of situations, such as in Arctic ice fields, where in-situ burning might be the most viable cleanup method. 25 refs., 6 figs., 6 tabs

  10. UV emission properties of thulium-doped fluorozirconate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Piramidowicz, R., E-mail: r.piramidowicz@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Telekomunikacja Polska Research and Development Centre, Obrzezna 7, 02-691 Warsaw (Poland); Bok, A.; Klimczak, M.; Malinowski, M. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland)

    2009-12-15

    In this work, we present our latest results on UV emission in bulk ZBLAN glasses doped with thulium ions, broadening knowledge of the short-wavelength optical properties of this system. We examined a set of samples with different activator concentrations (2500, 10,000, 25,000 and 50,000 ppm) in respect of absorption and short-wavelength emission properties. The concentration-dependant spectra of UV emission from the {sup 1}I{sub 6}+{sup 3}P{sub 0} and {sup 1}D{sub 2} levels and fluorescence dynamics profiles have been recorded and carefully examined under direct (one-photon) excitation, enabling discussion of fluorescence quenching mechanisms and determination of appropriate cross-relaxation rates. According to authors' best knowledge, the three-photon red-to-UV up-conversion has been reported for the first time under excitation of a laser diode.

  11. Emission and null coordinates: geometrical properties and physical construction

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan J; Morales-Lladosa, Juan A

    2011-01-01

    A Relativistic Positioning System is defined by four clocks (emitters) broadcasting their proper time. Then, every event reached by the signals is naturally labeled by these four times which are the emission coordinates of this event. The coordinate hypersurfaces of the emission coordinates are the future light cones based on the emitter trajectories. For this reason the emission coordinates have been also named null coordinates or light coordinates. Nevertheless, other coordinate systems used in different relativistic contexts have the own right to be named null or light coordinates. Here we analyze when one can say that a coordinate is a null coordinate and when one can say that a coordinate system is null. Moreover, we examine the physical construction and the geometrical properties of several n ull coordinate systems : the emission and the reception coordinates, the radar coordinates, and the Bondi-Sachs coordinates, among others.

  12. Electrophoretic deposition and field emission properties of patterned carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao Haifeng; Song Hang; Li Zhiming; Yuan Guang; Jin Yixin

    2005-01-01

    Patterned carbon nanotubes on silicon substrates were obtained using electrophoretic method. The carbon nanotubes migrated towards the patterned silicon electrode in the electrophoresis suspension under the applied voltage. The carbon nanotubes arrays adhered well on the silicon substrates. The surface images of carbon nanotubes were observed by scanning electron microscopy. The field emission properties of the patterned carbon nanotubes were tested in a diode structure under a vacuum pressure below 5 x 10 -4 Pa. The measured emission area was about 1.0 mm 2 . The emission current density up to 30 mA/cm 2 at an electric field of 8 V/μm has been obtained. The deposition of patterned carbon nanotubes by electrophoresis is an alternative method to prepare field emission arrays

  13. Emissions of volatile hydrocarbons (VOC) during drying of sawdust; Utslaepp av laettflyktiga kolvaeten vid torkning av biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Granstroem, Karin

    2001-08-01

    In the project 'Emissions of volatile hydrocarbons (VOC) during drying of sawdust' the identity, amount and composition of monoterpenes found in the drying medium of a fluidized bed drier drying sawdust from Norwegian spruce and Scotch pine has been determined. The energy efficiency of the drier has also been measured. The aim of this project was to reduce both emissions and energy required for drying, to minimize environmental and health hazards, and make drying more competitive. This would help our primary target group - small scale saw mills - to make use of the sawdust produced as a by- product by making pellets and briquettes. If the VOC remains in the sawdust its energy content will improve and therefore also its value as a fuel. The sawdust was dried to different moisture levels in a spouted bed drier at atmospheric pressure, using either recirculating or not recirculating drying medium with temperatures 140, 170 or 200 deg C. The emissions of VOC were measured using a flame ionization detector (FID) and the nature of the emissions analyzed with a gas chromatograph with mass spectrometric detector (GC-MS). The GC-MS data is reported as emitted substance per oven dry weight (odw). Experiments show that terpenes do not leave the sawdust in great amounts until it is dried to a moisture content (water/total weight) below 10%. When sawdust is dried to a predetermined moisture level, the terpene emissions increase when warmer incoming drying medium is used. The monoterpenes found in greatest amount are a-pinene, b-pinene, 3-carene, limonene and myrcene. y-terpinene was detected in emissions from pine but not from spruce. The relative amounts of different monoterpenes did not vary significantly with post-drying moisture content, but drying medium of higher temperature caused an increase in the relative amount of less volatile monoterpenes. The FID data is reported as concentration of VOC in the drying medium, and as weight VOC per odw. The concentration

  14. Synthesis, characterization and emission properties of quinolin-8 ...

    Indian Academy of Sciences (India)

    Unknown

    chelated ruthenium organometallics. BIKASH KUMAR PANDA. Department of Inorganic ... Ruthenium organometallics; quinolin-8-olato chelation; emission properties; trivalent ruthenium. 1. Introduction. There is continuing ... chem.istry of orthometallated ruthenium compounds is of current interest in the context of synthesis ...

  15. Influence of oil and gas emissions on ambient atmospheric non-methane hydrocarbons in residential areas of Northeastern Colorado

    Directory of Open Access Journals (Sweden)

    Chelsea R. Thompson

    2014-11-01

    Full Text Available Abstract The Northern Front Range (NFR region of Colorado has experienced rapid expansion of oil and gas extraction from shale and tight sands reservoirs in recent years due to advances in hydraulic fracturing technology, with over 25,000 wells currently in operation. This region has also been designated as a federal ozone non-attainment area by the U.S. EPA. High ozone levels are a significant health concern, as are potential health impacts from chronic exposure to primary emissions of non-methane hydrocarbons (NMHC for residents living near wells. From measurements of ambient atmospheric NMHC present in residential areas located in close proximity to wells in Erie, Colorado, we find that mean mole fractions of the C2–C5 alkanes are enhanced by a factor of 18–77 relative to the regional background, and present at higher levels than typically found in large urban centers. When combined with NMHC observations from downtown Denver and Platteville, it is apparent that these compounds are elevated across the NFR, with highest levels within the Greater Wattenberg Gas Field. This represents a large area source for ozone precursors in the NFR. The BTEX aromatic compounds in Erie were comparable to (e.g., benzene or lower than (e.g., toluene, ethylbenzene, xylene in large urban centers, however, benzene was significantly higher in Platteville, and within the range of chronic health-based exposure levels. An initial look at comparisons with data sets from previous years reveal that ambient levels for oil and gas-related NMHC in Erie, as well as further downwind in Boulder, have not decreased, but appear to have been increasing, despite tightening of emissions standards for the oil and gas industries in 2008.

  16. Fundamental properties of field emission-driven direct current microdischarges

    International Nuclear Information System (INIS)

    Rumbach, Paul; Go, David B.

    2012-01-01

    For half a century, it has been known that the onset of field emission in direct current microdischarges with gap sizes less than 10 μm can lead to breakdown at applied voltages far less than predicted by Paschen's law. It is still unclear how field emission affects other fundamental plasma properties at this scale. In this work, a one-dimensional fluid model is used to predict basic scaling laws for fundamental properties including ion density, electric field due to space charge, and current-voltage relations in the pre-breakdown regime. Computational results are compared with approximate analytic solutions. It is shown that field emission provides an abundance of cathode electrons, which in turn create large ion concentrations through ionizing collisions well before Paschen's criterion for breakdown is met. Breakdown due to ion-enhanced field emission occurs when the electric field due to space charge becomes comparable to the applied electric field. Simple scaling analysis of the 1D Poisson equation demonstrates that an ion density of n + ≈ 0.1V A ε 0 /qd 2 is necessary to significantly distort the electric field. Defining breakdown in terms of this critical ion density leads analytically to a simple, effective secondary emission coefficient γ ′ of the same mathematical form initially suggested by Boyle and Kisliuk [Phys. Rev. 97, 255 (1955)].

  17. Statistical properties of antisymmetrized molecular dynamics for non-nucleon-emission and nucleon-emission processes

    International Nuclear Information System (INIS)

    Ono, A.; Horiuchi, H.

    1996-01-01

    Statistical properties of antisymmetrized molecular dynamics (AMD) are classical in the case of nucleon-emission processes, while they are quantum mechanical for the processes without nucleon emission. In order to understand this situation, we first clarify that there coexist mutually opposite two statistics in the AMD framework: One is the classical statistics of the motion of wave packet centroids and the other is the quantum statistics of the motion of wave packets which is described by the AMD wave function. We prove the classical statistics of wave packet centroids by using the framework of the microcanonical ensemble of the nuclear system with a realistic effective two-nucleon interaction. We show that the relation between the classical statistics of wave packet centroids and the quantum statistics of wave packets can be obtained by taking into account the effects of the wave packet spread. This relation clarifies how the quantum statistics of wave packets emerges from the classical statistics of wave packet centroids. It is emphasized that the temperature of the classical statistics of wave packet centroids is different from the temperature of the quantum statistics of wave packets. We then explain that the statistical properties of AMD for nucleon-emission processes are classical because nucleon-emission processes in AMD are described by the motion of wave packet centroids. We further show that when we improve the description of the nucleon-emission process so as to take into account the momentum fluctuation due to the wave packet spread, the AMD statistical properties for nucleon-emission processes change drastically into quantum statistics. Our study of nucleon-emission processes can be conversely regarded as giving another kind of proof of the fact that the statistics of wave packets is quantum mechanical while that of wave packet centroids is classical. copyright 1996 The American Physical Society

  18. Spatial and temporal variations and mobile source emissions of polycyclic aromatic hydrocarbons in Quito, Ecuador

    International Nuclear Information System (INIS)

    Brachtl, Megan V.; Durant, John L.; Perez, Carlos Paez; Oviedo, Jorge; Sempertegui, Fernando; Naumova, Elena N.; Griffiths, Jeffrey K.

    2009-01-01

    Motor vehicles are a major source of air pollution in Quito, Ecuador; however, little work has been done to characterize spatial and temporal variations in traffic-related pollutants, or to measure pollutants in vehicle emissions. We measured PAH continuously for one year at two residential sites in Quito, and PAH and traffic patterns for one week near a busy roadway. Morning rush-hour traffic and temperature inversions caused daily PAH maxima between 06:00 and 08:00. SO 2 , NO x , CO, and PM 2.5 behaved similarly. At the residential sites PAH levels during inversions were 2-3-fold higher than during the afternoon, and 10-16-fold higher than 02:00-03:00 when levels were lowest. In contrast, at the near-roadway site, PAH concentrations were 3-6-fold higher than at the residential sites, and the effects of inversions were less pronounced. Cars and buses accounted for >95% of PAH at the near-roadway site. Near-roadway PAH concentrations were comparable to other polluted cities. - Atmospheric temperature inversions and proximity to roadways strongly influence potential human exposure to ambient airborne PAH in Quito, Ecuador

  19. Field emission properties of an array of pyramidal structures

    Energy Technology Data Exchange (ETDEWEB)

    De Assis, Thiago A [Departamento de QuImica, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Borondo, F [Departamento de QuImica, Instituto Mixto de Ciencias Matematicas CSIC-UAM-UC3M-UCM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); De Castilho, C M C; Brito Mota, F [Grupo de Fisica de SuperfIcies e Materiais, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador, BA (Brazil); Benito, R M, E-mail: t.albuquerque@uam.e, E-mail: f.borondo@uam.e, E-mail: caio@ufba.b, E-mail: fbmota@ufba.b, E-mail: rosamaria.benito@upm.e [Grupo de Sistemas Complejos, Departamento de Fisica y Mecanica, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2009-10-07

    The properties and efficiency of the emission current density produced by a metallic array of pyramidal structures are investigated. The theoretical results obtained by numerical integration of the corresponding Laplace equation using a finite differences scheme offer useful information for the optimization of field emission devices based on cathodes with this geometry. Our study shows that the inter-pyramidal distance strongly affects the current density, and even more important for this issue is the protrusion characteristics of these structures. Another relevant, although less important, parameter determining this density is the anode-cathode distance. The effect of the array characteristics on the maximum local electric field intensity is also discussed.

  20. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  1. PROBING THE IONIZATION STATES OF POLYCYCLIC AROMATIC HYDROCARBONS VIA THE 15–20 μm EMISSION BANDS

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, M. J.; Stock, D. J.; Peeters, E., E-mail: mshann3@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2015-10-01

    We report new correlations between ratios of band intensities of the 15–20 μm emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of 57 sources observed with the Spitzer/Infrared Spectrograph. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the Spitzer Infrared Nearby Galaxies Survey survey, two Galactic interstellar medium cirrus sources, and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4, and 17.8 μm band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate with the 11.0 and 12.7 μm band intensities. The 15.8 μm band correlates only with the 15–18 μm plateau and the 11.2 μm emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4, and 17.8 μm bands; the 11.2, 15.8 μm bands and the 15–18 μm plateau; and the 11.0 and 17.4 μm bands. We also find that the spatial distribution of the 12.7, 16.4, and 17.8 μm bands can be reconstructed by averaging the spatial distributions of the cationic 11.0 μm and neutral 11.2 μm bands. We conclude that the 17.4 μm band is dominated by cations, the 15.8 μm band by neutral species, and the 12.7, 16.4, and 17.8 μm bands by a combination of the two. These results highlight the importance of PAH ionization for spatially differentiating sub-populations by their 15–20 μm emission variability.

  2. The effect of the composition of hydrocarbon streams on physical properties and HCCI combustion performance

    Energy Technology Data Exchange (ETDEWEB)

    Gieleciak, R. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    Advanced combustion engines have been developed in tandem with evolving fuels and combustion strategies. Advanced analytical methods such as NMR and two dimensional gas chromatography (2D-GC) are also becoming both more powerful and easier to use. Statistical analysis can be used to link the very complex fuel analysis data sets from these methods to fuel chemistry, fuel properties and engine performance. This poster highlighted a study that applied an advanced statistical analysis technique to 2D-GC data for 17 oil sands derived fuels and correlated results to measured fuel chemical/physical properties, and then to HCCI engine performance. In the HCCI mode, ignition occurs by compression of the homogeneous fuel/air mixture. Advanced combustion strategies must satisfy the need for high efficiency, low emissions, and drivability. The 2D-GC was shown to be an emerging analytical technique which separates compounds in fuels to enable the identification of individual compounds and group compounds by chemistry and boiling points. The Q(2d)RPR technique allows correlations to be developed between the 2D-GC data and fuel chemical / physical properties and engine performance data. tabs., figs.

  3. Study of hydrocarbon emission in small direct injection engines; Kogata DI diesel kikan ni okeru teifukaji HC haishutsu ni kansuru kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tsurushima, T; Zhang, L; Ueda, T; Fujino, R; Yokota, K [Isuzu Advanced Engineering Center, Tokyo (Japan)

    1997-10-01

    The cause of unburned hydrocarbon emission in small DI diesel engines at light load was studied. An optically accessible engine which was enabled to visualize the squish area was used to investigate the behavior of spray, mixture distribution and so on. Based on these observations and engine tests, the factors such as the direct impingement of liquid phase fuel spray to the combustion chamber wall the unevenness of fuel spray among holes and spreading of the fuel droplets, mixture and flame to the squish area were supposed to be the cause of forming HC emission. 18 refs., 10 figs., 2 tabs.

  4. Adsorption Properties of Hydrocarbons (n-Decane, Methyl Cyclohexane and Toluene on Clay Minerals: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2017-10-01

    Full Text Available Adsorption of hydrocarbons may significantly affect hydrocarbon migration in unconventional reservoirs. Clay minerals form the primary adsorbent surfaces for hydrocarbons adsorbed in mudstone/shale. To study the adsorption properties of hydrocarbons (n-decane (C10H22, methyl cyclohexane (C7H14 and toluene (C7H8 on clay minerals (i.e., cookeite, ripidolite, kaolinite, illite, illite/smectite mixed-layer, Na-montmorillonite and Ca-montmorillonite, hydrocarbon vapor adsorption (HVA tests were conducted at 298.15 K. The results showed that (i the adsorption amounts of C10H22, C7H14 and C7H8 ranged from 0.45–1.03 mg/m2, 0.28–0.90 mg/m2 and 0.16–0.53 mg/m2, respectively; (ii for cookeite, ripidolite and kaolinite, the adsorption capacity of C10H22 was less than C7H14, which was less than C7H8; (iii for illite, Na-montmorillonite and Ca-montmorillonite, the adsorption capacity of C10H22 was greater than that of C7H8, and the adsorption capacity of C7H14 was the lowest; (iv for an illite/smectite mixed-layer, C7H14 had the highest adsorption capacity, followed by C10H22, and C7H8 had the lowest capacity. Adsorption properties were correlated with the microscopic parameters of pores in clay minerals and with experimental pressure. Finally, the weighted average method was applied to evaluate the adsorption properties of C10H22, C7H14 and C7H8 on clay minerals in oil-bearing shale from the Shahejie Formation of Dongying Sag in the Bohai Bay Basin, China. For these samples, the adsorbed amounts of C7H14 ranged from 18.03–28.02 mg/g (mean 23.33 mg/g, which is larger than that of C10H22, which ranges from 15.40–21.72 mg/g (mean 18.82 mg/g. The adsorption capacity of C7H8 was slightly low, ranging from 10.51–14.60 mg/g (mean 12.78 mg/g.

  5. Variations in the Peak Position of the 6.2 micron Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population

    Science.gov (United States)

    Hudgins, Douglas M.; Bauschlicher, Charles W.; Allamandola, L. J.

    2005-01-01

    This paper presents the results of an investigation of the molecular characteristics that underlie the observed peak position and profile of the nominal 6.2 micron interstellar emission band generally attributed to the CC stretching vibrations of polycyclic aromatic hydrocarbons (PAHs). It begins with a summary of recent experimental and theoretical studies ofthe spectroscopic properties of large (>30 carbon atoms) PAH cations as they relate to this aspect of the astrophysical problem. It then continues with an examination of the spectroscopic properties of a number of PAH variants within the context of the interstellar 6.2 micron emission, beginning with a class of compounds known as polycyclic aromatic nitrogen heterocycles (PANHs; PAHs with one or more nitrogen atoms substituted into their carbon skeleton). In this regard, we summarize the results of recent relevant experimental studies involving a limited set of small PANHs and their cations and then report the results of a comprehensive computational study that extends that work to larger PANH cations including many nitrogen-substituted variants of coronene(+) (C24H12(+)), ovalene(+) (C32H14(+)), circumcoronene(+) (C54H18(+)), and circum-circumcoronene(+) (C96H24(+)). Finally, we report the results of more focused computational studies of selected representatives from a number of other classes of PAH variants that share one or more of the key attributes of the PANH species studied. These alternative classes of PAH variants include (1) oxygen- and silicon-substituted PAH cations; (2) PAH-metal ion complexes (metallocenes) involving the cosmically abundant elements magnesium and iron; and (3) large, asymmetric PAH cations. Overall, the studies reported here demonstrate that increasing PAH size alone is insuEcient to account for the position of the shortest wavelength interstellar 6.2 micron emission bands, as had been suggested by earlier studies. On the other hand, this work reveals that substitution of one or

  6. Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and a subway train.

    Science.gov (United States)

    Fromme, H; Oddoy, A; Piloty, M; Krause, M; Lahrz, T

    1998-06-30

    Significant concentrations of potentially harmful substances can be present in the interior of vehicles. The main sources of PAHs and elemental carbon (EC) inside a car are likely to be combustion emissions, especially from coal and traffic. The same sources can also be important for the interior of a subway train for which there are specific sources in the tunnel system, for example diesel engines. Twice, in summer 1995 and winter 1996 polycyclic aromatic hydrocarbons (PAH) and diesel motor emission (estimated as elemental carbon) were determined in the interior of a car (a 2-year-old VW Golf with a three-way catalytic converter) and in the passenger compartment of a subway train (below ground). On each sampling day (in total 16 daily measurements in the car and 16 in the subway) the substances were determined in the breathing zone of the passengers from 07:00 h to 16:00 h under different meteorologic conditions (winter- and summertime). The car followed the route of the subway from the western Berlin borough of Spandau to the south-eastern borough of Neukölln, and back. The sampling represented a realistic exposure model for driving in a high traffic and polluted urban area. The electric subway train (also 2 years in use) connected the same parts of Berlin (31 km underground). The mean values obtained during the two measurement periods (summer/winter) inside the car were 1.0 and 3.2 ng/m3 for benzo[a]pyrene, 10.2 and 28.7 ng/m3 for total-measured-PAHs, 14.1 and 8.2 micrograms/m3 for EC and in the subway 0.7 and 4.0 ng/m3 for benzol[a]pyrene, 30.2 and 67.5 ng/m3 for total PAHs, 109 and 6.9 micrograms/m3 for EC. A comparison between subway and car exposures shows significantly higher concentrations of PAHs in the subway train, which can be explained by relatively high concentrations of fluoranthene and pyrene in the subway. So far a satisfactory explanation has not been found, but one source might be the wooden railway ties which were formerly preserved with tar

  7. Properties of polycyclic aromatic hydrocarbons in the northwest photon dominated region of NGC 7023. II. Traditional PAH analysis using k-means as a visualization tool

    Energy Technology Data Exchange (ETDEWEB)

    Boersma, C.; Bregman, J.; Allamandola, L. J., E-mail: Christiaan.Boersma@nasa.gov [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-0001 (United States)

    2014-11-10

    Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer-IRS spectral map of the northwest photon dominated region (PDR) in NGC 7023 is analyzed using the 'traditional' approach in which the PAH bands and plateaus between 5.2-19.5 μm are isolated by subtracting the underlying continuum and removing H{sub 2} emission lines. The spectra are organized into seven spectroscopic bins by using k-means clustering. Each cluster corresponds to, and reveals, a morphological zone within NGC 7023. The zones self-organize parallel to the well-defined PDR front that coincides with an increase in intensity of the H{sub 2} emission lines. PAH band profiles and integrated strengths are measured, classified, and mapped. The morphological zones revealed by the k-means clustering provides deeper insight into the conditions that drive variations in band strength ratios and evolution of the PAH population that otherwise would be lost. For example, certain band-band relations are bifurcated, revealing two limiting cases; one associated with the PDR, the other with the diffuse medium. Traditionally, PAH band strength ratios are used to gain insight into the properties of the emitting PAH population, i.e., charge, size, structure, and composition. Insights inferred from this work are compared and contrasted to those from Boersma et al. (first paper in this series), where the PAH emission in NGC 7023 is decomposed exclusively using the PAH spectra and tools made available through the NASA Ames PAH IR Spectroscopic Database.

  8. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2006-01-01

    A gas chromatographic method using Kovats retention indices has been applied to determine the liquid vapour pressure (P-i), enthalpy of vaporization (Delta H-i) and difference in heat capacity between gas and liquid phase (Delta C-i) for a group of polycyclic aromatic hydrocarbons (PAHs). This group

  9. Effect of hydrocarbon-contaminated fluctuating groundwater on magnetic properties of shallow sediments

    Czech Academy of Sciences Publication Activity Database

    Ameen, N. N.; Klueglein, N.; Appel, E.; Petrovský, Eduard; Kappler, A.; Leven, C.

    2014-01-01

    Roč. 58, č. 3 (2014), s. 442-460 ISSN 0039-3169 R&D Projects: GA MŠk(CZ) LG13042 Institutional support: RVO:67985530 Keywords : environmental magnetism * magnetic susceptibility * groundwater table fluctuation * hydrocarbon contamination * magnetite formation Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  10. Phase behavior, rheological property, and transmutation of vesicles in fluorocarbon and hydrocarbon surfactant mixtures.

    Science.gov (United States)

    Yuan, Zaiwu; Qin, Menghua; Chen, Xiushan; Liu, Changcheng; Li, Hongguang; Hao, Jingcheng

    2012-06-26

    We present a detailed study of a salt-free cationic/anionic (catanionic) surfactant system where a strongly alkaline cationic surfactant (tetradecyltrimethylammonium hydroxide, TTAOH) was mixed with a single-chain fluorocarbon acid (nonadecafluorodecanoic acid, NFDA) and a hyperbranched hydrocarbon acid [di-(2-ethylhexyl)phosphoric acid, DEHPA] in water. Typically the concentration of TTAOH is fixed while the total concentration and mixing molar ratio of NFDA and DEHPA is varied. In the absence of DEHPA and at a TTAOH concentration of 80 mmol·L(-1), an isotropic L(1) phase, an L(1)/L(α) two-phase region, and a single L(α) phase were observed successively with increasing mixing molar ratio of NFDA to TTAOH (n(NFDA)/n(TTAOH)). In the NFDA-rich region (n(NFDA)/n(TTAOH) > 1), a small amount of excess NFDA can be solubilized into the L(α) phase while a large excess of NFDA eventually leads to phase separation. When NFDA is replaced gradually by DEHPA, the mixed system of TTAOH/NFDA/DEHPA/H(2)O follows the same phase sequence as that of the TTAOH/NFDA/H(2)O system and the phase boundaries remain almost unchanged. However, the viscoelasticity of the samples in the single L(α) phase region becomes higher at the same total surfactant concentration as characterized by rheological measurements. Cryo-transmission electron microscopic (cryo-TEM) observations revealed a microstructural evolution from unilamellar vesicles to multilamellar ones and finally to gaint onions. The size of the vesicle and number of lamella can be controlled by adjusting the molar ratio of NFDA to DEHPA. The dynamic properties of the vesicular solutions have also been investigated. It is found that the yield stress and the storage modulus are time-dependent after a static mixing process between the two different types of vesicle solutions, indicating the occurrence of a dynamic fusion between the two types of vesicles. The microenvironmental changes induced by aggregate transitions were probed by

  11. Field emission properties of ZnO nanosheet arrays

    International Nuclear Information System (INIS)

    Naik, Kusha Kumar; Rout, Chandra Sekhar; Khare, Ruchita; More, Mahendra A.; Chakravarty, Disha; Late, Dattatray J.; Thapa, Ranjit

    2014-01-01

    Electron emission properties of electrodeposited ZnO nanosheet arrays grown on Indium tin oxide coated glass substrates have been studied. Influence of oxygen vacancies on electronic structures and field emission properties of ZnO nanosheets are investigated using density functional theory. The oxygen vacancies produce unshared d electrons which form an impurity energy state; this causes shifting of Fermi level towards the vacuum, and so the barrier energy for electron extraction reduces. The ZnO nanosheet arrays exhibit a low turn-on field of 2.4 V/μm at 0.1 μA/cm 2 and current density of 50.1 μA/cm 2 at an applied field of 6.4 V/μm with field enhancement factor, β = 5812 and good field emission current stability. The nanosheet arrays grown by a facile electrodeposition process have great potential as robust high performance vertical structure electron emitters for future flat panel displays and vacuum electronic device applications

  12. Revealing the properties of oils from their dissolved hydrocarbon compounds in water with an integrated sensor array system.

    Science.gov (United States)

    Qi, Xiubin; Crooke, Emma; Ross, Andrew; Bastow, Trevor P; Stalvies, Charlotte

    2011-09-21

    This paper presents a system and method developed to identify a source oil's characteristic properties by testing the oil's dissolved components in water. Through close examination of the oil dissolution process in water, we hypothesise that when oil is in contact with water, the resulting oil-water extract, a complex hydrocarbon mixture, carries the signature property information of the parent oil. If the dominating differences in compositions between such extracts of different oils can be identified, this information could guide the selection of various sensors, capable of capturing such chemical variations. When used as an array, such a sensor system can be used to determine parent oil information from the oil-water extract. To test this hypothesis, 22 oils' water extracts were prepared and selected dominant hydrocarbons analyzed with Gas Chromatography-Mass Spectrometry (GC-MS); the subsequent Principal Component Analysis (PCA) indicates that the major difference between the extract solutions is the relative concentration between the volatile mono-aromatics and fluorescent polyaromatics. An integrated sensor array system that is composed of 3 volatile hydrocarbon sensors and 2 polyaromatic hydrocarbon sensors was built accordingly to capture the major and subtle differences of these extracts. It was tested by exposure to a total of 110 water extract solutions diluted from the 22 extracts. The sensor response data collected from the testing were processed with two multivariate analysis tools to reveal information retained in the response patterns of the arrayed sensors: by conducting PCA, we were able to demonstrate the ability to qualitatively identify and distinguish different oil samples from their sensor array response patterns. When a supervised PCA, Linear Discriminate Analysis (LDA), was applied, even quantitative classification can be achieved: the multivariate model generated from the LDA achieved 89.7% of successful classification of the type of the

  13. Source apportionment vs. emission inventories of non-methane hydrocarbons (NMHC in an urban area of the Middle East: local and global perspectives

    Directory of Open Access Journals (Sweden)

    T. Salameh

    2016-03-01

    Full Text Available We applied the positive matrix factorization model to two large data sets collected during two intensive measurement campaigns (summer 2011 and winter 2012 at a sub-urban site in Beirut, Lebanon, in order to identify NMHC (non-methane hydrocarbons sources and quantify their contribution to ambient levels. Six factors were identified in winter and five factors in summer. PMF-resolved source profiles were consistent with source profiles established by near-field measurements. The major sources were traffic-related emissions (combustion and gasoline evaporation in winter and in summer accounting for 51 and 74 wt %, respectively, in agreement with the national emission inventory. The gasoline evaporation related to traffic source had a significant contribution regardless of the season (22 wt % in winter and 30 wt % in summer. The NMHC emissions from road transport are estimated from observations and PMF results, and compared to local and global emission inventories. The PMF analysis finds reasonable differences on emission rates, of 20–39 % higher than the national road transport inventory. However, global inventories (ACCMIP, EDGAR, MACCity underestimate the emissions up to a factor of 10 for the transportation sector. When combining emission inventory to our results, there is strong evidence that control measures in Lebanon should be targeted on mitigating the NMHC emissions from the traffic-related sources. From a global perspective, an assessment of VOC (volatile organic compounds anthropogenic emission inventories for the Middle East region as a whole seems necessary as these emissions could be much higher than expected at least from the road transport sector.

  14. Airbreathing Propulsion Fuels and Energy Exploratory Research and Development (APFEERD) Sub Task: Review of Bulk Physical Properties of Synthesized Hydrocarbon:Kerosenes and Blends

    Science.gov (United States)

    2017-06-01

    Fuels and Energy Branch Turbine Engine Division Turbine Engine Division CHARLES W. STEVENS, Lead Engineer Turbine Engine Division Aerospace Systems...evaluation concludes, based on fundamental physical chemistry , that all hydrocarbon kerosenes that meet the minimum density requirement will have bulk...alternative jet fuels; renewable jet fuel; fuel physical properties; fuel chemistry ; fuel properties 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  15. Comparative study of the physicochemical properties of aqueous solutions of the hydrocarbon and fluorocarbon surfactants and their ternary mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Szymczyk, Katarzyna, E-mail: katarzyna.szymczyk@poczta.umcs.lublin.pl

    2014-03-03

    Highlights: • Acoustic properties of hydrocarbon and fluorocarbon surfactants were studied. • Auerbach’s relation is not proper for mixtures with fluorocarbon surfactants. • Values of the hydration number decreases at concentrations higher than CMC. • FSO100 and its mixtures are the strongest chaotropes. - Abstract: Speed of sound and density of aqueous solutions of hydrocarbon p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethyleneglycols) (Triton X-100 (TX100), Triton X-165 (TX165)) and fluorocarbon (Zonyl FSN-100 (FSN100), Zonyl FSO-100 (FSO100)) surfactants as well as their ternary mixtures were measured at 293 K. Taking into account these values and the literature data of the surface tension and viscosity of the studied systems, the values of the isentropic compressibility, apparent specific adiabatic compressibility, hydration number, apparent specific volume and Jones Dole’s A and B-coefficients were determined. For the systems containing FSO100 also the values of dB/dT were determined on the basis of the values of viscosity measured at different temperatures. Next, the calculated thermodynamic properties have been discussed in the term of intermolecular interactions between the components of the mixtures.

  16. Mechanical Properties and Acoustic Emission Properties of Rocks with Different Transverse Scales

    Directory of Open Access Journals (Sweden)

    Xi Yan

    2017-01-01

    Full Text Available Since the stability of engineering rock masses has important practical significance to projects like mining, tunneling, and petroleum engineering, it is necessary to study mechanical properties and stability prediction methods for rocks, cementing materials that are composed of minerals in all shapes and sizes. Rocks will generate acoustic emission during damage failure processes, which is deemed as an effective means of monitoring the stability of coal rocks. In the meantime, actual mining and roadway surrounding rocks tend to have transverse effects; namely, the transverse scale is larger than the length scale. Therefore, it is important to explore mechanical properties and acoustic emission properties of rocks under transverse size effects. Considering the transverse scale effects of rocks, this paper employs the microparticle flow software PFC2D to explore the influence of different aspect ratios on damage mechanics and acoustic emission properties of rocks. The results show that (1 the transverse scale affects uniaxial compression strength of rocks. As the aspect ratio increases, uniaxial compression strength of rocks decreases initially and later increases, showing a V-shape structure and (2 although it affects the maximum hit rate and the strain range of acoustic emission, it has little influence on the period of occurrence. As the transverse scale increases, both damage degree and damage rate of rocks decrease initially and later increase.

  17. Dark matter properties implied by gamma ray interstellar emission models

    Energy Technology Data Exchange (ETDEWEB)

    Balázs, Csaba; Li, Tong, E-mail: csaba.balazs@monash.edu, E-mail: tong.li@monash.edu [ARC Centre of Excellence for Particle Physics at the Tera-scale, School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800 (Australia)

    2017-02-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. To trivially respect flavor constraints, we only couple the mediator to third generation fermions. Using this theoretical hypothesis, and the Fermi residuals, we calculate Bayesian evidences, including Fermi-LAT exclusion limits from 15 dwarf spheroidal galaxies as well. Our evidence ratios single out one of the Fermi scenarios as most compatible with the simplified dark matter model. In this scenario the dark matter (mediator) mass is in the 25-200 (1-1000) GeV range and its annihilation is dominated by bottom quark final state. Our conclusion is that the properties of dark matter extracted from gamma ray data are highly sensitive to the modeling of the interstellar emission.

  18. Determination of Critical Properties of Endothermic Hydrocarbon Fuel RP-3 Based on Flow Visualization

    Science.gov (United States)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-01-01

    The critical pressure and temperature of an endothermic hydrocarbon fuel RP-3 were determined by flow visualization. The flow pattern images of RP-3 at different pressures and temperatures were obtained. The critical pressure is identified by disappearance of the phase change while the critical temperature is determined by appearance of the opalescence phenomenon under the critical pressure. The opalescence phenomenon is unique to the critical point. The critical pressure and temperature of RP-3 are determined to be 2.3 MPa and 646 K, respectively.

  19. Properties of electronic emissions of semiconductors III-IV in a status of negative electron affinity

    International Nuclear Information System (INIS)

    Piaget, Claude

    1977-01-01

    This research thesis reports the use of various properties (electron emission, photo emission, secondary electron emission) to highlight the relationships between various solid properties (optical, electronic, structural properties), surfaces (clean or covered with adsorbates such as caesium and oxygen) and emission properties (quantum efficiency, energy distribution, and so on). The first part addresses applications, performance, physical properties and technological processes, and also problems related to the physics and chemistry of surfaces and adsorption layers. The second part reports a study of the main electron transport properties in emitters displaying a negative electron affinity, for example GaP. Some aspects of electron excitation by ultra-violet radiations and high energy electrons are studied from UV photo-emission properties and secondary electron emission. Then GaAs and similar pseudo-binary compounds are studied

  20. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  1. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  2. Systems and methods for optically measuring properties of hydrocarbon fuel gases

    Science.gov (United States)

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz; Gersh, Michael E.; Goldstein, Neil

    1998-10-13

    A system and method for optical interrogation and measurement of a hydrocarbon fuel gas includes a light source generating light at near-visible wavelengths. A cell containing the gas is optically coupled to the light source which is in turn partially transmitted by the sample. A spectrometer disperses the transmitted light and captures an image thereof. The image is captured by a low-cost silicon-based two-dimensional CCD array. The captured spectral image is processed by electronics for determining energy or BTU content and composition of the gas. The innovative optical approach provides a relatively inexpensive, durable, maintenance-free sensor and method which is reliable in the field and relatively simple to calibrate. In view of the above, accurate monitoring is possible at a plurality of locations along the distribution chain leading to more efficient distribution.

  3. Investigation of field emission properties of laser irradiated tungsten

    International Nuclear Information System (INIS)

    Akram, Mahreen; Bashir, Shazia; Hayat, Asma; Mahmood, Khaliq; Jalil, Sohail Abdul; Rafique, Muhammad Shahid

    2018-01-01

    Nd:YAG laser irradiation of Tungsten (W) has been performed in air at atmospheric pressure for four laser fluences ranging from 130 to 500 J/cm 2 . Scanning electron microscope analysis revealed the formation of micro and nanoscale surface features including cones, grains, mounds and pores. Field emission (FE) studies have been performed in a planar diode configuration under ultra-high vacuum conditions by recording I-V characteristics and plotting corresponding electric field (E) versus emission current density (J). The Fowler-Nordheim (FN) plots are found to be linear confirming the quantum mechanical tunneling phenomena for the structured targets. The irradiated samples at different fluences exhibit a turn-on field, field enhancement factor β and a maximum current density ranging from 5 to 8.5 V/μm, 1300 to 3490 and 107 to 350 μA/cm 2 , respectively. The difference in the FE properties is attributed to the variation in the nature and density of the grown structures at different fluences. (orig.)

  4. Mechanical Properties and Acoustic Emission Properties of Rocks with Different Transverse Scales

    OpenAIRE

    Yan, Xi; Jun, Li; Gonghui, Liu; Xueli, Guo

    2017-01-01

    Since the stability of engineering rock masses has important practical significance to projects like mining, tunneling, and petroleum engineering, it is necessary to study mechanical properties and stability prediction methods for rocks, cementing materials that are composed of minerals in all shapes and sizes. Rocks will generate acoustic emission during damage failure processes, which is deemed as an effective means of monitoring the stability of coal rocks. In the meantime, actual mining a...

  5. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    International Nuclear Information System (INIS)

    Bonomo, F.; Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D.; Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cristofaro, S.

    2015-01-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H α light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H α spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region

  6. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    Science.gov (United States)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  7. X-Ray Emission Properties of Supernova Remnants

    NARCIS (Netherlands)

    Vink, J.; Alsabti, A.W.; Murdin, P.

    2016-01-01

    X-ray emission from supernova remnants can be broadly divided into thermal X-ray emission from the shock-heated plasmas and in nonthermal (synchrotron) emission caused by very high-energy (10–100 TeV) electrons moving in the magnetic fields of the hot plasmas. The thermal X-ray emission of young

  8. Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography.

    Science.gov (United States)

    Haftka, Joris J H; Parsons, John R; Govers, Harrie A J

    2006-11-24

    A gas chromatographic method using Kováts retention indices has been applied to determine the liquid vapour pressure (P(i)), enthalpy of vaporization (DeltaH(i)) and difference in heat capacity between gas and liquid phase (DeltaC(i)) for a group of polycyclic aromatic hydrocarbons (PAHs). This group consists of 19 unsubstituted, methylated and sulphur containing PAHs. Differences in log P(i) of -0.04 to +0.99 log units at 298.15K were observed between experimental values and data from effusion and gas saturation studies. These differences in log P(i) have been fitted with multilinear regression resulting in a compound and temperature dependent correction. Over a temperature range from 273.15 to 423.15K, differences in corrected log P(i) of a training set (-0.07 to +0.03 log units) and a validation set (-0.17 to 0.19 log units) were within calculated error ranges. The corrected vapour pressures also showed a good agreement with other GC determined vapour pressures (average -0.09 log units).

  9. A comparison of the C{sub 2}-C{sub 9} hydrocarbon compositions of vehicle fuels and urban air in Dublin, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, B M; Marnane, I S [Trinity College, Dublin (Ireland). Dept. of Civil, Structural and Environmental Engineering

    2002-07-01

    Hourly roadside hydrocarbon concentrations were measured over a six-week period at a heavily trafficked junction in Dublin city centre. Samples of ten typical leaded and unleaded petrol fuels used in Irish vehicles were also collected and their hydrocarbon compositions determined. The measured ambient hydrocarbon concentrations are presented, as are the properties of each of the analysed fuels. Comparison of the ambient hydrocarbon concentrations and the fuel hydrocarbon composition reveals a strong correlation for most hydrocarbons, except those compounds that were wholly combustion derived (i.e. not present in the fuel). Different characteristics were noted for aromatics, alkanes and alkenes. The comparison of roadside ambient air and fuel hydrocarbon content agrees well with other studies that have compared fuel content and exhaust composition. The relative impacts of exhaust and evaporative emissions on roadside hydrocarbon concentrations are apparent. (Author)

  10. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: A systematic (time-dependent) density functional theory study

    International Nuclear Information System (INIS)

    Malloci, G.; Cappellini, G.; Mulas, G.; Mattoni, A.

    2011-01-01

    Graphical abstract: Electronic absorption spectra of the neutral molecules of the four PAH classes considered, as computed using the real-time real-space TD-DFT. Highlights: →We present a systematic comparative study of families of PAHs. → We computed electronic, optical, and transport properties as a function of size. → We considered oligoacenes, phenacenes, circumacenes, and oligorylenes. → Circumacenes have the best transport properties compared to the other classes. → Oligorylenes are much more efficient in absorbing low-energy photons. - Abstract: Homologous classes of polycyclic aromatic hydrocarbons (PAHs) in their crystalline state are among the most promising materials for organic opto-electronics. Following previous works on oligoacenes we present a systematic comparative study of the electronic, optical, and transport properties of oligoacenes, phenacenes, circumacenes, and oligorylenes. Using density functional theory (DFT) and time-dependent DFT we computed: (i) electron affinities and first ionization energies; (ii) quasiparticle correction to the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap; (iii) molecular reorganization energies and (iv) electronic absorption spectra of neutral and ±1 charged systems. The excitonic effects are estimated by comparing the optical gap and the quasiparticle corrected HOMO-LUMO energy gap. For each molecular property computed, general trends as a function of molecular size and charge state are discussed. Overall, we find that circumacenes have the best transport properties, displaying a steeper decrease of the molecular reorganization energy at increasing sizes, while oligorylenes are much more efficient in absorbing low-energy photons in comparison to the other classes.

  11. Identification of emission sources of particle-bound polycyclic aromatic hydrocarbons in the vicinity of the industrial zone of the city of Novi Sad

    Directory of Open Access Journals (Sweden)

    Jovčić Nataša S.

