WorldWideScience

Sample records for hydrocarbon chains electronic

  1. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films

    Science.gov (United States)

    Sledge, Samiyyah M.; Khimji, Hussain; Borchman, Douglas; Oliver, Alexandria; Michael, Heidi; Dennis, Emily K.; Gerlach, Dylan; Bhola, Rahul; Stephen, Elsa

    2016-01-01

    Purpose The inhibition of the rate of evaporation (Revap) by surface lipids is relevant to reservoirs and dry eye. Our aim was to test the idea that lipid surface films inhibit Revap. Methods Revap were determined gravimetrically. Hydrocarbon chain conformation and structure were measured using a Raman microscope. Six 1-hydroxyl hydrocarbons (11–24 carbons in length) and human meibum were studied. Reflex tears were obtained from a 62-year-old male. Results The Raman scattering intensity of the lipid film deviated by about 7 % for hydroxyl lipids and varied by 21 % for meibum films across the entire film at a resolution of 5 µm2. All of the surface lipids were ordered. Revap of the shorter chain hydroxyl lipids were slightly (7%) but significantly lower compared with the longer chain hydroxyl lipids. Revap of both groups was essentially similar to that of buffer. A hydroxyl lipid film did not influence Revap over an estimated average thickness range of 0.69 to >6.9 µm. Revap of human tears and buffer with and without human meibum (34.4 µm thick) was not significantly different. Revap of human tears was not significantly different from buffer. Conclusions Human meibum and hydroxyl lipids, regardless of their fluidity, chain length, or thickness did not inhibit Revap of buffer or tears even though they completely covered the surface. It is unlikely that hydroxyl lipids can be used to inhibit Revap of reservoirs. Our data do not support the widely accepted (yet unconfirmed) idea that the tear film lipid layer inhibits Revap of tears. PMID:27395776

  2. Gamma-radiation induced polymerization of methyl methacrylate in aliphatic hydrocarbons: kinetics and evidence for incorporation of hydrocarbon in the polymer chain

    International Nuclear Information System (INIS)

    Mohan, H.; Iyer, R.M.

    1989-01-01

    On γ-radiolysis, the rate of polymerization of methyl methacrylate in hydrocarbon solvents is observed to decrease. It is explained by hydrocarbon entry into the polymer chains. The hydrocarbon entry into the polymer chains is observed to take place at later stages of polymerization and increases with hydrocarbon chain length. The extent of hydrocarbon entry into the polymer chains is estimated by NMR and GLC analysis. It is observed to be equal to ∼ 12% corresponding to ∼ 97 hexadecane molecules in each polymer chain. The IR, DSC, MW determination and radiation effects on the polymer showed evidences for hydrocarbon entry into the polymer. It is explained by chain transfer from the growing polymer radical to the hydrocarbon molecules. The chain transfer constant is determined to be equal to 1 x 10 -2 . (author)

  3. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic

  4. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kostanovskiy, I.A., E-mail: kostanovskiyia@gmail.com [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Afanas’ev, V.P. [National Research University MPEI, Krasnokazarmennaya 14, 111250 Moscow (Russian Federation); Naujoks, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Mayer, M. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-07-15

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses.

  5. Hydrocarbon isotope detection by elastic peak electron spectroscopy

    International Nuclear Information System (INIS)

    Kostanovskiy, I.A.; Afanas’ev, V.P.; Naujoks, D.; Mayer, M.

    2015-01-01

    Highlights: • PCVD hydrocarbon coatings containing protium or deuterium are analyzed via NRA, ERD, XPS and EPES. • EPES analysis with modern electron energy analyzer SPECS Phoibos 225 shows a clear signal from the hydrogen isotopes. • Different primary energies and scattering angles help to quantify isotope content from EPES spectra. - Abstract: Experimental results on the hydrocarbon isotope analysis by elastic peak electron spectroscopy are presented. Amorphous hydrocarbon samples (a-C:H, a-C:D) are prepared by PCVD and analyzed by nuclear reaction analysis (NRA), elastic recoil detection analysis (ERD), X-ray photoelectron spectroscopy (XPS) and elastic peak electron spectroscopy (EPES). Electron energy spectra show a clear signal from the hydrogen isotopes deuterium and protium. Different incident energies and scattering geometries help to resolve plasmon and elastic energy losses

  6. The Electron Transport Chain: An Interactive Simulation

    Science.gov (United States)

    Romero, Chris; Choun, James

    2014-01-01

    This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…

  7. States of the electron in hydrocarbon liquids

    International Nuclear Information System (INIS)

    Mozumder, A.

    2005-01-01

    Some features of the stationary and dynamic states of the electron are critically examined. Outline of a quantum mechanical description of electron thermalization is attempted qualitatively. The effects of both the mean free path and the reaction inefficiency on electron-ion geminate escape probability are investigated by a recently developed Metropolis method. The trapped state is interpreted in terms of Anderson localization, yielding an approximate number of molecules interacting with the trapped electron

  8. Superlattice configurations in linear chain hydrocarbon binary mixtures

    Indian Academy of Sciences (India)

    monoclinic, monoclinic-monoclinic) are realizable, because of discrete orientational changes in the alignment of molecules of -C28H58 hydrocarbon, through an angle , where = 1, 2, 3 … and angle has an average value of 3.3°.

  9. Electron microscopy of hydrocarbon production in parthenium argentatum (guayule)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thomas E. [Univ. of California, Berkeley, CA (United States)

    1977-11-01

    The electron microscope was used to study the biological processes involved in hydrocarbon production. The little desert shrub Guayule (Parthenium argentatum) was selected for study. This shrub can produce hydrocarbons (rubber) in concentrations up to 1/4 of its dry weight. It grows on semi-arid land and has been extensively studied. The potential of Guayule is described in detail. Results of an investigation into the morphology of Guayule at the electron microscope level are given. Experiments, which would allow the biosynthesis of hydrocarbon in Guayule to be followed, were designed. In order to do this, knowledge of the biochemistry of rubber formation was used to select a tracer, mevalonic acid. Mevalonic acid is the precursor of all the terpenoids, a large class of hydrocarbons which includes rubber. It was found that when high enough concentrations of mevalonic acid are administered to seedling Guayule plants, build-ups of metabolized products are found within the chloroplasts of the seedlings. Also, tritium labeled mevalonic acid was used as a precursor, and its metabolic progress was followed by using the technique of electron microscope autoradiography. The results of these experiments also implicated chloroplasts of the Guayule plant in hydrocarbon production. The final task was the development of a system to produce three-dimensional stereo reconstructions of organelles suspected of involvement in hydrocarbon biosynthesis in Guayule. The techniques are designed to reconstruct an object from serial sections of that object. The techniques use stereo imaging both to abstract information for computer processing, and also in the computer produced reconstruction.

  10. Effect of hydrocarbon chain length of aliphatic diluents on hydrodynamic properties of irradiated solutions of extractant

    International Nuclear Information System (INIS)

    Gumenyuk, V.E.; Pribush, A.G.; Egorov, G.F.

    1990-01-01

    To optimize the composition of n-paraffin mixtures with different molecular weight, used as a diluent (D) of extractant during extraction reprocessing of spent fuel, interrelation between D hydrocarbon chain length and change in hydrodynamic properties of extraction mixture on D basis depending on the dose has been considered. It is shown that the value of threshold dose loading (D crit ), at which a sharp change in hydrodynamic properties of tri-n-butyl phosphate solutions in D is observed, decreases with hydrocarbon chain length growth. Empiric ratio relating D crit value and the number of carbon atoms of D is obtained

  11. Superlattice configurations in linear chain hydrocarbon binary mixtures

    Indian Academy of Sciences (India)

    Unknown

    Long-chain alkanes; binary mixtures; superlattices; discrete orientational changes. 1. Introduction ... tem and a model of superlattice configuration was proposed4, in terms of .... C18 system,4 the angle with value = 3⋅3° was seen to play an ...

  12. Volatile Short-chain Chlorinated Hydrocarbons in the Groundwater of the City of Zagreb

    Directory of Open Access Journals (Sweden)

    Marijanović-Rajčić, M.

    2008-01-01

    Full Text Available The aim of the study was to assess the quality of the groundwater sampled from private wells and the public water-supply system in terms of estimating the contamination caused by short-chain chlorinated hydrocarbons, as well as to estimate the exposure of the citizens dwelling in different suburbs to these pollutants of their drinking water (Fig. 1. The aim of the study was also to determine which suburb is supplied through the public water-supply system with water originating from the Sašnak spring that is contaminated with volatile chlorinated short-chain hydrocarbons.Drinking water samples were taken from 3 private wells and 1 public water-supply system situated in 3 Zagreb suburbs - Pešćenica, Trnje, and Trešnjevka. The sampling was carried out during 2003 and was undertaken on a seasonal basis. Short-chain chlorinated hydrocarbons - 1,1,1-trichloroethane, carbon tetrachloride, 1,1,2-trichloroethene and 1,1,2,2-tetrachloroethene - were determined by gas chromatography, following "liquid-liquid extraction" in pentane. For that purpose, we applied the gas chromatograph equipped with an electron-capture detector, thermo-programmable operations, and a suitable capillary column. The technique applied was that of split-injection.The groundwater of the City of Zagreb was found to be contaminated with volatile chlorinated hydrocarbons. The concentration level of 1,1,1-trichloroethane, determined in most of the samples, was found to be low (Fig. 2. On the other hand, 1,1,2-trichloroethene was present in all samples in concentrations of about 1 µg l-1- (Fig. 3. Only the drinking water samples taken from private wells in the suburb of Trnje contained somewhat higher mass concentrations of 1,1,1-trichloroethane, with the peak value of 19.03 µg l-1, measured in the winter season. In the samples taken from private wells in Trnje, the mass concentrations of 1,1,2,2-tetrachloroethene rangedfrom 15.30 µg l-1 to 18.65 µg l-1, as measured in autumn

  13. Vacuum ultraviolet spectroscopy of some hydrocarbons by electron impact technique

    International Nuclear Information System (INIS)

    Azevedo e Souza, A.C. de.

    1985-07-01

    A detailed description of the construction and operation of the electron impact spectrometer of the Electron Impact Laboratory at the Chemistry Institute of Federal University of Rio de Janeiro are presented. The main characteristics of this spectrometer are: incident energy from 0.5 to 3.0 KeV; angular range from -60 0 to + 60 0 ; energy loss from 0 to 500 eV; energy resolution from 0.5 to 2.5 eV and; electron velocity analyser equal to electrostatic (Mollenstedt type. The data acquisition system is based on a microcomputer Motorola; recently an APPLE II system has been incorporated to the spectrometer. Electron energy loss spectra for the nitrogen molecule as well as for some hydrocarbons (C 2 H 6 , C 2 H 4 , C 2 H 2 ) have been obtained. The data were converted into double differential cross sections and generalized oscillator strenghts. (author) [pt

  14. Process for the selective cracking of straight-chained and slightly branched hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gorring, R L; Shipman, G F

    1975-01-23

    The invention describes a method for the selective (hydro) cracking of petroleum materials, containing normal straight-chained and/or slightly branched-chained hydrocarbons. The mixture is brought into contact with a selective, crystalline alumino silicate zeolite cracking catalyst housing a silicon oxide/aluminum oxide ratio of at least about 12 and a constraint index of about 1 to 12 under cracking conditions. A zeolite catalyst with a crystal size of up to 0.05 ..mu.. is used. Solidification point and viscosity in particular of oils are to be lowered through the catalytic dewaxing.

  15. Programmable Self-assembly of Hydrocarbon-capped Nanoparticles: Role of Chain Conformations

    Science.gov (United States)

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    Nanoparticle superlattices (NPS), i.e. crystalline arrangements of nanoparticles, are materials with fascinating structures, which in many cases are not possible to attain from simple atoms or molecules. They also span a wide range of possible applications such as metamaterials, new energy sources, catalysis, and many others. In this talk, we present a theoretical and computational description of the self-assembly of nanoparticles with hydrocarbons as capping ligands. Usually, these systems have been described with hard sphere packing models. In this talk, we show that the conformations of the hydrocarbon chains play a fundamental role in determining the equilibrium phases, including and especially in binary systems. The work of CW was supported by a DOE-SULI internship from May-December 2016, and by NSF, DMR-CMMT 1606336 CDS&E: Design Principles for Ordering Nanoparticles into Super-crystals after January 1st.

  16. Electron localization in liquid hydrocarbons: The Anderson model

    International Nuclear Information System (INIS)

    Hug, Gordon L.; Mozumder, A.

    2008-01-01

    Anderson's model is applied for initial localization in liquid hydrocarbons (particularly n-alkanes) in conjunction with certain results of scaling theory. Medium connectivity is calculated using experimental X-ray data on liquid structure, from which critical disorder (W/V) c is computed, where W is diagonal disorder and V is the transfer energy. Actual W prevailing in the liquid is computed from anisotropic molecular polarizability. V is estimated by a heuristic procedure originating in scaling theory. These values are used to compute the percentage of initially delocalized states available for low-energy electrons in alkane liquids. This percentage decreases monotonically from methane (100%) to n-pentane and beyond (0%). In ethane and propane, the initial states are highly delocalized (97.6% and 83.9%, respectively). Subsequent trapping changes the situation as evidenced in mobility studies. Butane presents a partially, intermediate delocalized case (53.2%)

  17. Volatile Short-chain Chlorinated Hydrocarbons in the Groundwater of the City of Zagreb

    OpenAIRE

    Marijanović-Rajčić, M.; Senta, A.

    2008-01-01

    The aim of the study was to assess the quality of the groundwater sampled from private wells and the public water-supply system in terms of estimating the contamination caused by short-chain chlorinated hydrocarbons, as well as to estimate the exposure of the citizens dwelling in different suburbs to these pollutants of their drinking water (Fig. 1). The aim of the study was also to determine which suburb is supplied through the public water-supply system with water originating from the Sašna...

  18. Melatonin and the electron transport chain.

    Science.gov (United States)

    Hardeland, Rüdiger

    2017-11-01

    Melatonin protects the electron transport chain (ETC) in multiple ways. It reduces levels of ·NO by downregulating inducible and inhibiting neuronal nitric oxide synthases (iNOS, nNOS), thereby preventing excessive levels of peroxynitrite. Both ·NO and peroxynitrite-derived free radicals, such as ·NO 2 , hydroxyl (·OH) and carbonate radicals (CO 3 · - ) cause blockades or bottlenecks in the ETC, by ·NO binding to irons, protein nitrosation, nitration and oxidation, changes that lead to electron overflow or even backflow and, thus, increased formation of superoxide anions (O 2 · - ). Melatonin improves the intramitochondrial antioxidative defense by enhancing reduced glutathione levels and inducing glutathione peroxidase and Mn-superoxide dismutase (Mn-SOD) in the matrix and Cu,Zn-SOD in the intermembrane space. An additional action concerns the inhibition of cardiolipin peroxidation. This oxidative change in the membrane does not only initiate apoptosis or mitophagy, as usually considered, but also seems to occur at low rate, e.g., in aging, and impairs the structural integrity of Complexes III and IV. Moreover, elevated levels of melatonin inhibit the opening of the mitochondrial permeability transition pore and shorten its duration. Additionally, high-affinity binding sites in mitochondria have been described. The assumption of direct binding to the amphipathic ramp of Complex I would require further substantiation. The mitochondrial presence of the melatonin receptor MT 1 offers the possibility that melatonin acts via an inhibitory G protein, soluble adenylyl cyclase, decreased cAMP and lowered protein kinase A activity, a signaling pathway shown to reduce Complex I activity in the case of a mitochondrial cannabinoid receptor.

  19. Influence of dispersants on trophic transfer of petroleum hydrocarbons in a marine food chain

    International Nuclear Information System (INIS)

    Wolfe, M. F.; Schwartz, G. J. B.; Singaram, S.; Tjeerdema, R. S.

    1997-01-01

    Experiments were conducted to determine the impact of dispersing agents on petroleum hydrocarbons (PH) bioavailability and trophic transfer in primary levels of a marine food chain. Uptake, bioaccumulation and metabolic transformation of a model PH, ( 1 4C)naphthalene, were measured and compared with Prudhoe Bay Crude Oil (PBCO) dispersed with Corexit 9527, and undispersed preparations of PBCO. The model food chain consisted of a primary algae producer and a primary rotifer consumer. Results showed that uptake of naphthalene increased significantly in the presence of a dispersant in algae. A significant increase in uptake was also recorded in rotifers via trophic transfer. Trophic transfer played a significant, sometimes even dominant, role in uptake and bioaccumulation. 27 refs., 6 figs

  20. Influence of dispersants on trophic transfer of petroleum hydrocarbons in a marine food chain

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, M.; Tjeerdema, R. [Univ. of California, Santa Cruz, CA (United States). Dept. of Chemistry and Biochemistry; Sowby, M. [California Dept. of Fish and Game, Sacramento, CA (United States)

    1995-12-31

    When crude oil is accidentally released into the ocean, it threatens many levels of marine life. Intervention, in the form of chemical dispersing agents, alters the normal behavior of petroleum hydrocarbons (PH) by increasing their functional water solubility and the extent of their exposure to sub-surface organisms. Dispersing agents may modify bioavailability as a result of altered interactions between dispersed PH droplets and organismal cell membranes.The objective of this research was to determine the impact of dispersing agents on PH bioavailability and trophic transfer in primary levels of a marine food chain. Uptake, bioaccumulation, depuration, and metabolic transformation of a model PH, {sup 14}C-naphthalene, were measured and compared for Prudhoe Bay Crude Oil (PBCO) dispersed with Corexit 9527 and undispersed preparations of the water-accommodated fractions (WAF) of PBCO at two salinities and temperatures. The model food chain consisted of Isochrysis galbana and Brachionus plicatilis. Direct aqueous exposure was compared with combined aqueous and dietary exposure. Fractionation and identification of metabolites was done by HPLC co-chromatography with analytical standards, and quantitation was done by liquid scintillation counting. GC-FID characterization of WAF and dispersed oil (DO) preparations shows higher concentrations of petroleum hydrocarbons and a greater number of individual constituents in the dispersed oil preparations.

  1. Influence of dispersants on trophic transfer of petroleum hydrocarbons in a marine food chain

    International Nuclear Information System (INIS)

    Wolfe, M.; Tjeerdema, R.

    1995-01-01

    When crude oil is accidentally released into the ocean, it threatens many levels of marine life. Intervention, in the form of chemical dispersing agents, alters the normal behavior of petroleum hydrocarbons (PH) by increasing their functional water solubility and the extent of their exposure to sub-surface organisms. Dispersing agents may modify bioavailability as a result of altered interactions between dispersed PH droplets and organismal cell membranes.The objective of this research was to determine the impact of dispersing agents on PH bioavailability and trophic transfer in primary levels of a marine food chain. Uptake, bioaccumulation, depuration, and metabolic transformation of a model PH, 14 C-naphthalene, were measured and compared for Prudhoe Bay Crude Oil (PBCO) dispersed with Corexit 9527 and undispersed preparations of the water-accommodated fractions (WAF) of PBCO at two salinities and temperatures. The model food chain consisted of Isochrysis galbana and Brachionus plicatilis. Direct aqueous exposure was compared with combined aqueous and dietary exposure. Fractionation and identification of metabolites was done by HPLC co-chromatography with analytical standards, and quantitation was done by liquid scintillation counting. GC-FID characterization of WAF and dispersed oil (DO) preparations shows higher concentrations of petroleum hydrocarbons and a greater number of individual constituents in the dispersed oil preparations

  2. Electron transport chain in a thermotolerant yeast.

    Science.gov (United States)

    Mejía-Barajas, Jorge A; Martínez-Mora, José A; Salgado-Garciglia, Rafael; Noriega-Cisneros, Ruth; Ortiz-Avila, Omar; Cortés-Rojo, Christian; Saavedra-Molina, Alfredo

    2017-04-01

    Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨ m ), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca 2+ ions (Ca 2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30 o , while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.

  3. Raman spectra of long chain hydrocarbons: anharmonic calculations, experiment and implications for imaging of biomembranes.

    Science.gov (United States)

    Šebek, Jiří; Pele, Liat; Potma, Eric O; Gerber, R Benny

    2011-07-28

    First-principles anharmonic vibrational calculations are carried out for the Raman spectrum of the C-H stretching bands in dodecane, and for the C-D bands in the deuterated molecule. The calculations use the Vibrational Self-Consistent Field (VSCF) algorithm. The results are compared with liquid-state experiments, after smoothing the isolated-molecule sharp-line computed spectra. Very good agreement between the computed and experimental results is found for the two systems. The combined theoretical and experimental results provide insights into the spectrum, elucidating the roles of symmetric and asymmetric CH(3) and CH(2) hydrogenic stretches. This is expected to be very useful for the interpretation of spectra of long-chain hydrocarbons. The results show that anharmonic effects on the spectrum are large. On the other hand, vibrational degeneracy effects seem to be rather modest at the resolution of the experiments. The degeneracy effects may have more pronounced manifestations in higher-resolution experiments. The results show that first-principles anharmonic vibrational calculations for hydrocarbons are feasible, in good agreement with experiment, opening the way for applications to many similar systems. The results may be useful for the analysis of CARS imaging of lipids, for which dodecane is a representative molecule. It is suggested that first-principles vibrational calculations may be useful also for CARS imaging of other systems. This journal is © the Owner Societies 2011

  4. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  5. Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation

    Science.gov (United States)

    Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong

    2003-05-01

    Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.

  6. Electronic Conduction through Atomic Chains, Quantum Well and Quantum Wire

    International Nuclear Information System (INIS)

    Sharma, A. C.

    2011-01-01

    Charge transport is dynamically and strongly linked with atomic structure, in nanostructures. We report our ab-initio calculations on electronic transport through atomic chains and the model calculations on electron-electron and electron-phonon scattering rates in presence of random impurity potential in a quantum well and in a quantum wire. We computed synthesis and ballistic transport through; (a) C and Si based atomic chains attached to metallic electrodes, (b) armchair (AC), zigzag (ZZ), mixed, rotated-AC and rotated-ZZ geometries of small molecules made of 2S, 6C and 4H atoms attaching to metallic electrodes, and (c) carbon atomic chain attached to graphene electrodes. Computed results show that synthesis of various atomic chains are practically possible and their transmission coefficients are nonzero for a wide energy range. The ab-initio calculations on electronic transport have been performed with the use of Landauer-type scattering formalism formulated in terms of Grben's functions in combination with ground-state DFT. The electron-electron and electron-phonon scattering rates have been calculated as function of excitation energy both at zero and finite temperatures for disordered 2D and 1D systems. Our model calculations suggest that electron scattering rates in a disordered system are mainly governed by effective dimensionality of a system, carrier concentration and dynamical screening effects.

  7. Evaluating the Role of Intermediaries in the Electronic Value Chain.

    Science.gov (United States)

    Janssen, Marijn; Sol, Henk G.

    2000-01-01

    Presents a business engineering methodology that supports the identification of electronic intermediary roles in the electronic value chain. The goal of this methodology is to give stakeholders insight into their current, and possible alternative, situations by means of visualization, to evaluate the added value of business models using…

  8. Electron ionization of open/closed chain isocarbonic molecules relevant in plasma processing: Theoretical cross sections

    International Nuclear Information System (INIS)

    Patel, Umang R.; Joshipura, K. N.; Pandya, Siddharth H.; Kothari, Harshit N.

    2014-01-01

    In this paper, we report theoretical electron impact ionization cross sections from threshold to 2000 eV for isocarbonic open chain molecules C 4 H 6 , C 4 H 8 , C 4 F 6 including their isomers, and closed chain molecules c-C 4 H 8 and c-C 4 F 8 . Theoretical formalism employed presently, viz., Complex Scattering Potential-ionization contribution method has been used successfully for a variety of polyatomic molecules. The present ionization calculations are very important since results available for the studied targets are either scarce or none. Our work affords comparison of C 4 containing hydrocarbon versus fluorocarbon molecules. Comparisons of the present ionization cross sections are made wherever possible, and new ionization data are also presented

  9. Strongly correlated electrons on two coupled chains

    International Nuclear Information System (INIS)

    Weihong, Z.; Oitmaa, J.; Hamer, C.J.

    2000-01-01

    Full text: The discovery of materials containing S = 1/2 ions which form a 2-leg ladder structure has led to much current research on ladder systems. Pure spin ladders show an unexpected difference between odd-legged ladders (including the single chain) which are gapless with long-range correlations and even-legged ladders which have a spin gap and short range correlations. Even more interesting behaviour occurs when these systems are doped, creating a system of strongly correlated mobile holes, as in the cuprate superconductors. The simplest models in this context are the Hubbard model and the t-J model. Considerable work has been reported on both of these models, using both numerical calculations and approximate analytic theories. We have used series expansion methods to study both of these systems. Our results, in some cases, confirm those of other approaches. In other cases we are able to probe regions of the phase diagram inaccessible to other methods, or to obtain results of increased precision. In this paper we focus on:- 1. The energy and dispersion relation of 1-hole states. 2.The existence of a 2-hole bound state and its energy and dispersion. 3. Spin and charge gaps and the question of phase separation

  10. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  11. Engineering electronic states of periodic and quasiperiodic chains by buckling

    Science.gov (United States)

    Mukherjee, Amrita; Nandy, Atanu; Chakrabarti, Arunava

    2017-07-01

    The spectrum of spinless, non-interacting electrons on a linear chain that is buckled in a non-uniform, quasiperiodic manner is investigated within a tight binding formalism. We have addressed two specific cases, viz., a perfectly periodic chain wrinkled in a quasiperiodic Fibonacci pattern, and a quasiperiodic Fibonacci chain, where the buckling also takes place in a Fibonacci pattern. The buckling brings distant neighbors in the parent chain to close proximity, which is simulated by a tunnel hopping amplitude. It is seen that, in the perfectly ordered case, increasing the strength of the tunnel hopping (that is, bending the segments more) absolutely continuous density of states is retained towards the edges of the band, while the central portion becomes fragmented and host subbands of narrowing widths containing extended, current carrying states, and multiple isolated bound states formed as a result of the bending. A switching ;on; and ;off; of the electronic transmission can thus be engineered by buckling. On the other hand, in the second example of a quasiperiodic Fibonacci chain, imparting a quasiperiodic buckling is found to generate continuous subband(s) destroying the usual multifractality of the energy spectrum. We present exact results based on a real space renormalization group analysis, that is corroborated by explicit calculation of the two terminal electronic transport.

  12. Anticancer Drugs Targeting the Mitochondrial Electron Transport Chain

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Jakub; Dong, L.-F.; Ralph, S.J.; Neužil, Jiří

    2011-01-01

    Roč. 15, č. 12 (2011), s. 2951-2974 ISSN 1523-0864 R&D Projects: GA AV ČR(CZ) KAN200520703 Institutional research plan: CEZ:AV0Z50520701 Keywords : Targets for anticancer drugs * mitochondrial electron transport chain * mitocans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.456, year: 2011

  13. Subgap Two-Photon States in Polycyclic Aromatic Hydrocarbons: Evidence for Strong Electron Correlations

    OpenAIRE

    Aryanpour, K.; Roberts, A.; Sandhu, A.; Rathore, R.; Shukla, A.; Mazumdar, S.

    2013-01-01

    Strong electron correlation effects in the photophysics of quasi-one-dimensional $\\pi$-conjugated organic systems such as polyenes, polyacetylenes, polydiacetylenes, etc., have been extensively studied. Far less is known on correlation effects in two-dimensional $\\pi$-conjugated systems. Here we present theoretical and experimental evidence for moderate repulsive electron-electron interactions in a number of finite polycyclic aromatic hydrocarbon molecules with $D_{6h}$ symmetry. We show that...

  14. Coupled motions direct electrons along human microsomal P450 Chains.

    Directory of Open Access Journals (Sweden)

    Christopher R Pudney

    2011-12-01

    Full Text Available Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR to all microsomal cytochrome P450s (CYPs. Our hypothesis is that tight coupling of motion with enzyme chemistry can signal "ready and waiting" states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals "ready and waiting" conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron

  15. A novel high-performance thin layer chromatography method for quantification of long chain aliphatic hydrocarbons from Cissus quadrangularis

    Directory of Open Access Journals (Sweden)

    Vandana Jain

    2016-08-01

    Full Text Available Context: A high-performance thin layer chromatography (HPTLC is an analytical technique, which can be used for the determination of constituents or marker components in various parts of the plants. Earlier studies have estimated phytoconstituents from the stem and other aerial plant parts of Cissus quadrangularis Linn. Estimation of hydrocarbons can also be successfully done using HPTLC technique using suitable derivatization. Aims: To develop and validate a simple and rapid method for the estimation of long chain aliphatic hydrocarbons from the leaves of C. quadrangularis using HPTLC technique. Methods: Precoated silica gel 60 F254 plates were used as stationary phase. The mobile phase used was hexane (100 %. The detection of spots was carried out using berberine sulphate as detecting reagent. Results: The method was validated in terms of linearity, sensitivity, accuracy, and precision. Linearity range was found to be 2-10 µg/mL, limit of detection 0.127 µg/mL, and limit of quantification 0.384 µg/mL. Conclusions: A novel, simple, accurate, precise and sensitive HPTLC method has been developed and validated for the estimation of long chain aliphatic hydrocarbons obtained from the leaves of C. quadrangularis Linn.

  16. Carbon/Hydrogen ratio determination in hydrocarbons and its mixtures by electron backscattering technique

    International Nuclear Information System (INIS)

    Padron, I.; Desdin, L.F.; Navarro, A.; Fuentes, M.

    1996-01-01

    A method carbon/hydrogen ratio (C/H) determination in hydrocarbons and its mixtures was improved using the electron backscattering technique. Besides the hetero atoms (S,O and N) influence in petroleum is studied for being able to determinate the C/H ratio in cuban petroleum with high sulphur contents

  17. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin; Cheng, Yan; Sanvito, Stefano; Chen, Xiang-Rong

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green's function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  18. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green\\'s function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  19. Novel extension of the trap model for electrons in liquid hydrocarbons

    International Nuclear Information System (INIS)

    Jamal, M.A.; Watt, D.E.

    1981-01-01

    A novel extension for the trap model of electron mobilities in liquid hydrocarbons is described. The new model assumes: (a) two main types of electron trap exist in liquid hydrocarbons, one is deep and the second is shallow; (b) these traps are the same in all liquid alkanes. The difference in electron mobilities in different alkanes is accounted for by the difference in the frequency of electron trapping in each state. The probability of trapping in each state has been evaluated from the known structures of the normal alkanes. Electron mobilities in normal alkanes (C 3 -C 10 ) show a very good correlation with the probability of trapping in deep traps, suggesting that the C-C bonds are the main energy sinks of the electron. A mathematical formula which expresses the electron mobility in terms of the probability of trapping in deep traps has been found from the Arrhenius relationship between electron mobilities and probability of trapping. The model has been extended for branched alkanes and the relatively high electron mobilities in globular alkanes has been explained by the fact that each branch provides some degree of screening to the skeleton structure of the molecule resulting in reduction of the probability of electron interaction with the molecular skeleton. (author)

  20. Use of nuclear magnetic resonance of hydrogen in the characterization of saturated hydrocarbonic chains

    International Nuclear Information System (INIS)

    Costa Neto, A.; Soares, V.L.P.; Costa Neto, C.

    1979-01-01

    Alkanes and cycloalkanes are characterized by a methyl-methylene-methine groups proportion, the percentual absorption in prefixed regions and the pattern of the spectrum of nuclear magnetic resonance of hydrogen. The GPI is calculated from the contribution of the areas corresponding to prefixed regions of the hydrogen magnetic resonance spectra (60 Mc). These regions are (for the saturated hydrocarbons): 0,5-1,05ppm (X), 1,05ppm (Y) and 1,50-2,00ppm (Z). The validity of the index was verified for the homologous series of linear hydrocarbons and methyl-, dimethyl-, ethyl-, cyclopentyl- and cyclohexyl-branched hydrocarbons. Its application to shale oil chemistry (xistoquimica) is discussed. (author) [pt

  1. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  2. Phase behavior of fluorocarbon and hydrocarbon double-chain hydroxylated and galactosylated amphiphiles and bolaamphiphiles. Long-term shelf-stability of their liposomes.

    Science.gov (United States)

    Clary, L; Gadras, C; Greiner, J; Rolland, J P; Santaella, C; Vierling, P; Gulik, A

    1999-06-01

    This paper describes the morphological characterization, by freeze-fracture electron microscopy, and the thermotropic phase behavior, by differential scanning calorimetry and/or X-ray scattering, of aqueous dispersions of various hydroxylated and galactosylated double-chain amphiphiles and bolaamphiphiles, several of them containing one or two hydrophobic fluorocarbon chains. Colloidal systems are observed in water with the hydroxylated hydrocarbon or fluorocarbon bolaamphiphiles only when they are dispersed with a co-amphiphile such as rac-1,2-dimyristoylphosphatidylcholine (DMPC) or rac-1,2-distearoylphosphatidylcholine (DSPC). Liposomes are formed providing the relative content of bolaamphiphiles does not exceed 20% mol. Most of these liposomes can be thermally sterilized and stored at room temperature for several months without any significant modification of their size and size distribution. The hydrocarbon galactosylated bolaamphiphile HO[C24][C12]Gal forms in water a lamellar phase (the gel to liquid-crystal phase transition is complete at 45 degrees C) and a Im3m cubic phase above 47 degrees C. The fluorocarbon HO[C24][F6C5]Gal analog displays a more complex and metastable phase behavior. The fluorinated non-bolaform galactosylated [F8C7][C16]AEGal and SerGal amphiphiles form lamellar phases in water. Low amounts (10% molar ratio) of the HO[C24][F6C5]Gal or HO[C24][C12]Gal bolaamphiphiles or of the single-headed [F8C7][C16]AEGal improve substantially the shelf-stability of reference phospholipon/cholesterol 2/1 liposomes. These liposomes when co-formulated with a single-headed amphiphile from the SerGal series are by far less stable.

  3. Tuning electronic properties of graphene nanoflake polyaromatic hydrocarbon through molecular charge-transfer interactions

    Science.gov (United States)

    Sharma, Vaishali; Dabhi, Shweta D.; Shinde, Satyam; Jha, Prafulla K.

    2018-05-01

    By means of first principles calculation we have tuned the electronic properties of graphene nanoflake polyaromatic hydrocarbon via molecular charge transfer. Acceptor/donor Tetracyanoquinodimethane (TCNQ) and Tetrathiafulvalene (TTF) organic molecules are adsorbed on polyaromatic hydrocarbons (PAH) in order to introduce the charge transfer. The substrate's n- or p- type nature depends on the accepting/donating behavior of dopant molecules. Two different classes of PAH (extended form of triangulene) namely Bow-tie graphene nanoflake (BTGNF) and triangular zigzag graphene nanoflake (TZGNF). It is revealed that all the TCNQ and TTF modified graphene nanoflakes exhibit significant changes in HOMO-LUMO gap in range from 0.58 eV to 0.64 eV and 0.01 eV to 0.05 eV respectively. The adsorption energies are in the range of -0.05 kcal/mol to -2.6 kcal/mol. The change in work function is also calculated and discussed, the maximum charge transfer is for TCNQ adsorbed BTGNF. These alluring findings in the tuning of electronic properties will be advantageous for promoting graphene nanoflake polyaromatic hydrocarbon for their applications in electronic devices.

  4. Coincidence Doppler broadening study on hydrocarbons with pi and sigma valence electrons: positronium correction

    International Nuclear Information System (INIS)

    Djourelov, N.; Suzuki, T.; Yu, R.S.; Ito, Y.

    2005-01-01

    The coincidence Doppler broadening (CDB) technique was applied to study the electron momentum distribution in anthracene, diphenyl, naphthalene, and polystyrene. A method for separation of the positron and positronium (Ps) components from the Doppler-broadened annihilation line (DBAL) was developed further to be applicable to hydrocarbons with different π and σ valence electron distributions. This method allows extraction of the electron momentum distribution (EMD) from DBAL for samples when Ps formation occurs. The annihilation on π valence electrons was detected as broadening of the EMD compared to that obtained for a polymer sample only with σ valence electrons. The broadening appeared as a significant change in the shape of the CDB ratio of the corresponding positronium-corrected curves: a slight enhancement above the unity line in the low-momentum region and a drop in the momentum region, 10-20x10 -3 m o c

  5. 6-Electron exchange function as a simple estimator of aromaticity in large polyaromatic hydrocarbons

    Science.gov (United States)

    Mandado, Marcos; Mosquera, Ricardo A.

    2009-02-01

    The 6-electron exchange function (6-EEF) is defined and calculated for a series of large polyaromatic hydrocarbons (PAHs). It is shown that the 6-EEF, computed at selected points in space, is able to reproduce in PAHs the same relative values as the multicenter electron delocalization indices with an affordable computational cost and without using any definition of the atom in the molecule. Calculations for a series of D 6h PAHs ranging from C 6H 6 to C 216H 36 are performed. The results can be extrapolated to even larger PAHs and allow predicting the behaviour of a benzene ring in an infinite sheet of graphite.

  6. Changes in mitochondrial electron transport chain activity during insect metamorphosis.

    Science.gov (United States)

    Chamberlin, M E

    2007-02-01

    The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed by programmed cell death during larval-pupal metamorphosis. The death of the epithelium begins after commitment to pupation, and the oxygen consumption of isolated midgut mitochondria decreases soon after commitment. To assess the role of the electron transport chain in this decline in mitochondrial function, the maximal activities of complexes I-IV of the respiratory chain were measured in isolated midgut mitochondria. Whereas there were no developmental changes in the activity of complex I or III, activities of complexes II and IV [cytochrome c oxidase (COX)] were higher in mitochondria from precommitment than postcommitment larvae. This finding is consistent with a higher rate of succinate oxidation in mitochondria isolated from precommitment larvae and reveals that the metamorphic decline in mitochondrial respiration is due to the targeted destruction or inactivation of specific sites within the mitochondria, rather than the indiscriminate destruction of the organelles. The COX turnover number (e- x s(-1) x cytochrome aa3(-1)) was greater for the enzyme from precommitment than postcommitment larvae, indicating a change in the enzyme structure and/or its lipid environment during the early stages of metamorphosis. The turnover number of COX in the intact mitochondria (in organello COX) was also lower in postcommitment larvae. In addition to changes in the protein or membrane phospholipids, the metamorphic decline in this rate constant may be a result of the observed loss of endogenous cytochrome c.

  7. Chemical models of chains electron transfer in hydroxylating ferment systems

    International Nuclear Information System (INIS)

    Akhrem, A.A.; Kiselev, P.A.; Metelitsa, D.I.

    1977-01-01

    The rate constants are measured of consumption of nicotineamidedinucleotide (NAD-N) during its oxidation by molecular oxygen with the participation of Ti 4+ , Sn 4+ , Cu 2+ , Fe 3+ , VO 2+ , and Ce 4+ ions in mixtures of acetonitrile with water and of dioxane with water taken in a volume ratio of 1:1 (46 deg C). The kinetics of oxidation of NAD-N with the participation of Ti 4+ at 37 deg C in a water-acetonitrile medium is studied in detail. The hydroxylating capacity of the system NAD-N - Ti 4+ - O 2 with respect to naphthalene is proved. The reaction mechanism and its relationship with the microsomal chains of electron transport are discussed

  8. Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation

    OpenAIRE

    Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2016-01-01

    Chain elongation is an emerging mixed culture biotechnology converting acetate into valuable biochemicals by using ethanol as an external electron donor. In this study we proposed to test another potential electron donor, methanol, in chain elongation. Methanol can be produced through the thermochemical conversion of lignocellulosic biowaste. Use of methanol in chain elongation integrates the lignocellulosic feedstocks and the thermochemical platform technologies into chain elongation. After ...

  9. Structures and electronic properties of thin-films of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Natsume, Yutaka; Minakata, Takashi; Aoyagi, Takeshi

    2009-01-01

    We report the fabrication and characterization of organic thin-film transistors (TFTs) using several polycyclic aromatic hydrocarbons (PAHs). Pentacene, ovalene, dibenzocoronene and hexabenzocoronene were deposited as organic semiconductors on silicon wafers with gold electrodes as the bottom-contact configuration of the TFTs. The pentacene TFT showed the highest field-effect mobility of more than 0.1 cm 2 /Vs in comparison with the other PAHs. The results clarified that the high field-effect mobility of the pentacene thin film is due to large grain size and intrinsic electronic properties

  10. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  11. The quasi-ballistic model of electron mobility in liquid hydrocarbons

    International Nuclear Information System (INIS)

    Mozumder, A.

    1996-01-01

    A phenomenological theory of low-mobility liquid hydrocarbons is developed which includes electron ballistic motion in the quasi-free state, in competition with diffusion and trapping. For most low-mobility liquids the theory predicts consistently the effective mobility and activation energy, in agreement with experiments, using quasi-free mobility and trap density respectively as ∼ 100 cm 2 v -1 s -1 and ∼ 10 19 cm -3 . Field dependence of mobility if theoretically of quadratic type for relatively small fields, agreeing approximately with experimental data for n-hexane. Electron scavenging with ''good'' scavengers occurs via the quasi-free state at nearly diffusion-controlled rate; however the effect of large mean free path is seen clearly. (author)

  12. Electronic properties of linear carbon chains: Resolving the controversy

    International Nuclear Information System (INIS)

    Al-Backri, Amaal; Zólyomi, Viktor; Lambert, Colin J.

    2014-01-01

    Literature values for the energy gap of long one-dimensional carbon chains vary from as little as 0.2 eV to more than 4 eV. To resolve this discrepancy, we use the GW many-body approach to calculate the band gap E g of an infinite carbon chain. We also compute the energy dependence of the attenuation coefficient β governing the decay with chain length of the electrical conductance of long chains and compare this with recent experimental measurements of the single-molecule conductance of end-capped carbon chains. For long chains, we find E g = 2.16 eV and an upper bound for β of 0.21 Å −1

  13. Using Adobe Flash Animations of Electron Transport Chain to Teach and Learn Biochemistry

    Science.gov (United States)

    Teplá, Milada; Klímová, Helena

    2015-01-01

    Teaching the subject of the electron transport chain is one of the most challenging aspects of the chemistry curriculum at the high school level. This article presents an educational program called "Electron Transport Chain" which consists of 14 visual animations including a biochemistry quiz. The program was created in the Adobe Flash…

  14. Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation

    NARCIS (Netherlands)

    Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2016-01-01

    Chain elongation is an emerging mixed culture biotechnology converting acetate into valuable biochemicals by using ethanol as an external electron donor. In this study we proposed to test another potential electron donor, methanol, in chain elongation. Methanol can be produced through the

  15. On optimal length of hydrocarbon chain of fatty-acid collectors of rare earth ions

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Sazonova, V.F.; Markina, Eh.L.

    1978-01-01

    The mechanism of the effect of the length of alkyl chain in fatty-acid collectors on the efficiency of flotation separation of the ions of rare earth elements (REE) collected by them has been investigated. REE flotation separation was studied on gadolinium chloride. Aqueous solutions of potassium caprinata, indecanate, laurate, tridecanate, myristate, pentadecanate and palmitate were used as collectors of Gd ions. The interaction of Gd ions with these compounds proceeds rapidly and is accompanied by stable colloidal solutions of Gd soaps being formed. Infrared spectra and radiograms of the sublates have been studied. It has been found that, with the number of carbon atoms in the collector molecule increasing from 10 to 16, the rate of flotation separation of Gd ions from solutions with pH 6 and 8 at first practically does not change (for potassium caprinate, undecanate and laurate), then drops sharply (potassium tridecanate and myristate), after which is again increases sharply (potassium pentadecanata and palmitate). The separation rate of Gd ions does not rise in solutions with pH 10. The nature of the sublate is shown to be determined by the solubility of the corresponing fatty acids and gadolinium soaps

  16. Lateral electron transport in monolayers of short chains at interfaces: A Monte Carlo study

    International Nuclear Information System (INIS)

    George, Christopher B.; Szleifer, Igal; Ratner, Mark A.

    2010-01-01

    Graphical abstract: Electron hopping between electroactive sites in a monolayer composed of redox-active and redox-passive molecules. - Abstract: Using Monte Carlo simulations, we study lateral electronic diffusion in dense monolayers composed of a mixture of redox-active and redox-passive chains tethered to a surface. Two charge transport mechanisms are considered: the physical diffusion of electroactive chains and electron hopping between redox-active sites. Results indicate that by varying the monolayer density, the mole fraction of electroactive chains, and the electron hopping range, the dominant charge transport mechanism can be changed. For high density monolayers in a semi-crystalline phase, electron diffusion proceeds via electron hopping almost exclusively, leading to static percolation behavior. In fluid monolayers, the diffusion of chains may contribute more to the overall electronic diffusion, reducing the observed static percolation effects.

