WorldWideScience

Sample records for hydrocarbon contaminants correlation

  1. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Decontamination of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Smith, A.J.

    1991-01-01

    This patent describes the method of treating hydrocarbon contaminated soil. It comprises forming the soil into a flowing particulate stream, forming an aqueous liquid mixture of water and treating substance that reacts with hydrocarbon to form CO 2 and water, dispersing the liquid mixture into the particulate soil stream to wet the particulate, allowing the substance to react with the wetted soil particulate to thereby form CO 2 and water, thereby the resultant soil is beneficially treated, the stream being freely projected to dwell at a level and then fall, and the dispersing includes spraying the liquid mixture into the projected stream at the dwell, the substance consisting of natural bacteria, and at a concentration level in the mixture of between 100 to 3,000 PPM of bacteria to water, the soil forming step including impacting the soil to reduce it to particles less than about 1 inches in cross dimension, and including forming the wetting particulate into a first layer on a surface to allow the substance to react

  3. Bioremediation of Polycyclic Aromatic Hydrocarbon contaminated ...

    African Journals Online (AJOL)

    This study investigates the effect of lead and chromium on the rate of bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated clay soil. Naphthalene was used as a target PAH. The soil was sterilized by heating at 120oC for one hour. 100g of the soil was contaminated with lead, chromium, nickel and mercury ...

  4. Desorption and bioremediation of hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Gray, M.R.

    1998-01-01

    A study was conducted in which the extent and pattern of contaminant biodegradation during bioremediation of four industrially-contaminated soils were examined to determine which factors control the ultimate extent of biodegradation and which limit the success of biological treatment. It was noted that although bioremediation is inexpensive and has low environmental impact, it often fails to completely remove the hydrocarbons in soils because of the complex interactions between contaminants, the soil environment, and the active microorganisms. In this study, the competency of the microorganisms in the soil to degrade the contaminants was examined. The equilibrium partitioning of the contaminants between the soil and the aqueous phase was also examined along with the transport of contaminants out of soil particles. The role of diffusion of compounds in the soil and the importance of direct contact between microorganisms and the hydrocarbons was determined. Methods for selecting suitable sites for biological treatment were also described

  5. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  6. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    Science.gov (United States)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  7. Investigating hydrocarbon contamination using ground penetrating radar

    International Nuclear Information System (INIS)

    Roest, P.B. van der; Brasser, D.J.S.; Wagebaert, A.P.J.; Stam, P.H.

    1996-01-01

    The increasing costs of remediating contaminated sites has stimulated research for cost reducing techniques in soil investigation and clean-up techniques. Under the traditional approach soil borings and groundwater wells are used to investigate contaminated soil. These are useful tools to determine the amount and characteristics of the contamination, but they are inefficient and costly in providing information on the location and extent of contamination as they only give information on one point. This often leads to uncertainty in estimating clean-up costs or, even worse, to unsuccessful clean-ups. MAP Environmental Research has developed a technology using Ground Penetrating Radar (GPR) in combination with in-house developed software to locate and define the extent of hydrocarbon contamination. With this technology, the quality of site investigation is increased while costs are reduced. Since 1994 MAP has been improving its technology and has applied it to over 100 projects, which all have been checked afterwards by conventional drilling. This paper gives some general characteristics of the method and presents a case study. The emphasis of this paper lies on the practical application of GPR to hydrocarbon contamination detection

  8. Sustainable treatment of hydrocarbon-contaminated industrial land

    OpenAIRE

    Cunningham, Colin John

    2012-01-01

    Land contamination by petroleum hydrocarbons is a widespread and global environmental pollution issue from recovery and refining of crude oil and the ubiquitous use of hydrocarbons in industrial processes and applications. Sustainable treatment of hydrocarbon-contaminated industrial land was considered with reference to seven published works on contaminated railway land including the track ballast, crude oil wastes and contaminated refinery soils. A methodology was developed...

  9. Biological detoxification of a hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Fabbri, F.; Lucchese, G.; Nardella, A.

    2005-01-01

    The soil quality of an industrial site chronically contaminated by 39000 mg/kg of oil was detrimentally affected. Soil treatments by bio-pile and land-farming resulted in a reduction of the level of contamination exceeding 90% of the original values, but without reaching regulatory limits. However, the bio-remediation treatments dramatically reduced the mobility of the contaminants and, accordingly, microbial tests clearly indicate that the soil quality improved to acceptable levels, similar to those typically observed in unaltered soils. Hydrocarbon mobility was estimated by the use of water and mild extractants (methanol and sodium dodecyl sulphate) to leach the contaminants from the soil; soil quality was evaluated by comparing the values of selected microbial and enzymatic parameters of the treated soil samples to reference values determined for natural soils. Microbial assessments included: measurement of the nitrification potential, dehydrogenase activity, measures of respiration and lipase activity, microbial counts (MPN on rich media) and Microtox TM assays of the water elutriate. Dermal absorption potential was evaluated using absorption on C 18 disks

  10. Bioremediation in soil contaminated with hydrocarbons in Colombia.

    OpenAIRE

    María Alejandra Trujillo Toro; Juan Fernando Ramírez Quirama

    2012-01-01

    This study analyzes bioremediation processes of hydrocarbon contaminated soils in Colombia as a sustainable alternative to the deterioration of environmental quality by hydrocarbon spillage. According to national and international environmental law, all waste contaminated with hydrocarbons is considered dangerous waste, and therefore it cannot be released in the ground, water or be incinerated. Such legislation has motivated companies around the world to implement treatment processes for cont...

  11. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U...... and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  12. Chlorinated hydrocarbon contaminants in arctic marine mammals.

    Science.gov (United States)

    Norstrom, R J; Muir, D C

    1994-09-16

    By 1976, the presence of chlorinated hydrocarbon contaminants (CHCs) had been demonstrated in fur seal (Callorhinus ursinus), ringed seal (Phoca hispida), hooded seal (Cystophora cristata), bearded seal (Erignathus barbatus), walrus (Obdobenus rosmarus divergens), beluga (Delphinapterus leucas), porpoise (Phocoena phocoena) and polar bear (Ursus maritimus) in various parts of the Arctic. In spite of this early interest, very little subsequent research on contaminants in Arctic marine mammals was undertaken until the mid-1980s. Since that time, there has been an explosion of interest, resulting in a much expanded data base on contaminants in Arctic marine mammals. Except in the Russian Arctic, data have now been obtained on the temporospatial distribution of PCBs and other contaminants in ringed seal, beluga and polar bear. Contaminants in narwhal (Monodon monoceros) have also now been measured. On a fat weight basis, the sum of DDT-related compounds (S-DDT) and PCB levels are lowest in walrus (Polar bears have similar levels of PCBs as cetaceans (1-10 micrograms/g), but with a much simpler congener pattern. DDE levels are lowest in polar bear, indicating rapid metabolism. Effects of age and sex on residue levels are found for all species where this was measured. Among cetaceans and ringed seal, sexually mature females have lower levels than males due to lactation. Although PCB levels in adult male polar bears are about twice as high as females, there is only a trivial age effect in either sex apart from an initial decrease from birth to sexual maturity (age 0-5). Comparison of levels of S-DDT and PCBs in Arctic beluga and ringed seal with those in beluga in the Gulf of St. Lawrence and ringed seal in the Baltic Sea, indicate that overall contamination of the Arctic marine ecosystem is 10-50 times less than the most highly contaminated areas in the northern hemisphere temperate latitude marine environment. Geographic distribution of residue levels in polar bears

  13. Unique problems of hydrocarbon contamination for ports

    International Nuclear Information System (INIS)

    Rice, D.W.

    1991-01-01

    Since the early 1900s, port facilities in the United States have been involved in the import and export of petroleum products. The WORLDPORT L.A. is a 7,000 acre land and water area that is administered by the Department of The City of Los Angeles under a tidelands grant from the State of California for the purposes of commerce, navigation, and fisheries. Over half of the oil-refining of California lies within 20 miles of WORLDPORT L.A. It is therefore not surprising that the port is a major hub for the handling of crude oil and petroleum products, including gasoline, aviation gas/jet fuel, and marine fuels. This paper reports that it is also not surprising that port facilities, given their long history of handling petroleum products, contain areas where soils and groundwater are contaminated with hydrocarbons. This contamination is localized but can be extensive. Petroleum and petrochemical products are handled at terminal facilities that are leased to oil companies

  14. Ecological risk assessment of a site contaminated with petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Starodub, M.E.; Feniak, N.A.; Willes, R.F.; Moore, C.E.; Mucklow, L.

    1995-01-01

    The aquatic and terrestrial health risks associated with petroleum contamination on a decommissioned military base, contaminated with products ranging from Bunker C oil to aviation fuel, were assessed using a methodology whereby an analytical measurement of total petroleum hydrocarbons (TPH) could be correlated with compositional characterization and thus with toxicity. The constituents of petroleum hydrocarbon contamination represent wide ranges of physical-chemical properties, environmental fate, and toxicity. The composition of TPH can vary greatly, dependent on the sources or fuel types and the interaction of age as well as site- and chemical-specific characteristics in determining the impact of weathering processes. Therefore, a bulk sum analysis of TPH cannot be related to toxicity without characterization of its composition and association of the constituents, and therefore composition, with actual toxicity data. To address this need, the constituents of TPH were represented by surrogate chemicals, with selection based on structure-activity relationships and available toxicity data. Toxicological profiles were developed from governmental regulations and on the published literature for both the aquatic and terrestrial media. Risk characterization consisted of a comparison of water concentration limits and exposure limits, developed for each surrogate, to estimated surrogate concentrations throughout the site. The concentrations of surrogates were extrapolated from TPH composition characterization analyses, conducted at a select number of sampling locations, to bulk sum analyses of TPH at related sampling locations

  15. Process for in-situ biodegradation of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Ely, D.L.; Heffner, D.A.

    1991-01-01

    This patent describes an in situ process for biodegrading hydrocarbons by drawing oxygen into an undisturbed hydrocarbon contaminated zone in a fluid permeable soil. It comprises: establishing a borehole extending from the earth's surface through a hydrocarbon contaminated zone having hydrocarbon degrading microbes therein; lining the borehole with a fluid impermeable liner coaxially spaced and sealingly connected to the inside surface of the borehole and extending from the earth's surface to the hydrocarbon-contaminated zone; the liner including a fluid permeable portion extending from the lower end thereof and through at least a portion of the hydrocarbon contaminated zone, fluidly connecting a source of negative pressure to the fluid impermeable line; evacuating gas from the borehole through the fluid permeable portion of the liner at a rate sufficient to draw air from the earth's surface into the hydrocarbon containing zone; and adjusting the flow rate of the evacuated gas so that the amount of hydrocarbon biodegradation therein is within 50% of the maximum hydrocarbon biodegradation rate as detected by the volume of carbon dioxide in the evacuated gas

  16. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Challenges encountered in hydrocarbon contaminated soil cleanup

    International Nuclear Information System (INIS)

    Lazzarettro, A.C.

    1991-01-01

    Much of the author's experience relating to the cleanup of hydrocarbon contaminated soils has been garnered from serving the city of Santa Fe Springs, California as a redevelopment consultant and project manager. In this paper, the author's comments will be centered on that community. To set the stage the author believes it might be helpful to relate some of the history and background of Santa Fe Springs (SFS). The community was first founded as an agricultural settlement in the latter part of the nineteenth century, with virtually all of the farms and ranches either planted in orchards or engaged in raising cattle and livestock. The Southern Pacific Railroad had a line running through the area primarily to serve the needs of the ranchers and farmers. The community at the time was known as Fulton Wells in honor of a large hotel complex which had been erected around a well-known mineral spring touted for its curative value. The local population had been aware for some time of the presence of brackish water in shallow wells and of the peculiar odor which permeated much of the surrounding area

  18. Petroleum Hydrocarbons Contamination Profile of Ochani Stream in ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: Petroleum hydrocarbon contamination profile, heavy metals and .... potential conduits for oil and water migrating from the ... by Gas Chromatography: Soil / sediment / sludge ..... fractions contained in the dump pits) which have.

  19. Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants.

    Science.gov (United States)

    Gerner, Nadine V; Cailleaud, Kevin; Bassères, Anne; Liess, Matthias; Beketov, Mikhail A

    2017-11-01

    Hydrocarbons have an utmost economical importance but may also cause substantial ecological impacts due to accidents or inadequate transportation and use. Currently, freshwater biomonitoring methods lack an indicator that can unequivocally reflect the impacts caused by hydrocarbons while being independent from effects of other stressors. The aim of the present study was to develop a sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants, which can be used in hydrocarbon-specific bioindicators. We employed the Relative Sensitivity method and developed the sensitivity ranking S hydrocarbons based on literature ecotoxicological data supplemented with rapid and mesocosm test results. A first validation of the sensitivity ranking based on an earlier field study has been conducted and revealed the S hydrocarbons ranking to be promising for application in sensitivity based indicators. Thus, the first results indicate that the ranking can serve as the core component of future hydrocarbon-specific and sensitivity trait based bioindicators.

  20. Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer

    Science.gov (United States)

    Lee, Jin-Yong; Cheon, Jeong-Yong; Lee, Kang-Kun; Lee, Seok-Young; Lee, Min-Hyo

    2001-07-01

    The distributions of hydrocarbon contaminants and hydrogeochemical parameters were investigated in a shallow sand aquifer highly contaminated with petroleum hydrocarbons leaked from solvent storage tanks. For these purposes, a variety of field investigations and studies were performed, which included installation of over 100 groundwater monitoring wells and piezometers at various depths, soil logging and analyses during well and piezometer installation, chemical analysis of groundwater, pump tests, and slug tests. Continuous water level monitoring at three selected wells using automatic data-logger and manual measuring at other wells were also conducted. Based on analyses of the various investigations and tests, a number of factors were identified to explain the distribution of the hydrocarbon contaminants and hydrogeochemical parameters. These factors include indigenous biodegradation, hydrostratigraphy, preliminary pump-and-treat remedy, recharge by rainfall, and subsequent water level fluctuation. The permeable sandy layer, in which the mean water table elevation is maintained, provided a dominant pathway for contaminant transport. The preliminary pump-and-treat action accelerated the movement of the hydrocarbon contaminants and affected the redox evolution pattern. Seasonal recharge by rain, together with indigenous biodegradation, played an important role in the natural attenuation of the petroleum hydrocarbons via mixing/dilution and biodegradation. The water level fluctuations redistributed the hydrocarbon contaminants by partitioning them into the soil and groundwater. The identified factors are not independent but closely inter-correlated.

  1. Plant residues--a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Shahsavari, Esmaeil; Adetutu, Eric M; Anderson, Peter A; Ball, Andrew S

    2013-01-15

    Petrogenic hydrocarbons represent the most commonly reported environmental contaminant in industrialised countries. In terms of remediating petrogenic contaminated hydrocarbons, finding sustainable non-invasive technologies represents an important goal. In this study, the effect of 4 types of plant residues on the bioremediation of aliphatic hydrocarbons was investigated in a 90 day greenhouse experiment. The results showed that contaminated soil amended with different plant residues led to statistically significant increases in the utilisation rate of Total Petroleum Hydrocarbon (TPH) relative to control values. The maximum TPH reduction (up to 83% or 6800 mg kg(-1)) occurred in soil mixed with pea straw, compared to a TPH reduction of 57% (4633 mg kg(-1)) in control soil. A positive correlation (0.75) between TPH reduction rate and the population of hydrocarbon-utilising microorganisms was observed; a weaker correlation (0.68) was seen between TPH degradation and bacterial population, confirming that adding plant materials significantly enhanced both hydrocarbonoclastic and general microbial soil activities. Microbial community analysis using Denaturing Gradient Gel Electrophoresis (DGGE) showed that amending the contaminated soil with plant residues (e.g., pea straw) caused changes in the soil microbial structure, as observed using the Shannon diversity index; the diversity index increased in amended treatments, suggesting that microorganisms present on the dead biomass may become important members of the microbial community. In terms of specific hydrocarbonoclastic activity, the number of alkB gene copies in the soil microbial community increased about 300-fold when plant residues were added to contaminated soil. This study has shown that plant residues stimulate TPH degradation in contaminated soil through stimulation and perhaps addition to the pool of hydrocarbon-utilising microorganisms, resulting in a changed microbial structure and increased alkB gene

  2. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.

    Science.gov (United States)

    Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming

    2017-02-01

    Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Chemical fingerprinting of hydrocarbon-contamination in soil.

    Science.gov (United States)

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  4. Bioremediation in soil contaminated with hydrocarbons in Colombia.

    Directory of Open Access Journals (Sweden)

    María Alejandra Trujillo Toro

    2012-10-01

    Full Text Available This study analyzes bioremediation processes of hydrocarbon contaminated soils in Colombia as a sustainable alternative to the deterioration of environmental quality by hydrocarbon spillage. According to national and international environmental law, all waste contaminated with hydrocarbons is considered dangerous waste, and therefore it cannot be released in the ground, water or be incinerated. Such legislation has motivated companies around the world to implement treatment processes for contaminated soils. Within Colombia, oil companies have been implementing the bioremediation of hydrocarbon contaminated soils in order to manage the waste coming from activities of oil drilling, refinement, transport and distribution.These practices must be considered viable for their ease of implementation, their low overhead costs, and for the benefits they provide towards environmental quality. Among the positive impacts that these practices have generated, it may consider the following: a solution for the problem of hydrocarbon contaminated soils, alternatives for the ultimate disposal of said waste without affecting ground, water or air resources, the low cost of the operation, and the technical experience of sustainable development which can continue to be implemented in companies dealing with dangerous waste.

  5. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil

    International Nuclear Information System (INIS)

    Serrano, Antonio; Gallego, Mercedes; Gonzalez, Jose Luis; Tejada, Manuel

    2008-01-01

    A diesel fuel spill at a concentration of 1 L m -2 soil was simulated on a 12 m 2 plot of agricultural land, and natural attenuation of aliphatic hydrocarbons was monitored over a period of 400 days following the spill after which the aliphatic hydrocarbon concentrations were found to be below the legal contamination threshold for soil. The main fraction of these compounds (95%) remained at the surface layer (0-10 cm). Shortly after the spill (viz. between days 0 and 18), evaporation was the main origin of the dramatic decrease in pollutant concentrations in the soil. Thereafter, soil microorganisms used aliphatic hydrocarbons as sources of carbon and energy, as confirmed by the degradation ratios found. Soil quality indicators, soil microbial biomass and dehydrogenase activity, regained their original levels about 200 days after the spill. - The effect of aliphatic hydrocarbons contamination on soil quality was monitored over a period of 400 days after a Diesel fuel spill

  6. Phytoremediation of Soils Contaminated by Chlorinnated Hydrocarbons

    Science.gov (United States)

    Cho, C.; Sung, K.; Corapcioglu, M.

    2001-12-01

    In recent years, the possible use of deep rooted plants for phytoremediation of soil contaminants has been offered as a potential alternative for waste management, particularly for in situ remediation of large volumes of contaminated soils. Major objectives of this study are to evaluate the effectiveness of a warm season grass (Eastern Gamagrass) and a cool season prairie grass (Annual Ryegrass) in the phytoremediation of the soil contaminated with volatile organic compounds e.g., trichloroethylene (TCE), tetrachloroethylene (PCE), and 1,1,1-trichloroethane (TCA) and to determine the main mechanisms of target contaminant dissipation. The preliminary tests and laboratory scale tests were conducted to identify the main mechanisms for phytoremediation of the target contaminants, and to apply the technique in green house application under field conditions. The results of microcosm and bioreactor experiments showed that volatilization can be the dominant pathway of the target contaminant mass losses in soils. Toxicity tests, conducted in nutrient solution in the growth room, and in the greenhouse, showed that both Eastern gamagrass and Annual ryegrass could grow without harmful effects at up to 400 ppm each of all three contaminants together. Preliminary greenhouse experimentw were conducted with the 1.5 m long and 0.3 m diameter PVC columns. Soil gas concentrations monitored and microbial biomass in bulk and rhizosphere soil, root properties, and contaminant concentration in soil after 100 days were analyzed. The results showed that the soil gas concentration of contaminants has rapidly decreased especially in the upper soil and the contaminant concentraitons in soil were also significantly decreased to 0.024, 0.228, and 0.002 of C/Co for TCE, PCE and TCA, respectively. Significant plant effects were not found however showed contaminant loss through volatilization and plant contamination by air.

  7. Regulatory approaches to hydrocarbon contamination from underground storage tanks

    International Nuclear Information System (INIS)

    Daugherty, S.J.

    1991-01-01

    Action or lack of action by the appropriate regulatory agency is often the most important factor in determining remedial action or closure requirements for hydrocarbon contaminated sites. This paper reports that the diversity of regulatory criteria is well known statewide and well documented nationally. In California, the diversity of approaches is due to: that very lack of a clear understanding of the true impact of hydrocarbon contamination: lack of state or federal standards for soil cleanup, and state water quality objectives that are not always achievable; vagueness in the underground storage tank law; and the number and diversity of agencies enforcing the underground storage tank regulations

  8. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  9. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  10. Prediction of Petroleum Hydrocarbon Bioavailability in Contaminated Soils and Sediments

    NARCIS (Netherlands)

    Cuypers, M.P.; Clemens, R.; Grotenhuis, J.T.C.; Rulkens, W.H.

    2001-01-01

    Recently, several laboratory methods have been developed for the prediction of contaminant bioavailability. So far, none of these methods has been extensively tested for petroleum hydrocarbons. In the present study we investigated solid-phase extraction and persulfate oxidation for the prediction of

  11. Bioremediation of hydrocarbon contaminated-oil field drill-cuttings ...

    African Journals Online (AJOL)

    The effectiveness of 2 bacterial isolates (Bacillus subtilis and Pseudomonas aeruginosa) in the restoration of oil-field drill-cuttings contaminated with polycyclic aromatic hydrocarbons (PAHs) was studied. A mixture of 4 kg of the drill-cuttings and 0.67 kg of top-soil were charged into triplicate plastic reactors labeled A1 to A3, ...

  12. Petroleum Hydrocarbons Contamination Profile of Ochani Stream in ...

    African Journals Online (AJOL)

    Petroleum hydrocarbon contamination profile, heavy metals and some physicochemical parameters were investigated in Ochani Stream site in Ejamah Ebubu, Eleme Local Government Area of Rivers State. The results show that a major crude oil spillage occurred at Ejamah Ebubu, Rivers State, Nigeria approximately 30 ...

  13. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    Science.gov (United States)

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Regional hydrocarbon contaminated soil recycling facility standards

    International Nuclear Information System (INIS)

    Warren, R.

    1992-01-01

    In an effort to protect the environment from uncontrolled releases of petroleum products, the Canadian Petroleum Products Institute member companies have initiated environmental upgrading programs for their underground fuel storage systems in British Columbia. These programs have been restricted in recent years as a result of environmental regulations targeting contaminated soil, which is generated when underground storage tanks are upgraded to current standards. The soil requiring treatment is typically sand backfill containing a nominal value of petroleum product. These soils can be treated in an engineered basin using bioremediation technology to reduce the level of contamination. Depending on the degree of treatment, the soil can be recycled as backfill or reused as landfill cover. An overview is presented of the basin treatment process and design. Natural bioremediation is enhanced with nutrients, water and oxygen addition. 4 figs

  15. Distinguishing natural hydrocarbons from anthropogenic contamination in ground water

    International Nuclear Information System (INIS)

    Lesage, S.; Xu, H.; Novakowski, K.S.

    1997-01-01

    Differentiation between natural and anthropogenic sources of ground-water contamination by petroleum hydrocarbons is necessary in areas where natural hydrocarbons may be present in the subsurface. Because of the similarity in composition between natural and refined petroleum, the use of statistical techniques to discern trends is required. In this study, both multivariate plotting techniques and principal component analysis were used to investigate the origin of hydrocarbons from a variety of study sites. Ground-water and gas samples were collected from the Niagara Falls area and from three gasoline stations where leaking underground storage tanks had been found. Although soil gas surveys are used to indicate the presence of hydrocarbons, they were not useful in differentiating between natural and anthropogenic sources of contamination in ground water. Propane and pentene were found to be the most useful chemical parameters in discriminating between the natural and anthropogenic sources. These chemicals are not usually measured in investigations of ground-water contamination, yet analysis can be conducted by most environmental laboratories using conventional methods

  16. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites

    Directory of Open Access Journals (Sweden)

    Kaustuvmani Patowary

    2016-07-01

    Full Text Available The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia towards total petroleum hydrocarbons (TPH with special emphasis to poly aromatic hydrocarbons (PAHs were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples 5 isolates, namely KS2, PG1, PG5, R1 and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1 and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and Bacillus cereus R2 (identified by 16s rRNA sequencing has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of total petroleum hydrocarbon (TPH after five weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared and GCMS (Gas chromatography-mass spectrometer analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  17. Bioremediation: Technology for treating hydrocarbon-contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Towprayoon, S.; Kuntrangwattana, S. [King Mongkut`s Institute of Technology, Bangkok (Thailand)

    1996-12-31

    Cutting oil wastewater from an iron and steel factory was applied to the soil windrow. Self-remediation was then compared with remediation with acclimatized indigenous microbes. The incremental reduction rate of the microorganisms and hydrocarbon-degradable microbes was slower in self-remediation than in the latter treatment. Within 30 days, when the acclimatized indigenous microbes were used, there was a significant reduction of the contaminated hydrocarbons, while self-remediation took longer to reduce to the same concentration. Various nitrogen sources were applied to the soil pile, namely, organic compost, chemical fertilizer, ammonium sulfate, and urea. The organic compost induced a high yield of hydrocarbon-degradable microorganisms, but the rate at which the cutting oil in the soil decreased was slower than when other nitrogen sources were used. The results of cutting oil degradation studied by gas chromatography showed the absence of some important hydrocarbons. The increment of the hydrocarbon-degradable microbes in the land treatment ecosystem does not necessarily correspond to the hydrocarbon reduction efficiency. 3 refs., 3 figs.

  18. Subsurface biogenic gas rations associated with hydrocarbon contamination

    International Nuclear Information System (INIS)

    Marrin, D.L.

    1991-01-01

    Monitoring the in situ bioreclamation of organic chemicals in soil is usually accomplished by collecting samples from selected points during the remediation process. This technique requires the installation and sampling of soil borings and does not allow for continuous monitoring. The analysis of soil vapor overlying hydrocarbon-contaminated soil and groundwater has been used to detect the presence of nonaqueous phase liquids (NAPL) and to locate low-volatility hydrocarbons that are not directly detected by more conventional soil gas methods. Such soil vapor sampling methods are adaptable to monitoring the in situ bioremediation of soil and groundwater contamination. This paper focuses on the use of biogenic gas ratio in detecting the presence of crude oil and gasoline in the subsurface

  19. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  20. Biological indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture-contaminated soil.

    Science.gov (United States)

    Wang, Jiangang; Zhan, Xinhua; Zhou, Lixiang; Lin, Yusuo

    2010-08-01

    In China, there are many special sites for recycling and washing the used drums, which release a variety of C5-C40 hydrocarbon mixture into the soil around the site. The remediation of these contaminated sites by thermal treatment is adopted ubiquitously and needs to be assessed. Here we report the feasibility of biological indicators applied to assess thermal treatment efficiency in such contaminated soil. A series of biological indicators, including seed germination index (SGI), root elongation index (REI), plant growth height, biomass, carbon dioxide evolved (CDE), soil respiration inhibition (SRI) and soil enzymatic activities, were employed to monitor or assess hydrocarbon mixture removal in thermal treated soil. The results showed that residual hydrocarbon mixture content correlated strongly negatively with SGI for sesamum (Sesamum indicum L.), plant height, and biomass for ryegrass (Lolium perenne L.) in the concentration ranges of 0-3990, 0-3170 and 0-2910 mg kg(-1), respectively. In contrast, REI for sesamum was positively correlated with residual hydrocarbon mixture content from 0 to 1860 mg kg(-1). In addition, both CDE and SRI demonstrated that 600 mg kg(-1) of residual hydrocarbon mixture content caused the highest amount of soil carbon dioxide emission and inhabitation of soil respiration. The results of soil enzymes indicated that 1000 mg kg(-1) of residual hydrocarbon mixture content was the threshold value of stimulating or inhibiting the activities of phosphatase and catalase, or completely destroying the activities of dehydrogenase, invertase, and urease. In conclusion, these biological indicators can be used as a meaningful complementation for traditional chemical content measurement in evaluating the environmental risk of the contaminated sites before and after thermal treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Improvements in the biotreatment of soil contaminated by heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Paquin, J. [Sanexen Environmental Services Inc., Varennes, PQ (Canada)

    2006-07-01

    This presentation discussed improvements in the biotreatment of soil contaminated by heavy hydrocarbons. The presentation provided information on the background for the investigation such as: difficulty for biotreatment in soil to deal with heavy weathered hydrocarbons and fine grained soils; the involvement of the Montreal Centre of Excellence for Brownfield Remediation (MCEBR) to develop state of the art environmental solutions; and, the selection of Sanexen as the organization with the best price and best performance warranty to perform the required decontamination. The objectives of the study were to improve the performance of biotreatment of soil contaminated with heavy petroleum hydrocarbons; reduce soil biotreatment costs by 30 per cent; improve knowledge and understanding for this type of treatment; and, better identify constraints and optimal strategies in view of these constraints. Specific objectives that were discussed included: improving the microbial flora, attaining a favorable soil temperature at a low cost, identifying the best amendments for bulking of soil, increasing bio-availability of the contaminants, and identifying optimal mechanical handling of the soil. The presentation discussed soils treated; research and development carried out; standard method of biotreatment; alternative methods tested; initial investigation by the MCEBR; pilot test carried out by Sanexen; and, results of the pilot test. As part of the research program with MCEBR, soils that received different amendments were tested at the Biotechnology Research Institute (BRI) of the National Research Council for their ability to degrade added hexadecane and naphthalene. Soil at various stages of the treatment was also sampled and tested by the (BRI). It was concluded that the biotreatment of heavy hydrocarbons in fine grained soils is feasible and that the techniques used reduced biotreatment costs by approximately 25 per cent.

  2. Prediction of ecotoxicity of hydrocarbon-contaminated soils using physicochemical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.C.L.; Chai, E.Y.; Chu, K.K.; Dorn, P.B.

    1999-11-01

    The physicochemical properties of eight hydrocarbon-contaminated soils were used to predict toxicity to earthworms (Eisenia fetida) and plants. The toxicity of these preremediated soils was assessed using earthworm avoidance, survival, and reproduction and seed germination and root growth in four plant species. No-observed-effect and 25% inhibitory concentrations were determined from the earthworm and plant assays. Physical property measurements and metals analyses of the soils were conducted. Hydrocarbon contamination was characterized by total petroleum hydrocarbons, oil and grease, and GC boiling-point distribution. Univariate and multivariate statistical methods were used to examine relationships between physical and chemical properties and biological endpoints. Soil groupings based on physicochemical properties and toxicity from cluster and principal component analyses were generally similar. Correlation analysis identified a number of significant relationships between soil parameters and toxicity that were used in univariate model development. Total petroleum hydrocarbons by gas chromatography and polars were identified as predictors of earthworm avoidance and survival and seed germination, explaining 65 to 75% of the variation in the data. Asphaltenes also explained 83% of the variation in seed germination. Gravimetric total petroleum hydrocarbons explained 40% of the variation in earthworm reproduction, whereas 43% of the variation in plant root growth was explained by asphaltenes. Multivariate one-component partial least squares models, which identified predictors similar to those identified by the univariate models, were also developed for worm avoidance and survival and seed germination and had predictive powers of 42 and 29%, respectively.

  3. Release of polyaromatic hydrocarbons from coal tar contaminated soils

    International Nuclear Information System (INIS)

    Priddy, N.D.; Lee, L.S.

    1996-01-01

    A variety of process wastes generated from manufactured gas production (MGP) have contaminated soils and groundwater at production and disposal sites. Coal tar, consisting of a complex mixture of hydrocarbons present as a nonaqueous phase liquid, makes up a large portion of MGP wastes. Of the compounds in coal tar, polyaromatic hydrocarbons (PAHs) are the major constituents of environmental concern due to their potential mutagenic and carcinogenic hazards. Characterization of the release of PAHs from the waste-soil matrix is essential to quantifying long-term environmental impacts in soils and groundwater. Currently, conservative estimates for the release of PAHs to the groundwater are made assuming equilibrium conditions and using relationships derived from artificially contaminated soils. Preliminary work suggests that aged coal tar contaminated soils have much lower rates of desorption and a greater affinity for retaining organic contaminants. To obtain better estimates of desorption rates, the release of PAHs from a coal tar soil was investigated using a flow-interruption, miscible displacement technique. Methanol/water solutions were employed to enhance PAH concentrations above limits of detection. For each methanol/water solution employed, a series of flow interrupts of varying times was invoked. Release rates from each methanol/water solution were estimated from the increase in concentration with duration of flow interruption. Aqueous-phase release rates were then estimated by extrapolation using a log-linear cosolvency model

  4. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation.

    Science.gov (United States)

    Jiang, Ying; Brassington, Kirsty J; Prpich, George; Paton, Graeme I; Semple, Kirk T; Pollard, Simon J T; Coulon, Frédéric

    2016-10-01

    The potential for biotransformation of weathered hydrocarbon residues in soils collected from two commercial oil refinery sites (Soil A and B) was studied in microcosm experiments. Soil A has previously been subjected to on-site bioremediation and it was believed that no further degradation was possible while soil B has not been subjected to any treatment. A number of amendment strategies including bioaugmentation with hydrocarbon degrader, biostimulation with nutrients and soil grinding, were applied to the microcosms as putative biodegradation improvement strategies. The hydrocarbon concentrations in each amendment group were monitored throughout 112 days incubation. Microcosms treated with biostimulation (BS) and biostimulation/bioaugmentation (BS + BA) showed the most significant reductions in the aliphatic and aromatic hydrocarbon fractions. However, soil grinding was shown to reduce the effectiveness of a nutrient treatment on the extent of biotransformation by up to 25% and 20% for the aliphatic and aromatic hydrocarbon fractions, respectively. This is likely due to the disruption to the indigenous microbial community in the soil caused by grinding. Further, ecotoxicological responses (mustard seed germination and Microtox assays) showed that a reduction of total petroleum hydrocarbon (TPH) concentration in soil was not directly correlable to reduction in toxicity; thus monitoring TPH alone is not sufficient for assessing the environmental risk of a contaminated site after remediation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Correlations between boiling points and relative retention data for hydrocarbons

    NARCIS (Netherlands)

    Sojak, L.; Krupcik, J.; Rijks, J.A.

    1974-01-01

    An equation correlating retention indices, boiling points and activity coefficients is proposed. The equation can be applied not only to homologous series, but also to different classes of hydrocarbons.

  6. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories.

    Science.gov (United States)

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L; Díaz-Ramírez, Ildefonso J

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and soil samples. Soil suspensions were tested as microbial inocula in biodegradation potential assays using contaminated perlite as an inert support. The basal respiratory rate of the recently contaminated soil was 15-38 mg C-CO 2  kg -1 h -1 , while the weathered soil presented a greater basal mineralisation capacity of 55-70 mg C-CO 2 kg -1 h -1 . The basal levels of lipase and dehydrogenase were significantly greater than those recorded in non-contaminated soils (551 ± 21 μg pNP g -1 ). Regarding the biodegradation potential assessment, the lipase (1000-3000 μg pNP g -1 of perlite) and dehydrogenase (~3000 μg INF g -1 of perlite) activities in the inoculum of the recently contaminated soil were greater than those recorded in the inoculum of the weathered soil. This was correlated with a high mineralisation rate (~30 mg C-CO 2 kg -1 h -1 ) in the recently contaminated soil and a reduction in hydrocarbon concentration (~30 %). The combination of an inert support and enzymatic and respirometric analyses made it possible to detect the different biodegradation capacities of the studied inocula and the natural attenuation potential of a recently contaminated soil at high hydrocarbon concentrations.

  7. Development and application of techniques for monitoring the bioremediation of petroleum hydrocarbon-contaminated soils

    International Nuclear Information System (INIS)

    Greer, C.; Hawar, J.; Samson, R.

    1994-01-01

    A series of tests was designed to examine bioremediation potential in soil and to monitor performance during the treatment operation. Physical and chemical characterization of the soil provides information on the types of organics, their concentrations, and whether interfering materials are present. Microbiological assessment involves culturing of bacterial populations in the soil and examination of the colonies to determine which have the genetic potential to degrade the soil contaminants. Catabolic gene probes are used to survey viable bacteria from petroleum hydrocarbon contaminated soils. Such soils consistently demonstrate the presence of bacteria possessing the genetic capability to degrade simple straight-chain alkanes and aromatics. Mineralization and respirometric studies are indicators of the biological activity in the soil, and can be directed at microbial activity towards specific substrates. Gene probe monitoring of a petroleum hydrocarbon contaminated soil during biopile treatment demonstrated that hydrocarbon-degrading bacterial numbers and activity were temperature dependent. The results showed that the activity of the indigenous bacteria as measured by hexadecane mineralization also correlated with the disappearance of the oil and grease. The application of this protocol has provided a useful means to screen contaminated soils for bacteria with desirable catabolic properties and to monitor pollutant-degrading bacteria during biotreatment. 15 refs., 10 figs

  8. Hydrodynamic analysis application of contaminated groundwater remediation to oil hydrocarbons

    Directory of Open Access Journals (Sweden)

    Pajić Predrag R.

    2017-01-01

    Full Text Available In this paper, the application of the hydrodynamic analysis in the selected ‘pumping and treatment’ remediation method of groundwater hydrocarbon pollution in the case of the Pancevo oil refinery is examined. The applied hydrodynamic analysis represents a regular and necessary approach in modern hydrogeology. Previous chemical analysis of soil and groundwater samples at observation objects revealed their pollution by oil products. New researches included the constraction of 12 piezometric boreholes of varying depths, geoelectric soil sounding, ‘in situ’ measurement of the present contaminant, detected as a hydrophobic phase of LNAPL, chemical analysis of soil and groundwater samples with emphasis on total petroleum hydrocarbons (TPH content, total fats and mineral oils, mercury cations and other characteristic compounds, etc. These researches define the volume of contamination issued by the ‘light’ (LNAPL contamination phase. The selected remediation method for this type of pollution is the ‘Pump and Treat’ method, which implies the pumping of contaminated groundwater from aquifer and their subsequent treatment. A hydrodynamic method was used to select the optimal hydrotechnical solution for LNAPL extraction. On the mathematical model, the prediction calculations for two variant solutions were carried out (‘hydraulic isolation’ and complex for the application of groundwater contamination remediation characterized as front pollution substance (by extraction and injection wells or infiltration pool. By extraction wells performing, it would be possible to remove the LNAPL from the surface of the water with special pumps-skimmers. The importance of the hydrodynamic method application is, in addition to the hydrotechnical solution selection for the LNAPL drainage, the provision of quality basis for the dimensioning of these objects based on the results of the groundwater balance.

  9. Predicting the distribution of contamination from a chlorinated hydrocarbon release

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, M.J. [K.W. Brown Environmental Services, College Station, TX (United States); Moridis, G.J. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    The T2VOC model with the T2CG1 conjugate gradient package was used to simulate the motion of a dense chlorinated hydrocarbon plume released from an industrial plant. The release involved thousands of kilograms of trichloroethylene (TCE) and other chemicals that were disposed of onsite over a period of nearly twenty years. After the disposal practice ceased, an elongated plume was discovered. Because much of the plume underlies a developed area, it was of interest to study the migration history of the plume to determine the distribution of the contamination.

  10. Bioavailability and bioaccessibility of petroleum hydrocarbons in contaminated site soils

    International Nuclear Information System (INIS)

    Stephenson, G.; Angell, R.; Strive, E.; Ma, W.

    2010-01-01

    Although the bioavailability and/or bioaccessibility of contaminants in soil can be measured by various ecological receptors, the methods that are suitable for metals do not necessarily work well for petroleum hydrocarbons (PHCs). In this study, several biological and chemical methods were used at various PHC contaminated sites to find the most fitting method for different soil types in terms of predicting the biological responses of organisms as measured by standard single species toxicity tests. Organisms such as plants, earthworms, and collembolan were exposed to soils with different PHC concentrations. Multiple endpoints were then measured to evaluate the biological responses. The exposure concentrations for the 4 CCME hydrocarbon fractions were measured using hexane:acetone extraction as well as extractions with cyclodextrin, and a mixture of enzymes to simulate the gastro-intestinal fluid of an earthworm. The estimated exposure concentrations depended on the extraction method. The study showed that existing methodologies must be modified in order to better estimate the biological effect of PHCs in soil. Comparative data was presented and discussed along with proposed methodological modifications.

  11. Evaluation of Biostimulation (Nutrients) in hydrocarbons contaminated soils by respirometry

    International Nuclear Information System (INIS)

    Garcia, Erika; Roldan, Fabio; Garzon, Laura

    2011-01-01

    The biostimulation process was evaluated in a hydrocarbon contaminated soil by respirometry after amendment with inorganic compound fertilizer (ICF) (N: P: K 28:12:7) and simple inorganic salts (SIS) (NH 4 NO 3 and K 2 HPO 4 ). The soil was contaminated with oily sludge (40.000 MgTPH/Kgdw). The oxygen uptake was measured using two respirometers (HACH 2173b and OXITOP PF 600) during thirteen days (n=3). Two treatments (ICF and SIS) and three controls (abiotic, reference substance and without nutrients) were evaluated during the study. Physicochemical (pH, nutrients, and TPH) and microbiological analysis (heterotrophic and hydrocarbon-utilizing microorganisms) were obtained at the beginning and at the end of each assay. Higher respiration rates were recorded in sis and without nutrient control. Results were 802.28 and 850.72- 1 d-1, MgO 2 kgps - 1d i n HACH, while in OXITOP were 936.65 and 502.05 MgO 2 Kgps respectively. These data indicate that amendment of nutrients stimulated microbial metabolism. ICF had lower respiration rates (188.18 and 139.87 MgO 2 kgps - 1d - 1 i n HACH and OXITOP, respectively) as well as counts; this could be attributed to ammonia toxicity.

  12. Bioavailability and bioaccessibility of petroleum hydrocarbons in contaminated site soils

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, G.; Angell, R.; Strive, E.; Ma, W. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2010-07-01

    Although the bioavailability and/or bioaccessibility of contaminants in soil can be measured by various ecological receptors, the methods that are suitable for metals do not necessarily work well for petroleum hydrocarbons (PHCs). In this study, several biological and chemical methods were used at various PHC contaminated sites to find the most fitting method for different soil types in terms of predicting the biological responses of organisms as measured by standard single species toxicity tests. Organisms such as plants, earthworms, and collembolan were exposed to soils with different PHC concentrations. Multiple endpoints were then measured to evaluate the biological responses. The exposure concentrations for the 4 CCME hydrocarbon fractions were measured using hexane:acetone extraction as well as extractions with cyclodextrin, and a mixture of enzymes to simulate the gastro-intestinal fluid of an earthworm. The estimated exposure concentrations depended on the extraction method. The study showed that existing methodologies must be modified in order to better estimate the biological effect of PHCs in soil. Comparative data was presented and discussed along with proposed methodological modifications.

  13. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M.; Ortega-Calvo, J.J.

    2005-01-01

    contain were analyzed by gas chromatography method. Four bioassays were used to measure toxicity during bio-remediation of soil contaminated by petroleum hydrocarbons: Microtox(R) test, SOSchromotest, lettuce seed germination and sheep red blood cell (RBS) hemolysis assay. Rhizosphere remediation was found to be effective for removal of polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPHs) from soil with the use of alfalfa inoculated by the Pseudomonas stutzeri MEV-S1 strain (RU 2228952 patent) and oats inoculated by the Pseudomonas alcaligenes MEV strain (RU 2228953 patent) in vegetation and field experiments. The reduction of the TPH and PAH concentrations in soil was accompanied by the reduction of integral toxicity and genotoxicity, evaluated by bio-testing. It is conceivable, therefore, that a possible way to optimize petroleum hydrocarbons phyto-remediation is the use of selected plants and microbial inoculants with specific chemotactic affinities and bio-surfactant production. The proposed technology for soil bio-remediation with the use of integrated plant-microbial system is ecologically and toxicologically safe and economically attractive

  14. Bioavailability enhanced rhizosphere remediation of petroleum hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, A.; Vorobyov, A.; Zharikov, G.; Ermolenko, Z.; Dyadishchev, N.; Borovick, R.; Sokolov, M. [Research Centre for Toxicology and Hygienic Regulation of Biopreparations, Moscow region (Russian Federation); Ortega-Calvo, J.J. [Instituto de Recursos Naturales y Agrobiologia, CSIC, Sevilla (Spain)

    2005-07-01

    contain were analyzed by gas chromatography method. Four bioassays were used to measure toxicity during bio-remediation of soil contaminated by petroleum hydrocarbons: Microtox(R) test, SOSchromotest, lettuce seed germination and sheep red blood cell (RBS) hemolysis assay. Rhizosphere remediation was found to be effective for removal of polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPHs) from soil with the use of alfalfa inoculated by the Pseudomonas stutzeri MEV-S1 strain (RU 2228952 patent) and oats inoculated by the Pseudomonas alcaligenes MEV strain (RU 2228953 patent) in vegetation and field experiments. The reduction of the TPH and PAH concentrations in soil was accompanied by the reduction of integral toxicity and genotoxicity, evaluated by bio-testing. It is conceivable, therefore, that a possible way to optimize petroleum hydrocarbons phyto-remediation is the use of selected plants and microbial inoculants with specific chemotactic affinities and bio-surfactant production. The proposed technology for soil bio-remediation with the use of integrated plant-microbial system is ecologically and toxicologically safe and economically attractive.

  15. Phytoremediation mechanisms for polycyclic aromatic hydrocarbons removing from contaminated soils

    Directory of Open Access Journals (Sweden)

    Alagić Slađana Č.

    2015-01-01

    Full Text Available Phytoremediation of polycyclic aromatic hydrocarbons (PAHs from soil aims to degrade them into less toxic/non toxic compounds and limit their further movement by sequestration and accumulation into the vacuoles. Lipophilic organic compounds such as PAHs are bound strongly to the epidermis of the root tissue and are rarely translocated within plant. There are no reports in the literature data of PAHs being completely mineralized by plants. There is little evidence to suggest that PAHs accumulate to significant degree in plants, but there still is a lot of evidences on the ability of various plant species (most often grasses and legumes, to degrade and dissipate these dangerous contaminants. The primary mechanism controlling the dissipation of PAHs is rhizosphere microbial degradation where microbes use PAHs molecules as carbon substrates for growth, which in final, leads to the breakdown or total mineralization of the contaminants. The process is usually augmented by the excretion of root exudates (e.g., sugars, alcohols, acids, enzymes, and the build-up of organic carbon in the soil, so the proper selection of particular plant species represents a critical management decision for PAHs phytoremediation. These facts favor the rhyzoremediation as the best solution for sites contaminated with PAHs.

  16. Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Saterbak, A.; Toy, R.J.; Wong, D.C.L.; McMain, B.J.; Williams, M.P.; Dorn, P.B.; Brzuzy, L.P.; Chai, E.Y.; Salanitro, J.P.

    1999-07-01

    Ecotoxicological assessments of contaminated soil aim to understand the effect of introduced chemicals on the soil flora and fauna. Ecotoxicity test methods were developed and conducted on hydrocarbon-contaminated soils and on adjacent uncontaminated control soils from eight field locations. Tests included 7-d, 14-d, and chronic survival tests and reproduction assays for the earthworm (Eisenia fetida) and seed germination, root length, and plant growth assays for corn, lettuce, mustard, and wheat. Species-specific responses were observed with no-observed effect concentrations (NOECs) ranging from <1 to 100% contaminated soil. The 14-d earthworm survival NOEC was equal to or greater than the reproduction NOEC values for numbers of cocoons and juveniles, which were similar to one another. Cocoon and juvenile production varied among the control soils. Germination and root length NOECs for mustard and lettuce were less than NOECs for corn and wheat. Root length NOECs were similar to or less than seed germination NOECs. Statistically significant correlations for earthworm survival and seed germination as a function of hydrocarbon measurements were found. The 14-d earthworm survival and the seed germination tests are recommended for use in the context of a risk-based framework for the ecological assessment of contaminated sites.

  17. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils.

    Science.gov (United States)

    Sui, Hong; Hua, Zhengtao; Li, Xingang; Li, Hong; Wu, Guozhong

    2014-05-01

    Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76-94 % of the total petroleum hydrocarbons including 25 alkanes (C11-C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol-water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 10(5) mg kg(-1) in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.

  18. Study of remobilization polycyclic aromatic hydrocarbons (PAHs) in contaminated matrices

    International Nuclear Information System (INIS)

    Belkessam, L.; Vessigaud, S.; Laboudigue, A.; Vessigaud, S.; Perrin-Ganier, C.; Schiavon, M.; Denys, S.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) originate from many pyrolysis processes. They are widespread environmental pollutants because some of them present toxic and genotoxic properties. In coal pyrolysis sites such as former manufactured gas plants and coke production plants, coal tar is a major source of PAHs. The management of such sites requires better understanding of the mechanisms that control release of PAHs to the biosphere. Determining total PAH concentrations is not sufficient since it does not inform about the pollutants availability to environmental processes. The fate and transport of PAHs in soil are governed by sorption and microbial processes which are well documented. Globally, enhancing retention of the compounds by a solid matrix reduces the risk of pollutant dispersion, but decreases their accessibility to microbial microflora. Conversely, the remobilization of organics from contaminated solid matrices represents a potential hazard since these pollutants can reach groundwater resources. However the available data are often obtained from laboratory experiments in which many field parameters can not be taken into account (long term, temperature, co-pollution, ageing phenomenon, heterogenous distribution of pollution). The present work focuses on the influence assessment and understanding of some of these parameters on PAHs remobilization from heavily polluted matrices in near-field conditions (industrial contaminated matrices, high contact time, ..). Results concerning effects of temperature and physical state of pollution (dispersed among the soil or condensed in small clusters or in coal tar) are presented. (authors)

  19. Exploration of Hydrocarbon Degrading Bacteria on Soils Contaminated by Crude Oil From South Sumatera

    OpenAIRE

    Napoleon, A; Probowati, D S

    2014-01-01

    The goal of this research was to explore hydrocarbon degrading bacteria on crude oil contaminated soil with potential to degrade hydrocarbon in oil pollutant. The research started by early August 2013 till January 2014. Soil sampling for this research was taken on several places with contaminated soil location such as Benakat, Rimau, and Pengabuan all of it located in South Sumatera. Conclusion from this research Isolates obtained from three (3) sites of contaminated soil and treated using SB...

  20. Use of biological activities to monitor the removal of fuel contaminants - perspective for monitoring hydrocarbon contamination: A review

    CSIR Research Space (South Africa)

    Maila, MP

    2005-01-01

    Full Text Available Soil biological activities are vital for the restoration of soil contaminated with hydrocarbons. Their role includes the biotransformation of petroleum compounds into harmless compounds. In this paper, the use of biological activities as potential...

  1. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste

    International Nuclear Information System (INIS)

    Mikkonen, Anu; Hakala, Kati P.; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-01-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC–FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. - Highlights: ► Weathered hydrocarbon contamination and soil quality on landfarm site were studied. ► Silica fractionation of hydrocarbons separated aliphatics, aromatics and polars. ► Polar hydrocarbon metabolites had accumulated in the surface soil. ► Total hydrocarbons and TPH correlated with soil quality changes better than polars. ► Toxic response of soil microbial biomass and activity were seen at low TPH (<0.5%). - Polar metabolites constitute the largest fraction of crude oil-derived contaminants in a landfarming site, but TPH better explains soil microbial and ecotoxicological responses.

  2. Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations.

    Science.gov (United States)

    Falciglia, P P; Vagliasindi, F G A

    2014-01-01

    In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil.

  3. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    International Nuclear Information System (INIS)

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H.; Ren, Zhiyong Jason

    2014-01-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m 2 . The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures

  4. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu; Yazdi, Hadi [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY (United States); Zuo, Yi [Chevron Energy Technology Company, San Ramon, CA (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States)

    2014-06-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m{sup 2}. The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  5. Characterization of the vadose zone above a shallow aquifer contaminated with gas condensate hydrocarbons

    International Nuclear Information System (INIS)

    Sublette, K.; Duncan, K.; Thoma, G.; Todd, T.

    2002-01-01

    A gas production site in the Denver Basin near Ft. Lupton, Colorado has leaked gas condensate hydrocarbons from an underground concrete tank used to store produced water. The leak has contaminated a shallow aquifer. Although the source of pollution has been removed, a plume of hydrocarbon contamination still remains for nearly 46 m from the original source. An extensive monitoring program was conducted in 1993 of the groundwater and saturated sediments. The objective was to determine if intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurred at the site at a rate that would support remediation. Geochemical indicators of hydrogen biodegradation by microorganisms in the saturated zone included oxygen depletion, increased alkalinity, sulfate depletion, methane production and Fe2+ production associated with hydrogen contamination. The presence of sulfate-reducing bacteria and methanogens was also much higher in the contaminated sediments. Degraded hydrocarbon metabolites were found in contaminated groundwater. An extensive characterization of the vadose zone was conducted in which the vadose zone was sample in increments of 15 cm from the surface to the water table at contaminated and non contaminated sites. The samples were tested for individual C3+ hydrocarbons, methane, CO2, total organic carbon, total inorganic carbon, and total petroleum hydrocarbons. The vadose zone consisted of an active and aerobic bioreactor fueled by condensate hydrocarbons transported into the unsaturated zone by evaporation of hydrocarbons at the water table. It was concluded that the unsaturated zone makes an important contribution to the natural attenuation of gas condensate hydrocarbons in the area. 17 refs., 2 tabs., 28 figs

  6. Development of a multistrain bacterial bioreporter platform for the monitoring of hydrocarbon contaminants in marine environments

    NARCIS (Netherlands)

    Tecon, R.; Beggah, S.; Czechowska, K.; Sentchilo, V.; Chronopoulou, P.M.; McGenity, T.J.; van der Meer, J.R.

    2010-01-01

    Petroleum hydrocarbons are common contaminants in marine and freshwater aquatic habitats, often occurring as a result of oil spillage. Rapid and reliable on-site tools for measuring the bioavailable hydrocarbon fractions, i.e., those that are most likely to cause toxic effects or are available for

  7. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R. [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1993-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  8. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1994-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  9. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination

    OpenAIRE

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species....

  10. Phytoremediation of hydrocarbon-contaminated soil using plants adapted to western Canadian climate

    International Nuclear Information System (INIS)

    Robson, D.B.

    2003-01-01

    Phytoremediation relies on the use of plants for in-situ treatment of hydrocarbon contaminated soils. It is based on relationships between plants, microorganisms and the environment. The advantages of the process are its low cost and minimal soil disturbance. Phytoremediation has not been widely implemented in Canada because only a few native or non-native plant species have been tested for hydrocarbon tolerance or degradation ability. More studies are needed to fully understand why some plants are more tolerant of hydrocarbons than others, and whether tolerant species increase hydrocarbon degradation. In this study, several field and growth chamber experiments were conducted to examine hydrocarbon tolerance in plants. Hydrocarbon contaminated field plots had higher soil pH, carbon to nitrogen ratio and bare ground, lower total nitrogen, available phosphorous and litter cover. The mean diversity at the uncontaminated sites was 0.52. It was 0.45 at the contaminated sites. Mean species similarity between contaminated and uncontaminated sites was 31.1 per cent and cover similarity was 22.2 per cent. The common plants in the contaminated field included kochia, wild barley, salt grass, bluegrass, and wheatgrass. The plants that formed most plant cover on contaminated plots were non-mycorrhizal, self-pollinating, and large seeded. The species with the highest survival after 5 weeks in hydrocarbon contaminated soils included one native and 4 non-native grasses, 2 native and 3 non-native legumes and 2 native forbs. All plants (with the exception of Indian breadroot) grown in hydrocarbon contaminated potting soil had lower total biomass and lower growth rates compared to the control

  11. Phytoremediation of hydrocarbon-contaminated soil using plants adapted to western Canadian climate

    Energy Technology Data Exchange (ETDEWEB)

    Robson, D.B.

    2003-07-01

    Phytoremediation relies on the use of plants for in-situ treatment of hydrocarbon contaminated soils. It is based on relationships between plants, microorganisms and the environment. The advantages of the process are its low cost and minimal soil disturbance. Phytoremediation has not been widely implemented in Canada because only a few native or non-native plant species have been tested for hydrocarbon tolerance or degradation ability. More studies are needed to fully understand why some plants are more tolerant of hydrocarbons than others, and whether tolerant species increase hydrocarbon degradation. In this study, several field and growth chamber experiments were conducted to examine hydrocarbon tolerance in plants. Hydrocarbon contaminated field plots had higher soil pH, carbon to nitrogen ratio and bare ground, lower total nitrogen, available phosphorous and litter cover. The mean diversity at the uncontaminated sites was 0.52. It was 0.45 at the contaminated sites. Mean species similarity between contaminated and uncontaminated sites was 31.1 per cent and cover similarity was 22.2 per cent. The common plants in the contaminated field included kochia, wild barley, salt grass, bluegrass, and wheatgrass. The plants that formed most plant cover on contaminated plots were non-mycorrhizal, self-pollinating, and large seeded. The species with the highest survival after 5 weeks in hydrocarbon contaminated soils included one native and 4 non-native grasses, 2 native and 3 non-native legumes and 2 native forbs. All plants (with the exception of Indian breadroot) grown in hydrocarbon contaminated potting soil had lower total biomass and lower growth rates compared to the control.