    2013-01-01

    Full Text Available Data on polycyclic aromatic hydrocarbons (PAHs in ambient air accessed at selected locations in the vicinity of the industrial zone of the city of Novi Sad, Serbia, have been presented and analyzed in order to determine seasonal and spatial variations and to identify emission sources of particle-bound PAHs. Previous studies have demonstrated that the major contributors of PAHs in urban areas are the emissions from vehicle exhaust, and emissions releases from industrial processes like aluminium production, creosote and wood preservation, waste incineration, cement manufacture, petrochemical and related industries, commercial heat/power production etc. The sampling campaigns have been conducted at three sampling sites, during the two 14-day periods. The first site was situated near industrial area, with a refinery, power plant and heavy-traffic road in the vicinity. The second site was located nearby the heavy traffic area, especially busy during the rush hour. The third site was residential district. Summer sampling period lasted from June 26th to July 10th 2008, while sampling of ambient air during the winter was undertaken from January 22nd to February 5th 2009. Eighty-four (84 air samples were collected using a high volume air sampler TCR Tecora H0649010/ECHO. 16 US EPA polycyclic aromatic hydrocarbons were determined in all samples using a gas chromatographer with a mass spectrometer as a detector (Shimatzu MDGC/GCMS-2010. The total average concentrations of PAHs ranged from 1.21 to 1.77 ng/m3 during the summer period and from 6.31 to 7.25 ng/m3 in the winter. Various techniques, including diagnostic ratio (DR and principal component analysis (PCA, have been used to define and evaluate potential emission sources of PAHs. Diagnostic ratio analysis indicated that vehicles, diesel or/and gasoline, industrial and combustion emissions were sources of PAHs in the vicinity of the industrial zone. Additionally, principal component analysis was used

  12. Emission of hydrocarbons and NO{sub x} at low levels of excess air in CFB; Emissioner av kolvaeten och NO{sub x} vid laaga luftoeverskott i CFB

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, R [TPS Termiska Processer AB, Nykoeping (Sweden)

    1995-06-01

    Low NO{sub x} operation at low excess air levels heighten the risk of increasing the level of hazardous and polluting emissions from the boiler. These emissions are mainly of two types, greenhouse gases and the mutageneous compounds. The aim of this project has been to show which types of emissions and their correlation you can expect when firing a CFB at low excess air levels. Results: The NO{sub x} emission decreases asymptotically with increased CO-level. High load gives higher NO{sub x} -emissions. There is no significant difference in average NO{sub x} value between wood fuel and RDF-mix. The total hydrocarbon (THC) emission level increases exponentially with increased CO{sub l}evel. There was no significant difference between wood and RDF-mix. Measurements of NO{sub x}, O2, CO (dry gas) and THC were made each second. The measurements of light hydrocarbons (VOC) showed only methane and ethene, both with a good correlation to CO. Below 1000 ppm of CO there is practically no ethene. Above 1000-2000 ppm of CO there is a rapidly increasing emission of ethene. The emission levels at given CO-level are influenced by the furnace temperature. The POM, PNA and Ames test analysis showed good correlation with CO and THC. The results indicate an emission increase at about 200-500 ppm of CO and 10-20 ppm of THC. Dioxin was measured on three occasions with RDF-mix as fuel. The measurements showed an increase of dioxin emission at increased THC-emission. The supply of ammonia, into the flue gas before the cyclones, gave no significant change in hydrocarbon or CO-emission levels. CO, THC and Ames Test are probably good indicators of environmental hazardous compounds. The amount of mutageneous compounds are in general only increased when a certain level of CO is reached. 6 refs, 45 figs, 5 tabs, 7 appendices

  13. Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi'an, China: The effects of suburban scattered emissions in winter.

    Science.gov (United States)

    Wang, Jingzhi; Cao, Junji; Dong, Zhibao; Guinot, Benjamin; Gao, Meiling; Huang, Rujin; Han, Yongming; Huang, Yu; Ho, Steven Sai Hang; Shen, Zhenxing

    2017-12-01

    Seasonal variation and spatial distribution of PM 2.5 bound polycyclic aromatic hydrocarbons (PAHs) were investigated at urban residential, commercial area, university, suburban region, and industry in Xi'an, during summer and winter time at 2013. Much higher levels of total PAHs were obtained in winter. Spatial distributions by kriging interpolations principle showed that relative high PAHs were detected in western Xi'an in both summer and winter, with decreasing trends in winter from the old city wall to the 2 nd -3rd ring road except for the suburban region and industry. Coefficients of diversity and statistics by SPSS method demonstrated that PAHs in suburban have significant differences (t winter and summer in urban, which different with the suburban. The coal combustion was the main source for PAHs in suburban region, which accounted for 46.6% in winter and sharp decreased to 19.2% in summer. Scattered emissions from uncontrolled coal combustion represent an important source of PAHs in suburban in winter and there were about 135 persons in Xi'an will suffer from lung cancer for lifetime exposure at winter levels. Further studies are needed to specify the effluence of the scattered emission in suburban to the city and to develop a strategy for controlling those emissions and lighten possible health effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from a UH-1H helicopter engine and its impact on the ambient environment

    Science.gov (United States)

    Chen, Yu-Cheng; Lee, Wen-Jhy; Uang, Shi-Nian; Lee, Su-Hsing; Tsai, Perng-Jy

    The objective of this study is to characterize the emissions of polycyclic aromatic hydrocarbons (PAHs) from a UH-1H helicopter turboshaft engine and its impact on the ambient environment. Five power settings of the ground idle (GI), fly idle (FI), beed band check (BBC), inlet guide vane (IGV), and take off (TO) were selected and samples were collected from the exhaust by using an isokinetic sampling system. Twenty-two PAH compounds were analyzed by gas chromatograph (GC)/MS. We found the mean total PAH concentration in the exhaust of the UH-1H engine (843 μg m -3) is 1.05-51.7 times in magnitude higher than those of the heavy-duty diesel (HDD) engine, motor vehicle engine, and F101 aircraft engine. Two- and three-ringed PAHs account for 97.5% of total PAH emissions from the UH-1H engine. The mean total PAH and total BaP eq emission factors for the UH-1H engine (63.4 and 0.309 mg L -1·fuel) is 1.65-23.4 and 1.30-7.54 times in magnitude higher than those for the motor vehicle engine, HDD engine, and F101 aircraft engine. The total emission level of the single PAH compound, BaP, for the UH-1H engine (EL BaP) during one landing and take off (LTO) cycle (2.19 mg LTO -1) was higher than the European Commission standard (1.24 mg LTO -1) suggesting that appropriate measures should be taken to reduce PAH emissions from UH-1H engines in the future.

  15. Impact of using fishing boat fuel with high poly aromatic content on the emission of polycyclic aromatic hydrocarbons from the diesel engine

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Li, Hsing-Wang; Chen, Chung-Ban; Fang, Guor-Cheng; Tsai, Perng-Jy

    Because of the fishery subsidy policy, the fishing boat fuel oil (FBFO) exemption from commodity taxes, business taxes and air pollution control fees, resulted in the price of FBFO was ˜50% lower than premium diesel fuel (PDF) in Taiwan. It is estimated that ˜650,000 kL FBFO was illegally used by traveling diesel-vehicles (TDVs) with a heavy-duty diesel engine (HDDE), which accounted for ˜16.3% of the total diesel fuel consumed by TDVs. In this study, sulfur, poly aromatic and total-aromatic contents in both FBFO and PDF were measured and compared. Exhaust emissions of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies (BaP eq) from a HDDE under transient cycle testing for both FBFO and PDF were compared and discussed. Finally, the impact caused by the illegal use of FBFO on the air quality was examined. Results show that the mean sulfur-, poly aromatic and aromatic-contents in FBFO were 43.0, 3.89 and 1.04 times higher than that of PDF, respectively. Emission factors of total-PAHs and total-BaP eq obtained by utilizing FBFO were 51.5 and 0.235 mg L -1-Fuel, which were 3.41 and 5.82 times in magnitude higher than obtained by PDF, respectively. The estimated annual emissions of total-PAHs and total-BaP eq to the ambient environment due to the illegally used FBFO were 23.6 and 0.126 metric tons, respectively, which resulted in a 17.9% and a 25.0% increment of annual emissions from all mobile sources, respectively. These results indicated that the FBFO used illegally by TDVs had a significant impact on PAH emissions to the ambient environment.

  16. The influence of ion bombardment on emission properties of carbon materials

    International Nuclear Information System (INIS)

    Chepusov, Alexander; Komarskiy, Alexander; Kuznetsov, Vadim

    2014-01-01

    When electric-vacuum device works its cathode surface experiences bombardment with ions of residual gases. Effects of ion bombardment impact on surface of field emission cathodes made of carbon materials may essentially change emission properties of such cathodes. It changes emission start electric field strength, voltage vs. current characteristic of material, its relief and electron structure of the surface layer. Field emission cathode operating mode, variation of radiation doses allow to obtain both good effects: maximal electric current, surface recovery – and negative ones: the worst emission properties and surface destruction, amorphization.

  17. The influence of ion bombardment on emission properties of carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Chepusov, Alexander, E-mail: chepusov@iep.uran.ru [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation); Ural Federal University, 620002, 19 Mira Street, Ekaterinburg (Russian Federation); Komarskiy, Alexander, E-mail: aakomarskiy@gmail.com [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation); Ural Federal University, 620002, 19 Mira Street, Ekaterinburg (Russian Federation); Kuznetsov, Vadim, E-mail: kuznetsov@iep.uran.ru [The Institute of Electrophysics of the Ural Division of the Russian Academy of Sciences (IEP UD RAS), 620016, 106 Amundsen Street, Ekaterinburg (Russian Federation)

    2014-07-01

    When electric-vacuum device works its cathode surface experiences bombardment with ions of residual gases. Effects of ion bombardment impact on surface of field emission cathodes made of carbon materials may essentially change emission properties of such cathodes. It changes emission start electric field strength, voltage vs. current characteristic of material, its relief and electron structure of the surface layer. Field emission cathode operating mode, variation of radiation doses allow to obtain both good effects: maximal electric current, surface recovery – and negative ones: the worst emission properties and surface destruction, amorphization.

  18. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate and gas phase from smoldering mosquito coils containing various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: d89844001@ntu.edu.tw [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, No. 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli 360, Taiwan (China); Chung, Hua-Yi [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China)

    2015-02-15

    The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. Five types of mosquito coils were burned in a test chamber with a total airflow rate of 8.0 L/min at a constant relative humidity and temperature. The concentrations of individual PAHs were determined using the GC/MS technique. Among the used mosquito coils, the atomic H/C ratio ranged from 1.23 to 1.57, yielding total mass, gaseous, and particulate PAH emission factors of 28.17–78.72 mg/g, 26,139.80–35,932.98 and 5735.22–13,431.51 ng/g, respectively. The various partitions of PAHs in the gaseous and particulate phases were in the ranges, 70.26–83.70% and 16.30–29.74% for the utilized mosquito coils. The carcinogenic potency of PAH emissions in the particulate phase (203.82–797.76 ng/g) was approximately 6.92–25.08 times higher than that of the gaseous phase (26.27–36.07 ng/g). Based on the analyses of PAH emissions, mosquito coils containing the lowest H/C ratio, a low oxygen level, and additional additives (i.e., CaCO{sub 3}) are recommended for minimizing the production of total PAH emission factors and carcinogenic potency. - Highlights: • PAHs emissions are influenced by mosquito coils containing various atomic H/C ratios. • The PAHs generated by burning mosquito coils mainly occur in the gaseous phase. • Total TEQ emission factors of PAHs mainly consisted of the particulate phase (> 87%). • The BaP and BaA accounted for 71.13–77.28% of the total TEQ emission factors. • Special PAH ratios were regarded as characteristic ratios for burning mosquito coil.

  19. Dust from southern Africa: rates of emission and biogeochemical properties

    Science.gov (United States)

    Bhattachan, A.; D'Odorico, P.; Zobeck, T. M.; Okin, G. S.; Dintwe, K.

    2012-12-01

    The stabilized linear dunefields in the southern Kalahari show signs of reactivation due to reduced vegetation cover owing to drought and/or overgrazing. It has been demonstrated with a laboratory dust generator that the southern Kalahari soils are good emitters of dust and that large-scale dune reactivation can potentially make the region an important dust source in the relatively low-dust Southern Hemisphere. We show that emergence of the southern Kalahari as a new dust source may affect ocean biogeochemistry as the soils are rich in soluble iron and the dust from the southern Kalahari commonly reaches the Southern Ocean. We investigate the biogeochemical properties of the fine fraction of soil from the Kalahari dunes and compare them to those of currently active dust sources such as the Makgadikgadi and the Etosha pans as well as other smaller pans in the region. Using field measurements of sediment fluxes and satellite images, we calculate the rates of dust emission from the southern Kalahari under different land cover scenarios. To assess the reversibility of dune reactivation in the southern Kalahari, we investigate the resilience of dunefield vegetation by looking at changes in soil nutrients, fine soil fractions, and seed bank in areas affected by intense denudation.

  20. Estimating Biogenic Non-Methane Hydrocarbon Emissions for the Wasatch Front Through a High-Resolution. Gridded, Biogenic Vola Tile Organic Compound Emissions Inventory

    Science.gov (United States)

    2002-01-01

    1-hour and proposed 8-hour National Ambient Air Quality Standards. Reactive biogenic (natural) volatile organic compounds emitted from plants have...uncertainty in predicting plant species composition and frequency. Isoprene emissions computed for the study area from the project’s high-resolution...Landcover Database (BELD 2), while monoterpene and other reactive volatile organic compound emission rates were almost 26% and 28% lower, respectively

  1. PROPERTIES OF POLYCYCLIC AROMATIC HYDROCARBONS IN THE NORTHWEST PHOTON DOMINATED REGION OF NGC 7023. III. QUANTIFYING THE TRADITIONAL PROXY FOR PAH CHARGE AND ASSESSING ITS ROLE

    Energy Technology Data Exchange (ETDEWEB)

    Boersma, C.; Bregman, J.; Allamandola, L. J., E-mail: Christiaan.Boersma@nasa.gov [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-0001 (United States)

    2015-06-10

    Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer/IRS spectral map of the northwest photon dominated region (PDR) in NGC 7023 is analyzed. Here, results from fitting the 5.2–14.5 μm spectrum at each pixel using exclusively PAH spectra from the NASA Ames PAH IR Spectroscopic Database (www.astrochem.org/pahdb/) and observed PAH band strength ratios, determined after isolating the PAH bands, are combined. This enables the first quantitative and spectrally consistent calibration of PAH charge proxies. Calibration is straightforward because the 6.2/11.2 μm PAH band strength ratio varies linearly with the ionized fraction (PAH ionization parameter) as determined from the intrinsic properties of the individual PAHs comprising the database. This, in turn, can be related to the local radiation field, electron density, and temperature. From these relations diagnostic templates are developed to deduce the PAH ionization fraction and astronomical environment in other objects. The commonly used 7.7/11.2 μm PAH band strength ratio fails as a charge proxy over a significant fraction of the nebula. The 11.2/12.7 μm PAH band strength ratio, commonly used as a PAH erosion indicator, is revealed to be a better tracer for PAH charge across NGC 7023. Attempting to calibrate the 12.7/11.2 μm PAH band strength ratio against the PAH hydrogen adjacency ratio (duo+trio)/solo is, unexpectedly, anti-correlated. This work both validates and extends the results from Paper I and Paper II.

  2. Measurements of diffuse emissions of halogenated hydrocarbons by high resolution FTIR remote sensing. Fernerkundungsmessungen zur interferometrischen Bestimmung der Emission halogenierter Kohlenwasserstoffe im Infraroten; Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, H; Eisenmann, T

    1993-07-01

    Fenceline and perimeter monitoring of toxic volatile organic compounds in industrial areas is an important upcoming need for surveillance purposes. It demands for multicomponent analysis methods. These requirements will be fullfilled using the double pendulum interferometer together with the appropriate evaluation software, especially for mobile outdoor applications. The instrument based on the patented double pendulum principle has been developed within the frame of the project to the level of a pre-production model. With the developed instrument and software, measurement campaigns have been carried out at various facilities: At a fuel dump, at a chemical production, and at metal degreasing facilities. The following gases have been detected down to very low concentrations (low ppb levels): dichloromethane, trichloroethylene, tetrachloroethylene, benzene, toluene, methanol, ethyl acetate, alkenes, total hydrocarbons. The developed instrumentation as well as the results from various campaigns will be presented together with the data evaluation technique. The analytical methods and the possible sources of error will also be discussed. (orig.)

  3. As-pyrolyzed sugarcane bagasse possessing exotic field emission properties

    Science.gov (United States)

    Krishnia, Lucky; Yadav, Brajesh S.; Palnitkar, Umesh; Satyam, P. V.; Gupta, Bipin Kumar; Koratkar, Nikhil A.; Tyagi, Pawan K.

    2018-06-01

    The present study aims to demonstrate the application of sugarcane bagasse as an excellent field emitter. Field emission property of as-pyrolyzed sugarcane bagasse (p-SBg) before and after the plasma treatment has been investigated. It has been observed that electronic nature of p-SBg transformed from semiconducting to metallic after plasma treatment. Maximum current and turn-on field defined at 10 μA/cm2 was found to be 800 μA/cm2 and 2.2 V/μm for as-pyrolyzed sugarcane bagasse (p-SBg) and 25 μA/cm2 and 8.4 V/μm for H2-plasma treated p-SBg. These values are found to be better than the reported values for graphene and activated carbon. In this report, pyrolysis of bagasse has been carried in a thermal chemical vapor deposition (Th-CVD) system in inert argon atmosphere. Scanning electron microscopy (SEM), X-ray Diffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) have been used to study the structure of both pre and post plasma-treated p-SBg bagasse's sample. HRTEM study reveals that carbonaceous structures such as 3D-nanographene oxide (3D-NGO), graphite nanodots (GNDs), carbon nanotubes (CNTs), and carbon onions are present in both pre-treated and plasma-treated p-SBg. Hence, we envision that the performed study will be a forwarding step to facilitate the application of p-SBg in display devices.

  4. KILOPARSEC-SCALE PROPERTIES OF EMISSION-LINE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Miller, Sarah H.; Mobasher, Bahram; Nayyeri, Hooshang [University of California, Riverside, CA 92512 (United States); Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Guo, Yicheng; Koo, David C. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Papovich, Casey, E-mail: shoubaneh.hemmati@ucr.edu [Texas A and M University, College Station, TX 77843 (United States)

    2014-12-20

    We perform a detailed study of the resolved properties of emission-line galaxies at kiloparsec scales to investigate how small-scale and global properties of galaxies are related. We use a sample of 119 galaxies in the GOODS fields. The galaxies are selected to cover a wide range in morphologies over the redshift range 0.2 < z < 1.3. High resolution spectroscopic data from Keck/DEIMOS observations are used to fix the redshift of all the galaxies in our sample. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy, we perform spectral energy distribution fitting per resolution element, producing resolved rest-frame U – V color, stellar mass, star formation rate (SFR), age, and extinction maps. We develop a technique to identify ''regions'' of statistical significance within individual galaxies, using their rest-frame color maps to select red and blue regions, a broader definition for what are called ''clumps'' in other works. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the ''main sequence'' of star-forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1 ± 0.1 and a scatter of ∼0.2 dex compared to red regions with a slope of 1.3 ± 0.1 and a scatter of ∼0.6 dex. The blue regions show higher specific SFRs (sSFRs) than their red counterparts with the sSFR decreasing since z ∼ 1, driven primarily by the stellar mass surface densities rather than the SFRs at a given

  5. Odour emissions from poultry litter - A review litter properties, odour formation and odorant emissions from porous materials.

    Science.gov (United States)

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2016-07-15

    Odour emissions from meat chicken sheds can at times cause odour impacts on surrounding communities. Litter is seen as the primary source of this odour. Formation and emission of odour from meat chicken litter during the grow-out period are influenced by various factors such as litter conditions, the environment, microbial activity, properties of the odorous gases and management practices. Odour emissions vary spatially and temporally. This variability has made it challenging to understand how specific litter conditions contribute to odour emissions from the litter and production sheds. Existing knowledge on odorants, odour formation mechanisms and emission processes that contribute to odour emissions from litter are reviewed. Litter moisture content and water thermodynamics (i.e. water activity, Aw) are also examined as factors that contribute to microbial odour formation, physical litter conditions and the exchange of individual odorant gases at the air-water interface. Substantial opportunities exist for future research on litter conditions and litter formation mechanisms and how these contribute to odour emissions. Closing this knowledge gap will improve management strategies that intercept and interfere with odour formation and emission processes leading to an overall reduction in the potential to cause community impacts. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  6. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.

    Science.gov (United States)

    Huang, Ta-Jen; Hsu, Sheng-Hsiang; Wu, Chung-Ying

    2012-02-21

    The high fuel efficiency of lean-burn engines is associated with high temperature and excess oxygen during combustion and thus is associated with high-concentration NO(x) emission. This work reveals that very high concentration of NO(x) in the exhaust can be reduced and hydrocarbons (HCs) can be simultaneously oxidized using a low-temperature solid oxide fuel cell (SOFC). An SOFC unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3) (LSC)-Ce(0.9)Gd(0.1)O(1.95) as the cathode, with or without adding vanadium to LSC. SOFC operation at 450 °C and open circuit can effectively treat NO(x) over the cathode at a very high concentration in the simulated exhaust. Higher NO(x) concentration up to 5000 ppm can result in a larger NO(x) to N(2) rate. Moreover, a higher oxygen concentration promotes NO conversion. Complete oxidation of HCs can be achieved by adding silver to the LSC current collecting layer. The SOFC-based emissions control system can treat NO(x) and HCs simultaneously, and can be operated without consuming the anode fuel (a reductant) at near the engine exhaust temperature to eliminate the need for reductant refilling and extra heating.

  7. Field emission properties of the graphenated carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, H., E-mail: hudson.zanin@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Ceragioli, H.J.; Peterlevitz, A.C.; Baranauskas, Vitor [Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Marciano, F.R.; Lobo, A.O. [Laboratory of Biomedical Nanotechnology/Institute of Research and Development at UNIVAP, Av. Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, SP (Brazil)

    2015-01-01

    Graphical abstract: - Highlights: • Facile method to prepare graphenated carbon nanotubes (g-CNTs). • The electric field emission behaviour of g-CNTs was studied. • g-CNTs show better emission current stability than non-graphenated CNTs. - Abstract: Reduced graphene oxide-coated carbon nanotubes (RGO-CNT) electrodes have been prepared by hot filament chemical vapour deposition system in one-step growth process. We studied RGO-CNT electrodes behaviour as cold cathode in field emission test. Our results show that RGO-CNT retain the low threshold voltage typical of CNTs, but with greatly improved emission current stability. The field emission enhancement value is significantly higher than that expected being caused by geometric effect (height divided by the radius of nanotube). This suggested that the field emission of this hybrid structure is not only from a single tip, but eventually it is from several tips with contribution of graphene nanosheets at CNT's walls. This phenomenon explains why the graphenated carbon nanotubes do not burn out as quickly as CNT does until emission ceases completely. These preliminaries results make nanocarbon materials good candidates for applications as electron sources for several devices.

  8. Synthesis, field emission properties and optical properties of ZnSe nanoflowers

    Energy Technology Data Exchange (ETDEWEB)

    Xue, S.L., E-mail: slxue@dhu.edu.cn [Department of Applied Physics, College of Science, Donghua University, Shanghai 201620 (China); Wu, S.X.; Zeng, Q.Z.; Xie, P.; Gan, K.X.; Wei, J.; Bu, S.Y.; Ye, X.N.; Xie, L. [Department of Applied Physics, College of Science, Donghua University, Shanghai 201620 (China); Zou, R.J. [State Key Laboratory for Modification and Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Zhang, C.M.; Zhu, P.F. [Department of Physics, School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620 (China)

    2016-03-01

    Graphical abstract: Unique ZnSe nanoflowers have been successfully synthesized by reaction of Se powder with Zn substrates. They are characterized by XRD, SEM, TEM, XPS, EDS and Raman spectroscopy and were single crystals with cubic zinc blende (ZB) structure. They also have excellent field emission properties and optical properties. - Highlights: • Novel ZnSe nanoflowers are grown on Zn foils. • ZnSe nanoflowers are characterized by XRD, SEM, TEM, XPS and Raman spectra. • ZnSe nanoflowers on Zn foils as cathodes possess good FE properties. - Abstract: ZnSe nanoflowers have been synthesized by reaction of Se powder with Zn substrates at low temperature. The as-prepared ZnSe nanoflowers were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray energy dispersive spectroscope (EDS) and Raman spectroscopy measurements. It was found that the morphologies of the as-prepared samples highly depended on reaction time. ZnSe nanoclusters and nanoflowers formed at 573 K when the reaction time was 20 and 60 min, respectively. The as-prepared ZnSe nanoflowers were composed of radically aligned ZnSe nanorods with smooth surfaces. The results of XRD, XPS, EDS, TEM and Raman showed that the as-prepared ZnSe nanocrystals were single crystals with cubic zinc blende (ZB) structure. The formation mechanism of the as-prepared ZnSe nanoflowers was also discussed. In addition, the as-prepared ZnSe nanoflowers had excellent electron emission properties. The turn-on field of the as-prepared ZnSe nanoflowers was 3.5 V/μm and the enhancement factor was 3499. The optical properties of the as-prepared ZnSe nanoflowers were also investigated. The results demonstrated that the as-prepared ZnSe nanoflowers were potential candidates for optoelectronic devices.

  9. The effect of gas-phase polycyclic aromatic hydrocarbons on the formation and properties of biogenic secondary organic aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyuk, Alla [Pacific Northwest National Laboratory; USA; Imre, Dan G. [Imre Consulting; USA; Wilson, Jacqueline [Pacific Northwest National Laboratory; USA; Bell, David M. [Pacific Northwest National Laboratory; USA; Suski, Kaitlyn J. [Pacific Northwest National Laboratory; USA; Shrivastava, Manish [Pacific Northwest National Laboratory; USA; Beránek, Josef [Pacific Northwest National Laboratory; USA; Alexander, M. Lizabeth [Pacific Northwest National Laboratory; USA; Kramer, Amber L. [Department of Chemistry; Oregon State University; USA; Massey Simonich, Staci L. [Department of Chemistry; Oregon State University; USA; Environmental and Molecular Toxicology; Oregon State University

    2017-01-01

    When secondary organic aerosol (SOA) particles are formed by ozonolysis in the presence of gas-phase polycyclic aromatic hydrocarbons (PAHs), their formation and properties are significantly different from SOA particles formed without PAHs. For all SOA precursors and all PAHs, discussed in this study, the presence of the gas-phase PAHs during SOA formation significantly affects particle mass loadings, composition, growth, evaporation kinetics, and viscosity. SOA particles formed in the presence of PAHs have, as part of their compositions, trapped unreacted PAHs and products of heterogeneous reactions between PAHs and ozone. Compared to ‘pure’ SOA particles, these particles exhibit slower evaporation kinetics, have higher fractions of non-volatile components, like oligomers, and higher viscosities, assuring their longer atmospheric lifetimes. In turn, the increased viscosity and decreased volatility provide a shield that protects PAHs from chemical degradation and evaporation, allowing for the long-range transport of these toxic pollutants. The magnitude of the effect of PAHs on SOA formation is surprisingly large. The presence of PAHs during SOA formation increases mass loadings by factors of two to five, and particle number concentrations, in some cases, by more than a factor of 100. Increases in SOA mass, particle number concentrations, and lifetime have important implications to many atmospheric processes related to climate, weather, visibility, and human health, all of which relate to the interactions between biogenic SOA and anthropogenic PAHs. The synergistic relationship between SOA and PAHs presented here are clearly complex and call for future research to elucidate further the underlying processes and their exact atmospheric implications.

  10. Fundamental properties of secondary negative ion emission by sputtering

    International Nuclear Information System (INIS)

    Shimizu, Toshiki; Tsuji, Hiroshi; Ishikawa, Junzo

    1989-01-01

    The report describes some results obtained from preliminary experiments on secondary negative ion emission from a cesiated surface by Xe-ion beam sputtering, which give the production probability. A measuring system is constructed for secondary negative ion emission. The system consists of a microwave ion source with a lens, a sputtering target holder with a heater, a cesium oven, a limiting aperture with a substrate for deposition, a negative-ion extractor and lens, and a ExB type mass separator. Observations are made on the dependence of negative ion current on cesium supply, dependence of negative ion current on target temperature, and negative ion production probability. The cesium supply and the target temperature are found to strongly influence the negative ion emission. By controlling these factors, the optimum condition for secondary negative ion emission is achieved with a minimum surface work function. The production probability of the negative ion is found to be very high, about 20% for carbon. Therefore, the secondary negative ion emission is considered a useful and highly efficient method to obtain high current ion beams. The constant in the Rasser's theoretical equation is experimentally determined to be 4.1 x 10 -4 eV sec/m. (N.K.)

  11. Predicting nitrous oxide emissions from manure properties and soil moisture: An incubation experiment

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Arthur, Emmanuel; Olesen, Jørgen Eivind

    2016-01-01

    Field-applied manure is a source of essential plant nutrients, but benefits may be partly offset by high rates of nitrous oxide (N2O) emissions, as modified by manure characteristics and soil properties. In a 28-d incubation experiment we quantified short-term emissions of N2O from a sandy loam...

  12. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  13. Emission Spectrum Property of Modulated Atom-Field Coupling System

    International Nuclear Information System (INIS)

    Gao Yun-Feng; Feng Jian; Li Yue-Ke

    2013-01-01

    The emission spectrum of a two-level atom interacting with a single mode radiation field in the case of periodic oscillation coupling coefficient is investigated. A general expression for the emission spectrum is derived. The numerical results for the initial field in pure number stare are calculated. It is found that the effect of the coupling coefficient modulation on the spectral structure is very obvious in the case of a low modulation frequency and larger amplitude when the initial field is vacuum, which is potentially useful for exploring a modulated light source. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinzhuo; Ou-Yang, Wei, E-mail: ouyangwei@phy.ecnu.edu.cn; Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Xu, Peng; Wang, Miao [Department of Physics, Zhejiang University, 38 ZheDa Road, Hangzhou 310027 (China); Li, Jun [Department of Electronic Science and Technology, Tongji University, 4800 Caoan Road, Shanghai 201804 (China)

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  15. A look at some systemic properties of self-bioluminescent emission

    Science.gov (United States)

    Creath, Katherine

    2008-08-01

    Self-bioluminescent emission (SBE) is a type of biological chemiluminescence where photons are emitted as part of chemical reactions occurring during metabolic processes. This emission is also known as biophoton emission, ultraweak photon emission and ultraweak bioluminescence. This paper outlines research over the past century on some systemic properties of SBE as measured with biological detectors, photomultiplier detectors and ultra-sensitive imaging arrays. There is an apparent consensus in the literature that emission in the deep blue and ultraviolet (150-450nm) is related to DNA / RNA processes while emission in the red and near infrared (600-1000nm) is related to mitochondria and oxidative metabolisms involving reactive oxygen species, singlet oxygen and free radicals in plant, animal and human cells along with chlorophyll fluorescent decay in plants. Additionally, there are trends showing that healthy, unstressed and uninjured samples have less emission than samples that are unhealthy, stressed or injured. Mechanisms producing this emission can be narrowed down by isolating the wavelength region of interest and waiting for short-term fluorescence to decay leaving the ultraweak long-term metabolic emission. Examples of imaging this emission in healthy versus unhealthy, stressed versus unstressed, and injured versus uninjured plant parts are shown. Further discussion poses questions still to be answered related to properties such as coherence, photon statistics, and methodological means of isolating mechanisms.

  16. Reductions in emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from combustion of biomass pellets in comparison with raw fuel burning.

    Science.gov (United States)

    Shen, Guofeng; Tao, Shu; Wei, Siye; Zhang, Yanyan; Wang, Rong; Wang, Bin; Li, Wei; Shen, Huizhong; Huang, Ye; Chen, Yuanchen; Chen, Han; Yang, Yifeng; Wang, Wei; Wei, Wen; Wang, Xilong; Liu, Wenxing; Wang, Xuejun; Masse Simonich, Staci L y

    2012-06-05

    Biomass pellets are emerging as a cleaner alternative to traditional biomass fuels. The potential benefits of using biomass pellets include improving energy utilization efficiency and reducing emissions of air pollutants. To assess the environmental, climate, and health significance of replacing traditional fuels with biomass pellets, it is critical to measure the emission factors (EFs) of various pollutants from pellet burning. However, only a few field measurements have been conducted on the emissions of carbon monoxide (CO), particulate matter (PM), and polycyclic aromatic hydrocarbons (PAHs) from the combustion of pellets. In this study, pine wood and corn straw pellets were burned in a pellet burner (2.6 kW), and the EFs of CO, organic carbon, elemental carbon, PM, and PAHs (EF(CO), EF(OC), EF(EC), EF(PM), and EF(PAH)) were determined. The average EF(CO), EF(OC), EF(EC), and EF(PM) were 1520 ± 1170, 8.68 ± 11.4, 11.2 ± 8.7, and 188 ± 87 mg/MJ for corn straw pellets and 266 ± 137, 5.74 ± 7.17, 2.02 ± 1.57, and 71.0 ± 54.0 mg/MJ for pine wood pellets, respectively. Total carbonaceous carbon constituted 8 to 14% of the PM mass emitted. The measured values of EF(PAH) for the two pellets were 1.02 ± 0.64 and 0.506 ± 0.360 mg/MJ, respectively. The secondary side air supply in the pellet burner did not change the EFs of most pollutants significantly (p > 0.05). The only exceptions were EF(OC) and EF(PM) for pine wood pellets because of reduced combustion temperatures with the increased air supply. In comparison with EFs for the raw pine wood and corn straw, EF(CO), EF(OC), EF(EC), and EF(PM) for pellets were significantly lower than those for raw fuels (p 0.05). Based on the measured EFs and thermal efficiencies, it was estimated that 95, 98, 98, 88, and 71% reductions in the total emissions of CO, OC, EC, PM, and PAHs could be achieved by replacing the raw biomass fuels combusted in traditional cooking stoves with pellets burned in modern pellet burners.

  17. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  18. Performance Evaluations and Quality Validation System for Optical Gas Imaging Cameras That Visualize Fugitive Hydrocarbon Gas Emissions

    Science.gov (United States)

    Optical gas imaging (OGI) cameras have the unique ability to exploit the electromagnetic properties of fugitive chemical vapors to make invisible gases visible. This ability is extremely useful for industrial facilities trying to mitigate product losses from escaping gas and fac...

  19. Long-Term Hydrocarbon Trade Options for the Maghreb Region and Europe—Renewable Energy Based Synthetic Fuels for a Net Zero Emissions World

    Directory of Open Access Journals (Sweden)

    Mahdi Fasihi

    2017-02-01

    Full Text Available Concerns about climate change and increasing emission costs are drivers for new sources of fuels for Europe. Sustainable hydrocarbons can be produced synthetically by power-to-gas (PtG and power-to-liquids (PtL facilities, for sectors with low direct electrification such as aviation, heavy transportation and chemical industry. Hybrid PV–Wind power plants can harvest high solar and wind potentials of the Maghreb region to power these systems. This paper calculates the cost of these fuels for Europe, and presents a respective business case for the Maghreb region. Calculations are hourly resolved to find the least cost combination of technologies in a 0.45° × 0.45° spatial resolution. Results show that, for 7% weighted average cost of capital (WACC, renewable energy based synthetic natural gas (RE-SNG and RE-diesel can be produced in 2030 for a minimum cost of 76 €/MWhHHV (0.78 €/m3SNG and 88 €/MWhHHV (0.85 €/L, respectively. While in 2040, these production costs can drop to 66 €/MWhHHV (0.68 €/m3SNG and 83 €/MWhHHV (0.80 €/L, respectively. Considering access to a WACC of 5% in a de-risking project, oxygen sales and CO2 emissions costs, RE-diesel can reach fuel-parity at crude oil prices of 101 and 83 USD/bbl in 2030 and 2040, respectively. Thus, RE-synthetic fuels could be produced to answer fuel demand and remove environmental concerns in Europe at an affordable cost.

  20. Comparison of the Emission of Aromatic Hydrocarbons from Moulding Sands with Furfural Resin with the Low Content of Furfuryl Alcohol and Different Activators

    Directory of Open Access Journals (Sweden)

    Żymankowska-Kumon S.

    2016-12-01

    Full Text Available No-bake process refers to the use of chemical binders to bond the moulding sand. Sand is moved to the mould fill station in preparation for filling of the mould. A mixer is used to blend the sand with the chemical binder and activator. As the sand exits the mixer, the binder begins the chemical process of hardening. This paper presents the results of decomposition of the moulding sands with modified urea-furfuryl resin (with the low content of furfuryl alcohol below 25 % and different activators: organic and inorganic on a quartz matrix, under semi-industrial conditions. Investigations of the gases emission in the test foundry plant were executed according to the method extended in the Faculty of Foundry Engineering (AGH University of Science and Technology. Article presents the results of the emitted chosen aromatic hydrocarbons and loss on ignition compared with the different activators used to harden this resin. On the bases of the data, it is possible to determine the content of the emitted dangerous substances from the moulding sand according to the content of loss on ignition.

  1. The influence of oxidation properties on the electron emission characteristics of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    He, Li [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Xiaoning, E-mail: znn@mail.xjtu.edu.cn [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wenjiang [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Wei, Haicheng [School of Electrical and Information Engineering, Beifang University of Nationalities, Yinchuan750021 (China)

    2016-09-30

    Highlights: • Evaluated the oxidation properties of porous silicon from semi-quantitative methods. • Discovered the relationship between oxidation properties and emission characteristics. • Revealed the micro-essence of the electron emission of the porous silicon. - Abstract: In order to investigate the influence of oxidation properties such as oxygen content and its distribution gradient on the electron emission characteristics of porous silicon (PS) emitters, emitters with PS thickness of 8 μm, 5 μm, and 3 μm were prepared and then oxidized by electrochemical oxidation (ECO) and ECO-RTO (rapid thermal oxidation) to get different oxidation properties. The experimental results indicated that the emission current density, efficiency, and stability of the PS emitters are mainly determined by oxidation properties. The higher oxygen content and the smaller oxygen distribution gradient in the PS layer, the larger emission current density and efficiency we noted. The most favorable results occurred for the PS emitter with the smallest oxygen distribution gradient and the highest level of oxygen content, with an emission current density of 212.25 μA/cm{sup 2} and efficiency of 59.21‰. Additionally, it also demonstrates that thick PS layer benefits to the emission stability due to its longer electron acceleration tunnel. The FN fitting plots indicated that the effective emission areas of PS emitters can be enlarged and electron emission thresholds is decreased because of the higher oxygen content and smaller distribution gradient, which were approved by the optical micrographs of top electrode of PS emitters before and after electron emission.

  2. The influence of oxidation properties on the electron emission characteristics of porous silicon

    International Nuclear Information System (INIS)

    He, Li; Zhang, Xiaoning; Wang, Wenjiang; Wei, Haicheng

    2016-01-01

    Highlights: • Evaluated the oxidation properties of porous silicon from semi-quantitative methods. • Discovered the relationship between oxidation properties and emission characteristics. • Revealed the micro-essence of the electron emission of the porous silicon. - Abstract: In order to investigate the influence of oxidation properties such as oxygen content and its distribution gradient on the electron emission characteristics of porous silicon (PS) emitters, emitters with PS thickness of 8 μm, 5 μm, and 3 μm were prepared and then oxidized by electrochemical oxidation (ECO) and ECO-RTO (rapid thermal oxidation) to get different oxidation properties. The experimental results indicated that the emission current density, efficiency, and stability of the PS emitters are mainly determined by oxidation properties. The higher oxygen content and the smaller oxygen distribution gradient in the PS layer, the larger emission current density and efficiency we noted. The most favorable results occurred for the PS emitter with the smallest oxygen distribution gradient and the highest level of oxygen content, with an emission current density of 212.25 μA/cm"2 and efficiency of 59.21‰. Additionally, it also demonstrates that thick PS layer benefits to the emission stability due to its longer electron acceleration tunnel. The FN fitting plots indicated that the effective emission areas of PS emitters can be enlarged and electron emission thresholds is decreased because of the higher oxygen content and smaller distribution gradient, which were approved by the optical micrographs of top electrode of PS emitters before and after electron emission.

  3. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    Science.gov (United States)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and

  4. Identifying future directions for subsurface hydrocarbon migration research

    Science.gov (United States)

    Leifer, I.; Clark, J. F.; Luyendyk, B.; Valentine, D.

    Subsurface hydrocarbon migration is important for understanding the input and impacts of natural hydrocarbon seepage on the environment. Great uncertainties remain in most aspects of hydrocarbon migration, including some basic mechanisms of this four-phase flow of tar, oil, water, and gas through the complex fracture-network geometry particularly since the phases span a wide range of properties. Academic, government, and industry representatives recently attended a workshop to identify the areas of greatest need for future research in shallow hydrocarbon migration.Novel approaches such as studying temporal and spatial seepage variations and analogous geofluid systems (e.g., geysers and trickle beds) allow deductions of subsurface processes and structures that remain largely unclear. Unique complexities exist in hydrocarbon migration due to its multiphase flow and complex geometry, including in-situ biological weathering. Furthermore, many aspects of the role of hydrocarbons (positive and negative) in the environment are poorly understood, including how they enter the food chain (respiration, consumption, etc.) and “percolate” to higher trophic levels. But understanding these ecological impacts requires knowledge of the emissions' temporal and spatial variability and trajectories.

  5. Fractional separation of hydrocarbon vapours

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-10

    A process is described for converting higher boiling hydrocarbons to lower boiling hydrocarbons by subjecting them at elevated temperatures to a conversion operation, then separating the higher and lower boiling fractions. The separation takes place while the reaction products are maintained in the vapor phase by contact with a mass of solid porous material which has little or no catalytic activity but does have a preferential absorption property for higher boiling hydrocarbons so that the lower boiling part of the reaction products pass through the separation zone while the heavier hydrocarbons are retained. The separation is accomplished without substantial loss of heat of these reaction products.

  6. Diurnal variations of ambient particulate wood burning emissions and their contribution to the concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Seiffen, Germany

    Science.gov (United States)

    Poulain, L.; Iinuma, Y.; Müller, K.; Birmili, W.; Weinhold, K.; Brüggemann, E.; Gnauk, T.; Hausmann, A.; Löschau, G.; Wiedensohler, A.; Herrmann, H.