  17. A metabolomics strategy to assess the combined toxicity of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs).

    Science.gov (United States)

    Wang, Feidi; Zhang, Haijun; Geng, Ningbo; Ren, Xiaoqian; Zhang, Baoqin; Gong, Yufeng; Chen, Jiping

    2018-03-01

    The combined toxicity of mixed chemicals is usually evaluated according to several specific endpoints, and other potentially toxic effects are disregarded. In this study, we provided a metabolomics strategy to achieve a comprehensive understanding of toxicological interactions between mixed chemicals on metabolism. The metabolic changes were quantified by a pseudotargeted analysis, and the types of combined effects were quantitatively discriminated according to the calculation of metabolic effect level index (MELI). The metabolomics strategy was used to assess the combined effects of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs) on the metabolism of human hepatoma HepG2 cells. Our data suggested that exposure to a combination of PAHs and SCCPs at human internal exposure levels could result in an additive effect on the overall metabolism, whereas diverse joint effects were observed on various metabolic pathways. The combined exposure could induce a synergistic up-regulation of phospholipid metabolism, an additive up-regulation of fatty acid metabolism, an additive down-regulation of tricarboxylic acid cycle and glycolysis, and an antagonistic effect on purine metabolism. SCCPs in the mixture acted as the primary driver for the acceleration of phospholipid and fatty acid metabolism. Lipid metabolism disorder caused by exposure to a combination of PAHs and SCCPs should be an important concern for human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Insights into the post-transcriptional regulation of the mitochondrial electron transport chain.

    Science.gov (United States)

    Sirey, Tamara M; Ponting, Chris P

    2016-10-15

    The regulation of the mitochondrial electron transport chain is central to the control of cellular homeostasis. There are significant gaps in our understanding of how the expression of the mitochondrial and nuclear genome-encoded components of the electron transport chain are co-ordinated, and how the assembly of the protein complexes that constitute the electron transport chain are regulated. Furthermore, the role post-transcriptional gene regulation may play in modulating these processes needs to be clarified. This review summarizes the current knowledge regarding the post-transcriptional gene regulation of the electron transport chain and highlights how noncoding RNAs may contribute significantly both to complex electron transport chain regulatory networks and to mitochondrial dysfunction. © 2016 The Author(s).

  19. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A. V., E-mail: ponomarev@ipc.rssi.ru [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation); Pershukov, V. A. [ROSATOM National Nuclear Corporation (Russian Federation); Smirnov, V. P. [CJSC “Nauka i Innovatsii” (Russian Federation)

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  20. Electronic Markets Selection in Supply Chain with Uncertain Demand and Uncertain Price

    Directory of Open Access Journals (Sweden)

    Fengmei Yang

    2015-01-01

    Full Text Available In recent years, more and more companies start online operation. Electronic market becomes a key component of some companies’ strategy. Supply chain management is another key component of the strategy as being adopted by an increasing number of companies. There are many interactions between electronic market and supply chain. One of the key questions is to select one type of electronic market from the view of supply chain. This paper develops some models to explore the issue of selection between public electronic market and private electronic market in three scenarios where electronic market is used for buying, for selling, and for both selling and buying, respectively. In a public electronic market, neither the supplier nor the retailer is the owner of the electronic market. However, in a private electronic market, there is an owner that is either the supplier or the retailer. Besides demand uncertainty, we take into account the price uncertainty in electronic market. We explore the conditions under which the agent of supply chain selects one certain type of electronic market by comparing expected profits of supply chain members in different scenarios. Some sensitivity analyses are conducted to explore the impact of the customer demand, electronic market retail price, and e-market use fee on the selection of electronic market. Finally, some interesting managerial and academic insights are obtained.

  1. In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope

    Directory of Open Access Journals (Sweden)

    Mark H Rummeli

    2018-05-01

    Full Text Available The excitement of graphene (as well as 2D materials in general has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM. This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.

  2. One-step production of long-chain hydrocarbons from waste-biomass-derived chemicals using bi-functional heterogeneous catalysts.

    Science.gov (United States)

    Wen, Cun; Barrow, Elizabeth; Hattrick-Simpers, Jason; Lauterbach, Jochen

    2014-02-21

    In this study, we demonstrate the production of long-chain hydrocarbons (C8+) from 2-methylfuran (2MF) and butanal in a single step reactive process by utilizing a bi-functional catalyst with both acid and metallic sites. Our approach utilizes a solid acid for the hydroalkylation function and as a support as well as a transition metal as hydrodeoxygenation catalyst. A series of solid acids was screened, among which MCM-41 demonstrated the best combination of activity and stability. Platinum nanoparticles were then incorporated into the MCM-41. The Pt/MCM-41 catalyst showed 96% yield for C8+ hydrocarbons and the catalytic performance was stable over four reaction cycles of 20 hour each. The reaction pathways for the production of long-chain hydrocarbons is probed with a combination of infrared spectroscopy and steady-state reaction experiments. It is proposed that 2MF and butanal go through hydroalkylation first on the acid site followed by hydrodeoxygenation to produce the hydrocarbon fuels.

  3. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Geisler, Daniela A; Møller, Ian Max

    2008-01-01

    The electron transport chain in mitochondria of different organisms contains a mixture of common and specialised components. The specialised enzymes form branches to the universal electron path, especially at the level of ubiquinone, and allow the chain to adjust to different cellular and metabolic...... and their consequences for the understanding of electron transport and redundancy of electron paths...... requirements. In plants, specialised components have been known for a long time. However, recently, the known number of plant respiratory chain dehydrogenases has increased, including both components specific to plants and those with mammalian counterparts. This review will highlight the novel branches...

  4. Partitioning of electron flux between the respiratory chains of the yeast Candida parapsilosis: parallel working of the two chains.

    Science.gov (United States)

    Guerin, M G; Camougrand, N M

    1994-02-08

    Partitioning of the electron flux between the classical and the alternative respiratory chains of the yeast Candida parapsilosis, was measured as a function of the oxidation rate and of the Q-pool redox poise. At low respiration rate, electrons from external NADH travelled preferentially through the alternative pathway as indicated by the antimycin A-insensitivity of electron flow. Inhibition of the alternative pathway by SHAM restored full antimycin A-sensitivity to the remaining electro flow. The dependence of the respiratory rate on the redox poise of the quinone pool was investigated when the electron flux was mediated either by the main respiratory chain (growth in the absence of antimycin A) or by the second respiratory chain (growth in the presence of antimycin A). In the former case, a linear relationship was found between these two parameters. In contrast, in the latter case, the relationship between Q-pool reduction level and electron flux was non-linear, but it could be resolved into two distinct curves. This second quinone is not reducible in the presence of antimycin A but only in the presence of high concentrations of myxothiazol or cyanide. Since two quinone species exist in C. parapsilosis, UQ9 and Qx (C33H54O4), we hypothesized that these two curves could correspond to the functioning of the second quinone engaged during the alternative pathway activity. Partitioning of electrons between both respiratory chains could occur upstream of complex III with the second chain functioning in parallel to the main one, and with the additional possibility of merging into the main one at the complex IV level.

  5. Exact solution of a coupled spin–electron linear chain composed of localized Ising spins and mobile electrons

    International Nuclear Information System (INIS)

    Čisárová, Jana; Strečka, Jozef

    2014-01-01

    Exact solution of a coupled spin–electron linear chain composed of localized Ising spins and mobile electrons is found. The investigated spin–electron model is exactly solvable by the use of a transfer-matrix method after tracing out the degrees of freedom of mobile electrons delocalized over a couple of interstitial (decorating) sites. The exact ground-state phase diagram reveals an existence of five phases with different number of mobile electrons per unit cell, two of which are ferromagnetic, two are paramagnetic and one is antiferromagnetic. We have studied in particular the dependencies of compressibility and specific heat on temperature and electron density. - Highlights: • A coupled spin–electron chain composed of Ising spins and mobile electrons is exactly solved. • Quantum paramagnetic, ferromagnetic and antiferromagnetic ground states are found. • A compressibility shows a non-monotonous dependence on temperature and electron density. • Thermal dependences of specific heat display two distinct peaks

  6. Geometric stability and electronic structure of infinite and finite phosphorus atomic chains

    International Nuclear Information System (INIS)

    Qiao Jingsi; Zhou Linwei; Ji Wei

    2017-01-01

    One-dimensional mono- or few-atomic chains were successfully fabricated in a variety of two-dimensional materials, like graphene, BN, and transition metal dichalcogenides, which exhibit striking transport and mechanical properties. However, atomic chains of black phosphorus (BP), an emerging electronic and optoelectronic material, is yet to be investigated. Here, we comprehensively considered the geometry stability of six categories of infinite BP atomic chains, transitions among them, and their electronic structures. These categories include mono- and dual-atomic linear, armchair, and zigzag chains. Each zigzag chain was found to be the most stable in each category with the same chain width. The mono-atomic zigzag chain was predicted as a Dirac semi-metal. In addition, we proposed prototype structures of suspended and supported finite atomic chains. It was found that the zigzag chain is, again, the most stable form and could be transferred from mono-atomic armchair chains. An orientation dependence was revealed for supported armchair chains that they prefer an angle of roughly 35 ° –37 ° perpendicular to the BP edge, corresponding to the [110] direction of the substrate BP sheet. These results may promote successive research on mono- or few-atomic chains of BP and other two-dimensional materials for unveiling their unexplored physical properties. (special topic)

  7. Excitation of bond-alternating spin-1/2 Heisenberg chains by tunnelling electrons

    International Nuclear Information System (INIS)

    Gauyacq, J-P; Lorente, N

    2014-01-01

    Inelastic electron tunneling spectra (IETS) are evaluated for spin-1/2 Heisenberg chains showing different phases of their spin ordering. The spin ordering is controlled by the value of the two different Heisenberg couplings on the two sides of each of the chain's atoms (bond-alternating chains). The perfect anti-ferromagnetic phase, i.e. a unique exchange coupling, marks a topological quantum phase transition (TQPT) of the bond-alternating chain. Our calculations show that the TQPT is recognizable in the excited states of the chain and hence that IETS is in principle capable of discriminating the phases. We show that perfectly symmetric chains, such as closed rings mimicking infinite chains, yield the same spectra on both sides of the TQPT and IETS cannot reveal the nature of the spin phase. However, for finite size open chains, both sides of the TQPT are associated with different IETS spectra, especially on the edge atoms, thus outlining the transition. (paper)

  8. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    Science.gov (United States)

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  9. Structural and electronic properties of a single C chain doped zigzag BN nanoribbons

    International Nuclear Information System (INIS)

    Wu, Ping; Wang, Qianwen; Cao, Gengyu; Tang, Fuling; Huang, Min

    2014-01-01

    The effects of single C-chain on the stability, structural and electronic properties of zigzag BN nanoribbons (ZBNNRs) were investigated by first-principles calculations. C-chain was expected to dope at B-edge for all the ribbon widths N z considered. The band gaps of C-chain doped N z -ZBNNR are narrower than that of perfect ZBNNR due to new localized states induced by C-chain. The band gaps of N z -ZBNNR-C(n) are direct except for the case of C-chain position n=2. Band gaps of BN nanoribbons are tunable by C-chain and its position n, which may endow the potential applications of BNNR in electronics.

  10. Methanol to olefin Conversion on HSAPO-34 zeolite from periodic density functional theory calculations: a complete cycle of side chain hydrocarbon pool mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.M.; Wang, Y.D.; Xie, Z.K.; Liu, Z.P. [SINOPEC, Shanghai (China)

    2009-03-15

    For its unique position in the coal chemical industry, the methanol to olefin (MTO) reaction has been a hot topic in zeolite catalysis. Due to the complexities of catalyst structure and reaction networks, many questions such as how the olefin chain is built from methanol remain elusive. On the basis of periodic density functional theory calculations, this work establishes the first complete catalytic cycle for MTO reaction via hexamethylbenzene (HMB) trapped in HSAPO-34 zeolite based on the so-called side chain hydrocarbon pool mechanism. The cycle starts from the methylation of HMB that leads to heptamethylbenzenium ion (heptaMB{sup +}) intermediate. This is then followed by the growth of side chain via repeated deprotonation of benzenium ions and methylation of the exocyclic double bond. Ethene and propene can finally be released from the side ethyl and isopropyl groups of benzenium ions by deprotonation and subsequent protonation steps. We demonstrate that (i) HMB/HSAPO-34 only yields propene as the primary product based on the side chain hydrocarbon pool mechanism and (ii) an indirect proton-shift step mediated by water that is always available in the system is energetically more favorable than the traditionally regarded internal hydrogen-shift step. Finally, the implications of our results toward understanding the effect of acidity of zeolite on MTO activity are also discussed.

  11. Transverse transport in coupled strongly correlated electronic chains

    International Nuclear Information System (INIS)

    Capponi, S.; Poilblanc, D.

    1997-01-01

    One-particle interchain hopping in a system of coupled Luttinger liquids is investigated by use of exact diagonalizations techniques. We give numerical evidence that inter-chain coherent hopping (defined by a non-vanishing splitting) can be totally suppressed for the Luttinger liquid exponent α ∝ 0.4 or even smaller α values. The transverse conductivity is shown to exhibit a strong incoherent part even when coherent inter-chain hopping is believed to occur. Implications for the optical experiments in quasi-1D organic or high-T c superconductors is outlined. (orig.)

  12. Electron transport chains in organohalide-respiring bacteria and bioremediation implications.

    Science.gov (United States)

    Wang, Shanquan; Qiu, Lan; Liu, Xiaowei; Xu, Guofang; Siegert, Michael; Lu, Qihong; Juneau, Philippe; Yu, Ling; Liang, Dawei; He, Zhili; Qiu, Rongliang

    2018-04-06

    In situ remediation employing organohalide-respiring bacteria represents a promising solution for cleanup of persistent organohalide pollutants. The organohalide-respiring bacteria conserve energy by utilizing H 2 or organic compounds as electron donors and organohalides as electron acceptors. Reductive dehalogenase (RDase), a terminal reductase of the electron transport chain in organohalide-respiring bacteria, is the key enzyme that catalyzes halogen removal. Accumulating experimental evidence thus far suggests that there are distinct models for respiratory electron transfer in organohalide-respirers of different lineages, e.g., Dehalococcoides, Dehalobacter, Desulfitobacterium and Sulfurospirillum. In this review, to connect the knowledge in organohalide-respiratory electron transport chains to bioremediation applications, we first comprehensively review molecular components and their organization, together with energetics of the organohalide-respiratory electron transport chains, as well as recent elucidation of intramolecular electron shuttling and halogen elimination mechanisms of RDases. We then highlight the implications of organohalide-respiratory electron transport chains in stimulated bioremediation. In addition, major challenges and further developments toward understanding the organohalide-respiratory electron transport chains and their bioremediation applications are identified and discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Density induced crossover of electron mobilities in fluid C3 hydrocarbons; liquid phase behavior

    International Nuclear Information System (INIS)

    Gee, N.; Freeman, G.R.

    1980-01-01

    At n = 2 x 10 20 mol/cm 3 in the saturated vapors, the density normalized mobility (μn) of electrons equalled 2.4 x 10 23 mol/cmVs in cyclopropane, 1.5 x 10 23 in propane and 5.4 x 10 22 in propene. In cyclopropane and propene μn decreased due to quasilocalization at n > 4 x 10 20 mol/cm 3 . In propane quasilocalization occurred at n > 8 x 10 20 mol/cm 3 . The more extensive quasilocalization in cyclopropane caused mobilities to be lower than those in propane at the same density when the densities were greater than 1.3 x 10 21 mol/cm 3 . In propylene, μn remained below those in the other compounds at all gas densities. In the liquid phase the mobilities were affected more by the changes of temperature than by those of density. The mobilities at a given temperature decreased in the order propane > propene > cyclopropane. It is curious that the electron traps are deeper in cyclopropane than in propene. The energies of both thermal and optical excitation of solvated electrons may be expressed by equations of the form E 0 = E(0) - aT over considerable ranges of temperature T. The thermal value of a/E(0) is 1.7 x 10 -3 K -1 in many hydrocarbons, estimated from the mobilities. The equivalent ratio of the optical parameters also equals 1.7 x 10 -3 K -1 in ethers and in ammonia. (author)

  14. Supply chain collaboration and responsiveness : a comparison between Thai automotive and electronics industries

    OpenAIRE

    Ueki, Yasushi

    2013-01-01

    This paper examines factors that promote firms to develop supply chain collaborations (SCC) with their partners and relationships between SCC and supply chain operational performances (SCOP), using a questionnaire survey on Thai automotive and electronics industries in 2012. This paper also carries out a comparative study on these questions between the electronics and automotive industries. Two-stage least squares (2SLS) regressions verifY that supplier evaluation and audit is a foundation fo...

  15. Supply chain implications of sustainable design strategies for electronics products

    OpenAIRE

    De Coster, R; Bateman, RJ; Plant, AVC

    2012-01-01

    Increasing legislative and consumer pressures on manufacturers to improve sustainability necessitates that manufacturers consider the overall life cycle and not be scope restricted in creating products. Product strategies to improve sustainability have design implications as many of the decisions made during the design stage will then determine the environmental performance of the final product. Coordination across the supply chain is potentially beneficial as products with improved energy ef...

  16. First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang; Tu, Xingchen; Wang, Hao; Hou, Shimin, E-mail: smhou@pku.edu.cn [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Sanvito, Stefano [School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2 (Ireland)

    2015-04-28

    The electronic efficiency and binding energy of contacts formed between graphene electrodes and poly-aromatic hydrocarbon (PAH) anchoring groups have been investigated by the non-equilibrium Green’s function formalism combined with density functional theory. Our calculations show that PAH molecules always bind in the interior and at the edge of graphene in the AB stacking manner, and that the binding energy increases following the increase of the number of carbon and hydrogen atoms constituting the PAH molecule. When we move to analyzing the electronic transport properties of molecular junctions with a six-carbon alkyne chain as the central molecule, the electronic efficiency of the graphene-PAH contacts is found to depend on the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the corresponding PAH anchoring group, rather than its size. To be specific, the smaller is the HOMO-LUMO gap of the PAH anchoring group, the higher is the electronic efficiency of the graphene-PAH contact. Although the HOMO-LUMO gap of a PAH molecule depends on its specific configuration, PAH molecules with similar atomic structures show a decreasing trend for their HOMO-LUMO gap as the number of fused benzene rings increases. Therefore, graphene-conjugated molecule-graphene junctions with high-binding and high-conducting graphene-PAH contacts can be realized by choosing appropriate PAH anchor groups with a large area and a small HOMO-LUMO gap.

  17. First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups

    KAUST Repository

    Li, Yang; Tu, Xingchen; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-01-01

    © 2015 AIP Publishing LLC. The electronic efficiency and binding energy of contacts formed between graphene electrodes and poly-aromatic hydrocarbon (PAH) anchoring groups have been investigated by the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that PAH molecules always bind in the interior and at the edge of graphene in the AB stacking manner, and that the binding energy increases following the increase of the number of carbon and hydrogen atoms constituting the PAH molecule. When we move to analyzing the electronic transport properties of molecular junctions with a six-carbon alkyne chain as the central molecule, the electronic efficiency of the graphene-PAH contacts is found to depend on the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the corresponding PAH anchoring group, rather than its size. To be specific, the smaller is the HOMO-LUMO gap of the PAH anchoring group, the higher is the electronic efficiency of the graphene-PAH contact. Although the HOMO-LUMO gap of a PAH molecule depends on its specific configuration, PAH molecules with similar atomic structures show a decreasing trend for their HOMO-LUMO gap as the number of fused benzene rings increases. Therefore, graphene-conjugated molecule-graphene junctions with high-binding and high-conducting graphene-PAH contacts can be realized by choosing appropriate PAH anchor groups with a large area and a small HOMO-LUMO gap.

  18. One-electron propagation in Fermi, Pasta, Ulam disordered chains with Gaussian acoustic pulse pumping

    Science.gov (United States)

    Silva, L. D. Da; Dos Santos, J. L. L.; Ranciaro Neto, A.; Sales, M. O.; de Moura, F. A. B. F.

    In this work, we consider a one-electron moving on a Fermi, Pasta, Ulam disordered chain under effect of electron-phonon interaction and a Gaussian acoustic pulse pumping. We describe electronic dynamics using quantum mechanics formalism and the nonlinear atomic vibrations using standard classical physics. Solving numerical equations related to coupled quantum/classical behavior of this system, we study electronic propagation properties. Our calculations suggest that the acoustic pumping associated with the electron-lattice interaction promote a sub-diffusive electronic dynamics.

  19. In silico analysis of the regulation of the photosynthetic electron transport chain in C3 plants

    NARCIS (Netherlands)

    Morales Sierra, A.; Yin, Xinyou; Harbinson, Jeremy; Driever, Steven Michiel; Molenaar, Jaap; Kramer, David M.; Struik, Paul

    2018-01-01

    We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and non-cyclic alternative electron transport),

  20. Electron Correlations and Two-Photon States in Polycyclic Aromatic Hydrocarbon Molecules: A Peculiar Role of Geometry

    OpenAIRE

    Aryanpour, K.; Shukla, A.; Mazumdar, S.

    2013-01-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene and circumcoronene, all possessing $D_{6h}$ point group symmetry versus ovalene with $D_{2h}$ symmetry, within the Pariser-Parr-Pople model of interacting $\\pi$-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitat...

  1. Increased expression of electron transport chain genes in uterine leiomyoma.

    Science.gov (United States)

    Tuncal, Akile; Aydin, Hikmet Hakan; Askar, Niyazi; Ozkaya, Ali Burak; Ergenoglu, Ahmet Mete; Yeniel, Ahmet Ozgur; Akdemir, Ali; Ak, Handan

    2014-01-01

    The etiology and pathophysiology of uterine leiomyomas, benign smooth muscle tumors of the uterus, are not well understood. To evaluate the role of mitochondria in uterine leiomyoma, we compared electron transport gene expressions of uterine leiomyoma tissue with myometrium tissue in six uterine leiomyoma patients by RT-PCR array. Our results showed an average of 1.562 (±0.445) fold increase in nuclear-encoded electron transport genes. These results might suggest an increase in size, number, or activity of mitochondria in uterine leiomyoma that, to our knowledge, has not been previously reported. © 2014 by the Association of Clinical Scientists, Inc.

  2. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    International Nuclear Information System (INIS)

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-01-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. (paper)

  3. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains

    International Nuclear Information System (INIS)

    An, Yipeng; Zhang, Mengjun; Wang, Tianxing; Jiao, Zhaoyong; Wu, Dapeng; Fu, Zhaoming; Wang, Kun

    2016-01-01

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μ B for B n N n−1 , 2 μ B for B n N n , and 3 μ B for B n N n+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short B n N n+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long B n N n+1 chains under high bias voltages and other types of BN atomic chains (B n N n−1 and B n N n ). The proposed short B n N n+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.

  4. Traceability and Risk Analysis Strategies for Addressing Counterfeit Electronics in Supply Chains for Complex Systems.

    Science.gov (United States)

    DiMase, Daniel; Collier, Zachary A; Carlson, Jinae; Gray, Robin B; Linkov, Igor

    2016-10-01

    Within the microelectronics industry, there is a growing concern regarding the introduction of counterfeit electronic parts into the supply chain. Even though this problem is widespread, there have been limited attempts to implement risk-based approaches for testing and supply chain management. Supply chain risk management tends to focus on the highly visible disruptions of the supply chain instead of the covert entrance of counterfeits; thus counterfeit risk is difficult to mitigate. This article provides an overview of the complexities of the electronics supply chain, and highlights some gaps in risk assessment practices. In particular, this article calls for enhanced traceability capabilities to track and trace parts at risk through various stages of the supply chain. Placing the focus on risk-informed decision making through the following strategies is needed, including prioritization of high-risk parts, moving beyond certificates of conformance, incentivizing best supply chain management practices, adoption of industry standards, and design and management for supply chain resilience. © 2016 Society for Risk Analysis.

  5. Reversal of local spins in transport of electrons through a one-dimensional chain

    International Nuclear Information System (INIS)

    Hu, D.-S.; Xiong, S.-J.

    2003-01-01

    We investigate the spin reversal of two coupled magnetic impurities in the transport processes of electrons in a one-dimensional chain. The impurities are side coupled to the chain and the electrons are injected and tunneling through it. The transmission coefficient of electrons and the polarization of impurities are calculated by the use of the equivalent single-particle network method for the correlated system. It is found that both the transmission coefficient and the polarization of impurities depend on the initial state of impurities and the impurity spins can be converted into the direction of electron spin if the injected electrons are polarized and the number of electrons is large enough. The evolution of the spin-reversal processes is studied in details

  6. Electron transport in polycyclic aromatic hydrocarbons/boron nitride hybrid structures: density functional theory combined with the nonequilibrium Green's function.

    Science.gov (United States)

    Panahi, S F K S; Namiranian, Afshin; Soleimani, Maryam; Jamaati, Maryam

    2018-02-07

    We investigate the electronic transport properties of two types of junction based on single polyaromatic hydrocarbons (PAHs) and PAHs embedded in boron nitride (h-BN) nanoribbons, using nonequilibrium Green's functions (NEGF) and density functional theory (DFT). In the PAH junctions, a Fano resonance line shape at the Fermi energy in the transport feature can be clearly seen. In hybrid junctions, structural asymmetries enable interactions between the electronic states, leading to observation of interface-based transport. Our findings reveal that the interface of PAH/h-BN strongly affects the transport properties of the structures.

  7. Synthesis of All-carbon Chains and Nanoparticles by Chemical Transformation of Halogenated Hydrocarbons at Low Temperatures

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    č. 196 (2001), s. 22-38 ISSN 0371-5345 R&D Projects: GA ČR GA203/98/1168; GA ČR GA203/99/1015; GA ČR GA203/00/0634 Institutional research plan: CEZ:AV0Z4040901 Keywords : halogenated hydrocarbon * electrochemical carbon * fullerenes Subject RIV: CG - Electrochemistry

  8. Spectroscopy of electronic transitions in Polycyclic Aromatic Hydrocarbon cations and their clusters

    International Nuclear Information System (INIS)

    Friha, Hela

    2012-01-01

    This thesis is an experimental study of the electronic spectroscopy of cations of Polycyclic Aromatic Hydrocarbons (PAHs) and their aggregates in conditions close to those of the interstellar medium (ISM), i.e. cold and totally isolated in the gas phase. It is related to the astrophysical context of the interstellar medium (ISM), in particular on the question of the possible link between interstellar PAHs and Diffuse Interstellar Bands (DIBs). The purpose of this thesis is to provide laboratory spectra which can be directly compared to the spectra of DIBs. Indeed these bands are the oldest spectroscopy riddle in astrophysics which remained unanswered for nearly 100 years and whose key is still looked for. A special attention is given to the methylated derivatives of PAHs species detected in many interstellar environments, cationic PAH dimers (the simplest PAH clusters). These clusters have been proposed as a model of the very small grains, which contribute to the formation of interstellar PAHs and whose chemical composition remains uncertain. This thesis has been mainly devoted to the determination of the electronic spectra of naphthalene cation monomer (Np + ) and its methylated derivative (2-MeN p + ), as well as the associated homogeneous dimers. The experimental method used is based on the photodissociation of van der Waals complexes PAH + m -Ar n (argon atoms spectators), prepared by UV laser photoionization in a supersonic jet. This technique combines different experimental tools, namely: molecular beam mass spectrometry and laser spectroscopy as well as physical tools such as the handling of clusters VdW PAH + m -Ar n , the detection of photo-fragments, the measurement of photodissociation efficiency. The identification of the fragments by the photodissociation of VdW clusters allowed us to determine the different possible fragmentation channels and especially to obtain the spectra the charge resonance transition and the first allowed transition to locally

  9. Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy.

    Science.gov (United States)

    Barrow, Steven J; Rossouw, David; Funston, Alison M; Botton, Gianluigi A; Mulvaney, Paul

    2014-07-09

    We present a scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) investigation of gold nanosphere chains with lengths varying from 1 to 5 particles. We show localized EELS signals from the chains and identify energy-loss peaks arising due to l = 1, 2, 3, 4, and 5 plasmon modes through the use of EELS mapping. We also show the evolution of the energy of these modes as the length of a given chain increases, and we find that a chain containing N particles can accommodate at least N experimentally observable modes, in addition to the transverse mode. As the chain length is increased by the addition of one more gold particle to the chain, the new N + 1 mode becomes the highest energy mode, while the existing modes lower their energy and eventually asymptote as they delocalize along the chain. We also show that modes become increasingly difficult to detect with the EELS technique as l approaches N. The data are compared to numerical simulations.

  10. Local food in European supply chains: reconnection and electronic networks

    Directory of Open Access Journals (Sweden)

    Georgina Holt

    2007-04-01

    Full Text Available Après une présentation du marché des produits locaux/localisés en Grande Bretagne, ainsi qu’une définition du concept en fonction des circuits de distribution courts, de l’agriculture biologique et du commerce équitable, cet article se fonde sur des études de cas, issus de projets de recherche européens, pour identifier des différents types de réseaux concernés par les concept de produit locaux durables. Les habitudes historiques concernant l’achat des produits alimentaires jouent ici un rôle central et l’article observe l’équilibre entre les composants historiques, sociaux et environnementaux des produits locaux/localisés. A partir de ces terrains de recherche et de ces expériences il s’est avéré possible de déterminer différentes compréhensions de « produits locaux » en relation avec le concept de « distance alimentaire/ food miles ». En se référant à six cas donnés, cet article souligne l’importance des systèmes localisés en matière de durabilité alimentaire, et met en valeur le poids des qualités humaines et sociales dans la balance commerciale.After giving an overview of the market for local food in the UK, as well as a definition of the concept in relation to short supply chains, organic agriculture and fair trade, the article draws on cases encountered through EC-funded research and networking to identify different types of network concerned with the concept of sustaining local food. Historical uses of shopping habits play here a central role and the article observes the balance between historical, social and environmental components of local food. From these researches and experiences, it has been possible to demonstrate a range of understandings in relation to the concept of ‘food miles’. With reference to six cases, the article underlines the importance of local food systems within food sustainability, and highlights the weight of human and social qualities in the market balance.

  11. Electron beam curable branched chain polyurethane acrylates for magnetic media coatings

    International Nuclear Information System (INIS)

    Ukachi, Takashi; Haga, Kei-ichi; Matsumura, Yoshio

    1989-01-01

    Electron beam curable binder resins have been studied to realize the high quality magnetic coatings. It was supposed that resins with a higher crosslink density could lead to magnetic coatings with higher abrasion resistance. Branched chain polyurethane acrylates show a higher degree of cure by irradiation with an electron beam in comparison with linear polyurethane acrylates. This paper describes the potential wear resistance between properties of magnetic coatings and the physical properties of the cured unpigmented branched chain polyurethane acrylates that were used as the binder resins. (author)

  12. The Effect of Electronic Banking on the Performance of Supply Chain Management of Small Businesses

    OpenAIRE

    Fakhriyeh Hamidianpour; Majid Esmaeilpour; Ali Daryanavard

    2016-01-01

    In current age, e-commerce does not just imply online buying and selling, but implies an efficient business throughout business levels, in which supply chain management can be regarded as the major pillar. The aim of this survey is to study effect of use of electronic banking services and important instruments of e-banking on performance and dimensions of supply chain performance at the first level of the SCOR model in electronics businesses. The present study is an applied research type in t...

  13. Electronic structure and transport of a carbon chain between graphene nanoribbon leads

    International Nuclear Information System (INIS)

    Zhang, G P; Fang, X W; Yao, Y X; Wang, C Z; Ho, K M; Ding, Z J

    2011-01-01

    The electronic structure and transport property of a carbon chain between two graphene nanoribbon leads are studied using an ab initio tight-binding (TB) model and Landauer's formalism combined with a non-equilibrium Green's function. The TB Hamiltonian and overlap matrices are extracted from first-principles density functional calculations through the quasi-atomic minimal basis orbital scheme. The accuracy of the TB model is demonstrated by comparing the electronic structure from the TB model with that from first-principles density functional theory. The results of electronic transport on a carbon atomic chain connected to armchair and zigzag graphene ribbon leads, such as different transport characters near the Fermi level and at most one quantized conductance, reveal the effect of the electronic structure of the leads and the scattering from the atomic chain. In addition, bond length alternation and an interesting transmission resonance are observed in the atomic chain connected to zigzag graphene ribbon leads. Our approach provides a promising route to quantitative investigation of both the electronic structure and transport property of large systems.

  14. Biodegradation of Medium Chain Hydrocarbons by Acinetobacter venetianus 2AW Immobilized to Hair-Based Adsorbent Mats (Postprint)

    Science.gov (United States)

    2010-09-01

    open- water oil spills or treatment of large contaminated volumes such as ballast water or holding ponds. The practi- cal application of the mat is...SS, Al-Hasan RH, Salamah S, Al-Dabbous A. Biore- mediation of oily sea water by bacteria immobilized in biofilms coating macroalgae . Int Biodeter...adsorbent, for in situ degradation of hydrocarbons, has practical application in the bioremediation of oil in water emulsions. acinetobacter

  15. Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes

    Science.gov (United States)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2007-07-01

    The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.

  16. Strong-coupling behaviour of two t - J chains with interchain single-electron hopping

    International Nuclear Information System (INIS)

    Zhang Guangming; Feng Shiping; Yu Lu.

    1994-01-01

    Using the fermion-spin transformation to implement spin-charge separation of constrained electrons, a model of two t - J chains with interchain single-electron hopping is studied by abelian bosonization. After spin-charge decoupling the charge dynamics can be trivially solved, while the spin dynamics is determined by a strong-coupling fixed point where the correlation functions can be calculated explicitly. This is a generalization of the Luther-Emery line for two-coupled t - J chains. The interchain single-electron hopping changes the asymptotic behaviour of the interchain spin-spin correlation functions and the electron Green function, but their exponents are independent of the coupling strength. (author). 25 refs

  17. The Philippines in the Electronics Global Value Chain: Upgrading Opportunities and Challenges

    OpenAIRE

    Rafaelita M. ALDABA

    2015-01-01

    This paper examines the extent and depth of participation of the Philippines in the electronics global value chains (GVC) using Trade in Value Added (TiVA) and extensive margin indicators. While the Philippines remains strong in semiconductors, it is lagging behind other ASEAN countries. According to the TiVA database, the level of participation of the Philippines in the electronics GVC increased substantially between 1995 and 2009. The extensive margins show that the Philippines has been reg...

  18. The potentials and challenges of electron microscopy in the study of atomic chains

    Science.gov (United States)

    Banhart, Florian; Torre, Alessandro La; Romdhane, Ferdaous Ben; Cretu, Ovidiu

    2017-04-01

    The article is a brief review on the potential of transmission electron microscopy (TEM) in the investigation of atom chains which are the paradigm of a strictly one-dimensional material. After the progress of TEM in the study of new two-dimensional materials, microscopy of free-standing one-dimensional structures is a new challenge with its inherent potentials and difficulties. In-situ experiments in the TEM allowed, for the first time, to generate isolated atomic chains consisting of metals, carbon or boron nitride. Besides having delivered a solid proof for the existence of atomic chains, in-situ TEM studies also enabled us to measure the electrical properties of these fundamental linear structures. While ballistic quantum conductivity is observed in chains of metal atoms, electrical transport in chains of sp1-hybridized carbon is limited by resonant states and reflections at the contacts. Although substantial progress has been made in recent TEM studies of atom chains, fundamental questions have to be answered, concerning the structural stability of the chains, bonding states at the contacts, and the suitability for applications in nanotechnology. Contribution to the topical issue "The 16th European Microscopy Congress (EMC 2016)", edited by Richard Brydson and Pascale Bayle-Guillemaud

  19. Using Adobe Flash animations of electron transport chain to teach and learn biochemistry.

    Science.gov (United States)

    Teplá, Milada; Klímová, Helena

    2015-01-01

    Teaching the subject of the electron transport chain is one of the most challenging aspects of the chemistry curriculum at the high school level. This article presents an educational program called "Electron Transport Chain" which consists of 14 visual animations including a biochemistry quiz. The program was created in the Adobe Flash CS3 Professional animation program and is designed for high school chemistry students. Our goal is to develop educational materials that facilitate the comprehension of this complex subject through dynamic animations which show the course of the electron transport chain and simultaneously explain its nature. We record the process of the electron transport chain, including connections with oxidative phosphorylation, in such a way as to minimize the occurrence of discrepancies in interpretation. The educational program was evaluated in high schools through the administration of a questionnaire, which contained 12 opened-ended items and which required participants to evaluate the graphics of the animations, chemical content, student preferences, and its suitability for high school biochemistry teaching. © 2015 The International Union of Biochemistry and Molecular Biology.

  20. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions

    NARCIS (Netherlands)

    Henkel, S.G.; Ter Beek, A.S.; Steinsiek, S.; Stagge, S.; Bettenbrock, K.; Teixeira De Mattos, M.J.; Sauter, T.; Sawodny, O.; Ederer, M.

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear

  1. Targeting the Mitochondrial Electron Transport Chain Complexes for the Induction of Apoptosis and Cancer Treatment

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Jakub; Dong, L. F.; Neužil, Jiří

    2013-01-01

    Roč. 14, č. 3 (2013), s. 377-389 ISSN 1389-2010 Institutional research plan: CEZ:AV0Z50520701 Keywords : Cancer * mitochondria * electron transport chain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.511, year: 2013

  2. Identifying carcinogenic activity of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) through electronic and topological indices

    CERN Document Server

    Braga, R S; Barone, P M V B

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of planar molecules, abundant in urban environment, which can induce chemical carcinogenesis. Their carcinogenic power varies in a large range, from very strong carcinogens to inactive ones. In a previous study, we proposed a methodology to identify the PAHs carcinogenic activity exploring electronic and topological indices. In the present work, we show that it is possible to simplify that methodology and expand its applicability to include methylated PAHs compounds. Using very simple rules, we can predict their carcinogenic activity with high accuracy (approx 89%).

  3. First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups

    KAUST Repository

    Li, Yang

    2015-04-28

    © 2015 AIP Publishing LLC. The electronic efficiency and binding energy of contacts formed between graphene electrodes and poly-aromatic hydrocarbon (PAH) anchoring groups have been investigated by the non-equilibrium Green\\'s function formalism combined with density functional theory. Our calculations show that PAH molecules always bind in the interior and at the edge of graphene in the AB stacking manner, and that the binding energy increases following the increase of the number of carbon and hydrogen atoms constituting the PAH molecule. When we move to analyzing the electronic transport properties of molecular junctions with a six-carbon alkyne chain as the central molecule, the electronic efficiency of the graphene-PAH contacts is found to depend on the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the corresponding PAH anchoring group, rather than its size. To be specific, the smaller is the HOMO-LUMO gap of the PAH anchoring group, the higher is the electronic efficiency of the graphene-PAH contact. Although the HOMO-LUMO gap of a PAH molecule depends on its specific configuration, PAH molecules with similar atomic structures show a decreasing trend for their HOMO-LUMO gap as the number of fused benzene rings increases. Therefore, graphene-conjugated molecule-graphene junctions with high-binding and high-conducting graphene-PAH contacts can be realized by choosing appropriate PAH anchor groups with a large area and a small HOMO-LUMO gap.

  4. 2D Spin-Dependent Diffraction of Electrons From Periodical Chains of Nanomagnets

    Directory of Open Access Journals (Sweden)

    Teshome Senbeta

    2012-03-01

    Full Text Available The scattering of the unpolarized beams of electrons by nanomagnets in the vicinity of some scattering angles leads to complete spin polarized electrons. This result is obtained with the help of the perturbation theory. The dipole-dipole interaction between the magnetic moment of the nanomagnet and the magnetic moment of electron is treated as perturbation. This interaction is not spherically symmetric. Rather it depends on the electron spin variables. It in turn results in spinor character of the scattering amplitudes. Due to the smallness of the magnetic interactions, the scattering length of this process is very small to be proved experimentally. To enhance the relevant scattering lengths, we considered the diffraction of unpolarized beams of electrons by linear chains of nanomagnets. By tuning the distance between the scatterers it is possible to obtain the diffraction maximum of the scattered electrons at scattering angles which corresponds to complete spin polarization of electrons. It is shown that the total differential scattering length is proportional to N2 (N is a number of scatterers. Even small number of nanomagnets in the chain helps to obtain experimentally visible enhancement of spin polarization of the scattered electrons.

  5. I-V characteristic of electronic transport through a quantum dot chain: The role of antiresonance

    International Nuclear Information System (INIS)

    Liu Yu; Zheng Yisong; Gong Weijiang; Lue Tianquan

    2006-01-01

    The I-V spectrum of electronic transport through a quantum dot chain is calculated by means of the nonequilibrium Green function technique. In such a system, two arbitrary quantum dots are connected with two electron reservoirs through leads. When the dot-lead coupling is very weak, a series of discrete resonant peaks in electron transmission function cause staircase-like I-V characteristic. On the contrary, in the relatively strong dot-lead coupling regime, stairs in the I-V spectrum due to resonance vanish. However, when there are some dangling quantum dots in the chain outside two leads, the antiresonance which corresponds to the zero points of electron transmission function brings about novel staircase characteristic in the I-V spectrum. Moreover, two features in the I-V spectrum arising from the antiresonance are pointed out, which are significant for possible device applications. One is the multiple negative differential conductance regions, and another is regarding to create a highly spin-polarized current through the quantum dot chain by the interplay of the resonance and antiresonance. Finally, we focus on the role that the many-body effect plays on the antiresonance. Our result is that the antiresonance remains when the electron interaction is considered to the second order approximation

  6. Functional size of photosynthetic electron transport chain determined by radiation inactivation

    International Nuclear Information System (INIS)

    Pan, R.S.; Chen, L.F.; Wang, M.Y.; Tsal, M.Y.; Pan, R.L.; Hsu, B.D.

    1987-01-01

    Radiation inactivation technique was employed to determine the functional size of photosynthetic electron transport chain of spinach chloroplasts. The functional size for photosystem I+II(H 2 O to methylviologen) was 623 +/- 37 kilodaltons; for photosystem II (H 2 O to dimethylquinone/ferricyanide), 174 +/- 11 kilodaltons; and for photosystem I (reduced diaminodurene to methylviologen), 190 +/- 11 kilodaltons. The difference between 364 +/- 22 (the sum of 174 +/- 11 and 190 +/- 11) kilodaltons and 623 +/- 37 kilodaltons is partially explained to be due to the presence of two molecules of cytochrome b 6 /f complex of 280 kilodaltons. The molecular mass for other partial reactions of photosynthetic electron flow, also measured by radiation inactivation, is reported. The molecular mass obtained by this technique is compared with that determined by other conventional biochemical methods. A working hypothesis for the composition, stoichiometry, and organization of polypeptides for photosynthetic electron transport chain is proposed

  7. Electronic structures and band gaps of chains and sheets based on phenylacetylene units

    International Nuclear Information System (INIS)

    Kondo, Masakazu; Nozaki, Daijiro; Tachibana, Masamitsu; Yumura, Takashi; Yoshizawa, Kazunari

    2005-01-01

    We investigate the electronic structures of polymers composed of π-conjugated phenylacetylene (PA) units, m-PA-based and p-PA-based wires, at the extended Hueckel level of theory. It is demonstrated that these conjugated systems should have a variety of electric conductance. All of the one-dimensional (1D) chains and the two-dimensional (2D) sheet based on the m-PA unit are insulators with large band gaps of 2.56 eV because there is no effective orbital interaction with neighboring chains. On the other hand, p-PA-based 1D chains have relatively small band gaps that decrease with an increase in chain width (1.17-1.74 eV) and are semiconductive. The p-PA-based sheet called 'graphyne', a 2D-limit of the p-PA-based 1D chains, shows a small band gap of 0.89 eV. The variety of band electronic structures is discussed in terms of frontier crystal orbitals

  8. Disruption management in a two-period three-tier electronics supply chain

    Directory of Open Access Journals (Sweden)

    Johannes Danusantoso

    2016-12-01

    Full Text Available We study strategies to manage demand disruptions in a three-tier electronics supply chain consisting of an Electronics Manufacturing Services provider, an Original Equipment Manufacturer (OEM, and a Retailer. We model price sensitivity of consumer demand with the two functions commonly used for this purpose, linear and exponential, and introduce disruptions in the demand function. We assume each supply chain member faces an increasing marginal unit cost function. Our decentralized supply chain setting is governed by a wholesale price contract. The OEM possesses greater bargaining power and therefore is the Stackelberg leader. A penalty cost incurred by the Retailer is introduced to capture the cost of deviation from the original plan. We find exact analytical solutions of the effectiveness of managing the disruption when the consumer demand function is linear, and we provide numerical examples as an illustration when the consumer demand function is either linear or exponential. We show that the original production quantity exhibits some robustness under disruptions in both centralized and decentralized supply chains, while the original optimal pricing does not. We show that supply chain managers should not automatically react to an individual disruption, in certain cases it is best to leave the production plan unchanged.