  12. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    Science.gov (United States)

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-02

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor.

  13. Avoidance of polycyclic aromatic hydrocarbon-contaminated sediments by the freshwater invertebrates Gammarus pulex and Asellus aquaticus

    NARCIS (Netherlands)

    Lange, de H.J.; Sperber, V.; Peeters, E.T.H.M.

    2006-01-01

    Contamination of sediments is a serious problem in most industrialized areas. Sediments are often contaminated with trace metals and organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Bioassays are often used to determine the effect of

  14. A combined approach of physicochemical and biological methods for the characterization of petroleum hydrocarbon-contaminated soil.

    Science.gov (United States)

    Masakorala, Kanaji; Yao, Jun; Chandankere, Radhika; Liu, Haijun; Liu, Wenjuan; Cai, Minmin; Choi, Martin M F

    2014-01-01

    Main physicochemical and microbiological parameters of collected petroleum-contaminated soils with different degrees of contamination from DaGang oil field (southeast of Tianjin, northeast China) were comparatively analyzed in order to assess the influence of petroleum contaminants on the physicochemical and microbiological properties of soil. An integration of microcalorimetric technique with urease enzyme analysis was used with the aim to assess a general status of soil metabolism and the potential availability of nitrogen nutrient in soils stressed by petroleum-derived contaminants. The total petroleum hydrocarbon (TPH) content of contaminated soils varied from 752.3 to 29,114 mg kg(−1). Although the studied physicochemical and biological parameters showed variations dependent on TPH content, the correlation matrix showed also highly significant correlation coefficients among parameters, suggesting their utility in describing a complex matrix such as soil even in the presence of a high level of contaminants. The microcalorimetric measures gave evidence of microbial adaptation under highest TPH concentration; this would help in assessing the potential of a polluted soil to promote self-degradation of oil-derived hydrocarbon under natural or assisted remediation. The results highlighted the importance of the application of combined approach in the study of those parameters driving the soil amelioration and bioremediation.

  15. Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands

    International Nuclear Information System (INIS)

    Bizecki Robson, D.; Knight, J. D.; Farrell, R. E.; Germida, J. J.

    2004-01-01

    Phytoremediation, or the use of plants to degrade and contain soil contaminants is considered a cost-effective decontaminant for sites contaminated by spills in the oil and gas producing areas of Western Canada. The objective of this study was to determine if contamination by hydrocarbons changes soil properties, species composition, and species abundance when compared with uncontaminated plots, and to identify species and functional groups unique to contaminated sites that may be further screened for their hydrocarbon-degrading ability. In pursuit of these objectives the effect of contamination on coverage, litter and bare ground was examined, differences in species composition between contaminated and uncontaminated sites were assessed, and the ability to fix nitrogen, and form mycorrhiza, life form, pollination mode, seed dispersal and reproduction mode of each species was determined. Results showed less vegetation and litter cover in contaminated plots, and significantly higher soil carbon to nitrogen ratios. Species diversity was also lower on contaminated sites, although species richness was not significantly different. Self-pollinated species were significantly more common on contaminated sites. Five grasses and three forbs were identified as tolerant of hydrocarbon-contaminated soils, with two grasses -- Agropyron smithii, and Agropyron trachycaulum -- being the most promising for reclamation. The low vegetation cover on contaminated plots is attributed to high pH and carbon to nitrogen ratios, and low nitrogen and phosphorus that results from soil disturbance. High electrical conductivity is also considered to adversely affect vegetation and litter cover on contaminated sites. 54 refs., 3 tabs., 1 fig

  16. Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Bizecki Robson, D.; Knight, J. D.; Farrell, R. E.; Germida, J. J. [University of Saskatchewan, Dept. of Soil Science, Saskatoon, SK (Canada)

    2004-01-01

    Phytoremediation, or the use of plants to degrade and contain soil contaminants is considered a cost-effective decontaminant for sites contaminated by spills in the oil and gas producing areas of Western Canada. The objective of this study was to determine if contamination by hydrocarbons changes soil properties, species composition, and species abundance when compared with uncontaminated plots, and to identify species and functional groups unique to contaminated sites that may be further screened for their hydrocarbon-degrading ability. In pursuit of these objectives the effect of contamination on coverage, litter and bare ground was examined, differences in species composition between contaminated and uncontaminated sites were assessed, and the ability to fix nitrogen, and form mycorrhiza, life form, pollination mode, seed dispersal and reproduction mode of each species was determined. Results showed less vegetation and litter cover in contaminated plots, and significantly higher soil carbon to nitrogen ratios. Species diversity was also lower on contaminated sites, although species richness was not significantly different. Self-pollinated species were significantly more common on contaminated sites. Five grasses and three forbs were identified as tolerant of hydrocarbon-contaminated soils, with two grasses -- Agropyron smithii, and Agropyron trachycaulum -- being the most promising for reclamation. The low vegetation cover on contaminated plots is attributed to high pH and carbon to nitrogen ratios, and low nitrogen and phosphorus that results from soil disturbance. High electrical conductivity is also considered to adversely affect vegetation and litter cover on contaminated sites. 54 refs., 3 tabs., 1 fig.

  17. Comparison of the environmental impacts of two remediation technologies used at hydrocarbon contaminated sites

    International Nuclear Information System (INIS)

    Viikala, R.; Kuusola, J.

    2000-01-01

    Investigation and remediation of contaminated sites has rapidly increased in Finland during the last decade. Public organisations as well as private companies are investigating and remediating their properties, e.g. redevelopment or business transactions. Also numerous active and closed gasoline stations have been investigated and remediated during the last few years. Usually the contaminated sites are remediated to limit values regardless of the risk caused by contamination. The limit values currently used in Finland for hydrocarbon remediation at residential or ground water areas are 300 mg/kg of total hydrocarbons and 100 mg/kg of volatile hydrocarbons (boiling point < appr. 200 deg C). Additionally, compounds such as aromatic hydrocarbons have specific limit values. Remediation of hydrocarbon contaminated sites is most often carried out by excavating the contaminated soil and taking it to a landfill by lorries. As distances from the sites to landfills are generally rather long, from tens of kilometres to few hundred kilometres, it is evident that this type of remediation has environmental impacts. Another popular technology used at sites contaminated by volatile hydrocarbons is soil vapour extraction (SVE). SVE is a technique of inducing air flow through unsaturated soils by vapour extraction wells or pipes to remove organic contaminants with an off-gas treatment system. The purpose of this study was to evaluate some of the environmental impacts caused by remediation of hydrocarbon contaminated soil. Energy consumption and air emissions related remedial activities of the two methods were examined in this study. Remediation of the sites used in this study were carried out by Golder Associates Oy in different parts of Finland in different seasons. Evaluation was made by using life cycle assessment based approach

  18. Geophysical Responses of Hydrocarbon-impacted Zones at the Various Contamination Conditions

    Science.gov (United States)

    Kim, C.; Ko, K.; Son, J.; Kim, J.

    2008-12-01

    One controlled experiment and two field surveys were conducted to investigate the geoelectrical responses of hydrocarbon-contaminated zones, so called smeared zone, on the geophysical data at the hydrocarbon- contaminated sites with various conditions. One controlled physical model experiment with GPR using fresh gasoline and two different 3-D electrical resistivity investigations at the aged sites. One field site (former military facilities for arms maintenance) was mainly contaminated with lubricating oils and the other (former gas station) was contaminated with gasoline and diesel, respectively. The results from the physical model experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water-saturated system due to less attenuation of the electromagnetic energy through the soil medium of the hydrocarbon-impacted zone (no biodegradation), compared to when the medium was saturated with only water (no hydrocarbon impaction). In the former gas station site, 3-D resistivity results demonstrate that the highly contaminated zones were imaged with low resistivity anomalies since the biodegradation of petroleum hydrocarbons has been undergone for many years, causing the drastic increase in the TDS at the hydrocarbon-impacted zones. Finally, 3-D resistivity data obtained from the former military maintenance site show that the hydrocarbon-contaminated zones show high resistivity anomalies since the hydrocarbons such as lubricating oils at the contaminated soils were not greatly influenced by microbial degradation and has relatively well kept their original physical properties of high electrical resistivity. The results of the study illustrated that the hydrocarbon-impacted zones under various contamination conditions yielded various geophysical responses which include (1) enhanced GPR amplitudes at the fresh LNAPL (Gasoline to middle distillates) spill sites, (2) low electrical resistivity anomalies due to biodegradation at the

  19. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination.

    Science.gov (United States)

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as

  20. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination

    Science.gov (United States)

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as

  1. Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.R.T.; Koskinen, P.E.P.; Tuhkanen, T.A.; Puhakka, J.A. [Inst. of Environmental Engineering and Biotechnology, Tampere Univ. of Tech., Tampere (Finland); Pichtel, J. [Natural Resources and Environmental Management, Ball State Univ., Muncie, IN (United States); Vaajasaari, K. [Pirkanmaa Regional Environment Centre, Tampere (Finland); Joutti, A. [Finnish Environment Inst., Helsinki (Finland)

    2006-08-15

    Background, Aims, and Scope. Phytoremediation is remediation method which uses plants to remove, contain or detoxify environmental contaminants. Phytoremediation has successfully been applied for the removal of fresh hydrocarbon contamination, but removal of aged hydrocarbons has proven more difficult. Biodegradation of hydrocarbons in the subsurface can be enhanced by the presence of plant roots, i.e. the rhizosphere effect. Phytostabilization reduces heavy metal availability via immobilization in the rhizosphere. Soils contaminated by both hydrocarbons and heavy metals are abundant and may be difficult to treat. Heavy metal toxicity can inhibit the activity of hydrocarbon-degrading micro-organisms and decrease the metabolic diversity of soil bacteria. In this experiment, weathered hydrocarbon- and heavy metal-contaminated soil was treated using phytoremediation in a 39-month field study in attempts to achieve both hydrocarbon removal and heavy metal stabilization. Methods. A combination of hydrocarbon degradation and heavy metal stabilization was evaluated in a field-scale phytoremediation study of weathered contaminants. Soil had been contaminated over several years with hydrocarbons (11,400{+-}4,300 mg kg dry soil){sup -1} and heavy metals from bus maintenance activities and was geologically characterized as till. Concentrations of soil copper, lead and zinc were 170{+-}50 mgkg{sup -1}, 1,100{+-}1,500 mg kg{sup -1} and 390{+-} 340 mg kg{sup -1}, respectively. The effect of contaminants, plant species and soil amendment (NPK fertilizer or biowaste compost) on metabolic activity of soil microbiota was determined. Phytostabilization performance was investigated by analyses of metal concentrations in plants, soil and site leachate as well as acute toxicity to Vibrio fischeri and Enchtraeus albidus. Results. Over 39 months hydrocarbon concentrations did not decrease significantly (P=0.05) in non-amended soil, although 30% of initial hydrocarbon concentrations were

  2. Interpretative approaches to identifying sources of hydrocarbons in complex contaminated environments

    International Nuclear Information System (INIS)

    Sauer, T.C.; Brown, J.S.; Boehm, P.D.

    1993-01-01

    Recent advances in analytical instrumental hardware and software have permitted the use of more sophisticated approaches in identifying or fingerprinting sources of hydrocarbons in complex matrix environments. In natural resource damage assessments and contaminated site investigations of both terrestrial and aquatic environments, chemical fingerprinting has become an important interpretative tool. The alkyl homologues of the major polycyclic and heterocyclic aromatic hydrocarbons (e.g., phenanthrenes/anthracenes, dibenzothiophenes, chrysenes) have been found to the most valuable hydrocarbons in differentiating hydrocarbon sources, but there are other hydrocarbon analytes, such as the chemical biomarkers steranes and triterpanes, and alkyl homologues of benzene, and chemical methodologies, such as scanning UV fluorescence, that have been found to be useful in certain environments. This presentation will focus on recent data interpretative approaches for hydrocarbon source identification assessments. Selection of appropriate targets analytes and data quality requirements will be discussed and example cases including the Arabian Gulf War oil spill results will be presented

  3. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories

    OpenAIRE

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L.; Díaz-Ramírez, Ildefonso J.

    2015-01-01

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and

  4. Diatom, cyanobacterial and microbial mats as indicators of hydrocarbon contaminated Arctic streams and waters

    Energy Technology Data Exchange (ETDEWEB)

    Ziervogel, H.; Selann, J.; Adeney, B. [EBA Engineering Consultants Ltd., Edmonton, AB (Canada); Nelson, J.A. [J.B. Services, Sarnia, ON (Canada); Murdock, E. [Nunavut Power, Iqaluit (Canada)

    2003-07-01

    An environmental assessment conducted at Repulse Bay, Nunavut in the summer of 2001 revealed a recent diesel spill flowing from the groundwater into a creek. The spill had not been reported. When Arctic surface waters mix with hydrocarbon impacted groundwater and sediments, distinctive mats of diatom, cyanobacteria and other bacteria are formed. These mats have the potential for phytoremediation of hydrocarbons. This paper explained the apparent dominance of mats in contaminated Arctic waters and why they promote biodegradation of hydrocarbons. Hydrocarbon-contaminated soils and groundwater are generally anaerobic. The higher dissolved carbon dioxide in polluted soils and groundwater can benefit photosynthetic cyanobacteria and diatom found in oligotrophic, lower alkalinity Arctic waters. The anaerobic and aerobic bacteria can potentially take advantage of the hydrogen substrate and the nitrogen fixing abilities of the cyanobacteria. Zooplankton predators may be killed off by the toxicity of the polluted groundwater. The paper provides examples where a microbial mat reduced the sulfate content of a hydrocarbon-impacted Arctic stream by 100 ppm, and where a pond covered in a benthic microbial mat showed no evidence of hydrocarbons in the water overlying sediments contaminated with hydrocarbons at concentrations measured at 30,000 ppm. 19 refs., 3 tabs., 8 figs.

  5. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil.

    Science.gov (United States)

    Lu, Lu; Huggins, Tyler; Jin, Song; Zuo, Yi; Ren, Zhiyong Jason

    2014-04-01

    This study demonstrates that electrodes in a bioelectrochemical system (BES) can potentially serve as a nonexhaustible electron acceptor for in situ bioremediation of hydrocarbon contaminated soil. The deployment of BES not only eliminates aeration or supplement of electron acceptors as in contemporary bioremediation but also significantly shortens the remediation period and produces sustainable electricity. More interestingly, the study reveals that microbial metabolism and community structure distinctively respond to the bioelectrochemically enhanced remediation. Tubular BESs with carbon cloth anode (CCA) or biochar anode (BCA) were inserted into raw water saturated soils containing petroleum hydrocarbons for enhancing in situ remediation. Results show that total petroleum hydrocarbon (TPH) removal rate almost doubled in soils close to the anode (63.5-78.7%) than that in the open circuit positive controls (37.6-43.4%) during a period of 64 days. The maximum current density from the BESs ranged from 73 to 86 mA/m(2). Comprehensive microbial and chemical characterizations and statistical analyses show that the residual TPH has a strongly positive correlation with hydrocarbon-degrading microorganisms (HDM) numbers, dehydrogenase activity, and lipase activity and a negative correlation with soil pH, conductivity, and catalase activity. Distinctive microbial communities were identified at the anode, in soil with electrodes, and soil without electrodes. Uncommon electrochemically active bacteria capable of hydrocarbon degradation such as Comamonas testosteroni, Pseudomonas putida, and Ochrobactrum anthropi were selectively enriched on the anode, while hydrocarbon oxidizing bacteria were dominant in soil samples. Results from genus or phylum level characterizations well agree with the data from cluster analysis. Data from this study suggests that a unique constitution of microbial communities may play a key role in BES enhancement of petroleum hydrocarbons

  6. Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: An Overview

    OpenAIRE

    Norzila Othman; Mohd Irwan Juki; Norhana Hussain; Suhaimi Abdul Talib

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of priority pollutants which are present at high concentration in soils of many industrially contaminated sites. Standards and criteria for the remediation of soils contaminated with PAHs vary widely between countries. Bioremediation has gained preference as a technology for remediation contaminated sites as it is less expensive and more environmental friendly. Bioremediation utilizes microorganisms to degrade PAHs to less toxic compou...

  7. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems.

    Science.gov (United States)

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H; Ren, Zhiyong Jason

    2014-06-15

    Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1-89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1-34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m(2). The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11-12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Stimulation of biological N2-fixation to accelerate the microbial remediation of soil contaminated by petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Tereshenko, N.N.; Lushnikov, S.V.

    2005-01-01

    All remediation projects are comprised at least in accelerating the processes of the self-cleaning and self-restoration of biocenose which is led to increasing the functional activity of hydrocarbon-oxidizing microflora (HOM). Some of experts are carefully relate to introducing the commercial cultures of active hydrocarbon-consuming microbes into soils. They are afraid of unpredictable behavior of the cultures in soils. That why the stimulation of metabolic activity of indigenous soil microflora seems to be most preferable. In fact, contamination of soil with low nitrogen capacity by oil spills leads to significant deficient of nitrogen for HOM. Nitrogen content limits the soil self-restoration. Inorganic nitrogen fertilizers are supplied to recover the balance. The study of the microbial destruction of petroleum-hydrocarbons in association with biochemical transformation of nitrogen was carried out in lab and field experiments during 2000-2004. Study showed the activity of HOM correlates with rate of microbial fixing atmospheric nitrogen. Activity of biological N 2 -fixation significantly depends on supplying fertilizers (dose, date and kind). General practice of remediation of hydrocarbon-contaminated soils applies high initial doses of nitrogen-fertilizers (0.5-1 t per ha). Such practice leads to inhibition of N 2 -fixation processes, decreasing rate of oil destruction and loosing nitrogen due to activation of microbial denitrification. In opposition to that, the fractioned and advanced supplying mineral nitrogen fertilizers with aluminosilicate is the cost-effective approach to remediation of hydrocarbon-contaminated soils. Field experiments showed that the approach allows to increase efficiency of treatment up to 70-75% and to decrease operational expenses 2-3 times at least. (authors)

  9. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste.

    Science.gov (United States)

    Mikkonen, Anu; Hakala, Kati P; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-03-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC-FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants.

    Science.gov (United States)

    Ramadass, Kavitha; Palanisami, Thavamani; Smith, Euan; Mayilswami, Srinithi; Megharaj, Mallavarapu; Naidu, Ravi

    2016-11-01

    Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg -1 soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm -1 . Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.

  11. Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer

    International Nuclear Information System (INIS)

    Gieg, L.M.; McInerney; Tanner, R.S.; Harris, S.H. Jr.; Sublette, K.L.; Suflita, J.M.; Kolhatkar, R.V.

    1999-01-01

    A study was designed to determine if the intrinsic bioremediation of gas condensate hydrocarbons represented an important fate process in a shallow aquifer underlying a natural gas production site. For over 4 yr, changes in the groundwater, sediment, and vadose zone chemistry in the contaminated portion of the aquifer were interpreted relative to a background zone. Changes included decreased dissolved oxygen and sulfate levels and increased alkalinity, Fe(II), and methane concentrations in the contaminated groundwater, suggesting that aerobic heterotrophic respiration depleted oxygen reserves leaving anaerobic conditions in the hydrocarbon-impacted subsurface. Dissolved hydrogen levels in the contaminated groundwater indicated that sulfate reduction and methanogenesis were predominant biological processes, corroborating the geochemical findings. Furthermore, 10--1000-fold higher numbers of sulfate reducers and methanogens were enumerated in the contaminated sediment relative to background. Putative metabolites were also detected in the contaminated groundwater, including methylbenzylsuccinic acid, a signature intermediate of anaerobic xylene decay. Laboratory incubations showed that benzene, toluene, ethylbenzene, and each of the xylene isomers were biodegraded under sulfate-reducing conditions as was toluene under methanogenic conditions. These results coupled with a decrease in hydrocarbon concentrations in contaminated sediment confirm that intrinsic bioremediation contributes to the attenuation of hydrocarbons in this aquifer

  12. Exploration of hydrocarbon degrading bacteria on soils contaminated by crude oil from South Sumatera

    Directory of Open Access Journals (Sweden)

    A. Napoleon

    2014-07-01

    Full Text Available The goal of this research was to explore hydrocarbon degrading bacteria on crude oil contaminated soil with potential to degrade hydrocarbon in oil pollutant. The research started by early August 2013 till January 2014. Soil sampling for this research was taken on several places with contaminated soil location such as Benakat, Rimau, and Pengabuan all of it located in South Sumatera. Conclusion from this research Isolates obtained from three (3 sites of contaminated soil and treated using SBS medium were Bacillus cereus, Pseudomonas aeruginosa, Klebsiella pnumoniae, Streptococcus beta hemolisa, Proteus mirabilis, Staphylococcus epidermis and Acinotobacter calcoaceticus. Isolates that survived on 300 ppm of hydrocarbon concentration were Bacillus cereus, Pseudomonas aeruginosa and Acinetobacter cakciaceticus Selected isolates posses the ability to degrade hydrocarbon by breaking hydrocarbon substance as the energy source to support isolates existence up to 1,67 TPH level. Based on results accomplish by this research, we urge for further research involving the capacity of isolates to degrade wide variety of hydrocarbon substance and more to develop the potential of these bacteria for bioremediation.

  13. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments

    Science.gov (United States)

    Yang, Sizhong; Wen, Xi; Shi, Yulan; Liebner, Susanne; Jin, Huijun; Perfumo, Amedea

    2016-01-01

    Oil spills from pipeline ruptures are a major source of terrestrial petroleum pollution in cold regions. However, our knowledge of the bacterial response to crude oil contamination in cold regions remains to be further expanded, especially in terms of community shifts and potential development of hydrocarbon degraders. In this study we investigated changes of microbial diversity, population size and keystone taxa in permafrost soils at four different sites along the China-Russia crude oil pipeline prior to and after perturbation with crude oil. We found that crude oil caused a decrease of cell numbers together with a reduction of the species richness and shifts in the dominant phylotypes, while bacterial community diversity was highly site-specific after exposure to crude oil, reflecting different environmental conditions. Keystone taxa that strongly co-occurred were found to form networks based on trophic interactions, that is co-metabolism regarding degradation of hydrocarbons (in contaminated samples) or syntrophic carbon cycling (in uncontaminated samples). With this study we demonstrate that after severe crude oil contamination a rapid establishment of endemic hydrocarbon degrading communities takes place under favorable temperature conditions. Therefore, both endemism and trophic correlations of bacterial degraders need to be considered in order to develop effective cleanup strategies. PMID:27886221

  14. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments

    International Nuclear Information System (INIS)

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-01-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments. - Highlights: ► Bioremediation performance was investigated on hydrocarbon contaminated sediments. ► Major changes in bacterial diversity and assemblage composition were observed. ► Temperature exerted the major effect on bacterial assemblages. ► High bacterial diversity increased significantly biodegradation performance. ► This should be considered for sediment remediation by bio-treatments. - Bioremediation strategies which can sustain high levels of bacterial diversity may significantly increase the biodegradation of hydrocarbons in contaminated marine sediments.

  15. Magnetic Parameter Changes in Soil and Sediments in the Presence of Hydrocarbon Contamination

    Science.gov (United States)

    Appel, E.; Porsch, K.; Rijal, M. L.; Ameen, N. N.; Kappler, A.

    2014-12-01

    Magnetic proxies were successfully used for fast and non-destructive detection of fly ash related heavy metal pollution. Correlations of magnetic signals with organic contaminants in soils and sediments were also reported; however, their significance is unclear because of co-existing heavy metal pollution. At a hydrocarbon (HC) contaminated former military airbase (Hradcany, Czech Rep.), where heavy metal contents are insignificant, we detected clearly higher magnetic concentrations at the top of the groundwater fluctuation (GWF) zone. Frequent GWF by up to ca. one meter was caused through remediation by air sparging. In this study and all previous ones magnetite was identified as the dominant phase for higher magnetic concentrations. To determine the importance of microbial activity and soil parameters on changes in magnetic susceptibility (MS) laboratory batch experiments with different microbially active and sterile soils without carbon addition and with gasoline amendment were setup. MS of these microcosms was followed weekly. Depending on the soil MS either increased or decreased by up to ~7% and remained constant afterwards. The main findings were that MS changes were mainly microbially driven and influenced by the bioavailable Fe content, the initial MS and the organic carbon content of the soils. Moreover, we tested magnetic changes in laboratory columns, filled with sand from the field site Hradcany, by simulating water level changes. The observed changes were small and hardly statistically significant. Our laboratory studies revealed that different factors influence changes in magnetic properties of soil/sediments after HC contamination, with much smaller effects than expected from anomalies observed at field sites. With the present results, the ambitious goal of using magnetic monitoring for detecting HC contaminations by oil spills seem far from practical application.

  16. Coagulation-flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing

    International Nuclear Information System (INIS)

    Torres, L. g.; Belloc, C.; Iturbe, R.; Bandala, E.

    2009-01-01

    A wastewater produced in the contaminated soil washing was treated by means of coagulation-flocculation (CF) process. the wastewater treatment in this work continued petroleum hydrocarbons, a surfactant, i. e., sodium dodecyl sulphate (SDS) as well as salts, humic acids and other constituents that were lixiviated rom the soil during the washing process. The aim of this work was to develop a process for treating the wastewaters generated when washing hydrocarbon-contaminated soils in such a way that it could be recycled to the washing process, and at the end of the cleaning up, the waters could be disposed properly. (Author)

  17. Enhanced thermal conduction -- An alternative solution for removing a broad range of hydrocarbons from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bova, J.C.

    1999-07-01

    This paper presents an overview of Enhanced Thermal Conduction (ETC), an ex-situ soil remediation process. A review of a practical demonstration of this process which was conducted by Woodward-Clyde Consultants to determine the capability of the technology for remediating soils from gasworks sites that have been contaminated with petroleum hydrocarbons, polynuclear hydrocarbons (PAHs) and cyanide is also presented in this paper. Projections for using this process to treat soils contaminated with other hazardous materials such as TCE PCE and PCB's are discussed as well.

  18. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Boutheina Gargouri

    2015-01-01

    Full Text Available Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  19. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  20. Hydrodynamic analysis application of contaminated groundwater remediation to oil hydrocarbons

    OpenAIRE

    Pajić Predrag R.; Čalenić Aleksandar I.; Polomčić Dušan M.; Bajić Dragoljub I.

    2017-01-01

    In this paper, the application of the hydrodynamic analysis in the selected ‘pumping and treatment’ remediation method of groundwater hydrocarbon pollution in the case of the Pancevo oil refinery is examined. The applied hydrodynamic analysis represents a regular and necessary approach in modern hydrogeology. Previous chemical analysis of soil and groundwater samples at observation objects revealed their pollution by oil products. New researches included the constraction of 12 piezometric bor...

  1. Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities.

    Science.gov (United States)

    Towell, Marcie G; Bellarby, Jessica; Paton, Graeme I; Coulon, Frédéric; Pollard, Simon J T; Semple, Kirk T

    2011-02-01

    This study investigated the microbial degradation of (14)C-labelled hexadecane, octacosane, phenanthrene and pyrene and considered how degradation might be optimised in three genuinely hydrocarbon-contaminated soils from former petroleum refinery sites. Hydrocarbon mineralisation by the indigenous microbial community was monitored over 23 d. Hydrocarbon mineralisation enhancement by nutrient amendment (biostimulation), hydrocarbon degrader addition (bioaugmentation) and combined nutrient and degrader amendment, was also explored. The ability of indigenous soil microflora to mineralise (14)C-target hydrocarbons was appreciable; ≥ 16% mineralised in all soils. Generally, addition of nutrients or degraders increased the rates and extents of mineralisation of (14)C-hydrocarbons. However, the addition of nutrients and degraders in combination had a negative effect upon (14)C-octacosane mineralisation and resulted in lower extents of mineralisation in the three soils. In general, the rates and extents of mineralisation will be dependent upon treatment type, nature of the contamination and adaptation of the ingenious microbial community. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Bioremediation of hydrocarbon-contaminated soils: are treatability and ecotoxicity endpoints related?

    International Nuclear Information System (INIS)

    Visser, S.

    1999-01-01

    To determine if there is a relationship between biotreatability and ecotoxicity endpoints in a wide range of hydrocarbon-contaminated soils, including medium and heavy crude oil-contaminated flare pit wastes and lubrication oil contaminated soil, research was conducted. Each test material was analyzed for pH, water repellency, electrical conductivity, available N and P, total extractable hydrocarbons, oil and grease, and toxicity to seedling emergence, root elongation in barley, lettuce and canola, earthworm survival and luminescent bacteria (Microtox), prior to, and following three months of bioremediation in the laboratory. By monitoring soil respiration, progress of the bioremediation process and determination of a treatment endpoint were assessed. The time required to attain a treatment endpoint under laboratory conditions can range from 30 days to 100 days depending on the concentration of hydrocarbons and degree of weathering. Most flare pits are biotreatable, averaging a loss of 25-30% of hydrocarbons during bioremediation. Once a treatment endpoint is achieved, residual hydrocarbons contents almost always exceeds Alberta Tier I criteria for mineral oil and grease. As a result of bioremediation treatments, hydrophobicity is often reduced from severe to low. Many flare pit materials are still moderately to extremely toxic after reaching a treatment endpoint. (Abstract only)

  3. Inhibition of hydrocarbon bioremediation by lead in a crude oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, E.S.; Obuekwe, C. [Kuwait University (Kuwait). Department of Biological Sciences, Microbiology Program

    2005-07-01

    Analyses of soil samples revealed that the level of lead (total or bioavailable) was three-fold greater in crude oil contaminated than in uncontaminated Kuwaiti soils. Investigation of the possible inhibitory effect of lead on hydrocarbon degradation by the soil microbiota showed that the number of hydrocarbon-degrading bacteria decreased with increased levels of lead nitrate added to soil samples, whether oil polluted or not. At 1.0 mg lead nitrate g{sup -1} dry soil, the number of degraders of hexadecane, naphthalene and crude oil declined by 14%, 23% and 53%, respectively. In a similar manner, the degradation and mineralization of different hydrocarbons decreased with increased lead content in cultures, although the decreases were not significantly different (P>0.05). The dehydrogenase activities of soil samples containing hydrocarbons as substrates also declined with an increase in the lead content of soil samples. (author)

  4. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Tomáš; Vosáhlová, S.; Matějů, V.; Kováčová, Nora; Novotný, Čeněk

    2007-01-01

    Roč. 52, č. 1 (2007), s. 1-7 ISSN 0090-4341 R&D Projects: GA MŠk LN00B030; GA AV ČR KJB600200514 Institutional research plan: CEZ:AV0Z50200510 Keywords : bioremediation * ecotoxicity * hydrocarbon-contaminated soil Subject RIV: EE - Microbiology, Virology Impact factor: 1.620, year: 2007

  5. Analyzing geophysical signature of a hydrocarbon-contaminated soil using geoelectrical surveys

    Czech Academy of Sciences Publication Activity Database

    Koroma, Sylvester; Arrato, A.; Godio, A.

    2015-01-01

    Roč. 74, č. 4 (2015), s. 2937-2948 ISSN 1866-6280 Institutional support: RVO:68145535 Keywords : electrical conductivity * induced polarization * hydrocarbon-contaminated site * biodegradation Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.765, year: 2014 http://link.springer.com/article/10.1007/s12665-015-4326-6

  6. Effect of hydrocarbon-contaminated fluctuating groundwater on magnetic properties of shallow sediments

    Czech Academy of Sciences Publication Activity Database

    Ameen, N. N.; Klueglein, N.; Appel, E.; Petrovský, Eduard; Kappler, A.; Leven, C.

    2014-01-01

    Roč. 58, č. 3 (2014), s. 442-460 ISSN 0039-3169 R&D Projects: GA MŠk(CZ) LG13042 Institutional support: RVO:67985530 Keywords : environmental magnetism * magnetic susceptibility * groundwater table fluctuation * hydrocarbon contamination * magnetite formation Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  7. Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments

    Czech Academy of Sciences Publication Activity Database

    Rijal, M. L.; Appel, E.; Petrovský, Eduard; Blaha, U.

    2010-01-01

    Roč. 158, č. 5 (2010), s. 1756-1762 ISSN 0269-7491 Institutional research plan: CEZ:AV0Z30120515 Keywords : hydrocarbon contamination * groundwater table fluctuation * magnetic properties * environmental magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.395, year: 2010

  8. Petroleum hydrocarbon contamination of the Southern Black Sea Shelf, Turkey.

    Science.gov (United States)

    Balkıs, Nuray; Aksu, Abdullah; Erşan, Mahmut S

    2012-02-01

    In this study, total petroleum hydrocarbon (TPH) contents and some aliphatic and aromatic hydrocarbon concentrations were analysed in coastal sediments of hot points collected from along the Southern Black Sea Shelf. Surface sediment (0-2 cm) samples were collected from the locations using a Van Veen type grab sampler in September 2008 during a cruise on the Pollution Monitoring R/V ARAR. All sampling procedures were carried out according to internationally recognized guide-lines (UNEP 1991). Samples were analysed using a UV-fluorescence spec-trophotometry (UNEP/IOC/IAEA 1992) and gas chromatog- raphy (GC) via a Hewlett-Packard HP6890N series with a selective detector (GC-MSD) after hexane/ dichloromethane extraction. The ratio C(17)/C(18) varied between 2.2 and 2.9 for the surface sediments of TRK 34Y (Samsun), TRK46 (Giresun), and TRK55 (Rize), respectively. These results showed higher marine organic matter accumulation. However, pyrolytic PAHs were found predominant in these areas. In contrast, petrogenic contributions were found at Stations TRK1 (İğneada), TRK13 (Zonguldak), TRK53 (Trabzon) and TRK61 (Hopa). TPH contents of surface sediments varied between 0.29 and 363 μg g(-1) (dry wt) throughout the shelf. The lowest values were measured at Stations TRK1 (İğneada) and TRK 19 (Bartın), whereas the highest values were found at Stations TRK13 (Zonguldak) and TRK 53 (Trabzon).

  9. Technology selection for remediation of lead and hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Richardson, K.E.; Sparks, G.M.

    1993-01-01

    This paper presents a methodology for selection of a technology for remediation of 70,000 tons of lead and hydrocarbon impacted soil resulting from an excavation at the Mobil Torrance Refinery. This methodology resulted from over two years of extensive research and technology evaluation. Twelve technologies and combination of technologies were evaluated, which often included bench scale testing, to determine the most cost effective and technically feasible remediation option. The results of the studies for each technology are discussed and presented in tabular form. The technologies investigated include: fixation/stabilization, soil washing, solvent washing, heap leach extraction, froth flotation, bioremediation, thermal desorption, electrokinetic extraction, asphalt incorporation, vitrification, off-site treatment, and off-site disposal. The associated costs and technical feasibility of each of the remediation options evaluated are presented. Laboratory analyses of the excavated soil indicate hydrocarbons range from non-detect to 11,000 ppm with an average of 2,600 ppm, soluble lead (CA test-not TCLP) range from 1.4 ppm to 100 ppm with an average of 29 ppm, and low levels of organic lead are present. Average grain size of the soil ranges from number-sign 200 to number-sign 120 mesh, and permeability averages 10--4 cm/sec. Significant odors, likely caused by hydrogen sulfide and thiophenes, were detected when the soil was excavated and control of odors during the remediation phase is a critical concern

  10. The bio-remediation of the contamination with hydrocarbons

    International Nuclear Information System (INIS)

    Montoya, Sandra J; Concha, Alexander; Alcalde, Osmar R; Alvarez, Juan C; Garcia, Juan G; Guerra, Fabio W

    1999-01-01

    The activities of the oil industry comprise many processes that represent environmental risks, usually the pollution of the ecosystems with hydrocarbons. When bulky spills occur, the first measure used for damage repair is the physical gathering, but scattered quantities of oil even remain. The last is typical of chronic leakage's when is necessary to make use of other procedures for the environmental restoration. The bioremediation is an effective and economic technique useful in these cases that rest upon natural processes of the detritivorous tropic chain in all the ecosystems. There are over one-hundred species of bacteria and fungi able to profit the hydrocarbons as energy source for feeding, diminishing the pollutant to levels harmless to the physical, chemical and biological properties of the ecosystems. The current weariest stock belongs to the bacteria species pseudomonas aeruginosa. To apply properly this technique is necessary to know the nature of the pollutant, the properties of the substratum and the indigenous microbiological communities. Moreover it is required to control the environmental conditions, mainly aeration, moisture, temperature, pH, and nutrients status of the substratum

  11. Analysis of contamination in liquids hydrocarbons transport for pipes

    Directory of Open Access Journals (Sweden)

    Eddy Ricardo Zárate Neira

    2003-01-01

    Full Text Available Pipeline contamination is usually understood to mean both the mixing effect produced when two different products transported by the same pipeline come into contact qith each other and often product of such mixing as well. This product os often referred to as "contamination" or as "interface" Cleary such intermixing is generally less serious in crude carrying, pipelines where each batch can become somewhat polluted by the batches inmediately preceding and immediately following without significant damage. However, the situation is different in a finished products pipeline, which may carry products as different as aircraft gasoline and light fuel oils. This article presents a brief description of the main factors influencing contamination with the objective of optimize conditions operating and to drive the more important respects about them.

  12. Bioremediation of hydrocarbon contaminated surface water, groundwater, and soils

    International Nuclear Information System (INIS)

    Piotrowski, M.R.

    1991-01-01

    Bioremediation is currently receiving considerable attention as a remediation option for sites contaminated with hazardous organic compounds. There is an enormous amount of interest in bioremediation, and numerous journals now publish research articles concerning some aspect of the remediation approach. A review of the literature indicates that two basic forms of bioremediation are currently being practiced: the microbiological approach and the microbial ecology approach. Each form has its advocates and detractors, and the microbiological approach is generally advocated by most of the firms that practice bioremediation. In this paper, the merits and disadvantages of these forms are reviewed and a conceptual approach is presented for assessing which form may be most useful for a particular contaminant situation. I conclude that the microbial ecology form of bioremediation may be the most useful for the majority of contaminant situations, and I will present two case histories in support of this hypothesis

  13. A critical assessment of asphalt batching as a viable remedial option for hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Elliott, E.J.; Brashears, D.F.

    1991-01-01

    Hot mix asphalt production equipment has been successfully utilized in the remediation of soils contaminated with petroleum hydrocarbons. This paper reports that there are two major ways in which this equipment can be used to remediate the petroleum contaminated soils; by incorporating the contaminated soil in the hot mix asphalt product or by using the equipment to clean the soil thermally of the contaminant, leaving a clean soil material. Both of these processes have limitations encompassing technical, political, and certainly liability problems. The remediation of contaminated soil in hot mix asphalt facilities is primarily a physical phenomenon relying on laws of heat and mass transfer. Although chemical changes do occur, the primary function of the process is to cause a physical separation of the contaminant from the soils

  14. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction.

    Science.gov (United States)

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2012-08-15

    This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Ecotoxicological hazard assessment of hydrocarbon contaminated soils: A case study

    International Nuclear Information System (INIS)

    Roy, Y.; Pauwels, S.J.; Chasse, R.

    1994-01-01

    The Ecotoxicological Hazard Assessment (EHA) developed by the Quebec Ministry of Environment and Wildlife was used as part of the management scheme of contaminated soils from a former refinery. The study consists of assessing five types of soils (reference, heavily contaminated, slightly contaminated, thermally-treated, and biotreated) to determine their relative intrinsic hazard. During the exploratory activities a series of ten assessment endpoints where identified to support this typical EHA. During SOURCE characterization, the physicochemical make-up of the soils is described and the presence and concentrations of priority pollutants is determined. During FATE characterization, the potential for bioconcentration, mobility, and persistence of pollutants is determined. During EFFECTS characterization, the soils and their leachates are tested using standard terrestrial and aquatic bioassays. The data from the toxicological and analytical testing program are evaluated semi-quantitatively on the basis of a scoring system developed by consensus. The discussion will highlight how data are used within an EHA to streamline the decision-making process regarding the follow-up cleanup and disposal of contaminated soils

  16. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Contamination by heavy metals and petroleum hydrocarbons: a threat to mangroves

    Directory of Open Access Journals (Sweden)

    Thaís dos Santos Alencar

    2016-12-01

    Full Text Available The mangrove ecosystem is one of the most productive ecosystems on the planet with relevant ecological importance. It offers several services such as protection of the coastal region, immobilization of contaminants, as it is a food source and refuge for various organisms. However, mangroves are threatened by human activities. Oil spills in areas close to mangroves, for example, are potential sources for the entry of contaminants such as heavy metals and hydrocarbons. Among other sources of threat, we list industrial waste and sewage, mining and fertilizer use. When they reach the mangroves, these contaminants may cause several negative effects and affect its balance.

  18. THE GEOLOGICAL CONDITIONING OF HYDROCARBON EMISSIONS RESULTING FROM SOIL CONTAMINATION

    Directory of Open Access Journals (Sweden)

    Ewa J. Lipińska

    2014-12-01

    Full Text Available Synchronization economy of oil mining and mineral waters is associated with planning the functions of spa treatment. Environmental protection of the spa areas also applies to preserve their technical and cultural heritage. This article attempts to determine the places of natural and anthropogenic hydrocarbon pollution substances. Their presence in the soil affects the quality of the environment. As a result, maps are produced showing directions of research: (1 the natural background of biodiversity, and (2 potential anthropogenic pollution. They are assessed in the context of the health and human life, protection of the environment and the possibility of damage to the environment. Research is conducted in communes of the status of the spa – for special protection.

  19. Bioremediation of hydrocarbon and brine contaminated topsoil : annual report (1992-93)

    International Nuclear Information System (INIS)

    Danielson, R.M.

    1996-01-01

    This report presents the results of a study which examined the remediation of hydrocarbon and brine contaminated topsoil in a field-based bioreactor at a gas processing plant in Nevis, Alberta during 1992 and 1993. The hydrocarbon and brine contaminated topsoil was placed in the Bio-Reactor and treated for eleven months. Four treatments were applied to eight Bio-Reactor cells: (1) ambient temperature/no forced aeration, (2) ambient temperature/forced aeration, (3) optimum temperature/no forced aeration and (4) optimum temperature/forced aeration. The ninth cell was filled with 30 cm contaminated topsoil and maintained under optimum temperature/forced aeration. The contaminated topsoil was kept moist throughout the experiment by an automatic irrigation system. The contaminated topsoil in the heated cells lost 40 per cent of its original hydrocarbon content in one year; the soil in the non-heated cells lost between 25 and 29 per cent in the same period. Results showed that the Bio-Reactor offered an inexpensive means for promoting a natural process for degrading organic compounds by microorganisms in soil. Equally important, it is capable of handling the large volumes of waste produced by the oil and gas industry. 64 refs., 35 tabs., 46 figs

  20. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species.

    Science.gov (United States)

    Cheng, Lijuan; Wang, Yanan; Cai, Zhang; Liu, Jie; Yu, Binbin; Zhou, Qixing

    2017-03-04

    As a green remediation technology, phytoremediation is becoming one of the most promising methods for treating petroleum hydrocarbons (PHCs)-contaminated soil. Pot culture experiments were conducted in this study to investigate phytoremediation potential of two representative Iridaceae species (Iris dichotoma Pall. and Iris lactea Pall.) in remediation of petroleum hydrocarbon-contaminated saline-alkali soil from the Dagang Oilfield in Tianjin, China. The results showed that I. lactea was more endurable to extremely high concentration of PHCs (about 40,000 mg/kg), with a relatively high degradation rate of 20.68%.The degradation rate of total petroleum hydrocarbons (TPHs) in soils contaminated with 10,000 and 20,000 mg/kg of PHCs was 30.79% and 19.36% by I. dichotoma, and 25.02% and 19.35% by I. lactea, respectively, which improved by 10-60% than the unplanted controls. The presence of I. dichotoma and I. lactea promoted degradation of PHCs fractions, among which saturates were more biodegradable than aromatics. Adaptive specialization was observed within the bacterial community. In conclusion, phytoremediation by I. dichotoma should be limited to soils contaminated with ≤20,000 mg/kg of PHCs, while I. lactea could be effectively applied to phytoremediation of contaminated soils by PHCs with at least 40,000 mg/kg.

  1. Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea.

    Science.gov (United States)

    Louati, A; Elleuch, B; Kallel, M; Saliot, A; Dagaut, J; Oudot, J

    2001-06-01

    The coastal area off the city of Sfax (730,000 inhabitants), well-known for fisheries and industrial activities, receives high inputs of organic matter mostly anthropogenic. Eighteen stations were selected in the vicinity of the direct discharge of industrial sewage effluents in the sea in order to study the spatial distribution of the organic contamination. Surface sediments sampled in the shallow shelf were analysed for hydrocarbons by Fourier transform infrared spectroscopy, gas chromatography and gas chromatography/mass spectrometry. Total hydrocarbon distributions revealed high contamination as compared to other coastal Mediterranean sites, with an average concentration of 1865 ppm/dry weight sediment. Gas chromatographic distribution patterns, values of unresolved mixture/n-alkane ratio and distributions of steranes and hopanes confirmed a petroleum contamination of the Arabian light crude oil type. Biogenic compounds were also identified with a series of short-chain carbon-numbered n-alkenes in the carbon range 16-24.

  2. Investigations on potential bacteria for the bioremediation treatment of environments contaminated with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, I.; Voicu, A.; Dobrota, S.; Stefanescu, M. [Institute of Biology of Romanian Academy, Bucharest (Romania)] [and others

    1995-12-31

    In Romania after more than 135 years of oil production and processing, some severe environmental pollution problems have accumulated. In this context a joint research group from Institute of Biology Bucharest and S.C. Petrostar S.A. Ploiesti became involved in a research project on bioremediation of an environment contaminated with hydrocarbon waste. In the first stage of this project, investigations on microbial communities occurring in environments contaminated with oil were carried out. In the second stage, the hundreds of bacterial strains and populations isolated from soils, slops, and water sites contaminated with waste oil and water waste oil mix were submitted to a screening program, to select a naturally occurring mixed culture with a high ability to degrade hydrocarbons.

  3. POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATION LEVELS IN COLLECTED SAMPLES FROM VICINITY OF A HIGHWAY

    Directory of Open Access Journals (Sweden)

    S. V. Samimi ، R. Akbari Rad ، F. Ghanizadeh

    2009-01-01

    Full Text Available Tehran as the biggest city of Iran with a population of more than 10 millions has potentially high pollutant exposures of gas oil and gasoline combustion from vehicles that are commuting in the highways every day. The vehicle exhausts contain polycyclic aromatic hydrocarbons, which are produced by incomplete combustion and can be directly deposited in the environment. In the present study, the presence of polycyclic aromatic hydrocarbons contamination in the collected samples of a western highway in Tehran was investigated. The studied location was a busy highway in Tehran. High performance liquid chromatography equipped with florescence detector was used for determination of polycyclic aromatic hydrocarbons concentrations in the studied samples. Total concentration of the ten studied polycyclic aromatic hydrocarbons compounds ranged from 11107 to 24342 ng/g dry weight in the dust samples and increased from 164 to 2886 ng/g dry weight in the soil samples taken from 300 m and middle of the highway, respectively. Also the average of Σ PAHs was 1759 ng/L in the water samples of pools in parks near the highway. The obtained results indicated that polycyclic aromatic hydrocarbons contamination levels were very high in the vicinity of the highway.

  4. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  5. Hydrocarbon degradation potential in reference soils and soils contaminated with jet fuel

    International Nuclear Information System (INIS)

    Lee, R.F.; Hoeppel, R.

    1991-01-01

    Petroleum degradation in surface and subsurface soils is affected by such factors as moisture content, pH, soil type, soil organics, temperature, and oxygen concentrations. In this paper, the authors determine the degradation rates of 14 C-labeled hydrocarbons added to soils collected from a contaminated surface site, contaminated subsurface sites, and a clean reference site. The radiolabeled hydrocarbons used include benzene, toluene, naphthalene, 1-methynaphthalene, phenanthrene, fluorene, anthracene, chrysene, and hexadecane. Microbial degradation rates were based on determination of mineralization rates (production of 14 CO 2 ) of hydrocarbons that were added to soil samples. Since water was added and oxygen was not limiting, the hydrocarbon rates determined are likely to be higher than those occurring in situ. Using radiolabeled hydrocarbons, information can be provided on differences in the degradation rates of various petroleum compounds in different types of soils at a site, on possible production of petroleum metabolites in the soil, and on the importance of anaerobic petroleum degradation and the effects of nutrient, water, and surfactant addition on biodegradation rates

  6. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants.

    Science.gov (United States)

    Rajtor, Monika; Piotrowska-Seget, Zofia

    2016-11-01

    Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with the roots of 80-90% of vascular plant species and may constitute up to 50% of the total soil microbial biomass. AMF have been considered to be a tool to enhance phytoremediation, as their mycelium create a widespread underground network that acts as a bridge between plant roots, soil and rhizosphere microorganisms. Abundant extramatrical hyphae extend the rhizosphere thus creating the hyphosphere, which significantly increases the area of a plant's access to nutrients and contaminants. The paper presents and evaluates the role and significance of AMF in phytoremediation of hydrocarbon contaminated sites. We focused on (1) an impact of hydrocarbons on arbuscular mycorrhizal symbiosis, (2) a potential of AMF to enhance phytoremediation, (3) determinants that influence effectiveness of hydrocarbon removal from contaminated soils. This knowledge may be useful for selection of proper plant and fungal symbionts and crucial to optimize environmental conditions for effective AMF-mediated phytoremediation. It has been concluded that three-component phytoremediation systems based on synergistic interactions between plant roots, AMF and hydrocarbon-degrading microorganisms demonstrated high effectiveness in dissipation of organic pollutants in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A method for predicting the extent of petroleum hydrocarbon biodegradation in contaminated soils

    International Nuclear Information System (INIS)

    Huesemann, M.H.

    1994-01-01

    A series of solid- and slurry-phase soil bioremediation experiments involving different crude oils and refined petroleum products were performed to investigate the factors which affect the maximum extent of total petroleum hydrocarbon (TPH) biodegradation. The authors used a comprehensive petroleum hydrocarbon characterization procedure involving group-type separation analyses, boiling-point distributions, and hydrocarbon typing by field ionization mass spectroscopy. Initial and final concentrations of specified hydrocarbon classes were determined in each of seven different bioremediation treatments. Generally, they found that the degree of TPH biodegradation was affected mainly by the type of hydrocarbons in the contaminant matrix. In contrast, the influence of experimental variables such as soil type, fertilizer concentrations, microbial plate counts, and treatment type (slurry versus landfarming) on the overall extent of TPH biodegradation was insignificant. Based on these findings, a predictive algorithm was developed to estimate the extent of TPH biodegradation from the average reduction of 86 individual hydrocarbon classes and their respective initial concentrations. Model predictions for gravimetric TPH removals were in close agreement with analytical results from two independent laboratories

  8. Identifying risk sources of air contamination by polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Huzlik, Jiri; Bozek, Frantisek; Pawelczyk, Adam; Licbinsky, Roman; Naplavova, Magdalena; Pondelicek, Michael

    2017-09-01

    This article is directed to determining concentrations of polycyclic aromatic hydrocarbons (PAHs), which are sorbed to solid particles in the air. Pollution sources were identified on the basis of the ratio of benzo[ghi]perylene (BghiPe) to benzo[a]pyrene (BaP). Because various important information is lost by determining the simple ratio of concentrations, least squares linear regression (classic ordinary least squares regression), reduced major axis, orthogonal regression, and Kendall-Theil robust diagnostics were utilized for identification. Statistical evaluation using all aforementioned methods demonstrated different ratios of the monitored PAHs in the intervals examined during warmer and colder periods. Analogous outputs were provided by comparing gradients of the emission factors acquired from the measured concentrations of BghiPe and BaP in motor vehicle exhaust gases. Based on these outputs, it was possible plausibly to state that the influence of burning organic fuels in heating stoves is prevalent in colder periods whereas in warmer periods transport was the exclusive source because other sources of PAH emissions were not found in the examined locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Shi, Z.; Tao, S.; Pan, B.; Fan, W.; He, X.C.; Zuo, Q.; Wu, S.P.; Li, B.G.; Cao, J.; Liu, W.X.; Xu, F.L.; Wang, X.J.; Shen, W.R.; Wong, P.K.

    2005-01-01

    Tianjin urban/industrial complex is highly polluted by some persistent organic pollutants. In this study, the levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were tested in sediment, water, and suspended particulate matter (SPM) samples in 10 rivers in Tianjin. The total concentration of 16 PAHs varied from 0.787 to 1943 μg/g dry weight in sediment, from 45.81 to 1272 ng/L in water, and from 0.938 to 64.2 μg/g dry weight in SPM. The levels of PAHs in these media are high in comparison with values reported from other river and marine systems. Variability of total concentrations of PAHs in sediment, water, and SPM from nine different rivers is consistent with each other. No obvious trends of total PAHs concentration variations were found between upstream and downstream sediment, water, and SPM samples for most rivers, which indicate local inputs and disturbances along these rivers. The spatial distributions of three-phase PAHs are very similar to each other, and they are also similar to those found in topsoil. However, their chemical profiles are significantly different from that of topsoil. The change of profiles is consistent with the different aqueous transport capability of 16 PAHs. Low molecular weight PAHs predomination suggests a relatively recent local source and coal combustion source of PAHs in the study area. - Coal combustion is suggested as a recent local source of PAHs in this area

  10. Evaluation of the effectiveness of different methods for the remediation of contaminated groundwater by determining the petroleum hydrocarbon content

    Energy Technology Data Exchange (ETDEWEB)

    Voyevoda, Maryna; Geyer, Wolfgang; Mothes, Sibylle [Department of Analytical Chemistry, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany); Mosig, Peter [Centre for Environmental Biotechnology, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany); Seeger, Eva M. [Department of Environmental Biotechnology, UFZ, Helmholtz Centre for Environmental Research - UFZ, Leipzig (Germany)

    2012-08-15

    The effectiveness of different remediation procedures for decreasing the amount of TPH (total petroleum hydrocarbons) in contaminated groundwater was evaluated at the site of a former refinery. The investigations were carried out on samples taken from several gravel based HSSF (horizontal subsurface flow) constructed wetlands (CW) which differed in relation to their filter material additives (no additive, charcoal, and ferric oxides additives) and examined the potential effect of these additives on the overall treatment efficiency. Samples of the following gravel based HSSF CW were investigated. No filter additive (system A), 0.1% activated carbon (system B), 0.5% iron(III) hydroxide (system C), and the reference (system D). Systems A-C were planted with common reed (Phragmites australis), whereas system D remained unplanted. In addition, the influence of seasonal conditions on the reduction of these hydrocarbons and the correlation between the amounts of TPH and BTEX (benzene, toluene, ethylbenzene, and xylene isomers), on the one hand, and methyl tert-butyl ether, on the other, was investigated. The study was carried out by using a modified GC-FID approach and multivariate methods. The investigations carried out in the first year of operation demonstrated that the effectiveness of the petroleum hydrocarbon removal was highest and reached a level of 93 {+-} 3.5% when HSSF filters with activated carbon as a filter additive were used. This remediation method allowed the petroleum hydrocarbon content to be reduced independently of seasonal conditions. The correlation between the reduction of TPH and BTEX was found to be R = 0.8824. Using this correlation coefficient, the time-consuming determination of the BTEX content was no longer necessary. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Influence of in situ steam formation by radio frequency heating on thermodesorption of hydrocarbons from contaminated soil.

    Science.gov (United States)

    Roland, Ulf; Bergmann, Sabine; Holzer, Frank; Kopinke, Frank-Dieter

    2010-12-15

    Thermal desorption of a wide spectrum of organic contaminants, initiated by radio frequency (RF) heating, was studied at laboratory and pilot-plant scales for an artificially contaminated soil and for an originally contaminated soil from an industrial site. Up to 100 °C, moderate desorption rates were observed for light aromatics such as toluene, chlorobenzene, and ethylbenzene. Desorption of the less volatile contaminants was greatly enhanced above 100 °C, when fast evaporation of soil-water produced steam for hydrocarbon stripping (steam-distillation, desorption rates increased by more than 1 order of magnitude). For hydrocarbons with low water solubility (e.g., aliphatic hydrocarbons), the temperature increase above 100 °C after desiccation of soil again led to a significant increase of the removal rates, thus showing the impact of hydrocarbon partial pressure. RF heating was shown to be an appropriate option for thermally enhanced soil vapor extraction, leading to efficient cleaning of contaminated soils.

  12. Enhanced degradation activity by endophytic bacteria of plants growing in hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, L.; Germida, J.J. [Saskatchewan Univ., Saskatoon, SK (Canada); Greer, C.W. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2006-07-01

    The feasibility of using phytoremediation for cleaning soils contaminated with petroleum hydrocarbons was discussed. Petroleum hydrocarbons are problematic because of their toxicity, mobility and persistence in the environment. Appropriate clean-up methods are needed, given that 60 per cent of Canada's contaminated sites contain these compounds. Phytoremediation is an in situ biotechnology in which plants are used to facilitate contaminant removal. The approach relies on a synergistic relationship between plants and their root-associated microbial communities. Previous studies on phytoremediation have focussed on rhizosphere communities. However, it is believed that endophytic microbes may also play a vital role in organic contaminant degradation. This study investigated the structural and functional dynamics of both rhizosphere and endophytic microbial communities of plants from a phytoremediation field site in south-eastern Saskatchewan. The former flare pit contains up to 10,000 ppm of F3 to F4 hydrocarbon fractions. Root samples were collected from tall wheatgrass, wild rye, saltmeadow grass, perennial ryegrass, and alfalfa. Culture-based and culture-independent methods were used to evaluate the microbial communities associated with these roots. Most probable number assays showed that the rhizosphere communities contained more n-hexadecane, diesel fuel, and PAH degraders. However, mineralization assays with 14C labelled n-hexadecane, naphthalene, and phenanthrene showed that endophytic communities had more degradation activities per standardized initial degrader populations. Total community DNA samples taken from bulk, rhizosphere, and endophytic samples, were analyzed by denaturing gradient gel electrophoresis. It was shown that specific bacteria increased in endophytic communities compared to rhizosphere communities. It was suggested plants may possibly recruit specific bacteria in response to hydrocarbon contamination, thereby increasing degradation

  13. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil.