    2011-12-01

    Residential wood burning is becoming an increasingly important cause of air quality problems since it has become a popular source of alternative energy to fossil fuel. In order to characterize the contribution of residential wood burning to local particle pollution, a field campaign was organized at the village of Seiffen (Saxony, Germany). During this campaign, an Aerosol Mass Spectrometer (AMS) was deployed in parallel to a PM1 high volume filter sampler. The AMS mass spectra were analyzed using Positive Matrix Factorization (PMF) to obtain detailed information about the organic aerosol (OA). Biomass-burning organic aerosol (BBOA), Hydrocarbon-like organic aerosol (HOA), and Oxygenated Organic Aerosol (OOA) were identified and represented 20%, 17% and 62% of total OA, respectively. Additionally, Polycyclic Aromatic Hydrocarbons (PAH) were measured by the AMS with an average concentration of 10 ng m-3 and short term events of extremely high PAH concentration (up to 500 ng m-3) compared to the mean PAH value were observed during the whole measurement period. A comparison with the results from PM1 filter samples showed that the BBOA factor and the AMS PAH are good indicators of the total concentration of the different monosaccharide anhydrides and PAH measured on the filter samples. Based on its low correlation with CO and the low car traffic, the HOA factor was considered to be related to residential heating using liquid fuel. An influence of the time of the week (week vs. weekend) on the diurnal profiles of the different OA components was observed. The weekdays were characterized by two maxima; a first one early in the morning and a stronger one in the evening. During the weekend days, the different OA components principally reached only one maximum in the afternoon. Finally, the PAH emitted directly from residential wood combustion was estimated to represent 1.5% of the total mass of the BBOA factor and around 62% of the total PAH concentration measured at

  7. Diurnal variations of ambient particulate wood burning emissions and their contribution to the concentration of Polycyclic Aromatic Hydrocarbons (PAHs in Seiffen, Germany

    Directory of Open Access Journals (Sweden)

    L. Poulain

    2011-12-01

    Full Text Available Residential wood burning is becoming an increasingly important cause of air quality problems since it has become a popular source of alternative energy to fossil fuel. In order to characterize the contribution of residential wood burning to local particle pollution, a field campaign was organized at the village of Seiffen (Saxony, Germany. During this campaign, an Aerosol Mass Spectrometer (AMS was deployed in parallel to a PM1 high volume filter sampler. The AMS mass spectra were analyzed using Positive Matrix Factorization (PMF to obtain detailed information about the organic aerosol (OA. Biomass-burning organic aerosol (BBOA, Hydrocarbon-like organic aerosol (HOA, and Oxygenated Organic Aerosol (OOA were identified and represented 20%, 17% and 62% of total OA, respectively. Additionally, Polycyclic Aromatic Hydrocarbons (PAH were measured by the AMS with an average concentration of 10 ng m−3 and short term events of extremely high PAH concentration (up to 500 ng m−3 compared to the mean PAH value were observed during the whole measurement period. A comparison with the results from PM1 filter samples showed that the BBOA factor and the AMS PAH are good indicators of the total concentration of the different monosaccharide anhydrides and PAH measured on the filter samples. Based on its low correlation with CO and the low car traffic, the HOA factor was considered to be related to residential heating using liquid fuel. An influence of the time of the week (week vs. weekend on the diurnal profiles of the different OA components was observed. The weekdays were characterized by two maxima; a first one early in the morning and a stronger one in the evening. During the weekend days, the different OA components principally reached only one maximum in the afternoon. Finally, the PAH emitted directly from residential wood combustion was estimated to represent 1.5% of the total mass of the BBOA factor and

  8. Variability of SO₂, CO, and light hydrocarbons over a megacity in Eastern India: effects of emissions and transport.

    Science.gov (United States)

    Mallik, Chinmay; Ghosh, Dipanjan; Ghosh, Debreka; Sarkar, Ujjaini; Lal, Shyam; Venkataramani, S

    2014-01-01

    The Indo-Gangetic plain (IGP) has received extensive attention of the global scientific community due to higher levels of trace gases and aerosols over this region. Satellite retrievals and model simulations show that, in particular, the eastern part IGP is highly polluted. Despite this attention, in situ measurements of trace gases are very limited over this region. This paper presents measurements of SO₂, CO, CH₄, and C₂-C₅ NMHCs during March 2012-February 2013 over Kolkata, a megacity in the eastern IGP, with a focus on processes impacting their levels. The mean SO₂ and C2H6 concentrations during winter and post-monsoon periods were eight and three times higher compared to pre-monsoon and monsoon. Early morning enhancements in SO₂ and several NMHCs during winter connote boundary layer effects. Daytime elevations in SO₂ during pre-monsoon and monsoon suggest impacts of photo-oxidation. Inter-species correlations and trajectory analysis evince transport of SO₂ from regional combustion sources (e.g., coal burning in power plants, industries) along the east of the Indo-Gangetic plain impacting SO₂ levels at the site. However, C₂H₂ to CO ratio over Kolkata, which are comparable to other urban regions in India, show impacts of local biofuel combustions. Further, high levels of C₃H₈ and C₄H₁₀ evince the dominance of LPG/petrochemicals over the study location. The suite of trace gases measured during this study helps to decipher between impacts of local emissions and influence of transport on their levels.

  9. Thermochemical Properties Enthalpy, Entropy, and Heat Capacity of C1-C4 Fluorinated Hydrocarbons: Fluorocarbon Group Additivity.

    Science.gov (United States)

    Wang, Heng; Castillo, Álvaro; Bozzelli, Joseph W

    2015-07-23

    Enthalpies of formation for 14 C2–C4 fluorinated hydrocarbons were calculated with nine popular ab initio and density functional theory methods: B3LYP, CBS-QB3, CBS-APNO, M06, M06-2X, ωB97X, G4, G4(MP2)-6X, and W1U via several series of isodesmic reactions. The recommended ideal gas phase ΔHf298° (kcal mol(–1)) values calculated in this study are the following: −65.4 for CH3CH2F; −70.2 for CH3CH2CH2F; −75.3 for CH3CHFCH3; −75.2 for CH3CH2CH2CH2F; −80.3 for CH3CHFCH2CH3; −108.1 for CH2F2; −120.9 for CH3CHF2; −125.8 for CH3CH2CHF2; −133.3 for CH3CF2CH3; −166.7 for CHF3; −180.5 for CH3CF3; −185.5 for CH3CH2CF3; −223.2 for CF4; and −85.8 for (CH3)3CF. Entropies (S298° in cal mol(–1) K(–1)) were estimated using B3LYP/6-31+G(d,p) computed frequencies and geometries. Rotational barriers were determined and hindered internal rotational contributions for S298°, and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation, with direct integration over energy levels of the intramolecular rotation potential energy curve. Thermochemical properties for the fluorinated carbon groups C/C/F/H2, C/C2/F/H, C/C/F2/H, C/C2/F2, and C/C/F3 were derived from the above target fluorocarbons. Previously published enthalpies and groups for 1,2-difluoroethane, 1,1,2-trifluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,2-pentafluoroethane, 2-fluoro-2-methylpropane that were previously determined via work reaction schemes are revised using updated reference species values. Standard deviations are compared for the calculation methods.

  10. The electrostatic atomization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A J

    1984-06-01

    Exploitation of the unique and potentially beneficial characteristics of electrostatic atomization in combustion systems has foundered upon the inability of two element, diode devices to operate at flow rates that are larger than a fraction of a millilitre per second. This restriction has been attributed to the high innate electrical resistivity of hydrocarbon fuels. A discussion of proposed electrostatic fuel atomizers and their limitations is presented from the vantage of a recently developed theory of electrostatic spraying. Comparison of theory and experiment reveals the existence of a 'constant of spraying' and the presence of an operational regime in which low charge density droplet development is possible. Operation with hydrocarbons in this regime occurs when the mean droplet size is greater than or equal to 10 ..mu..m and fluid viscosity is below about 250 cp. The resulting spray has a mean droplet size that is functionally dependent only upon the free charge density level of the fluid. Consequently there is no theoretical impediment to the attainment of high flow rate electrostatic atomization with fluids of arbitrary conductivity. Implementation is achieved by a general class of electrostatic spray devices which employ direct charge injection. The Spray Triode, a submerged field-emission electron gun, represents a particularly simple member of this new class of atomizer. Among the Spray Triode operational characteristics to be discussed is insensitivity to spray fluid properties and flow rate.

  11. The magnetoionic modes and propagation properties of auroral radio emissions

    International Nuclear Information System (INIS)

    Calvert, W.; Hashimoto, Kozo

    1990-01-01

    The different magnetoionic wave modes which accompany the aurora are identified using DE 1 not only by their appearance on satellite radio spectrograms, but also by concurrent measurements of their wave polarization and arrival directions, and by ray-tracing models of their expected propagation behavior. Of the four possible propagation modes, designated O, X, W, and Z for the ordinary, extraordinary, whistler, and Z modes, respectively, all four are found to occur in the auroral zone, as follows: The most intense, of course, is the well-known auroral kilometric radiation (AKR), which originates primarily in the X mode near the electron cyclotron frequency, but which is frequently also accompanied by a weaker O-mode component from the same location. The next most prominent auroral emission is the W-mode auroral hiss originating from altitudes always well below the DE 1 satellite at frequencies below the local cyclotron frequency. The previously reported Z-mode auroral radiation was also detected, but from sources also below the satellite and at the poleward edge of the cavity, and not from the expected AKR source at the cyclotron frequency. A weaker O-mode component seems to accompany these emissions also, both within the polar cap poleward of the source and inside the cavity, the latter seemingly being guided upward by the cavity's lower plasma densities. Finally, exactly on the source field lines at the poleward edge of the cavity, there also occasionally seems to be localized Z-mode emissions extending from the Z-mode cutoff at quite low frequencies up to and above the plasma frequency

  12. Mercury-free PVT apparatus for thermophysical property analyses of hydrocarbon reservoir fluids. Final report, August 16, 1990--July 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lansangan, R.M.; Lievois, J.S.

    1992-08-31

    Typical reservoir fluid analyses of complex, multicomponent hydrocarbon mixtures include the volumetric properties, isothermal compressibility, thermal expansivity, equilibrium ratios, saturation pressure, viscosities, etc. These parameters are collectively referred to as PVT properties, an acronym for the primary state variables; pressure, volume, and temperature. The reservoir engineer incorporates this information together with the porous media description in performing material balance calculations. These calculations lead to the determination (estimation) of the initial hydrocarbon in-place, the future reservoir performance, the optimal production scheme, and the ultimate hydrocarbon recovery. About four years ago, Ruska Instrument Corporation embarked on a project to develop an apparatus designed to measure PVT properties that operates free of mercury. The result of this endeavor is the 2370 Hg-Free PVT system which has been in the market for the last three years. The 2370 has evolved from the prototype unit to its present configuration which is described briefly in this report. The 2370 system, although developed as a system-engineered apparatus based on existing technology, has not been exempt from this burden-of-proof Namely, the performance of the apparatus under routine test conditions with real reservoir fluids. This report summarizes the results of the performance and applications testing of the 2370 Hg-Free PVT system. Density measurements were conducted on a pure fluid. The results were compared against literature values and the prediction of an equation of state. Routine reservoir fluid analyses were conducted with a black oil and a retrograde condensate gas mixtures. Limited comparison of the results were performed based on the same tests performed on a conventional mercury-based PVT apparatus. The results of these tests are included in this report.

  13. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    International Nuclear Information System (INIS)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku

    2016-01-01

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness and shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.

  14. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku [Department of Applied Physics, Delhi Technological University (DTU), Shahbad Daulatpur, Bawana Road, Delhi-110042 (India)

    2016-08-15

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness and shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.

  15. Relation between coal rank, char reactivity, textural properties and NO emissions

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Rubiera, F.; Parra, J.B.; Pis, J.J. [Instituto Nacional del Carbon, Oviedo (Spain)

    1999-07-01

    A low volatile bituminous coal was pyrolysed at different heating rates to produce chars with different textural properties. There was a linear relationship between char reactivity and active surface area. The effect of coal rank on coal char textural properties was studied using a range of bituminous coals. The influence of textural properties and reactivity on NO emissions, and on the heterogeneous reduction of NO is discussed. 6 refs., 2 figs., 2 tabs.

  16. Room chamber assessment of the pollutant emission properties of (nominally) low-emission unflued gas heaters

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.K.; Mahoney, K.J., Min Cheng [CSIRO Manufacturing and Infrastructure Technology, Victoria (Australia)

    2004-07-01

    Pollutant emissions from unflued gas heaters were assessed in CSIRO'a Room Dynamic Environmental Chamber. This paper describes the chamber assessment procedure and presents findings for major commercial heaters that are nominally 'low-emission'. The chamber was operated at controlled conditions of temperature, humidity, ventilation and air mixing, representative of those encountered in typical indoor environments. A fixed rate of heat removal from the chamber air ensured that the heaters operated at constant heating rates, typically {approx}6 MJ/h which simulated operation of a heater after warm-up in an insulated dwelling in south-east Australia. The pollutants assessed were nitrogen dioxide, carbon monoxide, formaldehyde, VOCs and respirable suspended particulates. One type of heater was lower emitting for nigroen dioxide, but emitted greater amounts of carbon monoxide and formaldehyde (the latter becoming significant to indoor air quality). When operated with low line pressure of slight misalignment of the gas burner, this heater became a hazardous source of these pollutants. Emissions from the heates changed little after continous operation for up to 2 months. (au)

  17. Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    Science.gov (United States)

    Vojtisek-Lom, Michal; Czerwinski, Jan; Leníček, Jan; Sekyra, Milan; Topinka, Jan

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) of exhaust emissions were studied in four direct-injection turbocharged four-cylinder diesel engines, with power ratings of 90-136 kW. The engines were operated on biodiesel (B-100), a blend of 30% biodiesel in diesel fuel (B-30), and heated rapeseed oil (RO) in two independent laboratories. Diesel particle filters (DPF) and selective catalytic reduction (SCR) systems were used with B-30 and B-100. Concentrations of individual PAHs sampled in different substrates (quartz, borosilicate fiber and fluorocarbon membrane filters, polyurethane foam) were analyzed using different methods. Benzo[a]pyrene toxic equivalents (BaP TEQ) were calculated using different sets of toxic equivalency factors (TEF). Operation on B-100 without aftertreatment devices, compared to diesel fuel, yielded a mean reduction in PAHs of 73%, consistent across engines and among TEF used. A lower PAH reduction was obtained using B-30. The BaP TEQ reductions on DPF were 91-99% using B-100, for one non-catalyzed DPF, and over 99% in all other cases. The BaP TEQ for heated RO were higher than those for B-100 and one half lower to over twice as high as that of diesel fuel. B-100 and RO samples featured, compared to diesel fuel, a relatively high share of higher molecular weight PAH and a relatively low share of lighter PAHs. Using different sets of TEF or different detection methods did not consistently affect the observed effect of fuels on BaP TEQ. The compilation of multiple tests was helpful for discerning emerging patterns. The collection of milligrams of particulate matter per sample was generally needed for quantification of all individual PAHs.

  18. FAR-UV EMISSION PROPERTIES OF FR1 RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Danforth, Charles W.; Stocke, John T.; France, Kevin; Begelman, Mitchell C. [Department of Astrophysical and Planetary Sciences, University of Colorado, 391-UCB, Boulder, CO 80309 (United States); Perlman, Eric, E-mail: danforth@colorado.edu [Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Boulevard, Melbourne, FL 32901 (United States)

    2016-11-20

    The power mechanism and accretion geometry for low-power FR 1 radio galaxies are poorly understood in comparison to those for Seyfert galaxies and QSOs. In this paper, we use the diagnostic power of the Ly α recombination line observed using the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope ( HST ) to investigate the accretion flows in three well-known, nearby FR 1s: M87, NGC 4696, and Hydra A. The Ly α emission line’s luminosity, velocity structure, and the limited knowledge of its spatial extent provided by COS are used to assess conditions within a few parsecs of the supermassive black hole in these radio-mode active galactic nuclei. We observe strong Ly α emission in all three objects with total luminosity similar to that seen in BL Lacertae objects. M87 shows a complicated emission-line profile in Ly α , which varies spatially across the COS aperture and possibly temporally over several epochs of observation. In both NGC 4696 and M87, the Ly α luminosities ∼10{sup 40} erg s{sup -1} are closely consistent with the observed strength of the ionizing continuum in Case B recombination theory and with the assumption of a near-unity covering factor. It is possible that the Ly α -emitting clouds are ionized largely by beamed radiation associated with the jets. Long-slit UV spectroscopy can be used to test this hypothesis. Hydra A and the several BL Lac objects studied in this and previous papers have Ly α luminosities larger than M87 but their extrapolated, nonthermal continua are so luminous that they overpredict the observed strength of Ly α , a clear indicator of relativistic beaming in our direction. Given their substantial space density (∼4 × 10{sup -3} Mpc{sup -3}), the unbeamed Lyman continuum radiation of FR 1s may make a substantial minority contribution (∼10%) to the local UV background if all FR 1s are similar to M87 in ionizing flux level.

  19. Emission properties of Mn doped ZnO nanoparticles prepared by mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Nurul Syahidah; Yahya, Ahmad Kamal [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); Talari, Mahesh Kumar, E-mail: talari@gmail.com [Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia)

    2012-07-15

    Mechanochemical processing was reported to introduce lot of crystal defects which can significantly influence emission properties. Nevertheless, to the best of our knowledge, there are no reports on effect of mechanochemical processing on emission properties of transition metal ion doped ZnO. In this study, Zn{sub 1-x}Mn{sub x}O nanoparticles with different Mn content (x=0, 0.02, 0.04, 0.06, 0.08, and 0.1) were prepared by mechanochemical processing to study the effect of Mn doping and processing on emission properties. Confirmation of nanoparticles size and nanocrystalline nature of hexagonal wurtzite ZnO structure is carried out using transmission electron microscopy (TEM) and selected area electron diffraction (SAED), respectively. The samples were also characterized using Fluorescence Spectroscope before and after heat-treatment. The emission studies revealed that blue emission intensity is stronger compared to UV and green emission in contrast to the earlier reports, where other synthesis routes were employed for the ZnO nanoparticles' preparation. The blue emission originates from the zinc interstitial (Zn{sub i}) and oxygen interstitial (O{sub i}) defects, which indicate that the mechanochemical route resulted in more interstitial defects compared to oxygen substitution (O{sub Zn}) and oxygen vacancy (V{sub o}) defects which otherwise would give green emission. Mn doping resulted in shifting of near-band-edge (NBE) emission and the reduction in the intensities of NBE, blue and green emissions. The initial red shift at lower Mn content could be due to s-d and p-d exchange interactions as well as band tailing effect where as the blue shift at higher Mn content can be attributed to the Burstein-Moss shift. The reduction in emission intensity could be due to non-radiative recombination processes promoted by Mn ions with increasing Mn content. - Highlights: Black-Right-Pointing-Pointer Zn{sub 1-x}Mn{sub x}O nanoparticles were prepared by mechanochemical

  20. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  1. Influence of complex particle emission on properties of giant dipole resonance of hot nuclei

    International Nuclear Information System (INIS)

    Wen Wanxin; Jin Genming

    2003-01-01

    The possible reasons for the discrepancy between calculation results based on the statistical evaporation model and experimental data of giant dipole resonance of very hot nuclei are discussed. Both of simulations with the standard CASCADE code and the code coupling complex particle emission are carried out. It is shown that the complex particle emission affects the properties of giant dipole resonance of very hot nuclei

  2. Possible Correlations between the Emission Properties of SGRBs and Their Offsets from the Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai; Jin, Zhi-Ping; Li, Xiang; Fan, Yi-Zhong; Wei, Da-Ming [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China); Zhang, Fu-Wen, E-mail: jin@pmo.ac.cn, E-mail: yzfan@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn [College of Science, Guilin University of Technology, Guilin 541004 (China)

    2017-07-20

    Short gamma-ray bursts (SGRBs) are widely believed to be from mergers of binary compact objects involving at least one neutron star and hence have a broad range of spatial offsets from their host galaxies. In this work, we search for possible correlations between the emission properties of 18 SGRBs and their offsets from the host galaxies. The SGRBs with and without extended emission do not show significant differences between their offset distributions, in agreement with some previous works. There are, however, possible correlations between the optical and X-ray afterglow emission and the offsets. The underlying physical origins are examined.

  3. Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers

    International Nuclear Information System (INIS)

    Jasmine, Maria J.; Kavitha, Manniledam; Prasad, Edamana

    2009-01-01

    Solvent-induced aggregation and its effect on the intrinsic emission properties of amine, hydroxy and carboxylate terminated, poly(amidoamine) (PAMAM) dendrimers have been investigated in glycerol, ethylene glycol, methanol, ethylene diamine and water. Altering the solvent medium induces remarkable changes in the intrinsic emission properties of the PAMAM dendrimers at identical concentration. Upon excitation at 370 nm, amine terminated PAMAM dendrimer exhibits an intense emission at 470 nm in glycerol, ethylene glycol as well as glycerol-water mixtures. Conversely, weak luminescence is observed for hydroxy and carboxylate terminated PAMAM dendrimers in the same solvent systems. When the solvent is changed to ethylene diamine, hydroxy terminated PAMAM exhibits intense blue emission at 425 nm. While the emission intensity is varied when the solvent milieu is changed, excited state lifetime values of PAMAM dendrimers remain independent of the solvent used. UV-visible absorption and dynamic light scattering (DLS) experiments confirm the formation of solvent-controlled dendrimer aggregates in the systems. Comparison of the fluorescence and DLS data reveals that the size distribution of the dendrimer aggregates in each solvent system is distinct, which control the intrinsic emission intensity from PAMAM dendrimers. The experimental results suggest that intrinsic emission intensity from PAMAM dendrimers can be regulated by proper selection of solvents at neutral conditions and room temperature

  4. The field emission properties from the pristine/B-doped graphene–C{sub 70} composite

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoju; Wang, Yan; Yang, Ping, E-mail: yangpingdm@ujs.edu.cn

    2017-06-28

    The aim of this paper is to implement a theoretical prediction and evaluation on the quality of graphene–C{sub 70} composite as cathode material. The pristine graphene–C{sub 70} composite and the B-doped graphene–C{sub 70} composites were constructed to investigate their field emission properties. The results suggest that the work function (WF) and ionization potential (IP) of the composites decrease with the increasing electric field. It implies that the electron emission becomes more and more easy. Under the field, the molecular orbital energy levels close to the vacuum level and their energy gap also has a declining trend. It means a good trend for improving the field emission properties of the composites. The above mentioned results show that the composites have the advanced capacity for electron emission and the potential for cathode material. It makes us believe that the composites will be the good field emission electron sources in the electronic device fabrication and the investigation can give a theoretical guidance for the corresponding experiments and may develop the application of fullerene for field emission. - Highlights: • We implement a theoretical prediction on graphene–C{sub 70} composite as cathode materials. • We detect the work function of the composite decrease with increasing electric field. • The ionization potential of the composites decrease with increasing electric field. • We find the molecular orbital energy level close to the vacuum level under the field. • The composites have the advanced capacity for electron emission as cathode material.

  5. Lacustrine Environment Reservoir Properties on Sandstone Minerals and Hydrocarbon Content: A Case Study on Doba Basin, Southern Chad

    Science.gov (United States)

    Sumery, N. F. Mohd; Lo, S. Z.; Salim, A. M. A.

    2017-10-01

    The contribution of lacustrine environment as the hydrocarbon reservoir has been widely known. However, despite its growing importance, the lacustrine petroleum geology has received far less attention than marine due to its sedimentological complexity. This study therefore aims in developing an understanding of the unique aspects of lacustrine reservoirs which eventually impacts the future exploration decisions. Hydrocarbon production in Doba Basin, particularly the northern boundary, for instance, has not yet succeeded due to the unawareness of its depositional environment. The drilling results show that the problems were due to the: radioactive sand and waxy oil/formation damage, which all are related to the lacustrine depositional environment. Detailed study of geological and petrophysical integration on wireline logs and petrographic thin sections analysis of this environment helps in distinguishing reservoir and non-reservoir areas and determining the possible mechanism causing the failed DST results. The interpretations show that the correlation of all types> of logs and rho matrix analysis are capable in identifying sand and shale bed despite of the radioactive sand present. The failure of DST results were due to the presence of arkose in sand and waxy oil in reservoir bed. This had been confirmed by the petrographic thin section analysis where the arkose has mineral twinning effect indicate feldspar and waxy oil showing bright colour under fluorescent light. Understanding these special lacustrine environment characteristics and features will lead to a better interpretation of hydrocarbon prospectivity for future exploration.

  6. Field emission properties of ring-shaped Si ridges with DLC coating

    Science.gov (United States)

    Prommesberger, Christian; Ławrowski, Robert; Langer, Christoph; Mecani, Mirgen; Huang, Yifeng; She, Juncong; Schreiner, Rupert

    2017-05-01

    We report on the fabrication and the emission characterization of single ring-shaped Si ridges with a coating of diamond-like carbon (DLC). The reactive ion etching and the subsequent inductively coupled plasma step were adjusted to realize ring-shaped Si ridges with a height of 7.5 μm respectively 15 μm and an apex radius of 20 - 25 nm. The samples were coated with a DLC layer (thickness ≈ 2 - 5 nm) by a filtered cathodic vacuum arc deposition system in order to lower the work function of the emitter and to improve the field emission characteristics. The field emission characterizations were done in diode configuration with cathode and anode separated by a 50 μm thick mica spacer. A higher emission current was carried out for the ring-shaped Si ridge in comparison to the point-shaped Si tips due to the increased emission area. The highest emission current of 0.22 μA at 1000 V was measured on a DLC-coated sample with the highest aspect ratio. No degradation of the emission current was observed in the plateau regime during a measurement period of 6 h. Finally, no decreasing performance of the field emission properties was found due to changes in the geometry or destructions.

  7. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder.

    Science.gov (United States)

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-11-29

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced ( p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.

  8. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  9. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  10. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    Science.gov (United States)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  11. Plasmon mediated enhancement and tuning of optical emission properties of two dimensional graphitic carbon nitride nanosheets.

    Science.gov (United States)

    Bayan, Sayan; Gogurla, Narendar; Midya, Anupam; Singha, Achintya; Ray, Samit K

    2017-12-01

    We demonstrate surface plasmon induced enhancement and tunablilty in optical emission properties of two dimensional graphitic carbon nitride (g-C 3 N 4 ) nanosheets through the attachment of gold (Au) nanoparticles. Raman spectroscopy has revealed surface enhanced Raman scattering that arises due to the combined effect of the charge transfer process and localized surface plasmon induced enhancement in electromagnetic field, both occurring at the nanoparticle-nanosheet interface. Photoluminescence studies suggest that at an optimal concentration of nanoparticles, the emission intensity can be enhanced, which is maximum within the 500-525 nm region. Further, the fabricated electroluminescent devices reveal that the emission feature can be tuned from bluish-green to red (∼160 nm shift) upon attaching Au nanoparticles. We propose that the π*→π transition in g-C 3 N 4 can trigger surface plasmon oscillation in Au, which subsequently increases the excitation process in the nanosheets and results in enhanced emission in the green region of the photoluminescence spectrum. On the other hand, electroluminescence of g-C 3 N 4 can induce plasmon oscillation more efficiently and thus can lead to red emission from Au nanoparticles through the radiative damping of particle plasmons. The influence of nanoparticle size and coverage on the emission properties of two dimensional g-C 3 N 4 , nanosheets has also been studied in detail.

  12. Application of Rock-Eval pyrolysis to the detection of hydrocarbon property in sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Sun Ye; Li Ziying; Guo Qingyin; Xiao Xinjian

    2006-01-01

    Rock-Eval pyrolysis is introduced into the research of uranium geology by means of oil-gas geochemical evaluation. Hydrocarbon (oil-gas) components in DS sandstone-type uranium deposit are detected quantitatively. Through analyzing the oil-gas bearing categories of the uranium-bearing sandstones, the internal relationships between the uranium deposit and the oil-gas are revealed. Rock-Eval pyrolysis is an effective method to study the interaction between inorganic and organic matters, and should be extended to the study of sandstone-type uranium deposits. (authors)

  13. Coherent changes of multifractal properties of continuous acoustic emission at failure of heterogeneous materials

    Science.gov (United States)

    Panteleev, Ivan; Bayandin, Yuriy; Naimark, Oleg

    2017-12-01

    This work performs a correlation analysis of the statistical properties of continuous acoustic emission recorded in different parts of marble and fiberglass laminate samples under quasi-static deformation. A spectral coherent measure of time series, which is a generalization of the squared coherence spectrum on a multidimensional series, was chosen. The spectral coherent measure was estimated in a sliding time window for two parameters of the acoustic emission multifractal singularity spectrum: the spectrum width and the generalized Hurst exponent realizing the maximum of the singularity spectrum. It is shown that the preparation of the macrofracture focus is accompanied by the synchronization (coherent behavior) of the statistical properties of acoustic emission in allocated frequency intervals.

  14. Enhancement of field emission and photoluminescence properties of graphene-SnO2 composite nanostructures.

    Science.gov (United States)

    Ding, Jijun; Yan, Xingbin; Li, Jun; Shen, Baoshou; Yang, Juan; Chen, Jiangtao; Xue, Qunji

    2011-11-01

    In this study, the SnO(2) nanostructures and graphene-SnO(2) (G-SnO(2)) composite nanostructures were prepared on n-Si (100) substrates by electrophoretic deposition and magnetron sputtering techniques. The field emission of SnO(2) nanostructures is improved largely by depositing graphene buffer layer, and the field emission of G-SnO(2) composite nanostructures can also further be improved by decreasing sputtering time of Sn nanoparticles to 5 min. The photoluminescence (PL) spectra of the SnO(2) nanostructures revealed multipeaks, which are consistent with previous reports except for a new peak at 422 nm. Intensity of six emission peaks increased after depositing graphene buffer layer. Our results indicated that graphene can also be used as buffer layer acting as interface modification to simultaneity improve the field emission and PL properties of SnO(2) nanostructures effectively.

  15. Comparison of anti-corrosion properties of polyurethane based composite coatings with low infrared emissivity

    International Nuclear Information System (INIS)

    Wang Yajun; Xu Guoyue; Yu Huijuan; Hu Chen; Yan Xiaoxing; Guo Tengchao; Li Jiufen

    2011-01-01

    Four polyurethane resins, pure polyurethane (PU), epoxy modified polyurethane (EPU), fluorinated polyurethane (FPU) and epoxy modified fluorinated polyurethane (EFPU), with similar polyurethane backbone structure but different grafting group were used as organic adhesive for preparing low infrared emissivity coatings with an extremely low emissivity near 0.10 at 8-14 μm, respectively. By using these four resins, the effect of different resin matrics on the corrosion protection of the low infrared emissivity coatings was investigated in detail by using neutral salt spray test, SEM and FTIR. It was found that the emissivity of the coatings with different resin matrics changes significantly in corrosion media. And the results indicated that the coating using EFPU as organic adhesive exhibited excellent corrosion resistance property which was mainly attributed to the presence of epoxy group and atomic fluorine in binder simultaneously.

  16. Statistical properties of compartmental model parameters extracted from dynamic positron emission tomography experiments

    International Nuclear Information System (INIS)

    Mazoyer, B.M.; Huesman, R.H.; Budinger, T.F.; Knittel, B.L.

    1986-01-01

    Over the past years a major focus of research in physiologic studies employing tracers has been the computer implementation of mathematical methods of kinetic modeling for extracting the desired physiological parameters from tomographically derived data. A study is reported of factors that affect the statistical properties of compartmental model parameters extracted from dynamic positron emission tomography (PET) experiments

  17. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  18. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography

    OpenAIRE

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A large...

  19. Biogeochemistry of Halogenated Hydrocarbons

    Science.gov (United States)

    Adriaens, P.; Gruden, C.; McCormick, M. L.

    2003-12-01

    Halogenated hydrocarbons originate from both natural and industrial sources. Whereas direct anthropogenic emissions to the atmosphere and biosphere are often easy to assess, particularly when they are tied to major industrial activities, the attribution of emissions to other human activities (e.g., biomass burning), diffuse sources (e.g., atmospheric discharge, run off), and natural production (e.g., soils, fungi, algae, microorganisms) are difficult to quantify. The widespread occurrence of both alkyl and aryl halides in groundwater, surface water, soils, and various trophic food chains, even those not affected by known point sources, suggests a substantial biogeochemical cycling of these compounds (Wania and Mackay, 1996; Adriaens et al., 1999; Gruden et al., 2003). The transport and reactive fate mechanisms controlling their reactivity are compounded by the differences in sources of alkyl-, aryl-, and complex organic halides, and the largely unknown impact of biogenic processes, such as enzymatically mediated halogenation of organic matter, fungal production of halogenated hydrocarbons, and microbial or abiotic transformation reactions (e.g., Asplund and Grimvall, 1991; Gribble, 1996; Watling and Harper, 1998; Oberg, 2002). The largest source may be the natural halogenation processes in the terrestrial environment, as the quantities detected often exceed the amount that can be explained by human activities in the surrounding areas ( Oberg, 1998). Since biogeochemical processes result in the distribution of a wide range of halogenated hydrocarbon profiles, altered chemical structures, and isomer distributions in natural systems, source apportionment (or environmental forensics) can often only be resolved using multivariate statistical methods (e.g., Goovaerts, 1998; Barabas et al., 2003; Murphy and Morrison, 2002).This chapter will describe the widespread occurrence of halogenated hydrocarbons, interpret their distribution and biogeochemical cycling in light of

  20. Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon.

    Science.gov (United States)

    Jemil, Nawel; Ben Ayed, Hanen; Hmidet, Noomen; Nasri, Moncef

    2016-11-01

    Six biosurfactant-producing bacteria were isolated from hydrocarbon contaminated soils in Sfax, Tunisia. Isolates were screened for biosurfactant production by different conventional methods including hemolytic activity, surface tension reduction, drop-collapsing and oil displacement tests. All these screening tests show that all the isolates behave differently. Among the isolated bacteria, DCS1 strain was selected for further studies based on its highest activities and it was identified as Bacillus methylotrophicus DCS1. This strain was found to be a potent producer of biosurfactant when cultivated in mineral-salts medium supplemented with diesel oil (2 %, v/v) as a sole carbon source. Physicochemical properties and stability of biosurfactants synthesized by B. methylotrophicus DCS1 were investigated. The produced biosurfactants DCS1, from Landy medium, possess high surface activity that could lower the surface tension of water to a value of 31 from 72 mN m(-1) and have a critical micelle concentration (CMC) of 100 mg L(-1). Compared with SDS and Tween 80, biosurfactants showed excellent emulsification activities against different hydrocarbon substrates and high solubilization efficiency towards diesel oil. Biosurfactants DCS1 showed good stability in a wide range of temperature, pH and salinity. These results suggested that biosurfactants produced by B. methylotrophicus DCS1 could be an alternative to chemically synthesized surfactants for use in bioremediation processes to enhance the solubility of hydrophobic compounds.

  1. Emission properties of polymer composites doped with Er3+:Y2O3 nanopowders

    Science.gov (United States)

    Anders, Krzysztof; Jusza, Anna; Baran, Magdalena; Lipińska, Ludwika; Piramidowicz, Ryszard

    2012-10-01

    In this work we report the recent results of our investigation on visible emission properties of the PMMA-based polymer nanocomposites doped with Er3+:Y2O3 nanopowders. The set of active nanopowders, and polymer films, differing in active ions concentration, was characterized with respect of their luminescent properties in the green spectral range, available to a limited extent for semiconductor lasers. In particular - the concentration dependent emission spectra and fluorescence dynamics profiles were measured under direct (single photon) and up-converted excitation, enabling the comparison of luminescent properties of developed nanocomposite materials and original nanopowders, optimization of erbium dopant concentration as well as discussion of excitation mechanisms and analysis of the efficiency of depopulation processes.

  2. Field-emission properties of transparent tungsten oxide nano-urchins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyung [Kyungpook National University, Nano-applied Physics Laboratory, Department of Physics, Daegu (Korea, Republic of)

    2012-09-15

    The field-emission properties of transparent tungsten oxide nano-urchin (NU) films deposited on conducting glass substrates were examined. The novel crystalline tungsten oxide NUs consisted of nanowires added to a spherical shell. The WO{sub 2.72} NUs showed better field-emission properties than the WO{sub 3} NUs with a low turn-on field of approximately 5.8 V/{mu}m and a current density as high as 1.3 mA/cm{sup 2} at 7.2 V/mm. The WO{sub x} NUs films could be used in FE applications using a large-area glass substrate without the need for a catalyst and a mechanical rubbing or lift-up process. These results have implications for the enhancement of FE properties by further tuning the WO{sub x} phases. (orig.)

  3. Normal spectral emissivity of selected liquid metals and improved thermophysical properties

    International Nuclear Information System (INIS)

    Pottlacher, G.; Seifter, A.

    2001-01-01

    Full Text: Emissivity measurements on several liquid metals up to temperatures of 6000 K have been successfully established by linking a laser polarimetry technique to our well-known method for performing high speed measurements of thermophysical properties on liquid metal samples during microsecond pulse-heating experiments. Thermophysical properties measured with our experimental setup include temperature dependencies of heat capacity, enthalpy, electrical resistivity, density, thermal diffusivity and thermal conductivity up to the end of the stable liquid phase. During grant P12775-PHY additionally to the above listened properties the measurement of the change of the polarization of laser light reflected from the surface during pulse heating was enabled and thus now the temperature dependence of spectral emissivity at 684.5 nm by methods of ellipsometry is derived also. Several liquid metals and alloys have been investigated within this grant and a review of the data obtained will be given here. (author)

  4. Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Chen, Guohai; Shin, Dong Hoon; Lee, Cheol Jin; Iwasaki, Takayuki; Kawarada, Hiroshi

    2008-01-01

    Vertically aligned double-walled carbon nanotube (VA-DWCNT) arrays were synthesized by point-arc microwave plasma chemical vapor deposition on Cr/n-Si and SiO 2 /n-Si substrates. The outer tube diameters of VA-DWCNTs are in the range of 2.5-3.8 nm, and the average interlayer spacing is approximately 0.42 nm. The field emission properties of these VA-DWCNTs were studied. It was found that a VA-DWCNT array grown on a Cr/n-Si substrate had better field emission properties as compared with a VA-DWCNT array grown on a SiO 2 /n-Si substrate and randomly oriented DWCNTs, showing a turn-on field of about 0.85 V μm -1 at the emission current density of 0.1 μA cm -2 and a threshold field of 1.67 V μm -1 at the emission current density of 1.0 mA cm -2 . The better field emission performance of the VA-DWCNT array was mainly attributed to the vertical alignment of DWCNTs on the Cr/n-Si substrate and the low contact resistance between CNTs and the Cr/n-Si substrate

  5. Physical properties of z ~ 4 LBGs: differences between galaxies with and without Lyα emission

    Science.gov (United States)

    Pentericci, L.; Grazian, A.; Fontana, A.; Salimbeni, S.; Santini, P.; de Santis, C.; Gallozzi, S.; Giallongo, E.

    2007-08-01

    Aims:We analysed the physical properties of z ˜4 Lyman Break Galaxies observed in the GOODS-S survey, in order to investigate possible differences between galaxies where the Lyα is present in emission, and those where the line is absent or in absorption. Methods: The objects were selected from their optical color and then spectroscopically confirmed by Vanzella et al. (2005). From the public spectra we assessed the nature of the Lyα emission and divided the sample into galaxies with Lyα in emission and objects without a Lyα line (i.e. either absent or in absorption). We then used complete photometry, from U band to mid-infrared from the GOODS-MUSIC database, to study the observational properties of the galaxies, such as UV spectral slopes and optical to mid-infrared colors, and the possible differences between the two samples. Lastly, we used standard spectral fitting techniques to determine the physical properties of the galaxies, such as total stellar mass, stellar ages and so on, and again we looked at the possible differences between the two samples. Results: Our results indicate that LBG with Lyα in emission are on average a much younger and less massive population than the LBGs without Lyα emission. Both populations are forming stars very actively and are relatively dust free, although those with line emission seem to be even less dusty on average. We briefly discuss these results in the context of recent models for the evolution of Lyman break galaxies and Lyα emitters.

  6. Different behavioral effect dose–response profiles in mice exposed to two-carbon chlorinated hydrocarbons: Influence of structural and physical properties

    International Nuclear Information System (INIS)

    Umezu, Toyoshi; Shibata, Yasuyuki

    2014-01-01

    The present study aimed to clarify whether dose–response profiles of acute behavioral effects of 1,2-dichloroethane (DCE), 1,1,1-trichloroethane (TCE), trichloroethylene (TRIC), and tetrachloroethylene (PERC) differ. A test battery involving 6 behavioral endpoints was applied to evaluate the effects of DCE, TCE, TRIC, and PERC in male ICR strain mice under the same experimental conditions. The behavioral effect dose–response profiles of these compounds differed. Regression analysis was used to evaluate the relationship between the dose–response profiles and structural and physical properties of the compounds. Dose–response profile differences correlated significantly with differences in specific structural and physical properties. These results suggest that differences in specific structural and physical properties of DCE, TCE, TRIC, and PERC are responsible for differences in behavioral effects that lead to a variety of dose–response profiles. - Highlights: • We examine effects of 4 chlorinated hydrocarbons on 6 behavioral endpoints in mice. • The behavioral effect dose–response profiles for the 4 compounds are different. • We utilize regression analysis to clarify probable causes of the different profiles. • The compound's physicochemical properties probably produce the different profiles

  7. Different behavioral effect dose–response profiles in mice exposed to two-carbon chlorinated hydrocarbons: Influence of structural and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Umezu, Toyoshi, E-mail: umechan2@nies.go.jp; Shibata, Yasuyuki, E-mail: yshibata@nies.go.jp

    2014-09-01

    The present study aimed to clarify whether dose–response profiles of acute behavioral effects of 1,2-dichloroethane (DCE), 1,1,1-trichloroethane (TCE), trichloroethylene (TRIC), and tetrachloroethylene (PERC) differ. A test battery involving 6 behavioral endpoints was applied to evaluate the effects of DCE, TCE, TRIC, and PERC in male ICR strain mice under the same experimental conditions. The behavioral effect dose–response profiles of these compounds differed. Regression analysis was used to evaluate the relationship between the dose–response profiles and structural and physical properties of the compounds. Dose–response profile differences correlated significantly with differences in specific structural and physical properties. These results suggest that differences in specific structural and physical properties of DCE, TCE, TRIC, and PERC are responsible for differences in behavioral effects that lead to a variety of dose–response profiles. - Highlights: • We examine effects of 4 chlorinated hydrocarbons on 6 behavioral endpoints in mice. • The behavioral effect dose–response profiles for the 4 compounds are different. • We utilize regression analysis to clarify probable causes of the different profiles. • The compound's physicochemical properties probably produce the different profiles.

  8. Towards meso -Ester BODIPYs with Aggregation-Induced Emission Properties: The Effect of Substitution Positions

    KAUST Repository

    Chua, Ming Hui; Ni, Yong; Garai, Monalisa; Zheng, Bin; Huang, Kuo-Wei; Xu, Qing Hua; Xu, Jianwei; Wu, Jishan

    2015-01-01

    Three meso-ester boron dipyrromethene (BODIPY) dyes have been synthesized and functionalized with aggregation-induced emission (AIE)-active tetraphenylethene or triphenylethene moieties. It was found that functionalizing at the different positions of the BODIPY core resulted in the final dye having different emission properties in response to aggregation: from aggregation-induced quenching (ACQ) to being AIE active. X-ray crystallographic analysis was thus performed to provide an explanation for these differences. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Towards meso -Ester BODIPYs with Aggregation-Induced Emission Properties: The Effect of Substitution Positions

    KAUST Repository

    Chua, Ming Hui

    2015-06-17

    Three meso-ester boron dipyrromethene (BODIPY) dyes have been synthesized and functionalized with aggregation-induced emission (AIE)-active tetraphenylethene or triphenylethene moieties. It was found that functionalizing at the different positions of the BODIPY core resulted in the final dye having different emission properties in response to aggregation: from aggregation-induced quenching (ACQ) to being AIE active. X-ray crystallographic analysis was thus performed to provide an explanation for these differences. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Properties of polycyclic aromatic hydrocarbons in the northwest photon dominated region OF NGC 7023. I. PAH size, charge, composition, and structure distribution

    International Nuclear Information System (INIS)

    Boersma, C.; Bregman, J. D.; Allamandola, L. J.