  9. Accurate calculation of the differential cross section of compton scattering with electron mixed chain propagator in SM

    International Nuclear Information System (INIS)

    Chen Xuewen; Fang Zhenyun; Shi Chengye

    2012-01-01

    By using the electroweak standard model (SM), we analyzed the framework of electron mixed chain propagator which composed of serious of different physical loops participating in electroweak interaction and completed the relevant analytical calculation. Then, we obtained the analytical result of electron mixed chain propagator. By applying our result to Compton scattering, the differential cross section of Compton scattering dσ SM (chain) /dcosθ is counted accurately. This result is compared with the lowest order differential cross section dσ (tree) /dcosθ and the electronic chain propagator Compton scattering differential cross section dσ QED (chain) /dcosθ in quantum electrodynamics (QED). It can be seen that dσ SM (chain ) /dcosθ can show the radiation correction more subtly than dσ QED (chain) /dcosθ. (authors)

  10. Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri.

    Science.gov (United States)

    Kulkarni, Gargi; Kridelbaugh, Donna M; Guss, Adam M; Metcalf, William W

    2009-09-15

    Methanogens use an unusual energy-conserving electron transport chain that involves reduction of a limited number of electron acceptors to methane gas. Previous biochemical studies suggested that the proton-pumping F(420)H(2) dehydrogenase (Fpo) plays a crucial role in this process during growth on methanol. However, Methanosarcina barkeri Delta fpo mutants constructed in this study display no measurable phenotype on this substrate, indicating that Fpo plays a minor role, if any. In contrast, Delta frh mutants lacking the cytoplasmic F(420)-reducing hydrogenase (Frh) are severely affected in their ability to grow and make methane from methanol, and double Delta fpo/Delta frh mutants are completely unable to use this substrate. These data suggest that the preferred electron transport chain involves production of hydrogen gas in the cytoplasm, which then diffuses out of the cell, where it is reoxidized with transfer of electrons into the energy-conserving electron transport chain. This hydrogen-cycling metabolism leads directly to production of a proton motive force that can be used by the cell for ATP synthesis. Nevertheless, M. barkeri does have the flexibility to use the Fpo-dependent electron transport chain when needed, as shown by the poor growth of the Delta frh mutant. Our data suggest that the rapid enzymatic turnover of hydrogenases may allow a competitive advantage via faster growth rates in this freshwater organism. The mutant analysis also confirms the proposed role of Frh in growth on hydrogen/carbon dioxide and suggests that either Frh or Fpo is needed for aceticlastic growth of M. barkeri.

  11. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, Karan [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Shukla, Alok [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076 (India); Mazumdar, Sumit [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D{sub 6h} point group symmetry versus ovalene with D{sub 2h} symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D{sub 6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D{sub 2h} ovalene but not in those with D{sub 6h} symmetry.

  12. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    International Nuclear Information System (INIS)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-01-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D 6h point group symmetry versus ovalene with D 2h symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D 6h group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D 2h ovalene but not in those with D 6h symmetry

  13. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: a peculiar role of geometry.

    Science.gov (United States)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D(6h) point group symmetry versus ovalene with D(2h) symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D(6h) group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D(2h) ovalene but not in those with D(6h) symmetry.

  14. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Exact many-electron ground states on diamond and triangle Hubbard chains

    International Nuclear Information System (INIS)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2009-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)

  16. A simple analytical model for electronic conductance in a one dimensional atomic chain across a defect

    International Nuclear Information System (INIS)

    Khater, Antoine; Szczesniak, Dominik

    2011-01-01

    An analytical model is presented for the electronic conductance in a one dimensional atomic chain across an isolated defect. The model system consists of two semi infinite lead atomic chains with the defect atom making the junction between the two leads. The calculation is based on a linear combination of atomic orbitals in the tight-binding approximation, with a single atomic one s-like orbital chosen in the present case. The matching method is used to derive analytical expressions for the scattering cross sections for the reflection and transmission processes across the defect, in the Landauer-Buttiker representation. These analytical results verify the known limits for an infinite atomic chain with no defects. The model can be applied numerically for one dimensional atomic systems supported by appropriate templates. It is also of interest since it would help establish efficient procedures for ensemble averages over a field of impurity configurations in real physical systems.

  17. Low-energy electron transmission and secondary-electron emission experiments on crystalline and molten long-chain alkanes

    International Nuclear Information System (INIS)

    Ueno, N.; Sugita, K.; Seki, K.; Inokuchi, H.

    1986-01-01

    This paper describes the results of low-energy electron transmission and secondary-electron emission experiments on thin films of long-chain alkanes deposited on metal substrates. The spectral changes due to crystal-melt phase transition were measured in situ in both experiments. The ground-state energy V 0 of the quasifree electron in crystalline state was determined to be 0.5 +- 0.1 eV. The value of V 0 for the molten state was found to be negative. Further, in the crystalline state evidence is found for a direct correspondence between the transmission maxima and the high value of the density of states in the conduction bands

  18. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    International Nuclear Information System (INIS)

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun; Shin, Ki Soon; Kang, Shin Jung

    2013-01-01

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD

  19. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of); Shin, Ki Soon [Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kang, Shin Jung, E-mail: sjkang@sejong.ac.kr [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-08-09

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  20. Purchasing Consortia and Electronic Markets: a Procurement Direction in Integrated Supply Chain Management

    OpenAIRE

    Huber, Bernd; Sweeney, Edward; Smyth, Austin

    2004-01-01

    In supply chain management literature, there has been little empirical research investigation on purchasing consortium issues focusing on a detailed analysis of information and communication (ICT) based procurement strategies. Based on the exploration of academic literature and two surveys among purchasing organisations as well as e-Marketplaces / procurement service providers (PSPs) in the automotive and electronics industry sectors, the research methodology follows a positivistic approach i...

  1. Effect of Li Termination on the Electronic and Hydrogen Storage Properties of Linear Carbon Chains: A TAO-DFT Study

    OpenAIRE

    Seenithurai, Sonai; Chai, Jeng-Da

    2017-01-01

    Accurate prediction of the electronic and hydrogen storage properties of linear carbon chains (C n ) and Li-terminated linear carbon chains (Li2C n ), with n carbon atoms (n?=?5?10), has been very challenging for traditional electronic structure methods, due to the presence of strong static correlation effects. To meet the challenge, we study these properties using our newly developed thermally-assisted-occupation density functional theory (TAO-DFT), a very efficient electronic structure meth...

  2. Liver mitochondrial dysfunction and electron transport chain defect induced by high dietary copper in broilers.

    Science.gov (United States)

    Yang, Fan; Cao, Huabin; Su, Rongsheng; Guo, Jianying; Li, Chengmei; Pan, Jiaqiang; Tang, Zhaoxin

    2017-09-01

    Copper is an important trace mineral in the diet of poultry due to its biological activity. However, limited information is available concerning the effects of high copper on mitochondrial dysfunction. In this study, 72 broilers were used to investigate the effects of high dietary copper on liver mitochondrial dysfunction and electron transport chain defect. Birds were fed with different concentrations [11, 110, 220, and 330 mg of copper/kg dry matter (DM)] of copper from tribasic copper chloride (TBCC). The experiment lasted for 60 d. Liver tissues on d 60 were subjected to histopathological observation. Additionally, liver mitochondrial function was recorded on d 12, 36, and 60. Moreover, a site-specific defect in the electron transport chain in liver mitochondria was also identified by using various chemical inhibitors of mitochondrial respiration. The results showed different degrees of degeneration, mitochondrial swelling, and high-density electrons in hepatocytes. In addition, the respiratory control ratio (RCR) and oxidative phosphorylation rate (OPR) in liver mitochondria increased at first and then decreased in high-dose groups. Moreover, hydrogen peroxide (H2O2) generation velocity in treated groups was higher than that in control group, which were magnified by inhibiting electron transport at Complex IV. The results indicated that high dietary copper could decline liver mitochondrial function in broilers. The presence of a site-specific defect at Complex IV in liver mitochondria may be responsible for liver mitochondrial dysfunction caused by high dietary copper. © 2017 Poultry Science Association Inc.

  3. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: A systematic (time-dependent) density functional theory study

    International Nuclear Information System (INIS)

    Malloci, G.; Cappellini, G.; Mulas, G.; Mattoni, A.

    2011-01-01

    Graphical abstract: Electronic absorption spectra of the neutral molecules of the four PAH classes considered, as computed using the real-time real-space TD-DFT. Highlights: →We present a systematic comparative study of families of PAHs. → We computed electronic, optical, and transport properties as a function of size. → We considered oligoacenes, phenacenes, circumacenes, and oligorylenes. → Circumacenes have the best transport properties compared to the other classes. → Oligorylenes are much more efficient in absorbing low-energy photons. - Abstract: Homologous classes of polycyclic aromatic hydrocarbons (PAHs) in their crystalline state are among the most promising materials for organic opto-electronics. Following previous works on oligoacenes we present a systematic comparative study of the electronic, optical, and transport properties of oligoacenes, phenacenes, circumacenes, and oligorylenes. Using density functional theory (DFT) and time-dependent DFT we computed: (i) electron affinities and first ionization energies; (ii) quasiparticle correction to the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap; (iii) molecular reorganization energies and (iv) electronic absorption spectra of neutral and ±1 charged systems. The excitonic effects are estimated by comparing the optical gap and the quasiparticle corrected HOMO-LUMO energy gap. For each molecular property computed, general trends as a function of molecular size and charge state are discussed. Overall, we find that circumacenes have the best transport properties, displaying a steeper decrease of the molecular reorganization energy at increasing sizes, while oligorylenes are much more efficient in absorbing low-energy photons in comparison to the other classes.

  4. Comment on: Negative ions, molecular electron affinity and orbital structure of cata-condensed polycyclic aromatic hydrocarbons by Rustem V. Khatymov, Mars V. Muftakhov and Pavel V. Shchukin.

    Science.gov (United States)

    Chen, Edward S; Chen, Edward C M

    2018-02-15

    The anion mass spectral lifetimes for several aromatic hydrocarbons reported in the subject article were related to significantly different electron affinities. The different values are rationalized using negative ion mass spectral data. Electron affinities for polycyclic aromatic hydrocarbons are reported from the temperature dependence of unpublished electron capture detector data. These are compared with published values and the largest values are assigned to the ground state. The ground state adiabatic electron affinities: (eV) pentacene, 1.41 (3); tetracene, 1.058 (5); benz(a)pyrene, 0.82 (4); benz(a) anthracene, 0.69 (2) anthracene, 0.68 (2); and pyrene, 0.59 (1) are used to assign excited state adiabatic electron affinities: (eV) tetracene: 0.88 (4); anthracene 0.53 (1); pyrene, 0.41 (1); benz(a)anthracene, 0.39 (10); chrysene, 0.32 (1); and phenanthrene, 0.12 (2) and ground state adiabatic electron affinities: (eV) dibenz(a,j)anthracene, 0.69 (3); dibenz(a,h)anthracene, 0.68 (3); benz(e)pyrene, 0.60 (3); and picene, 0.59 (3) from experimental data. The lifetime of benz(a)pyrene is predicted to be larger than 150 μs and for benzo(c)phenanthrene and picene about 40 μs, from ground state adiabatic electron affinities. The assignments of adiabatic electron affinities of aromatic hydrocarbons determined from electron capture detector and mass spectrometric data to ground and excited states are supported by constant electronegativities. A set of consistent ground state adiabatic electron affinities for 15 polycyclic aromatic hydrocarbons is related to lifetimes from the subject article. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Electronic transport through a quantum dot chain with strong dot-lead coupling

    International Nuclear Information System (INIS)

    Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan

    2007-01-01

    By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling

  6. Electronic transport in large systems through a QUAMBO-NEGF approach: Application to atomic carbon chains

    International Nuclear Information System (INIS)

    Fang, X.W.; Zhang, G.P.; Yao, Y.X.; Wang, C.Z.; Ding, Z.J.; Ho, K.M.

    2011-01-01

    The conductance of single-atom carbon chain (SACC) between two zigzag graphene nanoribbons (GNR) is studied by an efficient scheme utilizing tight-binding (TB) parameters generated via quasi-atomic minimal basis set orbitals (QUAMBOs) and non-equilibrium Green's function (NEGF). Large systems (SACC contains more than 50 atoms) are investigated and the electronic transport properties are found to correlate with SACC's parity. The SACCs provide a stable off or on state in broad energy region (0.1-1 eV) around Fermi energy. The off state is not sensitive to the length of SACC while the corresponding energy region decreases with the increase of the width of GNR. -- Highlights: → Graphene has many superior electronic properties. → First-principles calculation are accurate but limited to system size. → QUAMBOs construct tight-binding parameters with spatial localization, and then use divide-and-conquer method. → SACC (single carbon atom chain): structure and transport show even-odd parity, and long chains are studied.

  7. Electronic response and longitudinal phonons of a charge-density-wave distorted linear chain

    International Nuclear Information System (INIS)

    Giuliani, G.

    1978-01-01

    The longitudinal-phonon spectrum of an incommensurate charge-density-wave distorted linear chain at T = 0 K are calculated. This is done by direct numerical evaluation of the full static-electronic-response matrix. The electronic band structure assumed for this purpose is that of a mean-field theory 1-D Peierls insulator. The present results show how, within this simplified, but self-consistent picture, the phase and amplitude modes connect to, and interact with, the ordinary longitudinal-phonon branch. Effects due to our inclusion of (0,2ksub(F)) scattering along with the usual (-2ksub(F), 2ksub(F)) are also pointed out. An alternative approximate expression for the 1-D electronic-response matrix is also given. (author)

  8. The electronic spectrum of a quasiperiodic potential: From the Hofstadter butterfly to the Fibonacci chain

    International Nuclear Information System (INIS)

    Naumis, Gerardo G.; Lopez-Rodriguez, F.J.

    2008-01-01

    We show that an electronic tight-binding Hamiltonian, defined in a quasiperiodic chain with an on-site potential given by a Fibonacci sequence, can be obtained using a superposition of Harper potentials. Since the spectrum of the Harper equation as a function of the magnetic flux is a fractal set, known as the Hofstadter butterfly, we follow the transformation of the butterfly to a new one that contains the Fibonacci potential and related approximants. As a result, the equation in reciprocal space for the Fibonacci case has the form of a chain with long range interaction between Fourier components. Then, the structure of the resulting spectrum is analyzed by calculating the components in reciprocal space of the related potentials. As an application, the correlator of each potential and some localization properties are obtained

  9. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea.

    Science.gov (United States)

    Duszenko, Nikolas; Buan, Nicole R

    2017-09-15

    Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri The concentration of MPh suggests the cell membrane of M. acetivorans , but not of M. barkeri , is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and

  10. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain1[OPEN

    Science.gov (United States)

    2018-01-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. PMID:29540590

  11. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Carstensen, Andreas; Herdean, Andrei; Schmidt, Sidsel Birkelund; Sharma, Anurag; Spetea, Cornelia; Pribil, Mathias; Husted, Søren

    2018-05-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley ( Hordeum vulgare ). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b 6 f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO 2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. © 2018 American Society of Plant Biologists. All Rights Reserved.

  12. Travail, transparency and trust : a case study of computer-supported collaborative supply chain planning in high-tech electronics

    NARCIS (Netherlands)

    Akkermans, H.A.; Bogerd, P.; van Doremalen, J.B.M.

    2004-01-01

    Describes a case study of supply chain collaboration facilitated by a decision support environment in a high-tech electronics supply chain with multiple independent companies. In a business process called collaborative planning, representatives from these companies jointly take decisions regarding

  13. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence

    Science.gov (United States)

    Danylovych, H V

    2016-01-01

    We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM) induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM), a complex IV inhibitor, and CCCP (10 μM), a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex) is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+- dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.

  14. Electronic Interactions of n-Doped Perylene Diimide Groups Appended to Polynorbornene Chains: Implications for Electron Transport in Organic Electronics.

    Science.gov (United States)

    Nguyen, Minh T; Biberdorf, Joshua D; Holliday, Bradley J; Jones, Richard A

    2017-11-01

    A polymer consisting of a polynorbornene backbone with perylene diimide (PDI) pendant groups on each monomeric unit is synthesized via ring opening metathesis polymerization. The PDI pendant groups along the polymer backbone, studied by UV-vis absorption, fluorescence emission, and electron paramagnetic resonance spectroscopy in addition to electrochemical methods, show evidence of molecular aggregation and corresponding electronic coupling with neighboring groups, which forms pathways for efficient electron transport from one group to another in a specific reduced form. When n-doped, the title polymer shows redox conductivity of 5.4 × 10 -3 S cm -1 , comparable with crystalline PDI materials, and is therefore a promising material for use in organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Antioxidant defense in quiescent cells determines selectivity of electron transport chain inhibition-induced cell death

    Czech Academy of Sciences Publication Activity Database

    Blecha, Jan; Novais, Silvia Magalhaes; Rohlenová, Kateřina; Novotná, Eliška; Lettlová, Sandra; Schmitt, S.; Zischka, H.; Neužil, Jiří; Rohlena, Jakub

    2017-01-01

    Roč. 112, NOV 2017 (2017), s. 253-266 ISSN 0891-5849 R&D Projects: GA ČR GA16-22823S; GA ČR GA17-20904S; GA ČR GA16-12719S; GA MZd(CZ) NV16-31604A; GA MŠk(CZ) LM2015062; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Electron transport chain * Supercomplexes * Antioxidant defense * SOD2 Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 5.606, year: 2016

  16. Cusp and W peak analysis in electron capture to the continuum of bare H and He projectiles from hydrocarbon and fluorocarbon gases

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.M.; Bissinger, G.

    1987-04-01

    The ECC cusp and W peak shapes for continuum electron capture by approx. = MeV/u H/sup +/ and He/sup 2 +/ from hydrocarbon and fluorocarbon gas molecules are analyzed with the general parametric expression of Meckbach, Nemirovsky and Garibotti (i) to look for trends in the coefficients of these parameters, (ii) as a way of generating computed cusp shapes to reduce statistical fluctuations in cusp difference spectra, and (iii) to provide information on the deconvoluted d/sup 2/sigma/d..nu.. dtheta values for cusp and W peaks in the hydrocarbon gases.

  17. UV resonance Raman finds peptide bond-Arg side chain electronic interactions.

    Science.gov (United States)

    Sharma, Bhavya; Asher, Sanford A

    2011-05-12

    We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.

  18. Dynamics of electron wave packet in a disordered chain with delayed nonlinear response

    International Nuclear Information System (INIS)

    Zhu Hongjun; Xiong Shijie

    2010-01-01

    We investigate the dynamics of one electron wave packet in a linear chain with random on-site energies and a nonadiabatic electron-phonon interaction which is described by a delayed cubic nonlinear term in the time-dependent Schroedinger equation. We show that in the regime where the wave packet is delocalized in the case with only the delayed nonlinearity, the wave packet becomes localized when the disorder is added and the localization is enhanced by increasing the disorder. In the regime where the self-trapping phenomenon occurs in the case with only the delayed nonlinearity, by adding the disorder the general dynamical features of the wave packet do not change if the nonlinearity parameter is small, but the dynamics shows the subdiffusive behavior if the nonlinearity parameter is large. The numerical results demonstrate complicated wave packet dynamics of systems with both the disorder and nonlinearity.

  19. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    Science.gov (United States)

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  20. Chain scission and anti fungal effect of electron beam on cellulose membrane

    International Nuclear Information System (INIS)

    Wanichapichart, Pikul; Taweepreeda, Wirach; Nawae, Safitree; Choomgan, Pastraporn; Yasenchak, Dan

    2012-01-01

    Two types of bacterial cellulose (BC) membranes were produced under a modified H and S medium using sucrose as a carbon source, with (CCB) and without (SHB) coconut juice supplement. Both membranes showed similar crystallinity of 69.24 and 71.55%. After being irradiated with E-beams under oxygen limited and ambient condition, the results from water contact angle showed that only the irradiated membrane CCB was increased from 30 to 40 degrees, and irradiation under oxygen ambient condition provided the greatest value. Comparing with the control membranes, smaller water flux was the cases after electron beam irradiation which indicated a reduction of membrane pore area. However, the results from molecular weight cut off (MWCO) revealed that chain scission was greater for membrane SHB and its cut off was increased from 28,000 Da to more than 35,000 Da. FTIR analysis revealed some changes in membrane functional groups, corresponding with the above results. These changes initiated new property of cellulose membranes, an anti-fungal food wrap. - Highlights: ► Electron beam irradiation increased membrane hydrophobicity and molecular weight cut off. ► The irradiation caused chain scissoring and anti fungal property of cellulose membrane. ► FT-IR studies revealed changes in functional groups causing a decrease in membrane moisture. ► Anti fungal test of cellulose membrane showed the same shelf life as polyethylene sheet.

  1. A taxonomy of green supply chain management capability among electronics-related manufacturing firms in Taiwan.

    Science.gov (United States)

    Shang, Kuo-Chung; Lu, Chin-Shan; Li, Shaorui

    2010-05-01

    This study investigated crucial green supply chain management (GSCM) capability dimensions and firm performance based on electronics-related manufacturing firms in Taiwan. On the basis of a factor analysis, six green supply chain management dimensions were identified: green manufacturing and packaging, environmental participation, green marketing, green suppliers, green stock, and green eco-design. According to their factor scores in the GSCM dimensions, a cluster analysis subsequently assigned responding firms into four groups, namely, the weak GSCM oriented group, the green marketing oriented group, the green supplier oriented group, and the green stock oriented group. Differences in firm performance and GSCM dimensions among groups were examined. Results indicated that the green marketing oriented group performed best. Based on the resource-based view (RBV), the capability of the green marketing oriented group was considered to be the deployment of a collection of resources that enables it to successfully compete against rivals. The importance of green marketing as a GSCM capability and strategic asset/critical resources for electronics-related manufacturing firms to obtain a competitive edge is therefore highlighted in this study. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain.

    Science.gov (United States)

    Zhang, Yuxun; Bharathi, Sivakama S; Rardin, Matthew J; Lu, Jie; Maringer, Katherine V; Sims-Lucas, Sunder; Prochownik, Edward V; Gibson, Bradford W; Goetzman, Eric S

    2017-06-16

    SIRT5 is a lysine desuccinylase known to regulate mitochondrial fatty acid oxidation and the urea cycle. Here, SIRT5 was observed to bind to cardiolipin via an amphipathic helix on its N terminus. In vitro , succinyl-CoA was used to succinylate liver mitochondrial membrane proteins. SIRT5 largely reversed the succinyl-CoA-driven lysine succinylation. Quantitative mass spectrometry of SIRT5-treated membrane proteins pointed to the electron transport chain, particularly Complex I, as being highly targeted for desuccinylation by SIRT5. Correspondingly, SIRT5 -/- HEK293 cells showed defects in both Complex I- and Complex II-driven respiration. In mouse liver, SIRT5 expression was observed to localize strictly to the periportal hepatocytes. However, homogenates prepared from whole SIRT5 -/- liver did show reduced Complex II-driven respiration. The enzymatic activities of Complex II and ATP synthase were also significantly reduced. Three-dimensional modeling of Complex II suggested that several SIRT5-targeted lysine residues lie at the protein-lipid interface of succinate dehydrogenase subunit B. We postulate that succinylation at these sites may disrupt Complex II subunit-subunit interactions and electron transfer. Lastly, SIRT5 -/- mice, like humans with Complex II deficiency, were found to have mild lactic acidosis. Our findings suggest that SIRT5 is targeted to protein complexes on the inner mitochondrial membrane via affinity for cardiolipin to promote respiratory chain function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Electronic and transport properties of a carbon-atom chain in the core of semiconducting carbon nanotubes

    International Nuclear Information System (INIS)

    Chen Jiangwei; Yang Linfeng; Yang Huatong; Dong Jinming

    2003-01-01

    Using the tight-binding calculations, we have studied electronic and transport properties of the semiconducting single-walled carbon nanotubes (SSWNTs) doped by a chain of carbon-atoms, which can be well controlled by density of the encapsulated carbon atoms. When it is lower, weak coupling between the chain atoms and the tube produces flat bands near the Fermi level, which means a great possibility of superconductivity and ferromagnetism for the combined system. The weak coupling also leads to a significant conductance at the Fermi level, which is contributed by both of the tube and the encapsulated carbon-atom chain. Increasing density of the chain carbon atoms, the flat bands near the Fermi level disappear, and the current may be carried only by the carbon-atom chain, thus making the system become an ideal one-dimensional quantum wire with its conducting chain enclosed by a SWNT insulator

  4. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L., E-mail: aburin@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2016-07-21

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  5. Model-based confirmation of alternative substrates of mitochondrial electron transport chain.

    Science.gov (United States)

    Kleessen, Sabrina; Araújo, Wagner L; Fernie, Alisdair R; Nikoloski, Zoran

    2012-03-30

    Discrimination of metabolic models based on high throughput metabolomics data, reflecting various internal and external perturbations, is essential for identifying the components that contribute to the emerging behavior of metabolic processes. Here, we investigate 12 different models of the mitochondrial electron transport chain (ETC) in Arabidopsis thaliana during dark-induced senescence in order to elucidate the alternative substrates to this metabolic pathway. Our findings demonstrate that the coupling of the proposed computational approach, based on dynamic flux balance analysis, with time-resolved metabolomics data results in model-based confirmations of the hypotheses that, during dark-induced senescence in Arabidopsis, (i) under conditions where the main substrate for the ETC are not fully available, isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase are able to donate electrons to the ETC, (ii) phytanoyl-CoA does not act even as an indirect substrate of the electron transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex, and (iii) the mitochondrial γ-aminobutyric acid transporter has functional significance in maintaining mitochondrial metabolism. Our study provides a basic framework for future in silico studies of alternative pathways in mitochondrial metabolism under extended darkness whereby the role of its components can be computationally discriminated based on available molecular profile data.

  6. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    Science.gov (United States)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L.

    2016-07-01

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  7. Quasifree electron mobility by the method of partial waves in liquid hydrocarbons and in fluid argon

    International Nuclear Information System (INIS)

    Vertes, A.

    1983-01-01

    Applicability of the fluctuation model was tested in the case of n-hexane, n-pentane, c-hexane, 2,2-dimethylbutane, 2,2,4,4-tetramethylpentane, iso-octane, and neopentane. In our model, the quasifree electrons have been assumed to be scattered by the conduction state energy fluctuations of the liquid. These fluctuations are, in turn, described as a consequence of density fluctuations. The scattering potential is supposed to be square well like and the cross section is calculated in terms of partial waves. Averages due to the density fluctuations and the electron kinetic energy distribution are determined numerically. Except for the first three materials, the calculation reproduced the experimental mobilities with reasonable values of the square well radius, which is the only fitting parameters. Further extension of the description concerning the density dependence of the low field mobility of fluid argon has been performed. The estimated fluctuation size as a function of density increases monotonically at the minimum of the mobility in accordance with the monotonic behavior of the isothermal compressibility in the same region

  8. Preparation of Ultra Low-κ Porous SiOCH Films from Ring-Type Siloxane with Unsaturated Hydrocarbon Side Chains by Spin-On Deposition

    International Nuclear Information System (INIS)

    Chun-Xiao, Yang; Chi, Zhang; Qing-Qing, Sun; Sai-Sheng, Xu; Li-Feng, Zhang; Yu, Shi; Shi-Jin, Ding; Wei, Zhang

    2010-01-01

    An ultra-low-dielectric-constant (ultra low-k, or ULK) porous SiOCH film is prepared using a single ring-type siloxane precursor of the 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane by means of spin-on deposition, followed by crosslinking reactions between the precursor monomers under UV irradiation. The as-prepared film has an ultra low k of 2.41 at 1 MHz due to incorporation of pores and hydrocarbon crosslinkages, a leakage current density of 9.86 × 10 −7 A/cm 2 at 1 MV/cm, as well as a breakdown field strength of ∼1.5 MV/cm. Further, annealing at 300°C results in lower k (i.e., 1.94 at 1 MHz), smaller leakage current density (2.96 × 10 −7 A/cm 2 at 1 MV/cm) and higher breakdown field strength (about 3.5 MV/cm), which are likely caused by the short-ranged structural rearrangement and reduction of defects in the film. Finally, the mechanical properties and surface morphology of films are also evaluated after different temperature annealing. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Drift velocity, longitudinal and transverse diffusion in hydrocarbons derived from distributions of single electrons

    International Nuclear Information System (INIS)

    Schmidt, B.; Roncossek, M.

    1992-01-01

    A time of flight method is described which allows the simultaneous measurement of drift velocity w and the ratios of the longitudinal and transverse diffusion coefficients to mobility (D L /μ, D T /μ) of electrons in gases. The accuracy achieved in this omnipurpose experiment is comparable with that of specialised techniques and is estimated to be ±1% for w and ±5% for the d/μ measurements. Results for methane, ethane, ethene, propane, propene and cyclopropane for values of E/N (the electric field strength divided by the number density) ranging from 0.02 to 15 Td are presented and discussed (1 Td = 10 21 V m 2 ). 13 refs., 4 tabs., 7 figs

  10. In Silico Analysis of the Regulation of the Photosynthetic Electron Transport Chain in C3 Plants.

    Science.gov (United States)

    Morales, Alejandro; Yin, Xinyou; Harbinson, Jeremy; Driever, Steven M; Molenaar, Jaap; Kramer, David M; Struik, Paul C

    2018-02-01

    We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and noncyclic alternative electron transport), and regulation of Rubisco activity leads to emergent behaviors that may affect the operation and regulation of photosynthesis under different dynamic environmental conditions. The model was parameterized with experimental results in the literature, with a focus on Arabidopsis ( Arabidopsis thaliana ). A dataset was constructed from multiple sources, including measurements of steady-state and dynamic gas exchange, chlorophyll fluorescence, and absorbance spectroscopy under different light intensities and CO 2 , to test predictions of the model under different experimental conditions. Simulations suggested that there are strong interactions between cyclic and noncyclic alternative electron transport and that an excess capacity for alternative electron transport is required to ensure adequate redox state and lumen pH. Furthermore, the model predicted that, under specific conditions, reduction of ferredoxin by plastoquinol is possible after a rapid increase in light intensity. Further analysis also revealed that the relationship between ATP synthesis and proton motive force was highly regulated by the concentrations of ATP, ADP, and inorganic phosphate, and this facilitated an increase in nonphotochemical quenching and proton motive force under conditions where metabolism was limiting, such as low CO 2 , high light intensity, or combined high CO 2 and high light intensity. The model may be used as an in silico platform for future research on the regulation of photosynthetic electron transport. © 2018 American Society of Plant Biologists. All Rights Reserved.

  11. Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain

    Science.gov (United States)

    Selivanov, Vitaly A.; Votyakova, Tatyana V.; Pivtoraiko, Violetta N.; Zeak, Jennifer; Sukhomlin, Tatiana; Trucco, Massimo; Roca, Josep; Cascante, Marta

    2011-01-01

    Reactive oxygen species (ROS) produced in the mitochondrial respiratory chain (RC) are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD+ reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC. PMID:21483483

  12. Electrochemical studies of a reconstituted photosynthetic electron-transfer chain or towards a biomimetic photoproduction of hydrogen; Etudes electrochimiques de chaines de transfert d'electrons photosynthetiques ou vers une photoproduction biomimetique d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Fourmond, V

    2007-04-15

    The aim of this work is to find an efficient process to convert solar energy into hydrogen. The electrons transfers in reconstituted photosynthetic chains have been particularly studied with the aims 1)in one hand, to better understand the interactions of the different molecules of the photosynthetic chain in order to optimize the changes of the entire organisms for hydrogen production 2)in another hand, to insert the hydrogenases in a photosynthetic chain and then to photo reduce them in order to obtain kinetic data to better understand how it works. (O.M.)

  13. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  14. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain.

    Science.gov (United States)

    Alber, Nicole A; Sivanesan, Hampavi; Vanlerberghe, Greg C

    2017-07-01

    The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Q i -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Q o -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III. © 2016 John Wiley & Sons Ltd.

  15. Mechanism of action of anions on the electron transport chain in thylakoid membranes of higher plants.

    Science.gov (United States)

    Singh-Rawal, Pooja; Zsiros, Ottó; Bharti, Sudhakar; Garab, Gyozo; Jajoo, Anjana

    2011-04-01

    With an aim to improve our understanding of the mechanisms behind specific anion effects in biological membranes, we have studied the effects of sodium salts of anions of varying valency in thylakoid membranes. Rates of electron transport of PS II and PS I, 77K fluorescence emission and excitation spectra, cyclic electron flow around PS I and circular dichroism (CD) spectra were measured in thylakoid membranes in order to elucidate a general mechanism of action of inorganic anions on photosynthetic electron transport chain. Re-distribution of absorbed excitation energy has been observed as a signature effect of inorganic anions. In the presence of anions, such as nitrite, sulphate and phosphate, distribution of absorbed excitation energy was found to be more in favor of Photosystem I (PS I). The amount of energy distributed towards PS I depended on the valency of the anion. In this paper, we propose for the first time that energy re-distribution and its valence dependence may not be the effect of anions per se. The entry of negative charge (anion) is accompanied by influx of positive charge (protons) to maintain a balance of charge across the thylakoid membranes. As reflected by the CD spectra, the observed energy re-distribution could be a result of structural rearrangements of the protein complexes of PS II caused by changes in the ionic environment of the thylakoid lumen.

  16. Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains

    Energy Technology Data Exchange (ETDEWEB)

    OEztuerk, Yavuz; Yuecel, Meral; Guenduez, Ufuk [Department of Biology, Middle East Technical University, Ankara (Turkey); Daldal, Fevzi [Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104-6018 (United States); Mandaci, Sevnur [TUEBITAK Research Institute for Genetic Engineering and Biotechnology, Gebze Kocaeli 41470 (Turkey); Tuerker, Lemi [Department of Chemistry, Middle East Technical University, Ankara (Turkey); Eroglu, Inci [Department of Chemical Engineering, Middle East Technical University, Ankara (Turkey)

    2006-09-15

    In Rhodobacter capsulatus excess reducing equivalents generated by organic acid oxidation is consumed to reduce protons into hydrogen by the activity of nitrogenase. Nitrogenase serves as a redox-balancing tool and is activated by the RegB/RegA global regulatory system during photosynthetic growth. The terminal cytochrome cbb{sub 3} oxidase and the redox state of the cyclic photosynthetic electron transfer chain serve redox signaling to the RegB/RegA regulatory systems in Rhodobacter. In this study, hydrogen production of various R. capsulatus strains harboring the genetically modified electron carrier cytochromes or lacking the cyt cbb{sub 3} oxidase or the quinol oxidase were compared with the wild type. The results indicated that hydrogen production of mutant strains with modified electron carrier cytochromes decreased 3- to 4-fold, but the rate of hydrogen production increased significantly in a cbb{sub 3}{sup -} mutant. Moreover, hydrogen production efficiency of various R. capsulatus strains further increased by inactivation of uptake hydrogenase genes. (author)

  17. Electron flow in multicenter enzymes: theory, applications, and consequences on the natural design of redox chains.

    Science.gov (United States)

    Léger, Christophe; Lederer, Florence; Guigliarelli, Bruno; Bertrand, Patrick

    2006-01-11

    In protein film voltammetry, a redox enzyme is directly connected to an electrode; in the presence of substrate and when the driving force provided by the electrode is appropriate, a current flow reveals the steady-state turnover. We show that, in the case of a multicenter enzyme, this signal reports on the energetics and kinetics of electron transfer (ET) along the redox chain that wires the active site to the electrode, and this provides a new strategy for studying intramolecular ET. We propose a model which takes into account all the enzyme's redox microstates, and we prove it useful to interpret data for various enzymes. Several general ideas emerge from this analysis. Considering the reversibility of ET is a requirement: the usual picture, where ET is depicted as a series of irreversible steps, is oversimplified and lacks the important features that we emphasize. We give justification to the concept of apparent reduction potential on the time scale of turnover and we explain how the value of this potential relates to the thermodynamic and kinetic properties of the system. When intramolecular ET does not limit turnover, the redox chain merely mediates the driving force provided by the electrode or the soluble redox partner, whereas when intramolecular ET is slow, the enzyme behaves as if its active active site had apparent redox properties which depend on the reduction potentials of the relays. This suggests an alternative to the idea that redox chains are optimized in terms of speed: evolutionary pressure may have resulted in slowing down intramolecular ET in order to tune the enzyme's "operating potential".

  18. A Sustainable Closed-Loop Supply Chain Decision Mechanism in the Electronic Sector

    Directory of Open Access Journals (Sweden)

    Jiafu Su

    2018-04-01

    Full Text Available In a closed-loop supply chain for electronic products, the manufacturer’s priority is to enhance the residual value of the collected end-of-use product and decide whether to outsource this business to a retailer, a third-party service, or retain it exclusively. In this paper, we constructed three models to study the decision mechanism in a closed-loop supply chain, with different players selected to collect the used product. By comparing the three models, we characterized the conditions under which the manufacturer will benefit most, and we then aimed to determine the best choice for the manufacturer. Our findings show that, when the retailer and the third-party service provider provide equal performance in collecting the used product, the manufacturer will give priority to the third-party service provider if they choose to outsource this business. If the reverse flows managed by the retailer result in a higher payoff for the manufacturer, then the manufacturer will choose to outsource this business to the retailer who will also benefit.

  19. Chemical effects of low-energy electron impact on hydrocarbons in the gas phase. II. Propene

    International Nuclear Information System (INIS)

    Derai, R.; Danon, J.

    1977-01-01

    The chemical effects of low-energy (3.5 to 15.0 eV) electron impact on propene were investigated. The setup used for the irradiations has previously been described. Appearance curves for stable products were determined, from which correlations between products and precursors were deduced. In the excitation range, the main precursors are the triplet state at 4.4 eV and various singlet states around 7.0 and 9.0 eV. Above the ionization potential, contribution from superexcited molecules and ions was noted. Superexcited molecules are formed with a much higher cross section than excited molecules. A reaction scheme was proposed to account for the chemical effects associated with excited states and the yields of excited molecules in dissociating states were derived from experimental data. Results concerning the fragmentation of propene excited in singlet states conform to photolysis data. The following new results were obtained: the decomposition of propene excited in the triplet state at 4.4 eV involves mainly C--C bond rupture; the decomposition processes of superexcited and excited molecules are similar. A higher degree of fragmentation is observed in the case of superexcited molecules

  20. Electromagnetic probes of molecular motors in the electron transport chains of mitochondria and chloroplasts

    Science.gov (United States)

    Miller, J. H., Jr.; Nawarathna, D.; Vajrala, V.; Gardner, J.; Widger, W. R.

    2005-12-01

    We report on measurements of harmonics generated by whole cells, mitochondria, and chloroplasts in response to applied sinusoidal electric fields. The frequency- and amplitude-dependence of the induced harmonics exhibit features that correlate with physiological processes. Budding yeast (S. cerevisiae) cells produce numerous harmonics, the amplitudes of which depend strongly on frequency. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by respiratory inhibitors. We observe similar peaks when measuring the harmonic response of B. indicas, a relative of the mitochondrial ancestor. In uncoupled mitochondria, in which most of the electron transport chain is active but the ATP-synthase molecular turbine is inactive, only one (lower frequency) of the two peaks is present. Finally, we find that harmonics generated by chloroplasts depend dramatically on incident light, and vanish in the absence of light.

  1. Perturbation theory for the bloch electrons on strongly coupled chains in both uniform electric and magnetic fields

    International Nuclear Information System (INIS)

    Zhao, X.G.; Chen, S.G.

    1992-01-01

    In this paper, the energy spectrum and the wave functions for a tight-binding Bloch electron on coupled chains under the action of both uniform electric and magnetic fields are studied in detail. Exact results are obtained for the case when the coupling between chains is large by using the perturbation theory, from which it is found that the spectrum is that of two interspaced Stark ladders. The magnetic field dependence of the energy spectrum is also discussed

  2. Electrochemical studies of a reconstituted photosynthetic electron-transfer chain or towards a biomimetic photoproduction of hydrogen

    International Nuclear Information System (INIS)

    Fourmond, V.

    2007-04-01

    The aim of this work is to find an efficient process to convert solar energy into hydrogen. The electrons transfers in reconstituted photosynthetic chains have been particularly studied with the aims 1)in one hand, to better understand the interactions of the different molecules of the photosynthetic chain in order to optimize the changes of the entire organisms for hydrogen production 2)in another hand, to insert the hydrogenases in a photosynthetic chain and then to photo reduce them in order to obtain kinetic data to better understand how it works. (O.M.)

  3. Magnetic Grüneisen parameter and magnetocaloric properties of a coupled spin–electron double-tetrahedral chain

    International Nuclear Information System (INIS)

    Gálisová, Lucia; Strečka, Jozef

    2015-01-01

    Magnetocaloric effect in a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with three equivalent lattice sites available for mobile electrons, is exactly investigated by considering the one-third electron filling and the ferromagnetic Ising exchange interaction between the mobile electrons and their nearest Ising neighbours. The entropy and the magnetic Grüneisen parameter, which closely relate to the magnetocaloric effect, are exactly calculated in order to investigate the relation between the ground-state degeneracy and the cooling efficiency of the hybrid spin–electron system during the adiabatic demagnetization. - Highlights: • A double-tetrahedral chain of mobile electrons and localized Ising spins is studied. • Magnetic Grüneisen parameter for the system is exactly derived. • Macroscopically degenerate phases FRU and FM constitute the ground state. • MCE is three times higher nearby FRU–FM transition than in FRU phase at small fields

  4. Composition of the mitochondrial electron transport chain in acanthamoeba castellanii: structural and evolutionary insights.

    Science.gov (United States)

    Gawryluk, Ryan M R; Chisholm, Kenneth A; Pinto, Devanand M; Gray, Michael W

    2012-11-01

    The mitochondrion, derived in evolution from an α-proteobacterial progenitor, plays a key metabolic role in eukaryotes. Mitochondria house the electron transport chain (ETC) that couples oxidation of organic substrates and electron transfer to proton pumping and synthesis of ATP. The ETC comprises several multiprotein enzyme complexes, all of which have counterparts in bacteria. However, mitochondrial ETC assemblies from animals, plants and fungi are generally more complex than their bacterial counterparts, with a number of 'supernumerary' subunits appearing early in eukaryotic evolution. Little is known, however, about the ETC of unicellular eukaryotes (protists), which are key to understanding the evolution of mitochondria and the ETC. We present an analysis of the ETC proteome from Acanthamoeba castellanii, an ecologically, medically and evolutionarily important member of Amoebozoa (sister to Opisthokonta). Data obtained from tandem mass spectrometric (MS/MS) analyses of purified mitochondria as well as ETC complexes isolated via blue native polyacrylamide gel electrophoresis are combined with the results of bioinformatic queries of sequence databases. Our bioinformatic analyses have identified most of the ETC subunits found in other eukaryotes, confirming and extending previous observations. The assignment of proteins as ETC subunits by MS/MS provides important insights into the primary structures of ETC proteins and makes possible, through the use of sensitive profile-based similarity searches, the identification of novel constituents of the ETC along with the annotation of highly divergent but phylogenetically conserved ETC subunits. © 2012 Elsevier B.V. All rights reserved.

  5. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain.

    Science.gov (United States)

    Letts, James A; Sazanov, Leonid A

    2017-10-05

    The oxidative phosphorylation electron transport chain (OXPHOS-ETC) of the inner mitochondrial membrane is composed of five large protein complexes, named CI-CV. These complexes convert energy from the food we eat into ATP, a small molecule used to power a multitude of essential reactions throughout the cell. OXPHOS-ETC complexes are organized into supercomplexes (SCs) of defined stoichiometry: CI forms a supercomplex with CIII 2 and CIV (SC I+III 2 +IV, known as the respirasome), as well as with CIII 2 alone (SC I+III 2 ). CIII 2 forms a supercomplex with CIV (SC III 2 +IV) and CV forms dimers (CV 2 ). Recent cryo-EM studies have revealed the structures of SC I+III 2 +IV and SC I+III 2 . Furthermore, recent work has shed light on the assembly and function of the SCs. Here we review and compare these recent studies and discuss how they have advanced our understanding of mitochondrial electron transport.