    Science.gov (United States)

    Ángeles, Martínez-Toledo; Refugio, Rodríguez-Vázquez

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils) supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH) was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  14. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    Science.gov (United States)

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.

  15. Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny.

    Science.gov (United States)

    Bell, Terrence H; El-Din Hassan, Saad; Lauron-Moreau, Aurélien; Al-Otaibi, Fahad; Hijri, Mohamed; Yergeau, Etienne; St-Arnaud, Marc

    2014-02-01

    Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray-Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg(-1) hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities.

  16. Surfactant-enhanced electrokinetic remediation of soil contaminated with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.W.; Park, J.Y.; Lee, H.H.; Cho, H.J. [Dept. of Chemical Engineering, Korea Advanced Inst. of Science and Technology, Taejon (Korea)

    2001-07-01

    Removal of hydrophobic organic contaminants (HOCs) using electrokinetic method was studied in a model system. Kaolinite and phenanthrene were selected as the model clay soil and representative HOC. Three different types of surfactants, APG (alkyl polyglucoside), Brij30 (polyoxyethylene 4 lauryl ether), and SDS (sodium dodecyl sulfate), were used to enhance the solubility of HOCs. Electrokinetic (EK) column experiments were performed using water, surfactant solution, and acetate buffer solution under a constant current condition. Voltage and flow through the soil system were interpreted with time. Electrolyte pH at the anode and cathode compartments was observed for operation time. Removal efficiency of phenanthrene was examined after the end of EK operation during 2, 4, and 6 weeks. (orig.)

  17. Investigation of ethyl lactate as a green solvent for desorption of total petroleum hydrocarbons (TPH) from contaminated soil.

    Science.gov (United States)

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2016-11-01

    Treatment of oil-contaminated soil is a major environmental concern worldwide. The aim of this study is to examine the applicability of a green solvent, ethyl lactate (EL), in desorption of diesel aliphatic fraction within total petroleum hydrocarbons (TPH) in contaminated soil and to determine the associated desorption kinetics. Batch desorption experiments were carried out on artificially contaminated soil at different EL solvent percentages (%). In analysing the diesel range of TPH, TPH was divided into three fractions and the effect of solvent extraction on each fraction was examined. The experimental results demonstrated that EL has a high and fast desorbing power. Pseudo-second order rate equation described the experimental desorption kinetics data well with correlation coefficient values, R 2 , between 0.9219 and 0.9999. The effects of EL percentage, initial contamination level of soil and liquid to solid ratio (L/S (v/w)) on initial desorption rate have also been evaluated. The effective desorption performance of ethyl lactate shows its potential as a removal agent for remediation of TPH-contaminated soil worldwide.

  18. Polycyclic aromatic hydrocarbons pollution effect on soil biological activity in the anthropogenic contaminated area

    Science.gov (United States)

    Batukaev, Abdulmalik; Sushkova, Svetlana; Minkina, Tatiana; Antonenko, Elena; Salamova, Anzhelika; Gimp, Alina; Deryabkina, Irina

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most significant environmental contaminants with mutagenic and carcinogenic properties to all living organisms. The changes in microbial community structure in technogenic polluted soil may be used as tools for predicting and monitoring natural degradation and for search the most effective and appropriate pathways of bioremediation. The present study is aimed to research the biological activity of the soil in the emission zone of Novocherkassk Power station (NPs) (Russia) polluted by PAHs in 2015. The NPs is one of the largest thermal power stations in the south of Russia burning low-quality coal appurtenant the enterprises of I hazardous class. Monitoring plots were located on virgin or no-till fallow areas and not subject to the sanitary-protection zone of the NPs. Soil samples were taken from a depth of 0- to 20-cm, because the major part of PAHs are accumulated in the surface soil layer. The soils of the plots mainly include Chernozems Calcic (plots 1, 4, 5, 7, 9 and 10), Phaeozems Haplic (plots 3, 6, 8 and 11) Fluvisols Umbric (plots 2 and 12). In the soil of 12 monitoring plots located around NPs there were determined the main enzymes, abundance of soil bacteria and 17 priority PAHs. PAHs extraction from soil was performed by new developed ecologically clean method of subcritical water extraction without organic solvents (Sushkova et al., 2015). The level of PAHs around NPs is high at the nearest to factory monitoring plots situated at distance 1,0-1,2 km and reaches from 1600,1±14,7 up to 373,6±7,1 mkg/kg in the 20-cm soil layer. Gradually decrease of PAHs contamination is observed while increasing the distance from the NPs. The level of highmolecular PAHs (4-6 aromatic rings) exceeds the level of lowmolecular (2-3 aromatic rings) PAHs in all monitoring plots situated though the prevailing wind direction from NPs. The close correlations were found between PAHs content and biological activity parameters

  19. Selection of biosurfactan/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil

    Directory of Open Access Journals (Sweden)

    Sabina Viramontes-Ramos

    2010-10-01

    Full Text Available Petroleum-derived hydrocarbons are among the most persistent soil contaminants, and some hydrocarbon-degrading microorganisms can produce biosurfactants to increase bioavailability and degradation. The aim of this work was to identify biosurfactant-producing bacterial strains isolated from hydrocarbon-contaminated sites, and to evaluate their biosurfactant properties. The drop-collapse method and minimal agar added with a layer of combustoleo were used for screening, and positive strains were grown in liquid medium, and surface tension and emulsification index were determined in cell-free supernantant and cell suspension. A total of 324 bacterial strains were tested, and 17 were positive for the drop-collapse and hydrocarbon-layer agar methods. Most of the strains were Pseudomonas, except for three strains (Acinetobacter, Bacillus, Rhodococcus. Surface tension was similar in cell-free and cell suspension measurements, with values in the range of 58 to 26 (mN/m, and all formed stable emulsions with motor oil (76-93% E24. Considering the variety of molecular structures among microbial biosurfactants, they have different chemical properties that can be exploited commercially, for applications as diverse as bioremediation or degradable detergents.

  20. Pilot-scale feasibility of petroleum hydrocarbon-contaminated soil in situ bioremediation

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Walker, A.B.

    1995-01-01

    An environmental project was conducted to evaluate in situ bioremediation of petroleum hydrocarbon-contaminated soils on Kwajalein Island, a US Army Kwajalein Atoll base in the Republic of the Marshall Islands. Results of laboratory column studies determined that nutrient loadings stimulated biodegradation rates and that bioremediation of hydrocarbon-contaminated soils at Kwajalein was possible using indigenous microbes. The column studies were followed by an ∼10-month on-site demonstration at Kwajalein to further evaluate in situ bioremediation and to determine design and operating conditions necessary to optimize the process. The demonstration site contained low levels of total petroleum hydrocarbons (diesel fuel) in the soil near the ground surface, with concentrations increasing to ∼10,000 mg/kg in the soil near the groundwater. The demonstration utilized 12 in situ plots to evaluate the effects of various combinations of water, air, and nutrient additions on both the microbial population and the hydrocarbon concentration within the treatment plots as a function of depth from the ground surface

  1. Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil.

    Science.gov (United States)

    Salam, Lateef B; Ilori, Mathew O; Amund, Olukayode O; LiiMien, Yee; Nojiri, Hideaki

    2018-04-01

    The bacterial community structure in a hydrocarbon-contaminated Mechanical Engineering Workshop (MWO) soil was deciphered using 16S rRNA gene clone library analysis. Four hundred and thirty-seven clones cutting across 13 bacterial phyla were recovered from the soil. The representative bacterial phyla identified from MWO soil are Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, Ignavibacteriae, Spirochaetes, Chlamydiae, Candidatus Saccharibacteria and Parcubacteria. Proteobacteria is preponderant in the contaminated soil (51.2%) with all classes except Epsilonproteobacteria duly represented. Rarefaction analysis indicates 42%, 52% and 77% of the clone library is covered at the species, genus and family/class delineations with Shannon diversity (H') and Chao1 richness indices of 5.59 and 1126, respectively. A sizeable number of bacterial phylotypes in the clone library shared high similarities with strains previously described to be involved in hydrocarbon biodegradation. Novel uncultured genera were identified that have not been previously reported from tropical African soil to be associated with natural attenuation of hydrocarbon pollutants. This study establishes the involvement of a wide array of physiologically diverse bacterial groups in natural attenuation of hydrocarbon pollutants in soil.

  2. Successful implementation of controlled aerobic bioremediation technology at hydrocarbon contaminated sites in the state of Delaware

    International Nuclear Information System (INIS)

    Harmon, C.D.; Hiller, A.V.; Carberry, J.B.

    1994-01-01

    WIK Associates, Inc. of New Castle, Delaware, has been working over the last two years to improve and advance a cost effective method of treating hydrocarbon contaminated soils. The first section of this paper describes treatment methods and associated benefits such as increased control over environmental parameters. The second part of this paper describes work performed in attempting to predict degradation rates for varying types of hydrocarbon contamination under varying conditions. This research is based on data gathered in performing on-site bioremediation as described. A third section included in this paper describes the unique perspective of a State regulator responsible for overseeing remediation efforts evolving from leaking underground storage tanks. This section describes regulatory issues and procedures in Delaware and how the Department handles the submission and implementation of corrective action work plans, through project closure with thorough documentation of the remediation

  3. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.

    Science.gov (United States)

    Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

    2012-12-01

    Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil

    OpenAIRE

    Han, Tao; Zhao, Zhipeng; Bartlam, Mark; Wang, Yingying

    2016-01-01

    Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the rem...

  5. Potential Use of Polyacrylamide Encapsulation for Treatment of Petroleum Drilling Cuttings and Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Randy H. Adams

    2011-07-01

    Full Text Available Mineral soil of alluvial origin, contaminated with diesel+lubricating oil (1:2, was treated with a commercial polyacrylamide product at 100 % of the distributer recommended dosage, producing a reduction in hydrocarbon concentration (EPA 9074 of 76 % that remained stable during the study period (38 days and even after thermal treatment (60 ºC, 18 hrs.. Increasing the dosage to 150 % did not improve the treatment results, but repeating the treatment (at 100 % resulted in a slight additional reduction (4 %. Similar results were obtained with oil-based drilling cuttings (~60 % reduction at both 100 % and 150 %. Pre-drying of the drilling cuttings prior to treatment did not improve the hydrocarbon reduction, but it did produce smaller, potentially more stable aggregates (0.5 – 1-0 mm in diameter. The treatment of organic soil resulted in a similar reduction in hydrocarbon concentration (65 % and a reduction of acute toxicity (Microtox to below background levels, however this effect was not stable. An additional application (including mixing of the polyacrylamide product resulted in partial disintegration of the organic fibres and release of the stabilized hydrocarbons, measuring an overall increase in hydrocarbon concentration of 19 %.

  6. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil.

    Science.gov (United States)

    Zhang, Yueyong; Wang, Xin; Li, Xiaojing; Cheng, Lijuan; Wan, Lili; Zhou, Qixing

    2015-02-01

    With the aim of in situ bioremediation of soil contaminated by hydrocarbons, anodes arranged with two different ways (horizontal or vertical) were compared in microbial fuel cells (MFCs). Charge outputs as high as 833 and 762C were achieved in reactors with anodes horizontally arranged (HA) and vertically arranged (VA). Up to 12.5 % of the total petroleum hydrocarbon (TPH) was removed in HA after 135 days, which was 50.6 % higher than that in VA (8.3 %) and 95.3 % higher than that in the disconnected control (6.4 %). Hydrocarbon fingerprint analysis showed that the degradation rates of both alkanes and polycyclic aromatic hydrocarbons (PAHs) in HA were higher than those in VA. Lower mass transport resistance in the HA than that of the VA seems to result in more power and more TPH degradation. Soil pH was increased from 8.26 to 9.12 in HA and from 8.26 to 8.64 in VA, whereas the conductivity was decreased from 1.99 to 1.54 mS/cm in HA and from 1.99 to 1.46 mS/cm in VA accompanied with the removal of TPH. Considering both enhanced biodegradation of hydrocarbon and generation of charge in HA, the MFC with anodes horizontally arranged is a promising configuration for future applications.

  7. A soil washing pilot plant for removing petroleum hydrocarbons from contaminated soils

    International Nuclear Information System (INIS)

    Toor, I.A.; Roehrig, G.R.

    1992-01-01

    A soil washing pilot plant was built and tested for its ability to remove petroleum hydrocarbons from certain soils. The ITEX soil washing pilot plant is a trailer mountable mobile unit which has a washing capacity of two tons per hour of contaminated soils. A benchscale study was carried out prior to the fabrication of the pilot plant. The first sample was contaminated with diesel fuel while the second sample was contaminated with crude oil. Various nonionic, cationic and anionic cleaning agents were evaluated for their ability to remove petroleum hydrocarbons from these materials. The nonionic cleaning agents were more successful in cleaning the soils in general. The ultimate surfactant choice was based on several factors including cost, biodegradability, cleaning efficiency and other technical considerations. The soil samples were characterized in terms of their particle size distributions. Commercial diesel fuel was carefully mixed in this sand to prepare a representative sample for the pilot plant study. Two pilot runs were made using this material. A multistage washing study was also conducted in the laboratory which indicates that the contamination level can be reduced to 100 ppm using only four stages. Because the pilot plant washing efficiency is twice as high, it is believed that ultimate contamination levels can be reduced to lower levels using the same number of stages. However, this hypothesis has not been demonstrated to date

  8. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  9. In situ vadose zone bioremediation of soil contaminated with nonvolatile hydrocarbons

    International Nuclear Information System (INIS)

    Hogg, D.S.; Burden, R.J.; Riddell, P.J.

    1992-01-01

    In situ bioremediation has been successfully carried out on petroleum hydrocarbon-contaminated soil at a decommissioned bulk storage terminal in New Zealand. The site soils were contaminated mainly with diesel fuel and spent oil at concentrations ranging up to 95,000 mg/kg of total recoverable petroleum hydrocarbons. The in situ remediation system combines an enhanced bioremediation with vapor extraction and is installed almost entirely below grade, thereby allowing above ground activities to continue unimpeded. Laboratory-scale feasibility testing indicated that although appreciable volatilization of low molecular weight components would occur initially, biodegradation would be the primary mechanism by which contaminated soil would be remediated. During the remedial design phase, preliminary field testing was conducted to evaluate the optimum spacing for extraction wells and inlet vents. A pilot-scale system was installed in a 15-m by 35-m area of the site in June 1989 and operated for approximately 1 year. Soil monitoring performed approximately every 3 months indicated an overall reduction in soil petroleum hydrocarbon concentrations of 87% for the period from June 1989 to May 1991

  10. The Effects of Environmental Factors on Biological Remediation of Petroleum Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Mohammad reza Moslemi

    2005-09-01

    Full Text Available Among the consequences of discharging industrial wastes to land and water bodies, is the widespread accumulation and migration of toxic chemical mixtures in soil and groundwater resources. It is believed that the accumulation of contaminants in the environment constitutes a serious threat to ecological and human health. Bioremediation is an effective measure in dealing with such contaminations particularly those from petroleum hydrocarbon sources; moreover bioremediation is emerging as a promising technology for the treatment of soil and groundwater contamination. Therefore the goal of this study is discussing the theory and practice of biological remediation of petroleum hydrocarbon contaminated soils and assessing the effects of operational conditions and parameters such as: temperature, dissolved oxygen concentration and  pH on the removal rate of the target contaminant which is handled in the designed reactor. Due to large production and consumption rate of diesel fuel inIran and many other countries, diesel fuel has been selected as target contaminant. In this study TOC and COD testing methods have been used to measure and assess the removal rate of the contaminant in the reactor. The experimental results indicate that, considering the operational conditions the indigenous microorganisms which have been separated from the soil are able to remove 50 to 83 percent of the contaminant after 30 days. Thereafter on the base of the results and considering the laboratorial specifications and conditions applied in this project, the optimum values of temperature, dissolved oxygen concentration andpH were respectively determined as 35°C, 4mg/L and 7.

  11. Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil

    CSIR Research Space (South Africa)

    Maila, MP

    2002-01-01

    Full Text Available The sensitivity of Lepidium sativum germination to polycyclic aromatic hydrocarbons (PAHs) was investigated in soil(s) artificially and historically contaminated with mixtures of PAR The level of germination of L. sativum decreased with increasing...

  12. PILOT-SCALE SUBCRITICAL WATER REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON- AND PESTICIDE-CONTAMINATED SOIL. (R825394)

    Science.gov (United States)

    Subcritical water (hot water under enough pressure to maintain the liquid state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were used to determine conditions f...

  13. The effect of mycorrhizal inoculation on hybrid poplar fine root dynamics in hydrocarbon contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, J.; Knight, J.D.; Van Rees, K.C.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science

    2006-07-01

    The biological remediation of contaminated soils using plants was discussed. Hybrid poplars are good candidates for phytoremediation because they root deeply, cycle large amounts of water and grow quickly. Their fine root system is pivotal in nutrient and water acquisition. Therefore, in order to maximize the phytoremediation potential, it is important to understand the response of the fine root system. In addition to degrading organic chemicals, ectomycorrhizal (ECM) fungi provide the host with greater access to nutrients. This study determined the relationship between residual soil hydrocarbons and soil properties at a field site. The effects of residual contamination on hybrid poplar fine root dynamics was also examined along with the effect of ectomycorrhizal colonization on hybrid poplar fine root dynamics when grown in diesel contaminated soil under controlled conditions. A minirhizotron camera inside a growth chamber captured images of mycorrhizal inoculation on hybrid poplar fine root production. Walker hybrid poplar seedlings were grown for 12 weeks in a control soil and also in a diesel contaminated soil. Seedlings were also grown in control and diesel contaminated, ectomycorrhizal inoculated soils. The inoculum was a mycorrhizal mix containing Pisolithus tinctorius and Rhizopogon spp. The images showed that colonization by ECM fungi increased hybrid poplar fine root production and aboveground biomass in a diesel contaminated soil compared to non-colonized trees in the same soil. Root:shoot ratios were much higher in the diesel contaminated/non-inoculated treatment than in either of the control soil treatments. Results of phytoremediation in diesel contaminated soil were better in the non-colonized treatment than in the colonized treatment. Both treatments removed more contaminants from the soil than the unplanted control. Much higher quantities of hydrocarbons were found sequestered in the roots from the inoculated treatment than from the non

  14. Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach.

    Science.gov (United States)

    Duan, Luchun; Naidu, Ravi; Thavamani, Palanisami; Meaklim, Jean; Megharaj, Mallavarapu

    2015-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are a family of contaminants that consist of two or more aromatic rings fused together. Soils contaminated with PAHs pose significant risk to human and ecological health. Over the last 50 years, significant research has been directed towards the cleanup of PAH-contaminated soils to background level. However, this achieved only limited success especially with high molecular weight compounds. Notably, during the last 5-10 years, the approach to remediate PAH-contaminated soils has changed considerably. A risk-based prioritization of remediation interventions has become a valuable step in the management of contaminated sites. The hydrophobicity of PAHs underlines that their phase distribution in soil is strongly influenced by factors such as soil properties and ageing of PAHs within the soil. A risk-based approach recognizes that exposure and environmental effects of PAHs are not directly related to the commonly measured total chemical concentration. Thus, a bioavailability-based assessment using a combination of chemical analysis with toxicological assays and nonexhaustive extraction technique would serve as a valuable tool in risk-based approach for remediation of PAH-contaminated soils. In this paper, the fate and availability of PAHs in contaminated soils and their relevance to risk-based management of long-term contaminated soils are reviewed. This review may serve as guidance for the use of site-specific risk-based management methods.

  15. Application of compound specific 13C isotope investigations of chlorinated hydrocarbons in contaminated groundwaters

    International Nuclear Information System (INIS)

    Osenbrueck, K.; Heidinger, M.; Voropaev, A.; Ertl, S.; Eichinger, L.

    2002-01-01

    Full text: Chlorinated hydrocarbons are one of the most common pollutants found in groundwater. Due to complex contamination situations with overlapping contamination plumes the assessment of the organic contaminants requires the installation of expensive observation wells and high analytical effort. Here the determination of the stable isotope ratio 13 C/ 12 C of the organic compounds offers a promising and efficient tool to investigate the origin and the biodegradation characteristics of the chlorinated hydrocarbons in groundwater. The application of the method is based on characteristic isotope fingerprints, differing in chlorinated solvents. This isotope fingerprint is derived from different production pathways and is not influenced by transport or by retardation processes in the underground. Due to the fact, that two different contaminations can easily be distinguished by isotope ratios, an improved distinction of spatially and temporally different contamination plumes might be possible. In course of biologically mediated degradation processes a shift of the isotope ratios between the precursor and the product can frequently be observed, such as with denitrification or sulfate reduction processes. The isotope fractionation is due to a preferential reaction of the bonds formed by the lighter isotopes and leads to a progressive enrichment of the heavy isotopes in the precursor while the product becomes depleted in the heavy isotopes. Biological degradation of the highly chlorinated hydrocarbons is due to a co-metabolic dechlorinisation. Tetrachloroethene (PCE) for example degrades under anoxic conditions via trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE). Subsequent degradation to vinyl chloride (VC) and ethene may appear under aerobic as well as reducing environments depending on the site specific conditions. In several laboratory studies it has been shown, that biodegradation of the chlorinated hydrocarbons is accompanied by an isotope fractionation of

  16. Isolation and application of hydrocarbon degradation of indigenous microbial from oil contaminated soil

    International Nuclear Information System (INIS)

    Dadang Sudrajat; Nana Mulyana; Tri Retno DL

    2015-01-01

    The aims of this research are to obtain indigenous potential microbes from bacterial and fungal groups which have capable of degrading hydrocarbon from crude oil contaminated soil. The research carried out were isolation, selection, and identification potential microbial isolates capable of degrading hydrocarbon from oil contaminated soil located at Cepu East Java. The isolates were tested for their growth and ability to degrades crude oil. Each isolate was inoculated unto minimum mineral salt medium (MSM) contained 1% crude oil. Viability and stability test of selected isolates were carried out on irradiated compost carrier materials contained 5% crude oil. The fours series microbial s consortium consists of microbial consortium I, II, III, and IV were tested for the in vitro biodegradability of hydrocarbon. The results shows there sixty two (62) isolates are obtained, among them 42 bacteria and 20 molds. From 42 bacterial isolates, only 8 strains were potent hydrocarbon degraders. Three of these isolates are identified Bacillus cereus (BMC2), Bacillus sp (BMC4), and Pseudomonas sp (BMC6). Whereas from 20 fungal isolates, only 4 strains were potent hydrocarbon degraders. Two of these isolates are identified Aspergillus fumigatus (FMC2) and Aspergillus niger (FMC6). All isolates show good growth in mineral salt medium contained crude oil with decrease in pH. The ability of decrease of TPH content by the bacterial and fungal isolates were 54, 61, 67, 74, and 78% respectively at day 30. The viability and stability of microbial isolates show considerable good viability on irradiated compost carrier materials after 14 days storage. From the fours series microbial consortium, the highest TPH degradation rates is found in microbial consortium III (BMC6, BMC2, and FMC6) with 89,1% in 5 weeks. (author)

  17. Effects of oxygen supply on the biodegradation rate in oil hydrocarbons contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Zawierucha, I [Institute of Chemistry and Environment Protection, Jan Dlugosz University of Czestochowa, Waszyngtona 4/8, 42-200 Czestochowa (Poland); Malina, G, E-mail: iwona_zawierucha@o2.pl [Faculty of Hydrogeology and Geology Engineering, Department of Geology, Geophysics and Environment Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow (Poland)

    2011-04-01

    Respirometry studies using the 10-chamber Micro-Oxymax respirometer (Columbus, Ohio) were conducted to determine the effect of biostimulation (by diverse ways of O{sub 2} supply) on enhancing biodegradation in soils contaminated with oil hydrocarbons. Soil was collected from a former military airport in Kluczewo, Poland. Oxygen was supplied by means of aerated water, aqueous solutions of H{sub 2}O{sub 2} and KMnO{sub 4}. The biodegradation was evaluated on the basis of O{sub 2} uptake and CO{sub 2} production. The O{sub 2} consumption and CO{sub 2} production rates during hydrocarbons biodegradation were estimated from the slopes of cumulative curve linear regressions. The pertinent intrinsic and enhanced biodegradation rates were calculated on the basis of mass balance equation and O{sub 2} uptake and CO{sub 2} production rates. The biodegradation rates of 5-7 times higher as compared to a control were observed when the aqueous solution of KMnO{sub 4} in concentration of 20 g L{sup -1} was applied. Permanganate is known to readily oxidize alkene carbon - carbon double bonds; so it can be successfully applied in remediation technology for soils contaminated with oil hydrocarbons. While hydrocarbons are not completely mineralized by permanganate oxidation reactions, their structure is altered by polar functional groups providing vast improvements in aqueous solubility and availability for biodegradation. The 3% aqueous solution of H{sub 2}O{sub 2} caused significant improvement of the biodegradation rates as compared to a control (on average about 260%). Aerobic biodegradation of hydrocarbons can benefit from the presence of oxygen released during H{sub 2}O{sub 2} decomposition. Adding of aerated water resulted in an increase of biodegradation rates (about 114 - 229%) as compared to a control. The aerated water can both be the source of oxygen for microorganisms and determine the transport of substrate to bacteria cells.

  18. Are Microbial Nanowires Responsible for Geoelectrical Changes at Hydrocarbon Contaminated Sites?

    Science.gov (United States)

    Hager, C.; Atekwana, E. A.; Gorby, Y. A.; Duris, J. W.; Allen, J. P.; Atekwana, E. A.; Ownby, C.; Rossbach, S.

    2007-05-01

    Significant advances in near-surface geophysics and biogeophysics in particular, have clearly established a link between geoelectrical response and the growth and enzymatic activities of microbes in geologic media. Recent studies from hydrocarbon contaminated sites suggest that the activities of distinct microbial populations, specifically syntrophic, sulfate reducing, and dissimilatory iron reducing microbial populations are a contributing factor to elevated sediment conductivity. However, a fundamental mechanistic understanding of the processes and sources resulting in the measured electrical response remains uncertain. The recent discovery of bacterial nanowires and their electron transport capabilities suggest that if bacterial nanowires permeate the subsurface, they may in part be responsible for the anomalous conductivity response. In this study we investigated the microbial population structure, the presence of nanowires, and microbial-induced alterations of a hydrocarbon contaminated environment and relate them to the sediments' geoelectrical response. Our results show that microbial communities varied substantially along the vertical gradient and at depths where hydrocarbons saturated the sediments, ribosomal intergenic spacer analysis (RISA) revealed signatures of microbial communities adapted to hydrocarbon impact. In contrast, RISA profiles from a background location showed little community variations with depth. While all sites showed evidence of microbial activity, a scanning electron microscope (SEM) study of sediment from the contaminated location showed pervasive development of "nanowire-like structures" with morphologies consistent with nanowires from laboratory experiments. SEM analysis suggests extensive alteration of the sediments by microbial Activity. We conclude that, excess organic carbon (electron donor) but limited electron acceptors in these environments cause microorganisms to produce nanowires to shuttle the electrons as they seek for

  19. Bioremediation of petroleum hydrocarbon contaminated soils using soil vapor extraction: Case study

    International Nuclear Information System (INIS)

    Roth, R.J.; Peterson, R.M.

    1994-01-01

    Soils contaminated with petroleum hydrocarbons are being remediated in situ at a site in Lakewood, New Jersey by bioremediation in conjunction with soil vapor extractions (SVE) and nutrient addition. The contaminants were from hydraulic oils which leaked from subsurface hydraulic lifts, waste oil from leaking underground storage tanks (USTs), an aboveground storage tank, and motor oil from a leaking UST. The oils contaminated subsurface soils at the site to a depth of 25 feet. Approximately 900 cubic yards of soil were contaminated. Soil sample analyses showed total petroleum hydrocarbon (TPH) concentrations up to 31,500 ppm. The design of the remedial system utilized the results of a treatability study which showed that TPH degrading microorganisms, when supplied with oxygen and nutrients, affected a 14% reduction in TPH in 30 days. A SVE system was installed which used three wells, each installed to a depth of 25 feet below grade. The SVE system was operated to achieve an extracted air flow of approximately 20 to 30 scfm from each well. Bioremediation of the TPH was monitored by measuring CO 2 and O 2 concentrations at the wellheads and vapor monitoring probes. After four months of remediation, CO 2 concentrations were at a minimum, at which point the subsurface soils were sampled and analyzed for TPH. The soil analyses showed a removal of TPH by biodegradation of up to 99.8% after four months of remediation

  20. Phytoremediation of heavy metals and hydrocarbon contaminated soils; Phytoremediation des sols contamines aux metaux lourds et aux hydrocarbures recalcitrants

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, R.; Chateauneuf, G.; Sura, C. [Inspec-Sol Inc., Montreal, PQ (Canada); Labrecque, M.; Galipeau, C. [Jardin botanique de Montreal, Montreal, PQ (Canada). Institut de Recherche en Biologie Vegetale; Greer, C.; Delisle, S.; Roy, S.; Labelle, S. [National Research Council of Canada, Montreal, PQ (Canada). Inst. for Research in Biotechnology

    2003-07-01

    Phytoremediation is a technology that uses plants to decontaminate soils and underground water. Inspec-Sol, a company located in Montreal, Quebec, conducted a two-year study to evaluate the decontamination capabilities of this technology. Trials in greenhouses and field studies at the Pitt Park along the Lachine Canal were conducted. The soils chosen for the studies were soils with concentrations of polycyclic aromatic hydrocarbons (PAH) and heavy metals (lead, copper, zinc) higher than those prescribed for the safe utilization of soils. The trials identified the three plant species (Salix viminalis, Brassica juncea, and Festuca arundinacea) which had the best characteristics for phytoremediation. Controlled experiments were performed to optimize the technology to achieve the maximum extraction of contaminant. It was concluded that phytoremediation has potential for the remediation of urban soils contaminated with organic and inorganic pollutants.

  1. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes.

    Science.gov (United States)

    Pérez-de-Mora, Alfredo; Engel, Marion; Schloter, Michael

    2011-11-01

    Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C(5) and C(16) at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of

  2. Biodegradation of dicyclopentadiene by a mini-consortium isolated from hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Shen, Y.; Stehmeier, L.; Voordouw, G.

    1997-01-01

    Thirty-five bacterial species were isolated from soil contaminated by low molecular weight hydrocarbons (C5+). All species were identified by gene sequencing. The isolated genomic DNAs from these bacteria were spotted on a master filter in denatured form. They were then hybridized with total community DNAs isolated from soil exposed to dicyclopentadiene (DCPD) in order to determine the effect of DCPD on the soil microbial community by comparison with an untreated control group. Incubation of soil with DCPD enriched a Sphingomonas sp. while incubation with DCPD in the absence of soil gave enrichment of a Pseudomonas sp. These results indicate that identification of bacterial isolates with DCPD degrading potential is possible and that such organisms can be isolated from C5+ contaminated sites. However, the possibility of removing DCPD contamination in soil by bioremediation is not yet proven.10 refs., 2 tabs., 2 figs

  3. Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1997 annual progress report

    International Nuclear Information System (INIS)

    1997-01-01

    'The overall objective of the basic research grant is to characterize the potential of common hydrocarbon contaminants in ecosystems to act as endocrine disruptors. The three major lines of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects. and (3) a literature review to identify compounds at a variety of DOE sites that need to be examined for endocrine disrupting effects. By relating results obtained from this research project to contamination problems at various DOE sites. CBR will provide data and information on endocrine disrupting contaminants to DOE for consideration in risk analyses for determining clean-up levels and priorities needed at the sites.'

  4. Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3.

    Science.gov (United States)

    Varma, Surendra Sheeba; Lakshmi, Mahalingam Brinda; Rajagopal, Perumalsam; Velan, Manickam

    2017-01-01

     A study on bioremediation of soil contaminated with petroleum sludge was performed using Bacillus pumilus/MVSV3 (Accession number JN089707). In this study, 5 kg of agricultural soil was mixed well with 5% oil sludge and fertilizers containing nitrogen, phosphorus and potassium (N:P:K). The treatment resulted in 97% removal of total petroleum hydrocarbon (TPH) in 122 d in bacteria mixed contaminated soil when compared to 12% removal of TPH in uninoculated contaminated soil. The population of the microorganism remained stable after introduced into the oil environment. The physical and chemical parameters of the soil mixed with sludge showed variation indicating improvement and the pH level decreased during the experiment period. Elemental analysis and Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed the bacterial ability to degrade oil sludge components. Growth experiments with Trigonellafoenumgraecum (Fenugreek) showed the applicability of bioremediated soil for the production.

  5. Polycyclic aromatic hydrocarbon contamination in stormwater detention pond sediments in coastal South Carolina.

    Science.gov (United States)

    Weinstein, John E; Crawford, Kevin D; Garner, Thomas R

    2010-03-01

    The purpose of this study was to characterize the polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of stormwater detention ponds in coastal South Carolina. Levels of the sum of PAH analytes were significantly higher in the sediments of commercial ponds compared to that of reference, golf course, low-density residential, and high-density residential ponds. Isomer ratio analysis suggested that the predominant source of PAHs were pyrogenic; however, many ponds had a PAH signature consistent with mixed uncombusted and combusted PAH sources. PAH levels in these sediments could be modeled using both pond drainage area and pond surface area. These results demonstrate that the sediment from most commercial ponds, and a few residential and golf course ponds, were moderately contaminated with PAHs. PAH levels in these contaminated ponds exceeded between 42% and 75% of the ecological screening values for individual PAH analytes established by US EPA Region IV, suggesting that they may pose a toxicological risk to wildlife.

  6. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    Science.gov (United States)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  7. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination.

    Science.gov (United States)

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  8. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination

    Directory of Open Access Journals (Sweden)

    Rhea eLumactud

    2016-05-01

    Full Text Available The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except Solidago canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  9. Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil.

    Science.gov (United States)

    Han, Tao; Zhao, Zhipeng; Bartlam, Mark; Wang, Yingying

    2016-11-01

    Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the removal rate of total n-alkanes (45.83 %) was higher than that of polycyclic aromatic hydrocarbons (30.34 %). The amendment of biochar did not result in significant improvement of TPH removal. In contrast, it showed a clear negative impact on the growth of ryegrass and the removal of TPHs by ryegrass. The removal rate of TPHs was significantly lower after the amendment of biochar. The results indicated that planting ryegrass is an effective remediation strategy, while the amendment of biochar may not be suitable for the phytoremediation of soil contaminated with petroleum hydrocarbons.

  10. Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons.

    Science.gov (United States)

    Vidonish, Julia E; Zygourakis, Kyriacos; Masiello, Caroline A; Gao, Xiaodong; Mathieu, Jacques; Alvarez, Pedro J J

    2016-03-01

    Pyrolysis of contaminated soils at 420 °C converted recalcitrant heavy hydrocarbons into "char" (a carbonaceous material similar to petroleum coke) and enhanced soil fertility. Pyrolytic treatment reduced total petroleum hydrocarbons (TPH) to below regulatory standards (typically hydrocarbons (PAHs) was not observed, with post-pyrolysis levels well below applicable standards. Plant growth studies showed a higher biomass production of Arabidopsis thaliana and Lactuca sativa (Simpson black-seeded lettuce) (80-900% heavier) in pyrolyzed soils than in contaminated or incinerated soils. Elemental analysis showed that pyrolyzed soils contained more carbon than incinerated soils (1.4-3.2% versus 0.3-0.4%). The stark color differences between pyrolyzed and incinerated soils suggest that the carbonaceous material produced via pyrolysis was dispersed in the form of a layer coating the soil particles. Overall, these results suggest that soil pyrolysis could be a viable thermal treatment to quickly remediate soils impacted by weathered oil while improving soil fertility, potentially enhancing revegetation.

  11. [Compositions and residual properties of petroleum hydrocarbon in contaminated soil of the oilfields].

    Science.gov (United States)

    Hu, Di; Li, Chuan; Dong, Qian-Qian; Li, Li-Ming; Li, Guang-He

    2014-01-01

    The aims of this study were to determine the compositions and residual properties of petroleum hydrocarbon in soil, as well as to identify the source and weathering degree of the pollution. A total of 5 producing wells in Gudao and Hekou oil producing region of Shengli oilfields were analyzed. More than 50 individual target compounds including straight-and branched-chain alkanes( n-alkanes, pristine and phytane) and polycyclic aromatic hydrocarbons (PAHs) in soil samples and crude oil were determined by gas chromatography-mass spectrometry (GC-MS). The percentages of chain alkanes and PAHs in total solvent extractable matters(TSEM) of soil samples were both much lower than those in the crude oil samples. The compositions of petroleum hydrocarbon in soil samples differed from those in crude oil, which indicated the n-alkanes with carbon numbers contaminated soils, the relationship between the index and petroleum hydrocarbon compounds was analyzed using principal component analysis (PCA). The results showed that the n-alkanes with carbon numbers > 33 and the PAHs with rings between 3 and 5 were much harder to degrade. PCA of 4 indexes for source identification revealed more than 50% of the soil samples were polluted by crude oil, which needs more attention during remediation.

  12. Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals.

    Science.gov (United States)

    Palmroth, Marja R T; Koskinen, Perttu E P; Kaksonen, Anna H; Münster, Uwe; Pichtel, John; Puhakka, Jaakko A

    2007-12-01

    In the current study, the microbial ecology of weathered hydrocarbon and heavy metal contaminated soil undergoing phytoremediation was studied. The relationship of functional diversity, measured as carbon source utilisation in Biolog plates and extracellular enzymatic activities, and genetic diversity of bacteria was evaluated. Denaturing gradient gel electrophoresis was used for community analyses at the species level. Bulk soil and rhizosphere soil from pine and poplar plantations were analysed separately to determine if the plant rhizosphere impacted hydrocarbon degradation. Prevailing microbial communities in the field site were both genetically and metabolically diverse. Furthermore, both tree rhizosphere and fertilisation affected the compositions of these communities and increased activities of extracellular aminopeptidases. In addition, the abundance of alkane hydroxylase and naphthalene dioxygenase genes in the communities was low, but the prevalence of these genes was increased by the addition of bioavailable hydrocarbons. Tree rhizosphere communities had greater hydrocarbon degradation potential than those of bulk soil. Hydrocarbon utilising communities were dominated generally by the species Ralstonia eutropha and bacteria belonging to the genus Burkholderia. Despite the presence of viable hydrocarbon-degrading microbiota, decomposition of hydrocarbons from weathered hydrocarbon contaminated soil over four years, regardless of the presence of vegetation, was low in unfertilised soil. Compost addition enhanced the removal of hydrocarbons.

  13. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: feasibility and comparison with common oxidants.

    Science.gov (United States)

    Yen, Chia-Hsien; Chen, Ku-Fan; Kao, Chih-Ming; Liang, Shu-Hao; Chen, Ting-Yu

    2011-02-28

    In this study, batch experiments were conducted to evaluate the feasibility of petroleum-hydrocarbon contaminated soil remediation using persulfate oxidation. Various controlling factors including different persulfate and ferrous ion concentrations, different oxidants (persulfate, hydrogen peroxide, and permanganate), and different contaminants (diesel and fuel oil) were considered. Results show that persulfate oxidation is capable of treating diesel and fuel oil contaminated soil. Higher persulfate and ferrous ion concentrations resulted in higher diesel degrading rates within the applied persulfate/ferrous ion molar ratios. A two-stage diesel degradation was observed in the batch experiments. In addition, treatment of diesel-contaminated soil using in situ metal mineral activation under ambient temperature (e.g., 25°C) may be a feasible option for site remediation. Results also reveal that persulfate anions could persist in the system for more than five months. Thus, sequential injections of ferrous ion to generate sulfate free radicals might be a feasible way to enhance contaminant oxidation. Diesel oxidation efficiency and rates by the three oxidants followed the sequence of hydrogen peroxide>permanganate>persulfate in the limited timeframes. Results of this study indicate that the application of persulfate oxidation is a feasible method to treat soil contaminated by diesel and fuel oil. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Studies estimating the dermal bioavailability of polynuclear aromatic hydrocarbons from manufactured plant tar-contaminated soils

    International Nuclear Information System (INIS)

    Roy, T.A.; Krueger, A.J.; Taylor, B.B.; Mauro, D.M.; Goldstein, L.S.

    1998-01-01

    In vitro percutaneous absorption studies were performed with contaminated soils or organic extracts of contaminated soils collected at manufactured gas plant (MGP) sites. The MGP tar contaminated soils were found to contain a group of targeted polynuclear aromatic hydrocarbons (PAH) at levels ranging from 10 to 2400 mg/kg. The soil extracts contained target PAH at levels ranging from 12 000 - 34 000 mg/kg. Dermal penetration rates of target PAH from the MGP tar-contaminated soils/soil extracts were determined experimentally through human skin using 3 H-benzo(a)pyrene (BaP) as a surrogate. Results from three MGP sites showed reductions of 2-3 orders of magnitude in PAH absorption through human skin from the most contaminated soils in comparison to the soil extracts. Reduction in PAH penetration can be attributed to PAH concentration and (soil) matrix properties. PAH dermal flux values are used to determine site-specific dermally absorbed dose (DAD) and chronic daily intake (CDI) which are essential terms required to estimate risk associated with human exposure to MGP tar and MGP tar-contaminated soils. 21 refs., 4 figs., 3 tabs

  15. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    International Nuclear Information System (INIS)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-01-01

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad ® 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils

  16. Screening of extremotolerant fungi for the bioremediation of hydrocarbon contaminated sites

    Science.gov (United States)

    Poyntner, Caroline; Blasi, Barbara; Prenafeta, Francesc; Sterflinger, Katja

    2015-04-01

    Bioremediation can be used to treat contaminated sites, by taking advantage of microorganisms which have the potential to degrade a wide range of contaminants. While research has been focused mainly on bacteria, the knowledge on other microorganisms, especially fungal communities, is still limited. However, the use of fungi may have advantages compared to bacteria. Extremophile fungi like the black yeasts can withstand high levels of environmental stress (e.g. range of pH, water availability and temperature, presence of toxic chemicals). Therefore they might be applicable in situations, where bacterial communities show limited performance. In order to identify fungi which are good candidates for bioremediation application, a selection of 163 fungal strains, mostly from the group of the black yeasts, was tested for their capability to degrade three different pollutants: hexadecane, toluene, and polychlorinated biphenyl 126, which were used as model compounds for aliphatic hydrocarbons, aromatic hydrocarbons and polychlorinated biphenyls. These chemicals are frequently found in sites contaminated by oil, gas and coal. The screening was based on a two-step selection approach. As a first step, a high throughput method was developed to screen the relatively large amount of fungal strains regarding their tolerance to the contaminants. A microtiter plate based method was developed for monitoring fungal growth in the presence of the selected contaminants photometrically with a Tecan reader. Twenty five strains out of 163, being species of the genera Cladophilaophora, Scedosporium and Exophiala, showed the ability to grow on at least 2 hydrocarbons, and are therefore the most promising candidates for further tests. In a second step, degradation of the contaminants was investigated in more detail for a subset of the screened fungi. This was done by closing the carbon balance in sealed liquid cultures in which the selected pollutant was introduce as the sole source of carbon

  17. Theory and application of landfarming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments: beneficial reuse

    NARCIS (Netherlands)

    Harmsen, J.; Rulkens, W.H.; Sims, R.C.; Rijtema, P.E.; Zweers, A.J.

    2007-01-01

    When applying landfarming for the remediation of contaminated soil and sediment, a fraction of the soil-bound contaminant is rapidly degraded; however, a residual concentration may remain, which slowly degrades. Degradation of polycyclic aromatic hydrocarbons (PAHs) and mineral oil can be described

  18. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    Science.gov (United States)

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  19. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    Franck O P Stefani

    Full Text Available Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequencing of total soil DNA with culture-dependent (isolation using seven different growth media techniques to analyse the bacterial and fungal communities from hydrocarbon-contaminated soils. Although bacterial and fungal rarefaction curves were saturated for both methods, only 2.4% and 8.2% of the bacterial and fungal OTUs, respectively, were shared between datasets. Isolated taxa increased the total recovered species richness by only 2% for bacteria and 5% for fungi. Interestingly, none of the bacteria that we isolated were representative of the major bacterial OTUs recovered by 454-pyrosequencing. Isolation of fungi was moderately more effective at capturing the dominant OTUs observed by culture-independent analysis, as 3 of 31 cultured fungal strains ranked among the 20 most abundant fungal OTUs in the 454-pyrosequencing dataset. This study is one of the most comprehensive comparisons of microbial communities from hydrocarbon-contaminated soils using both isolation and high-throughput sequencing methods.

  20. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils.

    Science.gov (United States)

    Stefani, Franck O P; Bell, Terrence H; Marchand, Charlotte; de la Providencia, Ivan E; El Yassimi, Abdel; St-Arnaud, Marc; Hijri, Mohamed

    2015-01-01

    Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequencing of total soil DNA) with culture-dependent (isolation using seven different growth media) techniques to analyse the bacterial and fungal communities from hydrocarbon-contaminated soils. Although bacterial and fungal rarefaction curves were saturated for both methods, only 2.4% and 8.2% of the bacterial and fungal OTUs, respectively, were shared between datasets. Isolated taxa increased the total recovered species richness by only 2% for bacteria and 5% for fungi. Interestingly, none of the bacteria that we isolated were representative of the major bacterial OTUs recovered by 454-pyrosequencing. Isolation of fungi was moderately more effective at capturing the dominant OTUs observed by culture-independent analysis, as 3 of 31 cultured fungal strains ranked among the 20 most abundant fungal OTUs in the 454-pyrosequencing dataset. This study is one of the most comprehensive comparisons of microbial communities from hydrocarbon-contaminated soils using both isolation and high-throughput sequencing methods.

  1. Biodegradation Of Polycyclic Aromatic Hydrocarbons In Petroleum Oil Contaminating The Environment

    International Nuclear Information System (INIS)

    Partila, A.M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in urban atmospheres (Chen et al., 2013). PAHs enter the environment via incomplete combustion of fossil fuels and accidental leakage of petroleum products, and as components of products such as creosote (Muckian et al., 2009). Due to PAHs carcinogenic activity, they have been included in the European Union (EU) and the Environmental Protection Agency (EPA) priority pollutant lists. Human exposure to PAHs occurs in three ways, inhalation, dermal contact and consumption of contaminated foods, which account for 88-98% of such contamination; in other words, diet is the major source of human exposure to these contaminants (Rey-Salgueiro et al., 2008). Both the World Health Organization and the UK Expert Panel on Air Quality Standards (EPAQS) have considered benzo(a)pyrene (BaP) as a marker of the carcinogenic potency of the polycyclic aromatic hydrocarbons (PAH) mixture (Delgado-Saborit et al., 2011). Polycyclic aromatic and heavier aliphatic hydrocarbons, which have a stable recalcitrant molecular structure, exhibit high hydrophobicity and low aqueous solubility, are not readily removed from soil through leaching and volatilization (Brassington et al., 2007). The hydrophobicity of PAHs limits desorption to the aqueous phase (Donlon et al., 2002). Six main ways of dissipation, i.e. disappearance, are recognized in the environment: volatilization, photooxidation, Aim of the Work chemical oxidation, sorption, leaching and biodegradation. Microbial degradation is considered to be the main process involved in the dissipation of PAH (Yuan et al., 2002). Thus, more and more research interests are turning to the biodegradation of PAHs. Some microorganisms can utilize PAHs as a source of carbon and energy so that PAHs can be degraded to carbon dioxide and water, or transformed to other nontoxic or low-toxic substances (Perelo, 2010). Compared with other physical and chemical methods such as combustion

  2. Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals

    Institute of Scientific and Technical Information of China (English)

    Soyoung Park; Ki Seob Kim; Jeong-Tae Kim; Daeseok Kang; Kijune Sung

    2011-01-01

    The use of humic acid (HA) to enhance the efficiency of phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel was evaluated in this study.A sample of soil was artificially contaminated with commercially available diesel fuel to an initial total petroleum hydrocarbons (TPH) concentration of 2300 mg/kg and four heavy metals with concentrations of 400 mg/kg for Pb,200 mg/kg for Cu,12 mg/kg for Cd,and 160 mg/kg for Ni.Three plant species,Brassica campestris,Festuca arundinacea,and Helianthus annuus,were selected for the phytodegradation experiment.Percentage degradation of TPH in the soil in a control pot supplemented with HA increased to 45% from 30% without HA.The addition of HA resulted in an increases in the removal of TPH from the soil in pots planted with B.campestris,F.arundinacea,and H.annuus,enhancing percentage degradation to 86%,64%,and 85% from 45%,54%,and 66%,respectively.The effect of HA was also observed in the degradation of n-alkanes within 30 days.The rates of removal of n-alkanes in soil planted with B.campestris and H.annuus were high for n-alkanes in the range of C11-C28.A dynamic increase in dehydrogenase activity was observed during the last 15 days of a 30-day experimental period in all the pots amended with HA.The enhanced biodegradation performance for TPHs observed might be due to an increase in microbial activities and bioavailable TPH in soils caused by combined effects of plants and HA.The results suggested that HA could act as an enhancing agent for phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel and heavy metals.

  3. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil

    Directory of Open Access Journals (Sweden)

    Martínez-Toledo Ángeles

    2013-01-01

    Full Text Available In situ biosurfactant (rhamnolipid production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus, P. putida addition, and addition of both (P. putida and nutrients. The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p < 0.019 between TPH concentration (mg/kg and surface tension (mN/m, When both bacteria and nutrients were involved, TPH levels were lowered to 33.7%, and biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p < 0.009 was observed. When the nutrients and P. putida were added, TPH removal was 61.1%, 1.85 mg/kg of biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  4. Reduction of polycyclic aromatic hydrocarbons (PAHs) from petroleum-contaminated soil using thermal desorption technology

    International Nuclear Information System (INIS)

    Silkebakken, D.M.; Davis, H.A.; Ghosh, S.B.; Beardsley, G.P.

    1995-01-01

    The remediation of petroleum-contaminated soil typically requires the selection of a treatment option that addresses the removal of both volatile and semi-volatile organic compounds. Volatile organic compounds (VOCs), primarily BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds, can be readily removed from the soil by a variety of well-established technologies. The semivolatile organic compounds, especially the polycyclic aromatic hydrocarbons (PAHS) that are characteristic of petroleum-contaminated soil, are not as amenable to conventional treatment. Low temperature thermal volatilization (LTTV) can be a viable treatment technology depending on the initial contaminant concentrations present and applicable cleanup objectives that must be attained. A-two-phase treatability study was conducted at 14 former underground storage tank (UST) sites to evaluate the applicability and effectiveness of LTTV for remediation of approximately 31,000 tons of PAH-contaminated soil. The PAHs of primary concern included benzo(a)anthracene, chrysene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, dibenz(a,h) anthracene, and indeno(1,2,3-cd)pyrene. During Phase 1, LTTV operational parameters were varied by trial-and-error and changes in soil treatment effectiveness were monitored. Phase B of the treatability study incorporated the appropriate treatment regime established during Phase 1 to efficiently remediate the remaining contaminated soil

  5. Process for the restoration of solids contaminated with hydrocarbons and heavy organic compounds

    International Nuclear Information System (INIS)

    Bala, G.A.; Thomas, C.P.; Jackson, J.D.; McMillin, R.A.

    1994-01-01

    Processes have been developed for the restoration of environments contaminated with hydrocarbons and heavy organics. The intended product is a field deployable materials handling system and phase separation process ranging in size from 1 yd 3 /hr to 50 yd 3 /hr for commercial application to environmental problems associated with the exploration, production, refining and transport of petroleum, petroleum products and organic chemicals. Effluents from contaminated sites will be clean solids (classified by size if appropriate), and the concentrated contaminant. The technology is based on biochemical solvation, liquid/liquid and liquid/solid extractions, materials classification, mechanical and hydraulic scrubbing, and phase separation of organic and aqueous phases. Fluid use is minimized through utilization of closed-loop (recycle) systems. Contaminants that are removed from the solid materials may be destroyed, disposed of using existing technologies, or used on-site for cogeneration of /power for plant operations. Additionally, if the contaminant is a valued product, the material may be recovered for application or sale. Clean solid material is not sterilized and may be returned to normal agricultural, commercial, residential or recreational use in most instances

  6. Ranking harbours in the Maritime provinces of Canada for potential to contaminate American lobster (Homarus americanus) with polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Prouse, N.J. [Department of Fisheries and Oceans, Halifax, NS (Canada). Biological Sciences Branch

    1997-05-01

    The sources of polycyclic aromatic hydrocarbon (PAH) contamination within selected harbors in the Maritime provinces of Canada were evaluated by assessing point sources, population, industrial and commercial activity, international and domestic ship traffic, and the number of commercial fishing vessels. Results showed that Sydney ranked as the highest potential for PAH contamination. Ranking of the other Maritime harbors was also presented. The lobster contamination with PAHs was reviewed.

  7. Intrinsic Anaerobic Bioremediation of Hydrocarbons in Contaminated Subsurface Plumes and Marine Sediments

    Science.gov (United States)

    Nanny, M. A.; Nanny, M. A.; Suflita, J. M.; Suflita, J. M.; Davidova, I.; Kropp, K.; Caldwell, M.; Philp, R.; Gieg, L.; Rios-Hernandez, L. A.

    2001-05-01

    In recent years, several classes of petroleum hydrocarbons contaminating subsurface and marine environments have been found susceptible to anaerobic biodegradation using novel mechanisms entirely distinct from aerobic metabolic pathways. For example, the anaerobic decay of toluene can be initiated by the addition of the aryl methyl group to the double bond of fumarate, resulting in a benzylsuccinic acid metabolite. Our work has shown that an analogous mechanism also occurs with ethylbenzene and the xylene isomers, yielding 3-phenyl-1,2-butane dicarboxylic acid and methylbenzylsuccinic acid, respectively. Moreover, these metabolites have been detected in contaminated environments. Most recently, we have identified metabolites resulting from the initial attack of H26- or D26-n-dodecane during degradation by a sulfate-reducing bacterial culture. Using GC-MS, these metabolites were identified as fatty acids that result from C-H or C-D addition across the double bond of fumarate to give dodecylsuccinic acids in which all 26 protons or deuteriums of the parent alkane were retained. Further, when this enrichment culture was challenged with hexane or decane, hexylsuccinic acid or decylsuccinic acid were identified as resulting metabolites. Similarly, the study of an ethylcyclopentane-degrading sulfate-reducing enrichment produced a metabolite, which is consistent with the addition of fumarate to the parent substrate. These novel anaerobic addition products are characterized by similar, distinctive mass spectral (MS) features (ions specific to the succinic acid portion of the molecule) that can potentially be used to probe contaminated environments for evidence of intrinsic remediation of hydrocarbons. Indeed, analyses of water extracts from two gas condensate-contaminated sites resulted in the tentative detection of alkyl- and cycloalkylsuccinic acids ranging from C3 to C9, including ethylcyclopentyl-succinic acid. In water extracts collected from an area underlying a

  8. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    Science.gov (United States)

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  9. In situ phytoremediation of a soil historically contaminated by metals, hydrocarbons and polychlorobiphenyls.

    Science.gov (United States)

    Doni, S; Macci, C; Peruzzi, E; Arenella, M; Ceccanti, B; Masciandaro, G

    2012-05-01

    In the past several years, industrial and agricultural activities have led to serious environmental pollution, resulting in a large number of contaminated sites. As a result, much recent research activity has focused on the application of bioremediation technologies as an environmentally friendly and economically feasible means for decontamination of polluted soil. In this study horse manure and Populus nigra (var. italica) (HM + P treatment) have been used, at real scale level, as an approach for bioremediation of a soil historically contaminated by metals (Pb, Cr, Cd, Zn, Cu and Ni) and organic contaminants, such as polychlorobiphenyls and petroleum hydrocarbon. After one year, the HM + P phytotreatment was effective in the reclamation of the polluted soil from both organic and inorganic contaminants. A reduction of about 80% in total petroleum hydrocarbon (TPH), and 60% in polychlorobiphenyls (PCBs) and total metals was observed in the HM + P treatment. In contrast, in the horse manure (HM) treatment, used as control, a reduction of only about 30% of TPH was obtained. In order to assess both effectiveness and evolution of the remediation system to a biologically active soil ecosystem, together with the pollution parameters, the parameters describing the evolution of the soil functionality (enzymatic activities and protein SDS-PAGE pattern) were investigated. A stimulation of the metabolic soil processes (increase in dehydrogenase activity) was observed in the HM + P compared to the HM treatment. Finally, preliminary protein SDS-PAGE results have permitted the identification of proteins that have been recovered in the HM + P soil with respect to the HM; this may become a basic tool for improving the biogeochemical status of soil during the decontamination through the identification of microbial populations that are active in soil decontamination.

  10. Correlation between the solubility of aromatic hydrocarbons in water and micellar solutions, with their normal boiling points

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Powell, J.R.; Thomas, J.K.