    2013-01-01

    Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer Infrared Spectrograph spectral map of the northwest photon dominated region (PDR) in NGC 7023 was analyzed exclusively using PAH spectra from the NASA Ames PAH IR Spectroscopic Database (www.astrochem.org/pahdb). The 5-15 μm spectrum at each pixel is fitted using a non-negative-least-squares fitting approach. The fits are of good quality, allowing decomposition of the PAH emission into four subclasses: size, charge, composition, and hydrogen adjacency (structure). Maps tracing PAH subclass distributions across the region paint a coherent astrophysical picture. Once past some 20 seconds of arc from HD 200775, the emission is dominated by the more stable, large, symmetric, compact PAH cations with smaller, neutral PAHs taking over along the lines-of-sight toward the more distant molecular cloud. The boundary between the PDR and the denser cloud material shows up as a distinct discontinuity in the breakdown maps. Noteworthy is the requirement for PANH cations to fit the bulk of the 6.2 and 11.0 μm features and the indication of PAH photo-dehydrogenation and fragmentation close to HD 200775. Decomposition of the spectral maps into 'principal' subclass template spectra provides additional insight into the behavior of each subclass. However, the general applicability of this computationally more efficient approach is presently undetermined. This is the first time the spectra of individual PAHs are exclusively used to fit the 5-15 μm region and analyze the spatial behavior of the aromatic infrared bands, providing fundamental, new information about astronomical PAH subpopulations including their dependence on, and response to, changes in local conditions.

  11. Properties of polycyclic aromatic hydrocarbons in the northwest photon dominated region OF NGC 7023. I. PAH size, charge, composition, and structure distribution

    Energy Technology Data Exchange (ETDEWEB)

    Boersma, C.; Bregman, J. D.; Allamandola, L. J., E-mail: Christiaan.Boersma@nasa.gov [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-0001 (United States)

    2013-06-01

    Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer Infrared Spectrograph spectral map of the northwest photon dominated region (PDR) in NGC 7023 was analyzed exclusively using PAH spectra from the NASA Ames PAH IR Spectroscopic Database (www.astrochem.org/pahdb). The 5-15 μm spectrum at each pixel is fitted using a non-negative-least-squares fitting approach. The fits are of good quality, allowing decomposition of the PAH emission into four subclasses: size, charge, composition, and hydrogen adjacency (structure). Maps tracing PAH subclass distributions across the region paint a coherent astrophysical picture. Once past some 20 seconds of arc from HD 200775, the emission is dominated by the more stable, large, symmetric, compact PAH cations with smaller, neutral PAHs taking over along the lines-of-sight toward the more distant molecular cloud. The boundary between the PDR and the denser cloud material shows up as a distinct discontinuity in the breakdown maps. Noteworthy is the requirement for PANH cations to fit the bulk of the 6.2 and 11.0 μm features and the indication of PAH photo-dehydrogenation and fragmentation close to HD 200775. Decomposition of the spectral maps into 'principal' subclass template spectra provides additional insight into the behavior of each subclass. However, the general applicability of this computationally more efficient approach is presently undetermined. This is the first time the spectra of individual PAHs are exclusively used to fit the 5-15 μm region and analyze the spatial behavior of the aromatic infrared bands, providing fundamental, new information about astronomical PAH subpopulations including their dependence on, and response to, changes in local conditions.

  12. Properties of Polycyclic Aromatic Hydrocarbons in the Northwest Photon Dominated Region of NGC 7023. I. PAH Size, Charge, Composition, and Structure Distribution

    Science.gov (United States)

    Boersma, C.; Bregman, Jesse; Allamandola, L. J

    2013-01-01

    Polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer Infrared Spectrograph spectral map of the northwest photon dominated region (PDR) in NGC 7023 was analyzed exclusively using PAH spectra from the NASA Ames PAH IR Spectroscopic Database (www.astrochem.org/pahdb). The 5-15 micron spectrum at each pixel is fitted using a non-negative-least-squares fitting approach. The fits are of good quality, allowing decomposition of the PAH emission into four subclasses: size, charge, composition, and hydrogen adjacency (structure). Maps tracing PAH subclass distributions across the region paint a coherent astrophysical picture. Once past some 20 seconds of arc from HD 200775, the emission is dominated by the more stable, large, symmetric, compact PAH cations with smaller, neutral PAHs taking over along the lines-of-sight toward the more distant molecular cloud. The boundary between the PDR and the denser cloud material shows up as a distinct discontinuity in the breakdown maps. Noteworthy is the requirement for PANH cations to fit the bulk of the 6.2 and 11.0 micron features and the indication of PAH photo-dehydrogenation and fragmentation close to HD 200775. Decomposition of the spectral maps into "principal" subclass template spectra provides additional insight into the behavior of each subclass. However, the general applicability of this computationally more efficient approach is presently undetermined. This is the first time the spectra of individual PAHs are exclusively used to fit the 5-15 micron region and analyze the spatial behavior of the aromatic infrared bands, providing fundamental, new information about astronomical PAH subpopulations including their dependence on, and response to, changes in local conditions.

  13. Structure-reactivity correlation of diesel soot and characterization of polycyclic aromatic hydrocarbons and carbonyls in biofuel emissions; Struktur-Reaktivitaets-Korrelation von Dieselruss und Charakterisierung von PAHs und Carbonylen im Abgas von Biokraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Knauer, Markus

    2010-12-29

    This work reports on the determination of the structure-reactivity correlation of soot using Raman microscopy (RM) and temperature programmed oxidation (TPO), as well as on changes in the emission level of polycyclic aromatic hydrocarbons (PAH) and carbonyls at the combustion of biofuels. To characterize the reactivity of soot the combustion behaviour of model- and diesel soot has been determined by means of TPO in the presence of oxygen. In this context, spark-discharge soot and graphite powder were applied as model substances, and EURO VI and IV diesel soot as real-diesel soots. The structure of soot samples was investigated by RM and structural changes during the TPO were observed. In order to make a statement about the changes in PAH and carbonyl compound emissions during combustion of biofuels, samples were taken at different engine testbenches. Fossil fuel, biodiesel and vegetable oil were used during this study, as well as fuel mixtures with different biofuel fractions.

  14. Federal Air Pollutant Emission Regulations and Preliminary Estimates of Potential-to-Emit from Biorefineries. Pathway #1: Dilute-Acid and Enzymatic Deconstruction of Biomass-to-Sugars and Biological Conversion of Sugars-to-Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bhatt, Arpit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomas, Mae [Eastern Research Group, Lexington, MA (United States); Renzaglia, Jason [Eastern Research Group, Lexington, MA (United States)

    2016-02-01

    Biorefineries are subject to environmental laws, including complex air quality regulations that aim to protect and improve the quality of the air. These regulations govern the amount of certain types of air pollutants that can be emitted from different types of emission sources. To determine which federal air emission regulations potentially apply to the sugars-to-hydrocarbon (HC) biorefinery, we first identified the types of regulated air pollutants emitted to the ambient environment by the biorefinery or from specific equipment. Once the regulated air pollutants are identified, we review the applicability criteria of each federal air regulation to determine whether the sugars-to-HC biorefinery or specific equipment is subject to it. We then estimate the potential-to-emit of pollutants likely to be emitted from the sugars-to-HC biorefinery to understand the air permitting requirements.

  15. Structure-reactivity correlation of diesel soot and characterization of polycyclic aromatic hydrocarbons and carbonyls in biofuel emissions; Struktur-Reaktivitaets-Korrelation von Dieselruss und Charakterisierung von PAHs und Carbonylen im Abgas von Biokraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Knauer, Markus

    2009-12-29

    This work reports on the determination of the structure-reactivity correlation of soot using Raman microscopy (RM) and temperature programmed oxidation (TPO), as well as on changes in the emission level of polycyclic aromatic hydrocarbons (PAH) and carbonyls at the combustion of biofuels. To characterize the reactivity of soot the combustion behaviour of model- and diesel soot has been determined by means of TPO in the presence of oxygen. In this context, spark-discharge soot and graphite powder were applied as model substances, and EURO VI and IV diesel soot as real-diesel soots. The structure of soot samples was investigated by RM and structural changes during the TPO were observed. In order to make a statement about the changes in PAH and carbonyl compound emissions during combustion of biofuels, samples were taken at different engine testbenches. Fossil fuel, biodiesel and vegetable oil were used during this study, as well as fuel mixtures with different biofuel fractions.

  16. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H(sub n)-PAHs) and their Relation to the 3.4 and 6.9 Micrometer PAH Emission Features

    Science.gov (United States)

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-01-01

    A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  17. Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    Science.gov (United States)

    Richards, Gordon T.; Kratzer, R.

    2014-01-01

    We explore the evolution of the fraction of radio loud quasars and the mean radio properties of quasars. Although any quasar has only a ~10% chance of being radio loud and the average quasar has a radio luminosity of ~4x10^30 ergs/s/Hz, these properties are strong functions of not only luminosity, redshift, black hole mass, and accretion rate, but also the strength of the accretion disk wind (as characterized by CIV emission line properties). Quasars with higher optical luminosity and/or lower redshift have a higher than average probability of being radio loud, but their median radio luminosity (relative to optical) is much lower than average. We find that, while radio properties of quasars generally cannot be predicted from their optical properties, objects where one expects a strong radiation line driven wind (based on emission line features) have virtually no chance of being radio loud. The redder quasars are in the optical, the more radio flux (relative to optical) they have; this trend holds even for quasars that are not expected to be significantly dust reddened/extincted in the optical. Finally, we consider the radio properties of quasars in the framework of models which describe the radio loud extrema as being due to particularly high spin resulting from second generation mergers and in the context of star formation at lower levels of radio flux. This work was supported by NSF AAG grant 1108798.

  18. Graphene coated subwavelength wires: a theoretical investigation of emission and radiation properties

    International Nuclear Information System (INIS)

    Cuevas, Mauro

    2017-01-01

    Highlights: • Decay rate in a dielectric graphene coated wire. • Localized surface plasmons. • Excitation of multipolar resonances. - Abstract: This work analyzes the emission and radiation properties of a single optical emitter embedded in a graphene–coated subwavelength wire. We discuss the modifications of the spontaneous emission rate and the radiation efficiency as a function of the position and orientation of the dipole inside the wire. Our results show that these quantities can be enhanced by several orders of magnitude when the emission frequency coincides with one of the resonance frequencies of the graphene–coated wire. In particular, high–order plasmon resonances are excited when the emitter is moved from the wire center. Modifications resulting from varying the orientation of the dipole in the near field distribution and in the far field intensities are shown.

  19. Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production

    International Nuclear Information System (INIS)

    Hahn, D. W.; Hencken, K. R.; Johnsen, H. A.; Ross, J. R.; Walsh, P. M.

    1998-01-01

    Particulate matter emissions and some components of the particles were measured in the exhaust from combustion equipment used in oil and gas production operations near Bakersfield, California. The combustion sources included a 22.5 MW (electric) turbine generator, a 342-Bhp rich-burn spark ignition engine, and a 50 million Btu/h steam generator, all fired using natural gas. The particle components and measurement techniques were as follows: (1) Calcium, magnesium, sodium, silicon, and iron were measured using laser-induced breakdown spectroscopy (LIBS), (2) particle-bound polycyclic aromatic hydrocarbons (PAH) were detected using the charge produced by photoionization, (3) particles having sizes between 0.1 and 7.5 (micro)m were counted using an instrument based on light scattering, and (4) total particulate matter was measured according to US EPA Method 5. Not all of the methods were applied to all of the sources. Measurements were also made in the ambient air near the combustion air inlets to the units, for comparison with the concentrations in the exhaust, but the inlet and outlet measurements were not done simultaneously. Calcium, sodium, and silicon were found in the exhaust from the steam generator at concentrations similar to those in the ambient air near the inlet to the burner. Sodium and silicon were observed in the engine exhaust at levels a factor of four higher than their concentrations in the air. The principal metal observed in the engine exhaust was calcium, a component of the lubricating oil, at a concentration of 11.6 (micro)g/m 3 . The air entering the gas turbine is filtered, so the average concentrations of metals in the turbine exhaust under steady operating conditions were even lower than in the air. During start-up following a shut-down to wash the turbine, silicon and iron were the major species in the stack, at concentrations of 6.4 and 16.2 (micro)g/m 3 , respectively. A possible source of silicon is the water injected into the turbine

  20. The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine

    International Nuclear Information System (INIS)

    Rashedul, H.K.; Masjuki, H.H.; Kalam, M.A.; Ashraful, A.M.; Ashrafur Rahman, S.M.; Shahir, S.A.

    2014-01-01

    Highlights: • Fuel additives significantly improve the quality of biodiesel and its blends. • Fuel additives used to enhance biodiesel properties. • Fuel saving from optimized vehicle performance and economy with the use of additives. • Emission reduction from fuel system cleanliness and combustion optimization. - Abstract: With growing concern over greenhouse gases there is increasing emphasis on reducing CO 2 emissions. Despite engine efficiency improvements plus increased dieselization of the fleet, increasing vehicle numbers results in increasing CO 2 emissions. To reserve this trend the fuel source must be changed to renewable fuels which are CO 2 neutral. As a renewable, sustainable and alternative fuel for compression ignition engines, biodiesel is widely accepted as comparable fuel to diesel in diesel engines. This is due to several factors like decreasing the dependence on imported petroleum, reducing global warming, increasing lubricity, and reducing substantially the exhaust emissions from diesel engine. However, there is a major disadvantage in the use of biodiesel as it has lower heating value, higher density and higher viscosity, higher fuel consumption and higher NO X emission, which limits its application. Here fuel additives become essential and indispensable tools not only to minimize these drawbacks but also generate specified products to meet the regional and international standards. Fuel additives can contribute towards fuel economy and emission reduction either directly or indirectly. Their use enable vehicle performance to be maintained at, or near, optimum over the lifetime of the vehicle. A variety of additives are used in automotive biodiesel fuel to meet specification limits and to enhance quality. For example, metal based additives, oxygenated additives, antioxidants, cetane number improvers, lubricity improvers and cold flow improvers are used to meet specifications and quality. This article is a literature review of the effect

  1. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    International Nuclear Information System (INIS)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao; Song, Yenan; Li, Zhenhua; Zhao, Pei; Shang, Xuefu

    2015-01-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm 2 , and field enhancement factor of ∼1.3 × 10 4 . The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport

  2. The effect of diesel properties on the emissions of particulate matter

    International Nuclear Information System (INIS)

    Bello, A; Torres, J; Herrera, J; Sarmiento, J

    2000-01-01

    An evaluation was carried out on the effect that modifying some properties of Colombian diesel fuel, such as final boiling point (FBP), density and sulfur content, has on the emissions of particulate matter (PM). Four diesel engines with different technologies and work capacity were used for the evaluation. Different alternatives to modify the properties of commercial diesel fuel, from the fuel treatment viewpoint, as well as that of the incorporation or segregation of some of the streams from the pool at the Barrancabermeja refinery were studied. The particulate matter was measured using a partial flow (AVL-SPC472) Constant volume sampler (CVS) with following the 13-step steady state European cycle and the ECE-R49 European guideline. The tests were performed at the Instituto Colombiano del Petroleo. (ICP) test cell in the city of Bucaramanga, Colombia. General tendencies show reductions of up to 25% in PM emissions when final boiling point and sulfur content are reduced. But levels of reduction vary from one engine to another depending on technology and working time. As a baseline, the emission levels of the commercial diesel fuel for each engine are used, and as a reference the results obtained are compared with the EURO I and II European standards defined for the emission levels of heavy duty engines

  3. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Song, Yenan; Li, Zhenhua; Zhao, Pei, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Shang, Xuefu [Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  4. Excellent field emission properties of vertically oriented CuO nanowire films

    Directory of Open Access Journals (Sweden)

    Long Feng

    2018-04-01

    Full Text Available Oriented CuO nanowire films were synthesized on a large scale using simple method of direct heating copper grids in air. The field emission properties of the sample can be enhanced by improving the aspect ratio of the nanowires just through a facile method of controlling the synthesis conditions. Although the density of the nanowires is large enough, the screen effect is not an important factor in this field emission process because few nanowires sticking out above the rest. Benefiting from the unique geometrical and structural features, the CuO nanowire samples show excellent field emission (FE properties. The FE measurements of CuO nanowire films illustrate that the sample synthesized at 500 °C for 8 h has a comparatively low turn-on field of 0.68 V/μm, a low threshold field of 1.1 V/μm, and a large field enhancement factor β of 16782 (a record high value for CuO nanostructures, to the best of our knowledge, indicating that the samples are promising candidates for field emission applications.

  5. An overview of the effect of fuel properties on emissions from biomass fuels

    International Nuclear Information System (INIS)

    Graboski, M.S.

    1993-01-01

    Biofuels are considered to be environmentally benign since they are composed primarily of carbon, hydrogen and oxygen. The emissions resulting from biofuel use are dependent, however, on the system employed and how key fuel properties interact with the system. Two case studies are presented to demonstrate this fact. First, gasification and combustion of urban waste wood to produce electric power is investigated. Second, ethanol and ethanol derivatives are examined as reformulated gasoline additives

  6. A promising new mechanism of ionizing radiation detection for positron emission tomography: Modulation of optical properties

    OpenAIRE

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-01-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we...

  7. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    Science.gov (United States)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  8. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    International Nuclear Information System (INIS)

    Li Xin; Zhou Wei-Man; Liu Wei-Hua; Wang Xiao-Li

    2015-01-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn–Plummer method. The ZnO NPs reconstruct the ZnO–CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. (paper)

  9. Optical and field emission properties of layer-structure GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhen [Science School, Xi’an University of Technology, Xi’an 710048 (China); School of automation and Information Engineering, Xi’an University of Technology, Xi’an 710048 (China); Li, Enling, E-mail: Lienling@xaut.edu.cn [Science School, Xi’an University of Technology, Xi’an 710048 (China); Shi, Wei; Ma, Deming [Science School, Xi’an University of Technology, Xi’an 710048 (China)

    2014-08-15

    Highlights: • The layer-structure GaN nanowires with hexagonal-shaped cross-sections are produced via a process based on the CVD method. • The diameter of the layer-structure GaN nanowire gradually decreases from ∼500 nm to ∼200 nm along the wire axis. • The layer-structure GaN nanowire film possesses good field emission property. - Abstract: A layer-structure gallium nitride (GaN) nanowires, grown on Pt-coated n-type Si (1 1 1) substrate, have been synthesized using chemical vapor deposition (CVD). The results show: (1) SEM indicates that the geometry structure is layer-structure. HRTEM indicates that GaN nanowire’s preferential growth direction is along [0 0 1] direction. (2) The room temperature PL emission spectrum of the layer-structure GaN nanowires has a peak at 375 nm, which proves that GaN nanowires have potential application in light-emitting nano-devices. (3) Field-emission measurements show that the layer-structure GaN nanowires film has a low turn-on field of 4.39 V/μm (at room temperature), which is sufficient for electron emission devices, field emission displays and vacuum nano-electronic devices. The growth mechanism for GaN nanowires has also been discussed briefly.

  10. Additivity methods for prediction of thermochemical properties. The Laidler method revisited. 2. Hydrocarbons including substituted cyclic compounds

    International Nuclear Information System (INIS)

    Santos, Rui C.; Leal, Joao P.; Martinho Simoes, Jose A.

    2009-01-01

    A revised parameterization of the extended Laidler method for predicting standard molar enthalpies of atomization and standard molar enthalpies of formation at T = 298.15 K for several families of hydrocarbons (alkanes, alkenes, alkynes, polyenes, poly-ynes, cycloalkanes, substituted cycloalkanes, cycloalkenes, substituted cycloalkenes, benzene derivatives, and bi and polyphenyls) is presented. Data for a total of 265 gas-phase and 242 liquid-phase compounds were used for the calculation of the parameters. Comparison of the experimental values with those obtained using the additive scheme led to an average absolute difference of 0.73 kJ . mol -1 for the gas-phase standard molar enthalpy of formation and 0.79 kJ . mol -1 for the liquid-phase standard molar enthalpy of formation. The database used to establish the parameters was carefully reviewed by using, whenever possible, the original publications. A worksheet to simplify the calculation of standard molar enthalpies of formation and standard molar enthalpies of atomization at T = 298.15 K based on the extended Laidler parameters defined in this paper is provided as supplementary material.

  11. Cracking hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1921-10-07

    In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.

  12. Distilling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bataafsche, N V; de Brey, J H.C.

    1918-10-30

    Hydrocarbons containing a very volatile constituent and less volatile constituents, such as casing-head gases, still gases from the distillation of crude petroleum and bituminous shale are separated into their constituents by rectification under pressure; a pressure of 20 atmospheres and limiting temperatures of 150/sup 0/C and 40/sup 0/C are mentioned as suitable. The mixture may be subjected to a preliminary treatment consisting in heating to a temperature below the maximum rectification temperature at a pressure greater than that proposed to be used in the rectification.

  13. Self-assembled InAs quantum dots. Properties, modification and emission processes

    International Nuclear Information System (INIS)

    Schramm, A.

    2007-01-01

    In this thesis, structural, optical as well as electronic properties of self-assembled InAs quantum dots (QD) were studied by means of atomic force microscopy (AFM), photoluminescence (PL), capacitance spectroscopy (CV) and capacitance transient spectroscopy (DLTS). The quantum dots were grown with molecular beam epitaxy (MBE) and embedded in Schottky diodes for electrical characterization. In this work growth aspects as well as the electronic structures of QD were discussed. By varying the QD growth parameters it is possible to control the structural, and thus the optical and electronic properties of QD. Two methods are presented. Adjusting the QD growth temperature leads either to small QD with a high areal density or to high QDs with a low density. The structural changes of the QD are reflected in the changes of the optical and electronic properties. The second method is to introduce a growth interruption after capping the QD with thin cap layers. It was shown that capping with AlAs leads to a well-developed alternative to control the QD height and thus the ground-state energies of the QD. A post-growth method modifying the QD properties ist rapid thermal annealing (RTA). Raising the RTA temperature causes a lifting of the QD energy states with respect to the GaAs band edge energy due to In/Ga intermixing processes. A further main part of this work covers the emission processes of charge carriers in QD. Thermal emission, thermally assisted tunneling, and pure tunneling emission are studied by capacitance transient spectroscopy techniques. In DLTS experiments a strong impact of the electric field on the activation energies of electrons was found interfering the correct determination of the QD level energies. This behaviour can be explained by a thermally assisted tunneling model. A modified model taking the Coulomb interaction of occupied QD into account describes the emission rates of the electrons. In order to avoid several emission pathes in the experiments

  14. Benthic Community Structure and Sediment Geochemical Properties at Hydrocarbon Seeps Along the Continental Slope of the Western North Atlantic

    Science.gov (United States)

    Demopoulos, A. W.; Bourque, J. R.; Brooke, S.

    2015-12-01

    Hydrocarbon seeps support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. In recent years, methane seepage has been increasingly documented along the continental slope of the U.S. Atlantic margin. In 2012 and 2013, two seeps were investigated in this region: a shallow site near Baltimore Canyon (410-450 m) and a deep site near Norfolk Canyon (1600 m). Both sites contain extensive mussel beds and microbial mats. Sediment cores and grab samples were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 mm) in relationship to the associated sediment environment (organic carbon and nitrogen, stable isotopes 13C and 15N, grain size, and depth) of mussel beds, mats, and slope habitats. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments. Macrofaunal communities were distinctly different both between depths and among habitat types. Specifically, microbial mat sediments were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in Baltimore microbial mat habitats, but higher in mussel and slope sediments compared to Norfolk seep habitats found at deeper depths. Multivariate statistical analysis identified sediment carbon:nitrogen (C:N) ratios and 13C values as important variables for structuring the macrofaunal communities. Higher C:N ratios were present within microbial mat habitats and depleted 13C values occurred in sediments adjacent to mussel beds found in Norfolk Canyon seeps. Differences in the quality and source of organic matter present in the seep habitats are known to be important drivers in macrofaunal community structure and associated food webs. The multivariate analysis provides new insight into the relative importance of the seep sediment quality in supporting dense macrofaunal communities compared

  15. Properties and cellular effects of particulate matter from direct emissions and ambient sources.

    Science.gov (United States)

    Jin, Wenjie; Su, Shu; Wang, Bin; Zhu, Xi; Chen, Yilin; Shen, Guofeng; Liu, Junfeng; Cheng, Hefa; Wang, Xilong; Wu, Shuiping; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2016-10-14

    The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis.

  16. From photoluminescence emissions to plasmonic properties in platinum nanoparticles embedded in silica by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Bornacelli, J., E-mail: jhbornacelli@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F. (Mexico); Silva-Pereyra, H.G. [IPICyT, Division de Materiales Avanzados, Camino a la presa San Jose 2055, San Luis Potosi, S.L.P. 78216 (Mexico); Rodríguez-Fernández, L. [Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F. (Mexico); Avalos-Borja, M. [IPICyT, Division de Materiales Avanzados, Camino a la presa San Jose 2055, San Luis Potosi, S.L.P. 78216 (Mexico); Centro de Nanociencias y Nanotecnologia – Universidad Nacional Autónoma de México, A. Postal 2681, Ensenada, B.C. (Mexico); Oliver, A. [Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F. (Mexico)

    2016-11-15

    We have studied photoluminescence emission and optical absorption from platinum nanoparticles (Pt-nps) embedded in a silica matrix obtained by ion implantation. The Pt ions were implanted at 2 MeV and the nanoclusters were nucleated after thermal treatment at 600, 800, and 1100 °C under two different atmospheres: argon gas and a reducing atmosphere compound of H{sub 2} and N{sub 2}. The luminescent spectrum is broader (400–600 nm) and is peaked at 530 nm, but its intensity decreases as the annealing temperature increases. However, at high annealing temperatures, a Mie resonance at 220 nm emerges in the absorption spectrum. We then observed a transition between two optical properties in a system of Pt-nps embedded in silica: from molecule-like properties such as photoluminescence emission to localized surface plasmon absorption. - Highlights: • Photoluminescence (PL) from ion-implanted Pt-nps in silica have been demonstrated. • PL properties depend on the temperature and atmosphere used to form Pt-nps in silica. • PL is quenched for samples with larger Pt-nps, however a Mie resonance appear. • Transition from molecule-like to bulk-like properties of Pt-nps in silica is reveled.

  17. Structure and properties of hydrocarbon radical cations in low-temperature matrices as studied by a combination of EPR and IR spectroscopy

    International Nuclear Information System (INIS)

    Feldman, V.I.

    1997-01-01

    Use of IR spectroscopy (as a supplement to EPR) may provide new insight into the problem of analysis of structure and properties of organic radical cations. In this work, the results of combined EPR/IR studies of the formation, structure and properties of hydrocarbon radical cations in halocarbon and solid rare gas matrices are discussed. Both IR and EPR studies were carried out with matrix deposited samples irradiated with fast electrons at 15 or 77 K. IR spectroscopic data were found to be helpful in three aspects: (i) characterization of the conformation and association and molecule-matrix interactions of the parent molecules; (ii) identification of diamagnetic products of the reactions of radical cations in ground and excited states; (iii) determining the characteristics of vibrational spectra of the radical cations, which are of primary interest for analysis of chemical bonding and reactivity of the radical cations. The applications of the combined approach are illustrated with examples of studies of several alkenes in Freon matrices and alkanes in solid rare gas matrices. The matrix effects on trapping and degradation of radical cations were interpreted as the result of variations in matrix electronic characteristics (IP, polarizability) and molecule-matrix interactions. (au) 48 refs

  18. Pyrene-Phosphonate Conjugate: Aggregation-Induced Enhanced Emission, and Selective Fe3+ Ions Sensing Properties

    Directory of Open Access Journals (Sweden)

    Sachin D. Padghan

    2017-08-01

    Full Text Available A new pyrene-phosphonate colorimetric receptor 1 has been designed and synthesized in a one-step process via amide bond formation between pyrene butyric acid chloride and phosphonate-appended aniline. The pyrene-phosphonate receptor 1 showed aggregation-induced enhanced emission (AIEE properties in water/acetonitrile (ACN solutions. Dynamic light scattering (DLS characterization revealed that the aggregates of receptor 1 at 80% water fraction have an average size of ≈142 nm. Field emission scanning electron microscopy (FE-SEM analysis confirmed the formation of spherical aggregates upon solvent evaporation. The sensing properties of receptor 1 were investigated by UV-vis, fluorescence emission spectroscopy, and other optical methods. Among the tested metal ions, receptor 1 is capable of recognizing the Fe3+ ion selectively. The changes in spectral measurements were explained on the basis of complex formation. The composition of receptor 1 and Fe3+ ions was determined by using Job’s plot and found to be 1:1. The receptor 1–Fe3+ complex showed a reversible UV-vis response in the presence of EDTA.

  19. Optimization of field emission properties of carbon nanotubes by Taguchi method

    International Nuclear Information System (INIS)

    Ting, J.-H.; Chang, C.-C.; Chen, S.-L.; Lu, D.-S.; Kung, C.-Y.; Huang, F.-Y.

    2006-01-01

    It is the purpose of this study to evaluate the field emission property of carbon nanotubes (CNTs) prepared by microwave plasma-enhanced chemical vapor deposition (MPCVD) method. Nickel layer of 5 nm in thickness on 20-nm thickness titanium nitride film was transformed into discrete islands after hydrogen plasma pretreatment. CNTs were then grown up on Ni-coated areas by MPCVD. Through the practice of Taguchi method, superior CNT films with very low emission onset electric field, about 0.7 V/μm (at J = 10 μA/cm 2 ), are attained without post-deposition treatment. It is found that microwave power has the most important influence on the field emission characteristics of CNT films. The increase of methane flow ratio will downgrade the degree of graphitization of CNT and thus its field emission characteristics. Scanning electron microscope and transmission electron microscopy (TEM) observation and energy dispersive X-ray spectrometer analysis reveal that CNT growth by MPCVD is based on tip-growth mechanism. TEM micrographs validate the hollow, bamboo-like structure of the multi-walled CNTs

  20. Properties of C4F7N–CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients

    Science.gov (United States)

    Wu, Yi; Wang, Chunlin; Sun, Hao; Murphy, Anthony B.; Rong, Mingzhe; Yang, Fei; Chen, Zhexin; Niu, Chunpin; Wang, Xiaohua

    2018-04-01

    The thermophysical properties, including composition, thermodynamic properties, transport coefficients and net emission coefficients, of thermal plasmas formed from pure iso-C4 perfluoronitrile C4F7N and C4F7N–CO2 mixtures are calculated for temperatures from 300 to 30 000 K and pressures from 0.1 to 20 atm. These gases have received much attention as alternatives to SF6 for use in circuit breakers, due to the low global warming potential and good dielectric properties of C4F7N. Since the parameters of the large molecules formed in the dissociation of C4F7N are unavailable, the partition function and enthalpy of formation were calculated using computational chemistry methods. From the equilibrium composition calculations, it was found that when C4F7N is mixed with CO2, CO2 can capture C atoms from C4F7N, producing CO, since the system consisting of small molecules such as CF4 and CO has lower energy at room temperature. This is in agreement with previous experimental results, which show that CO dominates the decomposition products of C4F7N–CO2 mixtures; it could limit the repeated breaking performance of C4F7N. From the point of view of chemical stability, the mixing ratio of CO2 should therefore be chosen carefully. Through comparison with common arc quenching gases (including SF6, CF3I and C5F10O), it is found that for the temperature range for which electrical conductivity remains low, pure C4F7N has similar ρC p (product of mass density and specific heat) properties to SF6, and higher radiative emission coefficient, properties that are correlated with good arc extinguishing capability. For C4F7N–CO2 mixtures, the electrical conductivity is very close to that of SF6 while the ρC p peak at 7000 K caused by decomposition of CO implies inferior interruption capability to that of SF6. The calculated properties will be useful in arc simulations.

  1. In-cylinder visualization and engine out emissions from CI to PPC for fuels with different properties

    KAUST Repository

    An, Yanzhao; Vallinayagam, R.; Vedharaj, S.; Masurier, Jean-Baptiste; Najafabadi, Mohammad Izadi; Somers, Bart; Johansson, Bengt

    2018-01-01

    This study investigated the transition from conventional Compression Ignition (CI) to Partially Premixed Combustion (PPC) in an optical engine for fuels with differing properties. Combustion stratification and emissions were measured with diesel

  2. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  3. Hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. (South Carolina Univ., Columbia, SC (United States). Dept. of Geological Sciences)

    1993-01-01

    This special issue of the journal examines various aspects of the on-going search for hydrocarbons, ranging from frontier basins where little data are available, to more mature areas where considerable data are available. The incentives underlying the search for oil are roughly: the social, economic and industrial needs of a nation; the incentive of a corporation to be profitable; and the personal incentives of individuals in the oil industry and governments, which range from financial wealth to power and which are as diverse as the individuals who are involved. From a geopolitical perspective, the needs, requirements, goals, strategies, and philosophies of nations, and groups of nations, also impact on the oil exploration game. Strategies that have been employed have ranged from boycott to austerity and rationing, to physical intervention, to global ''flooding'' with oil by over-production. (author)

  4. Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yiwen; Miao, Hsin-Yuan; Zhang Mei; Liang, Richard; Zhang, Chuck; Wang, Ben [High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310 (United States); Lin, Ryan Jiyao, E-mail: kenymiao@thu.edu.tw, E-mail: mzhang@eng.fsu.edu [Department of Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States)

    2010-12-10

    Carbon nanotube (CNT) emitters on buckypaper were activated by laser treatment and their field emission properties were investigated. The pristine buckypapers and CNT emitters' height, diameter, and spacing were characterized through optical analysis. The emitter spacing directly impacted the emission results when the laser power and treatment times were fixed. The increasing emitter density increased the enhanced field emission current and luminance. However, a continuous and excessive increase of emitter density with spacing reduction generated the screening effect. As a result, the extended screening effect from the smaller spacing eventually crippled the field emission effectiveness. Luminance intensity and uniformity of field emission suggest that the highly effective buckypaper will have a density of 2500 emission spots cm{sup -2}, which presents an effective field enhancement factor of 3721 and a moderated screening effect of 0.005. Proper laser treatment is an effective post-treatment process for optimizing field emission, luminance, and durability performance for buckypaper cold cathodes.

  5. Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Thermal Properties of Organic Hydrocarbons

    Science.gov (United States)

    D'Amelia, Ronald; Franks, Thomas; Nirode, William F.

    2007-01-01

    In first-year general chemistry undergraduate courses, thermodynamics and thermal properties such as melting points and changes in enthalpy ([Delta]H) and entropy ([Delta]S) of phase changes are frequently discussed. Typically, classical calorimetric methods of analysis are used to determine [Delta]H of reactions. Differential scanning calorimetry…

  6. The Field Emission Properties of Graphene Aggregates Films Deposited on Fe-Cr-Ni alloy Substrates

    Directory of Open Access Journals (Sweden)

    Zhanling Lu

    2010-01-01

    Full Text Available The graphene aggregates films were fabricated directly on Fe-Cr-Ni alloy substrates by microwave plasma chemical vapor deposition system (MPCVD. The source gas was a mixture of H2 and CH4 with flow rates of 100 sccm and 12 sccm, respectively. The micro- and nanostructures of the samples were characterized by Raman scattering spectroscopy, field emission scanning electron microscopy (SEM, and transparent electron microscopy (TEM. The field emission properties of the films were measured using a diode structure in a vacuum chamber. The turn-on field was about 1.0 V/m. The current density of 2.1 mA/cm2 at electric field of 2.4 V/m was obtained.

  7. Morphology-control of VO2 (B) nanostructures in hydrothermal synthesis and their field emission properties

    International Nuclear Information System (INIS)

    Yin Haihong; Yu Ke; Zhang Zhengli; Zhu Ziqiang

    2011-01-01

    VO 2 (B) nanostructures were synthesized via a facile hydrothermal process using V 2 O 5 as source material and oxalic acid as reductant. Three nanostructures of nanorods, nanocarambolas and nanobundles were found existing in the products, and a continuous changing of morphology was found in the synthesis process, during which the proportion of these three types of nanostructures can be adjusted by altering the concentrations of oxalic acid. The microstructures were evaluated using X-ray diffraction and scanning and transmission electron microscopies, respectively. FE properties measurement of these three types of nanostructures showed that the nanobundles have the best field emission performance with a turn-on field of ∼1.4 V/μm and a threshold field of ∼5.38 V/μm. These characteristics make VO 2 (B) nanostructures a competitive cathode material in field emission devices.

  8. Modification of Optical Properties of Seawater Exposed to Oil Contaminants Based on Excitation-Emission Spectra

    Science.gov (United States)

    Baszanowska, E.; Otremba, Z.

    2015-10-01

    The optical behaviour of seawater exposed to a residual amount of oil pollution is presented and a comparison of the fluorescence spectra of oil dissolved in both n-hexane and seawater is discussed based on excitation-emission spectra. Crude oil extracted from the southern part of the Baltic Sea was used to characterise petroleum properties after contact with seawater. The wavelength-independent fluorescence maximum for natural seawater and seawater artificially polluted with oil were determined. Moreover, the specific excitation-emission peaks for natural seawater and polluted water were analysed to identify the natural organic matter composition. It was found that fluorescence spectra identification is a promising method to detect even an extremely low concentration of petroleum residues directly in the seawater. In addition, alien substances disturbing the fluorescence signatures of natural organic substances in a marine environment is also discussed.

  9. Emission property of scandia and Re doped tungsten matrix dispenser cathode

    International Nuclear Information System (INIS)

    Wang Jinshu; Wang Yanchun; Liu Wei; Li Lili; Wang Yiman; Zhou Meiling

    2008-01-01

    Scandia and rhenium doped tungsten powders have been prepared by solid-liquid doping combined with two-step reduction method. The experimental results show that scandia distributes evenly in the doped tungsten powder. Moreover, the addition of scandia and rhenium could decrease the particle size of tungsten. By using this kind of powder, scandia and rhenium doped tungsten matrix with sub-micrometer sized tungsten grains and a uniform distribution of Sc 2 O 3 together with high pore density has been obtained. The emission property result shows that high space charge limited current density of more than 30 A/cm 2 at 850 deg. C has been obtained for this cathode. This excellent emission capability results from an active layer uniformly covering the sub-micron structure framework of the cathodes

  10. Theoretical modeling of the plasma-assisted catalytic growth and field emission properties of graphene sheet

    International Nuclear Information System (INIS)

    Sharma, Suresh C.; Gupta, Neha

    2015-01-01

    A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, number density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations

  11. Inferring physical properties of galaxies from their emission-line spectra

    Science.gov (United States)

    Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.

    2017-02-01

    We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [N II] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.

  12. Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi'an, China: The effects of suburban scattered emissions in winter

    International Nuclear Information System (INIS)

    Wang, Jingzhi; Cao, Junji; Dong, Zhibao; Guinot, Benjamin; Gao, Meiling; Huang, Rujin; Han, Yongming; Huang, Yu

    2017-01-01

    Seasonal variation and spatial distribution of PM 2.5 bound polycyclic aromatic hydrocarbons (PAHs) were investigated at urban residential, commercial area, university, suburban region, and industry in Xi'an, during summer and winter time at 2013. Much higher levels of total PAHs were obtained in winter. Spatial distributions by kriging interpolations principle showed that relative high PAHs were detected in western Xi'an in both summer and winter, with decreasing trends in winter from the old city wall to the 2 nd -3rd ring road except for the suburban region and industry. Coefficients of diversity and statistics by SPSS method demonstrated that PAHs in suburban have significant differences (t < 0.05) with those in urban residential in both seasons. The positive Matrix Factorization (PMF) modeling indicated that biomass burning (31.1%) and vehicle emissions (35.9%) were main sources for PAHs in winter and summer in urban, which different with the suburban. The coal combustion was the main source for PAHs in suburban region, which accounted for 46.6% in winter and sharp decreased to 19.2% in summer. Scattered emissions from uncontrolled coal combustion represent an important source of PAHs in suburban in winter and there were about 135 persons in Xi'an will suffer from lung cancer for lifetime exposure at winter levels. Further studies are needed to specify the effluence of the scattered emission in suburban to the city and to develop a strategy for controlling those emissions and lighten possible health effects. - Highlights: • PM 2.5 bound PAHs were investigated in nineteen communities of Xi'an at 2013. • High amount of uncontrolled coal combustion were happened in suburban at winter. • About 135 persons in Xi'an will suffer from lung cancer for exposure at winter. - The high contribution of coal combustion for PAHs in suburban region demonstrated the high amount of scattered emissions in winter.

  13. Halogenated salicylaldehyde azines: The heavy atom effect on aggregation-induced emission enhancement properties

    International Nuclear Information System (INIS)

    Chen, Xiao-tong; Tong, Ai-jun

    2014-01-01

    This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. For this purpose, a series of halogenated salicylaldehyde azine derivatives, namely, chloro-salicylaldehyde azine (1), bromo-salicylaldehyde azine (2) and iodo-salicylaldehyde azine (3) are synthesized. 1 and 2 display typical AIEE characteristics of salicylaldehyde azine compounds; whereas for the iodo-substituent in 3, is found to be effective “external” heavy atom quenchers to salicylaldehyde azine fluorescence in aggregated state. Based on its weak fluorescence in aggregated state and relative strong fluorescence in dispersed state, 3 can also be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction. -- Highlights: • This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. • Chloro- and bromo-salicylaldehyde display typical AIEE properties of salicylaldehyde azine, whereas the iodo-substitute quenches AIEE in aggregated state. • Iodo-salicylaldehyde can be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction

  14. Les hydrocarbures aromatiques polycycliques dans l'environnement. Première partie. Propriété, origines, devenir Polycyclic Aromatic Hydrocarbons in the Environment. Part One. Properties, Origins, Fates

    Directory of Open Access Journals (Sweden)

    Bouchez M.

    2006-11-01

    Full Text Available Les hydrocarbures aromatiques polycycliques (HAP sont des contaminants produits notamment dans les processus de combustion. Leur caractère ubiquiste et leur génotoxicité sont à l'origine d'une activité de recherche importante. Après avoir présenté les structures chimiques et les propriétés physico-chimiques et biologiques principales de ces composés, on résume les connaissances actuelles concernant leur présence dans l'environnement. Les critères géochimiques de leurs différentes origines pyrolytique, diagénétique ou pétrolière, sont exposés. On examine la contribution des différentes sources d'émission, le transport et la diffusion dans l'environnement de ces composés, ainsi que les modifications qu'ils subissent et leur sort ultime. La distribution qualitative et quantitative des HAP de combustion dans les sols d'environnements variés est présentée. Polycyclic aromatic hydrocarbons (PAH are environmental contaminants produced in particular in combustion processes. As a consequence of their genotoxicity and ubiquity, they are the subject of an important research activity. After a presentation of the chemical structures and of the main physico-chemical and biological properties of these compounds, the current knowledge regarding their presence in the environment is summarized. The geochernical criteria of the different,origins, pyrolytic, diagenetic and petroleum of PAH are presented. The respective contributions of their various emission sources are discussed , as well as the transfer and diffusion in the environment, the modifications undergone and the ultimate fate of these compounds. The qualitative and quantitative distribution of combustion PAH in soils in different environmental situations is presented.