  6. Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress.

    Science.gov (United States)

    Vanlerberghe, Greg C; Martyn, Greg D; Dahal, Keshav

    2016-07-01

    Photosynthesis and respiration are the hubs of energy metabolism in plants. Drought strongly perturbs photosynthesis as a result of both diffusive limitations resulting from stomatal closure, and in some cases biochemical limitations that are associated with a reduced abundance of key photosynthetic components. The effects of drought on respiration, particularly respiration in the light (RL ), are less understood. The plant mitochondrial electron transport chain includes a non-energy conserving terminal oxidase called alternative oxidase (AOX). Several studies have shown that drought increases AOX transcript, protein and maximum capacity. Here we review recent studies comparing wild-type (WT) tobacco to transgenic lines with altered AOX protein amount. Specifically during drought, RL was compromised in AOX knockdown plants and enhanced in AOX overexpression plants, compared with WT. Significantly, these differences in RL were accompanied by dramatic differences in photosynthetic performance. Knockdown of AOX increased the susceptibility of photosynthesis to drought-induced biochemical limitations, while overexpression of AOX delayed the development of such biochemical limitations, compared with WT. Overall, the results indicate that AOX is essential to maintaining RL during drought, and that this non-energy conserving respiration maintains photosynthesis during drought by promoting energy balance in the chloroplast. This review also outlines several areas for future research, including the possibility that enhancement of non-energy conserving respiratory electron sinks may be a useful biotechnological approach to increase plant performance during stress. © 2016 Scandinavian Plant Physiology Society.

  7. Nature of the electronic transitions in thiacarbocyanines with a long polymethine chain

    International Nuclear Information System (INIS)

    Lepkowicz, Richard S.; Przhonska, Olga V.; Hales, Joel M.; Fu Jie; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2004-01-01

    A detailed experimental investigation and quantum-chemical analysis of symmetric cyanines of different conjugation lengths have been performed with the goal of understanding the nature of the electronic transitions in molecules that possess a long chromophore. The nature of electronic transitions in cyanines with a relatively short chromophore (inside the cyanine limit) has already been investigated and many properties of these molecules are well understood. However, little is known about the nature of the transitions beyond the cyanine limit. Their unusual properties, which were proposed by Tolbert and Zhao to be connected with symmetry breaking, still remain unexplored. The analysis of the spectral data in various solvents and results of femtosecond pump-probe saturable absorption measurements enable us to conclude that an increase in the length of the chain leads to a symmetry breaking and the appearance of two forms with symmetrical and asymmetrical distributions of the charge density in the ground state. For thiacarbocyanines, symmetry breaking is predicted and observed for a pentacarbocyanine dye. Quantum-chemical calculations provide additional proof of this hypothesis. The excited-state absorption properties of a pentacarbocyanine in the visible region are also reported. For the first time we have observed an excited-state cross-section that is larger (∼3x) than the ground state cross-section at the peak spectral position

  8. Ab initio electronic structure calculations for Mn linear chains deposited on CuN/Cu(001) surfaces

    International Nuclear Information System (INIS)

    Barral, Maria Andrea; Weht, Ruben; Lozano, Gustavo; Maria Llois, Ana

    2007-01-01

    In a recent experiment, scanning tunneling microscopy has been used to obtain a direct probe of the magnetic interaction in linear manganese chains arranged by atomic manipulation on thin insulating copper nitride islands grown on Cu(001). The local spin excitation spectra of these chains have been measured with inelastic electron tunneling spectroscopy. Analyzing the spectroscopic results with a Heisenberg Hamiltonian the interatomic coupling strength within the chains has been obtained. It has been found that the coupling strength depends on the deposition sites of the Mn atoms on the islands. In this contribution, we perform ab initio calculations for different arrangements of infinite Mn chains on CuN in order to understand the influence of the environment on the value of the magnetic interactions

  9. The importance of the on-site electron-electron interaction for the magnetic coupling in the zigzag spin-chain compound In2VO5

    KAUST Repository

    Wang, Hao; Schwingenschlö gl, Udo

    2010-01-01

    We present first-principles electronic structure calculations for the zigzag spin-chain compound In2VO5 using the generalized gradient approximation both with and without inclusion of an on-site Coulomb interaction. It has been proposed that In2VO5

  10. Animated Powerpoint Presentations for Teaching Operations and Supply Chain Management: Perceived Value and Electronic Exchange of Files

    Science.gov (United States)

    Treleven, Mark D.; Penlesky, Richard J.; Callarman, Thomas E.; Watts, Charles A.; Bragg, Daniel J.

    2012-01-01

    This paper presents the innovation of sharing animated PowerPoint presentations used in teaching operations and supply chain management techniques and concepts through an international electronic exchange. The plan for the exchange is presented and discussed. The potential benefits to faculty and students of using PowerPoint animations in…

  11. Learning How the Electron Transport Chain Works: Independent and Interactive Effects of Instructional Strategies and Learners' Characteristics

    Science.gov (United States)

    Darabi, Aubteen; Arrastia-Lloyd, Meagan C.; Nelson, David W.; Liang, Xinya; Farrell, Jennifer

    2015-01-01

    In order to develop an expert-like mental model of complex systems, causal reasoning is essential. This study examines the differences between forward and backward instructional strategies in terms of efficiency, students' learning and progression of their mental models of the electronic transport chain in an undergraduate metabolism course…

  12. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions.

    Science.gov (United States)

    Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.

  13. Mitochondrial electron transport chain is involved in microcystin-RR induced tobacco BY-2 cells apoptosis.

    Science.gov (United States)

    Huang, Wenmin; Li, Dunhai; Liu, Yongding

    2014-09-01

    Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential (ΔΨm). To further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of ΔΨm. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2μmol/L, complex I inhibitor) and antimycin A (0.01μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (5μmol/L, complex II inhibitor). These results suggest that mitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS. Copyright © 2014. Published by Elsevier B.V.

  14. Mitochondrial electron transport chain functions in long-lived Ames dwarf mice

    Science.gov (United States)

    Choksi, Kashyap B.; Nuss, Jonathan E.; DeFord, James H.; Papaconstantinou, John

    2011-01-01

    The age-associated decline in tissue function has been attributed to ROS-mediated oxidative damage due to mitochondrial dysfunction. The long-lived Ames dwarf mouse exhibits resistance to oxidative stress, a physiological characteristic of longevity. It is not known, however, whether there are differences in the electron transport chain (ETC) functions in Ames tissues that are associated with their longevity. In these studies we analyzed enzyme activities of ETC complexes, CI-CV and the coupled CI-CII and CII-CIII activities of mitochondria from several tissues of young, middle aged and old Ames dwarf mice and their corresponding wild type controls to identify potential mitochondrial prolongevity functions. Our studies indicate that post-mitotic heart and skeletal muscle from Ames and wild-type mice show similar changes in ETC complex activities with aging, with the exception of complex IV. Furthermore, the kidney, a slowly proliferating tissue, shows dramatic differences in ETC functions unique to the Ames mice. Our data show that there are tissue specific mitochondrial functions that are characteristic of certain tissues of the long-lived Ames mouse. We propose that this may be a factor in the determination of extended lifespan of dwarf mice. PMID:21934186

  15. Proteome Imbalance of Mitochondrial Electron Transport Chain in Brown Adipocytes Leads to Metabolic Benefits.

    Science.gov (United States)

    Masand, Ruchi; Paulo, Esther; Wu, Dongmei; Wang, Yangmeng; Swaney, Danielle L; Jimenez-Morales, David; Krogan, Nevan J; Wang, Biao

    2018-03-06

    Brown adipose tissue (BAT) thermogenesis is critical for thermoregulation and contributes to total energy expenditure. However, whether BAT has non-thermogenic functions is largely unknown. Here, we describe that BAT-specific liver kinase b1 knockout (Lkb1 BKO ) mice exhibited impaired BAT mitochondrial respiration and thermogenesis but reduced adiposity and liver triglyceride accumulation under high-fat-diet feeding at room temperature. Importantly, these metabolic benefits were also present in Lkb1 BKO mice at thermoneutrality, where BAT thermogenesis was not required. Mechanistically, decreased mRNA levels of mtDNA-encoded electron transport chain (ETC) subunits and ETC proteome imbalance led to defective BAT mitochondrial respiration in Lkb1 BKO mice. Furthermore, reducing mtDNA gene expression directly in BAT by removing mitochondrial transcription factor A (Tfam) in BAT also showed ETC proteome imbalance and the trade-off between BAT thermogenesis and systemic metabolism at room temperature and thermoneutrality. Collectively, our data demonstrate that ETC proteome imbalance in BAT regulates systemic metabolism independently of thermogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Inactivation of brain mitochondrial Lon protease by peroxynitrite precedes electron transport chain dysfunction.

    Science.gov (United States)

    Stanyer, Lee; Jorgensen, Wenche; Hori, Osamu; Clark, John B; Heales, Simon J R

    2008-09-01

    The accumulation of oxidatively modified proteins has been shown to be a characteristic feature of many neurodegenerative disorders and its regulation requires efficient proteolytic processing. One component of the mitochondrial proteolytic system is Lon, an ATP-dependent protease that has been shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated activity was inhibited by 45%. Treatment of mitochondria with a range of peroxynitrite concentrations (10-1000 microM) revealed that a decline in Lon protease activity preceded electron transport chain (ETC) dysfunction (complex I, II-III and IV) and that ATP-stimulated activity was approximately fivefold more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex. Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress.

  17. Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart.

    Science.gov (United States)

    Gómez, Luis A; Monette, Jeffrey S; Chavez, Juan D; Maier, Claudia S; Hagen, Tory M

    2009-10-01

    Accumulation of mitochondrial electron transport chain (ETC) defects is a recognized hallmark of the age-associated decline in cardiac bioenergetics; however, the molecular events involved are only poorly understood. In the present work, we hypothesized that age-related ETC deterioration stemmed partly from disassociation of large solid-state macromolecular assemblies termed "supercomplexes". Mitochondrial proteins from young and old rat hearts were separated by blue native-PAGE, protein bands analyzed by LC-MALDI-MS/MS, and protein levels quantified by densitometry. Results showed that supercomplexes comprised of various stoichiometries of complexes I, III and IV were observed, and declined significantly (p<0.05, n=4) with age. Supercomplexes displaying the highest molecular masses were the most severely affected. Considering that certain diseases (e.g. Barth Syndrome) display similar supercomplex destabilization as our results for aging, the deterioration in ETC supercomplexes may be an important underlying factor for both impaired mitochondrial function and loss of cardiac bioenergetics with age.

  18. Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning.

    Science.gov (United States)

    Matsuzaki, Satoshi; Szweda, Pamela A; Szweda, Luke I; Humphries, Kenneth M

    2009-11-30

    Excessive production of free radicals by mitochondria is associated with, and likely contributes to, the progression of numerous pathological conditions. Nevertheless, the production of free radicals by the mitochondria may have important biological functions under normal or stressed conditions by activating or modulating redox-sensitive cellular signaling pathways. This raises the intriguing possibility that regulated mitochondrial free radical production occurs via mechanisms that are distinct from pathologies associated with oxidative damage. Indeed, the capacity of mitochondria to produce free radicals in a limited manner may play a role in ischemic preconditioning, the phenomenon whereby short bouts of ischemia protect from subsequent prolonged ischemia and reperfusion. Ischemic preconditioning can thus serve as an important model system for defining regulatory mechanisms that allow for transient, signal-inducing, production of free radicals by mitochondria. Defining how these mechanism(s) occur will provide insight into therapeutic approaches that minimize oxidative damage without altering normal cellular redox biology. The aim of this review is to present and discuss evidence for the regulated production of superoxide by the electron transport chain within the ischemic preconditioning paradigm of redox regulation.

  19. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.

    Science.gov (United States)

    Titov, Denis V; Cracan, Valentin; Goodman, Russell P; Peng, Jun; Grabarek, Zenon; Mootha, Vamsi K

    2016-04-08

    A decline in electron transport chain (ETC) activity is associated with many human diseases. Although diminished mitochondrial adenosine triphosphate production is recognized as a source of pathology, the contribution of the associated reduction in the ratio of the amount of oxidized nicotinamide adenine dinucleotide (NAD(+)) to that of its reduced form (NADH) is less clear. We used a water-forming NADH oxidase from Lactobacillus brevis (LbNOX) as a genetic tool for inducing a compartment-specific increase of the NAD(+)/NADH ratio in human cells. We used LbNOX to demonstrate the dependence of key metabolic fluxes, gluconeogenesis, and signaling on the cytosolic or mitochondrial NAD(+)/NADH ratios. Expression of LbNOX in the cytosol or mitochondria ameliorated proliferative and metabolic defects caused by an impaired ETC. The results underscore the role of reductive stress in mitochondrial pathogenesis and demonstrate the utility of targeted LbNOX for direct, compartment-specific manipulation of redox state. Copyright © 2016, American Association for the Advancement of Science.

  20. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    Science.gov (United States)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  1. Electron beam irradiation of poly(perfluoro ethers): Identification of gaseous products as a result of main chain scission

    International Nuclear Information System (INIS)

    Pacansky, J.; Waltman, R.J.

    1991-01-01

    Several poly(perfluoro ethers) are exposed to electron beams to study the mechanism for main chain scission. Electron beam exposures were performed with the viscous poly(perfluoro ethers) under argon gas, and also at 9 K under vacuum, to determine mechanistic details for the chemical degradation. Here the authors report that, after main chain scission of the bulk poly(perfluoro ethers), sample weight loss is observed concomitant with evolution of gaseous products. Since this suggests that some unzipping of the polymer chain occurs, the products were identified and, most importantly, the efficiency for their formation was determined in terms of G values, and compared to known G values for main chain scission. The results show that COF 2 is the major gaseous product produced from unbranched ethers while CF 4 and COF 2 are the major products from branched polymers. The gaseous products were also exposed to the high-energy electron beam and the G values for decomposition are given

  2. σ-Bond Electron Delocalization in Oligosilanes as Function of Substitution Pattern, Chain Length, and Spatial Orientation

    Directory of Open Access Journals (Sweden)

    Johann Hlina

    2016-08-01

    Full Text Available Polysilanes are known to exhibit the interesting property of σ-bond electron delocalization. By employing optical spectroscopy (UV-vis, it is possible to judge the degree of delocalization and also differentiate parts of the molecules which are conjugated or not. The current study compares oligosilanes of similar chain length but different substitution pattern. The size of the substituents determines the spatial orientation of the main chain and also controls the conformational flexibility. The chemical nature of the substituents affects the orbital energies of the molecules and thus the positions of the absorption bands.

  3. Closing the Loop : Reverse supply chain management andproduct return processes in electronics retailing

    OpenAIRE

    Gorskova, Julija; Ortega, Edrion

    2012-01-01

    Abstract Problem There is a gap in the knowledge concerning reverse product flows due to a lack of research and empirical data in the field of reverse supply chain management in general. Furthermore, more research is needed to investigate the factors influencing the decision making process regarding the right reverse supply chain recovery option choice for companies in order to close the supply chain loop. Processing product returns has become a critical activity for organisations as the volu...

  4. The importance of the on-site electron-electron interaction for the magnetic coupling in the zigzag spin-chain compound In2VO5

    KAUST Repository

    Wang, Hao

    2010-09-27

    We present first-principles electronic structure calculations for the zigzag spin-chain compound In2VO5 using the generalized gradient approximation both with and without inclusion of an on-site Coulomb interaction. It has been proposed that In2VO5 is characterized by itinerant V 3d electrons at high temperature and localized electrons at low temperature. Consequently, it is to be expected that electronic correlations play an important role for the magnetic transition from ferromagnetic to antiferromagnetic exchange around 120 K. In this context, we study the electronic and magnetic properties of a set of possible spin configurations. Our calculations show that inclusion of an on-site Coulomb interaction in fact changes the ground state from ferromagnetic to antiferromagnetic. © 2010 IOP Publishing Ltd.

  5. Tracing the Fingerprint of Chemical Bonds within the Electron Densities of Hydrocarbons: A Comparative Analysis of the Optimized and the Promolecule Densities.

    Science.gov (United States)

    Keyvani, Zahra Alimohammadi; Shahbazian, Shant; Zahedi, Mansour

    2016-10-18

    The equivalence of the molecular graphs emerging from the comparative analysis of the optimized and the promolecule electron densities in two hundred and twenty five unsubstituted hydrocarbons was recently demonstrated [Keyvani et al. Chem. Eur. J. 2016, 22, 5003]. Thus, the molecular graph of an optimized molecular electron density is not shaped by the formation of the C-H and C-C bonds. In the present study, to trace the fingerprint of the C-H and C-C bonds in the electron densities of the same set of hydrocarbons, the amount of electron density and its Laplacian at the (3, -1) critical points associated with these bonds are derived from both optimized and promolecule densities, and compared in a newly proposed comparative analysis. The analysis not only conforms to the qualitative picture of the electron density build up between two atoms upon formation of a bond in between, but also quantifies the resulting accumulation of the electron density at the (3, -1) critical points. The comparative analysis also reveals a unified mode of density accumulation in the case of 2318 studied C-H bonds, but various modes of density accumulation are observed in the case of 1509 studied C-C bonds and they are classified into four groups. The four emerging groups do not always conform to the traditional classification based on the bond orders. Furthermore, four C-C bonds described as exotic bonds in previous studies, for example the inverted C-C bond in 1,1,1-propellane, are naturally distinguished from the analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Learning Electron Transport Chain Process in Photosynthesis Using Video and Serious Game

    Science.gov (United States)

    Espinoza Morales, Cecilia

    This research investigates students' learning about the electron transport chain (ETC) process in photosynthesis by watching a video followed by playing a serious board game-Electron Chute- that models the ETC process. To accomplish this goal, several learning outcomes regarding the misconceptions students' hold about photosynthesis and the ETC process in photosynthesis were defined. Middle school students need opportunities to develop cohesive models that explain the mechanistic processes of biological systems to support their learning. A six-week curriculum on photosynthesis included a one day learning activity using an ETC video and the Electron Chute game to model the ETC process. The ETC model explained how sunlight energy was converted to chemical energy (ATP) at the molecular level involving a flow of electrons. The learning outcomes and the experiences were developed based on the Indiana Academic Standards for biology and the Next Generation Science Standards (NGSS) for the life sciences. Participants were 120 eighth grade science students from an urban public school. The participants were organized into six classes based on their level of academic readiness, regular and challenge, by the school corporation. Four classes were identified as regular classes and two of them as challenge classes. Students in challenge classes had the opportunity to be challenged with more difficult content knowledge and required higher level thinking skills. The regular classes were the mainstream at school. A quasi-experimental design known as non-equivalent group design (NEGD) was used in this study. This experimental design consisted of a pretest-posttest experiment in two similar groups to begin with-the video only and video+game treatments. Intact classes were distributed into the treatments. The video only watched the ETC video and the video+game treatment watched the ETC video and played the Electron Chute game. The instrument (knowledge test) consisted of a multiple

  7. Assessment of mitochondrial electron transport chain function in a primary astrocyte cell model of hyperhomocystinaemia.

    Science.gov (United States)

    Turkes, Fiona; Murphy, Elaine; Land, John; Demiray, Berna; Duberley, Kate; Briddon, Antony; Hargreaves, Iain

    2013-07-01

    Elevated plasma homocysteine (Hcy) has been detected in patients with various neurodegenerative conditions. Studies on neurones and cerebral tissue have revealed that hyperhomocystinaemia may inhibit mitochondrial electron transport chain (ETC) enzyme activity resulting in neuronal morbidity. As astrocytes convey a protective and supportive role towards neurones, we postulated that Hcy-induced astrocytic ETC inhibition may contribute to neurological dysfunction. In order to investigate this hypothesis, we established a cellular model of hyperhomocystinaemia using primary rat astrocytes. Which were incubated were incubated with 200 µM, 500 µM Hcy and the Hcy metabolite, thiolactone (10 µM). Following 96 h of incubation with 200 µM and 500 µM Hcy, an approximate two-fold (1.11 nmol/mg) and three-fold (1.45 nmol/mg) increase in mitochondrial levels of Hcy, respectively, were detected compared to control levels (0.54 nmol/mg). However, on exposure to Hcy (200 or 500 µM) and Hcy-thiolactone (10 µM), the activities of astrocytic ETC complex I, II-III and IV were found to be comparable to control levels. In addition, the extracellular lactate:pyruvate ratio and the intracellular glutathione status of primary rat astrocytes were not significantly different between Hcy (200 or 500 µM) treated and controls. In conclusion, the results of this study suggest that Hcy induced impairment of astrocytic ETC function may not contribute to the pathophysiology of hyperhomocystinaemia.

  8. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition.

    Science.gov (United States)

    Trotta, Andrew P; Gelles, Jesse D; Serasinghe, Madhavika N; Loi, Patrick; Arbiser, Jack L; Chipuk, Jerry E

    2017-07-14

    The mitochondrial network is a major site of ATP production through the coupled integration of the electron transport chain (ETC) with oxidative phosphorylation. In melanoma arising from the V600E mutation in the kinase v-RAF murine sarcoma viral oncogene homolog B (BRAF V600E ), oncogenic signaling enhances glucose-dependent metabolism while reducing mitochondrial ATP production. Likewise, when BRAF V600E is pharmacologically inhibited by targeted therapies ( e.g. PLX-4032/vemurafenib), glucose metabolism is reduced, and cells increase mitochondrial ATP production to sustain survival. Therefore, collateral inhibition of oncogenic signaling and mitochondrial respiration may help enhance the therapeutic benefit of targeted therapies. Honokiol (HKL) is a well tolerated small molecule that disrupts mitochondrial function; however, its underlying mechanisms and potential utility with targeted anticancer therapies remain unknown. Using wild-type BRAF and BRAF V600E melanoma model systems, we demonstrate here that HKL administration rapidly reduces mitochondrial respiration by broadly inhibiting ETC complexes I, II, and V, resulting in decreased ATP levels. The subsequent energetic crisis induced two cellular responses involving cyclin-dependent kinases (CDKs). First, loss of CDK1-mediated phosphorylation of the mitochondrial division GTPase dynamin-related protein 1 promoted mitochondrial fusion, thus coupling mitochondrial energetic status and morphology. Second, HKL decreased CDK2 activity, leading to G 1 cell cycle arrest. Importantly, although pharmacological inhibition of oncogenic MAPK signaling increased ETC activity, co-treatment with HKL ablated this response and vastly enhanced the rate of apoptosis. Collectively, these findings integrate HKL action with mitochondrial respiration and shape and substantiate a pro-survival role of mitochondrial function in melanoma cells after oncogenic MAPK inhibition.

  9. Hypoxic augmentation of Ca2+ channel currents requires a functional electron transport chain.

    Science.gov (United States)

    Brown, Stephen T; Scragg, Jason L; Boyle, John P; Hudasek, Kristin; Peers, Chris; Fearon, Ian M

    2005-06-10

    The incidence of Alzheimer disease is increased following ischemic episodes, and we previously demonstrated that following chronic hypoxia (CH), amyloid beta (Abeta) peptide-mediated increases in voltage-gated L-type Ca(2+) channel activity contribute to the Ca(2+) dyshomeostasis seen in Alzheimer disease. Because in certain cell types mitochondria are responsible for detecting altered O(2) levels we examined the role of mitochondrial oxidant production in the regulation of recombinant Ca(2+) channel alpha(1C) subunits during CH and exposure to Abeta-(1-40). In wild-type (rho(+)) HEK 293 cells expressing recombinant L-type alpha(1C) subunits, Ca(2+) currents were enhanced by prolonged (24 h) exposure to either CH (6% O(2)) or Abeta-(1-40) (50 nm). By contrast the response to CH was absent in rho(0) cells in which the mitochondrial electron transport chain (ETC) was depleted following long term treatment with ethidium bromide or in rho(+) cells cultured in the presence of 1 microm rotenone. CH was mimicked in rho(0) cells by the exogenous production of O2(-.). by xanthine/xanthine oxidase. Furthermore Abeta-(1-40) enhanced currents in rho(0) cells to a degree similar to that seen in cells with an intact ETC. The antioxidants ascorbate (200 microm) and Trolox (500 microm) ablated the effect of CH in rho(+) cells but were without effect on Abeta-(1-40)-mediated augmentation of Ca(2+) current in rho(0) cells. Thus oxidant production in the mitochondrial ETC is a critical factor, acting upstream of amyloid beta peptide production in the up-regulation of Ca(2+) channels in response to CH.

  10. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Shane L Rea

    2007-10-01

    Full Text Available Prior studies have shown that disruption of mitochondrial electron transport chain (ETC function in the nematode Caenorhabditis elegans can result in life extension. Counter to these findings, many mutations that disrupt ETC function in humans are known to be pathologically life-shortening. In this study, we have undertaken the first formal investigation of the role of partial mitochondrial ETC inhibition and its contribution to the life-extension phenotype of C. elegans. We have developed a novel RNA interference (RNAi dilution strategy to incrementally reduce the expression level of five genes encoding mitochondrial proteins in C. elegans: atp-3, nuo-2, isp-1, cco-1, and frataxin (frh-1. We observed that each RNAi treatment led to marked alterations in multiple ETC components. Using this dilution technique, we observed a consistent, three-phase lifespan response to increasingly greater inhibition by RNAi: at low levels of inhibition, there was no response, then as inhibition increased, lifespan responded by monotonically lengthening. Finally, at the highest levels of RNAi inhibition, lifespan began to shorten. Indirect measurements of whole-animal oxidative stress showed no correlation with life extension. Instead, larval development, fertility, and adult size all became coordinately affected at the same point at which lifespan began to increase. We show that a specific signal, initiated during the L3/L4 larval stage of development, is sufficient for initiating mitochondrial dysfunction-dependent life extension in C. elegans. This stage of development is characterized by the last somatic cell divisions normally undertaken by C. elegans and also by massive mitochondrial DNA expansion. The coordinate effects of mitochondrial dysfunction on several cell cycle-dependent phenotypes, coupled with recent findings directly linking cell cycle progression with mitochondrial activity in C. elegans, lead us to propose that cell cycle checkpoint control

  11. Observing new product impacts on sectors value chains : The case of a French electronic SME

    NARCIS (Netherlands)

    Marche, B.; Boly, V.; Ortt, J.R.

    2016-01-01

    As a new technology impacts both the company itself and its ecosystem, the aim of this study is to visualize the influence of SME's new products on its supply chain. We adopted a case study approach to explore how products can affect the structure of a supply chain. Using data about the

  12. Analysing green supply chain management practices in Brazil's electrical/electronics industry using interpretive structural modelling

    DEFF Research Database (Denmark)

    Govindan, Kannan; Kannan, Devika; Mathiyazhagan, K.

    2013-01-01

    Industries need to adopt the environmental management concepts in the traditional supply chain management. The green supply chain management (GSCM) is an established concept to ensure environment-friendly activities in industry. This paper identifies the relationship of driving and dependence...

  13. Electronic Information Systems Use in Residential Care Facilities: The Differential Effect of Ownership Status and Chain Affiliation.

    Science.gov (United States)

    Davis, Jullet A; Zakoscielna, Karolina; Jacobs, Lindsey

    2016-03-01

    The use of electronic information systems (EISs) including electronic health records continues to increase in all sectors of the health care industry. Research shows that EISs may be useful for improving care delivery and decreasing medical errors. The purpose of this project is twofold: First, we describe the prevalence of EIS use among residential care facilities (RCFs), and second, we explore utilization differences by ownership status and chain affiliation. We anticipate that RCFs that are non-profit and non-chain will use more EIS than other categories of RCFs. Data for this project come from the 2010 National Survey of Residential Care Facilities. The sample consists of 2,300 facilities. Overall use of EIS was greatest among RCFs that are non-profit and chain-affiliated. Conversely, the use was lowest among for-profit RCFs that were also non-chain affiliated. This may suggest that these facilities lack the necessary resources or motivation to invest in information systems. © The Author(s) 2014.

  14. Green Supply Chain Collaboration for Fashionable Consumer Electronics Products under Third-Party Power Intervention—A Resource Dependence Perspective

    Directory of Open Access Journals (Sweden)

    Jiuh-Biing Sheu

    2014-05-01

    Full Text Available Under third-party power intervention (TPPI, which increases uncertainty in task environments, complex channel power interplays and restructuring are indispensable among green supply chain members as they move toward sustainable collaborative relationships for increased viability and competitive advantage. From the resource dependence perspective, this work presents a novel conceptual model to investigate the influence of political and social power on channel power restructuring and induced green supply chain collaboration in brander-retailer bidirectional green supply chains of fashionable consumer electronics products (FCEPs. An FCEP refers to the consumer electronics product (e.g., personal computers, mobile phones, computer notebooks, and game consoles with the features of a well-known brand associated, a short product lifecycle, timely and fashionable design fit for market trends, and quick responsiveness to the variations of market demands. The proposed model is tested empirically using questionnaire data obtained from retailers in the FCEP brander-retailer distribution channels. Analytical results reveal that as an extension of political and social power, TPPI positively affects the reciprocal interdependence of dyadic members and reduces power asymmetry, thereby enhancing the collaborative relationship of dyadic members and leading to improved green supply chain performance. Therein, reciprocal interdependence underlying collaborative relationship is the key to reducing the external environmental uncertainties in the TPPI context.

  15. A Comparative Proteome Profile of Female Mouse Gonads Suggests a Tight Link between the Electron Transport Chain and Meiosis Initiation.

    Science.gov (United States)

    Shen, Cong; Li, Mingrui; Zhang, Pan; Guo, Yueshuai; Zhang, Hao; Zheng, Bo; Teng, Hui; Zhou, Tao; Guo, Xuejiang; Huo, Ran

    2018-01-01

    Generation of haploid gametes by meiosis is a unique property of germ cells and is critical for sexual reproduction. Leaving mitosis and entering meiosis is a key step in germ cell development. Several inducers or intrinsic genes are known to be important for meiotic initiation, but the regulation of meiotic initiation, especially at the protein level, is still not well understood. We constructed a comparative proteome profile of female mouse fetal gonads at specific time points (11.5, 12.5, and 13.5 days post coitum), spanning a critical window for initiation of meiosis in female germ cells. We identified 3666 proteins, of which 473 were differentially expressed. Further bioinformatics analysis showed that these differentially expressed proteins were enriched in the mitochondria, especially in the electron transport chain and, notably, 9 proteins in electron transport chain Complex I were differentially expressed. We disrupted the mitochondrial electron transport chain function by adding the complex I inhibitor, rotenone to 11.5 days post coitum female gonads cultured in vitro. This treatment resulted in a decreased proportion of meiotic germ cells, as assessed by staining for histone γH2AX. Rotenone treatment also caused decreased ATP levels, increased reactive oxygen species levels and failure of the germ cells to undergo premeiotic DNA replication. These effects were partially rescued by adding Coenzyme Q10. Taken together, our results suggested that a functional electron transport chain is important for meiosis initiation. Our characterization of the quantitative proteome of female gonads provides an inventory of proteins, useful for understanding the mechanisms of meiosis initiation and female fertility. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Supply chain integration in the product return process: A study of consumer electronics retailers

    Directory of Open Access Journals (Sweden)

    Wynand Mostert

    2017-07-01

    Contribution: Academically, this study expands the literature on supply chain integration in an unexplored context. For managers, this study identifies various reverse logistics integration barriers and details what practices and strategies improve the probability of successful integration efforts.

  17. Green Supply Chain Management in Chinese Electronic Manufacturing Organisations: An Analysis of Senior Managements' Perceptions

    OpenAIRE

    Eoin Plant; Yusen Xu; Gareth R.T. White

    2015-01-01

    Green supply chain management and reverse logistics has emerged as a key area of research interest. Recent environmental regulations have also stimulated interest in this field. However, information sharing is a prerequisite to efficient and effective logistics utilisation. Manufacturing organisations in China were argued to be 10-20 years behind their Western counterparts in relation to information sharing in their supply chains (). This barrier needs to be addressed if China is going to mai...

  18. Selective downregulation of mitochondrial electron transport chain activity and increased oxidative stress in human atrial fibrillation.

    Science.gov (United States)

    Emelyanova, Larisa; Ashary, Zain; Cosic, Milanka; Negmadjanov, Ulugbek; Ross, Gracious; Rizvi, Farhan; Olet, Susan; Kress, David; Sra, Jasbir; Tajik, A Jamil; Holmuhamedov, Ekhson L; Shi, Yang; Jahangir, Arshad

    2016-07-01

    Mitochondria are critical for maintaining normal cardiac function, and a deficit in mitochondrial energetics can lead to the development of the substrate that promotes atrial fibrillation (AF) and its progression. However, the link between mitochondrial dysfunction and AF in humans is still not fully defined. The aim of this study was to elucidate differences in the functional activity of mitochondrial oxidative phosphorylation (OXPHOS) complexes and oxidative stress in right atrial tissue from patients without (non-AF) and with AF (AF) who were undergoing open-heart surgery and were not significantly different for age, sex, major comorbidities, and medications. The overall functional activity of the electron transport chain (ETC), NADH:O2 oxidoreductase activity, was reduced by 30% in atrial tissue from AF compared with non-AF patients. This was predominantly due to a selective reduction in complex I (0.06 ± 0.007 vs. 0.09 ± 0.006 nmol·min(-1)·citrate synthase activity(-1), P = 0.02) and II (0.11 ± 0.012 vs. 0.16 ± 0.012 nmol·min(-1)·citrate synthase activity(-1), P = 0.003) functional activity in AF patients. Conversely, complex V activity was significantly increased in AF patients (0.21 ± 0.027 vs. 0.12 ± 0.01 nmol·min(-1)·citrate synthase activity(-1), P = 0.005). In addition, AF patients exhibited a higher oxidative stress with increased production of mitochondrial superoxide (73 ± 17 vs. 11 ± 2 arbitrary units, P = 0.03) and 4-hydroxynonenal level (77.64 ± 30.2 vs. 9.83 ± 2.83 ng·mg(-1) protein, P = 0.048). Our findings suggest that AF is associated with selective downregulation of ETC activity and increased oxidative stress that can contribute to the progression of the substrate for AF. Copyright © 2016 the American Physiological Society.

  19. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription

    Directory of Open Access Journals (Sweden)

    Antonina N. Shvetsova

    2017-08-01

    Full Text Available Mitochondria are the main consumers of molecular O2 in a cell as well as an abundant source of reactive oxygen species (ROS. Both, molecular oxygen and ROS are powerful regulators of the hypoxia-inducible factor-1α-subunit (HIF-α. While a number of mechanisms in the oxygen-dependent HIF-α regulation are quite well known, the view with respect to mitochondria is less clear. Several approaches using pharmacological or genetic tools targeting the mitochondrial electron transport chain (ETC indicated that ROS, mainly formed at the Rieske cluster of complex III of the ETC, are drivers of HIF-1α activation. However, studies investigating non-ETC located mitochondrial defects and their effects on HIF-1α regulation are scarce, if at all existing. Thus, in the present study we examined three cell lines with non-ETC mitochondrial defects and focused on HIF-1α degradation and transcription, target gene expression, as well as ROS levels. We found that cells lacking the key enzyme 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (MECR, and cells lacking manganese superoxide dismutase (MnSOD showed a reduced induction of HIF-1α under long-term (20 h hypoxia. By contrast, cells lacking the mitochondrial DNA depletion syndrome channel protein Mpv17 displayed enhanced levels of HIF-1α already under normoxic conditions. Further, we show that ROS do not exert a uniform pattern when mediating their effects on HIF-1α, although all mitochondrial defects in the used cell types increased ROS formation. Moreover, all defects caused a different HIF-1α regulation via promoting HIF-1α degradation as well as via changes in HIF-1α transcription. Thereby, MECR- and MnSOD-deficient cells showed a reduction in HIF-1α mRNA levels whereas the Mpv17 lacking cells displayed enhanced HIF-1α mRNA levels under normoxia and hypoxia. Altogether, our study shows for the first time that mitochondrial defects which are not related to the ETC and Krebs cycle

  20. Visualizing changes in electron distribution in coupled chains of cytochrome bc(1) by modifying barrier for electron transfer between the FeS cluster and heme c(1).

    Science.gov (United States)

    Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur

    2010-02-01

    Cytochrome c(1) of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc(1) by modifying heme c(1) redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c(1) which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c(1) back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c(1) and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c(1) without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc(1) revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc(1) exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites

  1. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  2. Challenging bullwhip effect dynamics with electronically enabled-supply chain management systems

    Directory of Open Access Journals (Sweden)

    Thokozani Patmond Mbhele

    2016-11-01

    Full Text Available The bullwhip effect shows the dynamics of accumulating order rate that exceeds the tentatively stable actual demand rate. This paper aimed to assess the relative role of e-SCM systems as consumer demand orders cascading upstream supply chain network. The study’s population, consisting of the managers (senior and functional levels including supervisory level (non-managerial from retail sales, logistics, warehousing, marketing, manufacturing and IT hubs organisations, comprised of 460 respondents. In order to achieve the paper’s objective, the researcher developed and distributed a survey questionnaire and collected and analysed the data using Statistical Package for the Social Sciences (SPSS. The empirical results from the study reveal that business-to-business information technology (B2BIT diffusion frequencies have an effect on supply chain performance and e-SCM implementation promotes connectivity among supply chain partners to entrench commitment of the exchanged demand order information to mitigate the bullwhip effect

  3. First-principles study on electron transport properties of carbon-silicon mixed chains

    Science.gov (United States)

    Hu, Wei; Zhou, Qinghua; Liang, Yan; Liu, Wenhua; Wang, Tao; Wan, Haiqing

    2018-03-01

    In this paper, the transport properties of carbon-silicon mixed chains are studied by using the first-principles. We studied five atomic chain models. In these studies, we found that the equilibrium conductances of atomic chains appear to oscillate, the maximum conductance and the minimum conductance are more than twice the difference. Their I-V curves are linear and show the behavior of metal resistance, M5 system and M2 system current ratio is the largest in 0.9 V, which is 3.3, showing a good molecular switch behavior. In the case of bias, while the bias voltage increases, the transmission peaks move from the Fermi level. The resonance transmission peak height is reduced near the Fermi level. In the higher energy range, a large resonance transmission peak reappears, there is still no energy cut-off range.

  4. Side-chain degradation of ultrapure π-conjugated oligomers: implications for organic electronics

    NARCIS (Netherlands)

    Abbel, R.J.; Wolffs, M.; Bovee, R.A.A.; Dongen, van J.L.J.; Lou, X.W.; Henze, O.; Feast, W.J.; Meijer, E.W.; Schenning, A.P.H.J.

    2009-01-01

    The degrdn. of two defect-free pi-conjugated oligomers and the participation of their solubilizing side chains in the process are studied in unprecedented detail. The detected intermediate products reveal a mechanism of successive shortening of alkyl and oligo(ethylene glycol) substituents.

  5. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak.

    Directory of Open Access Journals (Sweden)

    Jan Trnka

    Full Text Available The lipophilic positively charged moiety of triphenylphosphonium (TPP+ has been used to target a range of biologically active compounds including antioxidants, spin-traps and other probes into mitochondria. The moiety itself, while often considered biologically inert, appears to influence mitochondrial metabolism.We used the Seahorse XF flux analyzer to measure the effect of a range of alkylTPP+ on cellular respiration and further analyzed their effect on mitochondrial membrane potential and the activity of respiratory complexes. We found that the ability of alkylTPP+ to inhibit the respiratory chain and decrease the mitochondrial membrane potential increases with the length of the alkyl chain suggesting that hydrophobicity is an important determinant of toxicity.More hydrophobic TPP+ derivatives can be expected to have a negative impact on mitochondrial membrane potential and respiratory chain activity in addition to the effect of the biologically active moiety attached to them. Using shorter linker chains or adding hydrophilic functional groups may provide a means to decrease this negative effect.

  6. The electronic structure of quasi-one-dimensional disordered systems with parallel multi-chains

    International Nuclear Information System (INIS)

    Liu Xiaoliang; Xu Hui; Deng Chaosheng; Ma Songshan

    2006-01-01

    For the quasi-one-dimensional disordered systems with parallel multi-chains, taking a special method to code the sites and just considering the nearest-neighbor hopping integral, we write the systems' Hamiltonians as precisely symmetric matrixes, which can be transformed into three diagonally symmetric matrixes by using the Householder transformation. The densities of states, the localization lengths and the conductance of the systems are calculated numerically using the minus eigenvalue theory and the transfer matrix method. From the results of quasi-one-dimensional disordered systems with varied chains, we find, the energy band of the systems extends slightly, the energy gaps are observed and the distribution of the density of states changes obviously with the increase of the dimensionality. Especially, for the systems with four, five or six chains, at the energy band center, there exist extended states whose localization lengths are greater than the size of the systems, accordingly, there having great conductance. With the increasing of the number of the chains, the correlated ranges expand and the systems present the similar behavior to that with off-diagonal long-range correlation

  7. Philips Electronics synchronizes its supply chain to end the bullwhip effect

    NARCIS (Netherlands)

    Kok, de A.G.; Janssen, F.B.S.L.P.; van Doremalen, J.B.M.; Wachem, van E.; Clerkx, M.J.R.; Peeters, W.

    2005-01-01

    Demand variability increases as one moves up a supply chain. The demand for finished products is less variable than for subassemblies, which is less variable than for individual components. This phenomenon is known as the bullwhip or Forrester effect. It increases inventory unnecessarily and makes

  8. Cooperativity of halogen, chalcogen, and pnictogen bonds in infinite molecular chains by electronic structure theory.

    Science.gov (United States)

    George, Janine; Deringer, Volker L; Dronskowski, Richard

    2014-05-01

    Halogen bonds (XBs) are intriguing noncovalent interactions that are frequently being exploited for crystal engineering. Recently, similar bonding mechanisms have been proposed for adjacent main-group elements, and noncovalent "chalcogen bonds" and "pnictogen bonds" have been identified in crystal structures. A fundamental question, largely unresolved thus far, is how XBs and related contacts interact with each other in crystals; similar to hydrogen bonding, one might expect "cooperativity" (bonds amplifying each other), but evidence has been sparse. Here, we explore the crucial step from gas-phase oligomers to truly infinite chains by means of quantum chemical computations. A periodic density functional theory (DFT) framework allows us to address polymeric chains of molecules avoiding the dreaded "cluster effects" as well as the arbitrariness of defining a "large enough" cluster. We focus on three types of molecular chains that we cut from crystal structures; furthermore, we explore reasonable substitutional variants in silico. We find evidence of cooperativity in chains of halogen cyanides and also in similar chalcogen- and pnictogen-bonded systems; the bonds, in the most extreme cases, are amplified through cooperative effects by 79% (I···N), 90% (Te···N), and 103% (Sb···N). Two experimentally known organic crystals, albeit with similar atomic connectivity and XB characteristics, show signs of cooperativity in one case but not in another. Finally, no cooperativity is observed in alternating halogen/acetone and halogen/1,4-dioxane chains; in fact, these XBs weaken each other by up to 26% compared to the respective gas-phase dimers.

  9. Theoretical modeling of the electronic structure and exchange interactions in a Cu(II)Pc one-dimensional chain

    Science.gov (United States)

    Wu, Wei; Fisher, A. J.; Harrison, N. M.

    2011-07-01

    We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.

  10. Factors affecting the adoption of supply chain management practices: Evidence from the Brazilian electro-electronic sector

    Directory of Open Access Journals (Sweden)

    Ana Beatriz Lopes de Sousa Jabbour

    2011-12-01

    Full Text Available This study on the factors affecting the adoption of supply chain management (SCM practices develops four hypotheses based on a literature review, and tests them using survey data of Brazilian electro-electronic firms. The results reveal the big picture of the SCM practices in the sector and suggest that contextual factors such as size, position and bargaining power affect the adoption of SCM practices, which are also more customer oriented. Sector characteristics are very important in analysing SCM practices. Contrary to the findings of literature, the relationship between competitive priorities and SCM practices was not supported statistically.

  11. Direct interaction between linear electron transfer chains and solute transport systems in bacteria

    NARCIS (Netherlands)

    Elferink, Marieke G.L.; Hellingwerf, Klaas J.; Belkum, Marco J. van; Poolman, Bert; Konings, Wil N.

    1984-01-01

    In studies on alanine and lactose transport in Rhodopseudomonas sphaeroides we have demonstrated that the rate of solute uptake in this phototrophic bacterium is regulated by the rate of light-induced cyclic electron transfer. In the present paper the interaction between linear electron transfer

  12. VU-B radiation inhibits the photosynthetic electron transport chain in chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Cai, W.; Li, X.; Chen, L.