    1979-01-01

    A linear correlation between the logarithm of the solubility in water of aromatic hydrocarbons and their normal boiling points is shown. Similarly, the logarithm of the distribution ratio of aromatic hydrocarbons in aqueous micellar solution is shown to be linearly related to the boiling points of the hydrocarbons. 2 figures, 2 tables

  11. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  12. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.

    Science.gov (United States)

    Wu, Manli; Ye, Xiqiong; Chen, Kaili; Li, Wei; Yuan, Jing; Jiang, Xin

    2017-04-01

    A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biochemical and Physical Characterization of Petroleum Hydrocarbon Contaminated Soils in Tehran

    Directory of Open Access Journals (Sweden)

    Mehrdad Cheraghi

    2015-07-01

    Full Text Available    Contamination of soil was investigated in this study from the Tehran Oil refining Co. of Iran. Fifteen soil samples were collected at several points in the Azimabad, 15 km south of Tehran City, Iran. Samples were collected at depths of 0–30 cm. Control sampleswere prepared to determinebackgroundlevels ofsoil contaminationwithpetroleumhydrocarbonsfor comparison with contaminatedsites. Total petroleum hydrocarbon (TPH and poly-aromatic hydrocarbons (PAH concentrations varied from 101334.0–101367.1 and 25321.1–25876.6 mg kg-1 respectively. The results elevated levels of TPH and PAH contents when compared with the control sample. Soil acidity (low pH of 5.3–5.9 and low electrical conductivity provided evidence of reduced metabolic activities on the affected site.Microbialgrowthrates for bacteria and fungi expressed as colony forming units were 2.62×109 and 4.14×106CFU/g soil, respectively for the contaminated and 5.76×109 and 6.83×106CFU/g soil, for the control treatments respectively. These drastic changes can have impact on the nutrient cycle and prevents the absorption of nutrients by plant root sand lead to a reduction in yield. 

  14. Cleaning of contaminated soils with hydrocarbons by biocell; Saneamiento de suelos contaminados con hidrocarburos mediante biopilas

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe-Arguelles, R.; Flores-Torres, C; Chavez-Lopez, C.; Roldan-Martin, A [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2002-03-01

    In 1990 the Instituto de Ingenieria de la UNAM, initiated an evaluation through the soil and groundwater sampling and a risk health assessment in a Mexican refinery. An extended area was found contaminated with hydrocarbons. This area requires a soil remediation, taking into account that some zones present more than 30 000 mg/kg of Total Petroleum Hydrocarbons (TPH). Biopile system was recommended as the best remediation method to diminish TPG and some poliaromathic hydrocarbons (PAH). Therefore an experimental biopile of 30 m3 was constructed with contaminated soil. After 22 weeks, results show more than 80 % of TPH and PAH remotion. [Spanish] El grupo de saneamiento de suelos y acuiferos del Instituto de Ingenieria de la UNAM, inicio en 1999 la evaluacion de la contaminacion del subsuelo de una refineria en una zona costera del pais, mediante el muestreo de 425 puntos a 1.5 m de profundidad y con el analisis de los siguientes parametros: hidrocarburos totales del petroleo (HTP), hidrocarburo poliaromaticos (HAP), diesel, gasolina, metilterbutileter (MTBE) y los metales hierro, vanadio, zinc, cadmio, cromo y plomo. Asimismo, se lleva a cabo una evaluacion de riesgo a la salud a fin de determinar los niveles de limpieza de las areas contaminadas. Una vez realizado el estudio se propuso probar a nivel piloto dos tecnicas de saneamiento para las areas contaminadas con valores superiores a 30 000 mg/Kg de http, o bien, para las zonas en donde la evaluacion de riesgo a la salud indica la existencia de riesgo para uno o mas compuestos. Las tecnicas propuesta son biopilas y lavado de suelos con surfactantes. En este trabajo se presenta la prueba piloto con biopilas, de la cual se obtuvo una eficiencia de remocion de http del 80 porciento con cinco meses de operacion. Se muestra las partes de una biopila y se dan los resultados de la biopila experimental en la refineria Francisco I. Madero.

  15. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    Science.gov (United States)

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.

  16. Mutagenic hazards of complex polycyclic aromatic hydrocarbon mixtures in contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, C.L.; Lambert, A.B.; Lundstedt, S.; Tysklind, M.; White, P.A. [Health Canada, Ottawa, ON (Canada). Safe Environment Program

    2008-04-15

    The objective of the present study was to evaluate hazard/risk assessment methods for complex environmental mixtures that involve a targeted, priority chemical approach based on the cumulative hazard/risk of known mixture components or analyses of sufficiently similar mixtures. Ten polycyclic aromatic hydrocarbon (PAH)-contaminated soils were separated into nonpolar and semipolar fractions, and both fractions elicited positive responses on the Salmonella reverse mutation assay. Targeted and nontargeted methods of hazard prediction routinely overestimated mutagenic activities for the nonpolar soil fractions, suggesting nonadditive interactions of PAHs in complex mixtures. This suggests that current risk assessment methods for complex mixtures may provide conservative estimates regarding soils contaminated with priority PAHs alone. Significant underestimations of total risk, however, will be obtained if the soils also contain unidentified PAHs as well as polycyclic aromatic compounds and related compounds that contribute to the total mutagenic activity. Furthermore, estimates of excess lifetime cancer risk associated with the nondietary ingestion of the PAH-contaminated soils studied here indicate that a traditional risk assessment model based on identified priority PAHs and an assumption of additivity generally underestimates the risk associated with the nonpolar soil fractions (in comparison to bioassay-derived risk estimates). Additional cancer risk may be associated with the more polar compounds that also are found at these contaminated sites and that rarely are included in the standard risk assessment methodology.

  17. Assessment of the role of plants in the bioremediation of two hydrocarbon-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, V L; McGill, W G [Alberta Univ., Edmonton, AB (Canada). Dept. of Renewable Resources

    1999-01-01

    Phytoremediation has been considered as a viable alternative for cleaning up contaminated soils. A study was conducted to examine the potential for plant-assisted bioremediation of hydrocarbon contaminated soils using wheat, canola, sunflower, fababean, and alsike clover. Crops were grown to maturity in greenhouses. Creosote and oil contaminated soils were used. The soils and plant tissues were then extracted and measured for dichloromethane-extractable organic (DEO) materials. The concentrations of DEO within the soil was them compared with non-planted samples. The study showed that at the end of a three month period there was no major difference in DEO concentrations in any of the soils. After six months, the DEO concentrations of the greenhouse soils had decreased compared to the reserved samples, but there was no major change in concentration due to the presence of any of the plant species. The results indicate that the role of plants in bioremediation systems, both as enhancers of bioremediation systems and as the possible sinks of contaminant C, should be further studied. 22 refs., 1 tab., 7 figs.

  18. Large scale treatment of total petroleum-hydrocarbon contaminated groundwater using bioaugmentation.

    Science.gov (United States)

    Poi, Gregory; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Mok, Puah Chum; Ball, Andrew S

    2018-05-15

    Bioaugmentation or the addition of microbes to contaminated sites has been widely used to treat contaminated soil or water; however this approach is often limited to laboratory based studies. In the present study, large scale bioaugmentation has been applied to total petroleum hydrocarbons (TPH)-contaminated groundwater at a petroleum facility. Initial TPH concentrations of 1564 mg L -1 in the field were reduced to 89 mg L -1 over 32 days. This reduction was accompanied by improved ecotoxicity, as shown by Brassica rapa germination numbers that increased from 52 at day 0 to 82% by the end of the treatment. Metagenomic analysis indicated that there was a shift in the microbial community when compared to the beginning of the treatment. The microbial community was dominated by Proteobacteria and Bacteroidetes from day 0 to day 32, although differences at the genus level were observed. The predominant genera at the beginning of the treatment (day 0 just after inoculation) were Cloacibacterium, Sediminibacterium and Brevundimonas while at the end of the treatment members of Flavobacterium dominated, reaching almost half the population (41%), followed by Pseudomonas (6%) and Limnobacter (5.8%). To the author's knowledge, this is among the first studies to report the successful large scale biodegradation of TPH-contaminated groundwater (18,000 L per treatment session) at an offshore petrochemical facility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Assessment of the role of plants in the bioremediation of two hydrocarbon-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, V.L.; McGill, W.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Renewable Resources

    1999-07-01

    Phytoremediation has been considered as a viable alternative for cleaning up contaminated soils. A study was conducted to examine the potential for plant-assisted bioremediation of hydrocarbon contaminated soils using wheat, canola, sunflower, fababean, and alsike clover. Crops were grown to maturity in greenhouses. Creosote and oil contaminated soils were used. The soils and plant tissues were then extracted and measured for dichloromethane-extractable organic (DEO) materials. The concentrations of DEO within the soil was them compared with non-planted samples. The study showed that at the end of a three month period there was no major difference in DEO concentrations in any of the soils. After six months, the DEO concentrations of the greenhouse soils had decreased compared to the reserved samples, but there was no major change in concentration due to the presence of any of the plant species. The results indicate that the role of plants in bioremediation systems, both as enhancers of bioremediation systems and as the possible sinks of contaminant C, should be further studied. 22 refs., 1 tab., 7 figs.

  20. Assessment of the role of plants in the bioremediation of two hydrocarbon-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, V.L.; McGill, W.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Renewable Resources

    1999-09-01

    Phytoremediation has been considered as a viable alternative for cleaning up contaminated soils. A study was conducted to examine the potential for plant-assisted bioremediation of hydrocarbon contaminated soils using wheat, canola, sunflower, fababean, and alsike clover. Crops were grown to maturity in greenhouses. Creosote and oil contaminated soils were used. The soils and plant tissues were then extracted and measured for dichloromethane-extractable organic (DEO) materials. The concentrations of DEO within the soil was them compared with non-planted samples. The study showed that at the end of a three month period there was no major difference in DEO concentrations in any of the soils. After six months, the DEO concentrations of the greenhouse soils had decreased compared to the reserved samples, but there was no major change in concentration due to the presence of any of the plant species. The results indicate that the role of plants in bioremediation systems, both as enhancers of bioremediation systems and as the possible sinks of contaminant C, should be further studied. 22 refs., 1 tab., 7 figs.

  1. Assessment of the role of plants in the bioremediation of two hydrocarbon-contaminated soils

    International Nuclear Information System (INIS)

    Bailey, V.L.; McGill, W.G.

    1999-01-01

    Phytoremediation has been considered as a viable alternative for cleaning up contaminated soils. A study was conducted to examine the potential for plant-assisted bioremediation of hydrocarbon contaminated soils using wheat, canola, sunflower, fababean, and alsike clover. Crops were grown to maturity in greenhouses. Creosote and oil contaminated soils were used. The soils and plant tissues were then extracted and measured for dichloromethane-extractable organic (DEO) materials. The concentrations of DEO within the soil was them compared with non-planted samples. The study showed that at the end of a three month period there was no major difference in DEO concentrations in any of the soils. After six months, the DEO concentrations of the greenhouse soils had decreased compared to the reserved samples, but there was no major change in concentration due to the presence of any of the plant species. The results indicate that the role of plants in bioremediation systems, both as enhancers of bioremediation systems and as the possible sinks of contaminant C, should be further studied. 22 refs., 1 tab., 7 figs

  2. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    International Nuclear Information System (INIS)

    Tsai, T.T.; Kao, C.M.

    2009-01-01

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H 2 O 2 , BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., α-Fe 2 O 3 and α-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg -1 ), respectively, with the addition of 15% of H 2 O 2 and 100 g kg -1 of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  3. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Bhabananda; Sarkar, Binoy [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Mandal, Asit [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Division of Soil Biology, Indian Institute of Soil Science, Bhopal, Madhya Pradesh (India); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-11-15

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad{sup ®} 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  4. Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: a pilot-scale study.

    Science.gov (United States)

    Mukherjee, Ashis K; Bordoloi, Naba K

    2011-03-01

    Spillage of petroleum hydrocarbons causes significant environmental pollution. Bioremediation is an effective process to remediate petroleum oil contaminant from the ecosystem. The aim of the present study was to reclaim a petroleum oil-contaminated soil which was unsuitable for the cultivation of crop plants by using petroleum oil hydrocarbon-degrading microbial consortium. Bacterial consortium consisting of Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains were seeded to 20% (v/w) petroleum oil-contaminated soil, and bioremediation experiment was carried out for 180 days under laboratory condition. The kinetics of hydrocarbon degradation was analyzed using biochemical and gas chromatographic (GC) techniques. The ecotoxicity of the elutriates obtained from petroleum oil-contaminated soil before and post-treatment with microbial consortium was tested on germination and growth of Bengal gram (Cicer aretinum) and green gram (Phaseolus mungo) seeds. Bacterial consortium showed a significant reduction in total petroleum hydrocarbon level in contaminated soil (76% degradation) as compared to the control soil (3.6% degradation) 180 days post-inoculation. The GC analysis confirmed that bacterial consortium was more effective in degrading the alkane fraction compared to aromatic fraction of crude petroleum oil hydrocarbons in soil. The nitrogen, sulfur, and oxygen compounds fraction was least degraded. The reclaimed soil supported the germination and growth of crop plants (C. aretinum and P. mungo). In contrast, seeds could not be germinated in petroleum oil-contaminated soil. The present study reinforces the application of bacterial consortium rather than individual bacterium for the effective bioremediation and reclamation of soil contaminated with petroleum oil.

  5. Response of core microbial consortia to hydrocarbon contaminations in coastal sediment habitats

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-10-01

    Full Text Available Traditionally, microbial surveys investigating the effect of chronic anthropogenic pressure such as polyaromatic hydrocarbons (PAHs contaminations consider just the alpha and beta diversity and ignore the interactions among the different taxa forming the microbial community. Here, we investigated the ecological relationships between the three domains of life (i.e. Bacteria, Archaea and Eukarya using 454 pyrosequencing data of the 16S rRNA and 18S rRNA genes from chronically impacted and pristine sediments, along the coasts of the Mediterranean Sea (Gulf of Lion, Vermillion coast, Corsica, Bizerte lagoon and Lebanon and the French Atlantic Ocean (Bay of Biscay and English Channel. Our approach provided a robust ecological framework for the partition of the taxa abundance distribution into 859 core OTUs and 6629 satellite OTUs. OTUs forming the core microbial community showed the highest sensitivity to changes in environmental and contaminant variations, with salinity, latitude, temperature, particle size distribution, total organic carbon (TOC and PAH concentrations as main drivers of community assembly. The core communities were dominated by Gammaproteobacteria and Deltaproteobacteria for Bacteria, by Thaumarchaeota, Bathyarchaeota and Thermoplasmata for Archaea and Metazoa and Dinoflagellata for Eukarya. In order to find associations among microorganisms, we generated a co-occurrence network in which PAHs were found to impact significantly the potential predator – prey relationship in one microbial consortium composed of ciliates and Actinobacteria. Comparison of network topological properties between contaminated and non-contaminated samples showed substantial differences in the structure of the network and indicated a higher vulnerability to environmental perturbations in the contaminated sediments.

  6. Effects of hydrocarbon contamination on a free living marine nematode community: Results from microcosm experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, E.; Essid, N.; Beyrem, H.; Hedfi, A.; Boufahja, F.; Aissa, P. [Laboratoire de Biosurveillance de l' Environnement, Zarzouna (Tunisia). Faculte des Sciences de Bizerte; Vitiello, P. [Centre d' Oceanologie de Marseille (France)

    2005-11-15

    Anthropogenic inputs of crude and refined petroleum hydrocarbons into the sea require knowledge of the effects of these contaminants on the receiving assemblages of organisms. A microcosm experiment was carried out to study the influence of diesel on a free living nematode community of a Tunisian lagoon. Sediments were contaminated by diesel that ranged in concentration from 0.5 to 20 mg diesel kg{sup -1} dry weight (dw), and effects were examined after 90 days. Gradual changes in community structure were revealed depending on the quantity of diesel administrated. In the medium (1 mg diesel kg{sup -1} and 5 mg diesel kg{sup -1} (dw)) and high (10 mg diesel kg{sup -1}, 15 mg diesel kg{sup -1} and 20 mg kg{sup -1} (dw)) treated microcosms, most univariate measures, including diversity and species richness, decreased significantly with increasing level of diesel contamination whereas nematode assemblage from the low treated microcosm (0.5 mg diesel kg{sup -1} (dw)) remained unaffected. Results from multivariate analyses of the species abundance data demonstrated that responses of nematode species to the diesel treatments were varied: Chaetonema sp. was eliminated at all doses tested and seemed to be intolerant species to diesel contamination; Pomponema sp. and Oncholaimus campylocercoides were significantly affected at all diesel contamination levels but they were not eliminated, these species were categorized as 'diesel-sensitive'; Hypodontolaimus colesi, Daptonema trabeculosum and Daptonema fallax which significantly increased respectively at 0.5, 1 and 5 mg diesel kg{sup -1} (dw) concentrations and appeared to be 'opportunistic' species at these doses whereas Marylynnia stekhoveni which increased at all high doses (10, 15 and 20 mg diesel kg{sup -1} (dw)) seemed to be a 'diesel-resistant' species. (author)

  7. Field Investigation of Natural Attenuation of a Petroleum Hydrocarbon Contaminated Aquifer, Gyeonggi Province, Korea

    Science.gov (United States)

    Yang, J.; Lee, K.; Bae, G.

    2004-12-01

    In remediation of a petroleum hydrocarbon contaminated aquifer, natural attenuation may be significant as a remedial alternative. Therefore, natural attenuation should be investigated in the field in order to effectively design and evaluate the remediation strategy at the contaminated site. This study focused on evaluating the natural attenuation for benzene, toluene, ethylbenzene, and xylene (BTEX) at a contaminated site in South Korea. At the study site, the aquifer is composed of a high permeable gravel layer and relatively low permeable sandy-silt layers. Groundwater level vertically fluctuated between 1m and 2m throughout the year (April, 2003~June, 2004) and showed direct response to rainfall events. Chemical analyses of sampled groundwater were performed to investigate the concentrations of various chemical species which are associated with the natural attenuation processes. To evaluate the degree of the biodegradation, the expressed biodegradation capacity (EBC) analysis was done using aerobic respiration, nitrate reduction, manganese reduction, ferric iron reduction, and sulfate reduction as an indicator. High EBC value of sulfate indicate that anaerobic biodegradation by sulfate reduction was a dominant process of mineralization of BTEX at this site. The EBC values decrease sensitively when heavy rainfall occurs due to the dilution and inflow of electron acceptors through a gravel layer. The first-order biodegradation rates of BTEX were estimated by means of the Buscheck and Alcantar method (1995). Results show that the natural attenuation rate of benzene was the highest among the BTEX.

  8. In situ electro-osmotic cleanup of tar contaminated soil—Removal of polycyclic aromatic hydrocarbons

    KAUST Repository

    Lima, Ana T.

    2012-12-01

    An in situ electro-osmosis experiment was set up in a tar contaminated clay soil in Olst, the Netherlands, at the site of a former asphalt factory. The main goal of this experiment was to remove polycyclic aromatic hydrocarbons (PAHs) from the contaminated clay layer by applying an electric gradient of 12 V m-1 across the soil over an electrode distance of 1 m. With the movement of water by electro-osmosis and the addition of a non-ionic surfactant (Tween 80), the non-polar PAHs were dragged along by convection and removed from the fine soil fraction. Soil samples were taken at the start and after 159 days at the end of the experiment. Water at the electrode wells was sampled regularly during the course of the experiment. The results reflect the heterogeneity of the soil characteristics and show the PAH concentrations within the experimental set up. After first having been released into the anolyte solution due to extraction by Tween 80 and subsequent diffusion, PAH concentrations increased significantly in the electrode reservoirs at the cathode side after 90 days of experiment. Although more detailed statistical analysis is necessary to quantify the efficiency of the remediation, it can be concluded that the use of electro-osmosis together with a non-ionic surfactant is a feasible technique to mobilize non-polar organic contaminants in clayey soils. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

  9. Dynamic Effects of Biochar on the Bacterial Community Structure in Soil Contaminated with Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Song, Yang; Bian, Yongrong; Wang, Fang; Xu, Min; Ni, Ni; Yang, Xinglun; Gu, Chenggang; Jiang, Xin

    2017-08-16

    Amending soil with biochar is an effective soil remediation strategy for organic contaminants. This study investigated the dynamic effects of wheat straw biochar on the bacterial community structure during remediation by high-throughput sequencing. The wheat straw biochar amended into the soil significantly reduced the bioavailability and toxicity of polycyclic aromatic hydrocarbons (PAHs). Biochar amendment helped to maintain the bacterial diversity in the PAH-contaminated soil. The relationship between the immobilization of PAHs and the soil bacterial diversity fit a quadratic model. Before week 12 of the incubation, the incubation time was the main factor contributing to the changes in the soil bacterial community structure. However, biochar greatly affected the bacterial community structure after 12 weeks of amendment, and the effects were dependent upon the biochar type. Amendment with biochar mainly facilitated the growth of rare bacterial genera (relative abundance of 0.01-1%) in the studied soil. Therefore, the application of wheat straw biochar into PAH-contaminated soil can reduce the environmental risks of PAHs and benefit the soil microbial ecology.

  10. Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants.

    Science.gov (United States)

    Jiao, Haihua; Luo, Jinxue; Zhang, Yiming; Xu, Shengjun; Bai, Zhihui; Huang, Zhanbin

    2015-09-01

    Bio-augmentation is a promising technique for remediation of polluted soils. This study aimed to evaluate the bio-augmentation effect of Rhodobacter sphaeroides biofertilizer (RBF) on the bioremediation of total petroleum hydrocarbons (TPH) contaminated soil. A greenhouse pot experiment was conducted over a period of 120 days, three methods for enhancing bio-augmentation were tested on TPH contaminated soils, including single addition RBF, planting, and combining of RBF and three crop species, such as wheat (W), cabbage (C) and spinach (S), respectively. The results demonstrated that the best removal of TPH from contaminated soil in the RBF bio-augmentation rhizosphere soils was found to be 46.2%, 65.4%, 67.5% for W+RBF, C+RBF, S+RBF rhizosphere soils respectively. RBF supply impacted on the microbial community diversity (phospholipid fatty acids, PLFA) and the activity of soil enzymes, such as dehydrogenase (DH), alkaline phosphatase (AP) and urease (UR). There were significant difference among the soil only containing crude oil (CK), W, C and S rhizosphere soils and RBF bio-augmentation soils. Moreover, the changes were significantly distinct depended on crops species. It was concluded that the RBF is a valuable material for improving effect of remediation of TPH polluted soils.

  11. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil

    Energy Technology Data Exchange (ETDEWEB)

    Zakia D. Parrish; M. Katherine Banks; A. Paul Schwab [Connecticut Agricultural Experiment Station, New Haven, CT (United States). Department of Soil and Water

    2005-09-15

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs. The lability of sorbed contaminants is modified by the presence of plants. Remediation coupled with plant treatment can change the bioavailability of contaminants in soil.

  12. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Zakia D. [Department of Soil and Water, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511 (United States); Banks, M. Katherine [School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States)]. E-mail: kbanks@ecn.purdue.edu; Schwab, A. Paul [Department of Agronomy, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054 (United States)

    2005-09-15

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs. - The lability of sorbed contaminants is modified by the presence of plants. Remediation coupled with plant treatment can change the bioavailability of contaminants in soil.

  13. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil

    International Nuclear Information System (INIS)

    Parrish, Zakia D.; Banks, M. Katherine; Schwab, A. Paul

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs. - The lability of sorbed contaminants is modified by the presence of plants. Remediation coupled with plant treatment can change the bioavailability of contaminants in soil

  14. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: Experimental study

    International Nuclear Information System (INIS)

    Viglianti, Christophe; Hanna, Khalil; Brauer, Christine de; Germain, Patrick

    2006-01-01

    The removal of polycyclic aromatic hydrocarbons (PAHs) from soil using water as flushing agent is relatively ineffective due to their low aqueous solubility. However, addition of cyclodextrin (CD) in washing solutions has been shown to increase the removal efficiency several times. Herein are investigated the effectiveness of cyclodextrin to remove PAH occurring in industrially aged-contaminated soil. β-Cyclodextrin (BCD), hydroxypropyl-β-cyclodextrin (HPCD) and methyl-β-cyclodextrin (MCD) solutions were used for soil flushing in column test to evaluate some influent parameters that can significantly increase the removal efficiency. The process parameters chosen were CD concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant and almost linear effect on PAH removal from the contaminated soil, except the temperature where no significant enhancement in PAH extraction was observed for temperature range from 5 to 35 o C. The PAHs extraction enhancement factor compared to water was about 200. - An innovative method using a biodegradable and non-toxic flushing agent for the depollution of industrially aged-contaminated soil

  15. Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya.

    Science.gov (United States)

    Mansur, Abdulatif A; Adetutu, Eric M; Kadali, Krishna K; Morrison, Paul D; Nurulita, Yuana; Ball, Andrew S

    2014-09-01

    The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of

  16. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain.

    Science.gov (United States)

    Płociniczak, Tomasz; Fic, Ewa; Pacwa-Płociniczak, Magdalena; Pawlik, Małgorzata; Piotrowska-Seget, Zofia

    2017-07-03

    The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments. The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons.

  17. Contaminated soil phytoremediation by Cyperus laxus Lam. cytochrome p450 EROD-activity induced by hydrocarbons in roots.

    Science.gov (United States)

    López-Martínez, S; Gallegos-Martínez, M E; Pérez-Flores, L J; Gutiérrez-Rojas, M

    2008-01-01

    Laboratory and greenhouse experiments with Cyperus laxus Lam were conducted to determine the rate and extent of phytoremediation and the effect of hydrocarbons on the cytochrome P450 EROD (7-ethoxyresorufin-O-deethylase) enzymatic activity in roots. Plants were cultivated on hydrocarbon-contaminated soil (HCS) and spiked perlite. Phytoremediation was evaluated using 6.5 kg HCS (173 +/- 15 mg total petroleum hydrocarbons [TPH] g(-1) of dry soil) pots at different moisture contents; the average removal rate was 3.46-0.25 mg TPH g(-1) dry soil month(-1) and 48% was removed when moisture was kept at 60%. The aromatic hydrocarbon fraction was the mostly removed, 60%; aliphatic, 51%; and polar 24% after 24-month experiments. In unplanted pots, TPH concentration did not exhibit significant differences with respect to the initial concentration. We confirmed that the presence of hydrocarbons induced ERODactivity up to 6.5-fold. Moreover, short-term experiments (up to 13 d) with spiked perlite demonstrated that two EROD activities in roots contributed to the total detected; 60% was found in the cytosolic and 40% in the microsomal fraction. To our knowledge, this is the first work that tries to build links between the hydrocarbon-inducible character of ERODactivity in roots and the phytoremediation ability of C. laxus in highly contaminated soils.

  18. Carbazole angular dioxygenation and mineralization by bacteria isolated from hydrocarbon-contaminated tropical African soil.

    Science.gov (United States)

    Salam, L B; Ilori, M O; Amund, O O; Numata, M; Horisaki, T; Nojiri, H

    2014-01-01

    Four bacterial strains isolated from hydrocarbon-contaminated soils in Lagos, Nigeria, displayed extensive degradation abilities on carbazole, an N-heterocyclic aromatic hydrocarbon. Physicochemical analyses of the sampling sites (ACPP, MWO, NESU) indicate gross pollution of the soils with a high hydrocarbon content (157,067.9 mg/kg) and presence of heavy metals. Phylogenetic analysis of the four strains indicated that they were identified as Achromobacter sp. strain SL1, Pseudomonas sp. strain SL4, Microbacterium esteraromaticum strain SL6, and Stenotrophomonas maltophilia strain BA. The rates of degradation of carbazole by the four isolates during 30 days of incubation were 0.057, 0.062, 0.036, and 0.050 mg L(-1) h(-1) for strains SL1, SL4, SL6, and BA. Gas chromatographic (GC) analyses of residual carbazole after 30 days of incubation revealed that 81.3, 85, 64.4, and 76 % of 50 mg l(-1) carbazole were degraded by strains SL1, SL4, SL6, and BA, respectively. GC-mass spectrometry and high-performance liquid chromatographic analyses of the extracts from the growing and resting cells of strains SL1, SL4, and SL6 cultured on carbazole showed detection of anthranilic acid and catechol while these metabolites were not detected in strain BA under the same conditions. This study has established for the first time carbazole angular dioxygenation and mineralization by isolates from African environment.

  19. Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils

    OpenAIRE

    Sivaram, Anithadevi Kenday; Logeshwaran, Panneerselvan; Subashchandrabose, Suresh R.; Lockington, Robin; Naidu, Ravi; Megharaj, Mallavarapu

    2018-01-01

    The phytoremediation technique has been demonstrated to be a viable option for the remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated sites. This study evaluated the potential applicability of plants with C3 and C4 carbon fixation pathways for the phytoremediation of recalcitrant high molecular weight (HMW) PAHs contaminated soil. A 60 and 120-day greenhouse study was conducted which showed higher degradation of HMW PAHs in soil grown with C4 plants when compared to C3 plants...

  20. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    Science.gov (United States)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and

  1. Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle

    Directory of Open Access Journals (Sweden)

    Maria Cristina Collivignarelli

    2018-06-01

    Full Text Available The aim of this experimental study was to assess the feasibility of using a wet oxidation (WO process for treating fine soil with a high level of total petroleum hydrocarbons (TPHs. Two samples of soil were spiked with two different contaminants (motor oil, and motor oil + diesel. The samples were subjected to a WO bench plant test, where the effect of the main process parameters (i.e., temperature and reaction time on the removal of TPHs was investigated. Results show that the WO process is effective for the decontamination of hydrocarbons, and a strong reduction (>85% can be obtained with the typical working conditions of a full-scale plant (temperature = 250 °C, reaction time = 30 min. The solid residue resulting from the WO process was characterized in order to evaluate the recovery options. In terms of chemical characterization, the contents of the pollutants comply with the Italian regulations for commercial and industrial site use. Moreover, the results of the leaching test suggested that these residues could be reused for ceramic and brick manufacturing processes.

  2. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment.

    Science.gov (United States)

    Andrade, Luiza L; Leite, Deborah C A; Ferreira, Edir M; Ferreira, Lívia Q; Paula, Geraldo R; Maguire, Michael J; Hubert, Casey R J; Peixoto, Raquel S; Domingues, Regina M C P; Rosado, Alexandre S

    2012-08-30

    Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Mangrove sediment was sampled from 0-5, 15-20 and 35-40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0-5 cm) being greater than in both deeper sediment layers (15-20 and 35-40 cm), which were similar to each other.

  3. Tryptophan Oxidative Metabolism Catalyzed by : A Thermophile Isolated from Kuwait Soil Contaminated with Petroleum Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Jassim M. Al-Hassan

    2011-01-01

    Full Text Available Tryptophan metabolism has been extensively studied in humans as well as in soil. Its metabolism takes place mainly through kynurenine pathway yielding hydroxylated, deaminated and many other products of physiological significance. However, tryptophan metabolism has not been studied in an isolated thermophilic bacterium. Geobacillus stearothermophilus is a local thermophile isolated from Kuwait desert soil contaminated with petroleum hydrocarbons. The bacterium grows well at 65 °C in 0.05 M phosphate buffer (pH 7, when supplied with organic compounds as a carbon source and has a good potential for transformation of steroids and related molecules. In the present study, we used tryptophan ethyl ester as a carbon source for the bacterium to study the catabolism of the amino acid at pH 5 and pH 7. In this endeavor, we have resolved twenty one transformation products of tryptophan by GC/LC and have identified them through their mass spectral fragmentation.

  4. 'Mussel Watch' and chemical contamination of the coasts by polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAH) enter the coastal marine environment from three general categories of sources; pyrogenic, petrogenic (or petroleum), and natural diagenesis. PAH from different sources appear to have differential biological availability related to how the PAH are sorbed, trapped, or chemically bound to particulate matter, including soot. Experience to date with bivalve sentinel organism, or 'Mussel Watch', monitoring programs indicates that these programs can provide a reasonable general assessment of the status and trends of biologically available PAH in coastal ecosystems. As fossil fuel use increases in developing countries, it is important that programs such as the International Mussel Watch Program provide assessments of the status and trends of PAH contamination of coastal ecosystems of these countries. (author)

  5. Carbonate and carbon isotopic evolution of groundwater contaminated by produced water brine with hydrocarbons

    International Nuclear Information System (INIS)

    Atekwana, Eliot A.; Seeger, Eric J.

    2015-01-01

    The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ"1"3C_D_I_C) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO_3"−-rich, SO_4"2"−-rich and Cl"−-rich. The HCO_3"−-rich groundwater is undergoing closed system carbonate evolution from soil CO_2_(_g_) and weathering of aquifer carbonates. The SO_4"2"−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl"−-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ"1"3C_D_I_C of the HCO_3"−-rich groundwater was controlled by nearly equal contribution of carbon from soil CO_2_(_g_) and the aquifer carbonates, such that the δ"1"3C of carbon added to the groundwater was −11.6‰. In the SO_4"2"−-rich groundwater, gypsum induced dedolomitization increased the "1"3C such that the δ"1"3C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl"−-rich groundwater, common ion induced precipitation of calcite depleted the "1"3C such that the δ"1"3C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution. - Highlights: • We studied carbonate and δ"1"3C evolution in groundwater contaminated by produced water brine. • Multiple processes affect the carbonate and δ"1"3C evolution of the groundwater. • The processes are carbonate weathering, dedolomitization and common ion induce calcite precipitation. • The δ"1"3C added to DIC was −11.6‰ for weathering, −9.4‰ for dedolomitization

  6. Geoelectrical characterization of a site with hydrocarbon contamination caused by pipeline leakage

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Rodriguez, Omar; Shevnin, Vladimir; Ochoa-Valdes, Jesus [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Ryjov, Albert [Moscow State Geological Prospecting Academy, Moscow (Russian Federation)

    2006-01-15

    Vertical Electrical Sounding (VES) method is used extensively in environmental impact studies including hydrocarbon contamination. In this work, the results of the geoelectrical characterization of a contaminated site caused by pipeline leakage are presented. Geoelectrical study was performed with multi-electrode technology and 2D profile data interpretation. VES results from six parallel profiles were presented in resistivity sections and maps. Layered model of the site was found including aquifer and aquitard layers. Although the contamination grade of the site is low, we found two contaminated zones into sandy aquifer. Aquifer and aquitard were characterized by its resistivity, clay content, porosity and cation exchange capacity values. Recalculation of resistivity data into petrophysical sections and maps was performed by an inversion algorithm taking into account pore water salinity. Petrophysical parameters for uncontaminated areas estimated from resistivity are close to real values; meanwhile, in contaminated zones petrophysical parameters have anomalous values. Similar effects of contamination influence on petrophysical parameters were found in laboratory by resistivity measurements made at clean and contaminated sand samplers. [Spanish] El metodo Sondeo Electrico Vertical (SEV) es ampliamente utilizado en estudios de impacto ambiental incluyendo el caso de contaminacion por hidrocarburos. En este trabajo se presentan los resultados de la caracterizacion geoelectrica de un sitio contaminado por hidrocarburos relacionado con una fuga en linea de ducto. El estudio geoelectrico fue realizado utilizando el metodo SEV en la variante de tomografia, realizandose una interpretacion 2D de los datos observados. Seis perfiles paralelos de SEV fueron medidos y presentados sus resultados en secciones y mapas. Se determino un modelo estratificado que incluye acuitardo y acuifero. Aunque el grado de contaminacion en este sitio es bajo fue posible localizar dos zonas

  7. Subgap Two-Photon States in Polycyclic Aromatic Hydrocarbons: Evidence for Strong Electron Correlations

    OpenAIRE

    Aryanpour, K.; Roberts, A.; Sandhu, A.; Rathore, R.; Shukla, A.; Mazumdar, S.

    2013-01-01

    Strong electron correlation effects in the photophysics of quasi-one-dimensional $\\pi$-conjugated organic systems such as polyenes, polyacetylenes, polydiacetylenes, etc., have been extensively studied. Far less is known on correlation effects in two-dimensional $\\pi$-conjugated systems. Here we present theoretical and experimental evidence for moderate repulsive electron-electron interactions in a number of finite polycyclic aromatic hydrocarbon molecules with $D_{6h}$ symmetry. We show that...

  8. Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume

    NARCIS (Netherlands)

    Hamonts, K.; Kuhn, T.; Vos, J.; Maesen, M.; Kalka, H.; Smidt, H.; Springael, D.; Meckenstock, R.U.; Dejonghe, W.

    2012-01-01

    Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater base flow. Biotrans formation, sorption and dilution of CAHs in the impacted river sediments have been reported to reduce discharge, but the effect of temporal variations in environmental conditions on

  9. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Ali; Ghoshal, Subhasis, E-mail: subhasis.ghoshal@mcgill.ca

    2014-09-15

    Highlights: • Aeration and moisture addition alone caused extensive hydrocarbon biodegradation. • 30-day slurry reactor remediation endpoints attained in 385 days in biopiles. • High nitrogen concentrations inhibited hydrocarbon degradation. • Inhibition of biodegradation linked to lack of shifts in soil microbial community. - Abstract: Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16–C34) in a pilot-scale biopile experiment conducted at 15 °C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16–C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day{sup −1} in biopile tank compared to 0.11 day{sup −1} in slurry bioreactors for C16–C34 hydrocarbons, the biodegradation extents for this fraction

  10. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site

    International Nuclear Information System (INIS)

    Akbari, Ali; Ghoshal, Subhasis

    2014-01-01

    Highlights: • Aeration and moisture addition alone caused extensive hydrocarbon biodegradation. • 30-day slurry reactor remediation endpoints attained in 385 days in biopiles. • High nitrogen concentrations inhibited hydrocarbon degradation. • Inhibition of biodegradation linked to lack of shifts in soil microbial community. - Abstract: Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16–C34) in a pilot-scale biopile experiment conducted at 15 °C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16–C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day −1 in biopile tank compared to 0.11 day −1 in slurry bioreactors for C16–C34 hydrocarbons, the biodegradation extents for this fraction were

  11. Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus.

    Science.gov (United States)

    Ekperusi, O A; Aigbodion, F I

    2015-12-01

    A study on the bioremediation potentials of the earthworm Hyperiodrilus africanus (Beddard) in soil contaminated with crude oil was investigated. Dried and sieved soils were contaminated with 5 ml each of crude oil with replicates and inoculated with earthworms and monitored daily for 12 weeks. Physicochemical parameters such as pH, total organic carbon, sulfate, nitrate, phosphate, sodium, potassium, calcium and magnesium were determined using standard procedures. Total petroleum hydrocarbon (TPH) was determined using atomic absorption spectrophotometer (AAS), while BTEX constituents and earthworms tissues were analyzed using Gas Chromatography with Flame Ionization Detector (GC-FID). The results showed that the earthworm significantly enhanced the physicochemical parameters of the contaminated soil resulting in a decrease of the total organic carbon (56.64 %), sulfate (57.66 %), nitrate (57.69 %), phosphate (57.73 %), sodium (57.69 %), potassium (57.68 %), calcium (57.69 %) and magnesium (57.68 %) except pH (3.90 %) that slightly increased. There was a significant decrease in the TPH (84.99 %), benzene (91.65 %), toluene (100.00 %), ethylbenzene (100.00 %) and xylene (100.00 %). Analyses of the tissues of the earthworm at the end of the experiment showed that the earthworms bioaccumulated/biodegraded 57.35/27.64 % TPH, 38.91/52.73 % benzene, 27.76/72.24 % toluene, 42.16/57.85 % ethylbenzene and 09.62/90.38 % xylene. The results showed that the earthworms H. africanus could be used to bioremediate moderately polluted soil with crude oil contamination in the Niger Delta region of Nigeria.

  12. Identification of anthraquinone-degrading bacteria in soil contaminated with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rodgers-Vieira, Elyse A; Zhang, Zhenfa; Adrion, Alden C; Gold, Avram; Aitken, Michael D

    2015-06-01

    Quinones and other oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are toxic and/or genotoxic compounds observed to be cocontaminants at PAH-contaminated sites, but their formation and fate in contaminated environmental systems have not been well studied. Anthracene-9,10-dione (anthraquinone) has been found in most PAH-contaminated soils and sediments that have been analyzed for oxy-PAHs. However, little is known about the biodegradation of oxy-PAHs, and no bacterial isolates have been described that are capable of growing on or degrading anthraquinone. PAH-degrading Mycobacterium spp. are the only organisms that have been investigated to date for metabolism of a PAH quinone, 4,5-pyrenequinone. We utilized DNA-based stable-isotope probing (SIP) with [U-(13)C]anthraquinone to identify bacteria associated with anthraquinone degradation in PAH-contaminated soil from a former manufactured-gas plant site both before and after treatment in a laboratory-scale bioreactor. SIP with [U-(13)C]anthracene was also performed to assess whether bacteria capable of growing on anthracene are the same as those identified to grow on anthraquinone. Organisms closely related to Sphingomonas were the most predominant among the organisms associated with anthraquinone degradation in bioreactor-treated soil, while organisms in the genus Phenylobacterium comprised the majority of anthraquinone degraders in the untreated soil. Bacteria associated with anthracene degradation differed from those responsible for anthraquinone degradation. These results suggest that Sphingomonas and Phenylobacterium species are associated with anthraquinone degradation and that anthracene-degrading organisms may not possess mechanisms to grow on anthraquinone. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples.

    Science.gov (United States)

    Wang, Zhendi; Yang, C; Yang, Z; Hollebone, B; Brown, C E; Landriault, M; Sun, J; Mudge, S M; Kelly-Hooper, F; Dixon, D G

    2012-09-01

    Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 μg g(-1) for coarse soils and 1300 μg g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization

  14. Field—Based Supercritical Fluid Extraction of Hydrocarbons at Industrially Contaminated Sites

    Directory of Open Access Journals (Sweden)

    Peggy Rigou

    2002-01-01

    Full Text Available Examination of organic pollutants in groundwaters should also consider the source of the pollution, which is often a solid matrix such as soil, landfill waste, or sediment. This premise should be viewed alongside the growing trend towards field-based characterisation of contaminated sites for reasons of speed and cost. Field-based methods for the extraction of organic compounds from solid samples are generally cumbersome, time consuming, or inefficient. This paper describes the development of a field-based supercritical fluid extraction (SFE system for the recovery of organic contaminants (benzene, toluene, ethylbenzene, and xylene and polynuclear aromatic hydrocarbons from soils. A simple, compact, and robust SFE system has been constructed and was found to offer the same extraction efficiency as a well-established laboratory SFE system. Extraction optimisation was statistically evaluated using a factorial analysis procedure. Under optimised conditions, the device yielded recovery efficiencies of >70% with RSD values of 4% against the standard EPA Soxhlet method, compared with a mean recovery efficiency of 48% for a commercially available field-extraction kit. The device will next be evaluated with real samples prior to field deployment.

  15. Microbial Diversity and Bioremediation of a Hydrocarbon-Contaminated Aquifer (Vega Baja, Puerto Rico

    Directory of Open Access Journals (Sweden)

    Arturo A. Massol-Deyá

    2006-09-01

    Full Text Available Hydrocarbon contamination of groundwater resources has become a major environmental and human health concern in many parts of the world. Our objectives were to employ both culture and culture-independent techniques to characterize the dynamics of microbial community structure within a fluidized bed reactor used to bioremediate a diesel-contaminated groundwater in a tropical environment. Under normal operating conditions, 97 to 99% of total hydrocarbons were removed with only 14 min hydraulic retention time. Over 25 different cultures were isolated from the treatment unit (96% which utilized diesel constituents as sole carbon source. Approximately 20% of the isolates were also capable of complete denitrification to nitrogen gas. Sequence analysis of 16S rDNA demonstrated ample diversity with most belonging to the ∝, β and γ subdivision of the Proteobacteria, Bacilli, and Actinobacteria groups. Moreover, the genetic constitution of the microbial community was examined at multiple time points with a Functional Gene Array (FGA containing over 12,000 probes for genes involved in organic degradation and major biogeochemical cycles. Total community DNA was extracted and amplified using an isothermal φ29 polymerase-based technique, labeled with Cy5 dye, and hybridized to the arrays in 50% formimide overnight at 50°C. Cluster analysis revealed comparable profiles over the course of treatment suggesting the early selection of a very stable microbial community. A total of 270 genes for organic contaminant degradation (including naphthalene, toluene [aerobic and anaerobic], octane, biphenyl, pyrene, xylene, phenanthrene, and benzene; and 333 genes involved in metabolic activities (nitrite and nitrous oxide reductases [nirS, nirK, and nosZ], dissimilatory sulfite reductases [dsrAB], potential metal reducing C-type cytochromes, and methane monooxygenase [pmoA] were repeatedly detected. Genes for degradation of MTBE

  16. Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae.

    Science.gov (United States)

    Ekperusi, Ogheneruemu Abraham; Aigbodion, Iruobe Felix

    2015-01-01

    A laboratory study on the bioremediation of diesel contaminated soil with the earthworm Eudrilus eugeniae (Kingberg) was conducted. 5 ml of diesel was contaminated into soils in replicates and inoculated with E. eugeniae for 90 days. Physicochemical parameters, heavy metals and total petroleum hydrocarbons were analyzed using AAS. BTEX in contaminated soil and tissues of earthworms were determined with GC-FID. The activities of earthworms resulted in a decrease in pH (3.0 %), electrical conductivity (60.66 %), total nitrogen (47.37 %), chloride (60.66 %), total organic carbon (49.22 %), sulphate (60.59 %), nitrate (60.65 %), phosphate (60.80 %), sodium (60.65 %), potassium (60.67 %), calcium (60.67 %), magnesium (60.68 %), zinc (60.59 %), manganese (60.72 %), copper (60.68 %), nickel (60.58 %), cadmium (60.44 %), vanadium (61.19 %), chromium (53.60 %), lead (60.38 %), mercury (61.11 %), arsenic (80.85 %), TPH (84.99 %). Among the BTEX constituents, only benzene (8.35 %) was detected in soil at the end of the study. Earthworm tissue analysis showed varying levels of TPH (57.35 %), benzene (38.91 %), toluene (27.76 %), ethylbenzene (42.16 %) and xylene (09.62 %) in E. eugeniae at the end of the study. The study has shown that E. eugeniae could be applied as a possible bioremediator in diesel polluted soil.

  17. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, T.T. [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Kao, C.M., E-mail: jkao@mail.nsysu.edu.tw [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China)

    2009-10-15

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H{sub 2}O{sub 2}, BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., {alpha}-Fe{sub 2}O{sub 3} and {alpha}-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg{sup -1}), respectively, with the addition of 15% of H{sub 2}O{sub 2} and 100 g kg{sup -1} of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  18. Concentration of petroleum-hydrocarbon contamination shapes fungal endophytic community structure in plant roots

    Directory of Open Access Journals (Sweden)

    Guillaume eBourdel

    2016-05-01

    Full Text Available Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous patterns of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of

  19. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment

    Directory of Open Access Journals (Sweden)

    Andrade Luiza L

    2012-08-01

    Full Text Available Abstract Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil, which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm being greater than in both deeper sediment layers (15–20 and 35–40 cm, which were similar to each other.

  20. Uptake of Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbons (PAHs) by Oryza sativa L. Grown in Soil Contaminated with Crude Oil.

    Science.gov (United States)

    Patowary, Rupshikha; Patowary, Kaustuvmani; Devi, Arundhuti; Kalita, Mohan Chandra; Deka, Suresh

    2017-01-01

    The purpose of this study was to determine whether total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbons (PAHs) present in crude oil contaminated sites are transferred to roots, shoots and finally the grains of rice crops (Oryza sativa L.) grown in those sites. Soil was artificially contaminated with crude oil at concentrations of 0, 1000, 5000, 10,000, and 15,000 mg/kg, followed by planting of rice seedlings. After harvest, TPH in plant samples were measured, and it was determined that the uptake of TPH by the plants gradually increased as the concentration of oil in soil increased. Further, from GC-MS analysis, it was observed that PAHs including naphthalene and phenanthrene bioaccumulated in rice plant parts. Vital physico-chemical properties of soil were also altered due to crude oil contamination. Our study revealed that rice plants grown in crude oil polluted sites can uptake TPH including PAHs, thus emphasising the importance of prior investigation of soil condition before cultivation of crops.

  1. Estimating release of polycyclic aromatic hydrocarbons from coal-tar contaminated soil at manufactured gas plant sites. Final report

    International Nuclear Information System (INIS)

    Lee, L.S.

    1998-04-01

    One of EPRI's goals regarding the environmental behavior of organic substances consists of developing information and predictive tools to estimate the release potential of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils at manufactured gas (MGP) plant sites. A proper assessment of the distribution of contaminants under equilibrium conditions and the potential for mass-transfer constraints is essential in evaluating the environmental risks of contaminants in the subsurface at MGP sites and for selecting remediation options. The results of this research provide insights into estimating maximum release concentrations of PAHs from MGP soils that have been contaminated by direct contact with the tar or through years of contact with contaminated groundwater. Attention is also given to evaluating the use of water-miscible cosolvents for estimating aqueous phase concentrations, and assessing the role of mass-transfer constraints in the release of PAHs from MGP site soils

  2. Taguchi Method for Development of Mass Flow Rate Correlation Using Hydrocarbon Refrigerant Mixture in Capillary Tube

    OpenAIRE

    Sulaimon, Shodiya; Nasution, Henry; Aziz, Azhar Abdul; Abdul-Rahman, Abdul-Halim; Darus, Amer N

    2014-01-01

    The capillary tube is an important control device used in small vapor compression refrigeration systems such as window air-conditioners, household refrigerators and freezers. This paper develops a non-dimensional correlation based on the test results of the adiabatic capillary tube for the mass flow rate through the tube using a hydrocarbon refrigerant mixture of 89.3% propane and 10.7% butane (HCM). The Taguchi method, a statistical experimental design approach, was employed. This approach e...

  3. Microbial activity in an acid resin deposit: Biodegradation potential and ecotoxicology in an extremely acidic hydrocarbon contamination

    International Nuclear Information System (INIS)

    Kloos, Karin; Schloter, Michael; Meyer, Ortwin

    2006-01-01

    Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1. - Acidity is the major toxic factor of the extremely hydrophobic and acidic mixed contamination found in an acid resin deposit

  4. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report

    International Nuclear Information System (INIS)

    Ressel, K.

    1993-06-01

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.) [de

  5. Minimizing the Health Risks from Hydrocarbon Contaminated Soils by Using Electric Field-Based Treatment for Soil Remediation

    Directory of Open Access Journals (Sweden)

    Irina Aura Istrate

    2018-01-01

    Full Text Available The present work addresses the assessment of human health risk from soil contaminated with total petroleum hydrocarbons (TPHs due to crude oil pollution, with a particular focus on the polycyclic aromatic hydrocarbon (PAH group of carcinogenic and toxic substances. Given that the measured risk for human health exceeded the accepted level, the study considered an electrochemical remediation method. The laboratory-scale experiments were conducted by using an electric field-based treatment as a possible solution for the remediation of contaminated soil. After 20 days of treatment, while the voltage applied was 15 V (specific voltage of 1 V/cm, the hydrocarbon content was significantly reduced. The parameters measured to determine the overall remediation efficiency were pH, redox potential, ionic strength, soil characteristics, voltage gradient, and zeta potential. The remediation degree observed during the experiments was around 50% for TPHs and 46% for PAHs. The applied remediation method resulted in significant removal efficiency of the tested contaminants from the soil. Consequently, the human health risk assessment for the new degree of contaminants in the soil was achieved. This data demonstrated to what extent the application of the remediation applied technology ensured an acceptable risk under the same exposure conditions for the industrial workers.

  6. In situ sensing of subsurface contamination--part I: near-infrared spectral characterization of alkanes, aromatics, and chlorinated hydrocarbons.

    Science.gov (United States)

    Klavarioti, Maria; Kostarelos, Konstantinos; Pourjabbar, Anahita; Ghandehari, Masoud

    2014-05-01

    There is an imperative need for a chemical sensor capable of remote, in situ, long-term monitoring of chemical species at sites containing toxic chemical spills, specifically at chemical waste dumps, landfills, and locations with underground storage tanks. In the current research, a series of experiments were conducted measuring the near-infrared optical absorption of alkanes, aromatics, and chlorinated hydrocarbons. A spectral library was then developed to characterize the optical spectra of liquid hydrocarbons. Near-infrared analysis was chosen due to compatibility with optical fibers. The goal was to differentiate between classes of hydrocarbons and to also discriminate between compounds within a class of similar molecular structures. It was observed that unique absorption spectra can be obtained for each hydrocarbon, and this uniqueness can be used to discriminate between hydrocarbons from different families. Statistical analyses, namely, principal component analysis (PCA) and correlation coefficient (Spearman and Pearson methods), were attempted to match absorption spectra from an unknown hydrocarbon with the database with limited success. An algorithm was subsequently written to identify the characteristic peaks of each hydrocarbon that could be used to match data from an unknown chemical species with the database.

  7. Implications of Bioremediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soils for Human Health and Cancer Risk

    Energy Technology Data Exchange (ETDEWEB)

    Davie-Martin, Cleo L. [Department; Department; Stratton, Kelly G. [Pacific Northwest; Teeguarden, Justin G. [Pacific Northwest; Waters, Katrina M. [Pacific Northwest; Simonich, Staci L. Massey [Department; Department

    2017-08-09

    Background: Bioremediation uses microorganisms to degrade polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Its success is largely evaluated through targeted analysis of PAH concentrations in soil and cancer risk (exposure) estimates. However, bioremediation often fails to significantly degrade the most carcinogenic PAHs and can initiate formation of more polar metabolites, some of which may be more toxic. Objectives: We aimed to investigate whether the cancer risk associated with PAH-contaminated soils was reduced post-bioremediation and to identify the most effective bioremediation strategies for degrading the carcinogenic and high molecular weight (≥MW302) PAHs. Methods: Pre- and post-bioremediation concentrations of eight B2 group carcinogenic PAHs in soils were collated from the literature and used to calculate excess lifetime cancer risks (ELCR) for adult populations exposed via non-dietary ingestion, per current U.S. Environmental Protection Agency (USEPA) recommendations. Due to the nature of the collated data (reported as mean concentrations ± standard deviations pre- and post-bioremediation), we used simulation methods to reconstruct the datasets and enable statistical comparison of ELCR values pre- and post-bioremediation. Additionally, we measured MW302 PAHs in a contaminated soil prior to and following treatment in an aerobic bioreactor and examined their contributions to cancer risk. Results: 120 of 158 treated soils (76%) exhibited a statistically significant reduction in cancer risk following bioremediation; however, 67% (106/158) of soils had post-bioremediation ELCR values over 10 fold higher than the USEPA health-based ‘acceptable’ risk level. Composting treatments were most effective at biodegrading PAHs in soils and reducing the ELCR. MW302 PAHs were not significantly degraded during bioremediation and dibenzo(a,l)pyrene, alone, contributed an additional 35% to the cancer risk associated with the eight B2 group PAHs in the

  8. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil].

    Science.gov (United States)

    Jiao, Hai-hua; Cui, Bing-jian; Wu, Shang-hua; Bai, Zhi-hui; Huang, Zhan-bin

    2015-09-01

    In order to explore the effect of Mirabilis jalapa Linn. growth on the structure characteristics of the microbial community and the degradation of petroleum hydrocarbon (TPH) in the petroleum-contaminated saline-alkali soil, Microbial biomass and species in the rhizosphere soils of Mirabilis jalapa Linn. in the contaminated saline soil were studied with the technology of phospholipid fatty acids (PLFAs) analysis. The results showed that comparing to CK soils without Mirabilis jalapa Linn., the ratio of PLFAs species varied were 71. 4%, 69. 2% and 33. 3% in the spring, summer and autumn season, respectively. In addition, there was distinct difference of the biomasses of the microbial community between the CK and rhizosphere soils and among the difference seasons of growth of Mirabilis jalapa Linn.. Compare to CK soil, the degradation rates of total petroleum hydrocarbon (TPH) was increased by 47. 6%, 28. 3%, and 18. 9% in spring, summer, and autumn rhizosphere soils, respectively. Correlation analysis was used to determine the correlation between TPH degradation and the soil microbial community. 77. 8% of the total soil microbial PLFAs species showed positive correlation to the TPH degradation (the correlation coefficient r > 0), among which, 55. 6% of PLFAs species showed high positive correlation(the correlation coefficient was r≥0. 8). In addition, the relative content of SAT and MONO had high correlation with TPH degradation in the CK sample soils, the corelation coefficient were 0. 92 and 0. 60 respectively; However, the percent of positive correlation was 42. 1% in the rhizosphere soils with 21. 1% of them had high positive correlation. The relative content of TBSAT, MONO and CYCLO had moderate or low correlation in rhizosphere soils, and the correlation coefficient were 0. 56, 0. 50, and 0. 07 respectively. Our study showed that the growth of mirabilis Mirabilis jalapa Linn. had a higher influence on the species and biomass of microbial community in the

  9. Management of hydrocarbon-contaminated soil through bioremediation and landfill disposal at a remote location in northern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Sanscartier, D.; Reimer, K.; Zeeb, B.; George, K. [Royal Military Coll. of Canada, Kingston, ON (Canada). Environmental Sciences Group; Royal Military Coll. of Canada, Kingston, ON (Canada). Dept. of Chemistry and Chemical Engineering

    2010-01-15

    This paper described an innovative method of managing diesel-contaminated soil in a remote Labrador community. The soil was treated in an aerated biopile to reduce mobile petroleum hydrocarbons (PHC) concentrations. The soil was then disposed of in a local landfill. An analysis of the soils showed that the method reduced total petroleum hydrocarbon (TPH) concentrations in the soil. Hydrocarbon concentrations were measured using the Canada-Wide standard reference method. TPH in leachate decreased during the 1-year field treatment period. PHC fractions were reduced to below the standard criteria for the protection of aquatic life. Volatilization was the predominant PHC removal mechanism in the field. The treated soils were used as a landfill cover for refuse. The cost of the treatment method compared favorably with other land remediation techniques. The biopile facility will be used to treat other fuel spills in the community and serve as a demonstration project for other communities. 36 refs., 4 tabs., 3 figs.