  15. Theoretical Rationalization of the Emission Properties of Prototypical Cu(I)-Phenanthroline Complexes.

    Science.gov (United States)

    Capano, G; Rothlisberger, U; Tavernelli, I; Penfold, T J

    2015-07-09

    The excited state properties of transition metal complexes have become a central focus of research owing to a wide range of possible applications that seek to exploit their luminescence properties. Herein, we use density functional theory (DFT), time-dependent DFT (TDDFT), classical and quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations to provide a full understanding on the role of the geometric and electronic structure, spin-orbit coupling, singlet-triplet gap and the solvent environment on the emission properties of nine prototypical copper(I)-phenanthroline complexes. Our calculations reveal clear trends in the electronic properties that are strongly correlated to the luminescence properties, allowing us to rationalize the role of specific structural modifications. The MD simulations show, in agreement with recent experimental observations, that the lifetime shortening of the excited triplet state in donor solvents (acetonitrile) is not due to the formation of an exciplex. Instead, the solute-solvent interaction is transient and arises from solvent structures that are similar to the ones already present in the ground state. These results based on a subset of the prototypical mononuclear Cu(I) complexes shed general insight into these complexes that may be exploited for development of mononuclear Cu(I) complexes for applications as, for example, emitters in third generation OLEDs.

  16. Quicklime-induced changes of soil properties: Implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration.

    Science.gov (United States)

    Ma, Yan; Dong, Binbin; He, Xiaosong; Shi, Yi; Xu, Mingyue; He, Xuwen; Du, Xiaoming; Li, Fasheng

    2017-04-01

    Mechanical soil aeration is used for soil remediation at sites contaminated by volatile organic compounds. However, the effectiveness of the method is limited by low soil temperature, high soil moisture, and high soil viscosity. Combined with mechanical soil aeration, quicklime has a practical application value related to reinforcement remediation and to its action in the remediation of soil contaminated with volatile organic compounds. In this study, the target pollutant was trichloroethylene, which is a volatile chlorinated hydrocarbon pollutant commonly found in contaminated soils. A restoration experiment was carried out, using a set of mechanical soil-aeration simulation tests, by adding quicklime (mass ratios of 3, 10, and 20%) to the contaminated soil. The results clearly indicate that quicklime changed the physical properties of the soil, which affected the environmental behaviour of trichloroethylene in the soil. The addition of CaO increased soil temperature and reduced soil moisture to improve the mass transfer of trichloroethylene. In addition, it improved the macroporous cumulative pore volume and average pore size, which increased soil permeability. As soil pH increased, the clay mineral content in the soils decreased, the cation exchange capacity and the redox potential decreased, and the removal of trichloroethylene from the soil was enhanced to a certain extent. After the addition of quicklime, the functional group COO of soil organic matter could interact with calcium ions, which increased soil polarity and promoted the removal of trichloroethylene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels

    Directory of Open Access Journals (Sweden)

    Xianhui Zhao

    2017-03-01

    Full Text Available To address the issues of greenhouse gas emissions associated with fossil fuels, vegetable oilseeds, especially non-food oilseeds, are used as an alternative fuel resource. Vegetable oil derived from these oilseeds can be upgraded into hydrocarbon biofuel. Catalytic cracking and hydroprocessing are two of the most promising pathways for converting vegetable oil to hydrocarbon biofuel. Heterogeneous catalysts play a critical role in those processes. The present review summarizes current progresses and remaining challenges of vegetable oil upgrading to biofuel. The catalyst properties, applications, deactivation, and regeneration are reviewed. A comparison of catalysts used in vegetable oil and bio-oil upgrading is also carried out. Some suggestions for heterogeneous catalysts applied in vegetable oil upgrading to improve the yield and quality of hydrocarbon biofuel are provided for further research in the future.

  18. Image properties of list mode likelihood reconstruction for a rectangular positron emission mammography with DOI measurements

    International Nuclear Information System (INIS)

    Qi, Jinyi; Klein, Gregory J.; Huesman, Ronald H.

    2000-01-01

    A positron emission mammography scanner is under development at our Laboratory. The tomograph has a rectangular geometry consisting of four banks of detector modules. For each detector, the system can measure the depth of interaction information inside the crystal. The rectangular geometry leads to irregular radial and angular sampling and spatially variant sensitivity that are different from conventional PET systems. Therefore, it is of importance to study the image properties of the reconstructions. We adapted the theoretical analysis that we had developed for conventional PET systems to the list mode likelihood reconstruction for this tomograph. The local impulse response and covariance of the reconstruction can be easily computed using FFT. These theoretical results are also used with computer observer models to compute the signal-to-noise ratio for lesion detection. The analysis reveals the spatially variant resolution and noise properties of the list mode likelihood reconstruction. The theoretical predictions are in good agreement with Monte Carlo results

  19. Thermophysical properties and phase equilibria study of the binary systems {l_brace}N-hexylquinolinium bis(trifluoromethylsulfonyl)imide + aromatic hydrocarbons, or an alcohol{r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula, E-mail: ula@ch.pw.edu.p [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Thermodynamic Research Unit, School of Chemical Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4001 (South Africa); Zawadzki, Maciej [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Zwolinska, Magdalena [Department of Ergonomics, Laboratory of Thermal Loads, Central Institute for Labour Protection-National Research Institute, Czerniakowska 16, 00-701 Warsaw (Poland)

    2011-05-15

    Research highlights: We synthesized new ionic liquid, [HQuin][NTf{sub 2}] with low viscosity, and low density. We found high heat capacity, high enthalpy of melting and low melting temperature. HQuin][NTf{sub 2}] is proposed for possible use in the phase change materials (PCM). We examine phase equilibrium changes, SLE and LLE with hydrocarbons and alcohols. [HQuin][NTf{sub 2}] may be proposed as entrainer for the separation proceses. - Abstract: The new quinolinium ionic liquid has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterisation of synthesized compounds: N-hexylquinolinium bromide, [HQuin][Br] and N-hexylquinolinium bis{l_brace}(trifluoromethyl)sulfonyl{r_brace}imide [HQuin][NTf{sub 2}] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [HQuin][NTf{sub 2}] i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity have been measured using a differential scanning microcalorimetry technique (DSC) and thermal analysis instrument (TA). Densities and viscosities were determined as a function of temperature. Phase equilibria for the binary systems: {l_brace}[HQuin][NTf{sub 2}]) + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol){r_brace} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with immiscibility gap in the liquid phase beginning from (0.13 to 0.28) mole fraction of the IL with very high an upper critical solution temperature (UCST). For mixtures with alcohols, the complete miscibility was observed for 1-butanol and immiscibility with UCST in the liquid phase for the remaining alcohols. The typical

  20. Measurements of emission rates of hydrocarbons from sunflower as a function of temperature, light intensity and stress (ozone levels); Bestimmung von Emissionsraten pflanzlicher Kohlenwasserstoffe bei Sonnenblumen in Abhaengigkeit von Temperatur, Lichtintensitaet und Stress, insbesondere von der Belastung mit Ozon

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, G.; Wildt, J.; Kley, D.

    1996-08-01

    The emission rates of isoprene, mono- and sesquiterpenes from sunflower (Helianthus annuus L. cv. giganteus) were determined in an environmental chamber, a continuously stirred tank reactor. {alpha}-pinene, {beta}-caryophyllene and two oxygenated compounds were emitted. The emission rates of all terpenes increased exponentially with temperature. Substance specific differences of the rate of increase of the emission rates were observed. For all substances the dependence of their emission rates on temperature increased with increasing light intensity. Increasing lightflux resulted in an increase of the emission rates for all substances. The raise of emission rates with lightflux was dependent on temperature and increased with increasing temperature. During periods without plant stress the emission rates exhibited a good correlation with the rate of transpiration as well as with the rate of net photosynthesis. Sunflowers emitted higher amounts of terpenes when they were stressed by mechanical, wounding and ozone treatment as well as nutrient- or water deficiency. The emission rates increased by a factor of 5-300. Exposure with ozone had an effect on hydrocarbon emission rates with a delay-time. 3-4 h after exposure with 25-120 ppb ozone the emission rates increased by factor of 5-100. This increase was only observed on the first day of exposure. Nutrient deficiency resulted in an increase of emission rates by a factor of 10-300. In situations of mechanical, wounding and ozone stress, substance specific changes in the emission spectrum were observed. A model was developed to explain the observed phenomena. The main pathway of ozone loss in the chamber is caused by the uptake through the stomata of the plants. However, up to 50% of the ozone loss must be explained by other processes indirectly caused by the plants. (orig./MG) [Deutsch] In Laborversuchen wurden Emissionsraten biogener Kohlenwasserstoffe von Sonnenblumen gemessen. Die groessten Emissionsraten wiesen die

  1. Effect of the local morphology in the field emission properties of conducting polymer surfaces

    International Nuclear Information System (INIS)

    De Assis, T A; Borondo, F; Benito, R M; Losada, J C; Andrade, R F S; Miranda, J G V; De Souza, Nara C; De Castilho, C M C; De B Mota, F

    2013-01-01

    In this work, we present systematic theoretical evidence of a relationship between the point local roughness exponent (PLRE) (which quantifies the heterogeneity of an irregular surface) and the cold field emission properties (indicated by the local current density and the macroscopic current density) of real polyaniline (PANI) surfaces, considered nowadays as very good candidates in the design of field emission devices. The latter are obtained from atomic force microscopy data. The electric field and potential are calculated in a region bounded by the rough PANI surface and a distant plane, both boundaries held at distinct potential values. We numerically solve Laplace’s equation subject to appropriate Dirichlet’s condition. Our results show that local roughness reveals the presence of specific sharp emitting spots with a smooth geometry, which are the main ones responsible (but not the only) for the emission efficiency of such surfaces for larger deposition times. Moreover, we have found, with a proper choice of a scale interval encompassing the experimentally measurable average grain length, a highly structured dependence of local current density on PLRE, considering different ticks of PANI surfaces. (paper)

  2. Integrated 3D Reservoir/Fault Property Modelling Aided Well Planning and Improved Hydrocarbon Recovery in a Niger Delta Field

    International Nuclear Information System (INIS)

    Onyeagoro, U. O.; Ebong, U. E.; Nworie, E. A.

    2002-01-01

    The large and varied portfolio of assets managed by oil companies requires quick decision-making and the deployment of best in class technologies in asset management. Timely decision making and the application of the best technologies in reservoir management are however sometimes in conflict due to large time requirements of the latter.Optimizing the location of development wells is critical to account for variable fluid contact movements and pressure interference effects between wells, which can be significant because of the high permeability (Darcy range) of Niger Delta reservoirs. With relatively high drilling costs, the optimization of well locations necessitates a good realistic static and dynamic 3D reservoir description, especially in the recovery of remaining oil and oil rim type of reservoirs.A detailed 3D reservoir model with fault properties was constructed for a Niger delta producing field. This involved the integration of high quality 3D seismic, core, petrophysics, reservoir engineering, production and structural geology data to construct a realistic 3D reservoir/fault property model for the field. The key parameters considered during the construction of the internal architecture of the model were the vertical and horizontal reservoir heterogeneities-this controls the fluid flow within the reservoir. In the production realm, the fault thickness and fault permeabilities are factors that control the impedance of fluid flow across the fault-fault transmissibility. These key internal and external reservoir/structural variables were explicitly modeled in a 3D modeling software to produce different realizations and manage the uncertainties.The resulting 3D reservoir/fault property model was upscaled for simulation purpose such that grid blocks along the fault planes have realistic transmissibility multipliers of 0 to 1 attached to them. The model was also used in the well planner to optimize the positioning of a high angle deviated well that penetrated

  3. Determining the optimum conditions for modified diesel fuel combustion considering its emission, properties and engine performance

    International Nuclear Information System (INIS)

    Fayyazbakhsh, Ahmad; Pirouzfar, Vahid

    2016-01-01

    Highlights: • Gas emissions, fuel properties and performance engine modeling. • Optimization of new modified fuel prepared from n-Butanol and Nano particles. • Model accuracy analysis. - Abstract: This essay scrutinizes an experimental study conducted to appraise the influence of using n-Butanol with diesel fuel in 5% and 10% (volume) n-Butanol, 1% nitro methane (NM), injection timing and two Nano-particles (alumina and a type of silica powder) on the engine performance (brake specific fuel consumption and engine power), fuel properties (Cetane number and flash point) and exhaust emissions (soot, NO_x and CO) of an engine with 4-cylinder (with a system of common rail fuel injection), intercooling, cooled exhaust gas recirculation (EGR), and turbocharged. The tests are conducted by varying the engine load (25 and 75 nm) and changing engine speed (1500 and 2200 rpm). Normal Butanol presents better brake specific fuel consumption (BSFC) but this blend doesn’t reflect better engine power. All the percentages of n-Butanol in the fuel make Cetane number decrease but adding 1% of nitro methane makes Cetane number increase. For all the n-Butanol, the percentage flash makes the fuel decrease in comparison to pure diesel fuel. The current experimental study demonstrates that adding the n-Butanol and nitro methane to diesel fuel direct into diminishing soot emission. In contrast, this blend raises NO_x and CO emissions. Furthermore, this research indicates that the increase of engine speed dwindle air pollutants and enhances BSFC. It also remarks that power gets increased at low engine speed. However, power gets reducedat high speed. This article represents that the increasing of engine load leads to increasing all of air pollutant, increasing of power and decreasing of brake specific fuel consumption. Both the Cetane number and flash point are independent from engine speed and engine load. The present paper shows that the effect of silica with high percentage of n

  4. The enhanced nucleation factors and field electron emission property of diamond synthesized by RF-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Yang Guangmin [College of Physics, Changchun Normal University, Jilin Province, Changchun 130032 (China); Xu Qiang [Changchun Institute of Technology, Changchun 130021 (China); Wang Xin [Department of Materials Science, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Zheng Weitao, E-mail: wtzheng@jlu.edu.cn [Department of Materials Science, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Submicron-diamond, microcrystalline diamond, and nanocrystalline diamond were synthesized using different substrates and pretreatment methods. Black-Right-Pointing-Pointer Three techniques have been developed to create some density of diamond on substrate surfaces by PECVD deposition procedure. Black-Right-Pointing-Pointer The field electron emission property was also investigated. - Abstract: In this work, submicron-diamond (SD), microcrystalline diamond (MD), and nanocrystalline diamond (ND) were synthesized using different substrates and pretreatment methods. In order to investigate influencing factors on nucleation, three techniques have been developed to create some density of diamond on substrate surfaces: (a) with chemical-etching technique (NaOH water solution at 80 Degree-Sign C for 3, 8, 15 min, respectively), (b) (Co(NO{sub 3}){sub 3}/Mg(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O or Fe(NO{sub 3}){sub 3}{center_dot}9H{sub 2}O/Mg(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O alcohol solution) dripping on silicon substrate, and (c) NaCl substrate directly by following a same PECVD deposition procedure. Furthermore, the field electron emission property was also investigated.

  5. Synthesis, thermionic emission and magnetic properties of (NdxGd1–x)B6

    International Nuclear Information System (INIS)

    Bao Li-Hong; Zhang Jiu-Xing; Zhou Shen-Lin; Tegus

    2011-01-01

    Polycrystalline rare-earth hexaborides (Nd x Gd 1–x )B 6 (x = 0, 0.2, 0.6, 0.8, 1) were prepared by the reactive spark plasma sintering (SPS) method using mixed powder of GdH 2 , NdH 2 and B. The effects of Nd doping on the crystal structure, the grain orientation, the thermionic emission and the magnetic properties of the hexaboride were investigated by X-ray diffraction, electron backscattered diffraction and magnetic measurements. It is found that all the samples sintered by the SPS method exhibit high densities (> 95%) and high values of Vickers hardness (2319 kg/mm 2 ). The values are much higher than those obtained in the traditional method. With the increase of Nd content, the thermionic emission current density increases from 11 to 16.30 A/cm 2 and the magnetic phase transition temperature increases from 5.85 to 7.95 K. Thus, the SPS technique is a suitable method to synthesize the dense rare-earth hexaborides with excellent properties. (interdisciplinary physics and related areas of science and technology)

  6. Space density and clustering properties of a new sample of emission-line galaxies

    International Nuclear Information System (INIS)

    Wasilewski, A.J.

    1982-01-01

    A moderate-dispersion objective-prism survey for low-redshift emission-line galaxies has been carried out in an 825 sq. deg. region of sky with the Burrell Schmidt telescope of Case Western Reserve University. A 4 0 prism (300 A/mm at H#betta#) was used with the Illa-J emulsion to show that a new sample of emission-line galaxies is available even in areas already searched with the excess uv-continuum technique. The new emission-line galaxies occur quite commonly in systems with peculiar morphology indicating gravitational interaction with a close companion or other disturbance. About 10 to 15% of the sample are Seyfert galaxies. It is suggested that tidal interaction involving matter infall play a significant role in the generation of an emission-line spectrum. The space density of the new galaxies is found to be similar to the space density of the Makarian galaxies. Like the Markarian sample, the galaxies in the present survey represent about 10% of all galaxies in the absolute magnitude range M/sub p/ = -16 to -22. The observations also indicate that current estimates of dwarf galaxy space densities may be too low. The clustering properties of the new galaxies have been investigated using two approaches: cluster contour maps and the spatial correlation function. These tests suggest that there is weak clustering and possibly superclustering within the sample itself and that the galaxies considered here are about as common in clusters of ordinary galaxies as in the field

  7. Enhanced field emission properties of carbon nanotube bundles confined in SiO2 pits

    Science.gov (United States)

    Lim, Yu Dian; Grapov, Dmitry; Hu, Liangxing; Kong, Qinyu; Tay, Beng Kang; Labunov, Vladimir; Miao, Jianmin; Coquet, Philippe; Aditya, Sheel

    2018-02-01

    It has been widely reported that carbon nanotubes (CNTs) exhibit superior field emission (FE) properties due to their high aspect ratios and unique structural properties. Among the various types of CNTs, random growth CNTs exhibit promising FE properties due to their reduced inter-tube screening effect. However, growing random growth CNTs on individual catalyst islands often results in spread out CNT bundles, which reduces overall field enhancement. In this study, significant improvement in FE properties in CNT bundles is demonstrated by confining them in microfabricated SiO2 pits. Growing CNT bundles in narrow (0.5 μm diameter and 2 μm height) SiO2 pits achieves FE current density of 1-1.4 A cm-2, which is much higher than for freestanding CNT bundles (76.9 mA cm-2). From the Fowler Nordheim plots, confined CNT bundles show a higher field enhancement factor. This improvement can be attributed to the reduced bundle diameter by SiO2 pit confinement, which yields bundles with higher aspect ratios. Combining the obtained outcomes, it can be conclusively summarized that confining CNTs in SiO2 pits yields higher FE current density due to the higher field enhancement of confined CNTs.

  8. Variations of the petrophysical properties of rocks with increasing hydrocarbons content and their implications at larger scale: insights from the Majella reservoir (Italy)

    Science.gov (United States)

    Trippetta, Fabio; Ruggieri, Roberta; Lipparini, Lorenzo

    2016-04-01

    Crustal processes such as deformations or faulting are strictly related to the petrophysical properties of involved rocks. These properties depend on mineral composition, fabric, pores and any secondary features such as cracks or infilling material that may have been introduced during the whole diagenetic and tectonic history of the rock. In this work we investigate the role of hydrocarbons (HC) in changing the petrophysical properties of rock by merging laboratory experiments, well data and static models focusing on the carbonate-bearing Majella reservoir. This reservoir represent an interesting analogue for the several oil fields discovered in the subsurface in the region, allowing a comparison of a wide range of geological and geophysical data at different scale. The investigated lithology is made of high porosity ramp calcarenites, structurally slightly affected by a superimposed fracture system and displaced by few major normal faults, with some minor strike-slip movements. Sets of rock specimens were selected in the field and in particular two groups were investigated: 1. clean rocks (without oil) and 2. HC bearing rocks (with different saturations). For both groups, density, porosity, P and S wave velocity, permeability and elastic moduli measurements at increasing confining pressure were conducted on cylindrical specimens at the HP-HT Laboratory of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy. For clean samples at ambient pressure, laboratory porosity varies from 10 % up to 26 % and P wave velocity (Vp) spans from 4,1 km/s to 4,9 km/s and a very good correlation between Vp, Vs and porosity is observed. The P wave velocity at 100 MPa of confining pressure, ranges between 4,5 km/s and 5,2 km/s with a pressure independent Vp/Vs ratio of about 1,9. The presence of HC within the samples affects both Vp and Vs. In particular velocities increase with the presence of hydrocarbons proportionally respect to the amount of the filled

  9. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements.

    Science.gov (United States)

    Popovici, Jonathan; White, Colin P; Hoelle, Jill; Kinkle, Brian K; Lytle, Darren A

    2014-06-01

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregation, adhesion to surfaces, and stability of the cells within the aqueous environments. These cell characteristics are unique to the bacterial species and are a reflection of the large diversity of surface structures, proteins, and appendages of microorganisms. CSH and EPM of bacterial cells contribute substantially to the effectiveness of drinking water treatment to remove them, and therefore an investigation of these properties will be useful in predicting their removal through drinking water treatment processes and transport through drinking water distribution systems. EPM and CSH measurements of six microbiological pathogen or surrogate species suspended in phosphate-buffered water are reported in this work. Two strains of Vibrio cholerae were hydrophobic, while three strains of Escherichia coli were hydrophilic. Bacillus cereus was categorized as moderately hydrophobic. The strains of E. coli had the highest (most negative) EPM. Based on the measurements, E. coli species is predicted to be most difficult to remove from water while V. cholerae will be the easiest to remove. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Control and reduction of NOx emissions on light hydrocarbons combustion in fluidized bed combustors: a technological prospection surveys; Controle e reducao de emissoes de NOx durante queima de hidrocarbonetos leves em combustores a leito fluidizado: um estudo de prospeccao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas Alves; Winter, Eduardo [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The present paper aims a technological prospecting study of the main technological agents involved in industrial light hydrocarbons combustion process. More specifically, the work approaches technologies applied to nitrogen oxides emissions control and reduction. Nitrogen oxides are typically known as 'NOx' (NO, N{sub 2}O, NO{sub 2}). 'NOx' are byproducts from fuel burning in combustion systems, including also in fluidized bed combustion systems. The technological prospecting study employed 'technology foresight' as tool for evaluating the technological perspectives of the thermal generation, basis on environment protection. Such technological perspectives of the thermal generation were evaluated through invention patent documents. The query methodology for obtaining of patent documents employed a free patent base, known as ESPACENET. Additionally, the documents obtained were evaluated, considering beyond the countries and the publication dates, technological perspectives employed to 'NOx' emissions control and reduction. It is very important to highlight around 70% of the industrial technological information are just found in invention patent documents. (author)

  11. Modeling on the cathodoluminescence properties of the thin film phosphors for field emission flat panel displays

    Science.gov (United States)

    Cho, Kyu-Gong

    2000-12-01

    utilized to optimize the thin film phosphor properties for the application of field emission flat panel displays.

  12. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  13. Structural, optical and electrical properties of europium picrate tetraethylene glycol complex as emissive material for OLED

    Energy Technology Data Exchange (ETDEWEB)

    Kusrini, Eny, E-mail: ekusrini@che.ui.ac.id [Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, 16424 Depok (Indonesia); Saleh, Muhammad I.; Adnan, Rohana [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia); Yulizar, Yoki [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok (Indonesia); Sha Shiong, Ng; Fun, H.K. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Adhha Abdullah, M.A.; Mamat, Mazidah [Department of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Darul Iman (Malaysia); Za' aba, N.K.; Abd. Majid, W.H. [Solid State Research Laboratory, Department of Physics, Universiti Malaya, 50603 Kuala Lumpur (Malaysia)

    2012-01-15

    A new europium complex [Eu(Pic){sub 2}(H{sub 2}O)(EO4)](Pic).0.75H{sub 2}O was synthesized and used as the emission material for the single layer device structure of ITO/EO4-Eu-Pic/Al, using a spin-coating technique. Study on the optical properties of the [Eu(Pic){sub 2}(H{sub 2}O)(EO4)](Pic).0.75H{sub 2}O complex where EO4=tetraethylene glycol and Pic=picrate anion, had to be undertaken before being applicable to the study of an organic light emitting diode (OLED). The electrical property of an OLED using current-voltage (I-V) measurement was also studied. In complex, the Eu(III) ion was coordinated with the EO4 ligand as a pentadentate mode, one water molecule, and with two Pic anions as bidentate and monodentate modes, forming a nine-coordination number. The photoluminescence (PL) spectra of the crystalline complex in the solid state and its thin film showed a hypersensitive peak at 613.5-614.9 nm that assigned to the {sup 5}D{sub 0}{yields}{sup 7}F{sub 2} transition. A narrow band emission from the thin film EO4-Eu-Pic was obtained. The typical semiconductor I-V curve of device ITO/EO4-Eu-Pic/Al showed the threshold and turn on voltages at 1.08 and 4.6 V, respectively. The energy transfer process from the ligand to the Eu(III) ion was discussed by investigating the excitation and PL characteristics. Effect of the picrate anion on the device performance was also studied. - Highlights: > The [Eu(Pic){sub 2}(H{sub 2}O)(EO4)](Pic).0.75(H{sub 2}O) is crystallized in triclinic with space group P-1. > The complex is applied as a emissive center in single layer device structure of ITO/EO4-Eu-Pic/Al. > The complex displays a red luminescence in both the crystalline complex and its thin film state. > The low turn on voltage of the device (4.6 V), indicating that this material is suitable for OLED. > The roughness and morphology of the thin film affects luminance and electrical properties of OLED.

  14. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  15. Contamination levels, toxicity profiles, and emission sources of polycyclic aromatic hydrocarbons (PAHs) in the soils of an emerging industrial town and its environs in the Southeastern Nigeria.

    Science.gov (United States)

    Ofomatah, Anthony C; Okoye, Chukwuma O B

    2017-11-09

    Polycyclic aromatic hydrocarbon (PAH) concentrations in Nnewi and its environs were determined. Soil samples were extracted by sonication using hexane:dichloromethane (3:1) mixture and determined by gas chromatography-flame ionization detection. The total PAHs concentrations (μg/kg) were 16.681 to 46.815, being three orders of magnitude lower than the maximum permissible level recommended by the Agency for Toxic Substances and Disease Registry (ATSDR). These concentrations followed this order: industrial ˃ farmlands ˃ commercial ˃ residential. Industrialized areas showed higher concentrations (p ˂ 0.05) than the other areas. Diagnostic ratios show that the major source of PAHs was the open burning of industrial and agricultural wastes, as shown by the occurrence of highest concentrations in the industrial areas, followed by agricultural areas. Benzo[a]pyrene equivalent values showed non-pollution and very low toxicity. Nevertheless, it was clear that industrialization has had some impact on the PAHs levels in soils and the total environment in this area and could be problematic with time, except with proper environmental management.

  16. Effect of Ag doping on the properties of ZnO thin films for UV stimulated emission

    Science.gov (United States)

    Razeen, Ahmed S.; Gadallah, A.-S.; El-Nahass, M. M.

    2018-06-01

    Ag doped ZnO thin films have been prepared using sol-gel spin coating method, with different doping concentrations. Structural and morphological properties of the films have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Thin films have been optically pumped and stimulated emission has been observed with strong peaks in the UV region. The UV stimulated emission is found to be due to exciton-exciton scattering, and Ag doping promoted this process by increasing the excitons concentrations in the ZnO lattice. Output-input intensity relation and peak emission, FWHM, and quantum efficiency relations with pump intensity have been reported. The threshold for which stimulated emission started has been evaluated to be about 18 MW/cm2 with quantum efficiency of about 58.7%. Mechanisms explaining the role of Ag in enhancement of stimulated emission from ZnO thin films have been proposed.

  17. Aerosol Optical Properties and Trace Gas Emissions From Laboratory-Simulated Western US Wildfires

    Science.gov (United States)

    Selimovic, V.; Yokelson, R. J.; Warneke, C.; Roberts, J. M.; De Gouw, J. A.; Reardon, J.; Griffith, D. W. T.

    2017-12-01

    Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuels from various widespread coniferous and chaparral ecosystems were burned in combinations to represent relevant configurations in the field and as pure components to investigate the effects of individual fuels. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, g compound emitted per kg fuel burned) measurements in fresh smoke of a diverse suite of critically-important trace gases measured by open-path Fourier transform infrared spectroscopy (OP-FTIR). We also report aerosol optical properties (absorption EF, single scattering albedo (SSA) and Ångström absorption exponent (AAE)) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAX) at 870 and 401 nm. A careful comparison with available field measurements of wildfires confirms that representative data can be extracted from the lab fire data. The OP-FTIR data show that ammonia (1.65 g kg-1), acetic acid (2.44 g kg-1), and other trace gases are significant emissions not previously measured for US wildfires. The PAX measurements show that brown carbon (BrC) absorption is most dominant for combustion of duff (AAE 7.13) and rotten wood (AAE 4.60): fuels that are consumed in greater amounts during wildfires than prescribed fires. We confirm that about 86% of the aerosol absorption at 401 nm in typical fresh wildfire smoke is due to BrC.

  18. Field Emission Property of Double-walled Carbon Nanotubes Related to Purification and Transmittance

    International Nuclear Information System (INIS)

    Ahn, KiTae; Jang, HyunChul; Hong, Wanshick; Park, Kyoungwan; Sok, Junghyun; Lyu, SeungChul; Lee, Hansung; Lee, Naesung; Han, Moonsup; Park, Yunsun

    2011-01-01

    Double-walled carbon nanotubes (DWCNTs) with high purity were produced by the catalytic decomposition of tetrahydrofuran (THF) using a Fe-Mo/MgO catalyst at 800°C. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by a two-step purification process consisting of acid treatment and oxidation. In the acid treatment, metallic catalysts were removed in HCl at room temperature for 5 hr with magnetic stirring. Subsequently, the oxidation, using air at 380°C for 5 hr in the a vertical-type furnace, was used to remove the amorphous carbon particles. The DWCNT suspension was prepared by dispersing the purified DWCNTs in the aqueous sodium dodecyl sulfate solution with horn-type sonication. This was then air-sprayed on ITO glass to fabricate DWCNT field emitters. The field emission properties of DWCNT films related to transmittance were studied. This study provides the possibility of the application of large-area transparent CNT field emission cathodes.

  19. Synthesis and Properties of Gelators Derived from Tetraphenylethylene and Gallic Acid with Aggregation-Induced Emission

    Science.gov (United States)

    Luo, Miao; Zhou, Xie; Chi, Zhenguo; Ma, Chunping; Zhang, Yi; Liu, Siwei; Xu, Jiarui

    2013-09-01

    Two novel organogelators (TEG and TAG) based on tetraphenylethylene and 3,4,5-tris(dodecyloxy) benzoic acid were synthesized through ester bond and amido bond linkages, respectively. Compounds TEG and TAG were able to induce gelation in ethanol. Aggregation-induced enhanced emission was observed in these organogelator molecules, with increased fluorescence intensity from the solutions to the gels. The completely thermoreversible gelation occurred due to the aggregation of the organogelators. In the process, a fibrous network was formed by a combination of intermolecular hydrogen bonding, π-π stacking and van der Waals interactions. These phenomena were observed in the xerogels by field-emission scanning electron microscopy and Fourier-transform infrared spectroscopy. The results of differential scanning calorimetry and polarized optical microscopy indicated that compound TAG exhibited stable liquid crystalline phases over a wide temperature range. The linking groups have severe influence on the properties of the organogelators, which was mainly attributed to the hydrogen bonding interaction in compound TAG.

  20. Investigation of electron emission properties of Ba-activated tungsten cathodes

    International Nuclear Information System (INIS)

    Beck, I; Josepovits, V K; Sneider, J; Toth, Z

    2005-01-01

    In this work we investigated the electron emission properties of high-pressure discharge lamp cathode tips. The work function (Φ) of the cathode tip was measured by using the Kelvin probe method and by work function spectroscopy (WFS). The Kelvin probe method was used to measure the average work function of tips under atmospheric pressure in air. By WFS we could measure the local work function value of tips in the selected spots under ultra high vacuum conditions. The chemical composition analysis was carried out in the same chamber by Auger electron spectroscopy. The focus of this study is to investigate the influence of sintering temperature of cathodes (1500-1700 deg. C) and lamp operation time (0-12 000 h) on the work function. The comparison of the work function of both cathodes as a function of operation time originating from the two different ends of the ceramic tube is also considered. In order to understand the structure of the layers on the cathode tips we also give results obtained on a flat tungsten foil covered with Ba-containing emission material. The flat samples were measured using x-ray photoelectron spectroscopy and WFS

  1. Impact of surface morphology on the properties of light emission in InGaN epilayers

    Science.gov (United States)

    Kristijonas Uždavinys, Tomas; Marcinkevičius, Saulius; Mensi, Mounir; Lahourcade, Lise; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas

    2018-05-01

    Scanning near-field optical microscopy was used to study the influence of the surface morphology on the properties of light emission and alloy composition in InGaN epitaxial layers grown on GaN substrates. A strong correlation between the maps of the photoluminescence (PL) peak energy and the gradient of the surface morphology was observed. This correlation demonstrates that the In incorporation strongly depends on the geometry of the monolayer step edges that form during growth in the step-flow mode. The spatial distribution of nonradiative recombination centers — evaluated from PL intensity maps — was found to strongly anticorrelate with the local content of In atoms in the InGaN alloy.

  2. Removal properties of low-thermal-expansion materials with rotating-sphere elastic emission machining

    Directory of Open Access Journals (Sweden)

    Masahiko Kanaoka et al

    2007-01-01

    Full Text Available Optical mirrors used in extreme ultraviolet lithography systems require a figure accuracy and a roughness of about 0.1 nm rms. In addition, mirror substrates must be low-thermal-expansion materials. Thus, in this study, we processed two low-thermal-expansion materials, ULE [K. Hrdina, B. Hanson, P. Fenn, R. Sabia, Proc. SPIE 4688 (2002 454.] (Corning Inc. and Zerodur [I. Mitra, M.J. Davis, J. Alkemper, Rolf Müller, H. Kohlmann, L. Aschke, E. Mörsen, S. Ritter, H. Hack, W. Pannhorst, Proc. SPIE 4688 (2002 462.] (SCHOTT AG, with elastic emission machining (EEM in order to evaluate the removal properties. Consequently, we successfully calculated the respective removal rates, because removal volumes were found to be proportional to process times in EEM. Moreover, we demonstrated that the surface roughness of Zerodur is reduced to 0.1 nm rms in the spatial wavelength range from 100 μm to 1 mm.

  3. Statistical properties of single-mode emission in free-electron lasers

    International Nuclear Information System (INIS)

    Bertolotti, M.; Luks, A.; Perina, J.; Perinova, V.; Sibilia, C.

    1984-01-01

    The authors of this paper discuss the statistical properties of radiation produced in the free electron laser, in the case of singlemode emission when the system is used as an amplifier, with very small gain. The coherent states technique and the q-c number correspondence is employed, starting from the master-equation and obtaining the generalized Fokker-Planck equation for the anti-normal quasidistribution function. Solutions of Fokker-Planck equation provide the photocounting distribution and its factorial moments. No losses are included. It is shown that, in the short-time approximation, the radiation field exhibits antibunching, and that the photocounting distributions, when some suitable conditions on the field intensities are fulfilled, in the stationary regime shows a two-peak behavior, evidencing the existence of bistable states

  4. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies

  5. Clustering Properties of Emission Line Selected Galaxies over the past 12.5 Gyrs

    Science.gov (United States)

    Khostovan, Ali Ahmad; Sobral, David; Mobasher, Bahram; Best, Philip N.; Smail, Ian; Matthee, Jorryt; Darvish, Behnam; Nayyeri, Hooshang; Hemmati, Shoubaneh; Stott, John P.

    2018-01-01

    In this talk, I will present my latest results on the clustering and dark matter halo (DMH) mass properties of ~7000 narrowband-selected [OIII] and [OII] emitters. I will briefly describe the past work that has been done with our samples (e.g., luminosity functions, evolution of equivalent widths) as motivation of using [OIII] and [OII] emitters to study clustering/halo properties. My talk will focus on our findings regarding the line luminosity and stellar mass dependencies with DMH mass. We find strongly increasing and redshift-independent trends between line luminosity and DMH mass with evidence for a shallower slope at the bright end consistent with halo masses of ~ 1012.5-13 M⊙. Similar, but weaker, trends between stellar mass and halo mass have also been found. We investigate the inter-dependencies of these trends on halo mass and find that the correlation with line luminosity is stronger than with stellar mass. This suggest that active galaxies may be connected with their host DMHs simply based on their emission line luminosity. If time permits, I will briefly present our most recent results using our sample of ~4000 Lyα emitters, where we find similar trends to that seen with the [OIII] and [OII] samples, as well as previous Hα measurements, which suggests galaxies selected based on emission lines may be tracing the same subpopulation of star forming galaxies. I will conclude my talk with an interpretation of this connection and suggest that the shallower slope seen for the brightest emitters is evidence for a transitional halo mass as suggested in models where quenching mechanisms truncate star formation activity and reduce the fraction of star forming galaxies with increasing halo mass.

  6. Global climate change due to the hydrocarbon industry

    International Nuclear Information System (INIS)

    Almasi, M.; Racz, L.

    1999-01-01

    An overview is presented on the industry's response to the agreements of the Rio de Janeiro (1992) and Kyoto (1987) conventions on climate change, and to other international agreements. The announcements by large petroleum companies on the changes introduced according to the international commitments in order to fight climatic impacts of hydrocarbon fuels. The problems and foreseeable future of the Hungarian hydrocarbon industry with environmental protection are discussed. Finally, emission abatement and control possibilities of hydrocarbon combustion are considered. (R.P.)

  7. Emissions of particulate matter and associated polycyclic aromatic hydrocarbons from agricultural diesel engine fueled with degummed,deacidified mixed crude palm oil blends

    Institute of Scientific and Technical Information of China (English)

    Khamphe Phoungthong; Surajit Tekasakul; Perapong Tekasakul; Gumpon Prateepchaikul; Naret Jindapetch; Masami Furuuchi; Mitsuhiko Hata

    2013-01-01

    Mixed crude palm oil (MCPO),the mixture of palm fiber oil and palm kernel oil,has become of great interest as a renewable energy source.It can be easily extracted from whole dried palm fruits.In the present work,the degummed,deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long term usage.The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler.The 50% cut-off aerodynamic diameters for the first three stages were 10,2.5 and 1 μm,while the last stage collected all particles smaller than 1 μm.Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography.The results indicated that the size distribution of particulate matter was in the accumulation mode and the pattern of total PAHs associated with fine-particles (< 1 μm) showed a dominance of larger molecular weight PAHs (4-6 aromatic rings),especially pyrene.The mass median diameter,PM and total PAH concentrations decreased when increasing the palm oil content,but increased when the running hours of the engine were increased.In addition,Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaPeq) for all particle size ranges.As the palm oil was increased,the BaPeq decreased gradually.Therefore the degummed-deacidified MCPO blends are recommended for diesel substitute.

  8. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  9. Spectral properties of X-ray selected narrow emission line galaxies

    Science.gov (United States)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (case for NELGs to be major contributors to the XRB at the fainter fluxes. The analysis of optical spectroscopy, obtained on La Palma and Hawaii, shows that NELGs form a very heterogeneous group, made up of a mixture of Seyfert 2, LINER and HII-region like galaxies. Seyfert 2 galaxies are found to possess in general the steepest X-ray slopes. Ways to explain this in the context of the unified model of AGN are discussed. The FWHM of some emission lines (Halpha, Hbeta, [NII]) in the NELGs appears to increase with steepening X-ray spectral slope. In the case of the Balmer lines

  10. Polycyclic aromatic hydrocarbons (PAH) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    Czech Academy of Sciences Publication Activity Database

    Vojtíšek-Lom, M.; Czerwinski, J.; Leníček, J.; Sekyra, M.; Topinka, Jan

    2012-01-01

    Roč. 60, 14 JUNE (2012), s. 253-261 ISSN 1352-2310 R&D Projects: GA ČR GAP503/11/0142 Grant - others:GA ČR(CZ) GA101/08/1717; GA MŠk(CZ) 1M0568; project MEDETOX(XE) LIFE10ENV/CZ/651 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:68378041 Keywords : diesel engine * diesel emissions * particulate matter Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.110, year: 2012

  11. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    Science.gov (United States)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  12. A new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-10-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) annihilation photon pair coincidence time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit of around 100 ps. On the other hand, modulation mechanisms of a material's optical properties as exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to study whether ionizing radiation can also produce fast modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5x10-6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the radiation source flux rate and average photon energy.

  13. A promising new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-11-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5× {{10}-6} is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source.

  14. Comparative Study on Electronic, Emission, Spontaneous Property of Porous Silicon in Different Solvents

    Directory of Open Access Journals (Sweden)

    M. Naziruddin Khan

    2014-01-01

    Full Text Available Luminescent porous silicon (Psi fabricated by simple chemical etching technique in different organic solvents was studied. By quantifying the silicon wafer piece, optical properties of the Psi in solutions were investigated. Observation shows that no photoluminescence light of Psi in all solvents is emitted. Morphology of Psi in different solvents indicates that the structure and distribution of Psi are differently observed. Particles are uniformly dispersive with the sizes around more or less 5–8 nm. The crystallographic plane and high crystalline nature of Psi is observed by selected area diffraction (SED and XRD. Electronic properties of Psi in solutions are influenced due to the variation of quantity of wafer and nature of solvent. Influence in band gaps of Psi calculated by Tauc’s method is obtained due to change of absorption edge of Psi in solvents. PL intensities are observed to be depending on quantity of silicon wafer, etched cross-section area on wafer surface. Effects on emission peaks and bands of Psi under temperature annealing are observed. The spontaneous signals of Psi measured under high power Pico second laser 355 nm source are significant, influenced by the nature of solvent, pumped energy, and quantity of Si wafer piece used in etching process.

  15. Comparison of the environmental impacts of two remediation technologies used at hydrocarbon contaminated sites

    International Nuclear Information System (INIS)

    Viikala, R.; Kuusola, J.