    2016-01-01

    UV radiation of sunlight is one of harmful factors for earth organisms, especially for photoautotrophs because they require light for energy and biomass production. A number of works have already been done regarding the effects of UV-B radiation at biochemical and molecular level, which showed that UV-B radiation could inhibit photosynthesis activity and reduce photosynthetic electron transport. However quite limited information can accurately make out inhibition site of UV-B radiation on photosynthetic electron transport. In this study, this issue was investigated through measuring oxygen evolution activity, chlorophyll a fluorescence and gene expression in a model unicellular green alga Chlamydomonas reinhardtii. Our results indicated that UV-B radiation could evidently decrease photosynthesis activity and inhibit electron transport by blocking electron transfer process from the first plastoquinone electron acceptors QA to second plastoquinone electron acceptors QB, but not impair electron transfer from the water oxidizing complex to QA. The psbA gene expression was also altered by UV-B radiation, where up-regulation occurred at 2, 4 and 6h after exposure and down-regulation happened at 12 and 24 h after exposure. These results suggested that UV-B could affects D1 protein normal turnover, so there was not enough D1 for binding with QB, which may affect photosynthetic electron transport and photosynthesis activity. (author)

  13. Implementation of the Electronics Chain for the Bunch by Bunch Intensity Measurement Devices for the LHC

    CERN Document Server

    Belohrad, D; Ludwig, M; Savioz, J J; Thoulet, S

    2009-01-01

    The fast beam intensity measurements for the LHC are provided by eight Fast Beam Current Transformers (FBCT). Four FBCTs installed in the LHC rings are capable of providing both bunch-by-bunch and total turn-by-turn beam intensity information. A further four FBCTs, two in each of the LHC dump lines, are used to measure the total extracted beam intensity. In addition to providing intensity information the ring FBCTs also send signals to the machine protection system. This increases the complexity of both the RF front-end and the digital acquisition parts of the signal processing chain. The aim of this paper is to discuss the implemented hardware solution for the FBCT system, in particular with respect to the signal distribution, FPGA signal processing, calibration, and interaction of the FBCTs with the machine protection chain.

  14. The impacts of phosphorus deficiency on the photosynthetic electron transport chain

    DEFF Research Database (Denmark)

    Carstensen, Andreas; Herdean, Andrei; Schmidt, Sidsel Birkelund

    2018-01-01

    light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and hence reduces CO2 fixation. In parallel, lumen acidification activates the qE component of the non-photochemical quenching (NPQ) mechanism......Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency...... accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol (PQH2) oxidation retards electron transport to the cytochrome (Cyt) b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high...

  15. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    Science.gov (United States)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  16. The Herbaspirillum seropedicae SmR1 Fnr orthologs controls the cytochrome composition of the electron transport chain.

    Science.gov (United States)

    Batista, Marcelo B; Sfeir, Michelle Z T; Faoro, Helisson; Wassem, Roseli; Steffens, Maria B R; Pedrosa, Fábio O; Souza, Emanuel M; Dixon, Ray; Monteiro, Rose A

    2013-01-01

    The transcriptional regulatory protein Fnr, acts as an intracellular redox sensor regulating a wide range of genes in response to changes in oxygen levels. Genome sequencing of Herbaspirillum seropedicae SmR1 revealed the presence of three fnr-like genes. In this study we have constructed single, double and triple fnr deletion mutant strains of H. seropedicae. Transcriptional profiling in combination with expression data from reporter fusions, together with spectroscopic analysis, demonstrates that the Fnr1 and Fnr3 proteins not only regulate expression of the cbb3-type respiratory oxidase, but also control the cytochrome content and other component complexes required for the cytochrome c-based electron transport pathway. Accordingly, in the absence of the three Fnr paralogs, growth is restricted at low oxygen tensions and nitrogenase activity is impaired. Our results suggest that the H. seropedicae Fnr proteins are major players in regulating the composition of the electron transport chain in response to prevailing oxygen concentrations.

  17. Radiolysis of hydrocarbons in liquid phase (Modern state of problem)

    International Nuclear Information System (INIS)

    Saraeva, V.V.

    1986-01-01

    Problems of ionizing radiation effect on hydrocarbons and hydrocarbon systems in a liquid phase are considered. Modern representations on the mechanism of hydrocarbon radiolysis are presented. Electron moderation and ion-electron pair formation, behaviour of charged particles, excited states, radical formation and their reactions are discussed. Behaviour of certain hydrocarbon classes: alkanes, cyclic hydrocarbons, olefines, aromatic hydrocarbons as well as different hydrocarbon mixtures is considered in detail. Radiation-chemical changes in organic coolants and ways of increasing radiation resistance are considered. Polyphenyl compounds are noted to be most perspective here

  18. Photo-Induced Electron-Exchange Reactions Exhibiting Chain Characteristics; Echanges d'Electrons Photoinduits Presentant les Caracteristiques d'une Reaction en Chaine; Vyzvannye fotonami reaktsii ehlektronnogo obmena, proyavlyayushchie kharakteristiki tsepochki; Intercambio de Electrones Fotoinducido del Tipo de Cadena

    Energy Technology Data Exchange (ETDEWEB)

    Stranks, D. R.; Yandell, J. R. [University of Adelaide, Adelaide (Australia)

    1965-10-15

    The absorption of light of an appropriate wavelength can markedly accelerate the rate of a two-electron exchange reaction. Charge-transfer absorption generates an intermediate oxidation state which is responsible for propagating a chain reaction between the two stable oxidation states. The general kinetic equations for exchange systems involving chain propagation and either linear or quadratic termination are derived. It is shown that the dependence of the observed quantum yield on reactant concentrations and the absorbed light intensity is more complex than has been hitherto assumed. In principle, a kinetic investigation of such an exchange system should evaluate the primary quantum yield for the initial charge-transfer absorption process, the rates of electron transfer between each of the two stable oxidation states and the intermediate state, and the rate of disproportionation of the intermediate oxidation state. These general considerations are illustrated with the results of an experimental study of the thallium(I)- thallium(III) system. Selective charge-transfer absorption at 2537 A by the Tl{sup 3+}. OH{sup -} ion-pair is used to generate Tl{sup II}. The ensuing exchange reaction with Tl{sup +} exhibits marked induction periods and is sensitive to micromolar concentrations of oxidants and reductants. At millimolar concentrations of Tl{sup +} and Tl{sup 3+}, the observed quantum yields are directly proportional to the Tl{sup +} and Tl{sup 3+} concentrations. At higher concentrations, the quantum yields level oui to ''plateau'' values which range from 6 to 30, depending on the absorbed light intensity. The plateau quantum yield is a direct measure of the relative rates of the propagation reactions Tl{sup +} + Tl{sup 2+} -> Tl{sup 2+} + T1+ and Tl{sup 2+} + Tl{sup 3+} -> Tl{sup 3+} + Tl{sup 2+} compared to the termination reaction 2 Tl{sup 2+} -> Tl{sup +} + Tl{sup 3+}. This disproportionation reaction is consistent with a light intensity exponent of 0. 50

  19. SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability.

    Science.gov (United States)

    Dufay, J Noelia; Fernández-Murray, J Pedro; McMaster, Christopher R

    2017-06-07

    The SLC25 family member SLC25A38 (Hem25 in yeast) was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25 Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1 Δ hem25 Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components. Copyright © 2017 Dufay et al.

  20. SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability

    Directory of Open Access Journals (Sweden)

    J. Noelia Dufay

    2017-06-01

    Full Text Available The SLC25 family member SLC25A38 (Hem25 in yeast was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25. Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1Δ hem25Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components.

  1. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Univ. of Rochester, NY (United States)

    2016-01-01

    Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currently exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q2. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE

  2. On the location of the H+-extruding steps in site 2 of the mitochondrial electron transport chain.

    Science.gov (United States)

    Alexandre, A; Galiazzo, F; Lehninger, A L

    1980-11-25

    The location of the H+-translocating reactions within energy-conserving Site 2 of the mitochondrial electron transport chain was evaluated from two sets of data. In the first, the H+/2e- ejection ratios and Ca2+/2e- uptake ratios were compared for electron flow from succinate dehydrogenase, whose active site is on the matrix side of the inner membrane and from glycerol phosphate dehydrogenase, whose active site is on the cytosolic side. In intact rat liver mitochondria both substrates yielded H+/2e- ejection ratios close to 4.0 and Ca2+/2e- uptake ratios close to 1.0 during antimycin-sensitive reduction of ferricyanide. With rat liver mitoplasts and ferricytochrome c as electron acceptor, both substrates again gave the same stoichiometric ratios. The second approach involved determination of the sidedness of H+ formation during electron flow from succinate to ferricyanide via bypass of the antimycin block of the cytochrome b.c1 complex provided by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), under conditions in which the TMPD-TMPD+ couple does not act as a membrane-penetrating protonophore. Electron flow in this system was inhibited by 2-then-oyltrifluoroacetone, indicating that TMPD probably accepts electrons from ubiquinol. The 2 H+ formed in this system were not delivered into the matrix but appeared directly in the medium in the absence of a protonophore. To accommodate the available evidence on Site 2 substrates, it is concluded that the substrate hydrogens are first transferred to ubiquinone, 2 H+ per 2e then appear in the medium by protolytic dehydrogenation of a species of ubiquinol or ubiquinol-protein having the appropriate sidedness (designated Site 2A), and the other 2 H+ are translocated from the matrix to the medium on passage of 2e- through the cytochrome b x c1 complex (designated Site 2B).

  3. Evolution of Electron Transport Chains During the Anaerobic to Aerobic Transition on Early Earth

    Science.gov (United States)

    Sepúlveda, R.; Ortiz, R.; Holmes, D. S.

    2015-12-01

    Sepulveda, R., Ortiz R. and Holmes DS. Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida, and Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.According to several models, life emerged on earth in an anoxic environment where oxygen was not available as a terminal electron acceptor for energy generating reactions. After the Great Oxidation Event (GOE) about 2.4 billion years ago, or perhaps even before the GOE, oxygen became the most widespread and efficient terminal electron acceptor and was accompanied by the evolution of a number of redox proteins that could deliver electrons to reduce oxygen to water. Where did these proteins come from? One hypothesis is that they evolved by the neofunctionalization of previously existing redox proteins that had been used in anaerobic conditions as terminal electron donors to reduce compounds such as perchlorate, nitric oxide or iron. We have used a number of bioinformatic tools to explore a large number of genomes looking for discernable signals of such redeployment of function. A Perl pipeline was designed to detect sequence similarity, conserved gene context, remote homology detection, identification of domains and functional evolution of electron carrier proteins from extreme acidophiles, including the small blue copper protein rusticyanin (involved in FeII oxidation), cytochrome oxidase subunit II and quinol-dependent nitric oxide reductase (qNOR). The protein folds and copper binding sites of rusticyanin are conserved in cytochrome oxidase aa3 subunit II, a protein complex that is responsible for the final passage of electrons to reduce oxygen. Therefore, we hypothesize that rusticyanin, cytochrome oxidase II and qNOR are evolutionarily related. Acknowledgments: Fondecyt 1130683.

  4. Biological monitoring of environmental exposure to polycyclic aromatic hydrocarbons in subjects living in the area of recycling electronic garbage, in Southern China.

    Science.gov (United States)

    Wang, Yu; Zhang, Wenbing; Fan, Ruifang; Sheng, Guoying; Fu, Jiamo

    2014-01-01

    The study was undertaken to evaluate the environmental exposure to polycyclic aromatic hydrocarbons in subjects living in the area of recycling electronic garbage in Southern China and research the influence of environment smoke tobacco (EST) to people through active and passive smoking. Urinary concentrations of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene were determined in 141 randomly selected voluntary residents aged 13 to 81 years in two polycyclic aromatic hydrocarbon (PAH)-exposed groups, two control groups, and an EST research group. The concentrations of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene in PAH-exposed groups are significantly higher (pelectronic garbage (1.1 μmol/mol creatinine) is a little higher than those of iron foundry workers, automobile repair workers, and firefighters. Mean value of 2-hydroxynaphthalene (11.3 μmol/mol creatinine) is much higher than that of shipyard and aircraft maintenance and much lower than some occupational exposure, such as coking batteries, sorting department, and distillation department in coking plant. Some metabolites of PAHs (PAHm) are significantly elevated through active and passive smoking, while the influence of EST to other PAHm is not statistically significant. 2-Hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene in the urine of smokers are, respectively, 3.9, 1.9, 1.4, and 1.9 times to those of nonsmokers. In nonsmokers, passive smokers excreted 1.1, 1.5, 1.9, and 1.5 times of 2-hydroxynaphthalene, 2-hydoxyfluorene, 9-hydroxyphenanthrene, and 1-hydroxypyrene compared to nonpassive smokers.

  5. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  6. Shewanella oneidensis MR-1 chemotaxis proteins and electron-transport chain components essential for congregation near insoluble electron acceptors.

    Science.gov (United States)

    Harris, H Wayne; El-Naggar, Mohamed Y; Nealson, Kenneth H

    2012-12-01

    Shewanella oneidensis MR-1 cells utilize a behaviour response called electrokinesis to increase their speed in the vicinity of IEAs (insoluble electron acceptors), including manganese oxides, iron oxides and poised electrodes [Harris, El-Naggar, Bretschger, Ward, Romine, Obraztsova and Nealson (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 326-331]. However, it is not currently understood how bacteria remain in the vicinity of the IEA and accumulate both on the surface and in the surrounding medium. In the present paper, we provide results indicating that cells that have contacted the IEAs swim faster than those that have not recently made contact. In addition, fast-swimming cells exhibit an enhancement of swimming reversals leading to rapid non-random accumulation of cells on, and adjacent to, mineral particles. We call the observed accumulation near IEAs 'congregation'. Congregation is eliminated by the loss of a critical gene involved with EET (extracellular electron transport) (cymA, SO_4591) and is altered or eliminated in several deletion mutants of homologues of genes that are involved with chemotaxis or energy taxis in Escherichia coli. These genes include chemotactic signal transduction protein (cheA-3, SO_3207), methyl-accepting chemotaxis proteins with the Cache domain (mcp_cache, SO_2240) or the PAS (Per/Arnt/Sim) domain (mcp_pas, SO_1385). In the present paper, we report studies of S. oneidensis MR-1 that lend some insight into how microbes in this group can 'sense' the presence of a solid substrate such as a mineral surface, and maintain themselves in the vicinity of the mineral (i.e. via congregation), which may ultimately lead to attachment and biofilm formation.

  7. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans.

    Science.gov (United States)

    Knowlton, Wendy M; Hubert, Thomas; Wu, Zilu; Chisholm, Andrew D; Jin, Yishi

    2017-01-01

    The role of mitochondria within injured neurons is an area of active interest since these organelles are vital for the production of cellular energy in the form of ATP. Using mechanosensory neurons of the nematode Caenorhabditis elegans to test regeneration after neuronal injury in vivo , we surveyed genes related to mitochondrial function for effects on axon regrowth after laser axotomy. Genes involved in mitochondrial transport, calcium uptake, mitophagy, or fission and fusion were largely dispensable for axon regrowth, with the exception of eat-3/Opa1 . Surprisingly, many genes encoding components of the electron transport chain were dispensable for regrowth, except for the iron-sulfur proteins gas-1, nduf-2.2, nduf-7 , and isp-1 , and the putative oxidoreductase rad-8 . In these mutants, axonal development was essentially normal and axons responded normally to injury by forming regenerative growth cones, but were impaired in subsequent axon extension. Overexpression of nduf-2.2 or isp-1 was sufficient to enhance regrowth, suggesting that mitochondrial function is rate-limiting in axon regeneration. Moreover, loss of function in isp-1 reduced the enhanced regeneration caused by either a gain-of-function mutation in the calcium channel EGL-19 or overexpression of the MAP kinase DLK-1. While the cellular function of RAD-8 remains unclear, our genetic analyses place rad-8 in the same pathway as other electron transport genes in axon regeneration. Unexpectedly, rad-8 regrowth defects were suppressed by altered function in the ubiquinone biosynthesis gene clk-1 . Furthermore, we found that inhibition of the mitochondrial unfolded protein response via deletion of atfs-1 suppressed the defective regrowth in nduf-2.2 mutants. Together, our data indicate that while axon regeneration is not significantly affected by general dysfunction of cellular respiration, it is sensitive to the proper functioning of a select subset of electron transport chain genes, or to the

  8. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE.

    Science.gov (United States)

    Mahapatra, Gargi; Varughese, Ashwathy; Ji, Qinqin; Lee, Icksoo; Liu, Jenney; Vaishnav, Asmita; Sinkler, Christopher; Kapralov, Alexandr A; Moraes, Carlos T; Sanderson, Thomas H; Stemmler, Timothy L; Grossman, Lawrence I; Kagan, Valerian E; Brunzelle, Joseph S; Salomon, Arthur R; Edwards, Brian F P; Hüttemann, Maik

    2017-01-06

    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr 28 , leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type unphosphorylated Cytc Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨ m ), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr 28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr 28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr 28 in vivo We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via "controlled respiration," preventing ΔΨ m hyperpolarization, a known cause of ROS and trigger of apoptosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Gargi; Varughese, Ashwathy; Ji, Qinqin; Lee, Icksoo; Liu, Jenney; Vaishnav, Asmita; Sinkler, Christopher; Kapralov, Alexandr A.; Moraes, Carlos T.; Sanderson, Thomas H.; Stemmler, Timothy L.; Grossman, Lawrence I.; Kagan, Valerian E.; Brunzelle, Joseph S.; Salomon, Arthur R.; Edwards, Brian F. P.; Hüttemann, Maik

    2016-10-07

    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr28, leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type unphosphorylated Cytc. Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨm), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr28 in vivo. We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via “controlled respiration,” preventing ΔΨm hyperpolarization, a known cause of ROS and trigger of apoptosis.

  10. In Silico Analysis of the Regulation of the Photosynthetic Electron Transport Chain in C3 Plants1[OPEN

    Science.gov (United States)

    Kramer, David M.

    2018-01-01

    We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and noncyclic alternative electron transport), and regulation of Rubisco activity leads to emergent behaviors that may affect the operation and regulation of photosynthesis under different dynamic environmental conditions. The model was parameterized with experimental results in the literature, with a focus on Arabidopsis (Arabidopsis thaliana). A dataset was constructed from multiple sources, including measurements of steady-state and dynamic gas exchange, chlorophyll fluorescence, and absorbance spectroscopy under different light intensities and CO2, to test predictions of the model under different experimental conditions. Simulations suggested that there are strong interactions between cyclic and noncyclic alternative electron transport and that an excess capacity for alternative electron transport is required to ensure adequate redox state and lumen pH. Furthermore, the model predicted that, under specific conditions, reduction of ferredoxin by plastoquinol is possible after a rapid increase in light intensity. Further analysis also revealed that the relationship between ATP synthesis and proton motive force was highly regulated by the concentrations of ATP, ADP, and inorganic phosphate, and this facilitated an increase in nonphotochemical quenching and proton motive force under conditions where metabolism was limiting, such as low CO2, high light intensity, or combined high CO2 and high light intensity. The model may be used as an in silico platform for future research on the regulation of photosynthetic electron transport. PMID:28924017

  11. Hybrid (Vlasov-Fluid) simulation of ion-acoustic solitons chain formation including trapped electrons

    Energy Technology Data Exchange (ETDEWEB)

    Behjat, E.; Aminmansoor, F.; Abbasi, H. [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, P. O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Disintegration of a Gaussian profile into ion-acoustic solitons in the presence of trapped electrons [H. Hakimi Pajouh and H. Abbasi, Phys. Plasmas 15, 082105 (2008)] is revisited. Through a hybrid (Vlasov-Fluid) model, the restrictions associated with the simple modified Korteweg de-Vries (mKdV) model are studied. For instance, the lack of vital information in the phase space associated with the evolution of electron velocity distribution, the perturbative nature of mKdV model which limits it to the weak nonlinear cases, and the special spatio-temporal scaling based on which the mKdV is derived. Remarkable differences between the results of the two models lead us to conclude that the mKdV model can only monitor the general aspects of the dynamics, and the precise picture including the correct spatio-temporal scales and the properties of solitons should be studied within the framework of hybrid model.

  12. High Power Amplifiers Chain nonlinearity influence on the accelerating beam stability in free electron laser (FLASH)

    CERN Document Server

    Cichalewski, w

    2010-01-01

    The high power amplifiers transfer characteristics nonlinearities can have a negative influence on the overall system performance. This is also true for the TESLA superconducting cavities accelerating field parameters control systems. This Low Level Radio Frequency control systems uses microwave high power amplifiers (like 10 MW klystrons) as actuators in the mentioned feedback loops. The amplitude compression and phase deviations phenomena introduced to the control signals can reduce the feedback performance and cause electron beam energy instabilities. The transfer characteristics deviations in the Free Electron Laser in Hamburg experiment have been investigated. The outcome of this study together with the description of the developed linearization method based on the digital predistortion approach have been described in this paper. Additionally, the results from the linearization tool performance tests in the FLASH's RF systems have been placed.

  13. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    Science.gov (United States)

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  14. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria.

    Science.gov (United States)

    Araújo, Wagner L; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A; Leaver, Christopher J; Fernie, Alisdair R

    2010-05-01

    The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route.

  15. The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain.

    Science.gov (United States)

    Wang, Hui; Lin, Apeng; Gu, Wenhui; Huan, Li; Gao, Shan; Wang, Guangce

    2016-04-22

    Sporulation and spore release are essential phases of the life cycle in algae and land plants. Ulva prolifera, which is an ideal organism for studying sporulation and spore release, was used as the experimental material in the present study. The determination of photosynthetic parameters, combined with microscopic observation, treatment with photosynthetic inhibitors, limitation of carbon acquisition, and protein mass spectrometry, was employed in this experiment. Cycle electron transport (CEF) was found enhanced at the onset of sporangia formation. The inhibition effect of dibromothymoquinone (DBMIB) towards sporulation was always strong during the sporulation process whereas the inhibition effect of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) was continuously declined accompanied with the progress of sporulation. The changes of photosynthesis resulted from the limitation of CO2 acquisition could stimulate sporulation onset. Quantitative protein analysis showed that enzymes involved in carbon fixation, including RUBISCO and pyruvate orthophosphate dikinase, declined during sporogenesis, while proteins involved in sporulation, including tubulin and centrin, increased. These results suggest that enhanced cyclic electron flow (CEF) and oxidation of the plastoquinone pool are essential for sporangia formation onset, and changes in photosynthetic electron transport chain have significant impacts on sporulation of the green algae.

  16. Ascorbate Biosynthesis in Mitochondria Is Linked to the Electron Transport Chain between Complexes III and IV1

    Science.gov (United States)

    Bartoli, Carlos G.; Pastori, Gabriela M.; Foyer, Christine H.

    2000-01-01

    Ascorbic acid is synthesized from galactono-γ-lactone (GL) in plant tissues. An improved extraction procedure involving ammonium sulfate precipitation of membrane proteins from crude leaf homogenates yielded a simple, quick method for determining tissue activities of galactono-γ-lactone dehydrogenase (GLDH). Total foliar ascorbate and GLDH activity decreased with leaf age. Subcellular fractionation experiments using marker enzymes demonstrated that 80% of the total GLDH activity was located on the inner mitochondrial membrane, and 20% in the microsomal fraction. Specific antibody raised against potato (Solanum tuberosum L.) tuber GLDH recognized a 56-kD polypeptide in extracts from the mitochondrial membranes but failed to detect the equivalent polypeptide in microsomes. We demonstrate that isolated intact mitochondria synthesize ascorbate in the presence of GL. GL stimulated mitochondrial electron transport rates. The respiration inhibitor antimycin A stimulated ascorbate biosynthesis, while cyanide inhibited both respiration and ascorbate production. GL-dependent oxygen uptake was observed in isolated intact mitochondria. This evidence suggests that GLDH delivers electrons to the mitochondrial electron transport chain between complexes III and IV. PMID:10806250

  17. Electronic structure and transport properties of monatomic Fe chains in a vacuum and anchored to a graphene nanoribbon

    International Nuclear Information System (INIS)

    Nguyen, N B; Lebon, A; Vega, A; García-Fuente, A; Gallego, L J

    2012-01-01

    The electronic structure and transport properties of monatomic Fe wires of different characteristics are studied within the density functional theory. In both equidistant and dimerized (more stable) isolated wires, magnetism plays an important role since it leads to different shapes of the transmission coefficients for each spin component. In equidistant wires, electron localization around the Fermi level leads to symmetry breaking between d xy and d x 2 -y 2 bands. The main effect of the structural dimerization is to decrease the number of channels available for the minority spin component. When anchored to the edges of a graphene nanoribbon, the dimerization of the chain is preserved, despite the hybridization of the d states of Fe with the C atoms which gives way to a reduction in the number of d channels around the Fermi level. Most conduction is then led by an electronic channel from the ribbon and the sp z bands from the Fe wires. Suggestions to improve the spintronic ability of Fe wires are proposed.

  18. Effects of selected electron transport chain inhibitors on 24-h hydrogen production by Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Burrows, Elizabeth H; Chaplen, Frank W R; Ely, Roger L

    2011-02-01

    One factor limiting biosolar hydrogen (H(2)) production from cyanobacteria is electron availability to the hydrogenase enzyme. In order to optimize 24-h H(2) production this study used Response Surface Methodology and Q2, an optimization algorithm, to investigate the effects of five inhibitors of the photosynthetic and respiratory electron transport chains of Synechocystis sp. PCC 6803. Over 3 days of diurnal light/dark cycling, with the optimized combination of 9.4 mM KCN (3.1 μmol 10(10) cells(-1)) and 1.5 mM malonate (0.5 μmol 10(10) cells(-1)) the H(2) production was 30-fold higher, in EHB-1 media previously optimized for nitrogen (N), sulfur (S), and carbon (C) concentrations (Burrows et al., 2008). In addition, glycogen concentration was measured over 24 h with two light/dark cycling regimes in both standard BG-11 and EHB-1 media. The results suggest that electron flow as well as glycogen accumulation should be optimized in systems engineered for maximal H(2) output. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The Mechanisms of Oxygen Reduction in the Terminal Reducing Segment of the Chloroplast Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Kozuleva, Marina A; Ivanov, Boris N

    2016-07-01

    The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP + under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O 2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  1. The System Dynamics Model in Electronic Products Closed-Loop Supply Chain Distribution Network with Three-Way Recovery and the Old-for-New Policy

    Directory of Open Access Journals (Sweden)

    Xiao-qing Zhang

    2016-01-01

    Full Text Available With the technological developments and rapid changes in demand pattern, diverse varieties of electronic products are entering into the market with reduced lifecycle which leads to the environmental problems. The awareness of electronic products take-back and recovery has been increasing in electronic products supply chains. In this paper, we build a system dynamics model for electronic products closed-loop supply chain distribution network with the old-for-new policy and three electronic products recovery ways, namely, electronic products remanufacturing, electronic component reuse and remanufacturing, and electronic raw material recovery. In the simulation study, we investigate the significance of various factors including the old-for-new policy, collection and remanufacturing, their interactions and the type of their impact on bullwhip, and profitability through sensitivity analysis. Our results instruct that the old-for-new policy and three electronic products recovery ways can reduce the bullwhip effect in the retailers and the distributors and increases the profitability in the closed-loop supply chain distribution network.

  2. Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain.

    Science.gov (United States)

    Masha, Roland T; Houreld, Nicolette N; Abrahamse, Heidi

    2013-02-01

    Low-intensity laser irradiation (LILI) has been shown to stimulate cellular functions leading to increased adenosine triphosphate (ATP) synthesis. This study was undertaken to evaluate the effect of LILI on genes involved in the mitochondrial electron transport chain (ETC, complexes I-IV) and oxidative phosphorylation (ATP synthase). Four human skin fibroblast cell models were used in this study: normal non-irradiated cells were used as controls while wounded, diabetic wounded, and ischemic cells were irradiated. Cells were irradiated with a 660 nm diode laser with a fluence of 5 J/cm(2) and gene expression determined by quantitative real-time reverse transcription (RT) polymerase chain reaction (PCR). LILI upregulated cytochrome c oxidase subunit VIb polypeptide 2 (COX6B2), cytochrome c oxidase subunit VIc (COX6C), and pyrophosphatase (inorganic) 1 (PPA1) in diabetic wounded cells; COX6C, ATP synthase, H+transporting, mitochondrial Fo complex, subunit B1 (ATP5F1), nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) 1 alpha subcomplex, 11 (NDUFA11), and NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) in wounded cells; and ATPase, H+/K+ exchanging, beta polypeptide (ATP4B), and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) (ATP5G2) in ischemic cells. LILI at 660 nm stimulates the upregulation of genes coding for subunits of enzymes involved in complexes I and IV and ATP synthase.

  3. Comparative studies on mitochondrial electron transport chain complexes of Sitophilus zeamais treated with allyl isothiocyanate and calcium phosphide.

    Science.gov (United States)

    Zhang, Chao; Wu, Hua; Zhao, Yuan; Ma, Zhiqing; Zhang, Xing

    2016-01-01

    With Sitophilus zeamais as the target organism, the present study for the first time attempted to elucidate the comparative effects between allyl isothiocyanate (AITC) and calcium phosphide (Ca3P2), exposure on mitochondrial electron transport chain (ETC.) complex I & IV and their downstream effects on enzymes relevant to reactive oxygen species (ROS). In vivo, both AITC and Ca3P2 inhibited complex I and IV with similar downstream effects. In contrast with Ca3P2, the inhibition of complex I caused by AITC was dependent on time and dose. In vitro, AITC inhibited complex IV more significantly than complex I. These results indicate that mitochondrial complex IV is the primary target of AITC, and that complex I is another potential target. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. FAD oxidizes the ERO1-PDI electron transfer chain: The role of membrane integrity

    International Nuclear Information System (INIS)

    Papp, Eszter; Nardai, Gabor; Mandl, Jozsef; Banhegyi, Gabor; Csermely, Peter

    2005-01-01

    The molecular steps of the electron transfer in the endoplasmic reticulum from the secreted proteins during their oxidation are relatively unknown. We present here that flavine adenine dinucleotide (FAD) is a powerful oxidizer of the oxidoreductase system, Ero1 and PDI, besides the proteins of rat liver microsomes and HepG2 hepatoma cells. Inhibition of FAD transport hindered the action of FAD. Microsomal membrane integrity was mandatory for all FAD-related oxidation steps downstream of Ero1. The PDI inhibitor bacitracin could inhibit FAD-mediated oxidation of microsomal proteins and PDI, but did not hinder the FAD-driven oxidation of Ero1. Our data demonstrated that Ero1 can utilize FAD as an electron acceptor and that FAD-driven protein oxidation goes through the Ero1-PDI pathway and requires the integrity of the endoplasmic reticulum membrane. Our findings prompt further studies to elucidate the membrane-dependent steps of PDI oxidation and the role of FAD in redox folding

  5. Synthesis, magnetic properties and electronic structure of the S  =  ½ uniform spin chain system InCuPO5

    Science.gov (United States)

    Koteswararao, B.; Hazra, Binoy K.; Rout, Dibyata; Srinivasarao, P. V.; Srinath, S.; Panda, S. K.

    2017-07-01

    We have studied the structural and magnetic properties and electronic structure of the compound InCuPO5 synthesized by a solid state reaction method. The structure of InCuPO5 comprises S  =  ½ uniform spin chains formed by corner-shared CuO4 units. Magnetic susceptibility (χ(T)) data show a broad maximum at about 65 K, a characteristic feature of one-dimensional (1D) magnetism. The χ(T) data are fitted to the coupled S  =  ½ Heisenberg antiferromagnetic (HAFM) uniform chain model that gives the intra-chain coupling (J/k B) between nearest-neighbor Cu2+ ions as  -100 K and the ratio of inter-chain to intra-chain coupling (J‧/J) as about 0.07. The exchange couplings estimated from the magnetic data analysis are in good agreement with the values computed from the electronic structure calculations based on the density functional theory  +  Hubbard U (DFT  +  U) approach. The combination of theoretical and experimental analysis confirms that InCuPO5 is a candidate material for weakly coupled S  = ½ uniform chains. A detailed theoretical analysis of the electronic structure further reveals that the system is insulating with a gap of 2.4 eV and a local moment of 0.70 µ B/Cu.

  6. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

    Science.gov (United States)

    Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis

    2014-09-01

    The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase. © 2014 The Authors.

  7. Evaluation of the participation of ferredoxin in oxygen reduction in the photosynthetic electron transport chain of isolated pea thylakoids.

    Science.gov (United States)

    Kozuleva, Marina A; Ivanov, Boris N

    2010-07-01

    The contribution to reduction of oxygen by ferredoxin (Fd) to the overall reduction of oxygen in isolated pea thylakoids was studied in the presence of Fd versus Fd + NADP(+). The overall rate of electron transport was measured using a determination of Photosystem II quantum yield from chlorophyll fluorescence parameters, and the rate of oxidation of Fd was measured from the light-induced redox changes of Fd. At low light intensity, increasing Fd concentration from 5 to 30 microM in the absence of NADP(+) increased the proportion of oxygen reduction by Fd from 25-35 to 40-60% in different experiments. This proportion decreased with increasing light intensity. When NADP(+) was added in the presence of 15 microM Fd, which was optimal for the NADP(+) reduction rate, the participation of Fd in the reduction of oxygen was low, no more than 10%, and it also decreased with increasing light intensity. At high light intensity, the overall oxygen reduction rates in the presence of Fd + NADP(+) and in the presence of Fd alone were comparable. The significance of reduction of dioxygen either by water-soluble Fd or by the membrane-bound carriers of the photosynthetic electron transport chain for redox signaling under different light intensities is discussed.

  8. Side chain effect on electronic structure of spin-coated films of [6,6]-phenyl-C61-butyric acid methyl ester and its bis-adduct

    International Nuclear Information System (INIS)

    Akaike, Kouki; Kanai, Kaname; Ouchi, Yukio; Seki, Kazuhiko

    2013-01-01

    Highlights: ► Electronic structure of spin-coated films of PCBM and bis-PCBM was investigated. ► Ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. ► Electron donation from the side chain to C 60 -backbone raises the HOMO and LUMO. ► Open circuit voltages of PCBM-based solar cells relates to electron affinities. - Abstract: We investigated the electronic structure of spin-coated films of two soluble fullerenes; [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and its bis-adduct (bis-PCBM) using ultraviolet photoelectron spectroscopy, inverse photoemission spectroscopy and molecular orbital calculations. The ionization energy and electron affinity of spin-coated films of bis-PCBM were determined to be 6.01 eV and 3.4 eV, respectively. Analysis of electron density suggested the stronger electron donation from the two side chains to fullerene-backbone in a bis-PCBM molecule, compared with PCBM. The electron donation raises the energies of the frontier orbitals of bis-PCBM, which mainly consist of π-orbitals of fullerene-backbone. As a result, the ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. Moreover, we also concluded that the larger open circuit voltage observed for bis-PCBM based organic photovoltaics was explained by the higher-lying unoccupied molecular orbital of bis-PCBM

  9. Biogeochemistry of Halogenated Hydrocarbons

    Science.gov (United States)

    Adriaens, P.; Gruden, C.; McCormick, M. L.

    2003-12-01

    Halogenated hydrocarbons originate from both natural and industrial sources. Whereas direct anthropogenic emissions to the atmosphere and biosphere are often easy to assess, particularly when they are tied to major industrial activities, the attribution of emissions to other human activities (e.g., biomass burning), diffuse sources (e.g., atmospheric discharge, run off), and natural production (e.g., soils, fungi, algae, microorganisms) are difficult to quantify. The widespread occurrence of both alkyl and aryl halides in groundwater, surface water, soils, and various trophic food chains, even those not affected by known point sources, suggests a substantial biogeochemical cycling of these compounds (Wania and Mackay, 1996; Adriaens et al., 1999; Gruden et al., 2003). The transport and reactive fate mechanisms controlling their reactivity are compounded by the differences in sources of alkyl-, aryl-, and complex organic halides, and the largely unknown impact of biogenic processes, such as enzymatically mediated halogenation of organic matter, fungal production of halogenated hydrocarbons, and microbial or abiotic transformation reactions (e.g., Asplund and Grimvall, 1991; Gribble, 1996; Watling and Harper, 1998; Oberg, 2002). The largest source may be the natural halogenation processes in the terrestrial environment, as the quantities detected often exceed the amount that can be explained by human activities in the surrounding areas ( Oberg, 1998). Since biogeochemical processes result in the distribution of a wide range of halogenated hydrocarbon profiles, altered chemical structures, and isomer distributions in natural systems, source apportionment (or environmental forensics) can often only be resolved using multivariate statistical methods (e.g., Goovaerts, 1998; Barabas et al., 2003; Murphy and Morrison, 2002).This chapter will describe the widespread occurrence of halogenated hydrocarbons, interpret their distribution and biogeochemical cycling in light of

  10. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    Science.gov (United States)

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  11. Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart.

    Science.gov (United States)

    Madungwe, Ngonidzashe B; Zilberstein, Netanel F; Feng, Yansheng; Bopassa, Jean C

    2016-01-01

    Reactive oxygen species (ROS) generation has been implicated in many pathologies including ischemia/reperfusion (I/R) injury. This led to multiple studies on antioxidant therapies to treat cardiovascular diseases but paradoxically, results have so far been mixed as ROS production can be beneficial as a signaling mechanism and in cardiac protection via preconditioning interventions. We investigated whether the differential impact of increased ROS in injury as well as in protection could be explained by their site of production on the mitochondrial electron transport chain. Using amplex red to measure ROS production, we found that mitochondria isolated from hearts after I/R produced more ROS than non-ischemic when complex I substrate (glutamate/malate) was used. Interestingly, the substrates of complex II (succinate) and ubiquinone (sn-glycerol 3-phosphate, G3P) produced less ROS in mitochondria from I/R hearts compared to normal healthy hearts. The inhibitors of complex I (rotenone) and complex III (antimycin A) increased ROS production when glutamate/malate and G3P were used; in contrast, they reduced ROS production when the complex II substrate was used. Mitochondrial calcium retention capacity required to induce mitochondrial permeability transition pore (mPTP) opening was measured using calcium green fluorescence and was found to be higher when mitochondria were treated with G3P and succinate compared to glutamate/malate. Furthermore, Langendorff hearts treated with glutamate/malate exhibited reduced cardiac functional recovery and increased myocardial infarct size compared to hearts treated with G3P. Thus, ROS production by the stimulated respiratory chain complexes I and III has opposite roles: cardio-deleterious when produced in complex I and cardio-protective when produced in complex III. The mechanism of these ROS involves the inhibition of the mPTP opening, a key event in cell death following ischemia/reperfusion injury.

  12. The Agr quorum-sensing system regulates fibronectin binding but not hemolysis in the absence of a functional electron transport chain.

    Science.gov (United States)

    Pader, Vera; James, Ellen H; Painter, Kimberley L; Wigneshweraraj, Sivaramesh; Edwards, Andrew M

    2014-10-01

    Staphylococcus aureus is responsible for numerous chronic and recurrent infections, which are frequently associated with the emergence of small-colony variants (SCVs) that lack a functional electron transport chain. SCVs exhibit enhanced expression of fibronectin-binding protein (FnBP) and greatly reduced hemolysin production, although the basis for this is unclear. One hypothesis is that these phenotypes are a consequence of the reduced Agr activity of SCVs, while an alternative is that the lack of a functional electron transport chain and the resulting reduction in ATP production are responsible. Disruption of the electron transport chain of S. aureus genetically (hemB and menD) or chemically, using 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), inhibited both growth and Agr activity and conferred an SCV phenotype. Supplementation of the culture medium with synthetic autoinducing peptide (sAIP) significantly increased Agr expression in both hemB mutant strains and S. aureus grown with HQNO and significantly reduced staphylococcal adhesion to fibronectin. However, sAIP did not promote hemolysin expression in hemB mutant strains or S. aureus grown with HQNO. Therefore, while Agr regulates fibronectin binding in SCVs, it cannot promote hemolysin production in the absence of a functional electron transport chain. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. First principles studies of the electronic properties and catalytic activity of single-walled carbon nanotube doped with Pt clusters and chains

    International Nuclear Information System (INIS)

    Hayes, Kayla E.; Lee, Hee-Seung

    2012-01-01

    Highlights: ► Electronic and magnetic properties of (5, 5)-SWNT doped with Pt clusters and chains. ► Pt-doping can change metallic (5, 5)-SWNT to semiconducting CNT. ► Oxygen adsorption on Pt-doped (5, 5)-SWNT is barrierless process. ► Pt-doping reduces the activation barrier of oxygen dissociation reaction. ► Adsorbed oxygen has 2 O 2 - – character. - Abstract: We report the results of density functional theory calculations on the electronic structures, geometrical parameters, and magnetic properties of a wide variety of Pt clusters/chains adsorbed on metallic (5,5) single-walled carbon nanotube (SWNT). It was found that the electronic band structures of Pt/CNT systems are very sensitive to the small changes in the geometries of Pt clusters and chains. In some cases, metallic (5, 5)-SWNT becomes a small-gap semiconducting nanotube with adsorbed Pt clusters and chains. We also investigated the dissociation of molecular oxygen on the (5, 5)-SWNT doped with a single Pt atom via the nudged elastic band (NEB) method. The NEB results showed that the activation barrier is lowered even with a single Pt atom compared to that of pristine SWNT. It was found that the electronic structure of molecular oxygen adsorbed on Pt-doped CNT resembles that of 2 O 2 - , which should facilitate the dissociation process.

  14. Cracking hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1921-10-07

    In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.

  15. Distilling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bataafsche, N V; de Brey, J H.C.

    1918-10-30

    Hydrocarbons containing a very volatile constituent and less volatile constituents, such as casing-head gases, still gases from the distillation of crude petroleum and bituminous shale are separated into their constituents by rectification under pressure; a pressure of 20 atmospheres and limiting temperatures of 150/sup 0/C and 40/sup 0/C are mentioned as suitable. The mixture may be subjected to a preliminary treatment consisting in heating to a temperature below the maximum rectification temperature at a pressure greater than that proposed to be used in the rectification.

  16. Detection of Phakopsora pachyrhizi fungus by Polymerase Chain Reaction technique (PCR) after soy grains treatment by electron beams

    International Nuclear Information System (INIS)

    Fanaro, G.B.; Aquino, S.; Guedes, R.L.; Crede, R.G.; Sabundjian, I.T.; Ruiz, M.O.; Villavicencio, A.L.C.H.

    2005-01-01

    Today Brazil, as the largest soy exporter in the world, has undergone the consequences of the contamination of these crops by the Asian dust fungus, being harmed since the plantation up to the harvest, with losses in its productivity ranging 10-80%. As it is a new disease in the Americas, there are not any resistant species to this fungus attack. The grains contamination harms the exportation for countries which do not want to have their crops contaminated, affecting therefore the international commerce and agro-business relationship with those countries Brazil has trade with. The Asian dust is caused by the fungus Phakopsora pachyrhizi and its dissemination is of difficult control, since occurs through the wind dispersion. The P. pachyrhizi is an Asian fungus and was recently found in South Africa, Paraguay, Argentina and Brazil. As an alternative process to minimize these losses is the process to preserve the grains by radiation, the use of the electron accelerator was indicated, since its advantage for the grains exportation industry is fundamental. Besides the possibility of being disconnected when not in use, this source does not need to be recharged, is easily available and has high dose rate, streamlining the process and reducing logistics costs. The present work aims to identify, by the Polymerase Chain Reaction technique (PCR), the P. pachyrhizi fungus presence in the irradiated soy grains, at doses 1 and 2 kGy, at the IPEN-CNEN electron Accelerator, a Dynamitron Machine (Radiation Dynamics Co. model JOB, New York, USA), with 1.5 MeV power and 2.5 mA electrical current. (author)

  17. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  18. Towards a Traceability System Based on RFID Technology to Check the Content of Pallets within Electronic Devices Supply Chain

    Directory of Open Access Journals (Sweden)

    Ignacio Angulo

    2013-01-01

    Full Text Available In the last few years there has been a growing interest in smart solutions capable of dealing with the traceability of products and materials to improve logistical processes. Most of the existing solutions have been designed without considering the difficulties of deploying traceability systems in the storehouses currently working, not dealing with specific needs, such as environment characteristics or time required to be handled by workers. In this paper, in order to test the viability of its application, a first prototype of a traceability system capable of checking the content of pallets loaded with electronic devices is presented. It is based on ultra-high frequency (UHF radio frequency identification (RFID technology using passive tags. A holistic approach has been adopted to design the system: it begins with a radioelectrical characterization of the environment where the check points will be implemented, continues with the integration of a set of data acquisition and wireless communication devices, and ends with a logistics information system able to provide final user services. The combination of physical layer analysis with a top layer system view can aid the planning as well as operational phase of this type of RFID system within a logistic chain.