  10. Endophytic root bacteria associated with the natural vegetation growing at the hydrocarbon-contaminated Bitumount Provincial Historic site.

    Science.gov (United States)

    Blain, Natalie P; Helgason, Bobbi L; Germida, James J

    2017-06-01

    The Bitumount Provincial Historic site is the location of 2 of the world's first oil-extracting and -refining operations. Despite hydrocarbon levels ranging from 330 to 24 700 mg·(kg soil) -1 , plants have been able to recolonize the site through means of natural revegetation. This study was designed to achieve a better understanding of the plant-root-associated bacterial partnerships occurring within naturally revegetated hydrocarbon-contaminated soils. Root endophytic bacterial communities were characterized from representative plant species throughout the site by both high-throughput sequencing and culturing techniques. Population abundance of rhizosphere and root endosphere bacteria was significantly influenced (p hydrocarbon-degrading genes (CYP153 and alkB) were significantly affected (p < 0.05) by the interaction of plant species and sampling location. Our findings suggest that some of the bacterial communities detected are known to exhibit plant growth promotion characteristics.

  11. [Investigation of heavy metal and polycyclic aromatic hydrocarbons contamination in street dusts in urban Beijing].

    Science.gov (United States)

    Xiang, Li; Li, Ying-Xia; Shi, Jiang-Hong; Liu, Jing-Ling

    2010-01-01

    This paper investigated the contamination levels of heavy metal and polycyclic aromatic hydrocarbons (PAHs) in street dusts in different functional areas in urban Beijing. Results show that the mean concentrations of Cd, Hg, Cr, Cu, Ni, Pb and Zn in street dusts in Beijing are 710 ng/g, 307 ng/g, 85.0 microg/g, 78.3 microg/g, 41.1 microg/g, 69.6 microg/g and 248.5 microg/g, respectively, which are significantly lower than those in most cities around the world and Shenyang, Shanghai in China. The mean concentration of Sigma 16PAHs in street dusts in Beijing is 0.398 microg/g, which is also lower than those of Handan, Tianjin and Shanghai. Non-parametric Friedman test demonstrates significant differences of heavy metal contents on street dusts from different functional zones. Street dusts in residential area and parks have lower heavy metal and PAHs concentrations than the street dusts from areas of high traffic density. The concentrations of heavy metals follow the order Zn > Cr > Cu > Pb > Ni > Cd > Hg, which is consistent with the situation in other cities around the world. The geoaccumulation index analysis shows that street dust in urban Beijing is moderately polluted by Cd, Zn and Cu, little polluted by Cr and Pb and practically unpolluted by Ni. The contamination levels of Sigma 16PAHs on street dusts vary greatly in different functional zones with parks little polluted, residential areas moderately to strongly polluted and traffic related areas strongly polluted to extremely polluted. Mass loading of heavy metals and PAHs is largely associated with street dusts of size range < 300 microm. Therefore, the urban sweeping vehicles should update the dust sweeping devices to remove not only the fine particle but also the coarser particles.

  12. Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site

    Science.gov (United States)

    Chen, K. F.; Kao, C. M.; Chen, T. Y.; Weng, C. H.; Tsai, C. T.

    2006-06-01

    An oil-refining plant site located in southern Taiwan has been identified as a petroleum-hydrocarbon [mainly methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and xylenes (BTEX)] spill site. In this study, groundwater samples collected from the site were analyzed to assess the occurrence of intrinsic MTBE biodegradation. Microcosm experiments were conducted to evaluate the feasibility of biodegrading MTBE by indigenous microorganisms under aerobic, cometabolic, iron reducing, and methanogenic conditions. Results from the field investigation and microbial enumeration indicate that the intrinsic biodegradation of MTBE and BTEX is occurring and causing the decrease in MTBE and BTEX concentrations. Microcosm results show that the indigenous microorganisms were able to biodegrade MTBE under aerobic conditions using MTBE as the sole primary substrate. The detected biodegradation byproduct, tri-butyl alcohol (TBA), can also be biodegraded by the indigenous microorganisms. In addition, microcosms with site groundwater as the medium solution show higher MTBE biodegradation rate. This indicates that the site groundwater might contain some trace minerals or organics, which could enhance the MTBE biodegradation. Results show that the addition of BTEX at low levels could also enhance the MTBE removal. No MTBE removal was detected in iron reducing and methanogenic microcosms. This might be due to the effects of low dissolved oxygen (approximately 0.3 mg/L) within the plume. The low iron reducers and methanogens (soil) observed in the aquifer also indicate that the iron reduction and methanogenesis are not the dominant biodegradation patterns in the contaminant plume. Results from the microcosm study reveal that preliminary laboratory study is required to determine the appropriate substrates and oxidation-reduction conditions to enhance the biodegradation of MTBE. Results suggest that in situ or on-site aerobic bioremediation using indigenous microorganisms would

  13. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil

    International Nuclear Information System (INIS)

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-01-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. - Highlights: • Phytoremediation of aged-hydrocarbon polluted soils may be improved using arbuscular mycorrhizal fungi. • Inoculation of wheat with R. irregularis improved dissipation of PAH and alkanes. • Dissipation resulted from adsorption and bioaccumulation in wheat and mainly from biodegradation in soil. • Biodegradation was due to a stimulation of rhizosphere bacteria and an induction of root peroxidase. - Inoculation of wheat by an arbuscular mycorrhizal fungus improves biodegradation of alkanes and polycyclic aromatic hydrocarbons in an aged-contaminated

  14. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site.

    Science.gov (United States)

    Akbari, Ali; Ghoshal, Subhasis

    2014-09-15

    Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    Directory of Open Access Journals (Sweden)

    Ulrike eJaekel

    2015-02-01

    Full Text Available The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5×0.8 m. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkanes propane and n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes.

  16. Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting

    International Nuclear Information System (INIS)

    Antizar-Ladislao, Blanca; Lopez-Real, Joseph; Beck, Angus J.

    2005-01-01

    The biodegradation of 16 polycyclic aromatic hydrocarbons (PAHs), listed as priority pollutants by the USEPA, present in a coal-tar-contaminated soil from a former manufactured gas plant site was investigated using laboratory-scale in-vessel composting reactors to determine the suitability of this approach as a bioremediation technology. Preliminary investigations were conducted over 16 weeks to determine the optimum soil composting temperature (38, 55 and 70 deg. C). Three tests were performed; firstly, soil was composted with green-waste, with a moisture content of 60%. Secondly, microbial activity was HgCl 2 -inhibited in the soil green-waste mixture with a moisture content of 60%, to evaluate abiotic losses, while in the third experiment only soil was incubated at the three different temperatures. PAHs and microbial populations were monitored. PAHs were lost from all treatments with 38 deg. C being the optimum temperature for both PAH removal and microbial activity. Calculated activation energy values (E a ) for total PAHs suggested that the main loss mechanism in the soil-green waste reactors was biological, whereas in the soil reactors it was chemical. Total PAH losses in the soil-green waste composting mixtures were by pseudo-first order kinetics at 38 deg. C (k = 0.013 day -1 , R 2 = 0.95), 55 deg. C (k = 0.010 day -1 , R 2 = 0.76) and at 70 deg. C (k = 0.009 day -1 , R 2 = 0.73)

  17. Ecotoxicological assessment of bioremediation of a petroleum hydrocarbon-contaminated soil

    International Nuclear Information System (INIS)

    Renoux, A.Y.; Tyagi, R.D.; Samson, R.

    1995-01-01

    A battery of bioassays [barley seed germination, barley plant growth, lettuce seed germination, worm mortality, Microtox reg-sign, lettuce root elongation, algae Selenastrum capricornutum growth, Daphnia magna mortality, and SOS Chromotest (±S9)] was used to assess an above-ground heap pile treatment of a soil contaminated with aliphatic petroleum hydrocarbons (12 to 24 carbons). Despite an initial oil and grease concentration of 2,000 mg/kg, no significant (geno)toxicity was apparent in the soil sample before treatment. During the treatment, which decreased oil and grease concentrations to 800 mg/kg, slight toxicity was revealed by three bioassays (barley seed germination, worm mortality, Daphnia magna mortality), and a significant increase in genotoxicity was measured with the SOS Chromotest (± S9). It appears that ecotoxicological evaluation revealed harmful condition(s) that were not detected by chemical assessment. This suggests that the remediation had ceased before complete detoxification occurred. This phenomenon must be further investigated, however, to furnish solid conclusions on the toxicological effectiveness of the biotreatment

  18. Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Man, Yu Bon [School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 311300 (China); State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Kang, Yuan [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Higher Education Mega Center, Guangzhou 510006 (China); Wang, Hong Sheng [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Lau, Winifred; Li, Hui; Sun, Xiao Lin [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Giesy, John P. [Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR (China); Chow, Ka Lai [State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China); Wong, Ming Hung, E-mail: mhwong@hkbu.edu.hk [School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Lin’an, Zhejiang 311300 (China); State Key Laboratory in Marine Pollution - Croucher Institute for Environmental Sciences, Hong Kong Baptist University and City University of Hong Kong, Hong Kong SAR (China)

    2013-10-15

    Highlights: ► High levels of soil organic matter in soils render PAHs more resistant to degradation. ► Open burning site contain high concentrations of PAHs in Hong Kong. ► Car dismantling workshop can increase potential cancer risk on human. -- Abstract: The aim of this study was to evaluate soils from 12 different land use types on human cancer risks, with the main focus being on human cancer risks related to polycyclic aromatic hydrocarbons (PAHs). Fifty-five locations were selected to represent 12 different types of land use (electronic waste dismantling workshop (EW (DW)); open burning site (OBS); car dismantling workshop (CDW) etc.). The total concentrations of 16 PAHs in terms of total burden and their bioaccessibility were analysed using GC/MS. The PAHs concentrations were subsequently used to establish cancer risks in humans via three exposure pathways, namely, accident ingestion of soil, dermal contact soil and inhalation of soil particles. When the 95th centile values of total PAH concentrations were used to derive ingestion and dermal cancer risk probabilities on humans, the CDW land use type indicated a moderate potential for cancerous development (244 × 10{sup −6} and 209 × 10{sup −6}, respectively). Bioaccessible PAHs content in soil samples from CDW (3.60 × 10{sup −6}) were also classified as low cancer risk. CDW soil possessed a higher carcinogenic risk based on PAH concentrations. Bioremediation is recommended to treat the contaminated soil.

  19. Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments.

    Science.gov (United States)

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Zhu, Zhiwen; Lin, Weiyun; Cao, Tong

    2014-09-15

    An overview of literature about isolating biosurfactant producers from marine sources indicated no such producers have been reported form North Atlantic Canada. Water and sediment samples were taken from petroleum hydrocarbon contaminated coastal and offshore areas in this region. Either n-hexadecane or diesel was used as the sole carbon source for the screening. A modified colony-based oil drop collapsing test was used to cover sessile biosurfactant producers. Fifty-five biosurfactant producers belong to genera of Alcanivorax, Exiguobacterium, Halomonas, Rhodococcus, Bacillus, Acinetobacter, Pseudomonas, and Streptomyces were isolated. The first three genera were established after 1980s with interesting characteristics and limited relevant publications. Some of the 55 isolated strains were found with properties such as greatly reducing surface tension, stabilizing emulsion and producing flocculant. Isolates P6-4P and P1-5P were selected to demonstrate the performance of biosurfactant production, and were found to reduce the surface tension of water to as low as 28 dynes/cm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Evaluation of landfarm remediation of hydrocarbon-contaminated soil at the Inveresk Railyard, Launceston, Australia

    International Nuclear Information System (INIS)

    Line, M.A.; Garland, C.D.; Crowley, M.

    1996-01-01

    The cost of landfarm bioremediation of hydrocarbon-contaminated soil at a disused railyard site in Tasmania, Australia is reported. The landfarm area was enclosed in an impermeable clay embankment and where necessary the base was also rolled with clay. Microbial inoculation was not deemed to be necessary since suitable degrading biota were found to be present in site samples prior to commencement of the landfarming. Fertilizer amendment comprised primarily ammonium sulphate and superphosphate to give a C:N ratio (TPH:fertilizer) of 28:1 and a C:P ratio of 200:1. The soil was turned regularly and watered as required for the 12-month duration of the operation. Over this period levels of TPH showed a linear decline from a mean of 4,644 mg/kg to near 100 mg/kg or less, with greatest losses being in the chain lengths C10-C28. The cost was determined to be $A13.40c per m 3 , which is at the lower end of the spectrum of reported landfarming costs. The cost of such operations is important since the reported economics will influence others' choice of bioremediation techniques

  1. Organic solvents improve hydrocarbon desorption and biodegradation in highly contaminated weathered soils

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rivero, M. [Tecnologico de Estudios Superiores de Ecatepec, Mexico City (Mexico); Saucedo-Casteneda, G.; Gutierrez-Rojas, M. [Autonoma Metropolitan Univ., Mexico City (Mexico). Dept. of Biotechnology

    2007-07-15

    A toluene-based microbial slurry phase system was used to remediate hydrocarbons (HC) in highly contaminated soil samples collected from a site next to a working refinery in Mexico. Initial HC concentrations of the samples were 237.2 {+-} 16,6 g kg{sup -1} in dry soil. The microbial consortium consisted of 10 different strains in a mineral solution. Non-polar solvents used in the phase system included hexane, benzene, and toluene. Polar solvents included n-butanol, acetone, and methanol. The bioavailability of the HCs was increased using both polar and nonpolar solvents in order to promote desorption from the soil and to enhance overall HC biodegradation. HC desorption was analyzed in an abiotic system. Respiration and residual HCs were examined after a period of 30 days in order to compare the effects of the 2 solvents. The biodegradation extracts were then fractionated in a silica gel column to determine if the solvents actually enhanced the biodegradation of specific HC fractions. The study showed that induced dipole interactions forces resulted when nonpolar molecules were dissolved into a nonpolar solvent. Results for desorption and solubility varied among the 6 solvents. Higher dielectric constants resulted in higher solubility and desorption of HCs for nonpolar solvents, while the opposite effect was observed for polar solvents. It was concluded that toluene produced better biodegradation results than any of the milder solvents. 34 refs., 4 tabs., 1 fig.

  2. Characterization of culturable heterotrophic bacteria in hydrocarbon-contaminated soil from an alpine former military site.

    Science.gov (United States)

    Zhang, Dechao; Margesin, Rosa

    2014-06-01

    We characterized the culturable, heterotrophic bacterial community in soil collected from a former alpine military site contaminated with petroleum hydrocarbons. The physiologically active eubacterial community, as revealed by fluorescence-in situ-hybridization, accounted for 14.9 % of the total (DAPI-stained) bacterial community. 4.0 and 1.2 % of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20 and 10 °C, respectively. The majority of culturable bacterial isolates (23/28 strains) belonged to the Proteobacteria with a predominance of Alphaproteobacteria. The remaining isolates were affiliated with the Firmicutes, Actinobacteria and Bacteroidetes. Five strains could be identified as representatives of novel species. Characterization of the 28 strains demonstrated their adaptation to the temperature and nutrient conditions prevailing in the studied soil. One-third of the strains was able to grow at subzero temperatures (-5 °C). Studies on the effect of temperature on growth and lipase production with two selected strains demonstrated their low-temperature adaptation.

  3. Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Man, Yu Bon; Kang, Yuan; Wang, Hong Sheng; Lau, Winifred; Li, Hui; Sun, Xiao Lin; Giesy, John P.; Chow, Ka Lai; Wong, Ming Hung

    2013-01-01

    Highlights: ► High levels of soil organic matter in soils render PAHs more resistant to degradation. ► Open burning site contain high concentrations of PAHs in Hong Kong. ► Car dismantling workshop can increase potential cancer risk on human. -- Abstract: The aim of this study was to evaluate soils from 12 different land use types on human cancer risks, with the main focus being on human cancer risks related to polycyclic aromatic hydrocarbons (PAHs). Fifty-five locations were selected to represent 12 different types of land use (electronic waste dismantling workshop (EW (DW)); open burning site (OBS); car dismantling workshop (CDW) etc.). The total concentrations of 16 PAHs in terms of total burden and their bioaccessibility were analysed using GC/MS. The PAHs concentrations were subsequently used to establish cancer risks in humans via three exposure pathways, namely, accident ingestion of soil, dermal contact soil and inhalation of soil particles. When the 95th centile values of total PAH concentrations were used to derive ingestion and dermal cancer risk probabilities on humans, the CDW land use type indicated a moderate potential for cancerous development (244 × 10 −6 and 209 × 10 −6 , respectively). Bioaccessible PAHs content in soil samples from CDW (3.60 × 10 −6 ) were also classified as low cancer risk. CDW soil possessed a higher carcinogenic risk based on PAH concentrations. Bioremediation is recommended to treat the contaminated soil

  4. Volatilisation of aromatic hydrocarbons from soil: part II, fluxes from coal tar contaminated soils residing below the soil surface

    International Nuclear Information System (INIS)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons from coal tar contaminated soil, placed below a 5 cm deep layer of uncontaminated soil, were measured in the laboratory over a period of 53 days. The contaminated soil originated from a former gasworks site and contained concentrations of 11 selected aromatic hydrocarbons between 50 to 840 μg/cm 3 . Where the microbial activity was inhibited, the fluxes stabilized on a semi-steady-state level for the monocyclic aromatic hydrocarbons, naphthalene and 1-methylnaphthalene after a period of 10-20 days. Fluxes of acenaphthene and fluorene were only measurable in an experiment that utilized a cover soil with a low organic content. The fluxes were predicted by a numerical model assuming that the compounds acted independently of each other and that local equilibrium between the air, water, and sorbed phases existed. The model overestimated the fluxes for all the detected aromatic hydrocarbons by a factor of 1.3 to 12. When the cover soil was adapted to degrade naphthalene, the fluxes of naphthalene and 1-methylnaphthalene approached the detection limit after 5 to 8 days. Thereafter the fluxes of these two compounds were less than predicted by the model employing half-life values of 0.5 and 1 day for naphthalene and 1-methylnaphthalene respectively. 10 refs., 6 figs., 7 tabs

  5. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons.

    Science.gov (United States)

    Huguenot, David; Mousset, Emmanuel; van Hullebusch, Eric D; Oturan, Mehmet A

    2015-04-15

    In order to improve the efficiency of soil washing treatment of hydrocarbon contaminated soils, an innovative combination of this soil treatment technique with an electrochemical advanced oxidation process (i.e. electro-Fenton (EF)) has been proposed. An ex situ soil column washing experiment was performed on a genuinely diesel-contaminated soil. The washing solution was enriched with surfactant Tween 80 at different concentrations, higher than the critical micellar concentration (CMC). The impact of soil washing was evaluated on the hydrocarbons concentration in the leachates collected at the bottom of the soil columns. These eluates were then studied for their degradation potential by EF treatment. Results showed that a concentration of 5% of Tween 80 was required to enhance hydrocarbons extraction from the soil. Even with this Tween 80 concentration, the efficiency of the treatment remained very low (only 1% after 24 h of washing). Electrochemical treatments performed thereafter with EF on the collected eluates revealed that the quasi-complete mineralization (>99.5%) of the hydrocarbons was achieved within 32 h according to a linear kinetic trend. Toxicity was higher than in the initial solution and reached 95% of inhibition of Vibrio fischeri bacteria measured by Microtox method, demonstrating the presence of remaining toxic compounds even after the complete degradation. Finally, the biodegradability (BOD₅/COD ratio) reached a maximum of 20% after 20 h of EF treatment, which is not enough to implement a combined treatment with a biological treatment process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Distribution of petroleum hydrocarbons and organochlorinated contaminants in marine biota and coastal sediments from the ROPME Sea Area during 2005.

    Science.gov (United States)

    de Mora, Stephen; Tolosa, Imma; Fowler, Scott W; Villeneuve, Jean-Pierre; Cassi, Roberto; Cattini, Chantal

    2010-12-01

    The composition and spatial distribution of various petroleum hydrocarbons (PHs), comprising both aliphatic and polycyclic aromatic hydrocarbons (PAHs), and selected chlorinated pesticides and PCBs were measured in biota and coastal sediments from seven countries in the Persian Gulf and the Gulf of Oman (Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates). Evidence of extensive marine contamination with respect to organochlorinated compounds and PHs was not observed. Only one site, namely the BAPCO oil refinery in Bahrain, was considered to be chronically contaminated. Comparison of the results from this survey for Σ DDTs and Σ PCBs in rock oysters from the Gulf of Oman with similar measurements made at the same locations over the past two decades indicates a temporal trend of overall decreasing Σ PCB concentrations in oysters, whereas Σ DDTs levels have little changed during that period. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Procedure manual: protocol for regulation of petroleum hydrocarbons in water under the special waste and contaminated sites regulation

    International Nuclear Information System (INIS)

    Evans, P.; Partridge, E.

    2002-05-01

    This document details the regulation governing numerical standards for petroleum hydrocarbons in water under the special waste and contaminated sites regulations of British Columbia. Groundwater containing benzene, toluene, ethylbenzene or xylenes in excess of the leachate standards is exempted from the regulatory regime of the Special Waste Regulation. The document contains a description of the conditions that apply to the management of petroleum hydrocarbons in water at contaminated sites. Some definitions are included, followed by an overview of the regulation. The third section deals with authorization and mandatory conditions, while additional requirements that might apply are enumerated in section four. This protocol directly affects the Environmental Management, and the Environmental Protection Regional Operations organizations. 1 tab

  8. Activity and functional diversity of microbial communities in long-term hydrocarbon and heavy metal contaminated soils

    Directory of Open Access Journals (Sweden)

    Markowicz Anna

    2016-12-01

    Full Text Available The impacts of long-term polycyclic aromatic hydrocarbons (PAHs and heavy metal pollution on soil microbial communities functioning were studied in soils taken from an old coke plant. The concentrations of PAHs in the tested soils ranged from 171 to 2137 mg kg-1. From the group of tested heavy metals, concentrations of lead were found to be the highest, ranging from 57 to 3478 mg kg-1, while zinc concentrations varied from 247 to 704 mg kg-1 and nickel from 10 to 666 mg kg-1. High dehydrogenase, acid and alkaline phosphatase activities were observed in the most contaminated soil. This may indicate bacterial adaptation to long-term heavy metal and hydrocarbon contamination. However, the Community Level Physiological Profiles (CLPPs analysis showed that the microbial functional diversity was reduced and influenced to a higher extent by some metals (Pb, Ni, moisture and conductivity than by PAHs.

  9. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    Science.gov (United States)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and

  10. Combining Geoelectrical Measurements and CO 2 Analyses to Monitor the Enhanced Bioremediation of Hydrocarbon-Contaminated Soils: A Field Implementation

    OpenAIRE

    Noel , Cécile; Gourry , Jean-Christophe; Deparis , Jacques; Blessing , Michaela; Ignatiadis , Ioannis; Guimbaud , Christophe

    2016-01-01

    International audience; Hydrocarbon-contaminated aquifers can be successfully remediated through enhanced biodegradation. However, in situ monitoring of the treatment by piezometers is expensive and invasive and might be insufficient as the information provided is restricted to vertical profiles at discrete locations. An alternative method was tested in order to improve the robustness of the monitoring. Geophysical methods, electrical resistivity (ER) and induced polarization (IP), were combi...

  11. Applying no-depletion equilibrium sampling and full-depletion bioaccessibility extraction to 35 historically polycyclic aromatic hydrocarbon contaminated soils

    DEFF Research Database (Denmark)

    Bartolomé, Nora; Hilber, Isabel; Sosa, Dayana

    2018-01-01

    Assessing the bioaccessibility of organic pollutants in contaminated soils is considered a complement to measurements of total concentrations in risk assessment and legislation. Consequently, methods for its quantification require validation with historically contaminated soils. In this study, 35...... with polyoxymethylene was used to determine freely dissolved concentrations (Cfree) of polycyclic aromatic hydrocarbons (PAHs), while sorptive bioaccessibility extraction (SBE) with silicone rods was used to determine the bioaccessible PAH concentrations (Cbioacc) of these soils. The organic carbon partition...... Capacity Ratio (SCR); particularly for soils with very high KD. The source of contamination determined bioaccessible fractions (fbioacc). The smallest fbioacc were obtained with skeet soils (15%), followed by the pyrogenically influenced soils, rural soils, and finally, the petrogenically contaminated soil...

  12. Effect in laboratory of addition of inorganic fertilizers made in degradation of hydrocarbon on contaminated soil by oil

    International Nuclear Information System (INIS)

    Pardo Castro, Jenny Liliana; Perdomo Rojas, Maria Carolina; Benavides Lopez de Mesa, Joaquin L

    2004-01-01

    At present one of the most important environmental problems is contamination of soil ecosystem by hydrocarbon spilling mainly of oil and its derivates, which occurs when oil is explored or transported. Furthermore in Colombia it occurs due to violent assaults made by men outside of law against petroleum infrastructure. To solve this problem there are treatment methods to recover contaminated soil as Land farming technique, adding organic nutrients. In this research this technique was evaluated in vitro, through a design of six experimental units (EU) which contained contaminated soil with crude oil; three EU were treated with Triple 15 inorganic fertilizer and the other three were taken as biotic control. Land farming effectiveness was determined by pH analysis, humidity percent, temperature, count of total heterotrophic microorganisms, and probable number of I degrades microorganisms, nutrients and total hydrocarbons for a four month experimental period At the d of that period, in Land farming treatment with nutrients added was achieved a high remotion percentage TPH up to 91 %, getting final TPH concentration of 2028 ppm comparing biotic control in which the remotion percentage achieved up to 65% and a TPH final concentration was 8049 ppm thus, it could demonstrate that nutrient addition optimizes the degrading hydrocarbon process in soil

  13. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils.

    Science.gov (United States)

    Popp, Nicole; Schlömann, Michael; Mau, Margit

    2006-11-01

    Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by Gammaproteobacteria, especially Pseudomonas spp. Alphaproteobacteria and Betaproteobacteria were two other large groups in the clone libraries. Actinobacteria, Firmicutes, Bacteroidetes and Epsilonproteobacteria were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax and Thiobacillus, had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera Zymomonas and Rhodoferax was novel in mineral oil hydrocarbon-contaminated soil.

  14. Natural attenuation in contaminated soils with hydrocarbons; Atenuacion natural en suelos contaminados con hidrocarburos

    Energy Technology Data Exchange (ETDEWEB)

    Corona Ramirez, L; Iturbide Arguelles, R [Facultad de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2005-06-01

    A contaminated soil experiment was performed using simples from a refinery, containing oil derivative hydrocarbons, specifically those with high concentrations of polyaromathic hydrocarbons (PAH). The testing consisted in 7 pans with 7 kg of soil, the preparation of 6 pans under specific conditions and one as a blank, the conditions were: water content (15 y 30%), addition a non-ionic surfactant. The process consisted in the daily aeration and water control of the samples. The PAH were analyzed: anthracene, benzo(a) pyrene, chrysene, phenanthrene and naphthalene. The results after 8 weeks showed a gradual degradation of PAH, indicating a better removal obtained when the water content was 30% with nutrients addition. [Spanish] Se realizo un experimento con suelo contaminado proveniente de una refineria, el cual contaba con hidrocarburos derivados de petroleo, especificamente con concentraciones elevadas de hidrocarburos poliaromaticos (HAP). El estudio consistio en preparar 7 cajones con 7 kg de suelo, cada uno con las siguientes condiciones: S1suelo contaminado con hidrocarburos y 15% de contenido de agua. S2 suelo contaminado con hidrocarburo y adicion de Nitrogeno y Fosforo (N y P) con 15% de contenido de agua. S3 suelo contaminado con hidrocarburo y adicion de N y P mas un surfactante no ionico, Emulgin W600, con 15% de contenido de agua. S4 igual a S1 pero con 30% de contenido de agua. S5 igual a S2, con 30% de contenido de agua. S6 igual S3 con 30% de contenido de agua. S7 suelo contaminado testigo, sin control de humedad y sin aireacion. La experimentacion consistio en airear el suelo diariamente y controlar el contenido de agua de manera que este fuera constante. Los resultados, indican que la mejor remocion se obtuvo para el contenido de agua de 30%, con adicion de nutrientes y surfactante. Los compuestos con mayor eficiencia de remocion para todas las opciones son naftaleno y antraceno. Por lo tanto, de acuerdo con los resultados, los compuestos

  15. Human health risk due to consumption of vegetables contaminated with carcinogenic polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sardar [Chinese Academy of Sciences, Xiamen (China). Inst. of Urban Environment; Peshawar Univ. (Pakistan). Dept. of Environmental Science; Cao, Qing [Chinese Academy of Sciences, Beijing (China). Research Center for Eco-Environemntal Sciences

    2012-02-15

    Polycyclic aromatic hydrocarbons (PAH) are persistent, toxic, and carcinogenic contaminants present in soil ecosystem globally. These pollutants are gradually accumulating in wastewater-irrigated soils and lead to the contamination of vegetables. Food chain contamination with PAH is considered as one of the major pathways for human exposure. This study was aimed to investigate the concentrations of PAH in soils and vegetables collected from wastewater-irrigated fields from metropolitan areas of Beijing, China. Origin of PAH, daily intake, and health risks of PAH through consumption of contaminated vegetables were studied. Soil samples were collected from the upper horizon (0-20 cm) of both wastewater-irrigated and reference sites and sieved (<2 mm mesh) and then followed by freeze-drying at -50 C and 123 {+-} 2 Pa. Standing vegetables were also collected from the same sites used for soil sampling and divided into roots and shoots, thoroughly washed with deionized water, and freeze-dried. PAH were extracted using the Soxhlet method with 200 mL DCM for 24 h, and the extracts were cleaned with silica adsorption chromatography prepared with silica gel, alumina, and capped with anhydrous sodium. The final concentrated extracts (soil and vegetable) were analyzed using gas chromatography-mass spectrometry (Agilent 6890). Bioaccumulation factors, daily intake of PAH, and carcinogenicity of PAH were calculated by different statistical equations. Results indicate that the soils and grown vegetables were contaminated with all possible carcinogenic PAH (declared by USEPA 2002) except indeno[1,2,3-c,d]pyrene. The highest concentration (242.9 {mu}g kg{sup -1}) was found for benzo(k)fluoranthene (BkF), while lowest (79.12 {mu}g kg{sup -1}) for benzo[a]pyrene (BaP). The emission sources of PAH were both pyrogenic and petrogenic in nature. However, the total concentrations of PAH were lower than the permissible limits set by different countries like Canada, Denmark and Germany

  16. Apparent Contradiction: Psychrotolerant Bacteria from Hydrocarbon-Contaminated Arctic Tundra Soils That Degrade Diterpenoids Synthesized by Trees

    Science.gov (United States)

    Yu, Zhongtang; Stewart, Gordon R.; Mohn, William W.

    2000-01-01

    Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82°N, 62°W). According to most-probable-number assays, resin acid degraders were abundant (103 to 104 propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (106 to 107 propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4°C to 30°C (DhA-91 and DhA-95) or 4°C to 22°C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22°C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents. PMID:11097882

  17. Study of polycyclic aromatic hydrocarbon contamination of major rivers in the Czech Republic using biliary metabolite in chub, Leuciscus cephalus L.

    Science.gov (United States)

    Blahova, Jana; Leontovycova, Drahomira; Kodes, Vit; Svobodova, Zdenka

    2013-05-01

    The aim of the present study was to evaluate polycyclic aromatic hydrocarbon (PAH) contamination of the major rivers in the Czech Republic using 1-hydroxypyrene (1-OHP) content in chub bile as a biomarker. The highest concentration of 1-OHP was found in the Otava River at Topělec (80.5 ng mg protein(-1)); the lowest content of 1-OHP was found in the Vltava at Zelčín (9.6 ng mg protein(-1)). At all sites, bottom sediment samples were collected and analyzed for PAH content. The PAH content ranged between 1.2 and 15.2 mg kg dry mass(-1) at all sites. Statistically significant positive correlations (p < 0.05) between biliary 1-OHP and sediment PAH content were found. Correlation coefficients for total and individual priority PAHs ranged from 0.63 to 0.77.

  18. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging

    Science.gov (United States)

    Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger

    2012-08-01

    Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (product (BTEX concentrations > 1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (< 40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.

  19. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.

    Science.gov (United States)

    Chang, Wonjae; Klemm, Sara; Beaulieu, Chantale; Hawari, Jalal; Whyte, Lyle; Ghoshal, Subhasis

    2011-02-01

    Several studies have shown that biostimulation in ex situ systems such as landfarms and biopiles can facilitate remediation of petroleum hydrocarbon contaminated soils at sub-Arctic sites during summers when temperatures are above freezing. In this study, we examine the biodegradation of semivolatile (F2: C10-C16) and nonvolatile (F3: C16-C34) petroleum hydrocarbons and microbial respiration and population dynamics at post- and presummer temperatures ranging from -5 to 14 °C. The studies were conducted in pilot-scale tanks with soils obtained from a historically contaminated sub-Arctic site in Resolution Island (RI), Canada. In aerobic, nutrient-amended, unsaturated soils, the F2 hydrocarbons decreased by 32% during the seasonal freeze-thaw phase where soils were cooled from 2 to -5 °C at a freezing rate of -0.12 °C d(-1) and then thawed from -5 to 4 °C at a thawing rate of +0.16 °C d(-1). In the unamended (control) tank, the F2 fraction only decreased by 14% during the same period. Biodegradation of individual hydrocarbon compounds in the nutrient-amended soils was also confirmed by comparing their abundance over time to that of the conserved diesel biomarker, bicyclic sesquiterpanes (BS). During this period, microbial respiration was observed, even at subzero temperatures when unfrozen liquid water was detected during the freeze-thaw period. An increase in culturable heterotrophs and 16S rDNA copy numbers was noted during the freezing phase, and the (14)C-hexadecane mineralization in soil samples obtained from the nutrient-amended tank steadily increased. Hydrocarbon degrading bacterial populations identified as Corynebacterineae- and Alkanindiges-related strains emerged during the freezing and thawing phases, respectively, indicating there were temperature-based microbial community shifts.

  20. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils.

    Science.gov (United States)

    Wang, Congying; Wang, Ziyu; Li, Zengbo; Ahmad, Riaz

    2017-02-01

    A two-liquid-phase system (TLPS), which consisted of soil slurry and silicone oil, was employed to extract polycyclic aromatic hydrocarbons (PAHs) in four long-term contaminated soils in order to assess the bioavailability of PAHs. Extraction kinetics of six PAHs viz. phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, benzo(a)pyrene, dibenzo(a,h)anthrancene were selected to investigate as they covered the susceptible and recalcitrant PAHs in soil. A parallel experiments were also carried out on the microbial degradation of these PAHs in soil with and without biostimulation (by adding (NH 4 ) 2 HPO 4 ). The rapidly desorbed fraction of fluoranthene, as indicated by the two-fraction model, was found the highest, ranging from 21.4% to 37.4%, whereas dibenzo(a,h)anthrancene was the lowest, ranging from 8.9% to 20.5%. The rapid desorption of selected PAHs was found to be finished within 24 h. The rapidly desorbed fraction of PAHs investigated using TLPS, was significantly correlated (R 2  = 0.95) with that degraded by microorganisms in biostimulation treatment. This suggested that the TLPS-assisted extraction could be a promising technique in determining the bioavailability of aged PAHs in contaminated soils. It also suggested that applying sufficient nutrients in bioremediation of field contaminated soils is crucial. Further work is required to test its application to more hydrophobic organic pollutants in long-term contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Site-specific probabilistic ecological risk assessment of a volatile chlorinated hydrocarbon-contaminated tidal estuary.

    Science.gov (United States)

    Hunt, James; Birch, Gavin; Warne, Michael St J

    2010-05-01

    Groundwater contaminated with volatile chlorinated hydrocarbons (VCHs) was identified as discharging to Penrhyn Estuary, an intertidal embayment of Botany Bay, New South Wales, Australia. A screening-level hazard assessment of surface water in Penrhyn Estuary identified an unacceptable hazard to marine organisms posed by VCHs. Given the limitations of hazard assessments, the present study conducted a higher-tier, quantitative probabilistic risk assessment using the joint probability curve (JPC) method that accounted for variability in exposure and toxicity profiles to quantify risk (delta). Risk was assessed for 24 scenarios, including four areas of the estuary based on three exposure scenarios (low tide, high tide, and both low and high tides) and two toxicity scenarios (chronic no-observed-effect concentrations [NOEC] and 50% effect concentrations [EC50]). Risk (delta) was greater at low tide than at high tide and varied throughout the tidal cycle. Spatial distributions of risk in the estuary were similar using both NOEC and EC50 data. The exposure scenario including data combined from both tides was considered the most accurate representation of the ecological risk in the estuary. When assessing risk using data across both tides, the greatest risk was identified in the Springvale tributary (delta=25%)-closest to the source area-followed by the inner estuary (delta=4%) and the Floodvale tributary (delta=2%), with the lowest risk in the outer estuary (delta=0.1%), farthest from the source area. Going from the screening level ecological risk assessment (ERA) to the probabilistic ERA changed the risk from unacceptable to acceptable in 50% of exposure scenarios in two of the four areas within the estuary. The probabilistic ERA provided a more realistic assessment of risk than the screening-level hazard assessment. Copyright (c) 2010 SETAC.

  2. Microbial responses to polycyclic aromatic hydrocarbon contamination in temporary river sediments: Experimental insights.

    Science.gov (United States)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Capri, Silvio; Casella, Patrizia; Fazi, Stefano; Marxsen, Juergen; Patrolecco, Luisa

    2016-01-15

    Temporary rivers are characterized by dry-wet phases and represent an important water resource in semi-arid regions worldwide. The fate and effect of contaminants have not been firmly established in temporary rivers such as in other aquatic environments. In this study, we assessed the effects of sediment amendment with Polycyclic Aromatic Hydrocarbons (PAHs) on benthic microbial communities. Experimental microcosms containing natural (Control) and amended sediments (2 and 20 mg PAHs kg(-1) were incubated for 28 days. The PAH concentrations in sediments were monitored weekly together with microbial community structural (biomass and phylogenetic composition by TGGE and CARD-FISH) and functional parameters (ATP concentration, community respiration rate, bacterial carbon production rate, extracellular enzyme activities). The concentration of the PAH isomers did not change significantly with the exception of phenanthrene. No changes were observed in the TGGE profiles, whereas the occurrence of Alpha- and Beta-Proteobacteria was significantly affected by the treatments. In the amended sediments, the rates of carbon production were stimulated together with aminopeptidase enzyme activity. The community respiration rates showed values significantly lower than the Control after 1 day from the amendment then recovering the Control values during the incubation. A negative trend between the respiration rates and ATP concentration was observed only in the amended sediments. This result indicates a potential toxic effect on the oxidative phosphorylation processes. The impoverishment of the energetic resources that follows the PAH impact may act as a domino on the flux of energy from prokaryotes to the upper level of the trophic chain, with the potential to alter the temporary river functioning.

  3. Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils?

    Science.gov (United States)

    Davin, Marie; Starren, Amandine; Deleu, Magali; Lognay, Georges; Colinet, Gilles; Fauconnier, Marie-Laure

    2018-03-01

    Polycyclic aromatic hydrocarbons (PAH) are persistent organic compounds of major concern that tend to accumulate in the environment, threatening ecosystems and health. Brownfields represent an important tank for PAHs and require remediation. Researches to develop bioremediation and phytoremediation techniques are being conducted as alternatives to environmentally aggressive, expensive and often disruptive soil remediation strategies. The objectives of the present study were to investigate the potential of saponins (natural surfactants) as extracting agents and as bioremediation enhancers on an aged-contaminated soil. Two experiments were conducted on a brownfield soil containing 15 PAHs. In a first experiment, soil samples were extracted with saponins solutions (0; 1; 2; 4 and 8 g.L -1 ). In a second experiment conducted in microcosms (28 °C), soil samples were incubated for 14 or 28 days in presence of saponins (0; 2.5 and 5 mg g -1 ). CO 2 emissions were monitored throughout the experiment. After the incubation, dehydrogenase activity was measured as an indicator of microbiological activity and residual PAHs were determined. In both experiments PAHs were determined using High-Performance Liquid Chromatography and Fluorimetric Detection. The 4 g.L -1 saponins solution extracted significantly more acenaphtene, fluorene, phenanthrene, anthracene, and pyrene than water. PAHs remediation was not enhanced in presence of saponins compared to control samples after 28 days. However CO 2 emissions and dehydrogenase activities were significantly more important in presence of saponins, suggesting no toxic effect of these surfactants towards soil microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation.

    Science.gov (United States)

    Chen, Ku-Fan; Kao, Chih-Ming; Chen, Chiu-Wen; Surampalli, Rao Y; Lee, Mu-Sheng

    2010-01-01

    In the first phase of this study, the effectiveness of intrinsic bioremediation on the containment of petroleum hydrocarbons was evaluated at a gasoline spill site. Evidences of the occurrence of intrinsic bioremediation within the BTEX (benzene, toluene, ethylbenzene, and xylenes) plume included (1) decreased BTEX concentrations; (2) depletion of dissolved oxygen (DO), nitrate, and sulfate; (3) production of dissolved ferrous iron, methane, and CO2; (4) deceased pH and redox potential; and (5) increased methanogens, total heterotrophs, and total anaerobes, especially within the highly contaminated areas. In the second phase of this study, enhanced aerobic bioremediation process was applied at site to enhance the BTEX decay rates. Air was injected into the subsurface near the mid-plume area to biostimulate the naturally occurring microorganisms for BTEX biodegradation. Field results showed that enhanced bioremediation process caused the change of BTEX removal mechanisms from anaerobic biodegradation inside the plume to aerobic biodegradation. This variation could be confirmed by the following field observations inside the plume due to the enhanced aerobic bioremediation process: (1) increased in DO, CO2, redox potential, nitrate, and sulfate, (2) decreased in dissolved ferrous iron, sulfide, and methane, (3) increased total heterotrophs and decreased total anaerobes. Field results also showed that the percentage of total BTEX removal increased from 92% to 99%, and the calculated total BTEX first-order natural attenuation rates increased from 0.0092% to 0.0188% per day, respectively, after the application of enhanced bioremediation system from the spill area to the downgradient area (located approximately 300 m from the source area).

  5. Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1998 annual progress report

    International Nuclear Information System (INIS)

    McLachlan, J.

    1998-01-01

    'The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones (i.e., environmental hormones) in different species present in aquatic ecosystems. Species of particular focus are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. This reports the progress of 1.5 years of a three-year grant awarded to the Tulane/Xavier Center for Bioenvironmental Research (CBR). A growing body of evidence suggests that chemicals in the environment can disrupt the endocrine system of animals (i.e., wildlife and humans) and adversely impact the development of these species. Because of the multitude of known endocrine-disrupting chemicals and the numerous industrial and government sectors producing these chemicals, almost every federal agency has initiated research on the endocrine effects of chemicals relevant to their operations. This study represents the Department of Energy (DOE) Basic Energy Sciences'' only research on the impacts of endocrine-disrupting chemicals. The activities employed by this project to determine these impacts include development of biotechnology screens (in vitro), animal screens (in vivo), and other analyses of aquatic ecosystem biomarkers of exposure. The results from this study can elucidate how chemicals in the environment, including those from DOE activities, can signal (and alter) the development of a number of species in aquatic ecosystems. These signals can have detrimental impacts not only on an organismal level, but also on community, population, and entire ecosystem levels, including humans.'

  6. Assessment of organochlorine hydrocarbons transformation in contaminated agricultural products and foodstuffs under gamma-radiation

    Science.gov (United States)

    Mel'nikova, T. V.; Polyakova, L. P.; Oudalova, A. A.

    2017-01-01

    The problem of an estimation of organochlorinated pollutants transformation (particularly organochlorinated pesticides (OCP) and polychlorinated biphenyls (PCB)) under gamma-irradiation has become important in connection with radiation technologies application in the food industry. According to earlier researches, small doses of OCP lead to serious damages of an organism, comparable with damages from high doses. Among radiolysis products of OCP in model solutions various substances on a structure have been found out. Though of trace concentration of each of them, in sum with the initial pesticides residue they make up significant of mass contamination (as shown earlier up to 90% from initial OCP). In this work fish samples (bream) containing OCPs (15.20 ng/g of hexachlorocyclohexane isomers and 87.10 ng/g of DDT and its metabolites), as well as PCB (18.51 ng/g) were studied. The minced fish was irradiated at dose of 10 kGy with dose rate of 1.35 Gy/sec. Then, by methods of gas-liquid chromatography (GLC) and gas chromatography-mass spectrometry (GC-MS), it was found that the OCPs degradation varied from 3 up to 61% and the PCB degradation - 24-52%. Significant complication of chemical composition was shown comparing to the primary biological sample contamination. As a result of fish irradiation, secondary pollution appeared that included residues of primary organochlorine hydrocarbons and their radiation-induced metabolites. Among the investigated OCPs the most stable proved to be alfa-hexachlorocyclohexane (alfa-HCH), the least stable - DDT which corresponds to the previous findings about the radiation stability of OCPs in model solutions. Mass spectra of the irradiated samples of minced bream showed the presence of radiation metabolites of OCPs, that had also been found at irradiation of model solutions of 2,2-di(4-chlorophenyl)-1-chlorethylene (DDMU), DDD and 1a, 2e, 3e, 4e, 5e-pentahlorcyclohexane. There was revealed a decomposition product formed during the

  7. Source identification of hydrocarbon contaminants and their transportation over the Zonguldak shelf, Turkish Black Sea

    Science.gov (United States)

    Unlu, S.; Alpar, B.

    2009-04-01

    Under great anthropogenic pressure due to the substantial freshwater input from the surrounding industrial and agricultural areas, especially central and middle-Eastern Europe, the Black Sea basin is ranked among the most ecologically threatened water bodies of the world. Oil levels are unacceptable in many coastal areas perilously close to polluted harbors and many river mouths; the places presenting the highest levels of bio-diversity and having a high socio-economic importance due to human use of coastal resources. There are about sixty sources of pollution which resulted in "hot spots" having disastrous impacts on sensitive marine and coastal areas and needing immediate priorities for action. Beyond such land-based sources, trans-boundary pollution sources from Black Sea riparian countries, heavy maritime traffic, particularly involving petroleum transports and fishing boats, and the improper disposal of ballast and bilge waters and solid waste are also important marine sources of pollution. Found in fossil fuels such as Polycyclic Aromatic Hydrocarbons are generated by incomplete combustion of organic matter. In order to estimate their distribution in sediment and their sources, they were monitored from the bottom samples offshore the Zonguldak industry region, one of the most polluted spots in the Turkish Black Sea. There the budget of pollutants via rivers is not precisely known due to an evident lack of data on chemical and granulometric composition of the river runoff and their fluxes. Therefore the marine sediments, essential components of marine ecosystems, are very important in our estimating the degree of the damage given to the ecosystem by such inputs. Realization of the sources and transport of these contaminants will be a critical tool for future management of the Zonguldak industry region and its watershed. The sea bottom in study area is composed of mainly sand and silt mixtures with small amount of clay. Geochemical analyses have shown that oil

  8. Assessment of organochlorine hydrocarbons transformation in contaminated agricultural products and foodstuffs under gamma-radiation

    International Nuclear Information System (INIS)

    Mel’nikova, T V; Polyakova, L P; Oudalova, A A

    2017-01-01

    The problem of an estimation of organochlorinated pollutants transformation (particularly organochlorinated pesticides (OCP) and polychlorinated biphenyls (PCB)) under gamma-irradiation has become important in connection with radiation technologies application in the food industry. According to earlier researches, small doses of OCP lead to serious damages of an organism, comparable with damages from high doses. Among radiolysis products of OCP in model solutions various substances on a structure have been found out. Though of trace concentration of each of them, in sum with the initial pesticides residue they make up significant of mass contamination (as shown earlier up to 90% from initial OCP). In this work fish samples (bream) containing OCPs (15.20 ng/g of hexachlorocyclohexane isomers and 87.10 ng/g of DDT and its metabolites), as well as PCB (18.51 ng/g) were studied. The minced fish was irradiated at dose of 10 kGy with dose rate of 1.35 Gy/sec. Then, by methods of gas-liquid chromatography (GLC) and gas chromatography-mass spectrometry (GC-MS), it was found that the OCPs degradation varied from 3 up to 61% and the PCB degradation – 24-52%. Significant complication of chemical composition was shown comparing to the primary biological sample contamination. As a result of fish irradiation, secondary pollution appeared that included residues of primary organochlorine hydrocarbons and their radiation-induced metabolites. Among the investigated OCPs the most stable proved to be alfa-hexachlorocyclohexane (alfa-HCH), the least stable – DDT which corresponds to the previous findings about the radiation stability of OCPs in model solutions. Mass spectra of the irradiated samples of minced bream showed the presence of radiation metabolites of OCPs, that had also been found at irradiation of model solutions of 2,2-di(4-chlorophenyl)-1-chlorethylene (DDMU), DDD and 1a, 2e, 3e, 4e, 5e-pentahlorcyclohexane. There was revealed a decomposition product formed during

  9. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    A. B. Moldes

    2013-01-01

    Full Text Available The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-. The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage, as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  10. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Science.gov (United States)

    Moldes, A. B.; Paradelo, R.; Vecino, X.; Cruz, J. M.; Gudiña, E.; Rodrigues, L.; Teixeira, J. A.; Domínguez, J. M.; Barral, M. T.

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  11. Separation of motor oils, oily wastes and hydrocarbons from contaminated water by sorption on chrome shavings.

    Science.gov (United States)

    Gammoun, A; Tahiri, S; Albizane, A; Azzi, M; Moros, J; Garrigues, S; de la Guardia, M

    2007-06-25

    In this paper, the ability of chrome shavings to remove motor oils, oily wastes and hydrocarbons from water has been studied. To determine amount of hydrocarbons sorbed on tanned wastes, a FT-NIR methodology was used and a multivariate calibration based on partial least squares (PLS) was employed for data treatment. The light density, porous tanned waste granules float on the surface of water and remove hydrocarbons and oil films. Wastes fibers from tannery industry have high sorption capacity. These tanned solid wastes are capable of absorbing many times their weight in oil or hydrocarbons (6.5-7.6g of oil and 6.3g of hydrocarbons per gram of chrome shavings). The removal efficiency of the pollutants from water is complete. The sorption of pollutants is a quasi-instantaneous process.

  12. Remediation of hydrocarbons in crude oil-contaminated soils using Fenton's reagent.

    Science.gov (United States)

    Ojinnaka, Chukwunonye; Osuji, Leo; Achugasim, Ozioma

    2012-11-01

    Sandy soil samples spiked with Bonny light crude oil were subsequently treated with Fenton's reagent at acidic, neutral, and basic pH ranges. Oil extracts from these samples including an untreated one were analyzed 1 week later with a gas chromatograph to provide evidence of hydrocarbon depletion by the oxidant. The reduction of three broad hydrocarbon groups-total petroleum hydrocarbon (TPH); benzene, toluene, ethylbenzene, and xylene (BTEX); and polycyclic aromatic hydrocarbon (PAH) were investigated at various pHs. Hydrocarbon removal was efficient, with treatment at the acidic pH giving the highest removal of about 96% for PAH, 99% for BTEX, and some TPH components experiencing complete disappearance. The four-ringed PAHs were depleted more than their three-ringed counterparts at the studied pH ranges.

  13. Bioremediation of Hydrocarbon-Contaminated Soils and Groundwater in Northern Climates

    National Research Council Canada - National Science Library

    Reynolds, Charles

    1998-01-01

    ...-landfarming, recirculating leachbeds, and infiltration galleries. Landfarming involves adding water and nutrients to contaminated soil to stimulate microbial activity and contaminant degradation...

  14. Combining Geoelectrical Measurements and CO2 Analyses to Monitor the Enhanced Bioremediation of Hydrocarbon-Contaminated Soils: A Field Implementation

    Directory of Open Access Journals (Sweden)

    Cécile Noel

    2016-01-01

    Full Text Available Hydrocarbon-contaminated aquifers can be successfully remediated through enhanced biodegradation. However, in situ monitoring of the treatment by piezometers is expensive and invasive and might be insufficient as the information provided is restricted to vertical profiles at discrete locations. An alternative method was tested in order to improve the robustness of the monitoring. Geophysical methods, electrical resistivity (ER and induced polarization (IP, were combined with gas analyses, CO2 concentration, and its carbon isotopic ratio, to develop a less invasive methodology for monitoring enhanced biodegradation of hydrocarbons. The field implementation of this monitoring methodology, which lasted from February 2014 until June 2015, was carried out at a BTEX-polluted site under aerobic biotreatment. Geophysical monitoring shows a more conductive and chargeable area which corresponds to the contaminated zone. In this area, high CO2 emissions have been measured with an isotopic signature demonstrating that the main source of CO2 on this site is the biodegradation of hydrocarbon fuels. Besides, the evolution of geochemical and geophysical data over a year seems to show the seasonal variation of bacterial activity. Combining geophysics with gas analyses is thus promising to provide a new methodology for in situ monitoring.

  15. Bench scale studies: Ozonation as a potential treatment for waters contaminated with hydrocarbons or dioxins and furans

    International Nuclear Information System (INIS)

    Schaal, W.

    1995-01-01

    The objective of the bench scale studies was to examine the destruction efficiency and efficacy of ozone on chemicals of concern (COC's) commonly found in contaminated ground water and rhenoformer wash water. The ground water used in these tests contained aromatic petroleum hydrocarbons, chlorinated hydrocarbons, and mineral spirits. The rhenoformer wash water used in these tests contained a variety of dioxins (including 2,3,7,8-tetrachlorodibenzo-p-dioxin) and furans. Summaries are presented of the bench scale studies by describing the COCs, methodologies, test reactors, observations, and results. The summaries also detail which applications hold promise with respect to ozonation and which ones do not. Bench test results for the experiments in which aromatic petroleum hydrocarbons, chlorinated hydrocarbons, and mineral spirits where the COCs were relatively successful. Concentrations for the COCs ranging from 300 to 3,400 micrograms per liter (microg/L) were brought below levels specified for storm sewer discharge per the National Priority Discharge Elimination Systems (NPDES) permit requirements. Bench test results for the experiments in which dioxins and furans were the COCs were less promising and revealed that additional processes would have to be used in conjunction with ozonation to bring the concentration of COCs within the targeted ranges. It was realized, however, that the effectiveness and efficacy of ozonation were diminished by the presence of particulates, to which some of the dioxin and furan compounds adhered

  16. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil.

    Science.gov (United States)

    Ingrid, Lenoir; Lounès-Hadj Sahraoui, Anissa; Frédéric, Laruelle; Yolande, Dalpé; Joël, Fontaine

    2016-06-01

    Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. On-site investigations of hydrocarbon contaminated soil by the Pollut-Eval methodology

    International Nuclear Information System (INIS)

    Benoit, Y.; Prigent, S.; Haeseler, F.

    2005-01-01

    The Pollut-Eval method is based on the Rock-Eval pyrolysis method, founded on an IFP patent that has been used for decades for oil prospecting in sedimentary basins all over the world. This equipment provides data on the quantity and the quality of organic matter in sedimentary rocks. With the increasing demand for cost effective and rapid contaminated site diagnosis, it became obvious that the field of application of the Rock-Eval technology should be enlarged to environmental problematic. The Pollut-Eval methodology was developed since 1996 and firstly qualified through the design of a laboratory version. Compared to the previous apparatus dedicated to the geochemistry, innovations allow acquisition of data for accurate quantification of complex organic pollutants and mineral carbon distribution. New methods were developed especially for the characterisation of hydrocarbon pollutants in soil. Compared to kerogen analysis, the characterisation of light petroleum cuts entrapped in soil as pollutants was available by the design of an adapted refrigerated auto-sampler. The prevention of the loss of the high vapour tension pollutants couldn't be avoided for the new environmental field of applications. Site after site, the various experiments involving the 'laboratory' version of the Pollut-Eval analyser extended the application field of the methodology. The efficiency of the thermal extraction applied directly on the soil showed useful advantages compared to conventional solvent extraction techniques, especially for pollutants originating from former gas plants. The method was especially suitable for the determination of the complete carbon mass balance in the case of non-extractable organic pollutant such as coal tar or for heavy petroleum cut such as heavy fuel, vacuum distillation residue and bitumen. By the way, the Pollut-Eval method became rapidly complementary to more conventional GC quantification dedicated to complex organic pollution characterisation. By the

  18. Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly spiked and long-term field-contaminated soils.

    Science.gov (United States)

    Wei, Ran; Ni, Jinzhi; Li, Xiaoyan; Chen, Weifeng; Yang, Yusheng

    2017-03-01

    Pot experiments were used to compare the dissipation and phytoremediation effect of alfalfa (Medicago sativa L.) for polycyclic aromatic hydrocarbons (PAHs) in a freshly spiked soil and two field-contaminated soils with different soil organic carbon (SOC) contents (Anthrosols, 1.41% SOC; Phaeozems, 8.51% SOC). In spiked soils, the dissipation rates of phenanthrene and pyrene were greater than 99.5 and 94.3%, respectively, in planted treatments and 95.0 and 84.5%, respectively, in unplanted treatments. In field-contaminated Anthrosols, there were limited but significant reductions of 10.2 and 15.4% of total PAHs in unplanted and planted treatments, respectively. In field-contaminated Phaeozems, there were no significant reductions of total PAHs in either unplanted or planted treatments. A phytoremediation effect was observed for the spiked soils and the Anthrosols, but not for the Phaeozems. The results indicated that laboratory tests with spiked soils cannot reflect the real state of field-contaminated soils. Phytoremediation efficiency of PAHs in field-contaminated soils was mainly determined by the content of SOC. Phytoremediation alone has no effect on the removal of PAHs in field-contaminated soils with high SOC content.