    2000-01-01

    Investigation and remediation of contaminated sites has rapidly increased in Finland during the last decade. Public organisations as well as private companies are investigating and remediating their properties, e.g. redevelopment or business transactions. Also numerous active and closed gasoline stations have been investigated and remediated during the last few years. Usually the contaminated sites are remediated to limit values regardless of the risk caused by contamination. The limit values currently used in Finland for hydrocarbon remediation at residential or ground water areas are 300 mg/kg of total hydrocarbons and 100 mg/kg of volatile hydrocarbons (boiling point < appr. 200 deg C). Additionally, compounds such as aromatic hydrocarbons have specific limit values. Remediation of hydrocarbon contaminated sites is most often carried out by excavating the contaminated soil and taking it to a landfill by lorries. As distances from the sites to landfills are generally rather long, from tens of kilometres to few hundred kilometres, it is evident that this type of remediation has environmental impacts. Another popular technology used at sites contaminated by volatile hydrocarbons is soil vapour extraction (SVE). SVE is a technique of inducing air flow through unsaturated soils by vapour extraction wells or pipes to remove organic contaminants with an off-gas treatment system. The purpose of this study was to evaluate some of the environmental impacts caused by remediation of hydrocarbon contaminated soil. Energy consumption and air emissions related remedial activities of the two methods were examined in this study. Remediation of the sites used in this study were carried out by Golder Associates Oy in different parts of Finland in different seasons. Evaluation was made by using life cycle assessment based approach

  16. Worldwide overview of hydrocarbons and perspectives

    International Nuclear Information System (INIS)

    Tonnac, Alain de; Perves, Jean-Pierre

    2013-12-01

    This publication presents and comments data regarding the share of hydrocarbons in the world energy consumption, hydrocarbon trade flows, the new situation created by the emergence of shale hydrocarbons and the consequences for the world economy, and possible risks. The authors first comment the evolution of energy consumption and outline that the objectives of CO 2 and greenhouse gas emission will not be reached (these emissions increased in 2012 and in 2013). They indicate the emission situation in the USA and Japan, and notice that the objectives defined by the IEA are quite different from those defined by the EU. They analyse the evolutions by distinguishing different periods: 2005-2008 as a reference period, 2008-2012 as a period of change, and the current period as a period of flow inversion. Then, the authors propose two different scenarios of evolution of economic and energy policies. The evolution of hydrocarbon demand is commented, and the levels of reserves (oil, conventional gas, coal, nuclear fuels) are discussed. The market evolution is also discussed, not only from an economic point of view, but also in relationship with geopolitics. The authors notably outline that the energy price is different from one country to the other, discuss the issue of hydrocarbon refining, the role of CO 2 tax

  17. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  18. Natural Attenuation of Hydrocarbon and Trichloroethylene Vapors in the Subsurface Environment at Plattsburgh Air Force Base

    National Research Council Canada - National Science Library

    Ostendorf, David

    1997-01-01

    .... UMASS tested the hypothesis that natural attenuation processes, stimulated by injected air, reduce emissions of hydrocarbons and trichloroethylene vapors to acceptable air quality standards at the site. Drs...

  19. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Science.gov (United States)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  20. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography.

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M; Levin, Craig S

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A larger resistivity is favorable for reducing the dark current (noise) in the detector crystal, and thus the higher resistivity BSO crystal has a lower (50% lower on average) noise level than CdTe. The CdTe and BSO crystals can achieve the same sensitivity under laser diode illumination at the same crystal bias voltage condition while the BSO crystal is not as sensitive to 511-keV photons as the CdTe crystal under the same crystal bias voltage. The amplitude of the modulation signal induced by 511-keV photons in BSO crystal is around 30% of that induced in CdTe crystal under the same bias condition. In addition, we have found that the optical modulation strength increases linearly with crystal bias voltage before saturation. The modulation signal with CdTe tends to saturate at bias voltages higher than 1500 V due to its lower resistivity (thus larger dark current) while the modulation signal strength with BSO still increases after 3500 V. Further increasing the bias voltage for BSO could potentially further enhance the modulation strength and thus, the sensitivity.

  1. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    International Nuclear Information System (INIS)

    Herlin, Maria; Finnilä, Mikko A.J.; Zioupos, Peter; Aula, Antti; Risteli, Juha; Miettinen, Hanna M.; Jämsä, Timo; Tuukkanen, Juha; Korkalainen, Merja; Håkansson, Helen; Viluksela, Matti

    2013-01-01

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr −/− ) and wild-type (Ahr +/+ ) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr +/+ mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr −/− mice displayed a slightly modified bone phenotype as compared with untreated Ahr +/+ mice, while TCDD exposure caused only a few changes in bones of Ahr −/− mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr +/+ mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation results in increased trabecular bone

  2. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  3. Mean and extreme radio properties of quasars and the origin of radio emission

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Rachael M.; Richards, Gordon T. [Department of Physics, Drexel University, Philadelphia, PA (United States)

    2015-02-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.

  4. Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fioroni, Gina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fatouraie, Mohammad [Robert Bosch LLC; Frommherz, Mario [Robert Bosch LLC; Mosburger, Michael [Robert Bosch LLC; Chapman, Elana [General Motors LLC; Li, Sharon [General Motors LLC

    2018-04-03

    Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulate emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work. Two risk safeguard fuels (RSG), representing the properties of worst case market fuels in Europe and China, were also included. The particle number concentration of the solid particulates was measured in the engine-out exhaust flow at steady state engine operations with load and speed sweeps, and semi-transient load steps. The test results showed a factor of 6 PN emission difference among all certification fuels tested. Combined with detailed fuel analyses, this study evaluated important factors (such as oxygenates, carbon chain length and thermo-physical properties) that cause PN emissions which were not included in PMI index. A linear regression was performed to develop a PN predictive model which showed improved fitting quality than using PMI.

  5. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Detian; Cheng, Yongjun [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Wang, Yongjun, E-mail: wyjlxlz@163.com [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, Huzhong [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Dong, Changkun [Institute of Micro-Nano Structures and Optoelectronics, Wenzhou University, Wenzhou 325035 (China); Li, Da [Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The high quality CNT arrays were successfully grown on conductive stainless steel substrates. • The CNT array grown on stainless steel substrate exhibited superior field emission properties. • A high vacuum level about 10–8 Pa was measured by resultant CNT-based ionization gauge. • The ionization gauge with CNT cathode demonstrated a high stability. - Abstract: Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10{sup −8} Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  6. Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift

    Science.gov (United States)

    de Barros, S.; Schaerer, D.; Stark, D. P.

    2014-03-01

    Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The SED models, which include nebular emission shed new light on the properties of LBGs with numerous important implications. Appendix A is available in electronic form at http://www.aanda.org

  7. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  8. Property of electrocardiogram gated single photon emission tomography by 99mTc-methoxy isobutyl isonitrile

    International Nuclear Information System (INIS)

    Imai, Kamon; Nishio, Yukari; Araki, Yasushi; Saito, Satoshi; Ozawa, Yukio; Yasugi, Tadao; Hagiwara, Kazuo; Kamata, Rikisaburo

    1992-01-01

    99m Tc-methoxy isobutyl isonitrile (MIBI) is a new developed myocardial perfusion imaging agent. Because this compound has higher photon energy than thallium (Tl), electrocardiogram gated single photon emission tomography (SPECT): end-diastolic (ED) and end-systolic (ES) short axis (SA) images could be taken. To investigate property of gated MIBI SPECT, MIBI myocardial scintigraphy, Tl scintigraphy (TMS) and analysis of left ventricular wall motion were performed in 6 patients with myocardial infarction. Left ventricule was divided into 8 segments. Perfusion defect (PD) was scored: '0' (normal), '1' (hypo-perfusion), '2' (defect). Wall motion abnormality (WMA) was also scored: '0' (normo-kinesis), '1' (hypo-kinesis), '2' (a-, dys-kinesis). Severity and extent of PD and WMA were calculated. Severity of WMA was 3.0±2.0 (M±SD), severity of PD was 3.3±1.7 in TMS, 3.7±1.3 in no-gated MIBI, 5.0±0.6 in ES-MIBI, 7.3±2.0 in ED-MIBI. Extent of WMA was 2.3±1.0. Extent of PD was 2.5±1.3 in TMS, 3.0±1.6 in no-gated MIBI, 3.5±0.8 in ES-MIBI, 4.8±1.0 in ED-MIBI. Compared with wall motion abnormality, severity and extent of PD in ED-MIBI was larger. From our data, it is concluded that perfusion defect in ED-MIBI was overestimated significantly. When we evaluate gated MIBI image, we must consider this property. (author)

  9. The effect of the textural properties of bituminous coal chars on NO emissions

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Rubiera, F.; Pis, J.J.; Jones, J.M.; Williams, A. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon

    1999-11-01

    NO is the primary product of the oxidation of char nitrogen, and in some combustion processes the NO can be reduced on the char surface to give N{sub 2}O and/or N{sub 2}. In this study a range of bituminous coal (low, medium and high volatile matter content) were pyrolysed in a fixed bed reactor at various heating rates. Textural characterisation was carried out by measuring true (He) and apparent (Hg) densities and N{sub 2} (-196{degree}C) and CO{sub 2} (0{degree}C) adsorption isotherms. Pore volume distributions and surface areas were obtained for the chars studied. A thermogravimetric analyser coupled to a quadrupole mass spectrometer (TG-MS) was used to study the combustion behaviour of the samples and the nitrogen compounds evolved during temperature-programmed combustion. Results are discussed in terms of the influence of both textural properties and reactivity on NO emissions and on the heterogeneous reduction of NO. 23 refs., 8 figs., 4 tabs.

  10. Temperature Dependence of Emission Properties of Self-Assembled InGaN Quantum Dots

    International Nuclear Information System (INIS)

    Zhao Wan-Ru; Zhang Jiang-Yong; Zhang Bao-Ping; Weng Guo-En; Liang Ming-Ming; Li Zeng-Cheng; Liu Jian-Ping

    2014-01-01

    Emission properties of self-assembled green-emitting InGaN quantum dots (QDs) grown on sapphire substrates by using metal organic chemical vapor deposition are studied by temperature-dependent photoluminescence (PL) measurements. As temperature increases (15–300 K), the PL peak energy shows an anomalous V-shaped (redshift—blueshift) variation instead of an S-shaped (redshift—blueshift—redshift) variation, as observed typically in green-emitting InGaN/GaN multi-quantum wells (MQWs). The PL full width at half maximum (FWHM) also shows a V-shaped (decrease—increase) variation. The temperature dependence of the PL peak energy and FWHM of QDs are well explained by a model similar to MQWs, in which carriers transferring in localized states play an important role, while the confinement energy of localized states in the QDs is significantly larger than that in MQWs. By analyzing the integrated PL intensity, the larger confinement energy of localized states in the QDs is estimated to be 105.9 meV, which is well explained by taking into account the band-gap shrinkage and carrier thermalization with temperature. It is also found that the nonradiative combination centers in QD samples are much less than those in QW samples with the same In content

  11. Emission properties of Ga2O3 nano-flakes: effect of excitation density.

    Science.gov (United States)

    Pozina, G; Forsberg, M; Kaliteevski, M A; Hemmingsson, C

    2017-02-08

    In the quest of developing high performance electronic and optical devices and more cost effective fabrication processes of monoclinic β-Ga 2 O 3 , new growth techniques and fundamental electronic and optical properties of defects have to be explored. By heating of dissolved metallic Ga in HCl in a NH 3 and N 2 atmosphere, nano-flake films of monoclinic β-phase Ga 2 O 3 were grown as confirmed by XRD. From optical measurements, we observe two strong emissions. A red band peaking at ~2.0 eV and a UV band at ~3.8 eV. The band at ~2.0 eV is attributed to donor-acceptor pair recombination where the donor and acceptor level is suggested to be related to V O and nitrogen, respectively. By studying the dependence of the intensity of the UV band at 3.8 eV versus excitation density, a model is suggested. In the model, it is assumed that local potential fluctuations forming minima (maxima), where the carriers would be localized with a summarized band offset for conduction and valence band of 1 eV. The origin of the fluctuations is tentatively suggested to be related to micro-inclusions of different phases in the film.

  12. Surface and electron emission properties of hydrogen-free diamond-like carbon films investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Liu Dongping; Zhang, Sam; Ong, S.-E.; Benstetter, Guenther; Du Hejun

    2006-01-01

    In this study, we have deposited hydrogen-free diamond-like carbon (DLC) films by using DC magnetron sputtering of graphite target at various r.f. bias voltages. Surface and nanoscale emission properties of these DLC films have been investigated using a combination of atomic force microscopy (AFM)-based nanowear tests and conducting-AFM, by simultaneously measuring the topography and the conductivity of the samples. Nanowear tests show that these DLC films are covered with the thin (1.5-2.0 nm) graphite-like layers at surfaces. Compared to the film bulk structure, the graphite-like surface layers are more conductive. The graphite-like surface layers significantly influence the electron emission properties of these films. Low-energy carbon species can be responsible for the formation of graphite-like surface layers. Nanoscale electron emission measurements have revealed the inhomogeneous emission nature of these films. The low-field emission from these films can be attributed to the existence of sp 2 -configured nanoclusters inside the films

  13. MECHANISTIC STUDIES AND DESIGN OF HIGHLY ACTIVE CUPRATE CATALYSTS FOR THE DIRECT DECOMPOSITION AND SELECTIVE REDUCTION OF NITRIC OXIDE AND HYDROCARBONS TO NITROGEN FOR ABATEMENT OF STACK EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-04-30

    A flow trough type catalytic reactor system was adequately modified for NO related catalytic and adsorption measurements, including the on-line connection of a digital chemiluminescent NO-NO{sub x} analyzer to the reactor outlet system. Moreover, we have largely completed the installation of an FTIR coupled catalytic system containing a HTEC cell for high temperature DRIFT studies. Three different barium cuprate samples, Ba{sub 2}CuO{sub 3}, BaCuO{sub 2}, and Ba{sub 2}Cu{sub 3}O{sub 5} were synthesized and characterized by powder XRD for catalytic tests. Prior to catalytic studies over these cuprates, a new, liquid indium based supported molten metal catalyst (In-SMMC) was tested in the reduction of NO by various reductants. In the presence of excess O{sub 2} and H{sub 2}O, the In-SMMC proved to be more active for the selective catalytic reduction (SCR) of NO to N{sub 2} by ethanol than most other catalysts. Using C{sub 1}-C{sub 3} alcohols as reductants, self sustained periodic oscillations observed in the NO{sub x} concentrations of reactor effluents indicated the first time that radical intermediates can be involved in the SCR of NO by alcohols. Further, In-SMMC is the only effective and water tolerant SCR catalyst reported thus far which contains SiO{sub 2} support. Thus, this novel catalyst opens up a promising new alternative for developing an effective and durable catalyst for NO{sub x} abatement in stack emission.

  14. Tailoring of structural and electron emission properties of CNT walls and graphene layers using high-energy irradiation

    International Nuclear Information System (INIS)

    Sharma, Himani; Shukla, A K; Vankar, V D; Agarwal, Dinesh C; Avasthi, D K; Sharma, M

    2013-01-01

    Structural and electron emission properties of carbon nanotubes (CNTs) and multilayer graphene (MLG) are tailored using high-energy irradiation by controlling the wall thickness and number of layers. Ion irradiation by 100 MeV Ag + ions at different fluences is used as an effective tool for optimizing defect formation in CNTs and MLGs, as analysed by micro-Raman spectroscopy. It is found that the cross section for defect formation (η) is 3.5 × 10 −11 for thin-walled CNTs, 2.8 × 10 −11 for thick-walled CNTs and 3.1 × 10 −11 for MLGs. High-resolution transmission electron microscopy results also show that thin-walled CNTs and MLGs are more defective in comparison with thick-walled CNTs. Carbon atoms rearrange at a fluence of 1 × 10 12 ions cm −2 in thick-walled CNTs to heal up the damage, which aggravates at higher fluences. The observed electron emission parameters of the modified thin-walled CNTs and MLGs are confirmed with the changes in the structures and are optimized at a fluence of 1 × 10 11 ions cm −2 . However, the electron emission properties of thick-walled CNTs are modified at a fluence of 1 × 10 12 ions cm −2 . The enhancement in the electron emission properties is due to the rearrangement of bonds and hence modified tips due to irradiation. (paper)

  15. Coherent properties of single quantum dot transitions and single photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Ester, Patrick

    2008-04-23

    In this work, the properties and the different dephasing mechanisms of single QD transitions are analyzed. In addition, some applications are presented which arise due to the properties of the confined exciton. The isolation of a single QD out of the ensemble is achieved via near field shadow masks, which restricts excitation and QD luminescence to a single QD. The integration of a QD-layer into a diode structure allows for an analysis of various dephasing mechanisms of a confined electron hole pair. The single QD is characterized regarding the energy of nearly all possible transitions, e.g. the ground state, excited states, charged states, multiple occupations, and phonon assisted absorptions. A very important issue in this content is the voltage dependence of the transition energy and thereby the ability of tunneling processes of charge carriers in and out of the QD. The QD-states, which are subject of investigation here, are the single exciton ground state, the first excited state (p-shell), and the (GaAs-) LO (longitudinal optical) phonon assisted absorption. By applying a suitable voltage, the resonantly excited ground state exciton is able to decay by a tunneling process, which reflects the transition energy in the photocurrent spectra. The p-shell transition decays by a relaxation process into the ground state, followed by an optical recombination process. The phonon assisted absorption differs from the p-shell transition. The resonant excitation energy fits to the exciton ground state energy plus the energy of a GaAs LO phonon. In this case, the single exciton (ground state) is generated as well as a GaAs LO phonon. These three states are investigated in different respects, such as different applied voltages, excitation polarizations, excitation intensities, and coherent properties. The LO-assisted absorption shows also a saturation behavior. The exciton in the QD is able to interfere with the second laser pulse due to the storage of the phase information

  16. Coherent properties of single quantum dot transitions and single photon emission

    International Nuclear Information System (INIS)

    Ester, Patrick

    2008-01-01

    In this work, the properties and the different dephasing mechanisms of single QD transitions are analyzed. In addition, some applications are presented which arise due to the properties of the confined exciton. The isolation of a single QD out of the ensemble is achieved via near field shadow masks, which restricts excitation and QD luminescence to a single QD. The integration of a QD-layer into a diode structure allows for an analysis of various dephasing mechanisms of a confined electron hole pair. The single QD is characterized regarding the energy of nearly all possible transitions, e.g. the ground state, excited states, charged states, multiple occupations, and phonon assisted absorptions. A very important issue in this content is the voltage dependence of the transition energy and thereby the ability of tunneling processes of charge carriers in and out of the QD. The QD-states, which are subject of investigation here, are the single exciton ground state, the first excited state (p-shell), and the (GaAs-) LO (longitudinal optical) phonon assisted absorption. By applying a suitable voltage, the resonantly excited ground state exciton is able to decay by a tunneling process, which reflects the transition energy in the photocurrent spectra. The p-shell transition decays by a relaxation process into the ground state, followed by an optical recombination process. The phonon assisted absorption differs from the p-shell transition. The resonant excitation energy fits to the exciton ground state energy plus the energy of a GaAs LO phonon. In this case, the single exciton (ground state) is generated as well as a GaAs LO phonon. These three states are investigated in different respects, such as different applied voltages, excitation polarizations, excitation intensities, and coherent properties. The LO-assisted absorption shows also a saturation behavior. The exciton in the QD is able to interfere with the second laser pulse due to the storage of the phase information

  17. Source rock hydrocarbons. Present status

    International Nuclear Information System (INIS)

    Vially, R.; Maisonnier, G.; Rouaud, T.

    2013-01-01

    This report first presents the characteristics of conventional oil and gas system, and the classification of liquid and gaseous non conventional hydrocarbons, with the peculiar case of coal-bed methane. The authors then describe how source rock hydrocarbons are produced: production of shale oils and gases (horizontal drilling, hydraulic fracturing, exploitation) and of coal-bed methane and coal mine methane. In the next part, they address and discuss the environmental impact of source rock hydrocarbon production: installation footprint, water resource management, drilling fluids, fracturing fluids composition, toxicity and recycling, air pollution, induced seismicity, pollutions from other exploitation and production activities. They propose an overview of the exploitation and production of source rock gas, coal-bed gas and other non conventional gases in the world. They describe the current development and discuss their economic impacts: world oil context and trends in the USA, in Canada and other countries, impacts on the North American market, on the world oil industry, on refining industries, on the world oil balance. They analyse the economic impacts of non conventional gases: development potential, stakes for the world gas trade, consequence for gas prices, development opportunities for oil companies and for the transport sector, impact on CO 2 emissions, macro-economic impact in the case of the USA

  18. Novel Photocatalytic Reactor Development for Removal of Hydrocarbons from Water

    Directory of Open Access Journals (Sweden)

    Morgan Adams

    2008-01-01

    Full Text Available Hydrocarbons contamination of the marine environment generated by the offshore oil and gas industry is generated from a number of sources including oil contaminated drill cuttings and produced waters. The removal of hydrocarbons from both these sources is one of the most significant challenges facing this sector as it moves towards zero emissions. The application of a number of techniques which have been used to successfully destroy hydrocarbons in produced water and waste water effluents has previously been reported. This paper reports the application of semiconductor photocatalysis as a final polishing step for the removal of hydrocarbons from two waste effluent sources. Two reactor concepts were considered: a simple flat plate immobilised film unit, and a new rotating drum photocatalytic reactor. Both units proved to be effective in removing residual hydrocarbons from the effluent with the drum reactor reducing the hydrocarbon content by 90% under 10 minutes.

  19. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  20. Physical and morphological properties of z ~ 3 Lyman break galaxies: dependence on Lyα line emission

    Science.gov (United States)

    Pentericci, L.; Grazian, A.; Scarlata, C.; Fontana, A.; Castellano, M.; Giallongo, E.; Vanzella, E.

    2010-05-01

    Aims: We investigate the physical and morphological properties of Lyman break galaxies (LBGs) at redshift ~2.5 to ~3.5, to determine if and how they depend on the nature and strength of the Lyα emission. Methods: We selected U-dropout galaxies from the z-detected GOODS-MUSIC catalog by adapting the classical Lyman break criteria on the GOODS filter set. We kept only those galaxies with spectroscopic confirmation, mainly from VIMOS and FORS public observations. Using the full multi-wavelength 14-bands information (U to IRAC), we determined the physical properties of the galaxies through a standard spectral energy distribution fitting procedure with the updated Charlot & Bruzual (2009) templates. We also added other relevant observations of the GOODS field, i.e. the 24 μm observations from Spitzer/MIPS and the 2 MSec Chandra X-ray observations. Finally, using non parametric diagnostics (Gini, Concentration, Asymmetry, M20 and ellipticity), we characterized the rest-frame UV morphologies of the galaxies. We then analyzed how these physical and morphological properties correlate with the presence of the Lyα emission line in the optical spectra. Results: We find that unlike at higher redshift, the dependence of physical properties on the Lyα line is milder: galaxies without Lyα in emission tend to be more massive and dustier than the rest of the sample, but all other parameters, ages, star formation rates (SFR), X-ray emission and UV morphology do not depend strongly on the presence of the Lyα emission. A simple scenario where all LBGs have intrinsically high Lyα emission, but where the dust and neutral hydrogen content (which shapes the final appearance of the Lyα) depend on the mass of the galaxies, is able to reproduce the majority of the observed properties at z˜3. Some modification might be needed to account for the observed evolution of these properties with cosmic epoch, which is also discussed.

  1. Modification of emission properties of (BaSr)O by high intensity ionizing irradiation

    International Nuclear Information System (INIS)

    Ivanov, V.I.; Mozhaev, P.B.

    1991-01-01

    Investigation of irradiation effects on emission shows the increase in oxide cathode emission current immediately after its treatment with accelerated electrons. A model permittivity to explain the phenomenon on the basis of the known relation between the degree of oxide nonstoichiometry and concentration of lattice defects is suggested. The growth of nonstoichiometry degree results in the increase of metal concentration in near the surface layer and growth of emission current. Experimental results are adequately explained by the model suggested. (author)

  2. Modification of (BaSr)O emission properties by highly intensive ionizing irradiation

    International Nuclear Information System (INIS)

    Ivanov, V.I.; Mozhaev, P.B.

    1989-01-01

    Investigation of irradiation effects on emission shows the increase in oxide cathode emission current immediately after its treatment with accelerated electrons. A model permittivity to explain the phenomenon on the basis of the known relation between the degree of oxide nonstoichiometry and concentration of lattice defects is suggested. The growth of nonstoichiometry degree results in the increase of metal concentration in near the surface layer and growth of emission current. Experimental results are adequately explained by the model suggested

  3. Collision data involving hydro-carbon molecules

    International Nuclear Information System (INIS)

    Tawara, H.; Itikawa, Y.; Nishimura, H.; Tanaka, H.; Nakamura, Y.

    1990-07-01

    Hydro-carbon molecules are abundantly produced when graphites are used as internal wall materials of hydrogen plasmas and strongly influence properties of low temperature plasmas near the edges as well as those of high temperature plasmas at the center. In this report, following simple description of the production mechanisms of hydro-carbon molecules under the interactions between graphite and hydrogen plasma, the present status of collision data for hydro-carbon molecules by electron impact is discussed and the relevant data are summarized in a series of figures and tables. It should also be noted that, in addition to fusion plasmas, these hydrocarbon data compiled here are quite useful in other applications such as plasma chemistry and material processing. (author)

  4. Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates

    International Nuclear Information System (INIS)

    Hirakuri, Kenji; Yokoyama, Takahiro; Enomoto, Hirofumi; Mutsukura, Nobuki; Friedbacher, Gernot

    2001-01-01

    Electron field emission characteristics of diamond grains fabricated on iron dot-patterned silicon (Fe/Si) substrates at different methane concentrations have been investigated. The characteristics of the samples could be improved by control of the methane concentration during diamond fabrication. Etching treatment of the as-grown diamond has enhanced the emission properties both with respect to current and threshold voltage. In order to study the influence of etching effects on the field emission characteristics, the respective surfaces were studied by Raman spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis (ESCA). ESCA revealed intensive graphite and FeO x peaks on the sample surface grown at high methane concentration. For the etched samples, the peaks of diamond and silicon carbide were observed, and the peaks of nondiamond carbon disappeared. The experimental results show that the etching process removes graphitic and nondiamond carbon components. [copyright] 2001 American Institute of Physics

  5. Effect of upgraded diesel fuels and oxidation catalysts on emission properties, especially PAH and genotoxicity

    DEFF Research Database (Denmark)

    Johansen, Keld; Gabrielsson, Pär; Stavnsbjerg, Peter

    1997-01-01

    in an engine test bench and a full ECE R49 13 mode test was performed and 2) a VW GOLF 1.6 l engine was mounted in a car and a full transient FTP-75 test was performed. Regulated emissions and unregulated emissions as SOF, sulphur, nitrate, PAH in PM plus vapour phase were measured. Genotoxic activity...

  6. Evaluation of field emission properties from multiple-stacked Si quantum dots

    International Nuclear Information System (INIS)

    Takeuchi, Daichi; Makihara, Katsunori; Ohta, Akio; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2016-01-01

    Multiple-stacked Si quantum dots (QDs) with ultrathin SiO 2 interlayers were formed on ultrathin SiO 2 layers by repeating a process sequence consisting of the formation of Si-QDs by low pressure chemical vapor deposition using a SiH 4 gas and the surface oxidation and subsequent surface modification by remote hydrogen and oxygen plasmas, respectively. To clarify the electron emission mechanism from multiple-stacked Si-QDs covered with an ultrathin Au top electrode, the energy distribution of the emitted electrons and its electric field dependence was measured using a hemispherical electron energy analyzer in an X-ray photoelectron spectroscopy system under DC bias application to the multiple-stacked Si-QD structure. At − 6 V and over, the energy distributions reached a peak at ~ 2.5 eV with a tail toward the higher energy side. While the electron emission intensity was increased exponentially with an increase in the applied DC bias, there was no significant increase in the emission peak energy. The observed emission characteristics can be interpreted in terms of field emissions from the second and/or third topmost Si-QDs resulting from the electric concentration there. - Highlights: • Electron field emission from 6-fold stack of Si-QDs has been evaluated. • AFM measurements show the local electron emission from individual Si-QDs. • Impact of applied bias on the electron emission energy distribution was investigated.

  7. Enhancing Hydrogen Diffusion in Silica Matrix by Using Metal Ion Implantation to Improve the Emission Properties of Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    J. Bornacelli

    2014-01-01

    Full Text Available Efficient silicon-based light emitters continue to be a challenge. A great effort has been made in photonics to modify silicon in order to enhance its light emission properties. In this aspect silicon nanocrystals (Si-NCs have become the main building block of silicon photonic (modulators, waveguide, source, and detectors. In this work, we present an approach based on implantation of Ag (or Au ions and a proper thermal annealing in order to improve the photoluminescence (PL emission of Si-NCs embedded in SiO2. The Si-NCs are obtained by ion implantation at MeV energy and nucleated at high depth into the silica matrix (1-2 μm under surface. Once Si-NCs are formed inside the SiO2 we implant metal ions at energies that do not damage the Si-NCs. We have observed by, PL and time-resolved PL, that ion metal implantation and a subsequent thermal annealing in a hydrogen-containing atmosphere could significantly increase the emission properties of Si-NCs. Elastic Recoil Detection measurements show that the samples with an enhanced luminescence emission present a higher hydrogen concentration. This suggests that ion metal implantation enhances the hydrogen diffusion into silica matrix allowing a better passivation of surface defects on Si NCs.

  8. Effects of potassium hydroxide post-treatments on the field-emission properties of thermal chemical vapor deposited carbon nanotubes.

    Science.gov (United States)

    Lee, Li-Ying; Lee, Shih-Fong; Chang, Yung-Ping; Hsiao, Wei-Shao

    2011-12-01

    In this study, a simple potassium hydroxide treatment was applied to functionalize the surface and to modify the structure of multi-walled carbon nanotubes grown on silicon substrates by thermal chemical vapor deposition. Scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive spectrometry were employed to investigate the mechanism causing the modified field-emission properties of carbon nanotubes. From our experimental data, the emitted currents of carbon nanotubes after potassium hydroxide treatment are enhanced by more than one order of magnitude compared with those of untreated carbon nanotubes. The emitted current density of carbon nanotubes increases from 0.44 mA/cm2 to 7.92 mA/cm2 after 30 minutes KOH treatment. This technique provides a simple, economical, and effective way to enhance the field-emission properties of carbon nanotubes.

  9. Climate change and the hydrocarbon industry; A klimavaltozas es a szenhidrogenipar

    Energy Technology Data Exchange (ETDEWEB)

    Almasi, M.; Racz, L.

    1999-07-01

    The theory of the greenhouse effect and the impact of greenhouse phenomena on climate change are summarized. Theoretical bases of climate changes are outlined and the relationship between greenhouse effects and hydrocarbon production is analyzed. Hungary's carbon dioxide emissions as well as the possibilities of reducing the emissions caused by hydrocarbons are discussed. Finally the tasks of the Hungarian hydrocarbon industry in relation to the environmental problems are concerned.

  10. Solid state cathodoluminescence and the properties of its two emission peaks

    International Nuclear Information System (INIS)

    Xu Xurong

    2007-01-01

    We discovered solid state cathodoluminescence (SSCL). For its identification we excluded all artifacts, carried out its cross proof and studied its generality. Its spectrum is characterized by the appearance of short wavelength peak when the applied voltage is increased. Three voltage ranges are distinguished, in the lower voltage range we have the long wavelength emission, in the middle range we have both long and short wavelength emissions, and in the higher voltage range we have only the short wavelength emission. The mechanism of this spectral shift lies in the electrical field ionization of excitons. This effect initiates the applicability of band model besides molecular excitons theory. The temporal behaviors of both peaks in SSCL are studied with a method of estimating lifetime by means of frequency dependence on intensity. The lifetime of short wavelength emission is found to be 5 ms and that of long wavelength emission is less than 0.05 ms

  11. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  12. Time-of-flight Measurement Of Hole-tunneling Properties And Emission Color Control In Organic Light-emitting Diodes

    Science.gov (United States)

    Kurata, K.; Kashiwabara, K.; Nakajima, K.; Mizoguchi, Y.; Ohtani, N.

    2011-12-01

    Hole transport properties of organic light-emitting diodes (OLEDs) with a thin hole-blocking layer (HBL) were evaluated by time-of-flight measurement. Electroluminescence (EL) spectra of OLEDs with various HBL thicknesses were also evaluated. The results clearly show that the time-resolved photocurrent response and the emission color strongly depend on HBL thickness. This can be attributed to hole-tunneling through the thin HBL. We successfully fabricated a white OLED by controlling the thickness of HBL.

  13. Influence of high-energy electron irradiation on field emission properties of multi-walled carbon nanotubes (MWCNTs) films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Sandip S. [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Koinkar, Pankaj M. [Center for International Cooperation in Engineering Education (CICEE), University of Tokushima, 2-1 Minami-Josanjima-Cho, Tokushima 770-8506 (Japan); Dhole, Sanjay D. [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); More, Mahendra A., E-mail: mam@physics.unipune.ac.i [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Murakami, Ri-ichi, E-mail: murakami@me.tokushima-u.ac.j [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-Josanjima-Cho, Tokushima 770-8506 (Japan)

    2011-04-15

    The effect of very high energy electron beam irradiation on the field emission characteristics of multi-walled carbon nanotubes (MWCNTs) has been investigated. The MWCNTs films deposited on silicon (Si) substrates were irradiated with 6 MeV electron beam at different fluence of 1x10{sup 15}, 2x10{sup 15} and 3x10{sup 15} electrons/cm{sup 2}. The irradiated films were characterized using scanning electron microscope (SEM) and micro-Raman spectrometer. The SEM analysis clearly revealed a change in surface morphology of the films upon irradiation. The Raman spectra of the irradiated films show structural damage caused by the interaction of high-energy electrons. The field emission studies were carried out in a planar diode configuration at the base pressure of {approx}1x10{sup -8} mbar. The values of the threshold field, required to draw an emission current density of {approx}1 {mu}A/cm{sup 2}, are found to be {approx}0.52, 1.9, 1.3 and 0.8 V/{mu}m for untreated, irradiated with fluence of 1x10{sup 15}, 2x10{sup 15} and 3x10{sup 15} electrons/cm{sup 2}. The irradiated films exhibit better emission current stability as compared to the untreated film. The improved field emission properties of the irradiated films have been attributed to the structural damage as revealed from the Raman studies.

  14. In-cylinder visualization and engine out emissions from CI to PPC for fuels with different properties

    KAUST Repository

    An, Yanzhao

    2018-02-27

    This study investigated the transition from conventional Compression Ignition (CI) to Partially Premixed Combustion (PPC) in an optical engine for fuels with differing properties. Combustion stratification and emissions were measured with diesel, naphtha and their corresponding surrogate fuels, N-heptane and PRF50. The aim of the study is to link the combustion images with engine out emissions and mixture homogeneity. Single injection strategy with the change of start of injection (SOI) from late to early injections was employed. Results show that combustion phasing trend is similar for diesel/N-heptane as well as for naphtha/PRF50 as the SOI moved from late injection timing to early injection timing. However, there is a significant difference in combustion phasing behavior for gasoline like fuels (naphtha and PRF50) and diesel fuels (diesel and N-heptane). CO emissions show an inverted V-shaped trend with one single peak in the transition zone. A “W” shape trend, with two bottoms at various dilution rates is observed for the UHC emissions. NOX emissions are high in the transition zone and decreased to lower levels in CI and PPC zones. NOX emissions are significantly reduced by reducing the intake O2 concentration with nitrogen. Except for diesel, the other three fuels show lower soot emissions. When compared to diesel like fuels, the natural luminosity of the images are lower for gasoline like fuels, indicating better premixed combustion. As the SOI is changed from CI to PPC mode, the combustion stratification increases towards a peak value in the transition zone and then decreases to a low level in PPC zone. A competition exists between the intake temperature and the dilution rate for the combustion stratification. The level of stratification is higher for real fuels (diesel and naphtha) when compared to surrogate fuel (N-heptane and PRF50).

  15. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Science.gov (United States)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2008-05-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  16. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. 1; Emission-Line Diagnostics

    Science.gov (United States)

    Weaver, K. A.; Melendez, M.; Muhotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth. E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; hide

    2010-01-01

    \\Ve compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 microns, [Ne II] 12.81 microns, [Ne III] 15.56 microns and [Ne V] 14.32 microns, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGNs are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that the BAT AGN fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. From this we found that sources that have been previously classified in the mid-infrared/optical as AGN have smaller emission line ratios than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. Overall, we present a different set of emission line diagnostics to distinguish between AGN and star forming galaxies that can be used as a tool to find new AGN.

  17. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    Science.gov (United States)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  18. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  19. An experimental investigation on the properties of laser-induced plasma emission spectra

    International Nuclear Information System (INIS)

    Tang Xiaoshuan; Li Chunyan; Ji Xuehan; Feng Eryin; Cui Zhifeng

    2004-01-01

    The authors have measured the time-resolved emission spectra produced by Nd: YAG laser induced Al plasma with different kinds of buffer gas (He, Ar, N 2 and Air). The dependence of emission spectra line intensity and Stark broadening on the time delay, kinds and pressure of buffer gas are studied. The results show that the atomic emission line intensity reaches maximum at 3 μs time delay, the Stark broadening increases with increasing the pressure of buffer gas, and decreases with increasing time delay. The Stark broadening in Ar buffer gas is largest among the four different kinds of buffer gas. (author)

  20. Graph theory for alternating hydrocarbons with attached ports

    NARCIS (Netherlands)

    Hesselink, Wim H.

    Properties of molecules of certain hydrocarbons give rise to difficult questions in graph theory. This paper is primarily devoted to the graph theory, but the physico-chemical motivation, which is somewhat speculative, is also presented. Molecules of unsaturated hydrocarbons exhibit alternating

  1. MICROORGANISMS’ SURFACE ACTIVE SUBSTANCES ROLE IN HYDROCARBONS BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    Оlga Vasylchenko

    2012-09-01

    Full Text Available  Existing data and publications regarding oil, hydrocarbon biodegradation, metabolism, and bioremediation were analyzed. Search of hydrocarbon degrading bacteria which are producers of biosurfactants was provided, types of microbial surfactants and their physiological role were analyzed and ordered. The study of factors affecting the surface active properties of producers’ cultures was done.

  2. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A computational study on the electronic and field emission properties of Mg and Si doped AlN nanocones

    Science.gov (United States)

    Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah

    2018-05-01

    Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.

  4. Measuring the coherence properties of light emission from laser-plasma interactions. Final report

    International Nuclear Information System (INIS)

    Batha, S.H.

    1998-01-01

    Several detrimental instabilities can be excited when a high-intensity laser interacts with plasma. The temporal evolution and spectra of the scattered light emitted by many of these instabilities are used to characterize the instabilities and to benchmark theories. It has been difficult to image the emission region with sufficient resolution to make quantitative comparisons with theory. Direct measurement of the emission region would yield information on ponderomotive steepening phenomena, the true emission zone of convective instabilities, and on the saturation of absolute instabilities. The increase in laser intensity caused by the filamentation instability is conjectured to elevate the levels of parametric instabilities found in high-energy laser-plasma interactions. Because the diameter of the filaments is very small (on the order of 10 microm), it is impossible to image the emission sites directly and either to prove or to disprove this conjecture. The research reported here examines an alternate method of measuring the emission region of scattered light from parametric instabilities. This report provides a brief background of coherence theory by defining the relevant parameters in Section 2. A concrete example of the effect that multiple scattering sites would have on the proposed measurement is provided in Section 3. The following section briefly describes experiments that might be able to demonstrate the proposed technique. The conclusion raises the issue of coherence and its effect on the expected angular distribution of scattering light from parametric instabilities

  5. Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass

    Science.gov (United States)

    Xu, R. R.; Tian, Y.; Wang, M.; Hu, L. L.; Zhang, J. J.

    2011-01-01

    A new type host of germanate glass (GeO2- BaO-BaF2-Ga2O3-La2O3) codoped with Tm2O3 has been investigated for application as laser material. It possesses a large emission cross section with the value of 9.3×10-21 cm2 at 1.8 μm. Judd-Ofelt intensity parameters and radiative transition probability are calculated and analyzed by Judd-Ofelt theory and absorption spectra. The infrared emission spectra at 1.8 μm have been obtained by using a 794 nm laser diode as excitation resource. The emission intensity ratio of 1.8 (3F4→3H6) to 1.47 μm (3H4→3F4) increases, while the experimental lifetime of the Tm3+:3H4 level decreases by increasing Tm2O3 concentration, which is attributed to the presence of a cross relaxation process. The most intensive emission at 1.8 μm is achieved from the germanate glass with the concentration of Tm2O3 reaches 1.0 wt%. The extended overlap integral method is used to calculate the microparameter of the energy transfer and the critical distance, which are derived to better understand the energy transfer process of thulium ions in the germanate glass responsible for emission at 1.8 μm.

  6. Black carbon aerosol properties measured by a single particle soot photometer in emissions from biomass burning in the laboratory and field

    Science.gov (United States)

    G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe

    2010-01-01

    We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...

  7. Effectively Improved Field Emission Properties of Multiwalled Carbon Nanotubes/Graphenes Composite Field Emitter by Covering on the Si Pyramidal Structure

    DEFF Research Database (Denmark)

    Chen, Leifeng; Yu, Hua; Zhong, Jiasong

    2015-01-01

    The composite nanostructure emitter of multiwalled carbon nanotubes and graphenes was deposited on pyramidal silicon substrate by the simple larger scale electrophoretic deposition process. The field emission (FE) properties of the composite/pyramidal Si device were greatly improved compared...

  8. Emission properties of Sm(III) complex having ten-coordination structure

    International Nuclear Information System (INIS)

    Hasegawa, Yasuchika; Tsuruoka, Shin-ichi; Yoshida, Takahiko; Kawai, Hideki; Kawai, Tsuyoshi

    2008-01-01

    Sammarium(III) complex having ten-coordination structure, bis-(1,10-phenanthroline)tris-(hexafluoroacetylacetonato)samarium(III) (Sm(hfa) 3 (phen) 2 ) was prepared by chelation of tris-(hexafluoroacetylacetonato) samarium(III) (Sm(hfa) 3 (H 2 O) 2 ) with 1,10-phenantroline (phen). The characteristic ten-coordination structure of Sm(hfa) 3 (phen) 2 was determined by 1 H NMR and elemental analyses. Strong deep-red emission (λ max =643 nm) and narrow emission band (FWHM=5 nm) of Sm(hfa) 3 (phen) 2 originated from electronic allowed transition from characteristics ten coordinate structure. The emission quantum yields Sm(hfa) 3 (phen) 2 excited at absorption bands of ligands and Sm(III) ion were found to be 0.36 and 1.4%, respectively

  9. Synthesis, property and field-emission behaviour of amorphous polypyrrole nanowires

    International Nuclear Information System (INIS)

    Yan Hongliang; Zhang Lan; Shen Jiaoyan; Chen Zhaojia; Shi Gaoquan; Zhang Binglin

    2006-01-01

    Polypyrrole nanowires have been electrosynthesized by direct oxidation of 0.1 mol l -1 pyrrole in a medium of 75% isopropyl alcohol + 20% boron trifluoride diethyl etherate + 5% poly (ethylene glycol) (by volume) using porous alumina membranes as the templates. The as-prepared nanowires had a smooth surface and uniform diameter and were arranged in an orderly manner in a high density. The conductivity of a single nanowire was measured by the four-electrode technique to be 23.4 S cm -1 at room temperature. The field emission devices based on the nanowire array were fabricated and their operations were explored. The experimental results indicated that the field emission characteristics of the devices fitted well to the Fowler-Nordheim model of emission. The turn-on electric field was only 1.2 V μm -1 and the current density reached 200 μA cm -2 at 2.6 V μm -1

  10. Emission Properties, Solubility, Thermodynamic Analysis and NMR Studies of Rare-Earth Complexes with Two Different Phosphine Oxides

    Directory of Open Access Journals (Sweden)

    Hiroki Iwanaga

    2010-07-01

    Full Text Available The paper proposes novel molecular designs for rare-earth complexes involving the introduction of two different phosphine oxide structures into one rare-earth ion. These designs are effective for improving solubility and emission intensity. Additionally, the complexes are indispensable for realizing high performances in LEDs and security media. The thermodynamic properties of Eu(III complexes are correlated with the solubility. Correlations between coordination structures and emission intensity were explained by NMR analysis. The luminous flux of red LED devices with Eu(III complexes is very high (20 mA, 870 m lumen. A new white LED has its largest spectra intensity in the red region and a human look much more vividly under this light.