  19. Learning how the electron transport chain works: independent and interactive effects of instructional strategies and learners' characteristics.

    Science.gov (United States)

    Darabi, Aubteen; Arrastia-Lloyd, Meagan C; Nelson, David W; Liang, Xinya; Farrell, Jennifer

    2015-12-01

    In order to develop an expert-like mental model of complex systems, causal reasoning is essential. This study examines the differences between forward and backward instructional strategies' in terms of efficiency, students' learning and progression of their mental models of the electronic transport chain in an undergraduate metabolism course (n = 151). Additionally, the participants' cognitive flexibility, prior knowledge, and mental effort in the learning process are also investigated. The data were analyzed using a series of general linear models to compare the strategies. Although the two strategies did not differ significantly in terms of mental model progression and learning outcomes, both groups' mental models progressed significantly. Mental effort and prior knowledge were identified as significant predictors of mental model progression. An interaction between instructional strategy and cognitive flexibility revealed that the backward instruction was more efficient than the conventional (forward) strategy for students with lower cognitive flexibility, whereas the conventional instruction was more efficient for students with higher cognitive flexibility. The results are discussed and suggestions for future research on the possible moderating role of cognitive flexibility in the area of health education are presented.

  20. A Manufacturing Cost and Supply Chain Analysis of SiC Power Electronics Applicable to Medium-Voltage Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Remo, Timothy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reese, Samantha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-24

    Wide bandgap (WBG) semiconductor devices are increasingly being considered for use in certain power electronics applications, where they can improve efficiency, performance, footprint, and, potentially, total system cost compared to systems using traditional silicon (Si) devices. Silicon carbide (SiC) devices in particular -- which are currently more mature than other WBG devices -- are poised for growth in the coming years. Today, the manufacturing of SiC wafers is concentrated in the United States, and chip production is split roughly equally between the United States, Japan, and Europe. Established contract manufacturers located throughout Asia typically carry out manufacturing of WBG power modules. We seek to understand how global manufacturing of SiC components may evolve over time by illustrating the regional cost drivers along the supply chain and providing an overview of other factors that influence where manufacturing is sited. We conduct this analysis for a particular case study where SiC devices are used in a medium-voltage motor drive.

  1. The fungal phytotoxin alternariol 9-methyl ether and some of its synthetic analogues inhibit the photosynthetic electron transport chain.

    Science.gov (United States)

    Demuner, Antonio Jacinto; Barbosa, Luiz Cláudio Almeida; Miranda, Ana Cristina Mendes; Geraldo, Guilherme Carvalho; da Silva, Cleiton Moreira; Giberti, Samuele; Bertazzini, Michele; Forlani, Giuseppe

    2013-12-27

    Alternariol and monomethylalternariol are natural phytotoxins produced by some fungal strains, such as Nimbya and Alternaria. These substances confer virulence to phytopathogens, yet no information is available concerning their mode of action. Here we show that in the micromolar range alternariol 9-methyl ether is able to inhibit the electron transport chain (IC50 = 29.1 ± 6.5 μM) in isolated spinach chloroplasts. Since its effectiveness is limited by poor solubility in water, several alternariol analogues were synthesized using different aromatic aldehydes. The synthesized 6H-benzo[c]cromen-6-ones, 5H-chromene[4,3-b]pyridin-5-one, and 5H-chromene[4,3-c]pyridin-5-one also showed inhibitory properties, and three 6H-benzo[c]cromen-6-ones were more effective (IC50 = 12.8-22.8 μM) than the lead compound. Their addition to the culture medium of a cyanobacterial model strain was found to inhibit algal growth, with a relative effectiveness that was consistent with their activity in vitro. In contrast, the growth of a nonphotosynthetic plant cell culture was poorly affected. These compounds may represent a novel lead for the development of new active principles targeting photosynthesis.

  2. 1D chain formation by coadsorption of Pb and Bi on Cu(001): Determination using low energy electron diffraction

    Science.gov (United States)

    Kabiruzzaman, Md; Ahmed, Rezwan; Nakagawa, Takeshi; Mizuno, Seigi

    2017-10-01

    Coadsorption of two heavy metals, Pb and Bi, on Cu(001) at room temperature has been studied using low energy electron diffraction (LEED). c(4 × 4), c(2 × 2), and c(9√{ 2}×√{ 2}) phases are obtained at different coverages; here, we have determined the best-fit structure of c(4 × 4) phase. This structure can be described as a 1D substitutional chain arrangement of Pb and Bi atoms between the Cu rows along the [110] direction. The unit cell in the two-dimensional (2D) surface consists of one Bi atom, two Pb atoms, and four Cu atoms with one vacancy at the center. The optimal structure parameters demonstrate that Bi atoms are located at fourfold-hollow sites and that Pb atoms are laterally displaced by 0.78 Å from the fourfold-hollow site toward the vacancy. The reasons for the formation of the c(4 × 4) structure upon deposition of Pb and Bi on Cu(001) are discussed in comparison with a similar structure formed by the individual adsorption of Pb on the same substrate.

  3. The homeobox protein CEH-23 mediates prolonged longevity in response to impaired mitochondrial electron transport chain in C. elegans.

    Directory of Open Access Journals (Sweden)

    Ludivine Walter

    2011-06-01

    Full Text Available Recent findings indicate that perturbations of the mitochondrial electron transport chain (METC can cause extended longevity in evolutionarily diverse organisms. To uncover the molecular basis of how altered METC increases lifespan in C. elegans, we performed an RNAi screen and revealed that three predicted transcription factors are specifically required for the extended longevity of mitochondrial mutants. In particular, we demonstrated that the nuclear homeobox protein CEH-23 uniquely mediates the longevity but not the slow development, reduced brood size, or resistance to oxidative stress associated with mitochondrial mutations. Furthermore, we showed that ceh-23 expression levels are responsive to altered METC, and enforced overexpression of ceh-23 is sufficient to extend lifespan in wild-type background. Our data point to mitochondria-to-nucleus communications to be key for longevity determination and highlight CEH-23 as a novel longevity factor capable of responding to mitochondrial perturbations. These findings provide a new paradigm for how mitochondria impact aging and age-dependent diseases.

  4. Antioxidant and oxidative stress parameters in brain of Heteropneustes fossilis under air exposure condition; role of mitochondrial electron transport chain.

    Science.gov (United States)

    Paital, Biswaranjan

    2013-09-01

    Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for >24h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25°C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Using the Electronic Industry Code of Conduct to Evaluate Green Supply Chain Management: An Empirical Study of Taiwan’s Computer Industry

    Directory of Open Access Journals (Sweden)

    Ching-Ching Liu

    2015-03-01

    Full Text Available Electronics companies throughout Asia recognize the benefits of Green Supply Chain Management (GSCM for gaining competitive advantage. A large majority of electronics companies in Taiwan have recently adopted the Electronic Industry Citizenship Coalition (EICC Code of Conduct for defining and managing their social and environmental responsibilities throughout their supply chains. We surveyed 106 Tier 1 suppliers to the Taiwanese computer industry to determine their environmental performance using the EICC Code of Conduct (EICC Code and performed Analysis of Variance (ANOVA on the 63/106 questionnaire responses collected. We test the results to determine whether differences in product type, geographic area, and supplier size correlate with different levels of environmental performance. To our knowledge, this is the first study to analyze questionnaire data on supplier adoption to optimize the implementation of GSCM. The results suggest that characteristic classification of suppliers could be employed to enhance the efficiency of GSCM.

  6. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  7. Policy design in closed-loop supply chains for the integrated management of component recycling and spare parts supply in the electronics industry

    Science.gov (United States)

    Schroeter, Marcus; Spengler, Thomas

    2004-02-01

    The strategy to recover components from discarded electrical and electronic equipment to obtain spare parts is promising, especially during the final service phase. In that phase, the original product is no longer produced and the sources of new parts are often limited. Controlling those closed-loop supply chains is challenging. Decision makers have to choose when to acquire discarded equipment, when to recover used parts, and when to produce new parts. We developed a generic system dynamics model that provides a test for various proposed policies to control closed-loop supply chains with parts recovery and spare-parts supply.

  8. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  9. Hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. (South Carolina Univ., Columbia, SC (United States). Dept. of Geological Sciences)

    1993-01-01

    This special issue of the journal examines various aspects of the on-going search for hydrocarbons, ranging from frontier basins where little data are available, to more mature areas where considerable data are available. The incentives underlying the search for oil are roughly: the social, economic and industrial needs of a nation; the incentive of a corporation to be profitable; and the personal incentives of individuals in the oil industry and governments, which range from financial wealth to power and which are as diverse as the individuals who are involved. From a geopolitical perspective, the needs, requirements, goals, strategies, and philosophies of nations, and groups of nations, also impact on the oil exploration game. Strategies that have been employed have ranged from boycott to austerity and rationing, to physical intervention, to global ''flooding'' with oil by over-production. (author)

  10. Chemical genetics analysis of an aniline mustard anticancer agent reveals complex I of the electron transport chain as a target.

    Science.gov (United States)

    Fedeles, Bogdan I; Zhu, Angela Y; Young, Kellie S; Hillier, Shawn M; Proffitt, Kyle D; Essigmann, John M; Croy, Robert G

    2011-09-30

    The antitumor agent 11β (CAS 865070-37-7), consisting of a DNA-damaging aniline mustard linked to an androgen receptor (AR) ligand, is known to form covalent DNA adducts and to induce apoptosis potently in AR-positive prostate cancer cells in vitro; it also strongly prevents growth of LNCaP xenografts in mice. The present study describes the unexpectedly strong activity of 11β against the AR-negative HeLa cells, both in cell culture and tumor xenografts, and uncovers a new mechanism of action that likely explains this activity. Cellular fractionation experiments indicated that mitochondria are the major intracellular sink for 11β; flow cytometry studies showed that 11β exposure rapidly induced oxidative stress, mitochondria being an important source of reactive oxygen species (ROS). Additionally, 11β inhibited oxygen consumption both in intact HeLa cells and in isolated mitochondria. Specifically, 11β blocked uncoupled oxygen consumption when mitochondria were incubated with complex I substrates, but it had no effect on oxygen consumption driven by substrates acting downstream of complex I in the mitochondrial electron transport chain. Moreover, 11β enhanced ROS generation in isolated mitochondria, suggesting that complex I inhibition is responsible for ROS production. At the cellular level, the presence of antioxidants (N-acetylcysteine or vitamin E) significantly reduced the toxicity of 11β, implicating ROS production as an important contributor to cytotoxicity. Collectively, our findings establish complex I inhibition and ROS generation as a new mechanism of action for 11β, which supplements conventional DNA adduct formation to promote cancer cell death.

  11. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.

    Science.gov (United States)

    Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M

    2011-12-20

    The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.

  12. Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy.

    Science.gov (United States)

    Griffiths, Lisa A; Flatters, Sarah J L

    2015-10-01

    Paclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain. This study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce antinociceptive

  13. Versatility of hydrocarbon production in cyanobacteria.

    Science.gov (United States)

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  14. Effects of side-chain and electron exchange correlation on the band structure of perylene diimide liquid crystals: a density functional study.

    Science.gov (United States)

    Arantes, J T; Lima, M P; Fazzio, A; Xiang, H; Wei, Su-Huai; Dalpian, G M

    2009-04-23

    The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (DFT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.

  15. First-principles study of the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube

    Science.gov (United States)

    Ma, Liang-Cai; Ma, Ling; Zhang, Jian-Min

    2017-07-01

    By using first-principles calculations based on density-functional theory, the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube are systematically investigated. The binding energies of the hybrid structures are remarkably higher than those of corresponding freestanding TM chains, indicating the TM chains are significantly stabilized after encapsulating into copper nanotube. The formed bonds between outer Cu and inner TM atoms show some degree of covalent bonding character. The magnetic ground states of Fe@CuNW and Co@CuNW hybrid structures are ferromagnetic, and both spin and orbital magnetic moments of inner TM atoms have been calculated. The magnetocrystalline anisotropy energies (MAE) of the hybrid structures are enhanced by nearly fourfold compared to those of corresponding freestanding TM chains, indicating that the hybrid structures can be used in ultrahigh density magnetic storage. Furthermore, the easy magnetization axis switches from that along the axis in freestanding Fe chain to that perpendicular to the axis in Fe@CuNT hybrid structure. The large spin polarization at the Fermi level also makes the hybrid systems interesting as good potential materials for spintronic devices.

  16. Chain chemical reactions during matrix devitrification

    International Nuclear Information System (INIS)

    Barkalov, I.M.

    1980-01-01

    Investigation results of chain reaction mechanisms, proceeding at devitrification of glass-like matrices under the effect of γ-irradiation are summarized. Peculiarities of kinetics and mechanism of chain reactions proceeding at devitrification are considered: hydrocarbon chlorination, polymerization of vinyl monomers, copolymerization and graft polymerization. Possible application aspects of the chain reaction conducting during matrix devitrification are also considered

  17. A practical approach to implementing CSR in the electronics industry: global supply chain management focusing on corporate social responsibility

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, S.; Rice, G. [Panasonic Mobile Communication Development of Europe (PMCDE) (United Kingdom); Hilbron, R. [Vodafone Group Plc (United Kingdom); Clift, R.; Wehrmeyer, W. [Centre for Environmental Strategy, Univ. of Surrey (United Kingdom)

    2004-07-01

    This paper covers a co-operative investigation undertaken by Vodafone Plc and Panasonic Mobile Communications (PMC); applying Corporate Social Responsibility (CSR) principles in an actual assessment of the supply chain. Together, we carried out an informal CSR assessment on a Panasonic mobile phone handset manufacturing facility in the Philippines. CSR issues vary with geographical and cultural region. By researching CSR concerns typically encountered in the region, focal points of business performance for the Philippines investigation were identified. These are detailed in the paper. A key benefit from this assessment was the increased understanding of the management of the indirect CSR issues within the supply chain. This understanding is essential when developing a system for CSR supply-chain management. This paper will describe this exercise and its findings and will suggest future steps necessary to successfully integrate CSR principles though the global supply chain. (orig.)

  18. Comparison between different bio-treatments of a hydrocarbon ...

    African Journals Online (AJOL)

    Ramya

    2011-10-31

    Oct 31, 2011 ... We investigated the bio-remediation of a hydrocarbon contaminated soil pile that was slated for landfill ... soils, plants and in the food chain (Kipopoulou et al., ...... Scientific and Social Research, Putra Palace, Perlis, Malaysia.

  19. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Efficient electron injection from solution-processed cesium stearate interlayers in organic light-emitting diodes

    NARCIS (Netherlands)

    Wetzelaer, G. A. H.; Najafi, A.; Kist, R. J. P.; Kuik, M.; Blom, P. W. M.

    2013-01-01

    The electron-injection capability of solution-processed cesium stearate films in organic light-emitting diodes is investigated. Cesium stearate, which is expected to exhibit good solubility and film formation due to its long hydrocarbon chain, is synthesized using a straightforward procedure.

  1. Density functional theory study of silodithiophene thiophenepyrrolopyrroledion-based small molecules: The effect of alkyl side chain length in electron donor materials

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong Kyun; Yeo, Hak; Kwak, Kyung Won [Dept. of Chemistry, Chung-Ang University, Seoul (Korea, Republic of); Yoon, Young Woon; Kim, Bong Soo [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Kyung Koo [Dept. of Chemistry, Kunsan National University, Gunsan (Korea, Republic of)

    2015-02-15

    Push–pull small molecules are promising electron-donor materials for organic solar cells. Thus, precise prediction of their electronic structures is of paramount importance to control the optical and electrical properties of the solar cells. Various types of alkyl chains are usually introduced to increase solubility and modify the morphology of the resulting molecular films. Here, using density functional theory (DFT) and time-dependent DFT (TD-DFT), we report the precise effect of increasing the length of the alkyl chain on the electronic structure of an electron donor molecule 6,60-((4,4-dialkyl-4H-silolo[3,2-b:4,5-b′]-dithiophene-2,6-diyl) bis(thiophene-5,2-diyl))bis(2,5-alkyl-3-(thiophen-2-yl) -2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) (DTS1TDPP). Alkyl groups were attached to the bridging position (silicon atom) of the fused rings and nitrogen atom of the pyrrolopyrroledione groups. We demonstrate that the alkyl groups do not perturb the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels, π-delocalized backbone structure, and UV–Vis absorption spectrum when they are placed at the least steric effect positions.

  2. Electronic and magnetic properties of infinite 1D chains of paddlewheel carboxylates M2(COOR)4 (M = Mo, W, Ru, Rh, Ir, Cu)

    KAUST Repository

    Peskov, Maxim

    2013-03-14

    Dinuclear complexes of transition metals bridged by four carboxylate-groups are examples of stable atomic configurations serving as fundamental building blocks of catalysts and prototypical molecular electronic devices. The electronic structure and magnetic properties of many molecular tetracarboxylate complexes were meticulously studied; however, the properties of the one-dimensional (1D) polymeric chain of associated tetracarboxylates have so far evaded much attention. Using periodic density-functional theory calculations, we analyze the electronic structure of condensed tetracarboxylates Mo(II), W(II), Ru(II), Rh(II), Ir(II), and Cu(II). The relationship between crystal structure of the polymerized tetracarboxylates and the electronic properties of the metal-metal bond in the M24+ core is studied. The electronic effects emanating from the association of dinuclear transition metal tetracarboxylates are important for designing molecular electronic devices. In this study, its influence on both direct and indirect metal-metal interactions, and the electronic structure, in particular transport properties, is discussed. © 2013 American Chemical Society.

  3. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  4. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2018-04-03

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  5. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-09-26

    Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  6. Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation.

    Directory of Open Access Journals (Sweden)

    Amy V Pointon

    2010-09-01

    Full Text Available Doxorubicin is one of the most effective anti-cancer drugs but its use is limited by cumulative cardiotoxicity that restricts lifetime dose. Redox damage is one of the most accepted mechanisms of toxicity, but not fully substantiated. Moreover doxorubicin is not an efficient redox cycling compound due to its low redox potential. Here we used genomic and chemical systems approaches in vivo to investigate the mechanisms of doxorubicin cardiotoxicity, and specifically test the hypothesis of redox cycling mediated cardiotoxicity.Mice were treated with an acute dose of either doxorubicin (DOX (15 mg/kg or 2,3-dimethoxy-1,4-naphthoquinone (DMNQ (25 mg/kg. DMNQ is a more efficient redox cycling agent than DOX but unlike DOX has limited ability to inhibit gene transcription and DNA replication. This allowed specific testing of the redox hypothesis for cardiotoxicity. An acute dose was used to avoid pathophysiological effects in the genomic analysis. However similar data were obtained with a chronic model, but are not specifically presented. All data are deposited in the Gene Expression Omnibus (GEO. Pathway and biochemical analysis of cardiac global gene transcription and mRNA translation data derived at time points from 5 min after an acute exposure in vivo showed a pronounced effect on electron transport chain activity. This led to loss of ATP, increased AMPK expression, mitochondrial genome amplification and activation of caspase 3. No data gathered with either compound indicated general redox damage, though site specific redox damage in mitochondria cannot be entirely discounted.These data indicate the major mechanism of doxorubicin cardiotoxicity is via damage or inhibition of the electron transport chain and not general redox stress. There is a rapid response at transcriptional and translational level of many of the genes coding for proteins of the electron transport chain complexes. Still though ATP loss occurs with activation caspase 3 and these

  7. Dynamics of transfer of electron excitation in a donor-acceptor system with a carbon chain and ways of its relaxation

    Directory of Open Access Journals (Sweden)

    M.M. Sevryukova

    2017-12-01

    Full Text Available The optical properties and dynamics of transport of electron excitation and the ways of its relaxation in the supramolecular D–π–A complex on the basis of merocyanines have been investigated. There have been found two components in the transfer of charge: fast and slow, which correspond to different conformational states of the carbon chain in merocyanines. It was found that the main photoluminescence of the studied molecular solutions of merocyanines by its nature is similar to the exciplex luminescence, as a manifestation of resonant and charge transfer interaction in an excited state. The lifetime in this state is about 2000 ps.

  8. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement

    DEFF Research Database (Denmark)

    Kublik, Anja; Deobald, Darja; Hartwig, Stefanie

    2016-01-01

    electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250–270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster...... of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi....

  9. Kinetic particularities of strained alicyclic compounds formation in catalytic methanol to hydrocarbon transformation process

    OpenAIRE

    Doluda V.; Brovko R.; Giniatullina N.; Sulman M.

    2017-01-01

    The catalytic transformation of methanol into hydrocarbons is a complex chemical process, accompanied by chain parallel chemical transformation reactions. The most valuable products of the methanol to hydrocarbons catalytic transformation reaction are the strained hydrocarbons — cyclopropane derivatives. These compounds can be used as a high-energy fuel, and also as a valuable chemical raw material. However, the yield of strained compounds in methanol to hydrocarbons catalytic transformation ...

  10. Green Supply Chain Collaboration for Fashionable Consumer Electronics Products under Third-Party Power Intervention—A Resource Dependence Perspective

    OpenAIRE

    Jiuh-Biing Sheu

    2014-01-01

    Under third-party power intervention (TPPI), which increases uncertainty in task environments, complex channel power interplays and restructuring are indispensable among green supply chain members as they move toward sustainable collaborative relationships for increased viability and competitive advantage. From the resource dependence perspective, this work presents a novel conceptual model to investigate the influence of political and social power on channel power restructuring and induced ...

  11. Highly crystalline films of PCPDTBT with branched side chains by solvent vapor crystallization: influence on opto-electronic properties.

    Science.gov (United States)

    Fischer, Florian S U; Trefz, Daniel; Back, Justus; Kayunkid, Navaphun; Tornow, Benjamin; Albrecht, Steve; Yager, Kevin G; Singh, Gurpreet; Karim, Alamgir; Neher, Dieter; Brinkmann, Martin; Ludwigs, Sabine

    2015-02-18

    PCPDTBT, a marginally crystallizable polymer, is crystallized into a new crystal structure using solvent-vapor annealing. Highly ordered areas with three different polymer-chain orientations are identified using TEM/ED, GIWAXS, and polarized Raman spectroscopy. The optical and structural properties differ significantly from films prepared by standard device preparation protocols. Bilayer solar cells, however, show similar performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photoinduced electron transfer involving eosin-tryptophan conjugates. Long-lived radical pair states for systems incorporating aromatic amino acid side chains

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G. II; Farahat, C.W.; Oh, C. (Boston Univ., MA (United States))

    1994-07-14

    The electron-transfer photochemistry of the covalent derivatives of the dye eosin, in which the xanthene dye is covalently attached to the amino acid L-tryptophan via the thiohydantoin derivative, the tryptophan dipeptide, and an ethyl ester derivative, has been investigated. The singlet excited state of the dye is significantly quenched on attachment of the aromatic amino acid residue. Dye triplet states are also intercepted through intramolecular interaction of excited dye and amino acid pendants. Flash photolysis experiments verify that this interaction involves electron transfer from the indole side chains of tryptophan. Rate constants for electron transfer are discussed in terms of the distance relationships for the eosin chromophore and aromatic redox sites on peptide derivatives, the pathway for [sigma]-[pi] through-bond interaction between redox sites, and the multiplicity and state of protonation for electron-transfer intermediates. Selected electron-transfer photoreactions were studied under conditions of binding of the peptide derivatives in a high molecular weight, water-soluble, globular polymer, poly(vinyl-2-pyrrolidinone). 28 refs., 4 figs., 1 tab.

  13. On energetics of hydrocarbon chemical reactions by ionizing irradiation

    International Nuclear Information System (INIS)

    Zaykin, Yu.A.; Zaykina, R.F.; Mirkin, G.

    2002-01-01

    Complete text of publication follows. The present global energy crisis requires the industry to look for technologies that are more effective and, particularly, less energy consuming. The hydrocarbon processing technology based on the electron radiation-induced thermal chemical conversion has a great potential. Comparing the presently predominant thermocatalytic processing, it is much more energy efficient, because chemical conversions go at a minimal processing temperature and pressure. To compare energy consumption by electron irradiation with thermal and thermocatalytic technologies of hydrocarbon processing one must see major differences between them. While traditional thermocatalytic processes are equilibrium and their energetics can be evaluated based on principles of classic thermodynamics, HEET processing is non-equilibrium and this evaluation approach is not valid for it. However, a theoretical description of radiation-chemical conversion using reaction rate constants determined in thermally equilibrium systems is approximately adequate to radiation processes by substituting equilibrium concentrations of reacting particles as their non-equilibrium concentrations under irradiation. In particular, description of radical reactions initiated by radiation requires substitution of thermally equilibrium radical concentration by much higher concentration defined by the dynamic equilibrium of radical radiation generation and their recombination. The paper presents the comparative analysis of energy consumption in different stages of hydrocarbon processing using classic thermal cracking by heating versus radiation induced cracking. It is shown that in the most energy-consuming stage of processing - the chain reaction initiation necessary for concentration of active radicals, irradiation processing has the great advantage compared to thermal cracking by heating and allows cutting down the total energy consumption by approximately 40%

  14. On the possibility of study the surface structure of small bio-objects, including fragments of nucleotide chains, by means of electron interference

    Energy Technology Data Exchange (ETDEWEB)

    Namiot, V.A., E-mail: vnamiot@gmail.co [Institute of Nuclear Physics, Moscow State University, Vorobyovy Gory, 119992 Moscow (Russian Federation)

    2009-07-20

    We propose a new method to study the surface of small bio-objects, including macromolecules and their complexes. This method is based on interference of low-energy electrons. Theoretically, this type of interference may allow to construct a hologram of the biological object, but, unlike an optical hologram, with the spatial resolution of the order of inter-atomic distances. The method provides a possibility to construct a series of such holograms at various levels of electron energies. In theory, obtaining such information would be enough to identify the types of molecular groups existing on the surface of the studied object. This method could also be used for 'fast reading' of nucleotide chains. It has been shown how to depose a long linear molecule as a straight line on a substrate before carrying out such 'reading'.

  15. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  16. Cuticular hydrocarbons of Glossina austeni and Glossina pallidipes: Similarities between populations and activity as sex pheromones

    International Nuclear Information System (INIS)

    Carlson, D.A.; Bernier, U.R.; Sutton, B.D.

    2000-01-01

    Tsetse flies are a hazard to the health of humans and domestic animals because they spread trypanosomiasis, also known as nagana. Glossina austeni Newstead and Glossina pallidipes Austen are important vectors of this disease in East Africa. Sex pheromones were shown to be present in the surface or cuticular hydrocarbon waterproofing waxes of female of several species of the tsetse fly (Huyton et al. 1980). The pheromones identified in Glossina morsitans morsitans Westwood (Carlson et al. 1978) and G. pallidipes (Carlson et al. 1984, McDowell et al. 1985) have been shown to consist of species-specific, long-chain, high molecular weight hydrocarbons with several methyl branches, present with at least 20 other hydrocarbon compounds in the surface waxes (Nelson and Carlson 1986, Nelson et al. 1988, Sutton and Carlson 1997). The assignment of KI (Kovacx Index) narrows the range of possible methyl-branch configurations in cases of ambiguous or insufficient EI (electron impact) spectra (Carlson et al. 1998). We used gas chromatography/mass spectrometry to demonstrate that different populations of tsetse flies (Carlson et al. 1993) are closely related by investigating these patterns of surface hydrocarbons

  17. Study of the applicability of Markov chain Monte Carlo methods to the statistical separation of electron sources via the impact parameter for ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Wittner, Manuel [Physikalisches Institut, Universitaet Heidelberg, Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    One particularly interesting measurement detected by the ALICE set-up at the LHC are electrons from charm and beauty hadron decays. Heavy quarks originate from initial hard scattering processes and thus experience the whole history of a heavy ion collision. Therefore, they are valuable probes to study the mechanisms of energy loss and hadronization in the hot and dense state of matter, that is expected to be formed in a heavy-ion collision at LHC. One important task is the distinction of the different electron sources, for which a method was developed. Hereby, the impact parameter distribution of the measurement data is compared with impact parameter distributions for the individual sources, which are created through Monte Carlo simulations. Afterwards, a maximum likelihood fit is applied. However, creating a posterior distribution of the likelihood according to Bayes' theorem and sampling it with Markov Chain Monte Carlo algorithms provides several advantages, e.g. a mathematically correct estimation of the uncertainties or the usage of prior knowledge. Hence for the first time in this particular problem, a Markov Chain Monte Carlo algorithm, namely the Metropolis algorithm, was implemented and investigated for its applicability in heavy flavor physics. First studies indicate its great usefulness in this field of physics.

  18. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  19. Collision data involving hydro-carbon molecules

    International Nuclear Information System (INIS)

    Tawara, H.; Itikawa, Y.; Nishimura, H.; Tanaka, H.; Nakamura, Y.

    1990-07-01

    Hydro-carbon molecules are abundantly produced when graphites are used as internal wall materials of hydrogen plasmas and strongly influence properties of low temperature plasmas near the edges as well as those of high temperature plasmas at the center. In this report, following simple description of the production mechanisms of hydro-carbon molecules under the interactions between graphite and hydrogen plasma, the present status of collision data for hydro-carbon molecules by electron impact is discussed and the relevant data are summarized in a series of figures and tables. It should also be noted that, in addition to fusion plasmas, these hydrocarbon data compiled here are quite useful in other applications such as plasma chemistry and material processing. (author)

  20. Altered expression of mitochondrial electron transport chain proteins and improved myocardial energetic state during late ischemic preconditioning

    NARCIS (Netherlands)

    J.A. Cabrera (Jesús); E.A. Ziemba (Elizabeth); L.H. Colbert (Lisa); L.B. Anderson (Lorraine); W.J. Sluiter (Wim); D.J.G.M. Duncker (Dirk); T.A. Butterick (Tammy); J. Sikora (Joseph); H.B. Ward (Herbert B.); R.F. Kelly (Rosemary); E.O. McFalls (Edward)

    2012-01-01

    textabstractAltered expression of mitochondrial electron transport proteins has been shown in early preconditioned myocardial tissue. We wished to determine whether these alterations persist in the Second Window of Protection (SWOP) and if so, whether a favorable energetic state is facilitated

  1. Identification of the site where the electron transfer chain of plant mitochondria is stimulated by electrostatic charge screening.

    NARCIS (Netherlands)

    Krab, K.; Wagner, M.J.; Wagner, A.M.; Moller, I.M.

    2000-01-01

    Modular kinetic analysis was used to determine the sites in plant mitochondria where charge-screening stimulates the rate of electron transfer from external NAD(P)H to oxygen. In mitochondria isolated from potato (Solanum tuberosum L.) tuber callus, stimulation of the rate of oxygen uptake was

  2. The role of trust in the transition from traditional to electronic B2B relationships in agri-food chains

    NARCIS (Netherlands)

    Canavari, M.; Fritz, M.; Hofstede, G.J.; Matopoulos, A.; Vlachopoulou, M.

    2010-01-01

    E-business adoption rates in the agri-food sector are rather low, despite the fact that technical barriers have been mostly overcome during the last years and a large number of sophisticated offers are available. However, concerns about trust seem to impede the development of electronic

  3. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  4. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  5. Factors Influencing Consumers’ Intention to Return the End of Life Electronic Products through Reverse Supply Chain Management for Reuse, Repair and Recycling

    Directory of Open Access Journals (Sweden)

    Kamyar Kianpour

    2017-09-01

    Full Text Available Resource depletion, population growth and environmental problems force companies to collect their end of life (EOL products for reuse, recycle and refurbishment through reverse supply chain management (RSCM. Success in collecting the EOL products through RSCM depends on the customers’ participation intention. The objectives of this study are: (1 To examine the important factors influencing customers’ attitude to participate in RSCM; (2 To examine the important factors influencing customers’ subjective norm to participate in RSCM; (3 To examine the main factors influencing customers’ perceived behavioral control to participate in RSCM; (4 To examine the influence of attitude, subjective norms and perceived behavioral control on customers’ participation intention in RSCM. The Decomposed Theory of Planned Behaviour (DTPB has been chosen as the underpinning theory for this research. The research conducted employed the quantitative approach. Non-probability (convenience sampling method was used to determine the sample and data was collected using questionnaires. Partial Least Squares-Structural Equation Modeling (PLS-SEM technique was employed. A total of 800 questionnaires were distributed among customers of electronic products in Malaysia. Finally, the questionnaire was distributed among the customers in electronic retailer companies based on convenience sampling method. The empirical results confirm that consumers perception about the risk associated with EOL electronic products, consumers’ ecological knowledge and relative advantages associated with reuse, repair and recycling can influence the attitude of consumers to return the EOL products for reuse, repair and recycling to producer.

  6. Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes.

    Science.gov (United States)

    Beutner, Gisela; Eliseev, Roman A; Porter, George A

    2014-01-01

    Mitochondria provide energy in form of ATP in eukaryotic cells. However, it is not known when, during embryonic cardiac development, mitochondria become able to fulfill this function. To assess this, we measured mitochondrial oxygen consumption and the activity of the complexes (Cx) 1 and 2 of the electron transport chain (ETC) and used immunoprecipitation to follow the generation of mitochondrial supercomplexes. We show that in the heart of mouse embryos at embryonic day (E) 9.5, mitochondrial ETC activity and oxidative phosphorylation (OXPHOS) are not coupled, even though the complexes are present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquinone or Cx-3 show no activity at this early embryonic stage. At E11.5, mitochondria appear functionally more mature; ETC activity and OXPHOS are coupled and respond to ETC inhibitors. In addition, the assembly of highly efficient respiratory supercomplexes containing Cx-1, -3, and -4, ubiquinone, and cytochrome c begins at E11.5, the exact time when Cx-1 becomes functional activated. At E13.5, ETC activity and OXPHOS of embryonic heart mitochondria are indistinguishable from adult mitochondria. In summary, our data suggest that between E9.5 and E11.5 dramatic changes occur in the mitochondria of the embryonic heart, which result in an increase in OXPHOS due to the activation of complex 1 and the formation of supercomplexes.

  7. Separation and screening of short-chain chlorinated paraffins in environmental samples using comprehensive two-dimensional gas chromatography with micro electron capture detection.

    Science.gov (United States)

    Xia, Dan; Gao, Lirong; Zhu, Shuai; Zheng, Minghui

    2014-11-01

    Short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures with thousands of isomers and numerous homologs. They are classified as priority candidate persistent organic pollutants under the Stockholm Convention for their persistence, bioaccumulation, and toxicity. Analyzing SCCPs is challenging because of the complexity of the mixtures. Chromatograms of SCCPs acquired using one-dimensional (1D) gas chromatography (GC) contain a large characteristic "peak" with a broad and unresolved profile. Comprehensive two-dimensional GC (GC×GC) shows excellent potential for separating complex mixtures. In this study, GC×GC coupled with micro electron capture detection (μECD) was used to separate and screen SCCPs. The chromatographic parameters, including the GC column types, oven temperature program, and modulation period, were systematically optimized. The SCCP congeners were separated into groups using a DM-1 column connected to a BPX-50 column. The SCCP congeners in technical mixtures were separated according to the number of chlorine substituents for a given carbon chain length and according to the number of carbon atoms plus chlorine atoms for different carbon chain lengths. A fish tissue sample was analyzed to illustrate the feasibility of the GC×GC-μECD method in analyzing biological samples. Over 1,500 compounds were identified in the fish extract, significantly more than were identified using 1D GC. The detection limits for five selected SCCP congeners were between 1 and 5 pg/L using the GC×GC method, and these were significantly lower than those achieved using 1D GC. This method is a good choice for analysis of SCCPs in environmental samples, exhibiting good separation and good sensitivity.

  8. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  9. A single-supply, high rate, small size and cheap electronic chain for 3He neutron counters

    International Nuclear Information System (INIS)

    Boffa, A.; Fazzi, A.; Pirovano, C.; Varoli, V.

    1996-01-01

    The paper describes a complete counting chain (charge preamplifier, shaping amplifier and threshold discriminator) devoted to 3 He neutron detectors. Since it is characterized by single supply operation, high counting rate, small size and low cost, it is well suited for high efficiency neutron well detectors where a large number (10 - 100) of counting tubes are used. Such detectors are commonly used for verification of Plutonium stocks. The preamplifier adopts an innovative circuit with the gate of the input JFET floating and a DC feedback loop that stabilizes the output voltage acting on the input cascode second transistor. Static and dynamic analysis, including the effects of the detector bias network, is reported. The shaping amplifier transfer function is a fifth order approximation of the gaussian response. All the complex pole pairs are realized with a single fourth order Voltage Controlled Voltage Source cell thus minimizing component count. Experimental signals and spectra, obtained with shaping time constants in the 1 μs - 100 ns range, are reported and discussed

  10. Self-lacing atom chains

    International Nuclear Information System (INIS)

    Zandvliet, Harold J W; Van Houselt, Arie; Poelsema, Bene

    2009-01-01

    The structural and electronic properties of self-lacing atomic chains on Pt modified Ge(001) surfaces have been studied using low-temperature scanning tunnelling microscopy and spectroscopy. The self-lacing chains have a cross section of only one atom, are perfectly straight, thousands of atoms long and virtually defect free. The atomic chains are composed of dimers that have their bonds aligned in a direction parallel to the chain direction. At low temperatures the atomic chains undergo a Peierls transition: the periodicity of the chains doubles from a 2 x to a 4 x periodicity and an energy gap opens up. Furthermore, at low temperatures (T<80 K) novel quasi-one-dimensional electronic states are found. These quasi-one-dimensional electronic states originate from an electronic state of the underlying terrace that is confined between the atomic chains.

  11. Opinion: the red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain.

    Science.gov (United States)

    Busch, Florian A

    2014-02-01

    Guard cells regulate CO2 uptake and water loss of a leaf by controlling stomatal movement in response to environmental factors such as CO2, humidity, and light. The mechanisms by which stomata respond to red light are actively debated in the literature, and even after decades of research it is still controversial whether stomatal movement is related to photosynthesis or not. This review summarizes the current knowledge of the red-light response of stomata. A comparison of published evidence suggests that stomatal movement is controlled by the redox state of photosynthetic electron transport chain components, in particular the redox state of plastoquinone. Potential consequences for the modeling of stomatal conductance are discussed.

  12. On the ground-state degeneracy and entropy in a double-tetrahedral chain formed by the localized Ising spins and mobile electrons

    Science.gov (United States)

    Gálisová, Lucia

    2018-05-01

    Ground-state properties of a hybrid double-tetrahedral chain, in which the localized Ising spins regularly alternate with triangular plaquettes occupied by a variable number of mobile electrons, are exactly investigated. We demonstrate that the zero-temperature phase diagram of the model involves several non-degenerate, two-fold degenerate and macroscopically degenerate chiral phases. Low-temperature dependencies of the entropy and specific heat are also examined in order to gain a deeper insight into the degeneracy of individual ground-state phases and phase transitions. It is shown that a diversity of the ground-state degeneracy manifests itself in multiple-peak structures of both thermodynamic quantities. A remarkable temperature dependencies of the specific heat with two and three Schottky-type maxima are discussed in detail.

  13. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  14. Electron microscopic observations and DNA chain fragmentation studies on apoptosis in bone tumor cells induced by 153Sm-EDTMP

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Xiao Dong; Han Xiaofeng

    1997-01-01

    The morphological changes observed by electron microscopy indicate that after internal irradiation with 153 Sm-EDTMP bone tumor cells displayed feature of apoptosis, such as margination of condensed chromatin, chromatin fragmentation, as well as the membrane bounded apoptotic bodies formation. The quantification analysis of fragmentation DNA for bone tumor cells induced by 153 Sm-EDTMP shows that the DNA fragmentation is enhanced with the prolongation of internally irradiated time. These characteristics suggest that 153 Sm-EDTMP internal irradiation could induce bone tumor cells to go to apoptosis

  15. L-tryptophan-induced electron transport across supported lipid bilayers: an alkyl-chain tilt-angle, and bilayer-symmetry dependence.

    Science.gov (United States)

    Sarangi, Nirod Kumar; Patnaik, Archita

    2012-12-21

    Molecular orientation-dependent electron transport across supported 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers (SLBs) on semiconducting indium tin oxide (ITO) is reported with an aim towards potential nanobiotechnological applications. A bifunctional strategy is adopted to form symmetric and asymmetric bilayers of DPPC that interact with L-tryptophan, and are analyzed by surface manometry and atomic force microscopy. Polarization-dependent real-time Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) analysis of these SLBs reveals electrostatic, hydrogen-bonding, and cation-π interactions between the polar head groups of the lipid and the indole side chains. Consequently, a molecular tilt arises from the effective interface dipole, facilitating electron transport across the ITO-anchored SLBs in the presence of an internal Fe(CN)(6)(4-/3-) redox probe. The incorporation of tryptophan enhances the voltammetric features of the SLBs. The estimated electron-transfer rate constants for symmetric and asymmetric bilayers (k(s) = 2.0×10(-2) and 2.8×10(-2) s(-1)) across the two-dimensional (2D) ordered DPPC/tryptophan SLBs are higher compared to pure DPPC SLBs (k(s) = 3.2×10(-3) and 3.9×10(-3) s(-1)). In addition, they are molecular tilt-dependent, as it is the case with the standard apparent rate constants k(app)(0), estimated from electrochemical impedance spectroscopy and bipotentiostatic experiments with a Pt ultramicroelectrode. Lower magnitudes of k(s) and k(app)(0) imply that electrochemical reactions across the ITO-SLB electrodes are kinetically limited and consequently governed by electron tunneling across the SLBs. Standard theoretical rate constants (k(th)(0)) accrued upon electron tunneling comply with the potential-independent electron-tunneling coefficient β = 0.15 Å(-1). Insulator-semiconductor transitions moving from a liquid-expanded to a condensed 2D-phase state of the SLBs are noted, adding a new dimension

  16. The Role of Morphology and Electronic Chain Aggregation on the Optical Gain Properties of Semiconducting Conjugated Polymers

    Science.gov (United States)

    Lampert, Zachary Evan

    Conjugated polymers (CPs) are a novel class of materials that exhibit the optical and electrical properties of semiconductors while still retaining the durability and processability of plastics. CPs are also intrinsically 4-level systems with high luminescence quantum efficiencies making them particularly attractive as organic gain media for solid-state laser applications. However, before CPs can emerge as a commercially available laser technology, a more comprehensive understanding of the morphological dependence of the photophysics is required. In this thesis, the morphology and chain conformation dependence of amplified spontaneous emission (ASE) and optical gain in thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) was investigated. By changing the chemical nature of the solvent from which films were cast, as well as the temperature at which films were annealed, CP films with different morphologies, and hence different degrees of interchain interactions were achieved. Contrary to the common perception that polymer morphology plays a decisive role in determining the ASE behavior of thin CP films, we found that chromophore aggregation and degree of conformational order have minimal impact on optical gain. In fact, experimental results indicated that an extremely large fraction of interchain aggregate species and/or exciton dissociating defects are required to significantly alter the optical properties and suppress stimulated emission. These results are pertinent to the fabrication and optimization of an electrically pumped laser device, as improvements in charge carrier mobility through controlled increases in chain aggregation may provide a viable means of optimizing injection efficiency without significantly degrading optical gain. To offset charge-induced absorption losses under electrical pumping, and to enable the use of more compact and economical sources under optical pumping, conjugated polymers exhibiting low lasing

  17. Microbial Hydrocarbon and ToxicPollutant Degradation Method

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Dietrich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Janabi, Mustafa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); O' Neil, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Budinger, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-08-16

    The goal of this project is to determine optimum conditions for bacterial oxidation of hydrocarbons and long-chain alkanes that are representative of petroleum contamination of the environment. Polycyclic Aromatic Hydrocarbons (PAHs) are of concern because of their toxicity, low volatility, and resistance to microbial degradation, especially under anaerobic conditions. The uniqueness of our approach is to use carbon-11 in lieu of the traditional use of carbon-14.

  18. Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni.