  19. CFG-7-P3 : potential of aggregate-associated biodegradation of high-molecular-weight hydrocarbon fractions in crude-oil contaminated soils from a northern Canadian site

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.; Snelgrove, J.; Akbari, A.; Ghoshal, S. [McGill Univ., Montreal, PQ (Canada). Dept. of Civil Engineering and Applied Mechanics

    2010-07-01

    Soil aggregation can limit aerobic hydrocarbon biodegradation rates due to the slower intra-pore diffusion of nutrients, oxygen and hydrocarbons. This study investigated the influence of soil aggregation at a pilot-scale biopile of crude oil-contaminated soil shipped from a site in the Northwest Territories. Attempts were made to stimulate indigenous microbial activity of the hydrocarbon-degrading bacteria through soil aeration and nutrient amendments in a tank maintained at 15 degrees C. Results showed that nutrient amendment significantly enhanced aggregation. After 60 days, approximately 50 per cent of the initial total hydrocarbon productivity (TPH) was reduced in both the treated and untreated biopile. However, a TPH analysis of soil aggregate levels showed that the biodegradation of high weight hydrocarbon fractions in macroaggregates was more significantly reduced in the nutrient-amended soils. Results suggested that the soil particles in the macroaggregates were more loosely clustered, and may have supported enhanced hydrocarbon biodegradation.

  20. Clonal variation in survival and growth of hybrid poplar and willow in an in situ trial on soils heavily contaminated with petroleum hydrocarbons

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Edmund O. Bauer; Richard B. Hall; Jill A. Zalesny; Joshua Kunzman; Chris J. Rog; Don E. Riemenschneider

    2005-01-01

    Species and hybrids between species belonging to the genera Populus (poplar) and Salix (willow) have been used successfully for phytoremediation of contaminated soils. Our objectives were to: 1) evaluate the potential for establishing genotypes of poplar and willow on soils heavily contaminated with petroleum hydrocarbons and 2)...

  1. Metagenome-based metabolic reconstruction reveals the ecophysiological function of Epsilonproteobacteria in a hydrocarbon-contaminated sulfidic aquifer

    Directory of Open Access Journals (Sweden)

    Andreas Hardy Keller

    2015-12-01

    Full Text Available The population genome of an uncultured bacterium assigned to the Campylobacterales (Epsilonproteobacteria was reconstructed from a metagenome dataset obtained by whole-genome shotgun pyrosequencing. Genomic DNA was extracted from a sulfate-reducing, m-xylene-mineralizing enrichment culture isolated from groundwater of a benzene-contaminated sulfidic aquifer. The identical epsilonproteobacterial phylotype has previously been detected in toluene- or benzene-mineralizing, sulfate-reducing consortia enriched from the same site. Previous stable isotope probing experiments with 13C6-labeled benzene suggested that this phylotype assimilates benzene-derived carbon in a syntrophic benzene-mineralizing consortium that uses sulfate as terminal electron acceptor. However, the type of energy metabolism and the ecophysiological function of this epsilonproteobacterium within aromatic hydrocarbon-degrading consortia and in the sulfidic aquifer are poorly understood.Annotation of the epsilonproteobacterial population genome suggests that the bacterium plays a key role in sulfur cycling as indicated by the presence of a sqr gene encoding a sulfide quinone oxidoreductase and psr genes encoding a polysulfide reductase. It may gain energy by using sulfide or hydrogen/formate as electron donors. Polysulfide, fumarate, as well as oxygen are potential electron acceptors. Auto- or mixotrophic carbon metabolism seems plausible since a complete reductive citric acid cycle was detected. Thus the bacterium can thrive in pristine groundwater as well as in hydrocarbon-contaminated aquifers. In hydrocarbon-contaminated sulfidic habitats, the epsilonproteobacterium may generate energy by coupling the oxidation of hydrogen or formate and highly abundant sulfide with the reduction of fumarate and/or polysulfide, accompanied by efficient assimilation of acetate produced during fermentation or incomplete oxidation of hydrocarbons. The highly efficient assimilation of acetate was

  2. Metagenome-Based Metabolic Reconstruction Reveals the Ecophysiological Function of Epsilonproteobacteria in a Hydrocarbon-Contaminated Sulfidic Aquifer.

    Science.gov (United States)

    Keller, Andreas H; Schleinitz, Kathleen M; Starke, Robert; Bertilsson, Stefan; Vogt, Carsten; Kleinsteuber, Sabine

    2015-01-01

    The population genome of an uncultured bacterium assigned to the Campylobacterales (Epsilonproteobacteria) was reconstructed from a metagenome dataset obtained by whole-genome shotgun pyrosequencing. Genomic DNA was extracted from a sulfate-reducing, m-xylene-mineralizing enrichment culture isolated from groundwater of a benzene-contaminated sulfidic aquifer. The identical epsilonproteobacterial phylotype has previously been detected in toluene- or benzene-mineralizing, sulfate-reducing consortia enriched from the same site. Previous stable isotope probing (SIP) experiments with (13)C6-labeled benzene suggested that this phylotype assimilates benzene-derived carbon in a syntrophic benzene-mineralizing consortium that uses sulfate as terminal electron acceptor. However, the type of energy metabolism and the ecophysiological function of this epsilonproteobacterium within aromatic hydrocarbon-degrading consortia and in the sulfidic aquifer are poorly understood. Annotation of the epsilonproteobacterial population genome suggests that the bacterium plays a key role in sulfur cycling as indicated by the presence of an sqr gene encoding a sulfide quinone oxidoreductase and psr genes encoding a polysulfide reductase. It may gain energy by using sulfide or hydrogen/formate as electron donors. Polysulfide, fumarate, as well as oxygen are potential electron acceptors. Auto- or mixotrophic carbon metabolism seems plausible since a complete reductive citric acid cycle was detected. Thus the bacterium can thrive in pristine groundwater as well as in hydrocarbon-contaminated aquifers. In hydrocarbon-contaminated sulfidic habitats, the epsilonproteobacterium may generate energy by coupling the oxidation of hydrogen or formate and highly abundant sulfide with the reduction of fumarate and/or polysulfide, accompanied by efficient assimilation of acetate produced during fermentation or incomplete oxidation of hydrocarbons. The highly efficient assimilation of acetate was recently

  3. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil.

    Science.gov (United States)

    Lee, Yunho; Jeon, Che Ok

    2018-04-01

    A Gram-stain-negative, facultatively aerobic, aromatic hydrocarbon-degrading bacterium, designated strain BN5 T , was isolated from gasoline-contaminated soil. Cells were motile and slightly curved rods with a single flagellum showing catalase and oxidase activities. Growth was observed at 20-37 °C (optimum, 25-30 °C), pH 3-7 (optimum, pH 5-6) and 0-2 % NaCl (optimum, 0 %). Ubiquinone-8 was the predominant respiratory quinone. The major fatty acids were C16 : 0, cyclo-C19 : 0ω8c and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phosphoamino lipid, three unidentified amino lipids and eight unidentified lipids were the identified polar lipids. The DNA G+C content was 62.93 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BN5 T formed a phylogenic lineage with members of the genus Paraburkholderia and showed the highest 16S rRNA gene sequence similarities to Paraburkholderia phytofirmans PsJN T (99.4 %), Paraburkholderia dipogonis DL7 T (98.8 %) and Paraburkholderia insulsa PNG-April T (98.8 %). The average nucleotide identity and in silico DNA-DNA hybridization (DDH) values between strain BN5 T and P. phytofirmans PsJN T were 88.5 and 36.5 %, respectively. The DDH values for strain BN5 T with P. dipogonis LMG 28415 T and P. insulsa DSM 28142 T were 41.0±4.9 % (reciprocal, 33.0±4.3 %) and 47.1±6.6 % (reciprocal, 51.7±5.4 %), respectively. Based on its physiological, chemotaxonomic and phylogenetic features, we conclude that strain BN5 T is a novel species of the genus Paraburkholderia, for which the name Paraburkholderia aromaticivorans sp. nov. is proposed. The type strain is BN5 T (=KACC 19419 T =JCM 32303 T ).

  4. EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and non-bioaugmented oil-contaminated desert soils.

    Science.gov (United States)

    Al Kharusi, Samiha; Abed, Raeid M M; Dobretsov, Sergey

    2016-03-01

    The low number and activity of hydrocarbon-degrading bacteria and the low solubility and availability of hydrocarbons hamper bioremediation of oil-contaminated soils in arid deserts, thus bioremediation treatments that circumvent these limitations are required. We tested the effect of Ethylenediaminetetraacetic acid (EDTA) addition, at different concentrations (i.e. 0.1, 1 and 10 mM), on bacterial respiration and biodegradation of Arabian light oil in bioaugmented (i.e. with the addition of exogenous alkane-degrading consortium) and non-bioaugmented oil-contaminated desert soils. Post-treatment shifts in the soils' bacterial community structure were monitored using MiSeq sequencing. Bacterial respiration, indicated by the amount of evolved CO2, was highest at 10 mM EDTA in bioaugmented and non-bioaugmented soils, reaching an amount of 2.2 ± 0.08 and 1.6 ± 0.02 mg-CO2 g(-1) after 14 days of incubation, respectively. GC-MS revealed that 91.5% of the C14-C30 alkanes were degraded after 42 days when 10 mM EDTA and the bacterial consortium were added together. MiSeq sequencing showed that 78-91% of retrieved sequences in the original soil belonged to Deinococci, Alphaproteobacteria, Gammaproteobacteia and Bacilli. The same bacterial classes were detected in the 10 mM EDTA-treated soils, however with slight differences in their relative abundances. In the bioaugmented soils, only Alcanivorax sp. MH3 and Parvibaculum sp. MH21 from the exogenous bacterial consortium could survive until the end of the experiment. We conclude that the addition of EDTA at appropriate concentrations could facilitate biodegradation processes by increasing hydrocarbon availability to microbes. The addition of exogenous oil-degrading bacteria along with EDTA could serve as an ideal solution for the decontamination of oil-contaminated desert soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Groundwater contamination by chlorinated hydrocarbons in the soil vapour phase - risk assessment at a former dry cleaner site

    Energy Technology Data Exchange (ETDEWEB)

    Danzer, J. [Boden-und-Grundwasser GbR, Sonthofen (Germany)

    2002-07-01

    Chlorinated hydrocarbons, e.g. Perchloroethene (PCE) were commonly used for dry cleaning purposes among other ones. Since they have a significant toxic potential they impose a serious risk to groundwater quality. Due to their physico-chemical properties - particularly high volatility and medium to high water solubility - and their low biodegradation potential they are highly mobile within the unsaturated soil (vapour phase) as well as within the groundwater. This poster (paper) presents data and calculations of a consultant's ''virtual every day'' work in order to assess the risk of groundwater contamination at a former dry cleaner site. (orig.)

  6. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    Science.gov (United States)

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition

  7. Contrasting the community structure of arbuscular mycorrhizal fungi from hydrocarbon-contaminated and uncontaminated soils following willow (Salix spp. L. planting.

    Directory of Open Access Journals (Sweden)

    Saad El-Din Hassan

    Full Text Available Phytoremediation is a potentially inexpensive alternative to chemical treatment of hydrocarbon-contaminated soils, but its success depends heavily on identifying factors that govern the success of root-associated microorganisms involved in hydrocarbon degradation and plant growth stimulation. Arbuscular mycorrhizal fungi (AMF form symbioses with many terrestrial plants, and are known to stimulate plant growth, although both species identity and the environment influence this relationship. Although AMF are suspected to play a role in plant adaptation to hydrocarbon contamination, their distribution in hydrocarbon-contaminated soils is not well known. In this study, we examined how AMF communities were structured within the rhizosphere of 11 introduced willow cultivars as well as unplanted controls across uncontaminated and hydrocarbon-contaminated soils at the site of a former petrochemical plant. We obtained 69 282 AMF-specific 18S rDNA sequences using 454-pyrosequencing, representing 27 OTUs. Contaminant concentration was the major influence on AMF community structure, with different AMF families dominating at each contaminant level. The most abundant operational taxonomic unit in each sample represented a large proportion of the total community, and this proportion was positively associated with increasing contamination, and seemingly, by planting as well. The most contaminated soils were dominated by three phylotypes closely related to Rhizophagus irregularis, while these OTUs represented only a small proportion of sequences in uncontaminated and moderately contaminated soils. These results suggest that in situ inoculation of AMF strains could be an important component of phytoremediation treatments, but that strains should be selected from the narrow group that is both adapted to contaminant toxicity and able to compete with indigenous AMF species.

  8. Contrasting the community structure of arbuscular mycorrhizal fungi from hydrocarbon-contaminated and uncontaminated soils following willow (Salix spp. L.) planting.

    Science.gov (United States)

    Hassan, Saad El-Din; Bell, Terrence H; Stefani, Franck O P; Denis, David; Hijri, Mohamed; St-Arnaud, Marc

    2014-01-01

    Phytoremediation is a potentially inexpensive alternative to chemical treatment of hydrocarbon-contaminated soils, but its success depends heavily on identifying factors that govern the success of root-associated microorganisms involved in hydrocarbon degradation and plant growth stimulation. Arbuscular mycorrhizal fungi (AMF) form symbioses with many terrestrial plants, and are known to stimulate plant growth, although both species identity and the environment influence this relationship. Although AMF are suspected to play a role in plant adaptation to hydrocarbon contamination, their distribution in hydrocarbon-contaminated soils is not well known. In this study, we examined how AMF communities were structured within the rhizosphere of 11 introduced willow cultivars as well as unplanted controls across uncontaminated and hydrocarbon-contaminated soils at the site of a former petrochemical plant. We obtained 69 282 AMF-specific 18S rDNA sequences using 454-pyrosequencing, representing 27 OTUs. Contaminant concentration was the major influence on AMF community structure, with different AMF families dominating at each contaminant level. The most abundant operational taxonomic unit in each sample represented a large proportion of the total community, and this proportion was positively associated with increasing contamination, and seemingly, by planting as well. The most contaminated soils were dominated by three phylotypes closely related to Rhizophagus irregularis, while these OTUs represented only a small proportion of sequences in uncontaminated and moderately contaminated soils. These results suggest that in situ inoculation of AMF strains could be an important component of phytoremediation treatments, but that strains should be selected from the narrow group that is both adapted to contaminant toxicity and able to compete with indigenous AMF species.

  9. Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dar es Salaam, Tanzania

    International Nuclear Information System (INIS)

    Gaspare, Lydia; Machiwa, John F.; Mdachi, S.J.M.; Streck, Georg; Brack, Werner

    2009-01-01

    Surface sediment and oyster samples from the inter-tidal areas of Dar es Salaam were analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) including the 16 compounds prioritized by US-EPA using GC/MS. The total concentration of PAHs in the sediment ranged from 78 to 25,000 ng/g dry weight, while oyster concentrations ranged from 170 to 650 ng/g dry weight. Hazards due to sediment contamination were assessed using Equilibrium Partitioning Sediment Benchmarks and Threshold Effect Levels. Diagnostic indices and principle component analysis were used to identify possible sources. Interestingly, no correlation between sediment and oyster concentrations at the same sites was found. This is supported by completely different contamination patterns, suggesting different sources for both matrices. Hazard assessment revealed possible effects at six out of eight sites on the benthic communities and oyster populations. The contribution of PAH intake via oyster consumption to carcinogenic risks in humans seems to be low. - PAH contamination may pose hazards to benthos but limited risks to humans

  10. Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dar es Salaam, Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Gaspare, Lydia; Machiwa, John F. [Department of Aquatic Environment and Conservation, University of Dar es Salaam, P.O. Box 60091, Dar es Salaam (Tanzania, United Republic of); Mdachi, S.J.M. [Department of Chemistry, University of Dar es Salaam, P.O. Box 35062, Dar es Salaam (Tanzania, United Republic of); Streck, Georg [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Brack, Werner [UFZ Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany)], E-mail: werner.brack@ufz.de

    2009-01-15

    Surface sediment and oyster samples from the inter-tidal areas of Dar es Salaam were analyzed for 23 polycyclic aromatic hydrocarbons (PAHs) including the 16 compounds prioritized by US-EPA using GC/MS. The total concentration of PAHs in the sediment ranged from 78 to 25,000 ng/g dry weight, while oyster concentrations ranged from 170 to 650 ng/g dry weight. Hazards due to sediment contamination were assessed using Equilibrium Partitioning Sediment Benchmarks and Threshold Effect Levels. Diagnostic indices and principle component analysis were used to identify possible sources. Interestingly, no correlation between sediment and oyster concentrations at the same sites was found. This is supported by completely different contamination patterns, suggesting different sources for both matrices. Hazard assessment revealed possible effects at six out of eight sites on the benthic communities and oyster populations. The contribution of PAH intake via oyster consumption to carcinogenic risks in humans seems to be low. - PAH contamination may pose hazards to benthos but limited risks to humans.

  11. The use of cluster analysis for plant grouping by their tolerance to soil contamination with hydrocarbons at the germination stage.

    Science.gov (United States)

    Potashev, Konstantin; Sharonova, Natalia; Breus, Irina

    2014-07-01

    Clustering was employed for the analysis of obtained experimental data set (42 plants in total) on seed germination in leached chernozem contaminated with kerosene. Among investigated plants were 31 cultivated plants from 11 families (27 species and 20 varieties) and 11 wild plant species from 7 families, 23 annual and 19 perennial/biannual plant species, 11 monocotyledonous and 31 dicotyledonous plants. Two-dimensional (two-parameter) clustering approach, allowing the estimation of tolerance of germinating seeds using a pair of independent parameters (С75%, V7%) was found to be most effective. These parameters characterized the ability of seeds to both withstand high concentrations of contaminants without the significant reduction of the germination, and maintain high germination rate within certain contaminant concentrations. The performed clustering revealed a number of plant features, which define the relation of a particular plant to a particular tolerance cluster; it has also demonstrated the possibility of generalizing the kerosene results for n-tridecane, which is one of the typical kerosene components. In contrast to the "manual" plant ranking based on the assessment of germination at discrete concentrations of the contaminant, the proposed clustering approach allowed a generalized characterization of the seed tolerance/sensitivity to hydrocarbon contaminants. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-contaminated Groundwater Under Nitrate-reducing Conditions

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    of toluene, 2,4-DMP, 3,4-DMP and p-cresol depended on nitrate or nitrite as electron acceptors. 40–80% of the nitrate consumed during degradation of the aromatic compounds was recovered as nitrite, and the consumption of nitrate was accompanied by a production of ATP. Stoichiometric calculations indicated......Batch experiments were carried out to investigate the biodegradation of phenols and aromatic hydrocarbons under anaerobic, nitrate-reducing conditions in groundwater from a creosote-contaminated site at Fredensborg, Denmark. The bacteria in the creosote-contaminated groundwater degraded a mixture...... that in addition to the phenols are toluene other carbon sources present in the groundwater contributed to the consumption of nitrate. If the groundwater was incubated under anaerobic conditions without nitrate, sulphate-reducing conditions evolved after ∼ 1 month at 20°C and ∼2 months at 10°C. In the sulphate...

  13. Bioremediation of soils contaminated by hydrocarbons at the coastal zone of “Punta Majagua”.

    Directory of Open Access Journals (Sweden)

    Jelvys Bermúdez Acosta

    2012-03-01

    Full Text Available The purpose of this research was to describe and assess the main results in the process of bioremediation of 479 m3 of petroleum residuals spilled on the soil and restrained into four deposits of fuel on the coastal zone of “Punta Majagua”, Cienfuegos. The volume of hydrocarbons spilled and contained into the tanks was determined by means of their previous mixture with fertile ground in a ratio of 3/1. The hydrocarbons were disposed in a bioremediation area of 115 m X 75m built in situ. In turn 54, 5 m3 of BIOIL - FC were applied, which were fermented in an industrial bioreactor of 12000 L. An initial sampling was carried out registering values of total hydrocarbons (HTP higher than 41880 mg/kg, with high concentrations of Saturated hydrocarbons, aromatics, resins, asphaltens (SARA. Three subsequent samples were taken with a sampling interval of 0, 45, 90 and 120 days of the application. An average concentration of 1884.57 mg/kg of total hydrocarbons was obtained at 120 days with an average removal rate of 94.8%, moreover values of 94.6%, 90.78%, 86.99% y 79.9% of SARA were respectively reported.

  14. Taguchi Method for Development of Mass Flow Rate Correlation using Hydrocarbon Refrigerant Mixture in Capillary Tube

    Directory of Open Access Journals (Sweden)

    Shodiya Sulaimon

    2014-07-01

    Full Text Available The capillary tube is an important control device used in small vapor compression refrigeration systems such as window air-conditioners, household refrigerators and freezers. This paper develops a non-dimensional correlation based on the test results of the adiabatic capillary tube for the mass flow rate through the tube using a hydrocarbon refrigerant mixture of 89.3% propane and 10.7% butane (HCM. The Taguchi method, a statistical experimental design approach, was employed. This approach explores the economic benefit that lies in studies of this nature, where only a small number of experiments are required and yet valid results are obtained. Considering the effects of the capillary tube geometry and the inlet condition of the tube, dimensionless parameters were chosen. The new correlation was also based on the Buckingham Pi theorem. This correlation predicts 86.67% of the present experimental data within a relative deviation of -10% to +10%. The predictions by this correlation were also compared with results in published literature.

  15. Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation.

    Science.gov (United States)

    Afegbua, Seniyat Larai; Batty, Lesley Claire

    2018-04-27

    Polycyclic aromatic hydrocarbon (PAH)-contaminated sites have a mixture of PAH of varying concentration which may affect PAH dissipation differently to contamination with a single PAH. In this study, pot experiments investigated the impact of PAH contamination on Medicago sativa, Lolium perenne, and Festuca arundinacea biomass and PAH dissipation from soils spiked with phenanthrene (Phe), fluoranthene (Flu), and benzo[a]pyrene (B[a]P) in single and mixed treatments. Stimulatory or inhibitory effects of PAH contamination on plant biomass yields were not different for the single and mixed PAH treatments. Results showed significant effect of PAH treatments on plant growth with an increased root biomass yield for F. arundinacea in the Phe (175%) and Flu (86%) treatments and a root biomass decrease in the mixed treatment (4%). The mean residual PAHs in the planted treatments and unplanted control for the single treatments were not significantly different. B[a]P dissipation was enhanced for single and mixed treatments (71-72%) with F. arundinacea compared to the unplanted control (24-50%). On the other hand, B[a]P dissipation was inhibited with L. perenne (6%) in the single treatment and M. sativa (11%) and L. perenne (29%) in the mixed treatment. Abiotic processes had greater contribution to PAH dissipation compared to rhizodegradation in both treatments. In most cases, a stimulatory effect of PAH contamination on plant biomass yield without an enhancement of PAH dissipation was observed. Plant species among other factors affect the relative contribution of PAH dissipation mechanisms during phytoremediation. These factors determine the effectiveness and suitability of phytoremediation as a remedial strategy for PAH-contaminated sites. Further studies on impact of PAH contamination, plant selection, and rhizosphere activities on soil microbial community structure and remediation outcome are required.

  16. In vitro degradation of dicyclopentadiene by microbial consortia isolated from hydrocarbon-contaminated soil

    International Nuclear Information System (INIS)

    Stehmeier, L.G.; Voordouw, G.

    1996-01-01

    The degradation of dicyclopentadiene (DCPD), an extremely odoriferous by-product of the production of hydrocarbon feed stocks in petrochemical plants, was discussed. A laboratory study was described in which DCPD was degraded to carbon dioxide and oxygenated intermediates were established. More than 100 isolated organisms and cultures were screened for DCPD degradation using BIOLOG TM MT plates incubated in an atmosphere containing the test hydrocarbon. No single colony isolate readily mineralized DCPD, but mixed cultures produced 14 CO 2 when incubated with [ 14 C]DCPD. For bioremediation purposes, the objective was to remove odor. In the presence of a hydrocarbon degradation medium, the complete degradation to CO 2 was achieved in less than 6 months. 15 refs., 3 tabs., 4 figs

  17. Assessment of intra-species diversity among strains of Acinetobacter baumannii isolated from sites contaminated with petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Manab Sarma, P.; Bhattacharya, D.; Krishnan, S.; Lal, B.

    2004-01-01

    Intra-species diversity among Acinetobacter baumannii strains isolated from crude oil-contaminated soils from different geographic regions in India was assessed, including their capability to degrade different fractions of total petroleum hydrocarbons. A total of 96 strains were isolated from five different sites. Of the 96 isolates, 25 strains were identified as Acinetobacter baumannii; all of these strains were biochemically profiled and grouped into eight phenovars on the basis of multivariate analysis of their substrate utilization profiles. All strains were able to degrade the total petroleum hydrocarbon fractions of crude oil. Intraspecies relatedness among the 25 strains was determined using tRNA intergenic spacer length polymorphism. Specific variants among the strains with different degradation capacities for different fractions of crude oil were detected. Environmental influences that cause intra-species diversity, such as functional resilience, within the selected strains of A. baumannii were also noted. It is suggested that such diversities may make it possible to select contaminant-specific strains for efficient biotechnological strategies in environmental remediation. 19 refs., 4 tabs., 3 figs

  18. Assessment of intra-species diversity among strains of Acinetobacter baumannii isolated from sites contaminated with petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Manab Sarma, P.; Bhattacharya, D.; Krishnan, S. [TERI School of Advanced Studies, Center of Bioresources and Biotechnology, New Delhi (India); Lal, B. [TERI School of Advanced Studies, Microbial Biotechnology Division, New Delhi (India)

    2004-06-01

    Intra-species diversity among Acinetobacter baumannii strains isolated from crude oil-contaminated soils from different geographic regions in India was assessed, including their capability to degrade different fractions of total petroleum hydrocarbons. A total of 96 strains were isolated from five different sites. Of the 96 isolates, 25 strains were identified as Acinetobacter baumannii; all of these strains were biochemically profiled and grouped into eight phenovars on the basis of multivariate analysis of their substrate utilization profiles. All strains were able to degrade the total petroleum hydrocarbon fractions of crude oil. Intraspecies relatedness among the 25 strains was determined using tRNA intergenic spacer length polymorphism. Specific variants among the strains with different degradation capacities for different fractions of crude oil were detected. Environmental influences that cause intra-species diversity, such as functional resilience, within the selected strains of A. baumannii were also noted. It is suggested that such diversities may make it possible to select contaminant-specific strains for efficient biotechnological strategies in environmental remediation. 19 refs., 4 tabs., 3 figs.

  19. Contrasting the Community Structure of Arbuscular Mycorrhizal Fungi from Hydrocarbon-Contaminated and Uncontaminated Soils following Willow (Salix spp. L.) Planting

    OpenAIRE

    Hassan, Saad El-Din; Bell, Terrence H.; Stefani, Franck O. P.; Denis, David; Hijri, Mohamed; St-Arnaud, Marc

    2014-01-01

    Phytoremediation is a potentially inexpensive alternative to chemical treatment of hydrocarbon-contaminated soils, but its success depends heavily on identifying factors that govern the success of root-associated microorganisms involved in hydrocarbon degradation and plant growth stimulation. Arbuscular mycorrhizal fungi (AMF) form symbioses with many terrestrial plants, and are known to stimulate plant growth, although both species identity and the environment influence this relationship. Al...

  20. Impact of bacterial and fungal processes on {sup 14}C-hexadecane mineralisation in weathered hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Adetutu, Eric M.; Ball, Andy S. [School of Biological Sciences, Flinders University, Adelaide, South Australia, 5001 (Australia); Weber, John; Aleer, Samuel; Dandie, Catherine E. [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia, 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia, 5095 (Australia); Juhasz, Albert L., E-mail: Albert.Juhasz@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia, 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia, 5095 (Australia)

    2012-01-01

    In this study, the impact of bacterial and fungal processes on {sup 14}C-hexadecane mineralisation was investigated in weathered hydrocarbon contaminated soil. The extent of {sup 14}C-hexadecane mineralisation varied depending on the bioremediation strategy employed. Under enhanced natural attenuation conditions, {sup 14}C-hexadecane mineralisation after 98 days was 8.5 {+-} 3.7% compared to < 1.2% without nitrogen and phosphorus additions. {sup 14}C-hexadecane mineralisation was further enhanced through Tween 80 amendments (28.9 {+-} 2.4%) which also promoted the growth of a Phanerochaete chyrsosporium fungal mat. Although fungal growth in weathered hydrocarbon contaminated soil could be promoted through supplementing additional carbon sources (Tween 80, sawdust, compost, pea straw), fungal {sup 14}C-hexadecane mineralisation was negligible when sodium azide was added to soil microcosms to inhibit bacterial activity. In contrast, when fungal activity was inhibited through nystatin additions, {sup 14}C-hexadecane mineralisation ranged from 6.5 {+-} 0.2 to 35.8 {+-} 3.8% after 98 days depending on the supplied amendment. Bacteria inhibition with sodium azide resulted in a reduction in bacterial diversity (33-37%) compared to microcosms supplemented with nystatin or microcosms without inhibitory supplements. However, alkB bacterial groups were undetected in sodium azide supplemented microcosms, highlighting the important role of this bacterial group in {sup 14}C-hexadecane mineralisation. - Highlights: Black-Right-Pointing-Pointer The roles of different microbial groups in hydrocarbon mineralisation was assessed. Black-Right-Pointing-Pointer Inhibiting fungal growth did not affect {sup 14}C-hexadecane mineralisation. Black-Right-Pointing-Pointer Inhibiting bacterial growth resulted in negligible {sup 14}C-hexadecane mineralisation. Black-Right-Pointing-Pointer alkB bacterial groups were undetected in sodium azide supplemented microcosms. Black

  1. Impact of bacterial and fungal processes on 14C-hexadecane mineralisation in weathered hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Adetutu, Eric M.; Ball, Andy S.; Weber, John; Aleer, Samuel; Dandie, Catherine E.; Juhasz, Albert L.

    2012-01-01

    In this study, the impact of bacterial and fungal processes on 14 C-hexadecane mineralisation was investigated in weathered hydrocarbon contaminated soil. The extent of 14 C-hexadecane mineralisation varied depending on the bioremediation strategy employed. Under enhanced natural attenuation conditions, 14 C-hexadecane mineralisation after 98 days was 8.5 ± 3.7% compared to 14 C-hexadecane mineralisation was further enhanced through Tween 80 amendments (28.9 ± 2.4%) which also promoted the growth of a Phanerochaete chyrsosporium fungal mat. Although fungal growth in weathered hydrocarbon contaminated soil could be promoted through supplementing additional carbon sources (Tween 80, sawdust, compost, pea straw), fungal 14 C-hexadecane mineralisation was negligible when sodium azide was added to soil microcosms to inhibit bacterial activity. In contrast, when fungal activity was inhibited through nystatin additions, 14 C-hexadecane mineralisation ranged from 6.5 ± 0.2 to 35.8 ± 3.8% after 98 days depending on the supplied amendment. Bacteria inhibition with sodium azide resulted in a reduction in bacterial diversity (33–37%) compared to microcosms supplemented with nystatin or microcosms without inhibitory supplements. However, alkB bacterial groups were undetected in sodium azide supplemented microcosms, highlighting the important role of this bacterial group in 14 C-hexadecane mineralisation. - Highlights: ► The roles of different microbial groups in hydrocarbon mineralisation was assessed. ► Inhibiting fungal growth did not affect 14 C-hexadecane mineralisation. ► Inhibiting bacterial growth resulted in negligible 14 C-hexadecane mineralisation. ► alkB bacterial groups were undetected in sodium azide supplemented microcosms. ► The importance of alkB groups in 14 C-hexadecane mineralisation was highlighted.

  2. Cleaning of contaminated grounds with hydrocarbons by means of biopile; Saneamiento de suelos contaminados con hidrocarburos mediante biopilas

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe Arguelles, R.; Flores Torres, C.; Chavez Lopez, C.; Roldan Martin, A. [Instituto de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2002-03-01

    In 1999, the Instituto de Ingenieria of the Universidad Nacional Autonoma de Mexico (UNAM), initiated an evaluation through the soil and groundwater sampling and a risk health assessment in a Mexican refinery. An extended area was found contaminated with hydrocarbons. This area requires a soil remediation, taking into account that some zones present more than 30 000 mg/kg of Total Petroleum Hydrocarbons (TPH). Biopile system was recommended as the best remediation method to diminish TPH and some poliaromathic hydrocarbons (PAH). Therefore, an experimental biopile of 30 m{sup 3} was constructed with contaminated soil. After 22 weeks, results show more than 80% of TPH and PAH remove. [Spanish] El grupo de saneamiento de suelos y acuiferos del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM), inicio en 1999 la evaluacion de la contaminacion del subsuelo de una refineria en una zona costera del pais, mediante el muestreo de 325 puntos a 1.5 m de profundidad y con el analisis de los siguientes parametros: hidrocarburos totales del petroleo (HTP), hidrocarburos poliaromaticos (HAP), diesel, gasolina, metilterbutileter (MTBE) y los metales hierro, vanadio, zinc, cadmio, cromo y plomo. Asimismo, se llevo a cabo una evaluacion de riesgo a la salud a fin de determinar los niveles de limpieza de las areas contaminadas. Una vez realizado el estudio se propuso probar a nivel piloto dos tecnicas de saneamiento para las areas contaminadas con valores superiores a 30 000 mg/Kg de HTP, o bien, para las zonas en donde la evaluacion de riesgo a la salud indica la existencia de riesgo para uno o mas compuestos (Iturbe et al., 2000). Las tecnicas propuestas son biopilas y lavado de suelo con surfactantes. En este trabajo se presenta la prueba piloto con biopilas, de la cual se obtuvo una eficiencia de remocion de HTP del 80 porciento en cinco meses de operacion.

  3. Ranking harbours in the maritime provinces of Canada for potential to contaminate American lobster (Homarus americanus) with polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Prouse, N.J.

    1994-01-01

    Polycyclic aromatic hydrocarbons (PAHs) comprise a suite of contaminants that enter the marine environment through a variety of natural and anthropogenic sources. PAHs, including carcinogenic compounds, bioaccumulate in the tissues of exposed American lobsters (Homarus americanus). High PAH concentrations in lobster tissues necessitated the closure of the lobster fishery in the South Arm of Sydney Harbour, Nova Scotia, in 1982. A study was conducted to assess harbors in Nova Scotia, New Brunswick, and Prince Edward Island to determine if there might be a reason for concern about PAH contamination of lobsters. Adjacent commercial and industrial activity, harbor uses, the surrounding population, and PAH point sources were evaluated for each harbor selected for study. Areas of lobster fishing and the number of permanent lobster holding facilities within each harbor were also determined. Harbors were then ranked according to their potential for PAH contamination. Point sources for PAHs within these harbors included petroleum and coal products plants, oil refineries, chemical plants, coal-fired generating stations, and fuel combustion in land vehicles and ships. After Sydney, the harbors with the highest potential for PAH contamination were determined to be Halifax, Saint John, Pictou, and Port Hawkesbury Ship Harbour. 60 refs., 15 figs., 7 tabs.

  4. Phytoremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation.

    Science.gov (United States)

    Yenn, R; Borah, M; Boruah, H P Deka; Roy, A Sarma; Baruah, R; Saikia, N; Sahu, O P; Tamuli, A K

    2014-01-01

    Environmental deterioration due to crude oil contamination and abandoned drill sites is an ecological concern in Assam. To revive such contaminated sites, afield study was conducted to phytoremediate four crude oil abandoned drill sites of Assam (Gelakey, Amguri, Lakwa, and Borholla) with the aid of two hydrocarbon-degrading Pseudomonas strains designated N3 and N4. All the drill sites were contaminated with 15.1 to 32.8% crude oil, and the soil was alkaline in nature (pH8.0-8.7) with low moisture content, low soil conductivity and low activities of the soil enzymes phosphatase, dehydrogenase and urease. In addition, N, P, K, and C contents were below threshold limits, and the soil contained high levels of heavy metals. Bio-augmentation was achieved by applying Pseudomonas aeruginosa strains N3 and N4 followed by the introduction of screened plant species Tectona grandis, Gmelina arborea, Azadirachta indica, and Michelia champaca. The findings established the feasibility of the phytoremediation of abandoned crude oil-contaminated drill sites in Assam using microbes and native plants.

  5. Distinguishing between contaminant and reef effects on meiofauna near offshore hydrocarbon platforms in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Montagna, P. A.; Jarvis, S. C. [Univ. of Texas at Austin, Marine Science Institute, Port Aransas, TX (United States); Kennicutt, M. C. [Texas A and M Univ., Geochemical and Environmental Research Group, College Station, TX (United States)

    2002-10-01

    The GEOMEX study which was initiated in 1993 successfully investigated the long-term effects of hydrocarbon production on macro- and meiobenthos at the community, population, organismic and suborganismic levels. It concluded that adverse effects were localized to within 100-200 m of production platforms. The current study was designed to distinguish between reef and contaminant effects on meiofaunal communities by comparing communities at production platforms, artificial reefs, platform removal sites and appropriate controls. The focus was on highly abundant and diverse meiobenthic harpacticoid copepods which exhibited negative effects in the GEOMEX study. The removal sites were found to have higher concentrations of many contaminants than reef or control sites, but lower concentrations than platform sites. Reduced meiobenthic abundance and altered Harpacticoida community structure were primarily a function of reef effects, not contaminant effects. The reef effect appeared to be important in controlling microfauna near platforms where contaminants were low because of drilling and production techniques in the Gulf of Mexico. The significant habitat influence was attributed to a variety of possible causes, such as increased food web activity related to primary production of hard-bottom algae, secondary production of fouling organisms or attraction of mobile fish and invertebrates. 23 refs., 6 tabs., 3 figs.

  6. Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils

    Czech Academy of Sciences Publication Activity Database

    Čvančarová, Monika; Křesinová, Zdena; Cajthaml, Tomáš

    2013-01-01

    Roč. 254, JUN 15 (2013), s. 116-124 ISSN 0304-3894 R&D Projects: GA TA ČR TE01020218; GA TA ČR TA01020106 Institutional support: RVO:61388971 Keywords : Bioavailability * Polycyclic aromatic hydrocarbons * Ecotoxicity Subject RIV: EE - Microbiology, Virology Impact factor: 4.331, year: 2013

  7. Large Scale Bioremediation of Petroleum Hydrocarbon Contaminated Waste at Various Installations of ONGC. India: Case Studies

    OpenAIRE

    Mandal, Ajoy Kumar; Sarma, Priyangshu Manab; Jeyaseelan, C Paul; Channashettar, Veeranna A; Singh, Bina; Agnihotri, Anil; Lal, Banwari; Datta, Jayati

    2014-01-01

    In situ and ex situ bioremediation of oil contaminated effluent pits, sludge pits, oil spilled land and tank bottom, and effluent treatment plant (ETP) oily sludge was carried out at Ankleshwar, Mehsana, Assam and Cauvery Asset of Oil and Natural Gas Corporation Limited (ONGC), India. The types of contaminant were heavy paraffinic, asphaltic and light crude oil and emulsified oily sludge /contaminated soil. An indigenous microbial consortium was developed by assembling four species of bacteri...

  8. Soil washing and post-wash biological treatment of petroleum hydrocarbon contaminated soils

    OpenAIRE

    Bhandari, Alok

    1992-01-01

    A laboratory scale study was conducted to investigate the treatability of petroleum contaminated soils by soil washing and subsequent biological treatment of the different soil fractions. In addition to soils obtained from contaminated sites, studies were also performed on soils contaminated in the laboratory. Soil washing was performed using a bench-scale soil washing system. Washing was carried out with simultaneous fractionation of the bulk soil into sand, silt and clay fractions. Cl...

  9. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils

    International Nuclear Information System (INIS)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M.

    2004-01-01

    To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs. - Persistent PAH contaminants in soils can be removed more completely and rapidly by using multiple remediation processes

  10. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Ebadi, Ali; Khoshkholgh Sima, Nayer Azam; Olamaee, Mohsen; Hashemi, Maryam; Ghorbani Nasrabadi, Reza

    2018-05-08

    The negative impact of salinity on plant growth and the survival of rhizosphere biota complicates the application of bioremediation to crude oil-contaminated saline soils. Here, a comparison was made between the remedial effect of treating the soil with Pseudomonas aeruginosa, a salinity tolerant hydrocarbon-degrading consortium in conjunction with either the halophyte Salicornia persica or the non-halophyte Festuca arundinacea. The effect of the various treatments on salinized soils was measured by assessing the extent of total petroleum hydrocarbon (TPH) degradation, the soil's dehydrogenase activity, the abundance of the bacteria and the level of phytotoxicity as measured by a bioassay. When a non-salinized soil was assessed after a treatment period of 120 days, the ranking for effectiveness with respect to TPH removal was F. arundinacea > P. aeruginosa > S. persica > no treatment control, while in the presence of salinity, the ranking changed to S. persica > P. aeruginosa > F. arundinacea > no treatment control. Combining the planting of S. persica or F. arundinacea with P. aeruginosa inoculation ("bioaugmentation") boosted the degradation of TPH up to 5-17%. Analyses of the residual oil contamination revealed that long chain alkanes (above C20) were particularly strongly degraded following the bioaugmentation treatments. The induced increase in dehydrogenase activity and the abundance of the bacteria (3.5 and 10 fold respectively) achieved in the bioaugmentation/S. persica treatment resulted in 46-76% reduction in soil phytotoxicity in a saline soil. The indication was that bioaugmentation of halophyte can help to mitigate the adverse effects on the effectiveness of bioremediation in a crude oil-contaminated saline soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Investigations on the carbon contaminations on the alkali cells of DPAL with hydrocarbon buffer gas

    Science.gov (United States)

    Li, Zhiyong; Tan, Rongqing; Wang, Yujie; Ye, Qing; Bian, Jintian; Huang, Wei; Li, Hui; Han, Gaoce

    2017-10-01

    Diode pumped alkali laser (DPAL) with hydrocarbon buffer gases has the features of low threshold and high efficiency. The chemical reaction between alkali and hydrocarbon gases affects the life time of DPAL. In this paper, a method based on Fourier transform infrared spectroscopy and Lambert-Beer law is adopted to find a safe temperature at which DPAL runs for a long term. A theoretical model is established to figure out ways to reduce the peak temperature in the cell window. The results indicates that 170 °C is a safe temperature. Although the absorbance of the cell window to the pump light and alkali laser is lower, there is temperature increase. Small light-transmitting area and air blowing on the windows can reduce the peak temperature effectively. Cooling the cell window is essential and critical in a long-term running DPAL.

  12. Effects of hydrocarbon contamination on ozone generation with dielectric barrier discharges

    Science.gov (United States)

    Lopez, Jose L.; Vezzu, Guido; Freilich, Alfred; Paolini, Bernhard

    2013-08-01

    The increasing usage of the feed gases of lower grade liquid oxygen (LOX) containing higher levels of trace hydrocarbon impurities in dielectric barrier discharge (DBD) for ozone generation requires a better understanding of the kinetics of the by-product formation resulting from reactions involving these hydrocarbon impurities. As a case study of hydrocarbon impurities, the kinetics of CH4 conversion in DBDs and the subsequent HNO3 formation were investigated by means of gas-phase plasma diagnostics, supported by detailed process modeling, and extensive in-situ and ex-situ by-product analysis. The by-products formation in the plasma with the presence of CH4, were found to differ significantly in oxygen-fed generators as compared to generators fed with oxygen/nitrogen mixtures. The amount of HNO3 formed depends on the concentration of NOx formed in the plasma and the amount of CH4 that is converted, but not on the O3 concentration. In the present work we have investigated CH4 concentrations of up to 1.95 wt% of the feed gas. The rate of deterioration of the overall ozone generator performance was found to be affected by the concentration of nitrogen in the oxygen/nitrogen mixture.

  13. Plant-bacteria partnership: phytoremediation of hydrocarbons contaminated soil and expression of catabolic genes

    Directory of Open Access Journals (Sweden)

    Hamna Saleem

    2016-01-01

    Full Text Available Petroleum hydrocarbons are harmful to living organisms when they are exposed in natural environment. Once they come in contact, it is not an easy to remove them because many of their constituents are persistent in nature. To achieve this target, different approaches have been exploited by using plants, bacteria, and plant-bacteria together. Among them, combined use of plants and bacteria has gained tremendous attention as bacteria possess set of catabolic genes which produce catabolic enzymes to decontaminate hydrocarbons. In return, plant ooze out root exudates containing nutrients and necessary metabolites which facilitate the microbial colonization in plant rhizosphere. This results into high gene abundance and gene expression in the rhizosphere and, thus, leads to enhanced degradation. Moreover, high proportions of beneficial bacteria helps plant to gain more biomass due to their plant growth promoting activities and production of phytohromones. This review focuses functioning and mechanisms of catabolic genes responsible for degradation of straight chain and aromatic hydrocarbons with their potential of degradation in bioremediation. With the understanding of expression mechanisms, rate of degradation can be enhanced by adjusting environmental factors and acclimatizing plant associated bacteria in plant rhizosphere.

  14. Chronic polyaromatic hydrocarbon (PAH contamination is a marginal driver for community diversity and prokaryotic predicted functioning in coastal sediments

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-08-01

    Full Text Available Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.

  15. Micellar Enhanced Ultrafiltration for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs Mixtures in Underground Contaminated Water in Oman

    Directory of Open Access Journals (Sweden)

    Mohamed Aoudia

    2011-12-01

    Full Text Available In an attempt to analyze polycyclic aromatic hydrocarbons (PAHs in diesel contaminated underground water in Oman (Rustaq, Gas chromatography-Mass spectrometry was first used to determine the different concentrations in a standard mixture containing 16 PAHs. Retention time and calibration curves were obtained for all aromatic compounds and were used to identify a given analyte as well as its concentration in the contaminated underground water. Micellar enhanced ultrafiltration (MEUF was then used to treat standard aqueous solution of PAHs at low concentration (~ 1 ppb using an edible nonionic surfactant (Tween 80. The totality of the mixture components was completely rejected. Within the experimental detection limit (± 0.01 ppb, the residual PAH concentrations were less than 0.01 ppb in accord with the allowed concentrations in drinking water. Likewise, excellent rejections of PAHs in MEUF treatment of diesel contaminated underground water at an Omani site (Rustaq were observed. The concentration of PAHs was reduced to less than 0.01 ppb, the accepted limit for the most toxic member of the PAH group (benzo(apyrene.

  16. Correlation of phase equilibria for water + hydrocarbon systems at high temperatures and pressures by cubic equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Haruki, Masashi; Yahiro, Yukihito; Higashi, Hidenori; Iwai, Yoshio; Arai, Yasuhiko [Kyushu University, FUkuoka (Japan). Graduate School of Engineering

    1999-08-01

    A modified-Soave-Redlich-Kwong (MSRK) equation of state with an exponent-type mixing rule for the energy parameter and a conventional rule for the size parameter is applied to correlate the phase equilibria for four binary mixtures of water + hydrocarbon (benzene, hexane, decane, and dodecane) systems at high temperatures and pressures. It is noted that good correlation results are obtained by using the mixing rules with interaction parameters between unlike molecules. (author)

  17. Soil-Water Repellency and Critical Humidity as Cleanup Criteria for Remediation of a Hydrocarbon Contaminated Mud

    Science.gov (United States)

    Guzmán, Francisco Javier; Adams, Randy H.

    2010-05-01

    The majority of soil remediation programs focus mainly on reducing the hydrocarbon concentration, based on the assumption that the primary impact is toxicity and/or leachates and that these are directly proportional to concentration. None-the-less, interference with natural soil-water interactions are frequently more damaging, especially for sites contaminated with very viscous, weathered hydrocarbons. Therefore, the kind of hydrocarbons present in the soil and their interactions with soil surfaces may be more important than the overall hydrocarbon concentration in terms of soil restoration. One recently patented technology, the Chemical-Biological Stabilization process, focuses specifically on restoring soil fertility as the main objective for remediation of sites with agricultural use. This method was recently validated at an industrial scale by the treatment of 150 cubic meters of bentonitic drilling muds (70,5% fines) from an old sulphur mine, which were contaminated with very weathered oil (4° API), consisting of 31% asphaltenes. This material was treated by adding 4% (w/w, dry) of calcium hydroxide, followed by 4% (w/w, dry) of sugar cane cachasse (a fine fibered agricultural waste), thoroughly mixing between additions using an excavator. After the soil had dried sufficiently and the pH was soil water repellency. MED was measured on air dried soil and WDPT values were calculated from the extrapolation of penetration time vs. ethanol molarity functions (Rx=0,99). Additionally, water penetration times were measured at different humidities to determine critical moisture levels for absorption in soil humic substances while a vigorous vegetative growth was established. During two years of treatment the MED values were reduced 30% from 5,13 to 3,58M, and WDPT values were reduced over 25 times (from 10 exp5,6 s to 10 exp4,2 s). Critical humidity values varied from ~16,9 - 19,5%H for penetration in treated and untreated material. During the driest part of the year

  18. Development of a biotreatment system for the remediation of groundwater contaminated with hydrocarbons and trichloroethylene

    International Nuclear Information System (INIS)

    Folsom, B.R.; Kurisko, P.R.; Ensley, B.D.

    1992-01-01

    Inadvertent release of fuels and solvents into soil has resulted in groundwater contamination across the United States. This paper reports on the development of biologically based systems for treating mixtures of chemical contaminants which often requires knowledge of both degradative pathways and interactions between individual chemicals. These issues may necessitate the use of specialized microorganisms and/or treatment systems designed to overcome these limitations. One strategy for the treatment of chemical mixtures which cannot be source separated, such as contaminated groundwater, is a modular system to sequentially biodegrade groups of compatible chemicals. A two-stage bioreactor system was constructed for the treatment of groundwater contaminated with benzene and TCE. This treatment system is undergoing development for a field pilot demonstration. Successful implementation of this system should result in significant cost and time savings compared to competitive technologies

  19. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    Science.gov (United States)

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  20. Hydrocarbon migration and accumulation in the Upper Cretaceous Qingshankou Formation, Changling Sag, southern Songliao Basin: Insights from integrated analyses of fluid inclusion, oil source correlation and basin modelling

    Science.gov (United States)

    Dong, Tian; He, Sheng; Wang, Dexi; Hou, Yuguang

    2014-08-01

    The Upper Cretaceous Qingshankou Formation acts as both the source and reservoir sequence in the Changling Sag, situated in the southern end of the Songliao Basin, northeast China. An integrated approach involving determination of hydrocarbon charging history, oil source correlation and hydrocarbon generation dynamic modeling was used to investigate hydrocarbon migration processes and further predict the favorable targets of hydrocarbon accumulations in the Qingshankou Formation. The hydrocarbon generation and charge history was investigated using fluid inclusion analysis, in combination with stratigraphic burial and thermal modeling. The source rocks began to generate hydrocarbons at around 82 Ma and the hydrocarbon charge event occurred from approximately 78 Ma to the end of Cretaceous (65.5 Ma) when a large tectonic uplift took place. Correlation of stable carbon isotopes of oils and extracts of source rocks indicates that oil was generated mainly from the first member of Qingshankou Formation (K2qn1), suggesting that hydrocarbon may have migrated vertically. Three dimensional (3D) petroleum system modeling was used to evaluate the processes of secondary hydrocarbon migration in the Qingshankou Formation since the latest Cretaceous. During the Late Cretaceous, hydrocarbon, mainly originated from the Qianan depression, migrated laterally to adjacent structural highs. Subsequent tectonic inversion, defined as the late Yanshan Orogeny, significantly changed hydrocarbon migration patterns, probably causing redistribution of primary hydrocarbon reservoirs. In the Tertiary, the Heidimiao depression was buried much deeper than the Qianan depression and became the main source kitchen. Hydrocarbon migration was primarily controlled by fluid potential and generally migrated from relatively high potential areas to low potential areas. Structural highs and lithologic transitions are potential traps for current oil and gas exploration. Finally, several preferred hydrocarbon

  1. Biosurfactants produced by Microbacterium sp., isolated from aquatic macrophytes in hydrocarbon-contaminated area in the Rio Negro, Manaus, Amazonas

    Directory of Open Access Journals (Sweden)

    João Marcelo Silva Lima

    2017-05-01

    Full Text Available Endophytic bacteria isolated from Eichhornia crassipes (Mart Solms., collected in oil contaminated wastewater of effluent generated by Petrobras refinery in Manaus were investigated to determine their potential for producing biosurfactants. Assay with 2.6-dichlorophenol indophenol (DCPIP indicator to verify hydrocarbon biodegradation activity; oil emulsification test; drop-collapse method; surface tension and growth curve of biosurfactant production. The M87 Microbacterium sp. strain chosen for this work was identified by the sequencing of the rDNA region and the chemical characterization was performed by FTIR, UFLC/MS and 1H RMN techniques. The selected bacterial isolate provided 3g L-1 of biosurfactant, using diesel oil as sole carbon source, being efficient in biodegrading oil as demonstrated by the DCPIP test. Fractions obtained by column chromatography were efficient in reducing water surface tension around 40 mN m-1, especially fraction 1, which reduced it to 34.17 mN m-1. The different techniques of chemical analysis used for the identification of the biosurfactant isolate indicated that this is probably a long - chain fatty acid lipid type, which may be used in the future as both biosurfactant in decontamination processes of hydrocarbon-polluted areas or as bioemulsifier in countless processes, since it exhibited no toxicity as determined by Alamar Blue assay.

  2. Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site.

    Science.gov (United States)

    Siles, José A; Margesin, Rosa

    2018-05-01

    The study of microbial communities involved in soil bioremediation is important to identify the specific microbial characteristics that determine improved decontamination rates. Here, we characterized bacterial, archaeal, and fungal communities in terms of (i) abundance (using quantitative PCR) and (ii) taxonomic diversity and structure (using Illumina amplicon sequencing) during the bioremediation of long-term hydrocarbon-contaminated soil from an Alpine former military site during 15 weeks comparing biostimulation (inorganic NPK fertilization) vs. natural attenuation and considering the effect of temperature (10 vs. 20 °C). Although a considerable amount of total petroleum hydrocarbon (TPH) loss could be attributed to natural attenuation, significantly higher TPH removal rates were obtained with NPK fertilization and at increased temperature, which were related to the stimulation of the activities of indigenous soil microorganisms. Changing structures of bacterial and fungal communities significantly explained shifts in TPH contents in both natural attenuation and biostimulation treatments at 10 and 20 °C. However, archaeal communities, in general, and changing abundances and diversities in bacterial and fungal communities did not play a decisive role on the effectiveness of soil bioremediation. Gammaproteobacteria and Bacteroidia classes, within bacterial community, and undescribed/novel groups, within fungal community, proved to be actively involved in TPH removal in natural attenuation and biostimulation at both temperatures.

  3. In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope

    Directory of Open Access Journals (Sweden)

    Mark H Rummeli

    2018-05-01

    Full Text Available The excitement of graphene (as well as 2D materials in general has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM. This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.

  4. CO₂ and O₂ respiration kinetics in hydrocarbon contaminated soils amended with organic carbon sources used to determine catabolic diversity.

    Science.gov (United States)

    Pietravalle, Stéphane; Aspray, Thomas J

    2013-05-01

    Multiple substrate induced respiration (MSIR) assays which assess the response of soils to carbon source amendment are effective approaches to determine catabolic diversity of soils. Many assays are based on a single short term (hydrocarbon contaminated soils using continuous CO2 and O2 respiration measurements. Based on cumulative CO2 and O2 measurements at 4, 24 and 120 h, the soils were found to be distinct in terms of their catabolic diversity. Most noteworthy, however, was the response to the addition of maleic acid which provided strong evidence of abiotic CO2 efflux to be the overriding process, raising questions about the interpretation of CO2 only responses from organic acid addition in MSIR assays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Mineralization of polycyclic and n-heterocyclic aromatic compounds in hydrocarbon-contaminated soils

    International Nuclear Information System (INIS)

    Grosser, R.J.; Warshawsky, D.; Vestal, J.R.