  11. Characterization of emission properties of Er3+ ions in TeO2-CdF2-WO3 glasses.

    Science.gov (United States)

    Bilir, G; Mustafaoglu, N; Ozen, G; DiBartolo, B

    2011-12-01

    TeO(2)-CdF(2)-WO(3) glasses with various compositions and Er(3+) concentrations were prepared by conventional melting method. Their optical properties were studied by measuring the absorption, luminescence spectra and the decay patterns at room temperature. From the optical absorption spectra the Judd-Ofelt parameters (Ω(t)), transition probabilities, branching ratios of various transitions, and radiative lifetimes were calculated. The absorption and emission cross-section spectra of the (4)I(15/2) to (4)I(13/2) transition of erbium were determined. Emission quantum efficiencies and the average critical distance R(0) which provides a measure for the strength of cross relaxation were determined. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    isolation tubes with crude oil. Three isolates tested showed positive hydrophobicity of cell walls as judged by the Microbial Adhesion to Hydrocarbons (MATH) assay. Addition of Bombay High crude oil to nutrient broth slightly enhanced growth of the protists...

  13. The dust, nebular emission, and dependence on QSO radio properties of the associated Mg II absorption line systems

    International Nuclear Information System (INIS)

    Khare, Pushpa; Daniel, Vanden Berk; Rahmani, Hadi; York, Donald G.

    2014-01-01

    We studied dust reddening and [O II] emission in 1730 Mg II associated absorption systems (AAS; relative velocity with respect to QSOs, ≤3000 km s –1 ; in units of velocity of light, β, ≤0.01) with 0.4 ≤z abs ≤ 2 in the Sloan Digital Sky Survey DR7, focusing on their dependence on the radio and other QSO properties. We used control samples, several with matching radio properties, to show that (1) AAS in radio-detected (RD) QSOs cause 2.6 ± 0.2 times higher dust extinction than those in radio-undetected (RUD) ones, which in turn cause 2.9 ± 0.7 times the dust extinction in the intervening systems; (2) AAS in core-dominated QSOs cause 2.0 ± 0.1 times higher dust extinction than those in lobe-dominated QSOs; (3) the occurrence of AAS is 2.1 ± 0.2 times more likely in RD QSOs than in RUD QSOs and 1.8 ± 0.1 time more likely in QSOs having black holes with masses larger than 1.23 × 10 9 M ☉ than in those with lower-mass black holes; and (4) there is excess flux in [O II]λ3727 emission in the composite spectra of the AAS samples compared with those of the control samples, which is at the emission redshift. The presence of AAS enhances the O II emission from the active galactic nucleus and/or the host galaxy. This excess is similar for both RD and RUD samples and is 2.5 ± 0.4 times higher in lobe-dominated samples than in core-dominated samples. The excess depends on the black hole mass and Eddington ratio. All these point to the intrinsic nature of the AAS except for the systems with z abs > z em , which could be infalling galaxies.

  14. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  15. Process for refining hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Risenfeld, E H

    1924-11-26

    A process is disclosed for the refining of hydrocarbons or other mixtures through treatment in vapor form with metal catalysts, characterized by such metals being used as catalysts, which are obtained by reduction of the oxide of minerals containing the iron group, and by the vapors of the hydrocarbons, in the presence of the water vapor, being led over these catalysts at temperatures from 200 to 300/sup 0/C.

  16. Studies on the photophysical properties of 1,8-naphthalimide derivative and aggregation induced emission recognition for casein

    International Nuclear Information System (INIS)

    Sun, Yang; Liang, Xuhua; Fan, Jun; Han, Quan

    2013-01-01

    A novel water-soluble 1,8-naphthalimide derivative 1, bearing two acetic carboxylic groups, exhibited fluorescent turn-on recognition for casein micelle based on the aggregation induced emission (AIE) character. The photophysical properties of 1 consisting of donor and acceptor units were investigated by the solvation effect. Changing from polar to non-polar solvent increased the solvent interaction; both the excitation and emission spectra were shifted to shorter wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT) and self-association fluorescence emission. Moreover, the red-shift and quenching in protic solvent were caused by the excited-state hydrogen bond strengthening effect. The density functional theory (DFT) and time dependent density functional theory (TDDFT) were used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The AIE mechanism of 1 with casein micelle was due to 1 docked in the hydrophobic cavity between sub-micelles and bound with amino acid residues, resulting in the aggregation of 1 on the casein micelle surface and emission enhancement, based on which, a novel casein assay method was developed. The proposed method exhibited a good linear range from 0.1 to 10.5 μg mL −1 , with the detection limit of 3.0 ng mL −1 . Satisfactory reproducibility, reversibility and a short response time were realized. This method was applied for the determination of casein in milk powder samples, avoiding the interferences from other components and illegal additives in milk. -- Highlights: • A water-soluble 1,8-naphthalimide-based fluorescent probe 1 was synthesized. • Photophysical characterization of 1 was studied. • Aggregation induced emission enhancement of 1 with casein was investigated. • A novel casein quantification method was developed

  17. Studies on the photophysical properties of 1,8-naphthalimide derivative and aggregation induced emission recognition for casein

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang, E-mail: 66160692@qq.com [Department of Chemistry and Chemical Engineering, Xi' an University of Arts and Science, No. 168, Taibai South Road, Xi' an, Shaanxi 710065 (China); Liang, Xuhua; Fan, Jun [School of Chemical Engineering, Northwest University, No. 229, Taibai North Road, Xi' an, Shaanxi 710069 (China); Han, Quan, E-mail: xahanq@hotmail.com [Department of Chemistry and Chemical Engineering, Xi' an University of Arts and Science, No. 168, Taibai South Road, Xi' an, Shaanxi 710065 (China)

    2013-09-15

    A novel water-soluble 1,8-naphthalimide derivative 1, bearing two acetic carboxylic groups, exhibited fluorescent turn-on recognition for casein micelle based on the aggregation induced emission (AIE) character. The photophysical properties of 1 consisting of donor and acceptor units were investigated by the solvation effect. Changing from polar to non-polar solvent increased the solvent interaction; both the excitation and emission spectra were shifted to shorter wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT) and self-association fluorescence emission. Moreover, the red-shift and quenching in protic solvent were caused by the excited-state hydrogen bond strengthening effect. The density functional theory (DFT) and time dependent density functional theory (TDDFT) were used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The AIE mechanism of 1 with casein micelle was due to 1 docked in the hydrophobic cavity between sub-micelles and bound with amino acid residues, resulting in the aggregation of 1 on the casein micelle surface and emission enhancement, based on which, a novel casein assay method was developed. The proposed method exhibited a good linear range from 0.1 to 10.5 μg mL{sup −1}, with the detection limit of 3.0 ng mL{sup −1}. Satisfactory reproducibility, reversibility and a short response time were realized. This method was applied for the determination of casein in milk powder samples, avoiding the interferences from other components and illegal additives in milk. -- Highlights: • A water-soluble 1,8-naphthalimide-based fluorescent probe 1 was synthesized. • Photophysical characterization of 1 was studied. • Aggregation induced emission enhancement of 1 with casein was investigated. • A novel casein quantification method was developed.

  18. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  19. Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties.

    Science.gov (United States)

    Hu, Jin-Song; Ji, Heng-Xing; Cao, An-Min; Huang, Zheng-Xi; Zhang, Yang; Wan, Li-Jun; Xia, An-Dong; Yu, Da-Peng; Meng, Xiang-Min; Lee, Shuit-Tong

    2007-08-07

    A facile self-assembly growth route assisted by surfactant has been developed to synthesize tris(8-hydroxyquinoline)aluminium (Alq(3)) nanorods with regular hexagonal shape and good crystallinity, which exhibit field-emission characteristics with a very low turn-on field of ca. 3.1 V microm(-1) and a high field-enhancement factor of ca. 1300.

  20. A Platform to Optimize the Field Emission Properties of Carbon Nanotube Based Fibers (Postprint)

    Science.gov (United States)

    2016-08-25

    characterization of key metrics , such as effective field enhancement factor and emission area. It is imperative to address issues relating to whether...important are the effects of Coulomb repulsion between adjacent emitting CNTs on the FE characteristics? When do space-charge effects become important and

  1. The High-Temperature Resistance Properties of Polysiloxane/Al Coatings with Low Infrared Emissivity

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    2018-03-01

    Full Text Available High-temperature-resistant coatings with low infrared emissivity were prepared using polysiloxane resin and flake aluminum as the adhesive and pigment, respectively. The heat resistance mechanisms of the polysiloxane/Al coating were systematically investigated. The composition, surface morphology, infrared reflectance spectra, and thermal expansion dimension (ΔL of the coatings were characterized by X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectroscopy, and thermal mechanical analysis (TMA, respectively. The results show that thermal decomposition of the resin and mismatch of ΔL between the coating and the substrate facilitate the high temperature failure of the coating. A suitable amount of flake aluminum pigments could restrain the thermal decomposition of the resin and could increase the match degree of ΔL between the coating and substrate, leading to an enhanced thermal resistance of the coating. Our results find that a coating with a pigment to binder ratio (P/B ratio of 1.0 could maintain integrity until 600 °C, and the infrared emissivity was as low as 0.27. Hence, a coating with high-temperature resistance and low emissivity was obtained. Such coatings can be used for infrared stealth technology or energy savings in high-temperature equipment.

  2. Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate

    International Nuclear Information System (INIS)

    Chuang, F T; Chen, P Y; Cheng, T C; Chien, C H; Li, B J

    2007-01-01

    In this paper we report the observation of enhanced field emission properties from thiolated multi-wall carbon nanotubes (MWCNTs) produced by a simple and effective two-step chemical surface modification technique. This technique implements carboxylation and thiolation on the MWCNTs synthesized by microwave plasma chemical vapor deposition (MPCVD) on the flexible carbon cloth substrate. The resulting thiolated MWCNTs were found to have a very low threshold field value of 1.25 V μm -1 and a rather high field enhancement factor of 1.93 x 10 4 , which are crucial for applications in versatile vacuum microelectronics

  3. Effect of nano-sized cerium-zirconium oxide solid solution on far-infrared emission properties of tourmaline powders

    Science.gov (United States)

    Guo, Bin; Yang, Liqing; Hu, Weijie; Li, Wenlong; Wang, Haojing

    2015-10-01

    Far-infrared functional nanocomposites were prepared by the co-precipitation method using natural tourmaline (XY3Z6Si6O18(BO3)3V3W, where X is Na+, Ca2+, K+, or vacancy; Y is Mg2+, Fe2+, Mn2+, Al3+, Fe3+, Mn3+, Cr3+, Li+, or Ti4+; Z is Al3+, Mg2+, Cr3+, or V3+; V is O2-, OH-; and W is O2-, OH-, or F-) powders, ammonium cerium(IV) nitrate and zirconium(IV) nitrate pentahydrate as raw materials. The reference sample, tourmaline modified with ammonium cerium(IV) nitrate alone was also prepared by a similar precipitation route. The results of Fourier transform infrared spectroscopy show that tourmaline modified with Ce and Zr has a better far-infrared emission property than tourmaline modified with Ce alone. Through characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), the mechanism for oxygen evolution during the heat process in the two composite materials was systematically studied. The XPS spectra show that Fe3+ ratio inside tourmaline modified with Ce alone can be raised by doping Zr. Moreover, it is showed that there is a higher Ce3+ ratio inside the tourmaline modified with Ce and Zr than tourmaline modified with Ce alone. In addition, XRD results indicate the formation of CeO2 and Ce1-xZrxO2 crystallites during the heat treatment and further TEM observations show they exist as nanoparticles on the surface of tourmaline powders. Based on these results, we attribute the improved far-infrared emission properties of Ce-Zr doped tourmaline to the enhanced unit cell shrinkage of the tourmaline arisen from much more oxidation of Fe2+ to Fe3+ inside the tourmaline caused by the change in the catalyst redox properties of CeO2 brought about by doping with Zr4+. In all samples, tourmaline modified with 7.14 wt.% Ce and 1.86 wt.% Zr calcined at 800∘C for 5 h has the best far-infrared emission property with the maximum emissivity value of 98%.

  4. Properties of the Variation of the Infrared Emission of OH/IR Stars I. The K Band Light Curves

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2009-09-01

    Full Text Available To study properties of the variation of the infrared emission of OH/IR stars, we collect and analyze the infrared observational data in K band for nine OH/IR stars. We use the observational data obtained for about three decades including recent data from the two micron all sky survey (2MASS and the deep near infrared survey of the southern sky (DENIS. We use Marquardt-Levenberg algorithm to determine the pulsation period and amplitude for each star and compare them with previous results of infrared and radio investigations.

  5. PROTONATED POLYCYCLIC AROMATIC HYDROCARBONS REVISITED

    International Nuclear Information System (INIS)

    Ricca, Alessandra; Bauschlicher, Charles W. Jr; Allamandola, Louis J.

    2011-01-01

    We reconsider the contribution that singly protonated polycyclic aromatic hydrocarbons (PAHs; HPAH + s) might make to the Class A component of the 6.2 μm interstellar emission feature in light of the recent experimental measurements of protonated naphthalene and coronene. Our calculations on the small HPAH + s have a band near 6.2 μm, as found in experiment. While the larger HPAH + s still have emission near 6.2 μm, the much larger intensity of the band near 6.3 μm overwhelms the weaker band at 6.2 μm, so that the 6.2 μm band is barely visible. Since the large PAHs are more representative of those in the interstellar medium, our work suggests that large HPAH + s cannot be major contributors to the observed emission at 6.2 μm (i.e., Class A species). Saturating large PAH cations with hydrogen atoms retains the 6.2 μm Class A band position, but the rest of the spectrum is inconsistent with observed spectra.

  6. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2008-05-01

    Full Text Available Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel−1 by number for non-volatile particles and 174±43 mg (kg fuel−1 by mass for Black Carbon (BC. Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  7. Morphology-controlled synthesis of grass-like GO-CdSe nanocomposites with excellent optical properties and field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Pei, E-mail: peipeixie@163.com [College of Science, Donghua University, Shanghai 201620 (China); Xue, Shaolin, E-mail: slxue@dhu.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Wei, Jia, E-mail: Jojo.1125@hotmail.com [College of Science, Donghua University, Shanghai 201620 (China); Han, Junwei, E-mail: hjw0323@sina.com [College of Science, Donghua University, Shanghai 201620 (China); Zhou, Weikang, E-mail: dhuzwk@sina.com [College of Science, Donghua University, Shanghai 201620 (China); Zou, Rujia, E-mail: rujiazou@dhu.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2016-02-15

    Four different morphologies of the CdSe semiconductor nanograss have been successfully grown on graphene oxide (GO) sheets via hydrothermal method at 220 °C for 12 h. The morphologies, structures, chemical compositions and optical properties of the as-obtained GO-CdSe nanocomposites were characterized by XRD, SEM, TEM, EDS, XPS and Raman spectra. It was found that the EDTA/Cd{sup 2+} molar ratio is important for the formation of morphology of GO-CdSe nanocomposites. The results of XRD revealed that all the as-obtained GO-CdSe nanocomposites have zinc blend structure. Room temperature photoluminescence (PL) showed that the sample emits red light under different excitation wavelengths. The results of Raman spectra, EDS and XPS showed that the CdSe nanograss is grown on GO sheets. The results showed that GO-CdSe nanocomposites composed of nanorods have best field emission (FE) properties with a low turn-on electric field of 4.14 V μm{sup −1} and a high field enhancement factor of 3315 among all the samples. - Graphical abstract: SEM images of as-synthesized CdSe nanograss grown on GO sheets. Room temperature PL emission spectra of the as-synthesized CdSe nanograss grown on GO sheets. Field emission J–E curve of the as-synthesized CdSe nanograss grown on GO sheets. - Highlights: • Novel CdSe nanograsses are grown on graphene oxide sheets by hydrothermal method. • The morphology of CdSe nanograsses is controlled by adjusting EDTA/Cd{sup 2+} molar ratio. • The FE performance of sample is investigated. • Optimum morphology for FE performance is CdSe nanograsses composed of nanorods on GO.

  8. Bias-enhanced post-treatment process for enhancing the electron field emission properties of ultrananocrystalline diamond films

    International Nuclear Information System (INIS)

    Saravanan, A.; Huang, B. R.; Sankaran, K. J.; Tai, N. H.; Dong, C. L.; Lin, I. N.

    2015-01-01

    The electron field emission (EFE) properties of ultrananocrystalline diamond films were markedly improved via the bias-enhanced plasma post-treatment (bep) process. The bep-process induced the formation of hybrid-granular structure of the diamond (bep-HiD) films with abundant nano-graphitic phase along the grain boundaries that increased the conductivity of the films. Moreover, the utilization of Au-interlayer can effectively suppress the formation of resistive amorphous-carbon (a-C) layer, thereby enhancing the transport of electrons crossing the diamond-to-Si interface. Therefore, bep-HiD/Au/Si films exhibit superior EFE properties with low turn-on field of E 0  = 2.6 V/μm and large EFE current density of J e  = 3.2 mA/cm 2 (at 5.3 V/μm)

  9. Field emission properties of low-density carbon nanotubes prepared on anodic aluminum-oxide template

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo-Hwan [Samsung Advanced Institute of Technology, Suwon (Korea, Republic of); Lee, Kun-Hong [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2004-08-15

    Anodic aluminum-oxide (AAO) templates were fabricated by two-step anodizing an Al film. After the Co catalyst had been electrochemically deposited onto the bottom of the AAO template, carbon nanotubes (CNTs) were grown by using catalytic pyrolysis of C{sub 2}H{sub 2} and H{sub 2} at 650 .deg. C. Overgrowth of CNTs with low density on the AAO templates was observed. The field-emission measurements on the samples showed a turn-on field of 2.17 V/mum and a field enhancement factor of 5700. The emission pattern on a phosphor screen was quite homogeneous over the area at a relatively low electric field.

  10. Investigation of Influence of Surface Nanoparticle on Emission Properties of Scandia-Doped Dispenser Cathodes

    Science.gov (United States)

    Zhang, Xizhu; Wang, Jinshu; Wang, Yiman; Liu, Wei; Zhou, Meiling; Gao, Zhiyuan

    2013-06-01

    The microstructure of a fully activated scandia doped dispenser (SDD) cathode has been studied by scanning electron microscope (SEM). The observation results display that nanoparticles appear at the growth steps and the surface of tungsten grains of the fully activated SDD cathode. To study the influence of the nanoparticles on the emission, the local electric field strengths around the nanoparticles have been calculated by Maxwell 2D code and Comsol. The calculation results show that the local electric field strengths are enhanced by 1.1 to 3.8 times to average value based on different model conditions. The highest field strength is about 1.54 × 105 V/cm at an average field strength of 40 KV/cm, which is related to a space-charge limited (SCL) current density of 100 A/cm2 in the experimental configuration. This implies the field strength is not high enough to cause field emission.

  11. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu; Patole, Shashikant P.; Patil, Sumati; Yoo, J.B.; Dharmadhikari, C.V.

    2017-01-01

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1

  12. Optical properties of Nd3+ doped barium lithium fluoroborate glasses for near-infrared (NIR) emission

    Science.gov (United States)

    Mariselvam, K.; Arun Kumar, R.; Suresh, K.

    2018-04-01

    The neodymium doped barium lithium fluoroborate (Nd3+: BLFB) glasses with the chemical composition (70-x) H3BO3 - 10 Li2CO3 - 10 BaCO3- 5 CaF2-5 ZnO - x Nd2O3 (where x = 0.05, 0.1, 0.25, 0.5, 1, 2 in wt %) have been prepared by the conventional melt quenching technique and characterised through optical absorption, near infrared emission and decay-time measurements. The x-ray diffraction studies confirm the amorphous nature of the prepared glasses. The optical absorption spectra and emission spectra were recorded in the wavelength ranges of 190-1100 nm. The optical band gap (Eg) and Urbach energy (ΔE) values were calculated from the absorption spectra. The Judd-Ofelt intensity parameters were determined from the systematic analysis of the absorption spectrum of neodymium ions in the prepared glasses. The emission spectra exhibited three prominent peaks at 874, 1057, 1331 nm corresponding to the 4F3/2 → 4I9/2, 11/2, 13/2 transitions levels respectively in the near infrared region. The emission intensity of the 4F3/2 → 4I11/2 transition increases with the increase in neodymium concentration up to 0.5 wt% and the concentration quenching mechanism was observed for 1 wt% and 2 wt% concentrations. The lifetime of the 4F3/2 level was found to decrease with increasing Nd3+ ion concentration. The nature of energy transfer process was a single exponential curve which was studied for all the glasses and analysed.

  13. Synthesis of silver hollow nanoparticles and observation of photoluminescence emission properties

    International Nuclear Information System (INIS)

    Desarkar, H.S.; Kumbhakar, P.; Mitra, A.K.

    2013-01-01

    Preparation of hollow silver nanoparticles (HSNs) along-with solid silver nanoparticles are reported by Nd:YAG laser ablation of solid silver target immersed in water medium with a laser ablation time (LAT) duration of 50 min and with the incident laser fluence of 151 J/cm 2 . It is found that only solid silver nanoparticles are produced when the experiment is carried out with smaller values of LAT duration. The synthesized samples are characterized by using transmission electron microscopy and UV–Visible absorption spectroscopy. The UV–Visible absorption spectra of the samples show sharp absorptions in the ultraviolet and in visible regions due to interband transition and surface plasmon resonance oscillations in Ag nanoparticles, respectively. It is found that all samples exhibit photoluminescence (PL) emission, at room temperature, in the UV–Visible region peaked at ∼346 nm, due to the recombination of electrons with holes from sp conduction band to d band of Ag. The sample containing HSNs exhibits strong PL emission and the value of peak PL emission intensity is enhanced by the factor of 2.4 in comparison to that obtained from the sample synthesized with LAT duration of 20 min. The synthesized HSNs may find applications in catalysis and in chemical sensing. - Highlights: ►Hollow silver nanoparticles of 15–60 nm particle sizes are prepared by laser ablation. ►Prepared Ag nanoparticles show sharp absorptions in the UV and visible regions. ►Strong interband transition along-with SPR oscillations is reported. ►Enhancement (2.4 times) in photoluminescence emission in the UV region is reported.

  14. The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment

    Directory of Open Access Journals (Sweden)

    C. Textor

    2007-08-01

    Full Text Available The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA and one with unified emissions, injection heights, and particle sizes at the source (ExpB. Surprisingly, harmonization of aerosol sources has only a small impact on the simulated inter-model diversity of the global aerosol burden, and consequently global optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols and parameterizations of aerosol microphysics (e.g., the split between deposition pathways and to a lesser extent by the spatial and temporal distributions of the (precursor emissions.

    The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversities for these two species were caused by a few outliers. The experiment also showed that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences.

    These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies.

  15. Controlling the diameters and field emission properties of vertically aligned carbon nanotubes synthesized by thermal chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sung Yool; Kang, Young Il; Cho, Kyoung Ik; Choi, Kyu Seok; Kim, Do Jin

    2001-01-01

    We report here the synthesis of vertically well-aligned carbon nanotubes and the effect of catalytic metal layer on the diameter of grown carbon nanotubes and the field emission characteristics of them, The carbon nanotubes were grown by thermal chemical vapor deposition at temperatures below 900 .deg. C on Fe metal catalytic layer, deposited by sputtering process on a Si substrate and pretreated by heat and NH 3 gas. We found that the thickness of metal layers could be an important parameter in controlling the diameters of carbon nanotubes. With varying the thickness of the metal layers the grain sizes of them also vary so that the diameters of the nanotubes could be controlled. Field emission measurement has been made on the carbon nanotube field emitters at room temperature in a vacuum chamber below 10 -6 Torr. Our vertically aligned carbon nanotube field emitter of the smallest diameter emits a current density about 10 mA/cm 2 at 7.2 V/μm. The field emission property of the carbon nanotubes shows strong dependence on the nanotube diameters as expected

  16. Enhanced polymer light-emitting diode property using fluorescent conducting polymer-reduced graphene oxide nanocomposite as active emissive layer

    Science.gov (United States)

    Singh, Jyoti Prakash; Saha, Uttam; Jaiswal, Rimpa; Anand, Raghubir Singh; Srivastava, Anurag; Goswami, Thako Hari

    2014-11-01

    The present article reports the polymer light-emitting diode property of the nanocomposite comprising poly 9,9-dioctyl fluorene- alt-bithiophene and reduced graphene oxide used as an emissive layer. Two times repetition of Hummers oxidation and hydrazine hydrate reduction method produce reduced graphene oxide (term as rGO2) with more uniform distribution in size and thickness. In addition, this uniquely synthesized rGO2 induces favorable shift in balance of electron and hole recombination zone toward the center of emissive layer owing to increase in in-plane crystallite size and high localize aromatic confinement. Five times increase in maximum device efficiency (Cd/A) and three times increase in maximum brightness (Cd/m2) are achieved with the LED device using nanocomposite as emissive layer compared to neat polymer. Also, the fabricated device requires relatively low turn-on voltage (4 V) because of low energy barrier between PEDOT work function (-5.0 eV) and HOMO levels of bi-thiophene copolymer -5.67 eV) and nanocomposite (-5.66 eV).

  17. Engineering the interface characteristics on the enhancement of field electron emission properties of vertically aligned hexagonal boron nitride nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, K.J.; Hoang, D.Q.; Drijkoningen, S.; Pobedinskas, P.; Haenen, K. [Institute for Materials Research (IMO), Hasselt University, Diepenbeek (Belgium); IMOMEC, IMEC vzw, Diepenbeek (Belgium); Srinivasu, K.; Leou, K.C. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu (China); Korneychuk, S.; Turner, S.; Verbeeck, J. [Electron Microscopy for Materials Science (EMAT), University of Antwerp (Belgium); Lin, I.N. [Department of Physics, Tamkang University, Tamsui (China)

    2016-10-15

    Utilization of Au and nanocrystalline diamond (NCD) as interlayers noticeably modifies the microstructure and field electron emission (FEE) properties of hexagonal boron nitride nanowalls (hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3 V μm{sup -1}, attaining FEE current density of 2.58 mA cm{sup -2} and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride (aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Effect of Substrate Morphology on Growth and Field Emission Properties of Carbon Nanotube Films

    Directory of Open Access Journals (Sweden)

    Kumar Vikram

    2008-01-01

    Full Text Available AbstractCarbon nanotube (CNT films were grown by microwave plasma-enhanced chemical vapor deposition process on four types of Si substrates: (i mirror polished, (ii catalyst patterned, (iii mechanically polished having pits of varying size and shape, and (iv electrochemically etched. Iron thin film was used as catalytic material and acetylene and ammonia as the precursors. Morphological and structural characteristics of the films were investigated by scanning and transmission electron microscopes, respectively. CNT films of different morphology such as vertically aligned, randomly oriented flowers, or honey-comb like, depending on the morphology of the Si substrates, were obtained. CNTs had sharp tip and bamboo-like internal structure irrespective of growth morphology of the films. Comparative field emission measurements showed that patterned CNT films and that with randomly oriented morphology had superior emission characteristics with threshold field as low as ~2.0 V/μm. The defective (bamboo-structure structures of CNTs have been suggested for the enhanced emission performance of randomly oriented nanotube samples.

  19. Emission properties of porphyrin compounds in new polymeric PS:CBP host

    Science.gov (United States)

    Jafari, Mohammad Reza; Bahrami, Bahram

    2015-06-01

    In this study, a device with fundamental structure of ITO/PEDOT:PSS (60 nm)/PS:CBP (70 nm)/Al (150 nm) was fabricated. The electroluminescence spectrum of device designated a red shift rather than PS:CBP photoluminescence spectra. It can be suggested that the electroplex emission occurs at PS:CBP interface. By following this step, red light-emitting devices using porphyrin compounds as a red dopant in a new host material PS:CBP with a configuration of ITO/PEDOT:PSS (60 nm)/PS:CBP:porphyrin compounds(70 nm)/Al (150 nm) have been fabricated and investigated. The electroluminescent spectra of the porphyrin compounds were red-shifted as compared with the PS:CBP blend. OLED devices based on doping 3,4PtTPP and TPPNO2 in PS:CBP showed purer red emission compared with ZnTPP and CoTPP doped devices. We believe that the electroluminescence performance of OLED devices based on porphyrin compounds depends on overlaps between the absorption of the porphyrin compounds and the emission of PS:CBP.

  20. Condensation Mechanism of Hydrocarbon Field Formation.

    Science.gov (United States)

    Batalin, Oleg; Vafina, Nailya

    2017-08-31

    Petroleum geology explains how hydrocarbon fluids are generated, but there is a lack of understanding regarding how oil is expelled from source rocks and migrates to a reservoir. To clarify the process, the multi-layer Urengoy field in Western Siberia was investigated. Based on this example, we have identified an alternative mechanism of hydrocarbon field formation, in which oil and gas accumulations result from the phase separation of an upward hydrocarbon flow. There is evidence that the flow is generated by the gases released by secondary kerogen destruction. This study demonstrates that oil components are carried by the gas flow and that when the flow reaches a low-pressure zone, it condenses into a liquid with real oil properties. The transportation of oil components in the gas flow provides a natural explanation for the unresolved issues of petroleum geology concerning the migration process. The condensation mechanism can be considered as the main process of oil field formation.

  1. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  2. Hydrocarbon control strategies for gasoline marketing operations

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R.L.; Sakaida, R.R.; Yamada, M.M.

    1978-05-01

    This informational document provides basic and current descriptions of gasoline marketing operations and methods that are available to control hydrocarbon emissions from these operations. The three types of facilities that are described are terminals, bulk plants, and service stations. Operational and business trends are also discussed. The potential emissions from typical facilities, including transport trucks, are given. The operations which lead to emissions from these facilities include (1) gasoline storage, (2) gasoline loading at terminals and bulk plants, (3) gasoline delivery to bulk plants and service stations, and (4) the refueling of vehicles at service stations. Available and possible methods for controlling emissions are described with their estimated control efficiencies and costs. This report also includes a bibliography of references cited in the text, and supplementary sources of information.

  3. In-situ hydrocarbon delineation using laser-induced fluorescence

    International Nuclear Information System (INIS)

    Taer, A.D.; Hastings, R.W.; Brown, A.Y.; Frend, R.

    1996-01-01

    An investigation of hydrocarbons in soils was conducted at an active Shell Oil Company petroleum products terminal, located in Carson, California. An investigation approach involving Laser-Induced Fluorescence (LIF) and Cone Penetrometer Testing (CPT) technologies was implemented to provide real-time, in-situ characterization of site stratigraphy, hydrocarbon distribution and importantly, hydrocarbon product differentiation. The area of investigation is located along a property boundary, where a plume of separate phase hydrocarbons has been actively recovered for several years. CPT/LIF technology was selected for the investigation since previous delineation efforts using hydrocarbon fingerprinting methods proved inconclusive. Additionally, the CPT/LIF technology had the potential to provide a cost effective solution to accomplish project objectives. Based on the information obtained during this investigation, it was determined that the plume of separate phase hydrocarbons along the northern property boundary is from a source distinctly different than any identified hydrocarbons known to be from on-site sources. In addition, the plume was determined to not be connected with any other known on-site hydrocarbon plumes. The results of this CPT/LIF investigation were consistent with the known hydrogeologic conditions. This evaluation determined that CPT/LIF technology was very effective in addressing project objectives and resulted in a significant cost savings

  4. Effect of thermal annealing on the emission properties of heterostructures containing a quantum-confined GaAsSb layer

    Energy Technology Data Exchange (ETDEWEB)

    Dikareva, N. V., E-mail: dnat@ro.ru; Vikhrova, O. V.; Zvonkov, B. N. [Lobachevsky State University of Nizhni Novgorod, Physico-Technical Research Institute (Russian Federation); Malekhonova, N. V. [Lobachevsky State University of Nizhni Novgorod (Russian Federation); Nekorkin, S. M. [Lobachevsky State University of Nizhni Novgorod, Physico-Technical Research Institute (Russian Federation); Pirogov, A. V.; Pavlov, D. A. [Lobachevsky State University of Nizhni Novgorod (Russian Federation)

    2015-01-15

    Heterostructures containing single GaAsSb/GaAs quantum wells and bilayer GaAsSb/InGaAs quantum wells are produced by metal-organic vapor-phase epitaxy at atmospheric pressure. The growth temperature of the quantum-confined layers is 500–570°C. The structural quality of the samples and the quality of heterointerfaces of the quantum wells are studied by the high-resolution transmission electron microscopy of cross sections. The emission properties of the heterostructures are studied by photoluminescence measurements. The structures are subjected to thermal annealing under conditions chosen in accordance with the temperature and time of growth of the upper cladding p-InGaP layer during the formation of GaAs/InGaP laser structures with an active region containing quantum-confined GaAsSb layers. It is found that such heat treatment can have a profound effect on the emission properties of the active region, only if a bilayer GaAsSb/InGaAs quantum well is formed.

  5. The mechanism and properties of bio-photon emission and absorption in protein molecules in living systems

    Science.gov (United States)

    Pang, Xiao-feng

    2012-05-01

    The mechanism and properties of bio-photon emission and absorption in bio-tissues were studied using Pang's theory of bio-energy transport, in which the energy spectra of protein molecules are obtained from the discrete dynamic equation. From the energy spectra, it was determined that the protein molecules could both radiate and absorb bio-photons with wavelengths of energy level transitions of the excitons. These results were consistent with the experimental data; this consisted of infrared absorption data from collagen, bovine serum albumin, the protein-like molecule acetanilide, plasma, and a person's finger, and the laser-Raman spectra of acidity I-type collagen in the lungs of a mouse, and metabolically active Escherichia coli. We further elucidated the mechanism responsible for the non-thermal biological effects produced by the infrared light absorbed by the bio-tissues, using the above results. No temperature rise was observed; instead, the absorbed infrared light promoted the vibrations of amides as well the transport of the bio-energy from one place to other in the protein molecules, which changed their conformations. These experimental results, therefore, not only confirmed the validity of the mechanism of bio-photon emission, and the newly developed theory of bio-energy transport mentioned above, but also explained the mechanism and properties of the non-thermal biological effects produced by the absorption of infrared light by the living systems.

  6. Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes - a first-principle study

    International Nuclear Information System (INIS)

    Chen, C.-W.; Lee, M.-H.; Clark, S.J.

    2004-01-01

    The effect of field penetration induced charge redistribution on the field emission properties of carbon nanotubes (CNTs) have been studied by the first-principle calculations. It is found that the carbon nanotube becomes polarized under external electric field leading to a charge redistribution. The resulting band bending induced by field penetration into the nanotube tip surface can further reduce the effective workfunction of the carbon nanotubes. The magnitude of the redistributed charge ΔQ is found to be nearly linear to the applied external field strength. In addition, we found that the capped (9, 0) zigzag nanotube demonstrates better field emission properties than the capped (5, 5) armchair nanotube due to the fact that the charge redistribution of π electrons along the zigzag-like tube axis is easier than for the armchair-like tube. The density of states (DOS) of the capped region of the nanotube is found to be enhanced with a value 30% higher than that of the sidewall part for the capped (5, 5) nanotube and 40% for the capped (9, 0) nanotube under an electric field of 0.33 V/A. Such enhancements of the DOS at the carbon nanotube tip show that electrons near the Fermi level will emit more easily due to the change of the surface band structure resulting from the field penetration in a high field

  7. Effect of fuel composition on poly aromatic hydrocarbons in particulate matter from DI diesel engine; Particulate chu no PAH ni oyobosu nenryo sosei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Tatani, T; Yoshida, H; Takizawa, H; Miyoshi, K; Ikebe, H [COSMO Research Institute, Tokyo (Japan)

    1997-10-01

    The effect of fuel composition on poly aromatic hydrocarbons (PAH) in particulate matter from DI diesel engine was investigated by using deeply desulfurized fuel and model fuel which properties are not interrelated. It was found that the deeply desulfurized fuel have effect on reducing PAH emissions. Furthermore, it was suggested that poly aromatics in the fuel affect PAH emissions and the influence of tri-aromatics in the fuel was promoted by the coexistence of mono-aromatics or naphthene. PAH formation scheme from each fuel component was proposed by chemical thermodynamic data. 4 refs., 8 figs., 3 tabs.

  8. An Easy Approach to Control β-Phase Formation in PFO Films for Optimized Emission Properties

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2017-02-01

    Full Text Available We demonstrate a novel approach to control β-phase content generated in poly(9,9-dioctylfluorene (PFO films. A very small amount of paraffin oil was used as the additive to the PFO solution in toluene. The β-phase fraction in the spin-coated PFO films can be modified from 0% to 20% simply by changing the volume percentage of paraffin oil in the mixed solution. Organic light emitting diodes (OLEDs and amplified spontaneous emission (ASE study confirmed low β-phase fraction promise better OLEDs device, while high β-phase fraction benefits ASE performance.

  9. Intermixing effects on emission properties of InGaN/GaN coupled Quantum wells

    KAUST Repository

    Susilo, Tri B.; Alsunaidi, M. A.; Shen, Chao; Ooi, Boon S.

    2015-01-01

    Intermixing processes in quantum wells have been extensively studied in order to modify characteristic of semiconductor devices such as LEDs. Controlling the band gap of material by introducing intermixing process can be used to enable broadband and controllable emission of LEDs. Quantum well intermixing (QWI) in InGaN/GaN double quantum well (DQW) is discussed in this paper. By varying the interdiffusion and separation lengths, the effects of intermixing process on the quantum eigen energies of the wells are studied. The investigation is carried out using a homegrown Quantum-FDTD simulator. © 2015 IEEE.

  10. Intermixing effects on emission properties of InGaN/GaN coupled Quantum wells

    KAUST Repository

    Susilo, Tri B.

    2015-02-01

    Intermixing processes in quantum wells have been extensively studied in order to modify characteristic of semiconductor devices such as LEDs. Controlling the band gap of material by introducing intermixing process can be used to enable broadband and controllable emission of LEDs. Quantum well intermixing (QWI) in InGaN/GaN double quantum well (DQW) is discussed in this paper. By varying the interdiffusion and separation lengths, the effects of intermixing process on the quantum eigen energies of the wells are studied. The investigation is carried out using a homegrown Quantum-FDTD simulator. © 2015 IEEE.

  11. Propagation properties of quasiperiodic VLF emissions observed by the DEMETER spacecraft

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; Němec, F.; Santolík, Ondřej; Parrot, M.

    2016-01-01

    Roč. 43, č. 3 (2016), s. 1007-1014 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GAP209/11/2280; GA ČR(CZ) GA14-31899S; GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : quasiperiodic emissions * wave propagation in ionosphere * DEMETER spacecraft Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2015GL067373/pdf

  12. Process for desulfurizing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-04-12

    A process is described for the desulfurization of a mixture of hydrocarbons, and in particular hydrocarbons containing less than 7 atoms of carbon and sulfur compounds of the type of sulfur carbonyl, characterized by the fact that the mixture, preferably in the liquid phase, is brought in contact with a solution of caustic alkali, essentially anhydrous or preferably with a solution of alkali hydroxide in an organic hydroxy nonacid solvent, for example, an alcohol, or with an alkaline alcoholate, under conditions suitable to the formation of hydrogen sulfide which produces a hydrocarbon mixture free from sulfur compounds of the sulfur carbonyl type but containing hydrogen sulfide, and that it is treated, following mixing, having beem submitted to the first treatment, by means of aqueous alkaline hydroxide to eliminate the hydrogen sulfide.

  13. Broadband THz pulse emission and transmission properties of nanostructured Pt thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Mingzhe [Department of Physics and Electronics, Liupanshui Normal University, Liupanshui, Guizhou 553004 (China); College of Electronics and Information, Guizhou University, Huaxi 550025, Guiyang, Guizhou (China); Mu, Kaijun; Zhang, Cunlin [Department of Physics, Capital Normal University, Yuquan Road 100082, Beijing (China); Gu, Haoshuang, E-mail: guhs@hubu.edu.cn [Department of Electronic Sci& Tech, Hubei University, Xueyuan Road 430062, Wuhan, Hubei (China); Ding, Zhao [College of Electronics and Information, Guizhou University, Huaxi 550025, Guiyang, Guizhou (China)

    2015-10-01

    The THz transmission and emitting properties of a composite metallic nanostructure, composed of Ag nanowires electrodeposited in an anodic aluminum oxide (AAO) template and a Pt thin film, were investigated by using a femtosecond pulse laser irradiation. The microstructure of the above sub-wavelength nanostructure was investigated by XRD, SEM, AFM and TEM. The results indicated that the thickness of the Pt thin film was about 200 nm and the Ag nanowire array had a sparse and random distribution inside the AAO template, with a length distribution in the range of 10–25 μm. The THz radiation properties of above sub-wavelength nanostructure indicated that the generated THz fluence from the Pt film was a magnitude of μW scale with a broadband frequency range and its subsequent transmission could be significantly improved by the better impedance matching property of the Ag nanowire embedded AAO film compared with that of the empty AAO film.

  14. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  15. Emission properties of thermoluminescence from natural quartz - blue and red TL response to absorbed dose

    International Nuclear Information System (INIS)

    Hashimoto, T.; Yokosaka, K.; Habuki, H.

    1987-01-01

    The TL spectrometry of natural quartz exposed to a gamma radiation dose of 8.8 kGy proved that the red TL, mainly from volcanically originated quartz, has a broad emission band with a peak around 620 nm, while the blue TL from plutonically originated quartz also has a broad emission band giving a peak around 470 nm. These typical red or blue intrinsic colours were also confirmed on the thermoluminescence colour images (TLCI). Exceptionally, a pegmatite quartz changed its TLCI colour from red to blue when the absorbed dose was increased. By using colour filter assemblies, all these quartz samples were shown to emit mainly blue and red TLs, which have distinctly different TL responses to the absorbed dose; the blue invariably showed a supralinearity relation between 1 and 10 kGy dose. For the purpose of dating, the use of red TL, is preferable. The red TL component is related to the impurity Eu content in quartz minerals. (author)

  16. Infrared emission properties and energy transfer in ZnO-SiO2:Yb3+ composites

    International Nuclear Information System (INIS)

    Xiao, F.; Chen, R.; Shen, Y.Q.; Liu, B.; Gurzadyan, G.G.; Dong, Z.L.; Zhang, Q.Y.; Sun, H.D.