    Science.gov (United States)

    Hitchcock, Andrew; Hall, Stephen J; Myers, Jonathan D; Mulholland, Francis; Jones, Michael A; Kelly, David J

    2010-10-01

    The zoonotic pathogen Campylobacter jejuni NCTC 11168 uses a complex set of electron transport chains to ensure growth with a variety of electron donors and alternative electron acceptors, some of which are known to be important for host colonization. Many of the key redox proteins essential for electron transfer in this bacterium have N-terminal twin-arginine translocase (TAT) signal sequences that ensure their transport across the cytoplasmic membrane in a folded state. By comparisons of 2D gels of periplasmic extracts, gene fusions and specific enzyme assays in wild-type, tatC mutant and complemented strains, we experimentally verified the TAT dependence of 10 proteins with an N-terminal twin-arginine motif. NrfH, which has a TAT-like motif (LRRKILK), was functional in nitrite reduction in a tatC mutant, and was correctly rejected as a TAT substrate by the tatfind and TatP prediction programs. However, the hydrogenase subunit HydA is also rejected by tatfind, but was shown to be TAT-dependent experimentally. The YedY homologue Cj0379 is the only TAT translocated molybdoenzyme of unknown function in C. jejuni; we show that a cj0379c mutant is deficient in chicken colonization and has a nitrosative stress phenotype, suggestive of a possible role for Cj0379 in the reduction of reactive nitrogen species in the periplasm. Only two potential TAT chaperones, NapD and Cj1514, are encoded in the genome. Surprisingly, despite homology to TorD, Cj1514 was shown to be specifically required for the activity of formate dehydrogenase, not trimethylamine N-oxide reductase, and was designated FdhM.

  19. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  20. Binding of the human "electron transferring flavoprotein" (ETF) to the medium chain acyl-CoA dehydrogenase (MCAD) involves an arginine and histidine residue.

    Science.gov (United States)

    Parker, Antony R

    2003-10-01

    The interaction between the "electron transferring flavoprotein" (ETF) and medium chain acyl-CoA dehydrogenase (MCAD) enables successful flavin to flavin electron transfer, crucial for the beta-oxidation of fatty acids. The exact biochemical determinants for ETF binding to MCAD are unknown. Here we show that binding of human ETF, to MCAD, was inhibited by 2,3-butanedione and diethylpyrocarbonate (DEPC) and reversed by incubation with free arginine and hydroxylamine respectively. Spectral analyses of native ETF vs modified ETF suggested that flavin binding was not affected and that the loss of ETF activity with MCAD involved modification of one ETF arginine residue and one ETF histidine residue respectively. MCAD and octanoyl-CoA protected ETF against inactivation by both 2,3-butanedione and DEPC indicating that the arginine and histidine residues are present in or around the MCAD binding site. Comparison of exposed arginine and histidine residues among different ETF species, however, indicates that arginine residues are highly conserved but that histidine residues are not. These results lead us to conclude that this single arginine residue is essential for the binding of ETF to MCAD, but that the single histidine residue, although involved, is not.

  1. Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis.

    Science.gov (United States)

    Zhang, Hongtao; Setubal, Joao Carlos; Zhan, Xiaobei; Zheng, Zhiyong; Yu, Lijun; Wu, Jianrong; Chen, Dingqiang

    2011-06-01

    Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb (3)-type terminal oxidase and cytochrome caa (3)-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.

  2. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide?

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Juneau, Philippe

    2016-11-01

    We investigated the physiological responses of Lemna minor plants exposed to glyphosate. The deleterious effects of this herbicide on photosynthesis, respiration, and pigment concentrations were related to glyphosate-induced oxidative stress through hydrogen peroxide (H 2 O 2 ) accumulation. By using photosynthetic and respiratory electron transport chain (ETC) inhibitors we located the primary site of reactive oxygen species (ROS) production in plants exposed to 500 mg glyphosate l -1 . Inhibition of mitochondrial ETC Complex I by rotenone reduced H 2 O 2 concentrations in glyphosate-treated plants. Complex III activity was very sensitive to glyphosate which appears to act much like antimycin A (an inhibitor of mitochondrial ETC Complex III) by shunting electrons from semiquinone to oxygen, with resulting ROS formation. Confocal evaluations for ROS localization showed that ROS are initially produced outside of the chloroplasts upon initial glyphosate exposure. Our results indicate that in addition to interfering with the shikimate pathway, glyphosate can induce oxidative stress in plants through H 2 O 2 formation by targeting the mitochondrial ETC, which would explain its observed effects on non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers

    Science.gov (United States)

    Gunner, M. R.; Madeo, Jennifer; Zhu, Zhenyu

    2009-01-01

    Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed. PMID:18979192

  4. Side chain effect on electronic structure of spin-coated films of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester and its bis-adduct

    Energy Technology Data Exchange (ETDEWEB)

    Akaike, Kouki, E-mail: akaike@riken.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Kanai, Kaname [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda 278-8510 (Japan); Ouchi, Yukio; Seki, Kazuhiko [Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2013-03-29

    Highlights: ► Electronic structure of spin-coated films of PCBM and bis-PCBM was investigated. ► Ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. ► Electron donation from the side chain to C{sub 60}-backbone raises the HOMO and LUMO. ► Open circuit voltages of PCBM-based solar cells relates to electron affinities. - Abstract: We investigated the electronic structure of spin-coated films of two soluble fullerenes; [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and its bis-adduct (bis-PCBM) using ultraviolet photoelectron spectroscopy, inverse photoemission spectroscopy and molecular orbital calculations. The ionization energy and electron affinity of spin-coated films of bis-PCBM were determined to be 6.01 eV and 3.4 eV, respectively. Analysis of electron density suggested the stronger electron donation from the two side chains to fullerene-backbone in a bis-PCBM molecule, compared with PCBM. The electron donation raises the energies of the frontier orbitals of bis-PCBM, which mainly consist of π-orbitals of fullerene-backbone. As a result, the ionization energy and electron affinity of bis-PCBM are smaller than those of PCBM. Moreover, we also concluded that the larger open circuit voltage observed for bis-PCBM based organic photovoltaics was explained by the higher-lying unoccupied molecular orbital of bis-PCBM.

  5. Identification of the 2-Hydroxyglutarate and Isovaleryl-CoA Dehydrogenases as Alternative Electron Donors Linking Lysine Catabolism to the Electron Transport Chain of Arabidopsis Mitochondria[W][OA

    Science.gov (United States)

    Araújo, Wagner L.; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R.; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A.; Leaver, Christopher J.; Fernie, Alisdair R.

    2010-01-01

    The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route. PMID:20501910

  6. Effect of alkyl chain length of imidazolium cations on the electron transport and recombination kinetics in ionic gel electrolytes based quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Huo, Zhipeng; Tao, Li; Wang, Lu; Zhu, Jun; Chen, Shuanghong; Zhang, Changneng; Dai, Songyuan; Zhang, Bing

    2015-01-01

    Highlights: •A series of novel IGEs based on 12-hydroxystearicacid as LMOG were prepared. •The QS-DSSCs exhibit excellent stability during the accelerated aging tests. •The influence of Im + alkyl chain length on the electron kinetic process is investigated. -- Abstract: A series of stable quasi-solid-state dye-sensitized solar cells (QS-DSSCs) are prepared by the 12-hydroxystearicacid as low molecular mass organogelator (LMOG) to gelate the ionic liquid with different alkyl chain lengths (3, 4, and 7). The influence of alkyl chain length of imidazolium cations (Im + ) on the kinetic processes of electron transport and recombination are investigated by Electrochemical impedance spectroscopy (EIS) and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy (IMPS/IMVS). It is found that the ionic gel electrolytes (IGEs) with different alkyl chain lengths of Im + can influence the competitive adsorption effects of imidazolium cations (Im + ) and Li + , and further affect the charge diffusion, the electron recombination/transport processes, the shift of TiO 2 conduction band edge and surface states distribution. The IGE with longer alkyl chain length of Im + can prolong the electron recombination lifetime, promote the incidental photon-to-electron conversion efficiency (IPCE) and the short circuit photocurrent density (J sc ). An excellent QS-DSSC based on the IGE with the longer alkyl chain of Im + gives the highest photoelectric conversion efficiency. Moreover, all the QS-DSSCs based on IGEs exhibit excellent durability without losing their photovoltaic performances during the accelerated thermal and light–soaking test. These results are very important to the researches on the electrochemical mechanism and application of QS-DSSCs based on IGEs

  7. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization[S

    Science.gov (United States)

    Ran-Ressler, Rinat R.; Lawrence, Peter; Brenna, J. Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223–229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C3H7), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637

  8. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    isolation tubes with crude oil. Three isolates tested showed positive hydrophobicity of cell walls as judged by the Microbial Adhesion to Hydrocarbons (MATH) assay. Addition of Bombay High crude oil to nutrient broth slightly enhanced growth of the protists...

  9. Anisotropic Transport of Electrons in a Novel FET Channel with Chains of InGaAs Nano-Islands Embedded along Quasi-Periodic Multi-Atomic Steps on Vicinal (111)B GaAs

    International Nuclear Information System (INIS)

    Akiyama, Y.; Kawazu, T.; Noda, T.; Sakaki, H.

    2010-01-01

    We have studied electron transport in n-AlGaAs/GaAs heterojunction FET channels, in which chains of InGaAs nano-islands are embedded along quasi-periodic steps. By using two samples, conductance G para (V g ) parallel to the steps and G perp (V g ) perpendicular to them were measured at 80 K as functions of gate voltage V g . At sufficiently high V g , G para at 80 K is several times as high as G perp , which manifests the anisotropic two-dimensional transport of electrons. When V g is reduced to -0.7 V, G perp almost vanishes, while Gpara stays sizable unless V g is set below -0.8 V. These results indicate that 'inter-chain' barriers play stronger roles than 'intra-chain' barriers.

  10. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  11. Process for refining hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Risenfeld, E H

    1924-11-26

    A process is disclosed for the refining of hydrocarbons or other mixtures through treatment in vapor form with metal catalysts, characterized by such metals being used as catalysts, which are obtained by reduction of the oxide of minerals containing the iron group, and by the vapors of the hydrocarbons, in the presence of the water vapor, being led over these catalysts at temperatures from 200 to 300/sup 0/C.

  12. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  13. Occupied and unoccupied electronic states on vicinal Si(111) surfaces decorated with monoatomic gold chains; Besetzte und unbesetzte elektronische Zustaende vizinaler Si(111)-Oberflaechen mit atomaren Goldketten

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Kerstin

    2012-07-12

    In this work, the occupied and unoccupied electronic states of vicinal Si(111)-Au surfaces were investigated. The research focused on amending the experimental electronic band structure by two-photon photoemission and laser-based photoemission and bringing it in line with theoretical band structure calculations. This work dealt with the Si(553)-Au, the Si(111)-(5x2)-Au and the Si(557)-Au surface. Angle-resolved UV-photoelectron spectroscopy gave access to the occupied part of the band structure and thus to the energetic position, the dispersion and the symmetry of the occupied states. Bichromatic two-photon photoemission, however, revealed information about the energetics and, in addition, about the dynamics of unoccupied states on a femtosecond timescale. Notably, the selective polarization of the laser pulses allowed for distinguishing and classifying many of the states with respect to their symmetry. All three surfaces exhibited both surface and bulk states in the occupied part of the band structure. They could be clearly identified and separated from surface contributions by means of tight-binding calculations of the bulk band structure of silicon and by comparison to each other. An added similarity of these surfaces are the one-dimensional Rashba-split gold states, which definitely show dispersion along the chains but not perpendicular to them. All surfaces exhibit states which can easily be assigned to the gold chains. Additional features, however, cannot be attributed clearly to the characteristics of the complex surface reconstruction in all cases. An assignment to surface states was only successfully accomplished for Si(553)-Au. The primary emphasis of this photoemission study was on the Si(553)-Au surface, which shows the smallest defect density in comparison to the other surfaces and hence exhibits the sharpest peaks in the experimental spectra. In accordance with ab-initio band structure calculations this surface also displays, in addition to one

  14. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations

    Science.gov (United States)

    Phifer, Jeremy R.; Cox, Courtney E.; da Silva, Larissa Ferreira; Nogueira, Gabriel Gonçalves; Barbosa, Ana Karolyne Pereira; Ley, Ryan T.; Bozada, Samantha M.; O'Loughlin, Elizabeth J.; Paluch, Andrew S.

    2017-06-01

    Methods to predict the equilibrium solubility of non-electrolyte solids are important for the design of novel separation processes. Here we demonstrate how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here SMD or SM8, can be used to predict parameters for the MOdified Separation of Cohesive Energy Density (MOSCED) method. The method is applied to the solutes naphthalene, anthracene, phenanthrene, pyrene and dibenzothiophene, compounds of interested to the petroleum industry and for environmental remediation. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. Comparing to a total of 422 non-aqueous and 193 aqueous experimental solubilities, we find the proposed method is able to well correlate the data. The use of MOSCED is additionally advantageous as it is a solubility parameter-based method useful for intuitive solvent selection and formulation.

  15. Direct electroreduction of CO2 into hydrocarbon

    International Nuclear Information System (INIS)

    Winea, Gauthier; Ledoux, Marc-Jacques; Pham-Huu, Cuong; Gangeri, Miriam; Perathoner, Siglinda; Centi, Gabriele

    2006-01-01

    A lot of methods exist to directly reduce carbon dioxide into hydrocarbons: the photoelectrochemical process is certainly the most interesting, essentially due to the similarities with photosynthesis. As the human activities produce a great quantity of CO 2 , this one can then be considered as an infinite source of carbon. The products of this reaction are identical to those obtained during a Fischer-Tropsch reaction, that is to say hydrocarbons, alcohols and carboxylic acids. These works deal with the electrochemical reduction of CO 2 in standard conditions of temperature and pressure. The photochemical part has been replaced by a current generator as electrons source and a KHCO 3 aqueous solution as protons source. The first catalytic results clearly show that it is possible to reduce CO 2 into light hydrocarbons, typically from C1 to C9. (O.M.)

  16. Falling chains

    OpenAIRE

    Wong, Chun Wa; Yasui, Kosuke

    2005-01-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is inco...

  17. Electron Transport Chain Is Biochemically Linked to Pilus Assembly Required for Polymicrobial Interactions and Biofilm Formation in the Gram-Positive Actinobacterium Actinomyces oris

    Directory of Open Access Journals (Sweden)

    Belkys C. Sanchez

    2017-06-01

    Full Text Available The Gram-positive actinobacteria Actinomyces spp. are key colonizers in the development of oral biofilms due to the inherent ability of Actinomyces to adhere to receptor polysaccharides on the surface of oral streptococci and host cells. This receptor-dependent bacterial interaction, or coaggregation, requires a unique sortase-catalyzed pilus consisting of the pilus shaft FimA and the coaggregation factor CafA forming the pilus tip. While the essential role of the sortase machine SrtC2 in pilus assembly, biofilm formation, and coaggregation has been established, little is known about trans-acting factors contributing to these processes. We report here a large-scale Tn5 transposon screen for mutants defective in Actinomyces oris coaggregation with Streptococcus oralis. We obtained 33 independent clones, 13 of which completely failed to aggregate with S. oralis, and the remainder of which exhibited a range of phenotypes from severely to weakly defective coaggregation. The former had Tn5 insertions in fimA, cafA, or srtC2, as expected; the latter were mapped to genes coding for uncharacterized proteins and various nuo genes encoding the NADH dehydrogenase subunits. Electron microscopy and biochemical analyses of mutants with nonpolar deletions of nuo genes and ubiE, a menaquinone C-methyltransferase-encoding gene downstream of the nuo locus, confirmed the pilus and coaggregation defects. Both nuoA and ubiE mutants were defective in oxidation of MdbA, the major oxidoreductase required for oxidative folding of pilus proteins. Furthermore, supplementation of the ubiE mutant with exogenous menaquinone-4 rescued the cell growth and pilus defects. Altogether, we propose that the A. oris electron transport chain is biochemically linked to pilus assembly via oxidative protein folding.

  18. Linear C32H66 hydrocarbon in the mixed state with C10H22 ...

    Indian Academy of Sciences (India)

    Unknown

    S R Research Laboratory for Studies in Crystallization Phenomena, 10-1-96, ... mixed state with certain shorter chain length homologues (SMOLLENCs), estimated ... Methods. Five hydrocarbons of even carbon numbers, C10, C12, C14, C16 ...

  19. Sample pretreatment optimization for the analysis of short chain chlorinated paraffins in soil with gas chromatography-electron capture negative ion-mass spectrometry.

    Science.gov (United States)

    Chen, Laiguo; Huang, Yumei; Han, Shuang; Feng, Yongbin; Jiang, Guo; Tang, Caiming; Ye, Zhixiang; Zhan, Wei; Liu, Ming; Zhang, Sukun

    2013-01-25

    Accurately quantifying short chain chlorinated paraffins (SCCPs) in soil samples with gas chromatograph coupled with electron capture negative ionization mass spectrometry (GC-ECNI-MS) is difficult because many other polychlorinated pollutants are present in the sample matrices. These pollutants (e.g., polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and toxaphene) can cause serious interferences during SCCPs analysis with GC-MS. Four main columns packed with different adsorbents, including silica gel, Florisil and alumina, were investigated in this study to determine their performance for separating interfering pollutants from SCCPs. These experimental results suggest that the optimum cleanup procedure uses a silica gel column and a multilayer silica gel-Florisil composite column. This procedure completely separated 22 PCB congeners, 23 OCPs and three toxaphene congeners from SCCPs. However, p,p'-DDD, cis-nonachlor and o,p'-DDD were not completely removed and only 53% of the total toxaphene was removed. This optimized method was successfully and effectively applied for removing interfering pollutants from real soil samples. SCCPs in 17 soil samples from different land use areas within a suburban region were analyzed with the established method. The concentrations of SCCPs in these samples were between 7 and 541 ng g(-1) (mean: 84 ng g(-1)). Similar homologue SCCPs patterns were observed between the soil samples collected from different land use areas. In addition, lower chlorinated (Cl(6/7)) C(10)- and C(11)- SCCPs were the dominant congeners. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Electron transport chain dysfunction by H(2)O (2) is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria.

    Science.gov (United States)

    Cortés-Rojo, Christian; Estrada-Villagómez, Mirella; Calderón-Cortés, Elizabeth; Clemente-Guerrero, Mónica; Mejía-Zepeda, Ricardo; Boldogh, Istvan; Saavedra-Molina, Alfredo

    2011-04-01

    The mitochondrial electron transport chain (ETC) contains thiol groups (-SH) which are reversibly oxidized to modulate ETC function during H(2)O(2) overproduction. Since deleterious effects of H(2)O(2) are not limited to -SH oxidation, due to the formation of other H(2)O(2)-derived species, some processes like lipoperoxidation could enhance the effects of H(2)O(2) over ETC enzymes, disrupt their modulation by -SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H(2)O(2) on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast. Only complex III activity from lipoperoxidation-sensitive mitochondria exhibited a higher susceptibility to H(2)O(2) and increased superoxide production. The recovery of ETC activity by the thiol reductanct β-mercaptoethanol (BME) was also altered at complex III, and a role was attributed to lipoperoxidation, the latter being also responsible for iron release. A hypothetical model linking lipoperoxidation, increased complex III damage, superoxide production and iron release is given.

  1. Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response.

    Science.gov (United States)

    Zhang, Conggang; Liu, Zeyu; Bunker, Eric; Ramirez, Adrian; Lee, Schuyler; Peng, Yinghua; Tan, Aik-Choon; Eckhardt, S Gail; Chapnick, Douglas A; Liu, Xuedong

    2017-09-08

    Sorafenib (Nexavar) is a broad-spectrum multikinase inhibitor that proves effective in treating advanced renal-cell carcinoma and liver cancer. Despite its well-characterized mechanism of action on several established cancer-related protein kinases, sorafenib causes variable responses among human tumors, although the cause for this variation is unknown. In an unbiased screening of an oncology drug library, we found that sorafenib activates recruitment of the ubiquitin E3 ligase Parkin to damaged mitochondria. We show that sorafenib inhibits the activity of both complex II/III of the electron transport chain and ATP synthase. Dual inhibition of these complexes, but not inhibition of each individual complex, stabilizes the serine-threonine protein kinase PINK1 on the mitochondrial outer membrane and activates Parkin. Unlike the protonophore carbonyl cyanide m -chlorophenylhydrazone, which activates the mitophagy response, sorafenib treatment triggers PINK1/Parkin-dependent cellular apoptosis, which is attenuated upon Bcl-2 overexpression. In summary, our results reveal a new mechanism of action for sorafenib as a mitocan and suggest that high Parkin activity levels could make tumor cells more sensitive to sorafenib's actions, providing one possible explanation why Parkin may be a tumor suppressor gene. These insights could be useful in developing new rationally designed combination therapies with sorafenib. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Developmental and hormone-induced changes of mitochondrial electron transport chain enzyme activities during the last instar larval development of maize stem borer, Chilo partellus (Lepidoptera: Crambidae).

    Science.gov (United States)

    VenkatRao, V; Chaitanya, R K; Naresh Kumar, D; Bramhaiah, M; Dutta-Gupta, A

    2016-12-01

    The energy demand for structural remodelling in holometabolous insects is met by cellular mitochondria. Developmental and hormone-induced changes in the mitochondrial respiratory activity during insect metamorphosis are not well documented. The present study investigates activities of enzymes of mitochondrial electron transport chain (ETC) namely, NADH:ubiquinone oxidoreductase or complex I, Succinate: ubiquinone oxidoreductase or complex II, Ubiquinol:ferricytochrome c oxidoreductase or complex III, cytochrome c oxidase or complex IV and F 1 F 0 ATPase (ATPase), during Chilo partellus development. Further, the effect of juvenile hormone (JH) analog, methoprene, and brain and corpora-allata-corpora-cardiaca (CC-CA) homogenates that represent neurohormones, on the ETC enzyme activities was monitored. The enzymatic activities increased from penultimate to last larval stage and thereafter declined during pupal development with an exception of ATPase which showed high enzyme activity during last larval and pupal stages compared to the penultimate stage. JH analog, methoprene differentially modulated ETC enzyme activities. It stimulated complex I and IV enzyme activities, but did not alter the activities of complex II, III and ATPase. On the other hand, brain homogenate declined the ATPase activity while the injected CC-CA homogenate stimulated complex I and IV enzyme activities. Cumulatively, the present study is the first to show that mitochondrial ETC enzyme system is under hormone control, particularly of JH and neurohormones during insect development. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast

    DEFF Research Database (Denmark)

    Zhu, Zhiwei; Zhou, Yongjin J.; Kang, Min Kyoung

    2017-01-01

    Microbial synthesis of medium chain aliphatic hydrocarbons, attractive drop-in molecules to gasoline and jet fuels, is a promising way to reduce our reliance on petroleum-based fuels. In this study, we enabled the synthesis of straight chain hydrocarbons (C7–C13) by yeast Saccharomyces cerevisiae...

  4. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  5. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  6. The electrostatic atomization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A J

    1984-06-01

    Exploitation of the unique and potentially beneficial characteristics of electrostatic atomization in combustion systems has foundered upon the inability of two element, diode devices to operate at flow rates that are larger than a fraction of a millilitre per second. This restriction has been attributed to the high innate electrical resistivity of hydrocarbon fuels. A discussion of proposed electrostatic fuel atomizers and their limitations is presented from the vantage of a recently developed theory of electrostatic spraying. Comparison of theory and experiment reveals the existence of a 'constant of spraying' and the presence of an operational regime in which low charge density droplet development is possible. Operation with hydrocarbons in this regime occurs when the mean droplet size is greater than or equal to 10 ..mu..m and fluid viscosity is below about 250 cp. The resulting spray has a mean droplet size that is functionally dependent only upon the free charge density level of the fluid. Consequently there is no theoretical impediment to the attainment of high flow rate electrostatic atomization with fluids of arbitrary conductivity. Implementation is achieved by a general class of electrostatic spray devices which employ direct charge injection. The Spray Triode, a submerged field-emission electron gun, represents a particularly simple member of this new class of atomizer. Among the Spray Triode operational characteristics to be discussed is insensitivity to spray fluid properties and flow rate.

  7. Process for desulfurizing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-04-12

    A process is described for the desulfurization of a mixture of hydrocarbons, and in particular hydrocarbons containing less than 7 atoms of carbon and sulfur compounds of the type of sulfur carbonyl, characterized by the fact that the mixture, preferably in the liquid phase, is brought in contact with a solution of caustic alkali, essentially anhydrous or preferably with a solution of alkali hydroxide in an organic hydroxy nonacid solvent, for example, an alcohol, or with an alkaline alcoholate, under conditions suitable to the formation of hydrogen sulfide which produces a hydrocarbon mixture free from sulfur compounds of the sulfur carbonyl type but containing hydrogen sulfide, and that it is treated, following mixing, having beem submitted to the first treatment, by means of aqueous alkaline hydroxide to eliminate the hydrogen sulfide.

  8. Recovery of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1941-02-10

    A process is disclosed for recovery of hydrocarbon oils, especially lubricating oils or diesel oils, through pressure hydrogenation of distillation, extraction of hydrogenation products from coal or coaly materials or from oils such as mineral oils or tars in liquid phase by use in a reaction vessel of fixed-bed catalysts, characterized in that as starting material is employed material which has been freed of asphaltic and resinous material by hydrogenation refining, vacuum-steam distillation, treatment with hydrogen-rich hydrocarbons (hydroforming), or sulfuric acid.

  9. Repositioning of Verrucosidin, a Purported Inhibitor of Chaperone Protein GRP78, as an Inhibitor of Mitochondrial Electron Transport Chain Complex I

    Science.gov (United States)

    Gonzalez, Reyna; Pao, Peng-Wen; Hofman, Florence M.; Chen, Thomas C.; Louie, Stan G.; Pirrung, Michael C.; Schönthal, Axel H.

    2013-01-01

    Verrucosidin (VCD) belongs to a group of fungal metabolites that were identified in screening programs to detect molecules that preferentially kill cancer cells under glucose-deprived conditions. Its mode of action was proposed to involve inhibition of increased GRP78 (glucose regulated protein 78) expression during hypoglycemia. Because GRP78 plays an important role in tumorigenesis, inhibitors such as VCD might harbor cancer therapeutic potential. We therefore sought to characterize VCD’s anticancer activity in vitro. Triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with VCD under different conditions known to trigger increased expression of GRP78, and a variety of cellular processes were analyzed. We show that VCD was highly cytotoxic only under hypoglycemic conditions, but not in the presence of normal glucose levels, and VCD blocked GRP78 expression only when glycolysis was impaired (due to hypoglycemia or the presence of the glycolysis inhibitor 2-deoxyglucose), but not when GRP78 was induced by other means (hypoxia, thapsigargin, tunicamycin). However, VCD’s strictly hypoglycemia-specific toxicity was not due to the inhibition of GRP78. Rather, VCD blocked mitochondrial energy production via inhibition of complex I of the electron transport chain. As a result, cellular ATP levels were quickly depleted under hypoglycemic conditions, and common cellular functions, including general protein synthesis, deteriorated and resulted in cell death. Altogether, our study identifies mitochondria as the primary target of VCD. The possibility that other purported GRP78 inhibitors (arctigenin, biguanides, deoxyverrucosidin, efrapeptin, JBIR, piericidin, prunustatin, pyrvinium, rottlerin, valinomycin, versipelostatin) might act in a similar GRP78-independent fashion will be discussed. PMID:23755268

  10. Modulation of redox regulatory molecules and electron transport chain activity in muscle of air breathing fish Heteropneustes fossilis under air exposure stress.

    Science.gov (United States)

    Paital, Biswaranjan

    2014-01-01

    Responses of redox regulatory system to long-term survival (>18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 °C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.

  11. Repositioning of Verrucosidin, a purported inhibitor of chaperone protein GRP78, as an inhibitor of mitochondrial electron transport chain complex I.

    Directory of Open Access Journals (Sweden)

    Simmy Thomas

    Full Text Available Verrucosidin (VCD belongs to a group of fungal metabolites that were identified in screening programs to detect molecules that preferentially kill cancer cells under glucose-deprived conditions. Its mode of action was proposed to involve inhibition of increased GRP78 (glucose regulated protein 78 expression during hypoglycemia. Because GRP78 plays an important role in tumorigenesis, inhibitors such as VCD might harbor cancer therapeutic potential. We therefore sought to characterize VCD's anticancer activity in vitro. Triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with VCD under different conditions known to trigger increased expression of GRP78, and a variety of cellular processes were analyzed. We show that VCD was highly cytotoxic only under hypoglycemic conditions, but not in the presence of normal glucose levels, and VCD blocked GRP78 expression only when glycolysis was impaired (due to hypoglycemia or the presence of the glycolysis inhibitor 2-deoxyglucose, but not when GRP78 was induced by other means (hypoxia, thapsigargin, tunicamycin. However, VCD's strictly hypoglycemia-specific toxicity was not due to the inhibition of GRP78. Rather, VCD blocked mitochondrial energy production via inhibition of complex I of the electron transport chain. As a result, cellular ATP levels were quickly depleted under hypoglycemic conditions, and common cellular functions, including general protein synthesis, deteriorated and resulted in cell death. Altogether, our study identifies mitochondria as the primary target of VCD. The possibility that other purported GRP78 inhibitors (arctigenin, biguanides, deoxyverrucosidin, efrapeptin, JBIR, piericidin, prunustatin, pyrvinium, rottlerin, valinomycin, versipelostatin might act in a similar GRP78-independent fashion will be discussed.

  12. Pre-silencing of genes involved in the electron transport chain (ETC) pathway is associated with responsiveness to abatacept in rheumatoid arthritis.

    Science.gov (United States)

    Derambure, C; Dzangue-Tchoupou, G; Berard, C; Vergne, N; Hiron, M; D'Agostino, M A; Musette, P; Vittecoq, O; Lequerré, T

    2017-05-25

    In the current context of personalized medicine, one of the major challenges in the management of rheumatoid arthritis (RA) is to identify biomarkers that predict drug responsiveness. From the European APPRAISE trial, our main objective was to identify a gene expression profile associated with responsiveness to abatacept (ABA) + methotrexate (MTX) and to understand the involvement of this signature in the pathophysiology of RA. Whole human genome microarrays (4 × 44 K) were performed from a first subset of 36 patients with RA. Data validation by quantitative reverse-transcription (qRT)-PCR was performed from a second independent subset of 32 patients with RA. Gene Ontology and WikiPathways database allowed us to highlight the specific biological mechanisms involved in predicting response to ABA/MTX. From the first subset of 36 patients with RA, a combination including 87 transcripts allowed almost perfect separation between responders and non-responders to ABA/MTX. Next, the second subset of patients 32 with RA allowed validation by qRT-PCR of a minimal signature with only four genes. This latter signature categorized 81% of patients with RA with 75% sensitivity, 85% specificity and 85% negative predictive value. This combination showed a significant enrichment of genes involved in electron transport chain (ETC) pathways. Seven transcripts from ETC pathways (NDUFA6, NDUFA4, UQCRQ, ATP5J, COX7A2, COX7B, COX6A1) were significantly downregulated in responders versus non-responders to ABA/MTX. Moreover, dysregulation of these genes was independent of inflammation and was specific to ABA response. Pre-silencing of ETC genes is associated with future response to ABA/MTX and might be a crucial key to susceptibility to ABA response.

  13. DOS cones along atomic chains

    Science.gov (United States)

    Kwapiński, Tomasz

    2017-03-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin-orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.

  14. DOS cones along atomic chains

    International Nuclear Information System (INIS)

    Kwapiński, Tomasz

    2017-01-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin–orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears. (paper)

  15. Reduced expression of mitochondrial electron transport chain proteins from hibernating hearts relative to ischemic preconditioned hearts in the second window of protection.

    Science.gov (United States)

    Cabrera, Jesús A; Butterick, Tammy A; Long, Eric K; Ziemba, Elizabeth A; Anderson, Lorraine B; Duffy, Cayla M; Sluiter, Willem; Duncker, Dirk J; Zhang, Jianyi; Chen, Yingjie; Ward, Herbert B; Kelly, Rosemary F; McFalls, Edward O

    2013-07-01

    Although protection against necrosis has been observed in both hibernating (HIB) and ischemic preconditioned hearts in the second window of protection (SWOP), a comparison of the mitochondrial proteome between the two entities has not been previously performed. Anesthetized swine underwent instrumentation with a fixed constrictor around the LAD artery and were followed for 12 weeks (HIB; N=7). A second group of anesthetized swine underwent ischemic preconditioning by inflating a balloon within the LAD artery 10 times for 2 min, each separated by 2 min reperfusion and were sacrificed 24h later (SWOP; N=7). Myocardial blood flow and high-energy nucleotides were obtained in the LAD region and normalized to remote regions. Post-sacrifice, protein content as measured with iTRAQ was compared in isolated mitochondria from the LAD area of a Sham heart. Basal regional blood flow in the LAD region when normalized to the remote region was 0.86±0.04 in HIB and 1.02±0.02 in SWOP tissue (Pregional blood flows in HIB hearts, ATP content in the LAD region, when normalized to the remote region was similar in HIB versus SWOP (1.06±0.06 and 1.02±0.05 respectively; NS) as was the transmural phosphocreatine (PCr) to ATP ratio (2.1±0.2 and 2.2±0.2 respectively; NS). Using iTRAQ, 64 common proteins were identified in HIB and SWOP hearts. Compared with SWOP, the relative abundance of mitochondrial proteins involved with electron transport chain (ETC) were reduced in HIB including NADH dehydrogenase, Cytochrome c reductase and oxidase, ATP synthase, and nicotinamide nucleotide transhydrogenase. Within chronically HIB heart tissue with reduced blood flow, the relative abundance of mitochondrial ETC proteins is decreased when compared with SWOP tissue. These data support the concept that HIB heart tissue subjected to chronically reduced blood flow is associated with a down-regulation in the expression of key mitochondrial proteins involved in electron transport. Published by Elsevier

  16. Nodal-chain metals.

    Science.gov (United States)

    Bzdušek, Tomáš; Wu, QuanSheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A

    2016-10-06

    The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain-a chain of connected loops in momentum space-along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF 4 ), as well as in other compounds of this class of materials. Using IrF 4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

  17. Electron scattering from alkenes in the energy range 200-4500 eV

    International Nuclear Information System (INIS)

    Wickramarachchi, P.; Palihawadana, P.; Villela, G.; Ariyasinghe, W.M.

    2009-01-01

    Total electron scattering cross sections (TCS) of C 2 H 4 (ethylene), C 3 H 6 (propene), C 4 H 8 (butene) and C 4 H 6 (1,3-butadiene) have been obtained for 200-4500 eV electrons by the measurement of electron-beam intensity attenuation through a gas cell. An analytical expression is deduced to predict the intermediate energy TCS of chain-like hydrocarbons with C-C single and double bonds. The present experimental TCS are compared with the previous experimental measurements and the predictions by theoretical models.

  18. Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria.

    Science.gov (United States)

    Ortiz-Avila, Omar; Sámano-García, Carlos Alberto; Calderón-Cortés, Elizabeth; Pérez-Hernández, Ismael H; Mejía-Zepeda, Ricardo; Rodríguez-Orozco, Alain R; Saavedra-Molina, Alfredo; Cortés-Rojo, Christian

    2013-06-01

    Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c + c1 loss. During Fe(2+)-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe(2+). Avocado oil also decreased ROS generation in Fe(2+)-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.

  19. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  20. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    mineral salt) medium supplemented with 0.05% (v/v) of ... both plants and animals due to disruption in food chain, and death of plants and animal ... to grow under stressed environmental conditions (low nutrient, pH, and water activity), extension in.

  1. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  2. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  3. The influence of ascorbic acid on the oxygen consumption and the heat production by the cells of wheat seedling roots with their mitochondrial electron transport chain inhibited at complexes I and III

    International Nuclear Information System (INIS)

    Gordon, L.K.; Rakhmatullina, D.F.; Ogorodnikova, T.I.; Alyabyev, A.J.; Minibayeva, F.V.; Loseva, N.L.; Mityashina, S.Y.

    2007-01-01

    The influence of exogenous ascorbic acid (AsA) on oxidative phosphorylation was studied using wheat seedling roots. Treatment of them with AsA stimulated the rates of oxygen consumption and the heat production and caused a decrease of the respiratory coefficient. The increase in respiration was prevented by inhibitors of ascorbate oxidase, diethyldithiocarbamate (DEDTC), and of cytochrome oxidase, cyanide (KCN). Exogenous AsA sharply stimulated the rate of oxygen consumption of roots when complexes I and III of the mitochondrial electron transport chain were inhibited by rotenone and antimycin A, respectively, while the rates of heat production did not change significantly. It is concluded that AsA is a potent energy substrate, which can be used in conditions of failing I and III complexes in the mitochondrial electron transport chain

  4. Electronic and transport properties of noncollinear magnetic monatomic Mn chains: Fano resonances in the superlattice of noncollinear magnetic barriers and magnetic anisotropic bands

    International Nuclear Information System (INIS)

    Dai, C.J.; Yan, X.H.; Xiao, Y.; Guo, Y.D.

    2015-01-01

    By means of the density functional theory combined with non-equilibrium Green's function method, ballistic transport properties of one-dimensional noncollinear magnetic monatomic chains were investigated using the single-atomic Mn chains as a model system. Fano resonances are found to exist in the monatomic Mn chains with spin-spiral structure. Furthermore, in the monatomic Mn chains with magnetic soliton lattice, Fano resonances are enhanced and cause the conductance splitting in the transmission spectra. The Fano resonances in the noncollinear magnetic single-atomic Mn chains are arising from the coupling of the localized d-states and the extended states of the quantum channels. By constructing a theoretical model and calculating its conductance, it is found that the phenomena of Fano resonances and the accompanying conductance splitting exist universally in the superlattice of one-dimensional noncollinear magnetic barriers, due to the interference of the incident waves and reflected waves by the interfaces between the neighboring barriers. Moreover, the band structures of the ferromagnetic and spin-spiral monatomic Mn chains exhibit a strong dependence on the spatial arrangement of the magnetic moments of Mn atoms when spin–orbit coupling is considered. - Highlights: • Transport properties of noncollinear magnetic monatomic Mn chains are studied. • Fano resonances are found in the noncollinear magnetic monatomic Mn chains. • Magnetic soliton lattice leads to conductance splitting in the transmission curve. • Fano resonances exist in the superlattice of noncollinear magnetic barriers. • Effect of SOC on the band structure of FM and spin-spiral Mn chains are studied

  5. Formation of nitrosyl non-heme iron-sulphur complexes of a mitrochondria electron-transport chain in a liver and kidneys under prolonged permanent action of radiation contamination in the Chernobyl region

    International Nuclear Information System (INIS)

    Sidorik, E.P.; Burlaka, A.P.; Druzhina, N.A.

    1995-01-01

    No-complexes with iron-sulfur protein of the N-type (EPR signal g=2.03 at 77 K) have been revealed in a mitochondria electron transport chain in a liver and kidneys of animals which were hold for 1.5 years in the Chernobyl area under action of low intensity ionizing radiation as a result of incorporated radionuclides. These alterations in protein give evidence of changes in oxidation and phosphorylation in tissues

  6. Monitoring the vaccine cold chain.

    OpenAIRE

    Cheriyan, E

    1993-01-01

    Maintaining the vaccine cold chain is an essential part of a successful immunisation programme. A continuous electronic temperature monitor helped to identify breaks in the cold chain in the community and the study led to the issue of proper guidelines and replacement of faulty equipment.

  7. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  8. Systems and methods for optically measuring properties of hydrocarbon fuel gases

    Science.gov (United States)

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz; Gersh, Michael E.; Goldstein, Neil

    1998-10-13

    A system and method for optical interrogation and measurement of a hydrocarbon fuel gas includes a light source generating light at near-visible wavelengths. A cell containing the gas is optically coupled to the light source which is in turn partially transmitted by the sample. A spectrometer disperses the transmitted light and captures an image thereof. The image is captured by a low-cost silicon-based two-dimensional CCD array. The captured spectral image is processed by electronics for determining energy or BTU content and composition of the gas. The innovative optical approach provides a relatively inexpensive, durable, maintenance-free sensor and method which is reliable in the field and relatively simple to calibrate. In view of the above, accurate monitoring is possible at a plurality of locations along the distribution chain leading to more efficient distribution.

  9. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    Science.gov (United States)

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that

  10. Identifying future directions for subsurface hydrocarbon migration research

    Science.gov (United States)

    Leifer, I.; Clark, J. F.; Luyendyk, B.; Valentine, D.

    Subsurface hydrocarbon migration is important for understanding the input and impacts of natural hydrocarbon seepage on the environment. Great uncertainties remain in most aspects of hydrocarbon migration, including some basic mechanisms of this four-phase flow of tar, oil, water, and gas through the complex fracture-network geometry particularly since the phases span a wide range of properties. Academic, government, and industry representatives recently attended a workshop to identify the areas of greatest need for future research in shallow hydrocarbon migration.Novel approaches such as studying temporal and spatial seepage variations and analogous geofluid systems (e.g., geysers and trickle beds) allow deductions of subsurface processes and structures that remain largely unclear. Unique complexities exist in hydrocarbon migration due to its multiphase flow and complex geometry, including in-situ biological weathering. Furthermore, many aspects of the role of hydrocarbons (positive and negative) in the environment are poorly understood, including how they enter the food chain (respiration, consumption, etc.) and “percolate” to higher trophic levels. But understanding these ecological impacts requires knowledge of the emissions' temporal and spatial variability and trajectories.

  11. Distilling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C

    1917-11-23

    In the fractional or destructive distillation of hydrocarbon oils or other liquids, the pressure in the still is raised and lowered alternately. The still is closed to raise the pressure, and is opened to lower the pressure rapidly solely by expansion of the vapors. The operation is effected without intermittent cooling, except such as may occur during the lowering of the pressure. In distilling hydrocarbon oil, pressure steam is blown into the oil until the pressure reaches 5 lb/in./sup 2/. The vapor outlet is then opened until the pressure falls to 2 lb/in./sup 2/, whereupon the vapor outlet is closed and steam is again admitted. The operation is continued until the steam, which is of 20 lb pressure, no longer effects distillation; after this stage, superheated steam is used.

  12. Distilling hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Tausz, J

    1924-07-16

    Hydrocarbon oils such as petroleum, shale oils, lignite or coal tar oils are purified by distilling them and collecting the distillate in fractions within narrow limits so that all the impurities are contained in one or more of the narrow fractions. In distilling ligroin obtained by destructive distillation of brown coal, it is found that the coloring and resin-forming constituents are contained in the fractions distilling over at 62 to 86/sup 0/C and 108/sup 0/C. The ligroin is purified, therefore, by distillating in an apparatus provided with an efficient dephlegmotor and removing these two fractions. The distillation may be carried out wholly or in part under reduced pressure, and fractions separated under ordinary pressure may be subsequently distilled under reduced pressure. The hydrocarbons may be first separated into fractions over wider limits and the separate fractions be subjected to a further fractional distillation.

  13. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  14. Treatment of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-22

    A process is described for refining a mixture of liquid hydrocarbons containing harmful substances, this process permitting the operation, which consists in treating the liquid mixture at a temperature higher than 200/sup 0/C with a solid catalyst of phosphoric acid, consisting of phosphoric acid deposited on a solid support of the type of metallurgical coke, for a time sufficient to convert the harmful components to inoffensive substances.

  15. Cracking hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Seigle, A A.F.M.

    1922-12-20

    Hydrocarbon oils such as petroleum, peat, shale, or lignite oils, heavy tars, resin oils, naphthalene oils, etc., are vaporized by being fed from a tank through a preheater to the lower part of a vertical annular retort heated by a flame projected down the central cavity from a burner. The oil vapors rise through annular passages formed by disks, on which are placed chips of copper, iron, aluminum, etc., to act as catalysts.

  16. High boiling point hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1929-04-29

    A process is given for the production of hydrocarbons of high boiling point, such as lubricating oils, from bituminous substances, such as varieties of coal, shale, or other solid distillable carbonaceous materials. The process consists of treating the initial materials with organic solvents and then subjecting the products extracted from the initial materials, preferably directly, to a reducing treatment in respect to temperature, pressure, and time. The reduction treatment is performed by means of hydrogen under pressure.

  17. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  18. Chlorinated hydrocarbons in a pelagic community

    International Nuclear Information System (INIS)

    Elder, D.; Fowler, S.W.