    1995-01-01

    The comparative mineralization of eight polycyclic aromatic compounds in five soils collected from an abandoned coal tar refinery in eastern Ohio was determined. The soils showed differences only in total extractable hydrocarbon content of the soil chemical characteristics measured. The compounds studied included five polycyclic aromatic hydrocarbons (phenanthrene, anthracene, pyrene, and carcinogenic benz[a]anthracene and benzo[a]pyrene) and three N-heterocyclic aromatics (9H-carbazole, and carcinogenic 7H-dibenzo[c,g]carbazole and dibenz[a,j]acridine). Mineralization was measured by serum bottle radiorespirometry. Only phenanthrene, anthracene, pyrene, benz[a]anthracene, and carbazole were mineralized in the soils after 64 d. Two of the soils with eight to 15 times the hexane -extractable hydrocarbon content consistently showed more rapid initial rates and higher overall extents of mineralization compared to the other three soils. Overall extents of mineralization ranged from 38 to 55% for phenanthrene, 10 to 60% for anthracene, 25 to 70% for pyrene, background to 40% for benz[a]anthracene, and 25 to 50% for carbazole after 64 d. Extents of mineralization by indigenous soil microbiota appear to be more dependent on the chemical characteristics of the soil and not soil total biomass and activity. Cultures capable of degrading phenanthrene, anthracene, and pyrene were obtained following enrichment techniques. A Mycobacterium sp. capable of degrading these three compounds was isolated and reintroduced into two of the soils, resulting in mineralization enhanced above that of the indigenous soil microbial population. These data indicate that the future success of bioremediation methods relies on the characterization of environmental parameters affecting microbial degradation as well as the isolation of microbial populations that can reduce toxicity in the environment

  6. Assessment of sediment hydrocarbon contamination from the 2009 Montara oil blow out in the Timor Sea

    International Nuclear Information System (INIS)

    Burns, Kathryn A.; Jones, Ross

    2016-01-01

    In August 2009, a blowout of the Montara H1 well 260 km off the northwest coast of Australia resulted in the uncontrolled release of about 4.7 M L of light crude oil and gaseous hydrocarbons into the Timor Sea. Over the 74 day period of the spill, the oil remained offshore and did not result in shoreline incidents on the Australia mainland. At various times slicks were sighted over a 90,000 km"2 area, forming a layer of oil which was tracked by airplanes and satellites but the slicks typically remained within 35 km of the well head platform and were treated with 183,000 L of dispersants. The shelf area where the spill occurred is shallow (100–200 m) and includes off shore emergent reefs and cays and submerged banks and shoals. This study describes the increased inputs of oil to the system and assesses the environmental impact. Concentrations of hydrocarbon in the sediment at the time of survey were very low (total aromatic hydrocarbons (PAHs) ranged from 0.04 to 31 ng g"−"1) and were orders of magnitude lower than concentrations at which biological effects would be expected. - Highlights: • 2009 fire/collapse of MWH1 released approximately 4.7 M L oil into the Timor Sea. • Oil gushed for 74 days before capping. Sediment studies initially declined. • Estimated 183,000 L dispersant forced oil into seawater in ∼100 m water depth area. • Sediments collected from nearby reefs and shoals 6 and 18 months later. • Assessment based on the increased oil inputs to the system. - Australia's oil spill response must include sediments collected immediately after and sediment quality guidelines for PAHs must include alkylated components as specified by the USEPA quidelines.

  7. The effect of remedial measures upon groundwater quality in connection with soil contamination by chlorinated hydrocarbons and the related costs - by example of the City of Hanover

    International Nuclear Information System (INIS)

    Mull, R.; Mull, J.; Pielke, M.

    1992-01-01

    The effectiveness of remedial actions on the groundwater quality was investigated in the aquifer of the City of Hannover. The improvement of groundwater quality was related to the costs for the remedial actions. The attention was focussed on groundwater pollution by chlorinated hydrocarbons as the most important contaminants of groundwater in urban areas. (orig.)

  8. Cuticular hydrocarbons correlate with queen reproductive status in native and invasive Argentine ants (Linepithema humile, Mayr)

    Science.gov (United States)

    Diaz, Mireia; Lenoir, Alain; Ivon Paris, Carolina; Boulay, Raphaël; Gómez, Crisanto

    2018-01-01

    In insect societies, chemical communication plays an important role in colony reproduction and individual social status. Many studies have indicated that cuticular hydrocarbons (CHCs) are the main chemical compounds encoding reproductive status. However, these studies have largely focused on queenless or monogynous species whose workers are capable of egg laying and have mainly explored the mechanisms underlying queen-worker or worker-worker reproductive conflicts. Less is known about what occurs in highly polygynous ant species with permanently sterile workers. Here, we used the Argentine ant as a model to examine the role of CHCs in communicating reproductive information in such insect societies. The Argentine ant is unicolonial, highly polygynous, and polydomous. We identified several CHCs whose presence and levels were correlated with queen age, reproductive status, and fertility. Our results also provide new insights into queen executions in the Argentine ant, a distinctive feature displayed by this species in its introduced range. Each spring, just before new sexuals appear, workers eliminate up to 90% of the mated queens in their colonies. We discovered that queens that survived execution had different CHC profiles from queens present before and during execution. More specifically, levels of some CHCs were higher in the survivors, suggesting that workers could eliminate queens based on their chemical profiles. In addition, queen CHC profiles differed based on season and species range (native vs. introduced). Overall, the results of this study provide new evidence that CHCs serve as queen signals and do more than just regulate worker reproduction. PMID:29470506

  9. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil.

    Science.gov (United States)

    Gonzalez, Emmanuel; Brereton, Nicholas J B; Marleau, Julie; Guidi Nissim, Werther; Labrecque, Michel; Pitre, Frederic E; Joly, Simon

    2015-10-12

    High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.

  10. Evaluation of ethyl lactate as solvent in Fenton oxidation for the remediation of total petroleum hydrocarbon (TPH)-contaminated soil.

    Science.gov (United States)

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2017-07-01

    Due to the health and environmental risks posed by the presence of petroleum-contaminated areas around the world, remediation of petroleum-contaminated soil has drawn much attention from researchers. Combining Fenton reaction with a solvent has been proposed as a novel way to remediate contaminated soils. In this study, a green solvent, ethyl lactate (EL), has been used in conjunction with Fenton's reagents for the remediation of diesel-contaminated soil. The main aim of this research is to determine how the addition of EL affects Fenton reaction for the destruction of total petroleum hydrocarbons (TPHs) within the diesel range. Specifically, the effects of different parameters, including liquid phase volume-to-soil weight (L/S) ratio, hydrogen peroxide (H 2 O 2 ) concentration and EL% on the removal efficiency, have been studied in batch experiments. The results showed that an increase in H 2 O 2 resulted in an increase in removal efficiency of TPH from 68.41% at H 2 O 2  = 0.1 M to 90.21% at H 2 O 2  = 2 M. The lowest L/S, i.e. L/S = 1, had the highest TPH removal efficiency of 85.77%. An increase in EL% up to 10% increased the removal efficiency to 96.74% for TPH, and with further increase in EL%, the removal efficiency of TPH decreased to 89.6%. EL with an optimum value of 10% was found to be best for TPH removal in EL-based Fenton reaction. The power law and pseudo-first order equations fitted well to the experimental kinetic data of Fenton reactions.

  11. Removal of petroleum-derived hydrocarbons from contaminated soils by solvent extraction

    International Nuclear Information System (INIS)

    Ladanowski, C.; Petti, L.

    1993-01-01

    Laboratory studies were conducted using hexane for the removal of light crude oil from contaminated sand, peat, and clay soils. The bench-scale process tested consists of three major steps: solvent washing, settling/decantation/filtration of extract, and solvent recycle. The results indicate that the use of solvent extraction for cleanup of oil-contaminated soils is an effective technology at the bench-scale level. Using a 1,000 g batch system, extremely high oil removal efficiencies were obtained from contaminated sand (up to 98.9%) and peat soil (up to 83.9%). The final oil contaminant concentration for sand varied between 0.06% and 0.39%, while that for peat soil varied between 1.52% and 5.21%. The guidelines for the decommissioning and cleanup of sites in Ontario for oil and grease (1 wt %) were met in all instances for the treated sand. Hexane recovery from diesel-contaminated sand and peat soil experiments was ca 81% and 67% respectively. 4 refs., 6 figs., 10 tabs

  12. Baseline ecological risk assessment and remediation alternatives for a hydrocarbon-contaminated estuarine wetland

    International Nuclear Information System (INIS)

    Vedagiri, U.

    1993-01-01

    Prior to a property transaction, the groundwater at an industrial refinery site in New Jersey was found to be contaminated with a variety of petroleum-based organic compounds. The highly built-up site included an on-site estuarine wetland and was located in a developed, industrialized area near ecologically important estuarine marshes. A preliminary ecological risk assessment was developed on the basis of available data on site contamination and ecological resources. The onsite wetland and its user fauna were identified as the sensitive receptors of concern and the primary contaminant pathways wee identified. The ecological significance of the contamination was assessed with regard to the onsite wetland and in the context of its position within the landscape and surrounding land uses. The wetland exhibited a combination of impact and vitality, i.e., there were clearly visible signs of contaminant impact as well as a relatively complex and abundant food web. Because of its position within the developed landscape, the onsite wetland appeared to function as a refugium for wildlife despite the level of disturbance. The feasibility of achieving regulatory compliance through natural remediation was also examined with respect to the findings of the risk assessment and the resultant conclusions are discussed

  13. Phytoremediation of Petroleum Hydrocarbon (PHC) Contaminated Soil by Using Mimosa pudica L. .

    Science.gov (United States)

    Budhadev, Basumatary; Rubul, Saikia; Sabitry, Bordoloi; Hari Prasad, Sarma

    2014-07-01

    The aim of this study was to evaluate the efficiency of Mimosa pudica L. that could be effective in phytoremediation of PHC-contaminated soil. Experiments were conducted in net house to determine the tolerance of this species to a heavy crude oil contaminated soil under the application of two fertilizer levels and reduction of PHC was monitored for 180 days. Assessment of plant growth, biomass and Total Oil and Grease (TOG) degradation were carried out at an interval of 60 days. In the presence of contaminants, biomass and plant height were reduced up to 27% and 10.4% respectively. Experiments with different percentages of crude oil showed that M. pudica could tolerate crude-oil contamination up to 6.2% (w/w). The estimation of TOG in soil of the tested plants revealed that M. pudica could decrease 31.7% of crude oil contaminants in low fertilizer level (200N, 100P, 100K) and 24.7% in high fertilizer level (240N, 120P, 120K). In case of unplanted pots, the reduction of TOG was 13.7% in low fertilizer level and 11.2% in high fertilizer level. This experiment has identified the suitability of a native candidate plant species for further investigation of their phytoremediation potential.

  14. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area

    International Nuclear Information System (INIS)

    Girolami, Flavia; Spalenza, Veronica; Carletti, Monica; Sacchi, Paola; Rasero, Roberto; Nebbia, Carlo

    2013-01-01

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. - Highlights: ► The expression of AHR-target genes in blood bovine lymphocytes was evaluated. ► The lymphocyte CYP1B1 expression appears to be related to bulk milk TEQ values. ► Blood lymphocytes from dairy cows might represent a matrix for dioxin biomonitoring

  15. Assessment of polycyclic aromatic hydrocarbon contamination of the Bílina River (Czech Republic using passive water samplers and fish biliary metabolites

    Directory of Open Access Journals (Sweden)

    Jana Blahová

    2011-01-01

    Full Text Available The aim of the study was to assess polycyclic aromatic hydrocarbon (PAH contamination on the Bílina River (the Czech Republic by measurement of three PAH biliary metabolites in fish and 16 PAHs in passive samplers. A total of sixty-one fish were collected; the indicator species were chub (Leuciscus cephalus L.; n = 25, roach (Rutilus rutilus L.; n = 17 and brown trout (Salmo trutta m. fario L.; n = 19. Three biliary PAH metabolites were measured: 1-hydroxypyrene (1-OHP, 2-naphtol, and 1-hydroxyphenanthrene, but only 1-OHP was detected in all fish. The highest median value of 32.3 ng·mg-1of 1-OHP was found at Ústí nad Labem, while the lowest median value of 27.6 ng·mg-1was found in the control site, Březenec. No significant differences (P < 0.05 among the sites were found. The highest concentration of PAH was detected in Litvínov-Záluží (172.0 ng·l-1 and the lowest concentration (7.9 ng·l-1 was detected in Březenec. A positive, but non-significant correlation (rs = 0.8 was confirmed between biliary 1-OHP and total PAH in passive samplers. These results indicate the highest pollution in the middle stretches of the Bílina River, especially at Litvínov-Záluží. We confirmed 1-OHP as the most prevalent PAH biliary metabolite in fish that could be used as a biomarker for assessment of PAH pollution of the aquatic ecosystem. The main importance of the present study is in the combination of biochemical and chemical monitoring that provides complex evaluation of aquatic environment contamination. It was the first study on the Bílina River, in which the assessment of PAH contamination in the aquatic ecosystem was realized using combination of biotic and abiotic monitoring.

  16. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Flavia [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Spalenza, Veronica [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Carletti, Monica [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Sacchi, Paola [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Rasero, Roberto [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Nebbia, Carlo [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2013-04-15

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. - Highlights: ► The expression of AHR-target genes in blood bovine lymphocytes was evaluated. ► The lymphocyte CYP1B1 expression appears to be related to bulk milk TEQ values. ► Blood lymphocytes from dairy cows might represent a matrix for dioxin biomonitoring.

  17. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area.

    Science.gov (United States)

    Girolami, Flavia; Spalenza, Veronica; Carletti, Monica; Sacchi, Paola; Rasero, Roberto; Nebbia, Carlo

    2013-04-15

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Polycyclic aromatic hydrocarbon-contaminated soils: bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L.

    Science.gov (United States)

    Ruffini Castiglione, Monica; Giorgetti, Lucia; Becarelli, Simone; Siracusa, Giovanna; Lorenzi, Roberto; Di Gregorio, Simona

    2016-04-01

    Two bacterial strains, Achromobacter sp. (ACH01) and Sphingomonas sp. (SPH01), were isolated from a heavily polycyclic aromatic hydrocarbon (PAH)-contaminated soil (5431.3 ± 102.3 ppm) for their capacity to use a mixture of anthracene, pyrene, phenanthrene and fluorene as sole carbon sources for growth and for the capacity to produce biosurfactants. The two strains were exploited for bioaugmentation in a biopile pilot plant to increase the bioavailability and the degradation of the residual PAH contamination (99.5 ± 7.1 ppm) reached after 9 months of treatment. The denaturing gel gradient electrophoresis (DGGE) profile of the microbial ecology of the soil during the experimentation showed that the bioaugmentation approach was successful in terms of permanence of the two strains in the soil in treatment. The bioaugmentation of the two bacterial isolates positively correlated with the PAH depletion that reached 7.9 ± 2 ppm value in 2 months of treatment. The PAH depletion was assessed by the loss of the phyto-genotoxicity of soil elutriates on the model plant Vicia faba L., toxicological assessment adopted also to determine the minimum length of the decontamination process for obtaining both the depletion of the PAH contamination and the detoxification of the soil at the end of the process. The intermediate phases of the bioremediation process were the most significant in terms of toxicity, inducing genotoxic effects and selective DNA fragmentation in the stem cell niche of the root tip. The selective DNA fragmentation can be related to the selective induction of cell death of mutant stem cells that can compromise offsprings.

  19. Correlating gene expression with deformities caused by aryl hydrocarbon receptor agonists in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bugiak, B.; Weber, L. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2009-07-01

    Exposure to aryl hydrocarbon receptor (AhR) agonists in fish causes lethal disturbances in fish development, but the effects of acute AhR agonist exposure on the cardiovascular system and deformities remain unclear. This study addressed this issue by performing a series of experiments on zebrafish (Danio rerio). The authors hypothesized that genes needed for cardiovascular regulation (PTGS) would exhibit a stronger link to deformities than detoxification enzymes (CYPs). Zebrafish eggs were exposed aqueously until 4 days post-fertilization (dpf) to the AhR agonists benzo(a)pyrene (BaP) or 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) alone and in combination with the putative AhR antagonists resveratrol or alpha-naphthoflavone (ANF). Gene expression was measured using real-time, reverse transcriptase PCR in zebrafish at 5 and 10 dpf. Although the mortalities did not differ considerably among groups at 10 dpf, the deformities increased significantly after BaP-ANF at 5 dpf and after BaP at 10 dpf, but not after TCDD treatment. CYP and PTGS isozymes exhibited small, but statistically significant changes at 5 dpf. By 10 dpf, the expression returned to control values. In general, CYP1A and PTGS-1 expression at 5 dpf were positively correlated with deformities, while all other genes were negatively correlated with deformities. It was concluded that changes in CYP1A, CYP1C2, and PTGS-1 gene expression at 5 dpf are associated with developmental deformities, but additional work is needed to determine which has the most important mechanistic link.

  20. Radon as an indicator of environmental contamination by hydrocarbons in free-phase

    International Nuclear Information System (INIS)

    Mateus, Crislene

    2016-01-01

    Contaminated sites by NAPL (Non-Aqueous Phase-Liquids) may lead to safety risks to human health and to ecosystems, restrictions to urban development and decrease of real estate value. This work used the radon gas as an indicator for the analysis of subsurface soil gas, once this noble gas presents good solubility in a wide range of NAPL, being partially retained in the NAPL contamination. Therefore, a decrease of the activity of radon in the contaminated soil gas can be expected, due to the high capacity of partitioning of radon in NAPL, which allows that the NAPL retain part of the radon previously available in the soil pores. The survey was carried out at a disused industry, contaminated by low volatile NAPL, located at southeast of Sao Paulo city, from June/14 to May/15. Radon was evaluated by passive detection methodology with CR-39 solid state nuclear track detectors (SSNTD) in ten monitoring stations installed in the contaminated area investigated and named 'A' to 'J'. Radon concentrations average for the eight monitoring stations at non-contaminated locations varied from (22 ± 4) kBq.m -3 to (39 ± 4) kBq.m -3 . For the two monitoring stations assumed as contaminated locations, radon concentrations average were (1.4 ± 0.4) kBq.m -3 and (13 ± 9) kBq.m -3 . The results have shown good agreement between the used method and the conventional environmental investigation techniques, for the majority of the monitoring stations in different seasons. Results obtained with CR-39 detectors varied over the exposure time due to the different seasons. No relation was observed between radon activity concentrations and rain volume accumulated over the different CR-39 exposure times. The lowest 222 Rn activity concentrations occurred in 'G' and 'H' monitoring stations, also verifying by gamma-ray spectrometry, that the low activities are not related to the activity concentration of its father 226 Ra from the 238 U decay chain

  1. Correlation between mandibular gland secretion and cuticular hydrocarbons in the stingless bee Melipona quadrifasciata.

    Science.gov (United States)

    Cruz-Landim, C; Ferreira-Caliman, M J; Gracioli-Vitti, L F; Zucchi, R

    2012-04-19

    We investigated whether Melipona quadrifasciata worker mandibular gland secretions contribute directly to their cuticular hydrocarbon profile. The mandibular gland secretion composition and cuticular surface compounds of newly emerged worker bees, nurse bees, and foragers were determined by gas chromatography and mass spectrometry and compared. Both the mandibular gland secretions and the cuticular surface compounds of all worker stages were found to be composed almost exclusively of hydrocarbons. Although the relative proportion of hydrocarbons from the cuticular surface and gland secretion was statistically different, there was a high similarity in the qualitative composition between these structures in all groups of bees.

  2. Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers.

    Science.gov (United States)

    Kleinsteuber, Sabine; Schleinitz, Kathleen M; Vogt, Carsten

    2012-05-01

    Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, "omics" approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation.

  3. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions.

    Science.gov (United States)

    Kuppusamy, Saranya; Thavamani, Palanisami; Venkateswarlu, Kadiyala; Lee, Yong Bok; Naidu, Ravi; Megharaj, Mallavarapu

    2017-02-01

    For more than a decade, the primary focus of environmental experts has been to adopt risk-based management approaches to cleanup PAH polluted sites that pose potentially destructive ecological consequences. This focus had led to the development of several physical, chemical, thermal and biological technologies that are widely implementable. Established remedial options available for treating PAH contaminated soils are incineration, thermal conduction, solvent extraction/soil washing, chemical oxidation, bioaugmentation, biostimulation, phytoremediation, composting/biopiles and bioreactors. Integrating physico-chemical and biological technologies is also widely practiced for better cleanup of PAH contaminated soils. Electrokinetic remediation, vermiremediation and biocatalyst assisted remediation are still at the development stage. Though several treatment methods to remediate PAH polluted soils currently exist, a comprehensive overview of all the available remediation technologies to date is necessary so that the right technology for field-level success is chosen. The objective of this review is to provide a critical overview in this respect, focusing only on the treatment options available for field soils and ignoring the spiked ones. The authors also propose the development of novel multifunctional green and sustainable systems like mixed cell culture system, biosurfactant flushing, transgenic approaches and nanoremediation in order to overcome the existing soil- contaminant- and microbial-associated technological limitations in tackling high molecular weight PAHs. The ultimate objective is to ensure the successful remediation of long-term PAH contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Intrinsic and enhanced bioremediation in aquifers contaminated with chlorinated and aromatic hydrocarbons in The Netherlands

    NARCIS (Netherlands)

    Rijnaarts, H.H.M.; Aalst-van Leeuwen, M.A. van; Heiningen, E. van; Buyzen, H. van; Sinke, A.; Liere, H.C. van; Harkes, M.; Baartmans, R.; Bosma, T.N.P.; Doddema, H.J.

    1998-01-01

    The feasibility of intrinsic and enhanced bioremediation approaches for 16 contaminated sites in the Netherlands are discussed. At at least five out of 10 chlorinated solvent sites, natural attenuation can be used as one of the tools to prevent further dispersion of the plume. At two sites

  5. Hydrocarbon and Toxic Metal Contamination from Tank Installations in a Northwest Greenlandic Village

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Jensen, Pernille Erland; Christensen, Rune Haubo Bojesen

    2012-01-01

    Contamination from tank installations in the Arctic is an important issue, since tanks are a necessary feature of all communities, and may be a source of local pollution. Soil samples from below and around three tank installations and one reference site in the Northwest Greenlandic village...

  6. Bioremediation Of Groundwater Contaminated Wtih Gasoline Hydrocarbons And Oxygenates Using A Membrane-Based Reactor

    Science.gov (United States)

    The objective of this study was to operate a novel, field-scale, aerobic bioreactor and assess its performance in the ex situ treatment of groundwater contaminated with gasoline from a leaking underground storage tank in Pascoag, RI. The groundwater contained elevated concentrat...

  7. Bioremediation of contaminated soil. Fighting hydrocarbons with microorganisms. Bioremediation verseuchter Boeden. Mit Mikroorganismen gegen Kohlenwasserstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Eiermann, D [Ebiox AG, Mikrobiologische Sanierungstechnologien, Sursee (Switzerland)

    1992-10-02

    Contaminated soil can either be dumped or burnt. Neither possibility constitutes an optimum, for these out-of-sight-out-of-mind techniques are expensive and present problems. An alternative could be a biological method which uses microorganisms for pollutant degradation. Their work done,the microorganisms die off and mineralize into material to be used further. (orig.).

  8. Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under in-vessel composting conditions

    International Nuclear Information System (INIS)

    Antizar-Ladislao, Blanca; Lopez-Real, Joe; Beck, Angus James

    2006-01-01

    In-vessel composting of polycyclic aromatic hydrocarbons (PAHs) present in contaminated soil from a manufactured gas plant site was investigated over 98 days using laboratory-scale in-vessel composting reactors. The composting reactors were operated at 18 different operational conditions using a 3-factor factorial design with three temperatures (T, 38 deg. C, 55 deg. C and 70 deg. C), four soil to green waste ratios (S:GW, 0.6:1, 0.7:1, 0.8:1 and 0.9:1 on a dry weight basis) and three moisture contents (MC, 40%, 60% and 80%). PAH losses followed first order kinetics reaching 0.015 day -1 at optimal operational conditions. A factor analysis of the 18 different operational conditions under investigation indicated that the optimal operational conditions for degradation of PAHs occurred at MC 60%, S:GW 0.8:1 and T 38 deg. C. Thus, it is recommended to maintain operational conditions during in-vessel composting of PAH-solid waste close to these values. - Maximum degradation of PAHs in an aged coal tar contaminated soil can be achieved using optimal operational conditions during composting

  9. Tolerance to Polycyclic Aromatic Hydrocarbons (PAHs by filamentous fungi isolated from contaminated sediment in the Amazon region

    Directory of Open Access Journals (Sweden)

    Hilton Marcelo de Lima Souza

    2017-11-01

    Full Text Available Tolerance to Polycyclic Hydrocarbons Aromatic (PAHs is considered an important characteristic when assessing the bioremediation potential of microorganisms. Given this, the objective of this research was to assay filamentous fungi from the Amazon region, isolated from sediments with differents levels of contamination by PAHs, for tolerance to phenanthrene and pyrene. To achieve this, fungal cultures plugs (5 mm, obtained after 7 days growth, were transferred to petri dishes containing 20% Sabouraud dextrose agar medium, after surface innoculation with phenanthrene and pyrene crystals, separately. Radial mycelial growth was evaluated after 10 days at five different concentration levels for each contaminant and control group, all in triplicate for each treatment. Fungal growth and growth inhibition rates were calculated. The average growth of the colonies in each treatment was compared with one-way ANOVA, followed by a Tukey Test (p < 0,05. All fungi showed tolerant to phenanthrene and pyrene. However, Hypoxylon sp. showed the lowest growth inhibition rate and average growth rates significantly different of the other six tested species. Hypoxylon sp. has been shown to be a promising genetic resource for use in new studies of PAHs degradation.

  10. Most hydrocarbonoclastic bacteria in the total environment are diazotrophic, which highlights their value in the bioremediation of hydrocarbon contaminants.

    Science.gov (United States)

    Dashti, Narjes; Ali, Nedaa; Eliyas, Mohamed; Khanafer, Majida; Sorkhoh, Naser A; Radwan, Samir S

    2015-01-01

    Eighty-two out of the 100 hydrocarbonoclastic bacterial species that have been already isolated from oil-contaminated Kuwaiti sites, characterized by 16S rRNA nucleotide sequencing, and preserved in our private culture collection, grew successfully in a mineral medium free of any nitrogenous compounds with oil vapor as the sole carbon source. Fifteen out of these 82 species were selected for further study based on the predominance of most of the isolates in their specific sites. All of these species tested positive for nitrogenase using the acetylene reduction reaction. They belonged to the genera Agrobacterium, Sphingomonas, and Pseudomonas from oily desert soil and Nesiotobacter, Nitratireductor, Acinetobacter, Alcanivorax, Arthrobacter, Marinobacter, Pseudoalteromonas, Vibrio, Diatzia, Mycobacterium, and Microbacterium from the Arabian/Persian Gulf water body. A PCR-DGGE-based sequencing analysis of nifH genes revealed the common occurrence of the corresponding genes among all the strains tested. The tested species also grew well and consumed crude oil effectively in NaNO3 -containing medium with and without nitrogen gas in the top space. On the other hand, these bacteria only grew and consumed crude oil in the NaNO3 -free medium when the top space gas contained nitrogen. We concluded that most hydrocarbonoclastic bacteria are diazotrophic, which allows for their wide distribution in the total environment. Therefore, these bacteria are useful for the cost-effective, environmentally friendly bioremediation of hydrocarbon contaminants.

  11. Changes in liquid water alter nutrient bioavailability and gas diffusion in frozen antarctic soils contaminated with petroleum hydrocarbons.

    Science.gov (United States)

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Bioremediation has been used to remediate petroleum hydrocarbon (PHC)-contaminated sites in polar regions; however, limited knowledge exists in understanding how frozen conditions influence factors that regulate microbial activity. We hypothesized that increased liquid water (θ(liquid) ) would affect nutrient supply rates (NSR) and gas diffusion under frozen conditions. If true, management practices that increase θ(liquid) should also increase bioremediation in polar soils by reducing nutrient and oxygen limitations. Influence of θ(liquid) on NSR was determined using diesel-contaminated soil (0-8,000 mg kg(-1)) from Casey Station, Antarctica. The θ(liquid) was altered between 0.007 and 0.035 cm(3) cm(-3) by packing soil cores at different bulk densities. The nutrient supply rate of NH 4+ and NO 3-, as well as gas diffusion coefficient, D(s), were measured at two temperatures, 21°C and -5°C, to correct for bulk density effects. Freezing decreased NSR of both NH 4+ and NO 3-, with θ(liquid) linked to nitrate and ammonia NSR in frozen soil. Similarly for D(s), decreases due to freezing were much more pronounced in soils with low θ(liquid) compared to soils with higher θ(liquid) contents. Additional studies are needed to determine the relationship between degradation rates and θ(liquid) under frozen conditions. Copyright © 2011 SETAC.

  12. Resistivity and Induced Polarization Imaging at a Hydrocarbon Contaminated Site in Brazil

    Science.gov (United States)

    Ustra, A.; Elis, V.; Hiodo, F.; Bondioli, A.; Miura, G.

    2012-12-01

    An area contaminated by accidental BTEX spills was investigated with resistivity and induced polarization methods. The main objective in this study was to relate the geophysical signature of the area with zones that were possibly undergoing microbial degradation of the contaminants. The spills took place over a decade ago; however, the exact location of these spills is unknown, as well as the amount of contaminant that was released into the subsurface. DC-resistivity identified a high contrast between the background (rho up to 2000 ohm.m) and a relatively conductive zone (rho 30 mV/V). Normalized chargeability is enhanced in this anomaly zone (mn > 0.1). Soil samples collected in the area were submitted to direct bacterial count, clay content estimation, X-ray diffraction and SEM analysis. The electrical properties of each samples was also measured. The samples collected from the "background" (high resistivity zone) presented total bacterial amounts much smaller (dozens of colony forming units) than the samples from the conductive zone (millions of colony forming units). This observation could lead us to interpret that the zone of higher bacteria amount is undergoing biodegradation that would explain the increased conductivity at that portion of the subsurface. However, the geophysical properties observed at this zone could also be related to the clay content distribution throughout the surveyed area (concentrations up to 30%). Moreover, despite the fact that more microbes were found in the area, SEM images did not find any biodegradation typical feature of the grains, which are for example, mineral corrosion and dissolution or even biomineralization. This study is still undergoing and we are searching for more evidence of biodegradation in the samples. This study shows the limitation of the use of geophysical methods to access contaminant presence and/or biodegradation zones when the exact location of the contamination is unknown.

  13. S/O modeling technique for optimal containment of light hydrocarbons in contaminated unconfined aquifers

    International Nuclear Information System (INIS)

    Cooper, G.S. Jr.; Kaluarachchi, J.J.; Peralta, R.C.

    1993-01-01

    An innovative approach is presented to minimize pumping for immobilizing a floating plume of a light non-aqueous phase liquid (LNAPL). The best pumping strategy is determined to contain the free oil product and provide for gradient control of the water table. This approach combined detailed simulation, statistical analysis, and optimization. This modeling technique uses regression equations that describe system response to variable pumping stimuli. The regression equations were developed from analysis of systematically performed simulations of multiphase flow in an areal region of an unconfined aquifer. Simulations were performed using ARMOS, a finite element model. ARMOS can be used to simulate a spill, leakage from subsurface storage facilities and recovery of hydrocarbons from trenches or pumping wells to design remediation schemes

  14. Polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of east coast peninsular Malaysia

    International Nuclear Information System (INIS)

    Mohd Suhaimi Elias; Abdul Khalik Wood; Zaleha Hashim; Wee Boon Siong; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Nazaratul Ashifa Abdullah Salim; Ariffin Talib

    2007-01-01

    The polycyclic hydrocarbons (PAHs) are pollutants of concern due to their persistent in the marine ecosystem, thus its can cause long-term adverse effect to the marine life. In this study the concentrations of PAHs in east coast Peninsular Malaysia sediments were determined. About ten stations along the east coast of the coastal area were selected to collect sediments sample using grab sampler. The PAHs from the sediment samples were soxhlet extracted using mixture of hexane and dichloromethane (DCM). Fractionation was done using the silica-alumina column. About 17 compounds of the PAHs were determined using the Gas Chromatography-Mass Spectrometer (GCMS model QP5050A). The Σ PAHs was found in the range between 0.26 μg/ g to 0.59 μg/ g dry weight. The data from the study signified that the main source of PAHs in the sediment of the east coast peninsular Malaysia is originated from the pyrolytic source. (author)

  15. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment.

    Science.gov (United States)

    Bastida, F; Jehmlich, N; Lima, K; Morris, B E L; Richnow, H H; Hernández, T; von Bergen, M; García, C

    2016-03-01

    The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Petrogenesis contamination of the Todos os Santos bay by aromatic polycyclic hydrocarbons: a contribution for the environmental diagnostic; Contaminacao petrogenica da Baia de Todos os Santos por hidrocarbonetos policiclicos aromaticos: uma contribuicao ao diagnostico ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Machado, J. Carlos V. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Tavares, Tania M. [Universidade Federal da Bahia (UFBA), Salvador (Brazil)

    1998-07-01

    This work studies the contamination degree of the meso and infra-coastline sediments of the Baia de Todos os Santos, Bahia, the largest of Brazil, by organic compounds, mainly of period origin. The assessment was proceeded through quantification of total polycyclic aromatic hydrocarbons (PAH's), by fluorimetric analysis in continuous flow. The levels of contamination were quantified taking in consideration the levels considered as critical by the published literature. The grading of the target sites with those of the control sites (background) were compared also. The main objective was to define the degree of contamination relative to different areas of the bay, correlating with the different activities, such as oil exploitation, industrial production, mainly of oil processing at the north of the bay, port and urban, specially near the city of Salvador, with 2 million of inhabitants. In some stations, specially in those classified as industrial, urban and heavy boats traffic, sediments showed contamination, resulting in grades up to 2000 times greater than the control sites. Some regions, mainly industrial and urban, showed high PHA's contamination, higher than 200 {mu}g/g. The majority of sediments in areas remaining as recreational until present days showed no contamination, lesser than {mu}g/g. (author)

  17. Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation.

    Science.gov (United States)

    Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-09-01

    Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.

  18. Modeling technique for optimal recovery of immiscible light hydrocarbons as free product from contaminated aquifer

    OpenAIRE

    Cooper, Grant S., Jr.; Peralta, R. C.; Kaluarachchi, J. J.

    1993-01-01

    Contamination sites associated with light non-aqueous phase liquids {LNAPL) are numerous and represent difficult cleanup problems. Remediation methods for cleanup of LNAPL fluids in subsurface systems are continuously evolving with the development of various technologies for pump.-and~treat, soil venting, and in-situ bioremediation. Evaluating the effectiveness of remediation techniques as well as attempting to improve their efficiency has been a focus of many researchers, These efforts have ...

  19. Bioremediation of Petroleum hydrocarbon by using Pseudomonas species isolated from Petroleum contaminated soil

    OpenAIRE

    Vijay Kumar; Simranjeet Singh; Anu Manhas; Joginder Singh; Sourav Singla; Parvinder Kaur; Shivika Data; Pritika Negi; Arjun Kalia

    2014-01-01

    A newly isolated strain Pseudomonas fluorescens (Accession number KF 279042.1) have potential in diesel degradation and can be recommended for bioremediation of sites that are contaminated with diesel. This bacterium was characterized on the basis of microbiological, biochemical and molecular analysis. Bacterial growth optimization was studied based on carbon source, nitrogen source, pH and temperature. The strain was selected based on its ability to show growth in medium containing diesel. I...

  20. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils

    OpenAIRE

    Stefani, Franck O. P.; Bell, Terrence H.; Marchand, Charlotte; de la Providencia, Ivan E.; El Yassimi, Abdel; St-Arnaud, Marc; Hijri, Mohamed

    2015-01-01

    Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequenci...

  1. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Albert L., E-mail: albert.juhasz@unisa.edu.a [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Smith, Euan [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Waller, Natasha [CSIRO Land and Water, Glen Osmond, SA 5064 (Australia); Stewart, Richard [Remediate, Kent Town, SA 5067 (Australia); Weber, John [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia)

    2010-02-15

    The impact of residual PAHs (2250 +- 71 mug total PAHs g{sup -1}) following enhanced natural attenuation (ENA) of creosote-contaminated soil (7767 +- 1286 mug total PAHs g{sup -1}) was assessed using a variety of ecological assays. Microtox{sup TM} results for aqueous soil extracts indicated that there was no significant difference in EC{sub 50} values for uncontaminated, pre- and post-remediated soil. However, in studies conducted with Eisenia fetida, PAH bioaccumulation was reduced by up to 6.5-fold as a result of ENA. Similarly, Beta vulgaris L. biomass yields were increased 2.1-fold following ENA of creosote-contaminated soil. While earthworm and plant assays indicated that PAH bioavailability was reduced following ENA, the residual PAH fraction still exerted toxicological impacts on both receptors. Results from this study highlight that residual PAHs following ENA (presumably non-bioavailable to bioremediation) may still be bioavailable to important receptor organisms such as earthworms and plants. - Residual PAHs in creosote-contaminated soil following enhanced natural attenuation impacted negatively on ecological receptors.

  2. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil

    International Nuclear Information System (INIS)

    Juhasz, Albert L.; Smith, Euan; Waller, Natasha; Stewart, Richard; Weber, John

    2010-01-01

    The impact of residual PAHs (2250 ± 71 μg total PAHs g -1 ) following enhanced natural attenuation (ENA) of creosote-contaminated soil (7767 ± 1286 μg total PAHs g -1 ) was assessed using a variety of ecological assays. Microtox TM results for aqueous soil extracts indicated that there was no significant difference in EC 50 values for uncontaminated, pre- and post-remediated soil. However, in studies conducted with Eisenia fetida, PAH bioaccumulation was reduced by up to 6.5-fold as a result of ENA. Similarly, Beta vulgaris L. biomass yields were increased 2.1-fold following ENA of creosote-contaminated soil. While earthworm and plant assays indicated that PAH bioavailability was reduced following ENA, the residual PAH fraction still exerted toxicological impacts on both receptors. Results from this study highlight that residual PAHs following ENA (presumably non-bioavailable to bioremediation) may still be bioavailable to important receptor organisms such as earthworms and plants. - Residual PAHs in creosote-contaminated soil following enhanced natural attenuation impacted negatively on ecological receptors.

  3. A quantum cascade laser infrared spectrometer for CO2 stable isotope analysis: Field implementation at a hydrocarbon contaminated site under bio-remediation.

    Science.gov (United States)

    Guimbaud, Christophe; Noel, Cécile; Chartier, Michel; Catoire, Valéry; Blessing, Michaela; Gourry, Jean Christophe; Robert, Claude

    2016-02-01

    Real-time methods to monitor stable isotope ratios of CO2 are needed to identify biogeochemical origins of CO2 emissions from the soil-air interface. An isotope ratio infra-red spectrometer (IRIS) has been developed to measure CO2 mixing ratio with δ(13)C isotopic signature, in addition to mixing ratios of other greenhouse gases (CH4, N2O). The original aspects of the instrument as well as its precision and accuracy for the determination of the isotopic signature δ(13)C of CO2 are discussed. A first application to biodegradation of hydrocarbons is presented, tested on a hydrocarbon contaminated site under aerobic bio-treatment. CO2 flux measurements using closed chamber method is combined with the determination of the isotopic signature δ(13)C of the CO2 emission to propose a non-intrusive method to monitor in situ biodegradation of hydrocarbons. In the contaminated area, high CO2 emissions have been measured with an isotopic signature δ(13)C suggesting that CO2 comes from petroleum hydrocarbon biodegradation. This first field implementation shows that rapid and accurate measurement of isotopic signature of CO2 emissions is particularly useful in assessing the contribution of contaminant degradation to the measured CO2 efflux and is promising as a monitoring tool for aerobic bio-treatment. Copyright © 2016. Published by Elsevier B.V.

  4. In-situ treatment of hydrocarbons contamination through enhanced bio-remediation and two phase extraction system

    International Nuclear Information System (INIS)

    Aglietto, I.; Brunero Bronzin, M.

    2005-01-01

    It happens frequently to find industrial site affected by contamination of subsoil and groundwater with consequent presence of free phase product floating on the water table. The remediation technologies in this case shall be properly selected and coordinated in a way that the interactions between each activities will help to decontaminate the site. The case study deals with an industrial site located near Turin, in Italy, of about 50 hectares of extension where has been found an area of about 4000 square meters with contamination of subsoil and groundwater. The compounds with higher concentrations are petroleum hydrocarbons found both in soil and in groundwater. Another big problem is represented by the presence of a layer of free product floating on the water table with a maximum measured thickness of 70 cm; this situation can be considered in fact one of the major difficulty in management of selected remediation technologies because the complete recover of the free phase is a priority for any kind of remediation system to apply subsequently. The present work is based upon the selection and implementation of a multiple treatment for definitive remediation of subsoil and groundwater. Free product recovery has been faced with a two-phase extraction technology, then for the remediation of subsoil we implemented a bio-venting system to improve biodegradation processes and finally for groundwater treatment we apply an enhanced in situ bio-remediation injecting oxygen release compounds directly into the aquifer. To reach these choices we have to pass through a complex activity of investigation of the site made up of more than 40 sampling point, 8 monitoring wells, about 140 analysis on subsoil samples and 10 on groundwater samples and one well used for an aquifer test. The preliminary design of the remediation system was therefore based on an extensive site characterization that included geological and geochemical, microbiological and hydrological data, together with

  5. Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA

    Science.gov (United States)

    Nichols, Elizabeth Guthrie; Cook, Rachel L.; Landmeyer, James E.; Atkinson, Brad; Malone, Donald R.; Shaw, George; Woods, Leilani

    2014-01-01

    A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil-gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert-butyl ether concentrations have decreased in groundwater. Interpolations of free-phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on-site, even in a noncontaminated control area. All four Populus clones survived well at the site.

  6. Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Militon, Cécile; Boucher, Delphine; Vachelard, Cédric; Perchet, Geoffrey; Barra, Vincent; Troquet, Julien; Peyretaillade, Eric; Peyret, Pierre

    2010-12-01

    The microbial community response during the oxygen biostimulation process of aged oil-polluted soils is poorly documented and there is no reference for the long-term monitoring of the unsaturated zone. To assess the potential effect of air supply on hydrocarbon fate and microbial community structure, two treatments (0 and 0.056 mol h⁻¹ molar flow rate of oxygen) were performed in fixed bed reactors containing oil-polluted soil. Microbial activity was monitored continuously over 2 years throughout the oxygen biostimulation process. Microbial community structure before and after treatment for 12 and 24 months was determined using a dual rRNA/rRNA gene approach, allowing us to characterize bacteria that were presumably metabolically active and therefore responsible for the functionality of the community in this polluted soil. Clone library analysis revealed that the microbial community contained many rare phylotypes. These have never been observed in other studied ecosystems. The bacterial community shifted from Gammaproteobacteria to Actinobacteria during the treatment. Without aeration, the samples were dominated by a phylotype linked to the Streptomyces. Members belonging to eight dominant phylotypes were well adapted to the aeration process. Aeration stimulated an Actinobacteria phylotype that might be involved in restoring the ecosystem studied. Phylogenetic analyses suggested that this phylotype is a novel, deep-branching member of the Actinobacteria related to the well-studied genus Acidimicrobium. FEMS Microbiology Ecology © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original French government works.

  7. Methodology for the detection of contamination by hydrocarbons and further soil sampling for volatile and semi-volatile organic enrichment in former petrol stations, SE Spain

    Directory of Open Access Journals (Sweden)

    Rosa María Rosales Aranda

    2012-01-01

    Full Text Available The optimal detection and quantification of contamination plumes in soil and groundwater by petroleum organic compounds, gasoline and diesel, is critical for the reclamation of hydrocarbons contaminated soil at petrol stations. Through this study it has been achieved a sampling stage optimization in these scenarios by means of the location of potential contamination areas before sampling with the application of the 2D electrical resistivity tomography method, a geophysical non destructive technique based on resistivity measurements in soils. After the detection of hydrocarbons contaminated areas, boreholes with continuous coring were performed in a petrol station located in Murcia Region (Spain. The drillholes reached depths down to 10 m and soil samples were taken from each meter of the drilling. The optimization in the soil samples handling and storage, for both volatile and semi-volatile organic compounds determinations, was achieved by designing a soil sampler to minimize volatilization losses and in order to avoid the manual contact with the environmental samples during the sampling. The preservation of soil samples was performed according to Europe regulations and US Environmental Protection Agency recommendations into two kinds of glass vials. Moreover, it has been taken into account the determination techniques to quantify the hydrocarbon pollution based on Gas Chromatography with different detectors and headspace technique to reach a liquid-gas equilibrium for volatile analyses.

  8. Cleanup of metals and hydrocarbons contaminated soils using the ChemTech process

    International Nuclear Information System (INIS)

    Stephenson, R.; Yan, V.; Lim, S.

    1997-01-01

    The ChemTech soil treatment process, an on-site ex-situ system, comprised of a three-phase fluidized bed to scour, emulsify and chemically leach soil contaminants into a process water, was described. The cleaned soils are then removed from the process circuit by means of a hydrodynamic classifier. At this point they are suitable for return to the excavation site. The process was demonstrated on a pilot scale in January 1997 by Klohn-Crippen Consultants at a demonstration program of emerging and innovative technologies sponsored by the Bay Area Defence Conversion Action Team (BADCAT), to assist with the remediation of twelve closing military bases in the San Francisco area. The ChemTest demonstration involved the removal of copper, chromium, lead and zinc from the Hunter Point Naval Reserve, plus treatability tests on a number of other contaminated soil samples. The ChemTech process was selected by federal and state regulatory agencies from 21 proposed technologies on the basis of performance, effectiveness, low cost, and absence of secondary environmental impacts. This paper provides details of the demonstration program, addresses the applicability of the technology to other sites, and provides cost estimates of unit cleanup costs. 3 refs., 4 tabs., 4 figs

  9. Polycyclic aromatic hydrocarbon removal from contaminated soils using fatty acid methyl esters.

    Science.gov (United States)

    Gong, Zongqiang; Wang, Xiaoguang; Tu, Ying; Wu, Jinbao; Sun, Yifei; Li, Peng

    2010-03-01

    In this study, solubilization of PAHs from a manufactured gas plant (MGP) soil and two artificially spiked soils using fatty acid methyl esters (FAME) was investigated. PAH removals from both the MGP and the spiked soils by FAME, methanol, soybean oil, hydroxypropyl-beta-cyclodextrin, Triton X-100, and Tween 80 were compared. The effect of FAME:MGP soil ratios on PAH removals was also investigated. Results showed that the FAME mixture synthesized by our lab was more efficient than the cyclodextrin and the two surfactants used for PAH removal from the spiked soils with individual PAH concentrations of 200 and 400 mg kg(-1). However, the difference among three PAH removals by the FAME, soybean oil and methanol was not quite pronounced. The FAME synthesized and market biodiesel exhibited better performance for PAH removals (46% and 35% of total PAH) from the weathered contaminated MGP soil when compared with the other agents (0-31%). Individual PAH removals from the weathered MGP soil were much lower than those from the spiked soils. The percentages of total PAH removals from the MGP soil were 59%, 46%, and 51% for the FAME:MGP soil ratios of 1:2, 1:1, and 2:1, respectively. These results showed that the FAME could be a more attractive alternative to conventional surfactants in ex situ washing of PAH-contaminated soils. 2010 Elsevier Ltd. All rights reserved.

  10. Influence of compost amendments on the diversity of alkane degrading bacteria in hydrocarbon contaminated soils

    Directory of Open Access Journals (Sweden)

    Michael eSchloter

    2014-03-01

    Full Text Available Alkane degrading microorganisms play an important role for bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the diversity of alkane monooxygenase gene (alkB harboring bacteria in oil-contaminated soil originated from an industrial zone in Celje, Slovenia, to improve our understanding about the bacterial community involved in alkane degradation and the effects of amendments. Soil without any amendments (control soil and soil amended with compost of different maturation stages, i 1 year and ii 2 weeks, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12 and 36 weeks of incubation. By using quantitative real-time PCR higher number of alkB genes could be detected in soil samples with compost compared to the control soil after 6, 12 and 36 weeks mainly if the less maturated compost was added. To get an insight into the composition of the alkB harboring microbial communities, we performed next generation sequencing of alkB gene fragment amplicons. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soil after 6, 12 and 36 weeks again with stronger effects of the less maturated compost. Comparison of communities detected in different samples and time points based on principle component analysis revealed that the addition of compost in general stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost compared to the control soils. In addition alkB harboring proteobacteria like Shewanella or Hydrocarboniphaga as well as proteobacteria of the genus Agrobacterium responded positively to the addition of compost to soil The amendment of the less maturated compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla mainly at the early sampling

  11. Salix purpurea Stimulates the Expression of Specific Bacterial Xenobiotic Degradation Genes in a Soil Contaminated with Hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Antoine P Pagé

    Full Text Available The objectives of this study were to uncover Salix purpurea-microbe xenobiotic degradation systems that could be harnessed in rhizoremediation, and to identify microorganisms that are likely involved in these partnerships. To do so, we tested S. purpurea's ability to stimulate the expression of 10 marker microbial oxygenase genes in a soil contaminated with hydrocarbons. In what appeared to be a detoxification rhizosphere effect, transcripts encoding for alkane 1-monooxygenases, cytochrome P450 monooxygenases, laccase/polyphenol oxidases, and biphenyl 2,3-dioxygenase small subunits were significantly more abundant in the vicinity of the plant's roots than in bulk soil. This gene expression induction is consistent with willows' known rhizoremediation capabilities, and suggests the existence of S. purpurea-microbe systems that target many organic contaminants of interest (i.e. C4-C16 alkanes, fluoranthene, anthracene, benzo(apyrene, biphenyl, polychlorinated biphenyls. An enhanced expression of the 4 genes was also observed within the bacterial orders Actinomycetales, Rhodospirillales, Burkholderiales, Alteromonadales, Solirubrobacterales, Caulobacterales, and Rhizobiales, which suggest that members of these taxa are active participants in the exposed partnerships. Although the expression of the other 6 marker genes did not appear to be stimulated by the plant at the community level, signs of additional systems that rest on their expression by members of the orders Solirubrobacterales, Sphingomonadales, Actinomycetales, and Sphingobacteriales were observed. Our study presents the first transcriptomics-based identification of microbes whose xenobiotic degradation activity in soil appears stimulated by a plant. It paints a portrait that contrasts with the current views on these consortia's composition, and opens the door for the development of laboratory test models geared towards the identification of root exudate characteristics that limit the

  12. Water quality concerns due to forest fires: polycyclic aromatic hydrocarbons (PAH) contamination of groundwater from mountain areas.

    Science.gov (United States)

    Mansilha, C; Carvalho, A; Guimarães, P; Espinha Marques, J

    2014-01-01

    Water quality alterations due to forest fires may considerably affect aquatic organisms and water resources. These impacts are cumulative as a result of pollutants mobilized from fires, chemicals used to fight fire, and postfire responses. Few studies have examined postfire transport into water resources of trace elements, including the polycyclic aromatic hydrocarbons (PAH), which are organic pollutants produced during combustion and are considered carcinogenic and harmful to humans. PAH are also known to adversely affect survival, growth, and reproduction of many aquatic species. This study assessed the effects of forest wildfires on groundwater from two mountain regions located in protected areas from north and central Portugal. Two campaigns to collect water samples were performed in order to measure PAH levels. Fifteen of 16 studied PAH were found in groundwater samples collected at burned areas, most of them at concentrations significantly higher than those found in control regions, indicating aquifer contamination. The total sum of PAH in burned areas ranged from 23.1to 95.1 ng/L with a median of 62.9 ng/L, which is one- to sixfold higher than the average level measured in controls (16.2 ng/L). In addition, in control samples, the levels of light PAH with two to four rings were at higher levels than heavy PAH with five or six rings, thus showing a different profile between control and burned sites. The contribution of wildfires to groundwater contamination by PAH was demonstrated, enabling a reliable assessment of the impacts on water quality and preparation of scientifically based decision criteria for postfire forest management practices.

  13. Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Anping Peng

    Full Text Available The distributions of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. grown in soils contaminated with different levels of polycyclic aromatic hydrocarbons (PAHs were investigated with polymerase chain reaction followed by denaturing gradient gel electrophoresis technology (PCR-DGGE and cultivation methods. Twelve types of PAHs, at concentrations varying from 0.16 to 180 mg·kg(-1, were observed in the roots and shoots of the two plants. The total PAH concentrations in Alopecurus aequalis Sobol obtained from three different PAH-contaminated stations were 184, 197, and 304 mg·kg(-1, and the total PAH concentrations in Oxalis corniculata L. were 251, 346, and 600 mg·kg(-1, respectively. The PCR-DGGE results showed that the endophytic bacterial communities in the roots and shoots of the two plants were quite different, although most bacteria belonged to Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. A total of 68 endophytic bacterial strains were isolated from different tissues of the two plants and classified into three phyla: Firmicutes, Proteobacteria and Bacteroidetes. In both plants, Bacillus spp. and Pseudomonas spp. were the dominant cultivable populations. With an increase in the PAH pollution level, the diversity and distribution of endophytic bacteria in the two plants changed correspondingly, and the number of cultivable endophytic bacterial strains decreased rapidly. Testing of the isolated endophytic bacteria for tolerance to each type of PAH showed that most isolates could grow well on Luria-Bertani media in the presence of different PAHs, and some isolates were able to grow rapidly on a mineral salt medium with a single PAH as the sole carbon and energy source, indicating that these strains may have the potential to degrade PAHs in plants. This research provides the first insight into the characteristics of endophytic bacterial populations under different PAH pollution levels and provides a

  14. New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site.

    Science.gov (United States)

    Sun, Yujiao; Zhao, Xiaohui; Zhang, Dayi; Ding, Aizhong; Chen, Cheng; Huang, Wei E; Zhang, Huichun

    2017-11-01

    A new naphthalene bioreporter was designed and constructed in this work. A new vector, pWH1274_Nah, was constructed by the Gibson isothermal assembly fused with a 9 kb naphthalene-degrading gene nahAD (nahAa nahAb nahAc nahAd nahB nahF nahC nahQ nahE nahD) and cloned into Acinetobacter ADPWH_lux as the host, capable of responding to salicylate (the central metabolite of naphthalene). The ADPWH_Nah bioreporter could effectively metabolize naphthalene and evaluate the naphthalene in natural water and soil samples. This whole-cell bioreporter did not respond to other polycyclic aromatic hydrocarbons (PAHs; pyrene, anthracene, and phenanthrene) and demonstrated a positive response in the presence of 0.01 μM naphthalene, showing high specificity and sensitivity. The bioluminescent response was quantitatively measured after a 4 h exposure to naphthalene, and the model simulation further proved the naphthalene metabolism dynamics and the salicylate-activation mechanisms. The ADPWH_Nah bioreporter also achieved a rapid evaluation of the naphthalene in the PAH-contaminated site after chemical spill accidents, showing high consistency with chemical analysis. The engineered Acinetobacter variant had significant advantages in rapid naphthalene detection in the laboratory and potential in situ detection. The state-of-the-art concept of cloning PAHs-degrading pathway in salicylate bioreporter hosts led to the construction and assembly of high-throughput PAH bioreporter array, capable of crude oil contamination assessment and risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils.

    Science.gov (United States)

    Kołtowski, Michał; Hilber, Isabel; Bucheli, Thomas D; Oleszczuk, Patryk

    2016-06-01

    Coal production negatively affects the environment by the emission of polycyclic aromatic hydrocarbons (PAHs). Two soils (KOK and KB) from a coking plant area was investigated and their total PAH concentration was 40 and 17 mg/kg for the sum (∑) 16 US EPA PAHs, respectively. A third soil was sampled from a bitumen plant area and was characterized by 9 mg/kg ∑16 US EPA PAHs. To reduce the freely dissolved concentration (Cfree) of the PAHs in the soil pore water, active carbon (AC) and two biochars pyrolysed from wheat straw (biochar-S) and willow (biochar-W) were added to the soils at 0.5-5 % (w/w), each. The AC performed best and reduced the Cfree by 51-98 % already at the lowest dose. The biochars needed doses up to 2.5 % to significantly reduce the Cfree by 44-86 % in the biochar-S and by 37-68 % in the biochar-W amended soils. The high black carbon (BC) content of up to 2.3 % in the Silesian soils competed with the sorption sites of the carbon amendments and the performance of the remediation was a consequence of the contaminant's source and the distribution between the BC and the AC/biochars. In contrast, the carbon amendment could best reduce the Cfree in the Lublin soil where the BC content was normal (0.05 %). It is therefore crucial to know the contaminant's source and history of a sample/site to choose the appropriate carbon amendment not only for remediation success but also for economic reasons.

  16. Visualizing and Quantifying Bioaccessible Pores in Field-Aged Petroleum Hydrocarbon-Contaminated Clay Soils Using Synchrotron-based X-ray Computed Tomography

    Science.gov (United States)

    Chang, W.; Kim, J.; Zhu, N.; McBeth, J. M.

    2015-12-01

    Microbial hydrocarbon degradation is environmentally significant and applicable to contaminated site remediation practices only when hydrocarbons (substrates) are physically bioaccessible to bacteria in soil matrices. Powerful X-rays are produced by synchrotron radiation, allowing for bioaccessible pores in soil (larger than 4 microns), where bacteria can be accommodated, colonize and remain active, can be visualized at a much higher resolution. This study visualized and quantified such bioaccessible pores in intact field-aged, oil-contaminated unsaturated soil fractions, and examined the relationship between the abundance of bioaccessible pores and hydrocarbon biodegradation. Using synchrotron-based X-ray Computed Tomography (CT) at the Canadian Light Source, a large dataset of soil particle characteristics, such as pore volumes, surface areas, number of pores and pore size distribution, was generated. Duplicate samples of five different soil fractions with different soil aggregate sizes and water contents (13, 18 and 25%) were examined. The method for calculating the number and distribution of bioaccessible pores using CT images was validated using the known porosity of Ottawa sand. This study indicated that the distribution of bioaccessible pore sizes in soil fractions are very closely related to microbial enhancement. A follow-up aerobic biodegradation experiment for the soils at 17 °C (average site temperature) over 90 days confirmed that a notable decrease in hydrocarbon concentrations occurred in soils fractions with abundant bioaccessible pores and with a larger number of pores between 10 and 100 μm. The hydrocarbon degradation in bioactive soil fractions was extended to relatively high-molecular-weight hydrocarbons (C16-C34). This study provides quantitative information about how internal soil pore characteristics can influence bioremediation performance.

  17. [Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in water and in Karst underground river catchment].

    Science.gov (United States)

    Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng

    2014-10-01

    Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.