    2011-01-01

    Graphical abstract: Highlights: → ZnO-SiO 2 :Yb 3+ composites have been prepared via a facile sol-gel method. Intense near-infrared emission at around 1 μm has been obtained upon broadband ultraviolet light excitation. → Efficient energy transfer from ZnO quantum dots to Yb 3+ ions has been clarified by the systematic measurements and analysis of static and time resolved photoluminescence spectra. → Codoping with Li + ions leads to about twice enhancement of the near-infrared luminescence intensity around 1 μm at room temperature. - Abstract: Intense near-infrared emission at 1 μm has been obtained in ZnO-SiO 2 :Yb 3+ composites via a facile sol-gel method upon broadband ultraviolet light excitation. Systematic optical measurements including static and time-resolved photoluminescence have been performed to elucidate the energy transfer from ZnO quantum dots to Yb 3+ ions. The dependence of energy transfer efficiency on Yb 3+ concentration has been investigated in detail. Codoping with Li + ions leads to about twice enhancement of the near-infrared luminescence intensity around 1 μm at room temperature. The enhancement in the luminescence intensity could be mostly attributed to the modification of the local symmetry around Yb 3+ ions by codoping with Li + ions.

  17. Influence of duration time of CVD process on emissive properties of carbon nanotubes films

    Directory of Open Access Journals (Sweden)

    Stępinska Izabela

    2015-03-01

    Full Text Available In this paper various types of films made of carbon nanotubes (CNTs are presented. These films were prepared on different substrates (Al2O3, Si n-type by the two-step method. The two-step method consists of physical vapor deposition step, followed by chemical vapor deposition step (PVD/CVD. Parameters of PVD process were the same for all initial films, while the duration times of the second step - the CVD process, were different (15, 30 min.. Prepared films were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM and field emission (FE measurements. The I-E and F-N characteristics of electron emission were discussed in terms of various forms of CNT films. The value of threshold electric field ranged from few V/μm (for CNT dispersed rarely on the surface of the film deposited on Si up to ~20 V/μm (for Al2O3 substrate.

  18. Source apportionment of hydrocarbons measured in the Eagle Ford shale

    Science.gov (United States)

    Roest, G. S.; Schade, G. W.

    2016-12-01

    The rapid development of unconventional oil and gas in the US has led to hydrocarbon emissions that are yet to be accurately quantified. Emissions from the Eagle Ford Shale in southern Texas, one of the most productive shale plays in the U.S., have received little attention due to a sparse air quality monitoring network, thereby limiting studies of air quality within the region. We use hourly atmospheric hydrocarbon and meteorological data from three locations in the Eagle Ford Shale to assess their sources. Data are available from the Texas commission of environmental quality (TCEQ) air quality monitors in Floresville, a small town southeast of San Antonio and just north of the shale area; and Karnes city, a midsize rural city in the center of the shale. Our own measurements were carried out at a private ranch in rural Dimmit County in southern Texas from April to November of 2015. Air quality monitor data from the TCEQ were selected for the same time period. Non-negative matrix factorization in R (package NMF) was used to determine likely sources and their contributions above background. While the TCEQ monitor data consisted mostly of hydrocarbons, our own data include both CO, CO2, O3, and NOx. We find that rural Dimmit County hydrocarbons are dominated by oil and gas development sources, while central shale hydrocarbons at the TCEQ monitoring sites have a mix of sources including car traffic. However, oil and gas sources also dominate hydrocarbons at Floresville and Karnes City. Toxic benzene is nearly exclusively due to oil and gas development sources, including flaring, which NMF identifies as a major hydrocarbon source in Karnes City. Other major sources include emissions of light weight alkanes (C2-C5) from raw natural gas emissions and a larger set of alkanes (C2-C10) from oil sources, including liquid storage tanks.

  19. Recovery of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1941-02-10

    A process is disclosed for recovery of hydrocarbon oils, especially lubricating oils or diesel oils, through pressure hydrogenation of distillation, extraction of hydrogenation products from coal or coaly materials or from oils such as mineral oils or tars in liquid phase by use in a reaction vessel of fixed-bed catalysts, characterized in that as starting material is employed material which has been freed of asphaltic and resinous material by hydrogenation refining, vacuum-steam distillation, treatment with hydrogen-rich hydrocarbons (hydroforming), or sulfuric acid.

  20. 3 MeV proton irradiation effects on surface, structural, field emission and electrical properties of brass

    Science.gov (United States)

    Ali, Mian Ahsan; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Faizan-ul-Haq; Hayat, Asma; Mutaza, G.; Chishti, Naveed Ahmed; Khan, M. Asad; Ahmad, Shahbaz

    2018-05-01

    Ion-induced modifications of brass in terms of surface morphology, elemental composition, phase changes, field emission properties and electrical conductivity have been investigated. Brass targets were irradiated by proton beam at constant energy of 3 MeV for various doses ranges from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2 using Pelletron Linear Accelerator. Field Emission Scanning Electron Microscope (FESEM) analysis reveals the formation of randomly distributed clusters, particulates, droplets and agglomers for lower ion doses which are explainable on the basis of cascade collisional process and thermal spike model. Whereas, at moderate ion doses, fiber like structures are formed due to incomplete melting. The formation of cellular like structure is observed at the maximum ion dose and is attributed to intense heating, melting and re-solidification. SRIM software analysis reveals that the penetration depth of 3 MeV protons in brass comes out to be 38 μm, whereas electronic and nuclear energy losses come out to be 5 × 10-1 and 3.1 × 10-4 eV/Å respectively. The evaluated values of energy deposited per atom vary from 0.01 to 1.5 eV with the variation of ion doses from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2. Both elemental analysis i.e. Energy Dispersive X-ray spectroscopy (EDX) and X-ray Diffraction (XRD) supports each other and no new element or phase is identified. However, slight change in peak intensity and angle shifting is observed. Field emission properties of ion-structured brass are explored by measuring I-V characteristics of targets under UHV condition in diode-configuration using self designed and fabricated setup. Improvement in field enhancement factor (β) is estimated from the slope of Fowler-Nordheim (F-N) plots and it shows significant increase from 5 to 1911, whereas a reduction in turn on field (Eo) from 65 V/μm to 30 V/μm and increment in maximum current density (Jmax) from 12 μA/cm2 to 3821 μA/cm2 is observed. These enhancements

  1. The dust, nebular emission, and dependence on QSO radio properties of the associated Mg II absorption line systems

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Pushpa [CSIR Emeritus Scientist, IUCAA, Ganeshkhind, Pune 411007 (India); Daniel, Vanden Berk [Physics Department, St. Vincent College, Latrobe, PA 15650 (United States); Rahmani, Hadi [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); York, Donald G., E-mail: pushpakhare@gmail.com [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2014-10-10

    We studied dust reddening and [O II] emission in 1730 Mg II associated absorption systems (AAS; relative velocity with respect to QSOs, ≤3000 km s{sup –1}; in units of velocity of light, β, ≤0.01) with 0.4 ≤z {sub abs} ≤ 2 in the Sloan Digital Sky Survey DR7, focusing on their dependence on the radio and other QSO properties. We used control samples, several with matching radio properties, to show that (1) AAS in radio-detected (RD) QSOs cause 2.6 ± 0.2 times higher dust extinction than those in radio-undetected (RUD) ones, which in turn cause 2.9 ± 0.7 times the dust extinction in the intervening systems; (2) AAS in core-dominated QSOs cause 2.0 ± 0.1 times higher dust extinction than those in lobe-dominated QSOs; (3) the occurrence of AAS is 2.1 ± 0.2 times more likely in RD QSOs than in RUD QSOs and 1.8 ± 0.1 time more likely in QSOs having black holes with masses larger than 1.23 × 10{sup 9} M {sub ☉} than in those with lower-mass black holes; and (4) there is excess flux in [O II]λ3727 emission in the composite spectra of the AAS samples compared with those of the control samples, which is at the emission redshift. The presence of AAS enhances the O II emission from the active galactic nucleus and/or the host galaxy. This excess is similar for both RD and RUD samples and is 2.5 ± 0.4 times higher in lobe-dominated samples than in core-dominated samples. The excess depends on the black hole mass and Eddington ratio. All these point to the intrinsic nature of the AAS except for the systems with z {sub abs} > z {sub em}, which could be infalling galaxies.

  2. High-aspect-ratio HfC nanobelts accompanied by HfC nanowires: Synthesis, characterization and field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Song, E-mail: tiansong22@126.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Hejun, E-mail: lihejun@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China)

    2017-04-30

    Highlights: • HfC naobelts accompanied by HfC nanowires were synthesized by a catalytic CVD method. • HfC nanobelts as a novel structure of HfC ceramic are reported for the first time. • HfC nanobelts have 100–200 μm in lengths and reach up to 10 μm in widths. • The synthesized product is promising field nanoemitters. - Abstract: As a key refractory carbide, hafnium carbide (HfC) is commonly used as structural materials while the field emission (FE) application of HfC in the field of vacuum microelectronics is almost the only one for functional material purposes. Based on its outstanding physical and chemical characteristics, HfC is identified as a potential candidate with satisfactory mechanical properties and long-term and/or high-temperature FE stability for future applications in high-performance field emitters. However, the development of HfC in various FE applications is hindered because it is not facile to fabricate large-scale low-dimensional HfC field nanoemitters. Herein, High-aspect-ratio HfC nanobelts accompanied by HfC nanowires were synthesized on a large scale by a traditional and simple catalytic chemical vapor deposition (CVD) method. Classical vapor–liquid–solid (VLS) theory was employed to explain the growth of the HfC nanowires and nanobelts along axial direction. The thin HfO{sub 2} shell and thin C layer surrounding the nanostructures might give rise to the diameter fluctuation of HfC nanowires and the width increase of HfC nanobelts in lateral direction. Field emission results show that the high-aspect-ratio HfC nanobelts accompanied by the nanowires are promising field nanoemitters, which exhibit excellent field emission properties with a fairly low turn-on field of ∼1.5 V μm{sup −1} and a low current fluctuation less than ∼10%. This suggests that HfC ceramics with high-aspect-ratio nanostructures are ideal cathode material for various field emission applications.

  3. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    Science.gov (United States)

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  4. Oils; lubricants; paraffin-wax compositions; hydrocarbon condensation products

    Energy Technology Data Exchange (ETDEWEB)

    1934-04-04

    Petroleum hydrocarbons such as gasoline, kerosene, Diesel fuel oil, lubricating-oil, and paraffin wax, and like hydrocarbons such as are obtainable from shale oil and by the hydrogenation of carbonaceous materials, are improved by addition of products obtained by condensing a cyclic hydrocarbon with a saturated dihalogen derivative of an aliphatic hydrocarbon containing less than five carbon atoms. The addition of the condensation products increases the viscosity of the hydrocarbon oils specified, and is particularly useful in the case of lubricating-oils; addition of the condensation products to paraffin wax increases the transparency and adherent properties of the wax, and is useful in the manufacture of moulded articles such as candles; the products may also be used in solid lubricating-compositions.

  5. Preparation of polymer-rare earth complex using salicylic acid-containing polystyrene and its fluorescence emission property

    Energy Technology Data Exchange (ETDEWEB)

    Gao Baojiao, E-mail: gaobaojiao@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Zhang Wei; Zhang Zhengguo; Lei Qingjuan [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China)

    2012-08-15

    Salicylic acid (SA) was first bonded onto the side chains of polystyrene (PS), obtaining functional macromolecule SAPS. Using the salicylic acid-containing polystyrene as a macromolecular ligand, a polymer-rare earth complex, SAPS-Eu(III), was prepared. The structure of SAPS-Eu(III) was characterized, and the fluorescence properties of SAPS-Eu(III) were mainly investigated. The experimental results show that the complex SAPS-Eu(III) has fine chemical stability because of the bidentate chelating effect of salicylic acid ligand. More important, the ligand SA on the side chains of PS can strongly sensitize the fluorescence emission of the center ion, Eu{sup 3+} ion, and it enables the complex SAPS-Eu(III) to produce the apparent 'Antenna Effect'. In the diluted solution of the functional macromolecule SAPS, the formed complex SAPS-Eu(III) belongs to an intramolecular complex, or an intrachain complex. For the binary intramolecular complex SAPS-Eu(III), the apparent saturated coordination number of SA of SAPS towards Eu{sup 3+} ion is equal to 10, and here the binary intrachain complex SAPS-Eu(III) has the strongest fluorescence emission. On this basis, small-molecule 1,10-phenanthroline (Phen) acting as a co-ligand is added and the ternary complex SAPS-Eu(III)-Phen will be formed. As long as a small amount of Phen is added (in the molar ratio 1:1 (n(Phen):n(Eu))), the coordination of the two kinds of ligands, SA of SAPS and Phen, to Eu{sup 3+} ion will reach complete saturation, and here the fluorescence emission of the ternary complex will be further enhanced via the complementary coordination effect in comparison with that of the binary complex SAPS-Eu(III). - Highlights: Black-Right-Pointing-Pointer We prepared the functional polystyrene, SAPS, on whose side chain salicylic acid ligand was bonded. Black-Right-Pointing-Pointer The polymer-rare earth complex, SAPS-Eu(III), was prepared and a stronger 'antenna effect' was produced. Black

  6. Preparation of polymer–rare earth complex using salicylic acid-containing polystyrene and its fluorescence emission property

    International Nuclear Information System (INIS)

    Gao Baojiao; Zhang Wei; Zhang Zhengguo; Lei Qingjuan

    2012-01-01

    Salicylic acid (SA) was first bonded onto the side chains of polystyrene (PS), obtaining functional macromolecule SAPS. Using the salicylic acid-containing polystyrene as a macromolecular ligand, a polymer–rare earth complex, SAPS–Eu(III), was prepared. The structure of SAPS–Eu(III) was characterized, and the fluorescence properties of SAPS–Eu(III) were mainly investigated. The experimental results show that the complex SAPS–Eu(III) has fine chemical stability because of the bidentate chelating effect of salicylic acid ligand. More important, the ligand SA on the side chains of PS can strongly sensitize the fluorescence emission of the center ion, Eu 3+ ion, and it enables the complex SAPS–Eu(III) to produce the apparent “Antenna Effect”. In the diluted solution of the functional macromolecule SAPS, the formed complex SAPS–Eu(III) belongs to an intramolecular complex, or an intrachain complex. For the binary intramolecular complex SAPS–Eu(III), the apparent saturated coordination number of SA of SAPS towards Eu 3+ ion is equal to 10, and here the binary intrachain complex SAPS–Eu(III) has the strongest fluorescence emission. On this basis, small-molecule 1,10-phenanthroline (Phen) acting as a co-ligand is added and the ternary complex SAPS–Eu(III)–Phen will be formed. As long as a small amount of Phen is added (in the molar ratio 1:1 (n(Phen):n(Eu))), the coordination of the two kinds of ligands, SA of SAPS and Phen, to Eu 3+ ion will reach complete saturation, and here the fluorescence emission of the ternary complex will be further enhanced via the complementary coordination effect in comparison with that of the binary complex SAPS–Eu(III). - Highlights: ► We prepared the functional polystyrene, SAPS, on whose side chain salicylic acid ligand was bonded. ► The polymer-rare earth complex, SAPS–Eu(III), was prepared and a stronger “antenna effect” was produced. ► For the intramolecular complex SAPS–Eu(III), the apparent

  7. Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-1-like tbo -MOFs: Application to methane purification and storage

    KAUST Repository

    Belmabkhout, Youssef

    2014-01-01

    Equilibrium adsorption of methane (CH4), C2+ gases (ethane (C2H6), ethylene (C2H4), propane (C3H8), and propylene (C3H6)), and carbon dioxide (CO2) was measured on a series of tbo-MOFs (topological analogues of the prototypical MOF, HKUST-1, correspondingly dubbed tbo-MOF-1), which were developed via the supermolecular building layer (SBL) pillaring strategy. Specifically, tbo-MOF-2 and its isoreticular, functionalized analogue, tbo-MOF-2-{CH2O[Ph(CO2H)2]}2 (or tbo-MOF-3), which is characterized by pendant isophthalic acid moieties freely pointing into the cavities, were evaluated on the basis of potential use in methane storage and C2+/CH4 separation. The parent, tbo-MOF-2, showed high gravimetric and volumetric CH4 uptake, close to the U.S. Department of Energy (DOE) target for methane storage at 35 bar and room temperature. Though the presence of the pendant isophthalic acid moiety in the analogous compound, tbo-MOF-3, led to a decrease in total CH4 uptake, due mainly to the reduced size of the cavities, interestingly, it increased the affinity of the SBL-based tbo-MOF platform for propane, propene, ethane, and ethylene at low pressures compared with CH4, due additionally to the enhanced interactions of the highly polarizable light hydrocarbons with the isophthalic acid moiety. Using Ideal Adsorption Solution Theory (IAST), the predicted mixture adsorption equilibria for the C3H8/CH4, C3H6/CH4, C2H6/CH4, C2H4/CH4, and C3H8/CO2 systems showed high adsorption selectivity for C2+ over methane for tbo-MOF-3 compared with tbo-MOF-2. The high working storage capacity of tbo-MOF-2 and the high affinity of tbo-MOF-3 for C2+ over CH4 and CO2 make tbo-MOF an ideal platform for studies in gas storage and separation.

  8. The effect of samarium doping on structure and enhanced thermionic emission properties of lanthanum hexaboride fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenlin; Hu, Qianglin [College of Mathematics and Physics, Jinggangshan University, Jian (China); Zhang, Jiuxing; Liu, Danmin [Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing (China); Huang, Qingzhen [NIST Center for Neutron Research, National Institute of Standards and Technology, MD (United States)

    2014-03-15

    Single-phase polycrystalline solid solutions (La{sub 1-x}Sm{sub x})B{sub 6} (x = 0, 0.2, 0.4, 0.8, 1) are fabricated by spark plasma sintering (SPS). This study demonstrates a systematic investigation of structure-property relationships in Sm-doped LaB{sub 6} ternary rare-earth hexaborides. The microstructure, crystallographic orientation, electrical resistivity, and thermionic emission performance of these compounds are investigated. Analysis of the results indicates that samarium (Sm) doping has a noticeable effect on the structure and performance of lanthanum hexaboride (LaB{sub 6}). The analytical investigation of the electron backscatter diffraction confirms that (La{sub 0.6}Sm{sub 0.4})B{sub 6} exhibits a clear (001) texture that results in a low work function. Work functions are determined by pulsed thermionic diode measurements at 1500-1873 K. The (La{sub 0.6}Sm{sub 0.4})B{sub 6} possesses improved thermionic emission properties compared to LaB{sub 6}. The current density of (La{sub 0.6}Sm{sub 0.4})B{sub 6} is 42.4 A cm{sup -2} at 1873 K, which is 17.5% larger than that of LaB{sub 6}. The values of Φ{sub R} for (La{sub 0.6}Sm{sub 0.4})B{sub 6} and LaB{sub 6} are 1.98 ± 0.03 and 1.67 ± 0.03 eV, respectively. Furthermore, the Sm substitution of lanthanum (La) effectively increases the electrical resistivity. These results reveal that Sm doping lead to significantly enhanced thermionic emission properties of LaB{sub 6}. The compound (La{sub 0.6}Sm{sub 0.4})B{sub 6} appears most promising as a future emitter material. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kaatz, F.H.; Siegal, M.P.; Overmyer, D.L.; Provencio, P.P.; Jackson, J.L

    2003-01-15

    We grow multiwalled carbon nanotubes (CNTs) via thermal chemical vapor deposition from a sputtered 4-nm-thick nickel catalyst film on a tungsten-coated silicon substrate. CNTs grow from a mixture of nitrogen and acetylene gases at temperatures ranging from 630 to 790 deg. C, resulting in CNT outer diameters of 5-350 nm. CNT diameters increase exponentially with temperature. These results define regimes for template growth fabricated in catalytically active anodized aluminum oxide (AAO) with controlled pinhole sizes ranging from 10 to 50 nm. We measure a threshold electron emission field of 3 V/{mu}m and a field enhancement factor {beta}=5230 on randomly oriented 10-nm diameter CNTs.

  10. Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition

    International Nuclear Information System (INIS)

    Kaatz, F.H.; Siegal, M.P.; Overmyer, D.L.; Provencio, P.P.; Jackson, J.L.

    2003-01-01

    We grow multiwalled carbon nanotubes (CNTs) via thermal chemical vapor deposition from a sputtered 4-nm-thick nickel catalyst film on a tungsten-coated silicon substrate. CNTs grow from a mixture of nitrogen and acetylene gases at temperatures ranging from 630 to 790 deg. C, resulting in CNT outer diameters of 5-350 nm. CNT diameters increase exponentially with temperature. These results define regimes for template growth fabricated in catalytically active anodized aluminum oxide (AAO) with controlled pinhole sizes ranging from 10 to 50 nm. We measure a threshold electron emission field of 3 V/μm and a field enhancement factor β=5230 on randomly oriented 10-nm diameter CNTs

  11. Effect of Ce on performance and physicochemical properties of Pt-containing automotive emission control catalysts

    International Nuclear Information System (INIS)

    Nunan, J.G.; Silver, R.G.; Bradley, S.A.

    1992-01-01

    Present-day automotive emission control catalysts contain noble metals such as Pt, Pd and Rh all on an alumina support with a variety of promoters. Ce is one of the most important promoters. In this paper, the interaction between Pt and Ce is studied using TPR and STEM on a variety of catalysts. The degree of Pt/Ce interaction is increased by decreasing CeO 2 crystallite size, and to a lesser extent by increasing CeO 2 loading. Direct Pt/Ce interaction leads to a synergistic reduction of both Pt and surface Ce. This reduction qualitatively correlates with catalyst performance after activation in a reducing gas. It is proposed that this synergistic reduction of Pt and Ce is associated with observed improvements in catalyst performance using a non-oscillating exhaust gas

  12. Emission properties of diode laser bars during pulsed high-power operation

    International Nuclear Information System (INIS)

    Hempel, Martin; Tomm, Jens W; Elsaesser, Thomas; Hennig, Petra

    2011-01-01

    High-power diode laser bars (cm-bars) are subjected to single pulse step tests carried out up to and beyond their ultimate limits of operation. Laser nearfields and thermal behaviour are monitored for pulse widths in the 10–100 µs range with streak- and thermo-cameras, respectively. Thresholds of catastrophic optical damage are determined, and their dependence on the length of the injected current pulses is explained qualitatively. This approach permits testing the hardness of facet coatings of cm-bars with or without consideration of accidental single pre-damaged emitter failure effects and thermal crosstalk between the emitters. This allows for the optimization of pulsed operation parameters, helps limiting sudden degradation and provides insight into the mechanisms governing the device emission behaviour at ultimate output powers. (fast track communication)

  13. Large-scale aligned silicon carbonitride nanotube arrays: Synthesis, characterization, and field emission property

    International Nuclear Information System (INIS)

    Liao, L.; Xu, Z.; Liu, K. H.; Wang, W. L.; Liu, S.; Bai, X. D.; Wang, E. G.; Li, J. C.; Liu, C.

    2007-01-01

    Large-scale aligned silicon carbonitride (SiCN) nanotube arrays have been synthesized by microwave-plasma-assisted chemical vapor deposition using SiH 4 , CH 4 , and N 2 as precursors. The three elements of Si, C, and N are chemically bonded with each other and the nanotube composition can be adjusted by varying the SiH 4 concentration, as revealed by electron energy loss spectroscopy and x-ray photoelectron spectroscopy. The evolution of microstructure of the SiCN nanotubes with different Si concentrations was characterized by high-resolution transmission electron microscopy and Raman spectroscopy. The dependence of field emission characteristics of the SiCN nanotubes on the composition has been investigated. With the increasing Si concentration, the SiCN nanotube exhibits more favorable oxidation resistance, which suggests that SiCN nanotube is a promising candidate as stable field emitter

  14. Magnetic and structural properties of manganese doped (Al,Ga)N studied with emission Mössbauer spectroscopy

    CERN Multimedia

    Gallium nitride (GaN) and related compounds form a unique class of semiconductors with extraordinary qualities in terms of their crystal structure, optical properties, and electrical properties. These novel properties have made them useful in a wide range of applications in optoelectronic and high-frequency devices such as light emitting diodes, laser diodes and high power field effect transistors. When doped with a few percents of Mn and in the presence of free holes, GaN has been predicted to be a magnetic semiconductor with Curie temperature above room temperature. Mixed semiconductors of Al$_{x}$Ga$_{1-x}$N (AlGaN) composition, give rise to unexpected and critical magnetic and photonic functionalities when doped with magnetic ion species. Here we propose an experiment on very thoroughly characterised AlGaN doped with Mn utilising extremely dilute $^{57}$Mn (T$_{1/2}$=1.5 min), $^{57}$Co (T$_{1/2}$ = 272 d) and $^{119}$In (T$_{1/2}$=2.1 min) implantations, in order to perform $^{57}$Fe and $^{119}$Sn emiss...

  15. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  16. Field emission properties of nano-structured cobalt ferrite (CoFe2O4) synthesized by low-temperature chemical method

    Science.gov (United States)

    Ansari, S. M.; Suryawanshi, S. R.; More, M. A.; Sen, Debasis; Kolekar, Y. D.; Ramana, C. V.

    2018-06-01

    We report on the field-emission properties of structure-morphology controlled nano-CoFe2O4 (CFO) synthesized via a simple and low-temperature chemical method. Structural analyses indicate that the spongy-CFO (approximately, 2.96 nm) is nano-structured, spherical, uniformly-distributed, cubic-structured and porous. Field emission studies reveal that CFO exhibit low turn-on field (4.27 V/μm) and high emission current-density (775 μA/cm2) at a lower applied electric field of 6.80 V/μm. In addition, extremely good emission current stability is obtained at a pre-set value of 1 μA and high emission spot-density over large area (2 × 2 cm2) suggesting the applicability of these materials for practical applications in vacuum micro-/nano-electronics.

  17. Spectroscopic properties of 1.8 μm emission in Tm3+ doped bismuth silicate glass

    International Nuclear Information System (INIS)

    Zhao, Guoying; Tian, Ying; Wang, Xin; Fan, Huiyan; Hu, Lili

    2013-01-01

    The emission properties around 1.8 μm in Tm 3+ doped bismuth silicate glass have been investigated. Based on the obtained Raman spectroscopy and differential scanning calorimetry curves, it is found the introduced Bi 2 O 3 can efficiently reduce the phonon energy of silicate glass to 926 cm −1 . The energy gap between glass transition temperature and onset temperature of crystallization is 169 °C. The OH − content maintains lower in glass by bubbling dry O 2 during the melting process. The cut-off wavelength in mid-infrared range is as long as 5 μm. Bismuth silicate glass has high radiative transition probability of 238.80 s −1 corresponding to the Tm 3+ : 3 F 4 → 3 H 6 transition compared with conventional silicate glasses. The strongest emission at 1.8 μm with a large full width at half-maximum of 238 nm is achieved from this bismuth silicate glass doped with 0.9 mol% Tm 2 O 3 . Its fluorescence lifetime at 1.8 μm is 640 μs. - Highlights: ► The 1.8 μm fluorescence of Tm 3+ -doped bismuth silicate glass is investigated. ► The prepared glass has lower phonon energy than other typical silicate glasses. ► A broadband 1.8 μm emission with the FWHM of 238 nm is observed. ► The fluorescence lifetime of Tm 3+ : 3 F 4 level reaches 640 μs.

  18. Performance estimation of ejector cycles using heavier hydrocarbon refrigerants

    International Nuclear Information System (INIS)

    Kasperski, Jacek; Gil, Bartosz

    2014-01-01

    Computer software basing on theoretical model of Huang et al. with thermodynamic properties of hydrocarbons was prepared. Investigation was focused on nine hydrocarbons: propane, butane, iso-butane, pentane, iso-pentane, hexane, heptane and octane. A series of calculations was carried out for the generator temperature between 70 and 200 °C, with assumed temperatures of evaporation 10 °C and condensation 40 °C. Calculation results show that none of the hydrocarbons enables high efficiency of a cycle in a wide range of temperature. Each hydrocarbon has its own maximal entrainment ratio at its individual temperature of optimum. Temperatures of entrainment ratios optimum increase according to the hydrocarbon heaviness with simultaneous increase of entrainment ratio peak values. Peak values of the COP do not increase according to the hydrocarbons heaviness. The highest COP = 0.32 is achieved for iso-butane at 102 °C and the COP = 0.28 for pentane at 165 °C. Heptane and octane can be ignored. - Highlights: • Advantages of use of higher hydrocarbons as ejector refrigerants were presumed. • Computer software basing on theoretical model of Huang et al. (1999) was prepared. • Optimal temperature range of vapor generation for each hydrocarbon was calculated

  19. Comment on "Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties" [AIP Advances 5, 097130 (2015)

    Science.gov (United States)

    Rani, Reena; Bhatia, Ravi

    2018-03-01

    In their research paper, M. Song et al. [AIP ADVANCES 5, 097130 (2015)] have claimed to have achieved enhanced field emission (FE) characteristics of carbon nanotubes (CNT)/graphene hybrids experimentally, exhibiting improved FE parameters e.g. turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum emission current density (Jmax) of 5.76 mA/cm2, and field enhancement factor (β) of ˜1.3 × 104. The authors have emphasized on the surprisingly high value of β to be the basis of their claim of achieving superior FE performance which is further attributed to the optimized mass ratio CNT/ graphene, which is 5:1 in the present case. However, the claim based upon high value of β is misleading because it does not corroborate with the obtained Jmax parameter. Also, the obtained value of J is quite low in the mentioned study as compared to the reported values. For an instance, Sameera et al. [J. Appl. Phys. 111, 044307 (2012) & Appl. Phys. Lett. 102, 033102 (2013)] have reported FE properties of CNT composites and reduced graphene oxide with Jmax and β values of the order of ˜102 mA/cm2 and 6 × 103, respectively. Therefore, the conclusions drawn by M. Song et al. [AIP ADVANCES 5, 097130 (2015)] in their paper do no hold.

  20. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2010-01-01

    Organic and conventional farming practices differ in the use of several management strategies, including use of catch crops, green manure, and fertilization, which may influence soil properties, greenhouse gas emissions and productivity of agroecosystems. An 11-yr-old field experiment on a sandy...... loam soil in Denmark was used to compare several crop rotations with respect to a range of physical, chemical and biological characteristics related to carbon (C) and nitrogen (N) flows. Four organic rotations and an inorganic fertilizer-based system were selected to evaluate effects of fertilizer type...... growth was monitored and grain yields measured at harvest maturity. The different management strategies between 1997 and 2007 led to soil carbon inputs that were on average 18–68% and 32–91% higher in the organic than inorganic fertilizer-based rotations for the sampled winter wheat and spring barley...

  1. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)

    NARCIS (Netherlands)

    Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.

    2013-01-01

    The Amon mud volcano (MV), located at 1250m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the

  2. Effect of co-doping Tm3+ ions on the emission properties of Dy3+ ions in tellurite glasses

    International Nuclear Information System (INIS)

    Sasikala, T.; Rama Moorthy, L.; Mohan Babu, A.; Srinivasa Rao, T.

    2013-01-01

    The present work reports the absorption, photoluminescence and decay properties of singly doped Dy 3+ and co-doped Dy 3+ /Tm 3+ ions in TeO 2 +ZnO+K 2 O+CaO (TZKC) glasses prepared by the melt quenching technique. The glassy nature of the host glass has been confirmed by X-ray diffraction analysis and the primary vibrational modes were determined from the Raman spectrum. Judd–Ofelt (JO) analysis has been used to calculate the radiative transition rates, branching ratios and radiative lifetime of the emitting 4 F 9/2 state. The effect of co-doping of different concentrations of Tm 3+ ions on the emission properties of Dy 3+ ions has been investigated. The decay profiles of the 4 F 9/2 level were fitted to double exponential as well as Inokuti–Hirayama (IH) model to determine the energy transfer rates between Dy 3+ and Tm 3+ ions. The energy transfer rates found to increase with the increase of Tm 3+ ions concentration. The chromaticity coordinates and color purity of the emitted light for all glasses were determined. - Graphical abstract: The graphical abstract shows the emission spectra of Dy 3+ , Tm 3+ and Dy 3+ /Tm 3+ co-doped TZKC glasses recorded by exciting at 355 nm wavelength. - Highlights: • Zinc tellurite glasses doped with Dy 3+ , Tm 3+ and Dy 3+ /Tm 3+ ions were prepared. • XRD, DTA and Raman spectral measurements were recorded to know the nature of host. • Energy transfer occurs from Dy 3+ ions to Tm 3+ ions. • The color purity of the emitted light was determined

  3. Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Shang-Chao, E-mail: schung99@gmail.com [Department of Information Technology & Communication, Shih Chien University Kaohsiung Campus, Neimen, Kaohsiung 845, Taiwan (China); Chen, Yu-Jyun [Graduate Institute of Electro-Optical Engineering & Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China)

    2016-07-15

    Highlights: • Graphene nanoribbons (GNBs) slanted on aggregate TiO{sub 2} nanotube (A-TNTs) as field-emitters. • Turn-on electric field and field enhancement factor β are dependent on the substrate morphology. • Various quantities of GNRs are deposited on top of A-TNTs (GNRs/A-TNTs) with different morphologies. • With an increase of GNBs compositions, the specimens' turn-on electric field is reduced to 2.8 V/μm. • The field enhancement factor increased rapidly to about 1964 with the addition of GNRs. - Abstract: Graphene nanoribbons (GNRs) slanted on aggregate TiO{sub 2} nanotube arrays (A-TNTs) with various compositions as field-emitters are reported. The morphology, crystalline structure, and composition of the as-obtained specimens were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectrometry. The dependence of the turn-on electric field and the field enhancement factor β on substrate morphology was studied. An increase of GNRs reduces the specimens’ turn-on electric field to 2.8 V/μm and the field enhancement factor increased rapidly to about 1964 with the addition of GNRs. Results show a strong dependence of the field emission on GNR composition aligned with the gradient on the top of the A-TNT substrate. Enhanced FE properties of the modified TNTs can be mainly attributed to their improved electrical properties and rougher surface morphology.

  4. Triple layered core–shell structure with surface fluorinated ZnO-carbon nanotube composites and its electron emission properties

    International Nuclear Information System (INIS)

    Wang, H.Y.; Chua, Daniel H.C.

    2013-01-01

    Highlights: ► The effects of CF 4 plasma on ZnO-CNT core–shell structures were studied. ► ZnO was effective in protecting the aligned CNTs core for as long as 30 min of plasma etching. ► SEM showed the surface morphology was nearly similar between pristine, 2 min and 30 min plasma etched specimens. ► F was observed to displace O in ZnO. ► This is the first report of an ultra long plasma etch of fluorine onto ZnO surface. - Abstract: Core-shelled structures such as zinc oxide (ZnO) on carbon nanotubes (CNTs) give rise to interesting material properties. In this work, a triple-layered core–shell–shell structure is presented where the effects of fluorine (F) incorporation on the outmost shell of the ZnO-CNT structure are studied. The samples prepared ranged from a short 2 min to a 30 min immersion in carbon tetraflouride (CF 4 ) plasma. In addition, its effects on the electron emission properties also studied and it is shown that the plasma immersions create thinner field emitters with sharp tiny wrinkles giving rise to more electron emission sites and higher enhancement factor. In addition, X-ray photoelectron spectroscopy measurements showed that F ions replace O in ZnO coatings during immersion process, thus increasing the electrical conductivity and shifts the Fermi level of ZnO upwards. Both physical and electronic effects further contribute to a lower threshold field.

  5. Ho-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ceramics with bright green emission and good electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lei; Hao, Jigong; Li, Wei [College of Materials Science and Engineering, Liaocheng University, Liaocheng (China); Xu, Zhijun; Chu, Ruiqing [School of Environmental and Materials Engineering, Yantai University, Yantai (China)

    2017-10-15

    Ho{sup 3+}-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ferroelectric ceramics with bright green light emission and good electrical properties were fabricated in this work. Under blue light excitation, samples showed bright green light with two typical emission bands: a strong green emission centered at 545 nm corresponding to the intra f-f transition from the excited {sup 5}S{sub 2} to the ground state {sup 5}I{sub 8} and a relatively weak red emission located 653 nm induced by the {sup 5}F{sub 5} → {sup 5}I{sub 8} transition of Ho{sup 3+}. Due to the concentration quenching effect, the intensity of emission was strongly dependent on the doping concentration. Furthermore, the electrical properties have improved by Ho{sup 3+} doping. At x = 0.004, samples exhibit optimal electrical properties with high Curie temperature (T{sub c} = 441 C) and large 2P{sub r} and d{sub 33} values (2P{sub r} = 15.54 μC cm{sup -2}, d{sub 33} = 19 pC/N). These results demonstrate that the SBN-xHo ceramics possess excellent multifunctional properties to achieve a variety of applications. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Solo Mycoremediation Impacted by Waste Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Franklin Santos Freire

    2015-06-01

    Full Text Available Oil and its derivatives are the principal means of energy generation for vehicles that transport raw materials and goods produced in developed and developing regions accentuating the risk of accidents by spills in stockpiling, transport, use or discarding. The contamination by total hydrocarbons suggests the elevated propension to mutations and to the formation of carcinogenic tumors, as a consequence of the exposure to human contamination by these products. This work had as aims: a To investigate, in a laboratorial scale, the degrading capacity of autochthonous microbiota in the presence of differing concentrations of hydrocarbons (0%, 2,5%, 5% e 7,5%; b To isolate fungi tolerant to the contaminant; c To quantify and analyze the biodegradation capacity of soil through the microbial biomass and metabolic quotient; and d To set, in laboratory, ideal conditions of biodegradation of the xenobiotic compound. Some parameters of microbial activity have been evaluated, such as: biological (Carbon of microbial biomass, CO2 , qCO2 emission, and fungi growth, chemical (pH, electrical conductivity –EC –, analysis of fertility and total hydrocarbons and physical (physical composition of the soil for analysis and comparisons. The obtained results suggest that the adding of 5% of waste oil in the ground provided ideal condition for the biodegradation of he   contaminant in the environment. From the evaluated parameters, the emission of CO2 and microbial C were considered more indicative of changes in soil microbial activity subject to the addition of hydrocarbons, confirming the possibility of microremediation use.

  7. Chromospheric and Transition Region Emission Properties of G, K, and M dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Arulanantham, Nicole; Fossati, Luca; Lanza, A. F.; Linsky, Jeffrey L.; Redfield, Seth; Loyd, Robert; Schneider, Christian

    2018-01-01

    Exoplanet magnetic fields have proven notoriously hard to detect, despite theoretical predictions of substantial magnetic field strengths on close-in extrasolar giant planets. It has been suggested that stellar and planetary magnetic field interactions can manifest as enhanced stellar activity relative to nominal age-rotation-activity relationships for main sequence stars or enhanced activity on stars hosting short-period massive planets. In a recent study of M and K dwarf exoplanet host stars, we demonstrated a significant correlation between the relative luminosity in high-temperature stellar emission lines (L(ion)/L_Bol) and the “star-planet interaction strength”, M_plan/a_plan. Here, we expand on that work with a survey of G, K, and M dwarf exoplanet host stars obtained in two recent far-ultraviolet spectroscopic programs with the Hubble Space Telescope. We have measured the relative luminosities of stellar lines C II, Si III, Si IV, and N V (formation temperatures from 30,000 – 150,000 K) in a sample of ~60 exoplanet host stars and an additional ~40 dwarf stars without known planets. We present results on star-planet interaction signals as a function of spectral type and line formation temperature, as well as a statistical comparison of stars with and without planets.

  8. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission

    Directory of Open Access Journals (Sweden)

    Zhigang Pan

    2017-02-01

    Full Text Available The existing temperature sensors using carbon nanotubes (CNTs are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.

  9. Metallic microwires obtained as replicas of etched ion tracks in polymer matrixes: Microscopy and emission properties

    International Nuclear Information System (INIS)

    Zagorski, D.L.; Bedin, S.A.; Oleinikov, V.A.; Polyakov, N.B.; Rybalko, O.G.; Mchedlishvili, B.V.

    2009-01-01

    Specially prepared porous matrixes (with through and dead-end pores of cylindrical or conical forms) were used as the templates for making ensembles of microwires. The process of electrodeposition of metal (Cu) into these pores was investigated. AFM technique was used for studying the 'composite material' (metal microwires embedded into the polymer matrix). It was shown that the combination of different modes of AFM (tapping with phase-contrast mode, contact with lateral force mode) makes it possible to detect metal in the polymer matrix. Additional spread resistance mode in the contact regime allowed to measure the electrical conductivity of a single wire. The ensembles of free-standing microwires (metallic replicas of the pores obtained after removing of the polymer matrix) were used as the substrates (for deposition of the probe) for ion emission in the mass-spectrometer. It was shown that the intensity of formed ion beam increases with increasing of power of the laser pulse and with increasing of the mass of the probe. The intensity of mass-spectra signal on the power of laser pulse has a threshold character with saturation accompanied with the appearance of dimer ions. At the same time this intensity decreases with the increasing of the surface density of wires. The effect of degradation of wires during the laser pulse irradiation was found.

  10. Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yuki; Ramirez-Ruiz, E.; Granot, J.; Kouveliotou, C.; Woosley, S.E.; Patel, S.K.; Rol, E.; Zand, J.J.M.in' t; a; Wijers, R.A.M.J.; Strom, R.; /USRA, Huntsville

    2006-07-12

    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425, 030329, 031203, and 060218) that were spectroscopically found to be associated with type Ic supernovae, and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution, and estimate the total energy budget based upon broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and sub-relativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.

  11. Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles

    Science.gov (United States)

    Sreekanth, M.; Ghosh, S.; Srivastava, P.

    2018-01-01

    We report the growth of vertically aligned carbon nanotube bundles on Si substrate by thermal chemical vapor deposition technique. Vertical alignment was achieved without any carrier gas or lithography-assisted deposition. Growth has been carried out at 850 °C for different quantities of solution of xylene and ferrocene ranging from 2.25 to 3.00 ml in steps of 0.25 ml at a fixed concentration of 0.02 gm (ferrocene) per ml. To understand the growth mechanism, deposition was carried out for different concentrations of the solution by changing only the ferrocene quantity, ranging from 0.01 to 0.03 gm/ml. A tunable vertical alignment of multi-walled carbon nanotubes (CNTs) has been achieved by this process and examined by scanning and transmission electron microscopic techniques. Micro-crystalline structural analysis has been done using Raman spectroscopy. A systematic variation in field emission (FE) current density has been observed. The highest FE current density is seen for the film grown with 0.02 gm/ml concentration, which is attributed to the better alignment of CNTs, less structural disorder and less entanglement of CNTs on the surface. The alignment of CNTs has been qualitatively understood on the basis of self-assembled catalytic particles.

  12. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  13. Light emission efficiency and imaging properties of YAP:Ce granular phosphor screens

    International Nuclear Information System (INIS)

    Kalivas, N.; Valais, I.; Nikolopoulos, D.; Konstantinidis, A.; Cavouras, D.; Kandarakis, I.; Gaitanis, A.; Nomicos,