  18. Remediation in Situ of Hydrocarbons by Combined Treatment in a Contaminated Alluvial Soil due to an Accidental Spill of LNAPL

    Directory of Open Access Journals (Sweden)

    Ettore Trulli

    2016-10-01

    Full Text Available Soil contamination represents an environmental issue which has become extremely important in the last decades due to the diffusion of industrial activities. Accidents during transport of dangerous materials and fuels may cause severe pollution. The present paper describes the criteria of the actions which were operated to remediate the potential risk and observed negative effects on groundwater and soil originating from an accidental spill of diesel fuel from a tank truck. With the aim to evaluate the quality of the involved environmental matrices in the “emergency” phase, in the following “safety” operation and during the remediation action, a specific survey on hydrocarbons, light and heavy, was carried out in the sand deposits soil. Elaboration of collected data allows us to observe the movement of pollutants in the unsaturated soil. The remediation action was finalized to improve the groundwater and soil quality. The former was treated by a so called “pump and treat” system coupled with air sparging. A train of three different technologies was applied to the unsaturated soil in a sequential process: soil vapour extraction, bioventing and enhanced bioremediation. Results showed that the application of sequential remediation treatments allowed us to obtain a state of quality in unsaturated soil and groundwater as required by Italian law.

  19. Simulating the dynamics of polycyclic aromatic hydrocarbon (PAH) in contaminated soil through composting by COP-Compost model.

    Science.gov (United States)

    Zhang, Yuan; Guan, Yidong; Shi, Qi

    2015-02-01

    Organic pollutants (OPs) are potentially present in composts, and the assessment of their content and bioaccessibility in these composts is of paramount importance to minimize the risk of soil contamination and improve soil fertility. In this work, integration of the dynamics of organic carbon (OC) and OPs in an overall experimental framework is first proposed and adopted to validate the applicability of the COP-Compost model and to calibrate the model parameters on the basis of what has been achieved with the COP-Compost model. The COP-Compost model was evaluated via composting experiments containing 16 US Environmental Protection Agency (USEPA) polycyclic aromatic hydrocarbons (PAHs) and the sorption coefficient (Kd) values of two types of OP: fluorenthene (FLT) and pyrene (PHE). In our study, these compounds are used to characterize the sequential extraction and are quantified as soluble, sorbed, and non-extractable fractions. The model was calibrated, and coupling the OC and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. The results show good agreement between the simulated and experimental results describing the evolution of different organic pollutants using the OP module, as well as the coupling module. However, no clear relationship is found between the Kd and the property of organic fractions. Further estimation of parameters is still necessary to modify the insufficiency of this present research.

  20. Polycyclic aromatic hydrocarbon contamination of American lobster, Homarus americanus, in the proximity of a coal-coking plant

    Energy Technology Data Exchange (ETDEWEB)

    Uthe, J F; Musial, C J

    1986-11-01

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental contaminants resulting predominantly from anthropogenic pyrolytic and combustion processes. In addition to the usual methods of aerial and aqueous transport to the coastal marine environment substantial amounts of PAH are added through the use of products such as creosote, coal tar and coal tar pitch as preservative and antifouling agents in the marine environment. Many PAH compounds are known carcinogenic agents and are rapidly taken up by fish and shellfish from water. Therefore as human foodstuffs many of these shellfish species warrant monitoring for PAH. A study of PAH in lobster tissues has been carried out using lobsters captured in Sydney harbour, Nova Scotia, Canada. Two coal-coking ovens on the shore have discharged their liquid effluents into the harbour. Lobsters from this area were sampled in 1982 and 1984. This paper presents the materials and methods used in the sampling, the results and discussion of them. The results confirmed the ability of lobsters to accumulate extremely high amounts of PAH in their tissues. 14 references.

  1. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  2. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.

    Science.gov (United States)

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna Anna; Poliwoda, Anna; Piotrowska-Seget, Zofia

    2014-01-01

    The Pseudomonas sp. P-1 strain, isolated from heavily petroleum hydrocarbon-contaminated soil, was investigated for its capability to degrade hydrocarbons and produce a biosurfactant. The strain degraded crude oil, fractions A5 and P3 of crude oil, and hexadecane (27, 39, 27 and 13% of hydrocarbons added to culture medium were degraded, respectively) but had no ability to degrade phenanthrene. Additionally, the presence of gene-encoding enzymes responsible for the degradation of alkanes and naphthalene in the genome of the P-1 strain was reported. Positive results of blood agar and methylene blue agar tests, as well as the presence of gene rhl, involved in the biosynthesis of rhamnolipid, confirmed the ability of P-1 for synthesis of glycolipid biosurfactant. 1H and 13C nuclear magnetic resonance, Fourier transform infrared spectrum and mass spectrum analyses indicated that the extracted biosurfactant was affiliated with rhamnolipid. The results of this study indicate that the P-1 and/or biosurfactant produced by this strain have the potential to be used in bioremediation of hydrocarbon-contaminated soils.

  3. Effects of diurnal temperature variation on microbial community and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site.

    Science.gov (United States)

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-01

    Contaminated soils are subject to diurnal and seasonal temperature variations during on-site ex-situ bioremediation processes. We assessed how diurnal temperature variations similar to that in summer at the site from which petroleum hydrocarbon-contaminated soil was collected affect the soil microbial community and the extent of biodegradation of petroleum hydrocarbons compared with constant temperature regimes. Microbial community analyses for 16S rRNA and alkB genes by pyrosequencing indicated that the microbial community for soils incubated under diurnal temperature variation from 5°C to 15°C (VART5-15) evolved similarly to that for soils incubated at constant temperature of 15°C (CST15). In contrast, under a constant temperature of 5°C (CST5), the community evolved significantly different. The extent of biodegradation of C10-C16 hydrocarbons in the VART5-15 systems was 48%, comparable with the 41% biodegradation in CST15 systems, but significantly higher than CST5 systems at 11%. The enrichment of Gammaproteobacteria was observed in the alkB gene-harbouring communities in VART5-15 and CST15 but not in CST5 systems. However, the Actinobacteria was abundant at all temperature regimes. The results suggest that changes in microbial community composition as a result of diurnal temperature variations can significantly influence petroleum hydrocarbon bioremediation performance in cold regions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Application of BGPR tomography investigate the Soil and Groundwater Contaminated with Chlorinated Hydrocarbon:Case study

    Science.gov (United States)

    Liu, H. C.; Lin, C. P.; Dong, T. H.; Yang, C. H.

    2014-12-01

    The success of an environmental contaminated project is often determined by the extent to which it is able to ascertain and control subsurface conditions. At present, site managers have limited tools to gain detailed information on the distribution of possible underground barriers or anomalous bodies. The technology employed in Taiwan to evaluate or confirm subsurface anomalies relies primarily on surface geophysical surveys, borehole drillings, or past records. Surface ground-penetrating radar GPR survey is among the most popular of these methods. Surface GPR technique can be used in many ways, but this method is not always the best suited to Taiwan's conditions. Surface GPR surveys are adversely affected by the conductivity of silty/clayey sediment and cultural noises. As a result, when surface GPR surveys are used, both detection and resolution of subsurface anomalies will decrease with depth. In order to overcome these obstacles, the use of borehole GPR BGPR with a few boreholes may provide a more direct and effective way to detect an underground target. Recent improvement in the quality of BGPR contributes to the suitability of this type of survey work when implemented on construction sites. This paper ues the BGPR geophysical technology has been developed to overcome above limitations. The information of multi-wells logging could be used to interpret the permeability of subsurface, the dominate flow path and the hot-spot for evaluating the distribution of pollution and the efficiency of remediation in different time sequences.

  5. Contamination of Omnivorous Freshwater Fish Species and Sediments by Chlorinated Hydrocarbons in Poland

    Directory of Open Access Journals (Sweden)

    Niewiadowska Alicja

    2014-10-01

    Full Text Available The occurrence and concentrations of organochlorine pesticides and polychlorinated biphenyls (PCBs were determined in 158 muscle samples of bream (Abramis brama and roach (Rutilus rutilus, and 84 samples of sediments collected from 10 river and lake sampling sites in 2011 and 2012. The concentrations of DDTs (p,p’-DDT, o,p’-DDT, p,p’-DDE, and p,p’-DDD, HCH isomers (a-, ß-, and y-HCH, HCB, and PCBs (six indicator PCB congeners 28, 52, 101, 138, 153 and 180 were determined using the capillary gas chromatography. The mean concentrations of DDTs in bream and roach were in the range of 11.2-654 and 4.5-121 ug/kg wet weight respectively, and PCBs were in the range of 1.3-75.9 and 1.1-112 ug/kg wet weight, respectively. Mean concentrations of DDTs and PCBs in sediments were 0.5-270 ug/kg dry weight and ⋋0.1-2.2 ug/kg dry weight respectively. The study showed clear spatial differences in the levels of organochlorine pesticides and PCBs in fish and sediments from different aquatic ecosystems. The highest levels of contaminants were detected in fish and sediments from the Vistula River in vicinity of Cracow. The possible risk to the fish meat consumers and ecological risk were evaluated.

  6. Monitoring of ground water quality and heavy metals in soil during large scale bioremediation of petroleum hydrocarbon contaminated waste in India: case studies

    OpenAIRE

    Ajoy Kumar Mandal; Atanu Jana; Abhijit Datta; Priyangshu M. Sarma; Banwari Lal; Jayati Datta

    2014-01-01

    Bioremediation using microbes has been well accepted as an environmentally friendly and economical treatment method for disposal of hazardous petroleum hydrocarbon contaminated waste (oily waste) and this type of bioremediation has been successfully conducted in laboratory and on a pilot scale in various countries, including India. Presently there are no federal regulatory guidelines available in India for carrying out field-scale bioremediation of oily waste using microbes. The results of th...

  7. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  8. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem - Final Report - 09/15/1996 - 09/14/2000

    International Nuclear Information System (INIS)

    McLachlan, John A.

    2000-01-01

    The three major components of the research included: (a) a biotechnology based screening system to identify potential hormone mimics and antagonists (b) an animal screening system to identify biomarkers of endocrine effects and (c) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular interest in this study were those that can serve as sentinel species (e.g., amphibians) and thus provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The objective of this basic research is to characterize the potential of common hydrocarbon contaminants in ecosystems to act as endocrine disruptors. Although the endocrine disrupting effects of contaminants such as dioxin and PCBs have been well characterized in both animals and humans, little is known about the capacities of other hydrocarbon contaminants to act as endocrine disruptors. Results obtained from this research project have provided information on endocrine disrupting contaminants for consideration in DOE's risk analyses for determining clean-up levels and priorities at contaminated DOE sites

  9. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem - Final Report - 09/15/1996 - 09/14/2000

    Energy Technology Data Exchange (ETDEWEB)

    McLachlan, John A.

    2000-09-14

    The three major components of the research included: (a) a biotechnology based screening system to identify potential hormone mimics and antagonists (b) an animal screening system to identify biomarkers of endocrine effects and (c) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular interest in this study were those that can serve as sentinel species (e.g., amphibians) and thus provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The objective of this basic research is to characterize the potential of common hydrocarbon contaminants in ecosystems to act as endocrine disruptors. Although the endocrine disrupting effects of contaminants such as dioxin and PCBs have been well characterized in both animals and humans, little is known about the capacities of other hydrocarbon contaminants to act as endocrine disruptors. Results obtained from this research project have provided information on endocrine disrupting contaminants for consideration in DOE's risk analyses for determining clean-up levels and priorities at contaminated DOE sites.

  10. Comparison of earthworm responses to petroleum hydrocarbon exposure in aged field contaminated soil using traditional ecotoxicity endpoints and 1H NMR-based metabolomics

    International Nuclear Information System (INIS)

    Whitfield Åslund, Melissa; Stephenson, Gladys L.; Simpson, André J.; Simpson, Myrna J.

    2013-01-01

    1 H NMR metabolomics and conventional ecotoxicity endpoints were used to examine the response of earthworms exposed to petroleum hydrocarbons (PHCs) in soil samples collected from a site that was contaminated with crude oil from a pipeline failure in the mid-1990s. The conventional ecotoxicity tests showed that the soils were not acutely toxic to earthworms (average survival ≥90%), but some soil samples impaired reproduction endpoints by >50% compared to the field control soil. Additionally, metabolomics revealed significant relationships between earthworm metabolic profiles (collected after 2 or 14 days of exposure) and soil properties including soil PHC concentration. Further comparisons by partial least squares regression revealed a significant relationship between the earthworm metabolomic data (collected after only 2 or 14 days) and the reproduction endpoints (measured after 63 days). Therefore, metabolomic responses measured after short exposure periods may be predictive of chronic, ecologically relevant toxicity endpoints for earthworms exposed to soil contaminants. -- Highlights: •Earthworm response to petroleum hydrocarbon exposure in soil is examined. •Metabolomics shows significant changes to metabolic profile after 2 days. •Significant relationships observed between metabolomic and reproduction endpoints. •Metabolomics may have value as a rapid screening tool for chronic toxicity. -- Earthworm metabolomic responses measured after 2 and 14 days are compared to traditional earthworm ecotoxicity endpoints (survival and reproduction) in petroleum hydrocarbon contaminated soil

  11. Groundwater contamination by polycyclic aromatic hydrocarbon due to diesel spill from a telecom base station in a Nigerian City: assessment of human health risk exposure.

    Science.gov (United States)

    Ugochukwu, Uzochukwu Cornelius; Ochonogor, Alfred

    2018-03-26

    Diesel pollution of groundwater poses great threat to public health, mainly as a result of the constituent polycyclic aromatic hydrocarbons (PAHs). In this study, the human health risk exposure to polycyclic aromatic hydrocarbons (PAHs) in diesel contaminated groundwater used by several families at Ring Road, Jos, Nigeria (as caused by diesel spill from a telecom base station) was assessed. Prior to the groundwater being treated, the residents were using the water after scooping off the visible diesel sheen for purposes of cooking, washing, and bathing. Until this study, it is not clear whether the groundwater contamination had resulted in sub-chronic exposure of the residents using the water to polycyclic aromatic hydrocarbons (PAHs) to the extent of the PAHs posing a health risk. The diesel contaminated groundwater and uncontaminated nearby groundwater (control) were collected and analyzed for PAHs using gas chromatography-mass spectrometry (GC-MS). The dosage of the dermal and oral ingestion entry routes of PAHs was determined. The estimation of the non-carcinogenic health risk was via hazard quotients (HQ) and the associated hazard index (HI), while the estimation of the carcinogenic health risk was via lifetime cancer risks (LCR) and the associated risk index (RI). Obtained results indicate that the exposure of the residents to the PAHs may have made them susceptible to the risk of non-carcinogenic health effects of benzo(a)pyrene and the carcinogenic health effects of benzo(a)anthracene and benzo(a)pyrene.

  12. Predicting hydrocarbon release from soil

    International Nuclear Information System (INIS)

    Poppendieck, D.; Loehr, R.C.

    2002-01-01

    hydrocarbons in a contaminated soil. This knowledge can enhance the selection and determine the duration of a proper remediation strategy. Information will be provided on the correlation of the results from this protocol to the results of chemical loss in contaminated soil bioremediation systems. This research has been completed, the data is currently being analyzed and the results will be fully evaluated by early 2002. As a result, the protocol and potential applications to field decisions will be presented and discussed. (author)

  13. Influence of pretreatment on efficiency of bioremediation of hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Elektorowicz, M.; Hadjinicolaou, J.; Yong, R.N.; St-Cyr, M.

    1992-01-01

    Biodegradation has been selected as a technique to treat a Montreal site which was contaminated by oil pipeline spills. A 2500 m 3 volume of soil was excavated and stored in piles. Three large closed cells were then constructed for use in on-site biodegradation of the soil. Before proceeding with the on-site biodegradation, a feasibility study was conducted in the laboratory using 20 kg of soil placed in mini-reactors for 188 d of biodegradation at ambient temperature. Before biodegradation began, the soil in certain of the mini-reactors was pretreated by comminuting gravel pieces larger than 0.5 cm in diameter and by mixing the soil with sawdust and nutrients. At predetermined intervals, the soils were analyzed at various locations in the mini-reactors for such parameters as oil and grease concentrations, organic matter content, Kjeldahl nitrogen, humidity, phosphorus, and metals. Emissions of volatile organic compounds and CO 2 were also measured. The mean decrease in oil and grease concentration was found to be 89%. No decrease was noted in those soils that had not been pretreated with sawdust and nutrients. An increase in soil pH was noted up to the 50th day of biodegradation, after which the pH decreased gradually. The feasibility study shows the influence of the addition of sawdust on one of the most important environmental parameters during the course of biodegradation: the pH value. Increase in pH can decrease or stop the activity of soil microorganisms. 11 refs., 6 figs

  14. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils

    International Nuclear Information System (INIS)

    Cunliffe, Michael; Kertesz, Michael A.

    2006-01-01

    Sphingobium yanoikuyae B1 is able to degrade a range of polycyclic aromatic hydrocarbons (PAHs) and as a sphingomonad belongs to one of the dominant genera found in PAH-contaminated soils. We examined the ecological effect that soil inoculation with S. yanoikuyae B1 has on the native bacterial community in three different soils: aged PAH-contaminated soil from an industrial site, compost freshly contaminated with PAHs and un-contaminated compost. Survival of S. yanoikuyae B1 was dependent on the presence of PAHs, and the strain was unable to colonize un-contaminated compost. Inoculation with S. yanoikuyae B1 did not cause extensive changes in the native bacterial community of either soil, as assessed by denaturing gel electrophoresis, but its presence led to an increase in the population level of two other species in the aged contaminated soil community and appeared to have an antagonistic affect on several members of the contaminated compost community, indicating niche competition. - Sphingobium yanoikuyae B1 does not cause major changes in the native bacterial community while colonizing PAH-contaminated soils, but some niche competition is evident

  15. Accumulation of polycyclic aromatic hydrocarbons from creosote-contaminated soil in selected plants and the oligochaete worm Enchytraeus crypticus

    Energy Technology Data Exchange (ETDEWEB)

    Ann-Sofie Allard; Marianne Malmberg; Alasdair H. Neilson; Mikael Remberger [IVL, Stockholm (Sweden). Swedish Environmental Research Institute

    2005-07-01

    The accumulation of PAHs from a creosote-contaminated soil was examined in laboratory experiments using English ryegrass (Lolium perenne), white clover (Trifolium repens) and radish (Raphanus sativus), and the oligochaete worm Enchytraeus crypticus. Toxicity to the plants and the worms was assessed, and a soil sample mixed with calcined sand was used for accumulation experiments to avoid interference from toxicity in the soil. Accumulation of potentially carcinogenic PAHs varied among the plants, and there was a linear relation between concentrations of PAHs in the soil and in the plants. Correlations between values of the biota-soil accumulation factors and octanol-water partition coefficients, or water solubility varied among the plants and were rather weak, so that lipophilic character or water solubility of the PAHs alone cannot explain PAH accumulation. Accumulation of carcinogenic PAHs from the soil, in the presence of the other PAHs was greatest for Trifolium repens. PAHs were accumulated in the oligochaete worm (Enchytraeus crypticus), and biota-soil accumulation factors exceeded those for the plants. It is suggested that site-specific evaluation of contaminated sites should include not only chemical analysis and evaluation of toxicity but also accumulation of contaminants into biota such as plants and worms.

  16. Correlation of BTEX levels and toxicity of condensate contaminated groundwater

    International Nuclear Information System (INIS)

    Headley, J.; Goudey, S.; Birkholz, D.; Hardisty, P.

    1995-01-01

    The concentration of BTEX was determined for 60 groundwater samples collected from 6 gas plants in Western Canada, using conventional purge-and-trap GC/MS procedures. The gas plants were selected to cover different types of operations with different amine process chemicals employed for the sweetening of the raw sour-gas condensates. Aliquots of the ground water samples were subjected to toxicity screening tests, specifically, (a) bacterial luminescence (microtox); (b) daphnia mortality and (c) fathead minnow mortality. For the toxicity tests, sample handling procedures were developed to minimize the loss of volatile organics during the experiments. To account for possible losses, the levels of BTEX were monitored at the start and upon completion of these tests. The results indicated that the toxicity of the groundwater was in general, well correlated to the concentration of BTEX (primarily xylene). Approximately 5% of the samples, however, were observed to be toxic although the concentration of BTEX were below the method detection limit (1 microg/1). Thiophenic volatile organics were implicated for the latter. Based on the laboratory results, the remediation of BTEX is expected to correlate with the removal of the toxicity of the groundwater. These findings are of direct relevance to present technologies employed for remediation of ground water at the Sourgas plants

  17. Multi-contamination (heavy metals, polychlorinated biphenyls and polycyclic aromatic hydrocarbons) of littoral sediments and the associated ecological risk assessment in a large lake in France (Lake Bourget).

    Science.gov (United States)

    Lécrivain, Nathalie; Aurenche, Vincent; Cottin, Nathalie; Frossard, Victor; Clément, Bernard

    2018-04-01

    The lake littoral sediment is exposed to a large array of contaminants that can exhibit significant spatial variability and challenge our ability to assess contamination at lake scale. In this study, littoral sediment contamination was characterized among ten different sites in a large peri-alpine lake (Lake Bourget) regarding three groups of contaminants: 6 heavy metals, 15 polycyclic aromatic hydrocarbons and 7 polychlorinated biphenyls. The contamination profiles significantly varied among sites and differed from those previously reported for the deepest zone of the lake. An integrative approach including chemical and biological analyses was conducted to relate site contamination to ecological risk. The chemical approach consisted in mean PEC quotient calculation (average of the ratios of the contaminants concentration to their corresponding Probable Effect Concentration values) and revealed a low and heterogeneous toxicity of the contaminant mixture along the littoral. Biological analysis including both laboratory (microcosm assays) and in situ (Acetylcholine Esterase (AChE) and Glutathione S-Transferase (GST) activity measurements) experiments highlighted significant differences among sites both in the field and in laboratory assays suggesting a spatial variation of the biota response to contamination. Linear regressions were performed between mean PEC quotients and biological results to assess whether littoral ecological risk was explained by the contamination profiles. The results highly depended on the study benthic or pelagic compartment. Regarding autochthonous Corbicula fluminea, no significant relationship between mean PEC quotients and biomarker activity was found while a significant increase in AChE was observed on autochthonous chironomids, suggesting different stress among benthic organisms. Both AChE and GST in caged pelagic Daphnia magna showed a significant positive relationship with mean PEC quotients. This study underlines the importance of

  18. Contamination of the eggs of raptors by chlorinated hydrocarbons between 1974 and 1980. [Falco peregrinus, Athene noctua, Falco tinnunculus

    Energy Technology Data Exchange (ETDEWEB)

    Venant, A.; Richou-Bac, L.; Gleizes, E.; Juillard, M.; Terrasse, M.; Terrasse, J.F.

    1984-01-01

    The contents of 206 unfertilized eggs (especially those of birds of prey) were analyzed for residues of chlorinated hydrocarbons (pesticides and PCB) from 1974 to 1980. Eggs collected in Jura (France and Switzerland) were sent deep-frozen to the laboratory. In 1974 and 1975, only 14 peregrine falcon Falco peregrinus eggs were received, and this study therefore really began in 1976. Since 1976, only peregrine falcon, little owl Athene noctua and lesser kestrel Falco tinnunculus eggs have been systematically analyzed. Other results are given for information. No important levels of cyclodienes or BHC were found, but only high levels for HCB, DDE and PCB residues. Of these three species, peregrine falcon eggs were the most contaminated (high level in food chain) but the pollutant levels have seemed to decrease. In 1976, the authors found 1.7 ..mu..g g..pi../sup 1/ HCB, 17.41 ..mu..g g/sup -1/ DDE and 9 ..mu..g g/sup -1/ PCB against 0.269 ..mu..g g/sup -1/ HCB, 5.84 ..mu..g g/sup -1/ DDE and 8.59 ..mu..g g/sup -1/ PCB in 1980 (it is important to record a very high PCB level in 1977 - 63 ..mu..g g/sup -1/. Residue levels were lower for other eggs such as lesser kestrel - 0.029 ..mu..g g/sup -1/ HCB, 0.099 ..mu..g g/sup -1/ DDE, and 0.24 ..mu..g g/sup -1/ PCB; or little owl eggs - 0.041 ..mu..g g/sup -1/ HCB, 1.18 ..mu..g g/sup -1/ DDE, and 0.652 ..mu..g g/sup -1/ PCB in 1980.

  19. Study of correlation between viral and bacterial contamination of waste water

    International Nuclear Information System (INIS)

    Khoffi, Nessrine

    2013-01-01

    Our study was developped following two main axes: the detection of fecal indicators (Escherichia coli) and the investigation of enteroviruses indicators of viral contamination in 3 Tunisian WWTP residues. The detection of enetroviruses was performed by real time PCR. Enteroviruses were detected in all samples whiles, 26 pour cent strongly positive, 53 pour cent moderately positive and 21 pour cent weakly positive. In addition, all samples were contaminated by E.coli with a decrease of concentration in effluent compared to influent. The results showed that E. coli is sensitive to biological treatment in charguia. A correlation between viral and bacterial contamination may be considered.

  20. Analyzing tree cores to detect petroleum hydrocarbon-contaminated groundwater at a former landfill site in the community of Happy Valley-Goose Bay, eastern Canadian subarctic.

    Science.gov (United States)

    Fonkwe, Merline L D; Trapp, Stefan

    2016-08-01

    This research examines the feasibility of analyzing tree cores to detect benzene, toluene, ethylbenzene, and m, p, o-xylene (BTEX) compounds and methyl tertiary-butyl ether (MTBE) in groundwater in eastern Canada subarctic environments, using a former landfill site in the remote community of Happy Valley-Goose Bay, Labrador. Petroleum hydrocarbon contamination at the landfill site is the result of environmentally unsound pre-1990s disposal of households and industrial solid wastes. Tree cores were taken from trembling aspen, black spruce, and white birch and analyzed by headspace-gas chromatography-mass spectrometry. BTEX compounds were detected in tree cores, corroborating known groundwater contamination. A zone of anomalously high concentrations of total BTEX constituents was identified and recommended for monitoring by groundwater wells. Tree cores collected outside the landfill site at a local control area suggest the migration of contaminants off-site. Tree species exhibit different concentrations of BTEX constituents, indicating selective uptake and accumulation. Toluene in wood exhibited the highest concentrations, which may also be due to endogenous production. Meanwhile, MTBE was not found in the tree cores and is considered to be absent in the groundwater. The results demonstrate that tree-core analysis can be useful for detecting anomalous concentrations of petroleum hydrocarbons, such as BTEX compounds, in subarctic sites with shallow unconfined aquifers and permeable soils. This method can therefore aid in the proper management of contamination during landfill operations and after site closures.

  1. Biodegradation of an oil-hydrocarbon contaminated soil, enhanced by surfactants: Effect of the type and dose of surfactant

    International Nuclear Information System (INIS)

    Torres, L. G.; Galindo, C.; Rojas, N.; Iturbe, R.

    2009-01-01

    The aim of this work was to study the effect of different parameters, such as surfactant type an dose, soil initial hydrocarbons concentration, and soil granulometry, over the total petroleum hydrocarbons TPH degradation, as well as over the microbial count (as colony formation units CFU/g soil) along the process. (Author)

  2. Assessment of heavy metal and petroleum hydrocarbon contamination in the Sultanate of Oman with emphasis on harbours, marinas, terminals and ports.

    Science.gov (United States)

    Jupp, Barry P; Fowler, Scott W; Dobretsov, Sergey; van der Wiele, Henk; Al-Ghafri, Ahmed

    2017-08-15

    The assessment here includes data on levels of contaminants (petroleum hydrocarbons and heavy metals) in sediments and biomonitor organisms, including the eulittoral rock oyster Saccostrea cucullata and subtidal biomonitors, the barnacle Balanus trigonus and the antipatharian coral Antipathes sp., at harbours, marinas, terminals and large ports along the coastline of Oman. TBT levels in harbour and port sediments up to a maximum of 100ppb TBT dry weight are highlighted. Oysters contained concentrations up to 367ppm mg TPH/kg dry weight. The maximum levels of Cd, Cu, Pb and Zn were found in the subtidal sediments and barnacles at the oil tanker loading Single Buoy Mooring stations in Mina Al Fahal. In general, the levels of most of the contaminants analysed are at low to moderate concentrations compared to those in highly contaminated sites such as shipyards and dry docks, but continued monitoring is recommended especially during any dredging campaigns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China

    International Nuclear Information System (INIS)

    Deng, Mao-Cheng; Li, Jing; Liang, Fu-Rui; Yi, Meisheng; Xu, Xiao-Ming; Yuan, Jian-Ping; Peng, Juan; Wu, Chou-Fei; Wang, Jiang-Hai

    2014-01-01

    Graphical abstract: Morphological properties of the colonies and cells of strain HZ01. (A) Colonies of strain HZ01 on the LB solid plate; (B) Gram-negative bacterium of strain HZ01 (20 × 100); (C) Scanning electron microscopy (SEM) photograph of strain HZ01 (×15,000); and (D) Transmission electronic microscopy (TEM) photograph of strain HZ01 (×5000). - Highlights: • A novel petroleum degrading bacterium HZ01 was obtained from the crude oil-contaminated seawater. • Strain HZ01 had been identified as Achromobacter sp. • Strain HZ01 could degrade the evaporated diesel oil with the degradability of 96.6%. • Strain HZ01 could effectively degrade anthracene, phenanthrene and pyrence. • Strain HZ01 may be employed to remove hydrocarbon contaminants. - Abstract: Microorganisms play an important role in the biodegradation of petroleum contaminants, which have attracted great concern due to their persistent toxicity and difficult biodegradation. In this paper, a novel hydrocarbon-degrading bacterium HZ01 was isolated from the crude oil-contaminated seawater at the Daya Bay, South China Sea, and identified as Achromobacter sp. Under the conditions of pH 7.0, NaCl 3% (w/v), temperature 28 °C and rotary speed 150 rpm, its degradability of the total n-alkanes reached up to 96.6% after 10 days of incubation for the evaporated diesel oil. Furthermore, Achromobacter sp. HZ01 could effectively utilize polycyclic aromatic hydrocarbons (PAHs) as its sole carbon source, and could remove anthracene, phenanthrene and pyrence about 29.8%, 50.6% and 38.4% respectively after 30 days of incubation. Therefore, Achromobacter sp. HZ01 may employed as an excellent degrader to develop one cost-effective and eco-friendly method for the bioremediation of marine environments polluted by crude oil

  5. Trichoderma longibrachiatum Evx1 is a fungal biocatalyst suitable for the remediation of soils contaminated with diesel fuel and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Andreolli, Marco; Lampis, Silvia; Brignoli, Pierlorenzo; Vallini, Giovanni

    2016-05-01

    Trichoderma sp. strain Evx1 was isolated from a semi-deciduous forest soil in Southern Italy. It decolorizes polynuclear organic dyes and tolerates high concentrations of phenanthrene, anthracene, fluoranthene, and pyrene. The ability of this ascomycete fungus to degrade polycyclic aromatic hydrocarbons was verified in vitro and confirmed by its strong phenoloxidase activity in the presence of gallic acid. Phylogenetic characterization of Trichoderma sp. Evx1 positioned this strain within the species Trichoderma longibrachiatum. The potential use of this species for the bioremediation of contaminated environmental matrices was tested by inoculating diesel-spiked soil with a dense mycelial suspension. The biodegradation percentage of the C12-40 hydrocarbon fraction in the inoculated soil rose to 54.2 ± 1.6 %, much higher than that in non-inoculated soil or soil managed solely by a combination of watering and aeration. The survival and persistence of T. longibrachiatum Evx1 throughout the bioremediation trial was monitored by PCR-DGGE analysis. The fungal strain was still present in the soil 30 days after bioaugmentation. These findings indicate that T. longibrachiatum Evx1 may be a suitable inoculum in bioremediation protocols for the reclamation of soils contaminated by complex mixtures of hydrocarbons.

  6. Engineered in situ bioremediation of a petroleum hydrocarbon-contaminated aquifer: assessment of mineralization based on alkalinity, inorganic carbon and stable carbon isotope balances

    Science.gov (United States)

    Hunkeler, Daniel; Höhener, Patrick; Bernasconi, Stefano; Zeyer, Josef

    1999-04-01

    A concept is proposed to assess in situ petroleum hydrocarbon mineralization by combining data on oxidant consumption, production of reduced species, CH 4, alkalinity and dissolved inorganic carbon (DIC) with measurements of stable isotope ratios. The concept was applied to a diesel fuel contaminated aquifer in Menziken, Switzerland, which was treated by engineered in situ bioremediation. In the contaminated aquifer, added oxidants (O 2 and NO 3-) were consumed, elevated concentrations of Fe(II), Mn(II), CH 4, alkalinity and DIC were detected and the DIC was generally depleted in 13C compared to the background. The DIC production was larger than expected based on the consumption of dissolved oxidants and the production of reduced species. Stable carbon isotope balances revealed that the DIC production in the aquifer originated mainly from microbial petroleum hydrocarbon mineralization, and that geochemical reactions such as carbonate dissolution produced little DIC. This suggests that petroleum hydrocarbon mineralization can be underestimated if it is determined based on concentrations of dissolved oxidants and reduced species.

  7. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2017-04-01

    Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A 14 C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Investigation of the impacts of ethyl lactate based Fenton treatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils.

    Science.gov (United States)

    Gan, Suyin; Yap, Chiew Lin; Ng, Hoon Kiat; Venny

    2013-11-15

    This study aims to investigate the impacts of ethyl lactate (EL) based Fenton treatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. Accumulation of oxygenated-polycyclic aromatic hydrocarbons (oxy-PAHs) was observed, but quantitative measurement on the most abundant compound 9,10-anthraquinone (ATQ) showed lower accumulation of the compound than that reported for ethanol (ET) based Fenton treatment. In general, as compared to conventional water (CW) based Fenton treatment, the EL based Fenton treatment exerted either a lower or higher negative impact on soil physicochemical properties depending on the property type and shared the main disadvantage of reduced soil pH. For revegetation, EL based Fenton treatment was most appropriately adopted for soil with native pH >/~ 6.2 in order to obtain a final soil pH >/~ 4.9 subject to the soil buffering capacity. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Methylated polycyclic aromatic hydrocarbons and/or their metabolites are important contributors to the overall estrogenic activity of polycyclic aromatic hydrocarbon-contaminated soils.

    Science.gov (United States)

    Lam, Monika M; Engwall, Magnus; Denison, Michael S; Larsson, Maria

    2018-02-01

    In the present study 42 polycyclic aromatic compounds (PACs) were investigated for their estrogenic potential using the VM7Luc4E2 transactivation assay. Relative potencies were determined for mass-balance analysis. In addition, compounds were tested in combination with the estrogen receptor (ER) antagonist ICI182,780 (ICI) and the aryl hydrocarbon receptor antagonist/CYP1A1 inhibitor α-naphthoflavone. Luciferase induction and CYP1A1-dependent ethoxyresorufin-O-deethylase (EROD) activity were measured to assess whether the estrogenic activity was elicited by the compound itself and/or by its metabolites. Relative potencies ranged between 10 -7 and 10 -4 . The ability of ICI to decrease luciferase activity stimulated by all compounds indicated that the induction responses were ER-dependent. The aryl hydrocarbon receptor antagonist/CYP1A1 inhibitor α-naphthoflavone decreased luciferase induction and EROD activity by several compounds, including the methylated chrysenes, suggesting that metabolites of these chemicals contributed to ER activation. Several PACs, such as acridine and its derivatives, appear to directly activate the ER. Furthermore, extracts of soils from industrial areas were examined using this bioassay, and estrogenic activity was detected in all soil samples. Mass-balance analysis using a combination of relative potencies and chemical analysis of the samples suggested that polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs, such as 1- and 3-methylchrysene, are important contributors to the overall estrogenic activity. However, these results revealed that a considerable proportion of the estrogenic activity in the soil remained unexplained, indicating the presence of other significant estrogenic compounds. Environ Toxicol Chem 2018;37:385-397. © 2017 SETAC. © 2017 SETAC.

  10. Sensitivity Analysis of Unsaturated Flow and Contaminant Transport with Correlated Parameters

    Science.gov (United States)

    Relative contributions from uncertainties in input parameters to the predictive uncertainties in unsaturated flow and contaminant transport are investigated in this study. The objectives are to: (1) examine the effects of input parameter correlations on the sensitivity of unsaturated flow and conta...

  11. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, Karan [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Shukla, Alok [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076 (India); Mazumdar, Sumit [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D{sub 6h} point group symmetry versus ovalene with D{sub 2h} symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D{sub 6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D{sub 2h} ovalene but not in those with D{sub 6h} symmetry.

  12. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    International Nuclear Information System (INIS)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-01-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D 6h point group symmetry versus ovalene with D 2h symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D 6h group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D 2h ovalene but not in those with D 6h symmetry

  13. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: a peculiar role of geometry.

    Science.gov (United States)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D(6h) point group symmetry versus ovalene with D(2h) symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D(6h) group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D(2h) ovalene but not in those with D(6h) symmetry.

  14. 3D electrical image in area contaminated by hydrocarbons at the Cubatao, Brazil, industrial pole; Imageamento eletrico 3D em area contaminada por hidrocarbonetono no polo industrial de Cubatao - SP, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Baessa, Marcus Paulus Martins [Centro de Pesquisas e Desenvolvimento Leopoldo Americo Miguez de Mello, CENPES, Rio de Janeiro, RJ (Brazil)], E-mail: marcus.baessa@petrobras.br; Oliva, Andresa; Kiang, Chang Hung [Universidade Estadual Paulista, UNESP, Rio Claro, SP (Brazil)], E-mails: aoliva@rc.unesp.br, chang@rc.unesp.br

    2010-12-15

    This work presents the results of geophysical surveys performed over an oil contaminated site in the Polo Industrial de Cubatao - Sao Paulo. The aim is to characterize geoelectrical signatures associated to hydrocarbon presence in order to delimit and calculate the volume of the contaminated area. For this study were used Vertical Electrical Sounding (VES) and 3D Electrical Imaging for characterization of geology and geoelectrical response of the contaminant. The results showed that the hydrocarbon presence is associated to conductive anomalies due to products from biodegradation. The conductive anomalies are disseminated over the area, totalizing 1365.3 m3 volume. This volume, however, corresponds only to the residual phase contaminants, since it was not possible to map free-phase hydrocarbons. (author)

  15. Feasibility of the simultaneous determination of polycyclic aromatic hydrocarbons based on two-dimensional fluorescence correlation spectroscopy

    Science.gov (United States)

    Yang, Renjie; Dong, Guimei; Sun, Xueshan; Yang, Yanrong; Yu, Yaping; Liu, Haixue; Zhang, Weiyu

    2018-02-01

    A new approach for quantitative determination of polycyclic aromatic hydrocarbons (PAHs) in environment was proposed based on two-dimensional (2D) fluorescence correlation spectroscopy in conjunction with multivariate method. 40 mixture solutions of anthracene and pyrene were prepared in the laboratory. Excitation-emission matrix (EEM) fluorescence spectra of all samples were collected. And 2D fluorescence correlation spectra were calculated under the excitation perturbation. The N-way partial least squares (N-PLS) models were developed based on 2D fluorescence correlation spectra, showing a root mean square error of calibration (RMSEC) of 3.50 μg L- 1 and root mean square error of prediction (RMSEP) of 4.42 μg L- 1 for anthracene and of 3.61 μg L- 1 and 4.29 μg L- 1 for pyrene, respectively. Also, the N-PLS models were developed for quantitative analysis of anthracene and pyrene using EEM fluorescence spectra. The RMSEC and RMSEP were 3.97 μg L- 1 and 4.63 μg L- 1 for anthracene, 4.46 μg L- 1 and 4.52 μg L- 1 for pyrene, respectively. It was found that the N-PLS model using 2D fluorescence correlation spectra could provide better results comparing with EEM fluorescence spectra because of its low RMSEC and RMSEP. The methodology proposed has the potential to be an alternative method for detection of PAHs in environment.

  16. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    Science.gov (United States)

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorinated dibenzeno-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of residential and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  17. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.

    Science.gov (United States)

    Ma, Yan; Du, Xiaoming; Shi, Yi; Xu, Zhu; Fang, Jidun; Li, Zheng; Li, Fasheng

    2015-02-01

    Mechanical soil aeration has long been regarded as an effective ex-situ remediation technique and as suitable for remediation of large-scale sites contaminated by volatile organic compounds (VOCs) at low cost. However, it has been reported that the removal efficiency of VOCs from soil is relatively low in the late stages of remediation, in association with tailing. Tailing may extend the remediation time required; moreover, it typically results in the presence of contaminants residues at levels far exceeding regulations. In this context, the present study aimed to discuss the tailing that occurs during the process of remediation of soils contaminated artificially with volatile chlorinated hydrocarbons (VCHs) and to assess possible quicklime-enhanced removal mechanisms. The results revealed the following conclusions. First, temperature and aeration rate can be important controls on both the timing of appearance of tailing and the levels of residual contaminants. Furthermore, the addition of quicklime to soil during tailing can reduce the residual concentrations rapidly to below the remedial target values required for site remediation. Finally, mechanical soil aeration can be enhanced using quicklime, which can improve the volatilization of VCHs via increasing soil temperature, reducing soil moisture, and enhancing soil permeability. Our findings give a basic understanding to the elimination of the tailing in the application of mechanical soil aeration, particularly for VOCs-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Enzymatic correlates of energy status in wild yellow perch inhabiting clean and contaminated environments.

    Science.gov (United States)

    Gauthier, Charles; Campbell, Peter G C; Couture, Patrice

    2011-09-01

    Enzymes representing a variety of metabolic pathways were examined in yellow perch (Perca flavescens) collected from a metal-contaminated region (Rouyn-Noranda, Québec, Canada) to determine which were most closely related to fish condition factor, pyloric caeca weight, and visceral lipid accumulation, as well to seek a better understanding of the influence of metal contamination on the physiology and biometrics of perch. Compared to laboratory fish, wild perch were under important energy restrictions. The condition factor of wild fish was correlated with indicators of aerobic metabolism (citrate synthase, cytochrome C oxidase), protein anabolism (nucleoside diphosphokinase), and indicators of lipid accumulation (glucose-6-phosphate dehydrogenase, visceral lipid index). Pyloric caeca weights were well correlated with indicators of protein anabolism, but only when both seasons were examined together, possibly indicating a lag in the response of enzymes to changes in diet. The addition of contaminant stress to existing energy restrictions led to changes in the relationships between enzymes and biometrics, reducing the predictive power of the models for perch in contaminated lakes. The present study broadens our knowledge of the impact of metal contamination on energy accumulation and tissue metabolic capacities in wild perch. Copyright © 2011 SETAC.

  19. Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gahlyan, Suman; Rani, Manju; Maken, Sanjeev Kumar [Deenbandhu Chhotu Ram University of Science and Technology, Murthal (India); Lee, Inkyu; Moon, Il [Yonsei University, Seoul (Korea, Republic of)

    2015-01-15

    Excess molar volumes (V{sub m}{sup E} ) have been measured at 303.15 K for 1-propanol+benzene or toluene or o- or m- or p-xylene mixtures using V-shape dilatometer. The V{sub m}{sup E} values, for an equimolar composition, vary in the order: benzene>toluene-m-xylene>o-xylene>p-xylene. The V{sub m}{sup E} data have been used to calculate partial molar volumes, excess partial molar volumes, and apparent molar volumes of 1-propanol and aromatic hydrocarbons over the entire range of composition. The excess volume data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson theory (PFP). While PFP theory fails to predict the V{sub m}{sup E} values for systems with s-shaped V{sub m}{sup E} versus x{sub 1} graph, the V{sub m}{sup E} values calculated by graph theory compare reasonably well with the corresponding experimental values. This graph theory analysis has further yielded information about the state of aggregation of pure components as well as of the mixtures.

  20. Measurement and correlation of excess molar volumes for mixtures of 1-propanol and aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Gahlyan, Suman; Rani, Manju; Maken, Sanjeev Kumar; Lee, Inkyu; Moon, Il

    2015-01-01

    Excess molar volumes (V m E ) have been measured at 303.15 K for 1-propanol+benzene or toluene or o- or m- or p-xylene mixtures using V-shape dilatometer. The V m E values, for an equimolar composition, vary in the order: benzene>toluene-m-xylene>o-xylene>p-xylene. The V m E data have been used to calculate partial molar volumes, excess partial molar volumes, and apparent molar volumes of 1-propanol and aromatic hydrocarbons over the entire range of composition. The excess volume data have also been interpreted in terms of graph-theoretical approach and Prigogine-Flory-Patterson theory (PFP). While PFP theory fails to predict the V m E values for systems with s-shaped V m E versus x 1 graph, the V m E values calculated by graph theory compare reasonably well with the corresponding experimental values. This graph theory analysis has further yielded information about the state of aggregation of pure components as well as of the mixtures

  1. Analyzing tree cores to detect petroleum hydrocarbon-contaminated groundwater at a former landfill site in the community of Happy Valley-Goose Bay, eastern Canadian subarctic

    DEFF Research Database (Denmark)

    Fonkwe, Merline L D; Trapp, Stefan

    2016-01-01

    -gas chromatography-mass spectrometry. BTEX compounds were detected in tree cores, corroborating known groundwater contamination. A zone of anomalously high concentrations of total BTEX constituents was identified and recommended for monitoring by groundwater wells. Tree cores collected outside the landfill site......This research examines the feasibility of analyzing tree cores to detect benzene, toluene, ethylbenzene, and m, p, o-xylene (BTEX) compounds and methyl tertiary-butyl ether (MTBE) in groundwater in eastern Canada subarctic environments, using a former landfill site in the remote community of Happy...... Valley-Goose Bay, Labrador. Petroleum hydrocarbon contamination at the landfill site is the result of environmentally unsound pre-1990s disposal of households and industrial solid wastes. Tree cores were taken from trembling aspen, black spruce, and white birch and analyzed by headspace...

  2. Enhanced Accessibility of Polycyclic Aromatic Hydrocarbons (PAHs) and Heterocyclic PAHs in Industrially Contaminated Soil after Passive Dosing of a Competitive Sorbate

    DEFF Research Database (Denmark)

    Humel, Stefan; Nørgaard Schmidt, Stine; Sumetzberger-Hasinger, Marion

    2017-01-01

    To assess the exposure to polycyclic aromatic hydrocarbons (PAHs) it is important to understand the binding mechanisms between specific soil constituents and the organic pollutant. In this study, sorptive bioaccessibility extraction (SBE) was applied to quantify the accessible PAH fraction...... in industrially contaminated soil with and without passive dosing of a competitive sorbate. SBE experiments revealed an accessible PAH fraction of 41 ± 1% (∑16 US EPA PAHs + 5 further PAHs). The passive dosing of toluene below its saturation level revealed competitive binding and resulted in an average increase.......4% PAH. We explain increased PAH desorption after addition of toluene by competitive adsorption to high-affinity sorption sites while acknowledging that toluene could additionally have increased PAH mobility within the soil matrix. Findings suggest that the presence of copollutants at contaminated sites...

  3. Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study.

    Science.gov (United States)

    Andreolli, Marco; Lampis, Silvia; Brignoli, Pierlorenzo; Vallini, Giovanni

    2015-04-15

    In this work, the natural attenuation strategy (no soil amendments done) was compared with two different bioremediation approaches, namely bioaugmentation through soil inoculation with a suspension of Trichoderma sp. mycelium and biostimulation by soil addition with a microbial growth promoting formulation, in order to verify the effectiveness of these methods in terms of degradation efficiency towards toxic hydrocarbons, with particular attention to the high molecular weight (HMW) fraction, in a forest area impacted by recent wildfire in Northern Italy. The area under investigation, divided into three parcels, was monitored to figure out the dynamics of decay in soil concentration of C₁₂₋₄₀ hydrocarbons (including isoalkanes, cycloalkanes, alkyl-benzenes and alkyl-naphthalenes besides PAHs) and low molecular weight (LMW) PAHs, following the adoption of the foregoing different remediation strategies. Soil hydrocarbonoclastic potential was even checked by characterizing the autochthonous microbial cenoses. Field experiments proved that the best performance in the abatement of HMW hydrocarbons was reached 60 days after soil treatment through the biostimulation protocol, when about 70% of the initial concentration of HMW hydrocarbons was depleted. Within the same time, about 55% degradation was obtained with the bioaugmentation protocol, whilst natural attenuation allowed only a 45% removal of the starting C12-40 hydrocarbon fraction. Therefore, biostimulation seems to significantly reduce the time required for the remediation, most likely because of the enhancement of microbial degradation through the improvement of nutrient balance in the burned soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Study of the correlation between radioactive contamination of milk and forage with strontium 90

    Energy Technology Data Exchange (ETDEWEB)

    Sabo, A; Mezei, I [Joint Inst. for Nuclear Research, Dubna (USSR). Lab. of Neutron Physics

    1978-08-01

    Significant correlation between radioactive contamination of milk and forage is established on the basis of the data mathematic treatment. Contamination of cow milk by /sup 90/Sr is approximately one order less than forage contamination, which testifies to high discrimination ability of cows in biological chain soil-plant-animal-man. Animals have this ability only in relation to /sup 90/Sr. For other radioactive isotopes discirmination factor can differ significantly from the one characteristic of /sup 90/Sr. It is stressed that as a result of high discrimination ability of cows /sup 90/Sr quantity, penetrating into human body from vegetable products is much more, than the one penetrating from milk and milk products.

  5. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia.

    Science.gov (United States)

    Silva, Isis Serrano; Santos, Eder da Costa dos; Menezes, Cristiano Ragagnin de; Faria, Andréia Fonseca de; Franciscon, Elisangela; Grossman, Matthew; Durrant, Lucia Regina

    2009-10-01

    Biodegradation of a mixture of PAHs was assessed in forest soil microcosms performed either without or with bioaugmentation using individual fungi and bacterial and a fungal consortia. Respiratory activity, metabolic intermediates and extent of PAH degradation were determined. In all microcosms the low molecular weight PAH's naphthalene, phenanthrene and anthracene, showed a rapid initial rate of removal. However, bioaugmentation did not significantly affect the biodegradation efficiency for these compounds. Significantly slower degradation rates were demonstrated for the high molecular weight PAH's pyrene, benz[a]anthracene and benz[a]pyrene. Bioaugmentation did not improve the rate or extent of PAH degradation, except in the case of Aspergillus sp. Respiratory activity was determined by CO(2) evolution and correlated roughly with the rate and timing of PAH removal. This indicated that the PAHs were being used as an energy source. The native microbiota responded rapidly to the addition of the PAHs and demonstrated the ability to degrade all of the PAHs added to the soil, indicating their ability to remediate PAH-contaminated soils.

  6. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium.

    Science.gov (United States)

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.

  7. Quicklime-induced changes of soil properties: Implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration.

    Science.gov (United States)

    Ma, Yan; Dong, Binbin; He, Xiaosong; Shi, Yi; Xu, Mingyue; He, Xuwen; Du, Xiaoming; Li, Fasheng

    2017-04-01

    Mechanical soil aeration is used for soil remediation at sites contaminated by volatile organic compounds. However, the effectiveness of the method is limited by low soil temperature, high soil moisture, and high soil viscosity. Combined with mechanical soil aeration, quicklime has a practical application value related to reinforcement remediation and to its action in the remediation of soil contaminated with volatile organic compounds. In this study, the target pollutant was trichloroethylene, which is a volatile chlorinated hydrocarbon pollutant commonly found in contaminated soils. A restoration experiment was carried out, using a set of mechanical soil-aeration simulation tests, by adding quicklime (mass ratios of 3, 10, and 20%) to the contaminated soil. The results clearly indicate that quicklime changed the physical properties of the soil, which affected the environmental behaviour of trichloroethylene in the soil. The addition of CaO increased soil temperature and reduced soil moisture to improve the mass transfer of trichloroethylene. In addition, it improved the macroporous cumulative pore volume and average pore size, which increased soil permeability. As soil pH increased, the clay mineral content in the soils decreased, the cation exchange capacity and the redox potential decreased, and the removal of trichloroethylene from the soil was enhanced to a certain extent. After the addition of quicklime, the functional group COO of soil organic matter could interact with calcium ions, which increased soil polarity and promoted the removal of trichloroethylene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    Science.gov (United States)

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  9. Development, optimization, validation and application of faster gas chromatography - flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils.

    Science.gov (United States)

    Zubair, Abdulrazaq; Pappoe, Michael; James, Lesley A; Hawboldt, Kelly

    2015-12-18

    This paper presents an important new approach to improving the timeliness of Total Petroleum Hydrocarbon (TPH) analysis in the soil by Gas Chromatography - Flame Ionization Detector (GC-FID) using the CCME Canada-Wide Standard reference method. The Canada-Wide Standard (CWS) method is used for the analysis of petroleum hydrocarbon compounds across Canada. However, inter-laboratory application of this method for the analysis of TPH in the soil has often shown considerable variability in the results. This could be due, in part, to the different gas chromatography (GC) conditions, other steps involved in the method, as well as the soil properties. In addition, there are differences in the interpretation of the GC results, which impacts the determination of the effectiveness of remediation at hydrocarbon-contaminated sites. In this work, multivariate experimental design approach was used to develop and validate the analytical method for a faster quantitative analysis of TPH in (contaminated) soil. A fractional factorial design (fFD) was used to screen six factors to identify the most significant factors impacting the analysis. These factors included: injection volume (μL), injection temperature (°C), oven program (°C/min), detector temperature (°C), carrier gas flow rate (mL/min) and solvent ratio (v/v hexane/dichloromethane). The most important factors (carrier gas flow rate and oven program) were then optimized using a central composite response surface design. Robustness testing and validation of model compares favourably with the experimental results with percentage difference of 2.78% for the analysis time. This research successfully reduced the method's standard analytical time from 20 to 8min with all the carbon fractions eluting. The method was successfully applied for fast TPH analysis of Bunker C oil contaminated soil. A reduced analytical time would offer many benefits including an improved laboratory reporting times, and overall improved clean up

  10. Proceedings of Conference on Hydrocarbon Contaminated Soils (3rd) Held in Amherst, Massachusetts on September 1989 (Petroleum Contaminated Soils. Volume 3)

    Science.gov (United States)

    1990-10-01

    degraders (105 to 106). After exposure to petroleum hydrocarbons, the microbial ecology of the soil adjusts so that the number of petroleum degraders...34 in R. M. Atlas , ed., Petroleum Microbiology (Macmillan Pub- lishing Co., Inc., 1984). 3. Bossert, I., and R. Bartha . "The Fate of Petroleum in Soil...and nature of the microbial population. I For instance, the soil class (i.e., dominant grain size or grade) may help the health assessor determine

  11. Coagulation-flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing: Interactions among coagulant and flocculant concentrations and pH value.

    Science.gov (United States)

    Torres, Luis G; Belloc, Claudia; Vaca, Mabel; Iturbe, Rosario; Bandala, Erick R

    2009-11-01

    Wastewater produced in the contaminated soil washing was treated by means of coagulation-flocculation (CF) process. The wastewater contained petroleum hydrocarbons, a surfactant, i.e., sodium dodecyl sulfate (SDS) as well as salts, brownish organic matter and other constituents that were lixiviated from the soil during the washing process. The main goal of this work was to develop a process for treating the wastewaters generated when washing hydrocarbon-contaminated soils in such a way that it could be recycled to the washing process, and also be disposed at the end of the process properly. A second objective was to study the relationship among the coagulant and flocculant doses and the pH at which the CF process is developed, for systems where methylene blue active substances (MBAS) as well as oil and greases were present. The results for the selection of the right coagulant and flocculant type and dose, the optimum pH value for the CF process and the interactions among the three parameters are detailed along this work. The best coagulant and flocculant were FeCl(3) and Tecnifloc 998 at doses of 4,000 and 1 mg/L, correspondingly at pH of 5. These conditions gave color, turbidity, chemical oxygen demand (COD) and conductivity removals of 99.8, 99.6, 97.1 and 35%, respectively. It was concluded that it is feasible to treat the wastewaters generated in the contaminated soil washing process through CF process, and therefore, wastewaters could be recycled to the washing process or disposed to drainage.

  12. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.

    Science.gov (United States)

    Agnello, A C; Bagard, M; van Hullebusch, E D; Esposito, G; Huguenot, D

    2016-09-01

    Biological remediation technologies are an environmentally friendly approach for the treatment of polluted soils. This study evaluated through a pot experiment four bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110mgkg(-1) DW, respectively) and petroleum hydrocarbons (3800mgkg(-1) DW). As demonstrated by plant biomass and selected physiological parameters alfalfa plants were able to tolerate and grow in the co-contaminated soil, especially when soil was inoculated with P. aeruginosa, which promoted plant growth (56% and 105% increase for shoots and roots, respectively) and appeared to alleviate plant stress. The content of heavy metals in alfalfa plants was limited and followed the order: Zn>Cu>Pb. Heavy metals were mainly concentrated in plant roots and were poorly translocated, favouring their stabilization in the root zone. Bioaugmentation of planted soil with P. aeruginosa generally led to a decrease of plant metal concentration and translocation. The highest degree of total petroleum hydrocarbon removal was obtained for bioaugmentation-assisted phytoremediation treatment (68%), followed by bioaugmentation (59%), phytoremediation (47%) and natural attenuation (37%). The results of this study demonstrated that the combined use of plant and bacteria was the most advantageous option for the treatment of the present co-contaminated soil, as compared to natural attenuation, bioaugmentation or phytoremediation applied alone. Copyright © 2015 Elsevier B.V. All rights reserved.