    1976-01-01

    For several years data have been accruing on the distribution of chlorinated hydrocarbon pollutants in marine ecosystems. An overall picture of ambient levels in biota, water and sediments is now emerging however, despite the vast amount of data collected to date, questions still arise as to whether certain pollutants such as chlorinated hydrocarbons are indeed magnified through the marine food web. Evidence both for and against trophic concentration of PCB and DDT compounds has been cited. The answer to this question remains unclear due to lack of adequate knowledge on the relative importance of food and water in the uptake of these compounds as well as the fact that conclusions are often confounded by comparing pollutant concentrations in successive links in the food chain sampled at different geographical locations and/or at different points in time. The situation is further complicated by complex prey-predator relationships that exist in many marine communities. In the present study we have tried to eliminate some of these problems by examining PCB and DOT concentrations in species belonging to a relatively well-defined pelagic food chain sampled at one point in space and time

  19. Microbial consortia involved in the anaerobic degradation of hydrocarbons.

    Science.gov (United States)

    Zwolinski; Harris, R F; Hickey, W J

    2000-01-01

    In this review, we examine the energetics of well-characterized biodegradation pathways and explore the possibilities for these to support growth of multiple organisms interacting in consortia. The relevant phenotypic and/or phylogenetic characteristics of isolates and consortia mediating hydrocarbon degradation coupled with different terminal electron-accepting processes (TEAP) are also reviewed. While the information on metabolic pathways has been gained from the analysis of individual isolates, the energetic framework presented here demonstrates that microbial consortia could be readily postulated for hydrocarbon degradation coupled to any TEAP. Several specialized reactions occur within these pathways, and the organisms mediating these are likely to play a key role in defining the hydrocarbon degradation characteristics of the community under a given TEAP. Comparing these processes within and between TEAPs reveals biological unity in that divergent phylotypes display similar degradation mechanisms and biological diversity in that hydrocarbon-degraders closely related as phylotypes differ in the type and variety of hydrocarbon degradation pathways they possess. Analysis of microcosms and of field samples suggests that we have only begun to reveal the diversity of organisms mediating anaerobic hydrocarbon degradation. Advancements in the understanding of how hydrocarbon-degrading communities function will be significantly affected by the extent to which organisms mediating specialized reactions can be identified, and tools developed to allow their study in situ.

  20. Electronic and magnetic properties of infinite 1D chains of paddlewheel carboxylates M2(COOR)4 (M = Mo, W, Ru, Rh, Ir, Cu)

    KAUST Repository

    Peskov, Maxim; Miao, Xiaohe; Heryadi, Dodi; Eppinger, Jö rg; Schwingenschlö gl, Udo

    2013-01-01

    Dinuclear complexes of transition metals bridged by four carboxylate-groups are examples of stable atomic configurations serving as fundamental building blocks of catalysts and prototypical molecular electronic devices. The electronic structure

  1. Biotransformation of monoaromatic hydrocarbons under anoxic conditions

    International Nuclear Information System (INIS)

    Ball, H.A.; Reinhard, M.; McCarty, P.L.

    1991-01-01

    Aromatic hydrocarbons contained in gasoline are environmental pollutants of particular concern since they are relatively soluble in water, many are toxic, and some are confirmed carcinogens, (e.g., benzene). Although most gasoline constituents are readily degraded in aerobic surface water systems, the groundwater environment associated with hydrocarbon spills is typically anaerobic, thus precluding aerobic degradation pathways. In the absence of oxygen, degradation of gasoline components can take place only with the utilization of alternate electron acceptors such as nitrate, sulfate, carbon dioxide, and possibly ferric iron or other metal oxides. Benzene, toluene, and xylene isomers were completely degraded by aquifer- or sewage sludge-derived microorganisms under dentrifying and methanogenic conditions. Recently, a pure culture was found to degrade toluene and m-xylene nitrate or nitrous oxide as an electron acceptor. This paper presents initial results of ongoing study to develop and characterize microbial consortia capable of transforming aromatic hydrocarbons under nitrate-reducing conditions, and understand the effect of environmental factors on the biotransformation processes

  2. Electronic structure of the CuO3 chains in RBa2Cu3O6+x (R=Y or a rare earth)

    International Nuclear Information System (INIS)

    Aligia, A.A.; Gagliano, E.R.; Vairus, P.

    1995-01-01

    We consider the appropriate generalization of the three-band Hubbard model to describe the CuO 3 chains of RBa 2 Cu 3 O 6+x (R=Y or a rare earth). The model is mapped numerically into a t-J model with t∼0.85 eV and J∼0.2 eV. Making the reasonable assumption that ∼5% of the O atoms between two Cu atoms are lacking, the model allows an explanation of the optical conductivity σ(ω) of the chains, the small change of the occupation of the chains when Y is substituted by Pr, and the charge corrugations observed by scanning-tunneling microscopy

  3. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Boutheina Gargouri

    2015-01-01

    Full Text Available Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  4. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  5. CHAIN 2

    International Nuclear Information System (INIS)

    Bailey, D.

    1998-04-01

    The Second Processing Chain (CHAIN2) consists of a suite of ten programs which together provide a full local analysis of the bulk plasma physics within the JET Tokamak. In discussing these ten computational models this report is intended to fulfil two broad purposes. Firstly it is meant to be used as a reference source for any user of CHAIN2 data, and secondly it provides a basic User Manual sufficient to instruct anyone in running the CHAIN2 suite of codes. In the main report text each module is described in terms of its underlying physics and any associated assumptions or limitations, whilst deliberate emphasis is put on highlighting the physics and mathematics of the calculations required in deriving each individual datatype in the standard module PPF output. In fact each datatype of the CHAIN2 PPF output listed in Appendix D is cross referenced to the point in the main text where its evaluation is discussed. An effort is made not only to give the equation used to derive a particular data profile but also to explicitly define which external data sources are involved in the computational calculation

  6. Measuring Trace Hydrocarbons in Silanes

    Science.gov (United States)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  7. Fractional separation of hydrocarbon vapours

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-10

    A process is described for converting higher boiling hydrocarbons to lower boiling hydrocarbons by subjecting them at elevated temperatures to a conversion operation, then separating the higher and lower boiling fractions. The separation takes place while the reaction products are maintained in the vapor phase by contact with a mass of solid porous material which has little or no catalytic activity but does have a preferential absorption property for higher boiling hydrocarbons so that the lower boiling part of the reaction products pass through the separation zone while the heavier hydrocarbons are retained. The separation is accomplished without substantial loss of heat of these reaction products.

  8. Process for preparing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Krauch, C; Anther, E; Pier, M

    1926-04-07

    A process is described for the conversion of coal of all kinds, wood, oil, shale, as well as other carbonaceous materials into liquid hydrocarbons in two steps, characterized by treatment of the coal and so forth with a stream of hydrogen or hydrogen-containing gases at raised temperatures and raised pressures and producing a tarry product which, after separation of the ashlike residue, is converted by a further treatment, in the presence of catalysts, with hydrogen or hydrogen-containing gases at raised temperature and pressure, largely into low-boiling products.

  9. Recovering valuable liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1931-06-11

    A process for recovering valuable liquid hydrocarbons from coking coal, mineral coal, or oil shale through treatment with hydrogen under pressure at elevated temperature is described. Catalysts and grinding oil may be used in the process if necessary. The process provides for deashing the coal prior to hydrogenation and for preventing the coking and swelling of the deashed material. During the treatment with hydrogen, the coal is either mixed with coal low in bituminous material, such as lean coal or active coal, as a diluent or the bituminous constituents which cause the coking and swelling are removed by extraction with solvents. (BLM)

  10. Hydrogen production from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Docekal, J

    1986-01-01

    Hydrogen is an important feed stock for chemical and petroleum industries, in addition to being considered as the energy carrier of the future. At the present time the feed stock hydrogen is mainly manufactured from hydrocarbons using steam reforming. In steam reforming two processes are employed, the conventional process and PSA (pressure swing adsorption) process. These two processes are described and compared. The results show that the total costs and the maintenance costs are lower for the PSA process, the capital outlay is lower for the conventional process, and the operating costs are similar for the two processes.

  11. The antimalarial activities of methylene blue and the 1,4-naphthoquinone 3-[4-(trifluoromethyl)benzyl]-menadione are not due to inhibition of the mitochondrial electron transport chain.

    Science.gov (United States)

    Ehrhardt, Katharina; Davioud-Charvet, Elisabeth; Ke, Hangjun; Vaidya, Akhil B; Lanzer, Michael; Deponte, Marcel

    2013-05-01

    Methylene blue and a series of recently developed 1,4-naphthoquinones, including 3-[4-(substituted)benzyl]-menadiones, are potent antimalarial agents in vitro and in vivo. The activity of these structurally diverse compounds against the human malaria parasite Plasmodium falciparum might involve their peculiar redox properties. According to the current theory, redox-active methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione are "subversive substrates." These agents are thought to shuttle electrons from reduced flavoproteins to acceptors such as hemoglobin-associated or free Fe(III)-protoporphyrin IX. The reduction of Fe(III)-protoporphyrin IX could subsequently prevent essential hemoglobin digestion and heme detoxification in the parasite. Alternatively, owing to their structures and redox properties, methylene blue and 1,4-naphthoquinones might also affect the mitochondrial electron transport chain. Here, we tested the latter hypothesis using an established system of transgenic P. falciparum cell lines and the antimalarial agents atovaquone and chloroquine as controls. In contrast to atovaquone, methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione do not inhibit the mitochondrial electron transport chain. A systematic comparison of the morphologies of drug-treated parasites furthermore suggests that the three drugs do not share a mechanism of action. Our findings support the idea that methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione exert their antimalarial activity as redox-active subversive substrates.

  12. Determination of polynuclear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, Jr, J P

    1963-01-01

    At the present time, the method of choice for the determination of polynuclear hydrocarbons appears to be the following, (a) extraction of the benzene-soluble fraction from the gross collected particulate matter, (b) one pass through a chromatographic column of partially deactivated alumina, (c) spectral examination of the fractions and (d) the application of appropriate chemical tests as indicated by the previous step. Using this method, the presence of pyrene, fluoranthene, one of the benzofluorenes, chrysens, benz(a)anthracene, benzo(a)pyrene, benzo(e)pyrene, benzo(k)fluoranthene, anthanthrene, and coronene was demonstrated in the air of numerous American cities, and benzo(a)pyrene was measured at some 130 sites. Invaluable as such accurate determinations may be for research purposes, they are still too costly and time-consuming for routine survey purposes. While studies on the subject are by no means complete, they indicate the validity of piperonal chloride test as a general index of polycyclic hydrocarbons. This procedure is described in this paper. 7 references.

  13. Hydrocarbons: source of energy

    International Nuclear Information System (INIS)

    Imarisio, G.; Frias, M.; Bemtgen, J.M.

    1989-01-01

    Hydrocarbons are at present the single most important source of energy, since they are the most versatile and widely used. It is expected that their importance will extend well into the next century and therefore it is essential to provide for all those improvements which will extend their availability and usefulness. The sub-programme ''Optimization of the production and utilization of hydrocarbons'' (within the Non-Nuclear Energy R and D Programme of the European Communities) is pursuing a number of R and D topics aimed at the above-mentioned results. It is implemented by means of shared-cost R and D contracts. At this first Seminar held in Lyon (France) from 21-23 September, 1988, all contractors of the sub-programme presented the state of progress of their R and D projects. These proceedings comprise all the papers presented at the Seminar. The section on oilfield exploration includes a report of work on the interpretation of nuclear logs by means of mathematical models. (author)

  14. Heavy Chain Diseases

    Science.gov (United States)

    ... of heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy ... the disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy ...

  15. Steam hydrocarbon cracking and reforming

    NARCIS (Netherlands)

    Golombok, M.

    2004-01-01

    Many industrial chemical processes are taught as distinct contrasting reactions when in fact the unifying comparisons are greater than the contrasts. We examine steam hydrocarbon reforming and steam hydrocarbon cracking as an example of two processes that operate under different chemical reactivity

  16. A polymorphic variant in the human electron transfer flavoprotein alpha-chain (alpha-T171) displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with mild childhood presentation

    DEFF Research Database (Denmark)

    Bross, P; Pedersen, P; Nyholm, M

    1999-01-01

    The consequences of two amino acid polymorphisms of human electron transfer flavoprotein (alpha-T/I171 in the alpha-subunit and beta-M/T154 in the beta-subunit) on the thermal stability of the enzyme are described. The alpha-T171 variant displayed a significantly decreased thermal stability, wher....... This is compatible with a negative modulating effect of the less-stable alpha-T171 ETF variant in this group of VLCAD patients that harbor missense mutations in at least one allele and therefore potentially display residual levels of VLCAD enzyme activity. Udgivelsesdato: 1999-Jun...

  17. Chain Assembly and Disassembly Processes Differently Affect the Conformational Space of Ubiquitin Chains.

    Science.gov (United States)

    Kniss, Andreas; Schuetz, Denise; Kazemi, Sina; Pluska, Lukas; Spindler, Philipp E; Rogov, Vladimir V; Husnjak, Koraljka; Dikic, Ivan; Güntert, Peter; Sommer, Thomas; Prisner, Thomas F; Dötsch, Volker

    2018-02-06

    Ubiquitination is the most versatile posttranslational modification. The information is encoded by linkage type as well as chain length, which are translated by ubiquitin binding domains into specific signaling events. Chain topology determines the conformational space of a ubiquitin chain and adds an additional regulatory layer to this ubiquitin code. In particular, processes that modify chain length will be affected by chain conformations as they require access to the elongation or cleavage sites. We investigated conformational distributions in the context of chain elongation and disassembly using pulsed electron-electron double resonance spectroscopy in combination with molecular modeling. Analysis of the conformational space of diubiquitin revealed conformational selection or remodeling as mechanisms for chain recognition during elongation or hydrolysis, respectively. Chain elongation to tetraubiquitin increases the sampled conformational space, suggesting that a high intrinsic flexibility of K48-linked chains may contribute to efficient proteasomal degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Canada's hydrocarbon processing evolution

    International Nuclear Information System (INIS)

    Wise, T.H.; Horton, R.

    2000-01-01

    The development of petroleum refining, petrochemicals and natural gas industries in Canada are discussed together with future issues and prospects. Figures give data on (a) refined products trade 1998; (b) refining capacity; (c) product demand 1980-1999; (d) refinery crude runs and capacity; (e) refining and marketing, historical returns 1993-1999; (f) processing power index for Canada and USA; (g) ethylene capacity; (eye) Montreal petrochemical capacities; (j) Sarnia petrochemical capacities in 2000; (k) Alberta petrochemicals capacities 2001; (l) ethylene net equivalent trade; (m) ethylene costs 1999 for W. Canada and other countries. It was concluded that the hydrocarbon processing business continues to expand in Canada and natural gas processing is likely to increase. Petrochemicals may expand in W. Canada, possibly using feed stock from the Far North. Offshore developments may stimulate new processing on the E. Coast

  19. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  20. Treating hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R; MacIvor, W

    1869-09-01

    The treatment of hydrocarbon oils, such as coal or shale oils, paraffin oils, and petroleum, either in the crude or more or less refined state has the object of reducing the specific gravity and otherwise improving the qualities of such oils. The oil to be treated is put into any ordinary still and distilled. The vapor escaping during the distillation is passed through one or more heating vessels or chambers and exposed to the heat necessary to produce the change. The heating vessels or chambers may be made of metal, clay, or any other material adapted to endure heat, and they may be made of any desired form, or they may be constituted of a coil of metal pipes or a series of tubes such as are used for heating air for blast furnaces.

  1. Polycyclic aromatic hydrocarbons in Saccoglossus kowalewskyi (Agassiz)

    Science.gov (United States)

    Carey, D. A.; Farrington, J. W.

    1989-08-01

    Hydrocarbon extracts were analyzed from Saccoglossus kowalewskyi, a deposit-feeding enteropneust worm, and from surface sediments from Cape Cod, MA. Worms were held in experimental aquaria in sieved sediments and flowing seawater for four months and then fed sediments mixed with creosote, lampblack or clean sediment for two weeks as analogues of sediments containing degraded oil and pyrogenic compounds. Worms from all treatments contained polyaromatic hydrocarbons (PAHs) in amounts and composition that indicate that the worms were contaminated with weathered No. 2 fuel oil before our experimental treatment and that the contamination persisted for four months in clean conditions. The contamination was not detected in the clean sediments used in the experiment. The worms accumulated steroid transformation products in greater abundance than the odd chain n-alkanes that dominated the sediment extractions. This may indicate selective assimilation of algal detritus and microbial products over salt marsh detritus. Worms, actively feeding during the experiment, contained 1-3 × 10 -6 g g -1 dry weight of unknown brominated compounds which were not detected in the sediments. These compounds are similar to bromopyrroles found elsewhere in enteropneusts, polychaetes and bacteria and may cause substantial interference in analyses for some industrial pollutants.

  2. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    National Research Council Canada - National Science Library

    Cernansky, N.P

    1998-01-01

    .... The research program entailed mechanistic studies examining the oxidation chemistry of single-component hydrocarbons and ignition studies examining the overall ignition of pure single component fuels and fuel blends...

  3. Radiation induced solid-state polymerization of long-chain acrylates containing fluorocarbon chain

    International Nuclear Information System (INIS)

    Shibasaki, Y.; Zhu, Zhi-Qin

    1995-01-01

    γ-Ray irradiation post-polymerizations of long-chain acrylates containing fluorocarbon chain, H(CF 2 ) 10 CH 2 OCOCH=CH 2 and H(CF 2 ) 8 CH 2 OCOCH=CH 2 , were investigated and also the structures and thermal properties of comb-like polymers obtained were studied. It was found that these monomers exhibited very high polymerizability at wide temperature ranges around the melting points. Because the fluorocarbon chains are less flexible and thicker than the hydrocarbon chains, it can be expected that the aggregation force among the monomer molecules is strong and the conformational freedom of functional group for polymerization is large. According to the DSC and the X-ray diffraction measurements of the comb-like polymers obtained, the fluorocarbon chains are aggregated in a mode of hexagonal packing in the lamellar crystals. This situation can be considered as an optimum condition for the γ-ray irradiation post-polymerization. (author)

  4. Chain Dynamics in Magnetorheological Suspensions

    Science.gov (United States)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    Magnetorheological (MR) suspensions are composed of colloidal particles which acquire dipole moments when subjected to an external magnetic field. At sufficient field strengths and concentrations, the dipolar particles rapidly aggregate to form long chains. Subsequent lateral cross-linking of the dipolar chains is responsible for a rapid liquid-to-solid-like rheological transition. The unique, magnetically-activated rheological properties of MR suspensions make them ideal for interfacing mechanical systems to electronic controls. Additionally, the ability to experimentally probe colloidal suspensions interacting through tunable anisotropic potentials is of fundamental interest. Our current experimental work has focused on understanding the fluctuations of dipolar chains. It has been proposed by Halsey and Toor (HT) that the strong Landau-Peierls thermal fluctuations of dipolar chains could be responsible for long-range attractions between chains. Such interactions will govern the long-time relaxation of MR suspensions. We have synthesized monodisperse neutrally buoyant MR suspensions by density matching stabilized ferrofluid emulsion droplets with D2O. This allows us to probe the dynamics of the dipolar chains using light scattering without gravitational, interfacial, and polydispersity effects to resolve the short-wavelength dynamics of the dipolar chains. We used diffusing wave spectroscopy to measure these dynamics. The particle displacements at short times that show an independence to the field strength, but at long times exhibit a constrained, sub-diffusive motion that slows as the dipole strength is increased. The experiments are in good qualitative agreement with Brownian dynamics simulations of dipolar chains. Although there have been several important and detailed studies of the structure and interactions in MR suspensions, there has not been conclusive evidence that supports or contradicts the HT model prediction that long-range interactions exist between

  5. Evaluation of synthetic hydrocarbons for mark-recapture studies on the red milkweed beetle.

    Science.gov (United States)

    Ginzel, Matthew D; Hanks, Lawrence M

    2002-05-01

    This study evaluates the potential for using blends of synthetic hydrocarbons in mark-recapture studies of insects. To test the durability of hydrocarbons, we applied a blend of five straight-chain hydrocarbons (C24, C21, C26. C28, C30) to detached elytra of the red milkweed beetle, Tetraopes tetrophthalmus (Forster) (Coleoptera: Cerambycidae), mounted the elytra on pins, and placed them in an exposed location outdoors. The amount of hydrocarbons on the elytra did not change over time, even after two months of exposure to sun and rain. Synthetic hydrocarbons applied to the elytra of living beetles did not significantly influence their longevity or mating success in a laboratory study. and the amounts of hydrocarbons did not change with age. The invariability of hydrocarbon ratios over time suggests that blends could provide a nearly infinite variety of ratios to mark individual insects uniquely and indelibly with a hydrocarbon "fingerprint." This technique offers a convenient, safe, and durable means of individually marking insects and may find application in field studies of larger bodied insects that are long-lived and sedentary.

  6. Calculating in situ degradation rates of hydrocarbon compounds in deep waters of the Gulf of Mexico.

    Science.gov (United States)

    Thessen, Anne E; North, Elizabeth W

    2017-09-15

    Biodegradation is an important process for hydrocarbon weathering that influences its fate and transport, yet little is known about in situ biodegradation rates of specific hydrocarbon compounds in the deep ocean. Using data collected in the Gulf of Mexico below 700m during and after the Deepwater Horizon oil spill, we calculated first-order degradation rate constants for 49 hydrocarbons and inferred degradation rate constants for an additional 5 data-deficient hydrocarbons. Resulting calculated (not inferred) half-lives of the hydrocarbons ranged from 0.4 to 36.5days. The fastest degrading hydrocarbons were toluene (k=-1.716), methylcyclohexane (k=-1.538), benzene (k=-1.333), and C1-naphthalene (k=-1.305). The slowest degrading hydrocarbons were the large straight-chain alkanes, C-26 through C-33 (k=-0.0494 through k=-0.007). Ratios of C-18 to phytane supported the hypothesis that the primary means of degradation in the subsurface was microbial biodegradation. These degradation rate constants can be used to improve models describing the fate and transport of hydrocarbons in the event of an accidental deep ocean oil spill. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The IASI detection chain

    Science.gov (United States)

    Nicol, Patrick; Fleury, Joel; Le Naour, Claire; Bernard, Frédéric

    2017-11-01

    IASI (Infrared Atmospheric Sounding Interferometer) is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The presentation will describe the spectrometer detection chain architecture, composed by three different detectors cooled in a passive cryo-cooler (so called CBS : Cold Box Subsystem) and associated analog electronics up to digital conversion. It will mainly focus on design choices with regards to environment constraints, implemented technologies, and associated performances. CNES is leading the IASI program in collaboration with EUMETSAT. The instrument Prime is ALCATEL SPACE responsible, notably, of the detection chain architecture. SAGEM SA provides the detector package (so called CAU : Cold Acquisition Unit).

  8. How to Find the Fries Structures for Benzenoid Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Michał K. Cyrański

    2010-07-01

    Full Text Available An efficient algorithm leading to the Fries canonical structure is presented for benzenoid hydrocarbons. This is a purely topological approach, which is based on adjacency matrices and the Hadamard procedure of matrix multiplication. The idea is presented for naphthalene, as an example. The Fries canonical-structures are also derived for anthracene, coronene, triphenylene, phenanthrene, benz[a]pyrene, and one large benzenoid system. The Fries concept can be convenient for obtaining Clar structures with the maximum number of sextets, which in turn effectively represent π-electron (delocalization in benzenoid hydrocarbons.

  9. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    Directory of Open Access Journals (Sweden)

    Senkin Sergey

    2018-01-01

    Full Text Available The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC foreseen in 2024. We present here one of the frontend readout options, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. We describe the full characterisation of FATALIC and also the Optimal Filtering signal reconstruction method adapted to fully exploit the FATALIC three-range layout. Additionally we present the resolution performance of the whole chain measured using the charge injection system designed for calibration. Finally we discuss the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN.

  10. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    Science.gov (United States)

    Senkin, Sergey

    2018-01-01

    The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. We present here one of the frontend readout options, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. We describe the full characterisation of FATALIC and also the Optimal Filtering signal reconstruction method adapted to fully exploit the FATALIC three-range layout. Additionally we present the resolution performance of the whole chain measured using the charge injection system designed for calibration. Finally we discuss the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN.

  11. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    CERN Document Server

    Senkin, Sergey; The ATLAS collaboration

    2017-01-01

    The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. We present here one of the front-end readout options, an ASIC called FATALIC, which is proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. Hereby we describe the full characterisation of FATALIC and also the signal reconstruction up to the observables of interest for physics: the energy and the arrival time of the particle. The Optimal Filtering signal reconstruction method is adapted to fully exploit the FATALIC three-range layout. Additionally, we present the performance in terms of resolution of the whole chain measured using the charge injection system designed for calibration. Finally, the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN are discussed.

  12. Study of liquid hydrocarbons subjected to ionizing radiations

    International Nuclear Information System (INIS)

    Grob, Robert.

    1977-01-01

    This work is a study of liquid hydrocarbons (especially alkanes and cycloalkanes), ionized and excited by low L.E.T. high energy radiation. An analysis of radiolytical products shows a definite correlation between radiochemical yields and bond energies. The study of the influence of scavengers has been carried out and the methods for the determination of α parameters are discussed. Ionic recombination has been fully investigated: theoretical studies, based on a phenomenological model, on primary and (in presence of solute) secondary charge recombination have been performed. Secondary species were observed by use of kinetic optical absorption spectrophotometry. A good agreement with theory is obtained only when the electron scavenging before thermalization is negligible. Electron mobility in hydrocarbons has been measured and the electron scavenging rate constants have been determined using the pulse conductivity technique. Conformational analysis calculations show a correlation between the electron mobility and the electronic structure. The rate of formation of a radiolytic product and the rate of decay of its precursor have been studied for solutions of hydrocarbons and electron scavengers [fr

  13. Growth of hydrocarbon utilizing microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Mavinkurve, S.

    Two isolates from marine mud having broad spectrum hydrocarbon utilizing profile were identified as Arthrobacter simplex and Candida tropicalis.Both the organisms grew exponentially on crude oil. The cell yield of the organisms was influenced...

  14. Process for treating hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-15

    A process is described for treating simultaneously bituminous substances and hydrocarbon oils for the production of low-boiling hydrocarbons and volatilization of the bituminous substances, characterized by the fact that it consists of heating a current of charge constituted by a mixture of the bituminous substances and hydrocarbon oils, to a high temperature, passing the heated current into a zone of extended reaction where the vapors are separated from the liquid or solid residue to favor transformation of the liquid hydrocarbons and volatilization of the bituminous substances, owing to the utilization of a heating agent carried to a high temperature being brought in contact with the heated charge in order to communicate its heat to the charge, while this later presents itself as relatively fine pellet or in the condition of distinct particles, particularly separated from one another.

  15. Predicting hydrocarbon release from soil

    International Nuclear Information System (INIS)

    Poppendieck, D.; Loehr, R.C.

    2002-01-01

    'Full text:' The remediation of hazardous chemicals from soils can be a lengthy and costly process. As a result, recent regulatory initiatives have focused on risk-based corrective action (RBCA) approaches. Such approaches attempt to identify the amount of chemical that can be left at a site with contaminated soil and still be protective of human health and the environment. For hydrocarbons in soils to pose risk to human heath and the environment, the hydrocarbons must be released from the soil and accessible to microorganisms, earthworms, or other higher level organisms. The sorption of hydrocarbons to soil can reduce the availability of the hydrocarbon to receptors. Typically in soils and sediments, there is an initial fast release of a hydrocarbon from the soil to the aqueous phase followed by a slower release of the remaining hydrocarbon to the aqueous phase. The rate and extent of slow release can influence aqueous hydrocarbon concentrations and the fate and transport of hydrocarbons in the subsurface. Once the fast fraction of the chemical has been removed from the soil, the remaining fraction of a chemical may desorb at a rate that natural mechanisms can attenuate the released hydrocarbon. Hence, active remediation may be needed only until the fast fraction has been removed. However, the fast fraction is a soil and chemical specific parameter. This presentation will present a tier I type protocol that has been developed to quickly estimate the fraction of hydrocarbons that are readily released from the soil matrix to the aqueous phase. Previous research in our laboratory and elsewhere has used long-term desorption (four months) studies to determine the readily released fraction. This research shows that a single short-term (less than two weeks) batch extraction procedure provides a good estimate of the fast released fraction derived from long-term experiments. This procedure can be used as a tool to rapidly evaluate the release and bioavailability of

  16. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways.

    Directory of Open Access Journals (Sweden)

    R Cameron Coates

    Full Text Available Cyanobacteria possess the unique capacity to naturally produce hydrocarbons from fatty acids. Hydrocarbon compositions of thirty-two strains of cyanobacteria were characterized to reveal novel structural features and insights into hydrocarbon biosynthesis in cyanobacteria. This investigation revealed new double bond (2- and 3-heptadecene and methyl group positions (3-, 4- and 5-methylheptadecane for a variety of strains. Additionally, results from this study and literature reports indicate that hydrocarbon production is a universal phenomenon in cyanobacteria. All cyanobacteria possess the capacity to produce hydrocarbons from fatty acids yet not all accomplish this through the same metabolic pathway. One pathway comprises a two-step conversion of fatty acids first to fatty aldehydes and then alkanes that involves a fatty acyl ACP reductase (FAAR and aldehyde deformylating oxygenase (ADO. The second involves a polyketide synthase (PKS pathway that first elongates the acyl chain followed by decarboxylation to produce a terminal alkene (olefin synthase, OLS. Sixty-one strains possessing the FAAR/ADO pathway and twelve strains possessing the OLS pathway were newly identified through bioinformatic analyses. Strains possessing the OLS pathway formed a cohesive phylogenetic clade with the exception of three Moorea strains and Leptolyngbya sp. PCC 6406 which may have acquired the OLS pathway via horizontal gene transfer. Hydrocarbon pathways were identified in one-hundred-forty-two strains of cyanobacteria over a broad phylogenetic range and there were no instances where both the FAAR/ADO and the OLS pathways were found together in the same genome, suggesting an unknown selective pressure maintains one or the other pathway, but not both.

  17. Tunnel current across linear homocatenated germanium chains

    International Nuclear Information System (INIS)

    Matsuura, Yukihito

    2014-01-01

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e −βL , of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length

  18. Hydrocarbon removal with constructed wetlands

    OpenAIRE

    Eke, Paul Emeka

    2008-01-01

    Wetlands have long played a significant role as natural purification systems, and have been effectively used to treat domestic, agricultural and industrial wastewater. However, very little is known about the biochemical processes involved, and the use of constructed treatment wetlands in the removal of petroleum aromatic hydrocarbons from produced and/or processed water. Wastewaters from the oil industry contain aromatic hydrocarbons such as benzene, toluene, ethylbenzene and x...

  19. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  20. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  1. HYDROCARBONS RESERVES IN VENEZUELA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Cruz, D.J.

    2007-07-01

    Venezuela is an important player in the energy world, because of its hydrocarbons reserves. The process for calculating oil and associated gas reserves is described bearing in mind that 90% of the gas reserves of Venezuela are associated to oil. Likewise, an analysis is made of the oil reserves figures from 1975 to 2003. Reference is also made to inconsistencies found by international experts and the explanations offered in this respect by the Ministry of Energy and Petroleum (MENPET) and Petroleos de Venezuela (PDVSA) regarding the changes that took place in the 1980s. In turn, Hubbert's Law is explained to determine peak production of conventional oil that a reservoir or field will reach, as well as its relationship with remaining reserves. Emphasis is placed on the interest of the United Nations on this topic. The reserves of associated gas are presented along with their relationship with the different crude oils that are produced and with injected gas, as well as with respect to the possible changes that would take place in the latter if oil reserves are revised. Some recommendations are submitted so that the MENPET starts preparing the pertinent policies ruling reserves. (auth)

  2. Evaluation of hydrocarbon potential

    International Nuclear Information System (INIS)

    Cashman, P.H.; Trexler, J.H. Jr.

    1992-01-01

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the open-quotes Eleana Formationclose quotes are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock

  3. Supply chain strategies, issues and models

    CERN Document Server

    Ramanathan, Ramakrishnan

    2014-01-01

    In the 21st century, supply chain operations and relationships among supply chain partners have become highly challenging, necessitating new approaches, e.g., the development of new models. Supply Chain Strategies, Issues and Models discusses supply chain issues and models with examples from actual industrial cases. Expert authors with a wide spectrum of knowledge working in various areas of supply chain management from various geographical locations offer refreshing, novel and insightful ideas and address possible solutions using established theories and models. Supply Chain Strategies, Issues and Models features studies that have used mathematical modeling, statistical analyses and also descriptive qualitative studies. The chapters cover many relevant themes related to supply chains and logistics including supply chain complexity, information sharing, quality (six sigma), electronic Kanbans, inventory models, scheduling, purchasing and contracts. To facilitate easy reading, the chapters that deal with suppl...

  4. Critical Factors of Attracting Supply Chain Network Members to Electronic Marketplaces: The Case of Sunbooks Ltd. and the Hungarian Book Trade

    OpenAIRE

    György Drótos; Péter Móricz

    2006-01-01

    Vertical electronic marketplaces often suffer from the low level of liquidity. Attracting members is critical, however, not even a sound and efficient IT and logistic background is enough to convince both the supplier and the customer side. In this paper the authors present the case study of Sunbooks Ltd. This venture has started to transform the Hungarian book trade market that suffers from serious deficiencies in field of information and material flow. Despite the vast investments and that ...

  5. Lowering of the critical concentration for micelle formation in aqueous soap solutions by action of truly dissolved hydrocarbon at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Markina, Z.N.; Kostova, N.Z.; Rebinder, P.A.

    1970-03-01

    The effect of dissolved hydrocarbons (octane, benzene, and ethylbenzene) on critical micelle concentration of aqueous solutions of sodium salts of fatty acids from caproate to sodium myristate at various temperatures was studied. Experimental results showed that formation of micelles is promoted by presence of hydrocarbons dissolved in the water phase. Such solutions have below normal critical micelle concentration. The change in critical micelle concentration decreases with increase in length of hydrocarbon chain in the soap molecule and with decrease of hydrocarbon solubility in pure water. The nature of the hydrocarbon also affects the forms and dimension of the micelle. Aromatic hydrocarbons increase micelle volume and greatly decrease C.M.C., while aliphatic hydrocarbons decrease C.M.C. slightly. (12 refs.)

  6. 5,5'-Dithiobis-(2-nitrobenzoic acid) as a probe for a non-essential cysteine residue at the medium chain acyl-coenzyme A dehydrogenase binding site of the human 'electron transferring flavoprotein' (ETF).

    Science.gov (United States)

    Parker, A; Engel, P C

    1999-01-01

    Human 'electron transferring flavoprotein' (ETF) was inactivated by the thiol-specific reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB). The kinetic profile showed the reaction followed pseudo-first-order kinetics during the initial phase of inactivation. Monitoring the release of 5-thio-2-nitrobenzoate (TNB) showed that modification of 1 cysteine residue was responsible for the loss of activity. The inactivation of ETF by DTNB could be reversed upon incubation with thiol-containing reagents. The loss of activity was prevented by the inclusion of medium chain acyl-CoA dehydrogenase (MCAD) and octanoyl-CoA. Cyanolysis of the DTNB modified-ETF with KCN led to the release of TNB accompanied presumably by the formation of the thio-cyano enzyme and with almost full recovery of activity. Conservation studies and the lack of 100% inactivation, however, suggested that this cysteine residue is not essential for the interaction with MCAD.

  7. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  8. Lagrangian theory with zero component. Application to the study of the polymers in solution (chains with exclued volume) and of the properties of electrons in a random potential

    International Nuclear Information System (INIS)

    Des Cloizeaux, J.

    1976-01-01

    The Lagrangian theory of a field with n components can be generalized for values of n which are not integers and in particular for n=0. This extension is made by introducing ordered Green's functions. It is shown how the zero components Lagrangian theory can be used to describe the behaviour of an isolated polymer or of a solution of polymers with large molecular masses. It is remarked that by analytic continuation with respect to the coupling constant, it should be possible to study the properties of electrons in a random potential and perhaps the nature of the mobility edges [fr

  9. Adsorption of small hydrocarbons on rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes with 1 - 4 carbon atoms of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of an additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  10. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Begović, Lidija, E-mail: lbegovic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Mlinarić, Selma, E-mail: smlinaric@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Antunović Dunić, Jasenka, E-mail: jantunovic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Katanić, Zorana, E-mail: zkatanic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Lončarić, Zdenko, E-mail: zdenko.loncaric@pfos.hr [Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Ulica kralja Petra Svačića 1d, H R -31000 Osijek (Croatia); Lepeduš, Hrvoje, E-mail: hlepedus@yahoo.com [Faculty of Humanities and Social Sciences, Josip Juraj Strossmayer University of Osijek, Lorenza Jägera 9, HR-31000 Osijek (Croatia); Cesar, Vera, E-mail: vcesarus@yahoo.com [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia)

    2016-06-15

    Highlights: • Cobalt (Co{sup 2+}) impaired the function of oxygen evolving complex (OEC) in L. minor L. • Electron transport through PSII components varied depending on Co{sup 2+} concentration. • K-band was proven to be suitable parameter for investigation of Co{sup 2+} toxicity. • Increased lipid peroxidation level showed early oxidative damage induced by Co{sup 2+}. - Abstract: The effect of two concentrations of cobalt (Co{sup 2+}) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72 h after the start of the exposure. Higher concentration of cobalt (1 mM) induced growth inhibition while lower concentration (0.01 mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co{sup 2+} especially at the higher concentration where decreased electron transport beyond primary quinone acceptor Q{sub A}{sup −} and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co{sup 2+} concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals.

  11. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage

    International Nuclear Information System (INIS)

    Begović, Lidija; Mlinarić, Selma; Antunović Dunić, Jasenka; Katanić, Zorana; Lončarić, Zdenko; Lepeduš, Hrvoje; Cesar, Vera

    2016-01-01

    Highlights: • Cobalt (Co"2"+) impaired the function of oxygen evolving complex (OEC) in L. minor L. • Electron transport through PSII components varied depending on Co"2"+ concentration. • K-band was proven to be suitable parameter for investigation of Co"2"+ toxicity. • Increased lipid peroxidation level showed early oxidative damage induced by Co"2"+. - Abstract: The effect of two concentrations of cobalt (Co"2"+) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72 h after the start of the exposure. Higher concentration of cobalt (1 mM) induced growth inhibition while lower concentration (0.01 mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co"2"+ especially at the higher concentration where decreased electron transport beyond primary quinone acceptor Q_A"− and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co"2"+ concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals.

  12. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    Directory of Open Access Journals (Sweden)

    R. E. Dunmore

    2015-09-01

    Full Text Available Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London, which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20–30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  13. Chain reaction

    International Nuclear Information System (INIS)

    Balogh, Brian.

    1991-01-01

    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  14. Production of light hydrocarbons, etc. [from heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-10-07

    A process is given for the production of light hydrocarbons of the gasoline type and, if desired, of the middle-oil type, from liquid or fusible heavy or medium heavy hydrocarbon materials. The process comprises subjecting the said initial materials in the first stage to catalytic hydrofining, separating the lower boiling constituents and the hydrogenating gas from the resulting products and then subjecting the higher boiling constituents in a second stage to a splitting destructive hydrogenation and then recycling substantially the entire reaction mixture obtained in the second stage to the frst stage.

  15. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  16. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    Directory of Open Access Journals (Sweden)

    Arpita eBose

    2013-12-01

    Full Text Available Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5 and longer alkanes. C2-C4 alkanes such as ethane, propane and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4 then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist. Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4‰ and 4.5‰ respectively. The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively. Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  17. Selection of bacteria with hydrocarbon degrading capacity isolated from Colombian Caribbean sediments

    International Nuclear Information System (INIS)

    Narvaez Florez, Silvia; Gomez, Martha L; Martinez Maria M

    2008-01-01

    Thirty one bacterial isolations in minimal salts supplemented medium with hydrocarbons (ACPM or crude oil) as sole carbon source were isolated from sediment samples from the Colombian Caribbean. Bacterial strains underwent selection tests in different concentrations of hydrocarbons; 11 tolerant crude oil and ACPM strains in a range of 1-8%v/v were chosen. A mixed bacterial culture was created and assessed its ability to degrade hydrocarbons in a laboratory-scale test, with a concentration of 2% v/v of ACPM over a period of 21 days. Measurements of biomass in Colony Forming Units (CFU)/mL were used to develop the growth curve of the mixed culture. Hydrocarbons remotion was measured by mass chromatography. The mixed culture was able to degrade the 68.6% of aliphatic hydrocarbons in preference of long chain n- alkenes (C12- C31), reaching a maximum growth of 3.13 x 10 9 UFC / mL. Degradation of aromatic hydrocarbons was not evidenced under the observation time. Nine of the eleven strains were identified using the biochemical systems BBL and API 50 CHB/E; they belonged to the genus Klebsiella, Chromobacterium, Flavimonas, Enterobacter,Pseudomonas, and Bacillus. The evaluated strains have enzymatic potential to degrade hydrocarbons and it is necessary to characterize them at molecular level in order to develop and effective consortium for field application

  18. Detecting chlorinated hydrocarbon residues: Rachel Carson's villains.

    Science.gov (United States)

    Travis, Anthony S

    2012-07-01

    In 1962, Rachel Carson's Silent Spring drew the public's attention to the deleterious effects of chlorinated hydrocarbons employed as economic poisons in agriculture. However, she did not discuss how their residues could be routinely identified and quantified. In part, this was because the introduction of instruments for use in environmental analysis had only just begun, and she was probably unaware of their existence. The development of the instrumental methods began in industry, particularly at Dow and Shell, in the mid-1950s. Dow scientists, by combining mass spectrometry with gas chromatography, developed the most powerful technique, then and now, for the separation, quantitation and identification of chlorinated hydrocarbons. Shell scientists were no less innovative, particularly with the application of highly sensitive gas chromatography detectors to trace analysis. The first of these detectors, the electron capture detector, was invented by James Lovelock at the National Institute of Medical Research, North London, at the end of the 1950s. Around the same time, Dale Coulson in the USA developed his microcoulometric detector.

  19. Production of hydrocarbons, especially ethylene

    Energy Technology Data Exchange (ETDEWEB)

    1952-01-17

    The invention has for its object a process for the production of gaseous nonsaturated hydrocarbons, particularly ethylene and aromatic hydrocarbons, by starting with hydrocarbon oils entirely of paraffinic nature or their fractions, which consists in putting the separated products in contact with solid inert material especially with porous nonmetallic inert material or of heavy metals or their alloys, maybe in a finely divided state or in the form, of pieces or chips, at a temperature above 500/sup 0/C, or better between 600 and 700/sup 0/C at a velocity per hour of 0.6 to 3.0, and preferably 0.75 to 1.5 parts per volume of products per each part of space volume of catalyst.

  20. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang,; Dali, [Los Alamos, NM; Devlin, David [Santa Fe, NM; Barbero, Robert S [Santa Cruz, NM; Carrera, Martin E [Naperville, IL; Colling, Craig W [Warrenville, IL

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  1. Production of hydrocarbons of value

    Energy Technology Data Exchange (ETDEWEB)

    1931-06-16

    A process is described for the production of hydrocarbons of great value by treating with heat and pressure carbonaceous materials such as coals, tars, mineral oils, and products of distillation and transformation of these materials, also for the refining with heat and pressure of mixed liquid hydrocarbons by means of hydrogen gas, preferably in the presence of catalysts, consisting in using as the hydrogenating gas that obtained by gasification of combustible solids after partial or complete cleaning at atmospheric or elevated pressures, by means of solid adsorbents, chemical agents or catalysts, or mixtures of these agents, the hydrocarbons being characterized by strong unsaturation, and the presence of oxygen, sulfur compounds, and oxides of nitrogen.

  2. Process of distilling heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1929-12-03

    This invention has for its object the distillation of heavy liquid hydrocarbons for the purpose of obtaining lighter hydrocarbons stable and immediately salable for fuels in combustion motors. The process is distinguished by the fact that the heavy hydrocarbon is distilled by means of heating to a temperature in keeping with the nature of the material to be treated up to 350/sup 0/C under pressure or without pressure the distillation being carried out on catalysts containing successively nickel, copper, and iron (3 parts of nickel, 1 part of copper, and 1 part of iron), the vapors produced by this distillation being exposed in turn to the action of catalysts of the same nature and in the same proportion.

  3. The Future of Resilient Supply Chains

    DEFF Research Database (Denmark)

    Donadoni, Mattia; Roden, Sinéad; Scholten, Kirstin

    This research aims to advance theoretical understanding around the management of supply chain disruptions through a multi-stage Delphi study on supply chain resilience. Stage one focused on polling academic experts followed by a second stage with practitioners from automotive, electronics and food...

  4. Preparing valuable hydrocarbons by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1930-08-22

    A process is described for the preparation of valuable hydrocarbons by treatment of carbonaceous materials, like coal, tars, minerals oils, and their distillation and conversion products, and for refining of liquid hydrocarbon mixture obtained at raised temperature and under pressure, preferably in the presence of catalysts, by the use of hydrogen-containing gases, purified and obtained by distilling solid combustibles, characterized by the purification of the hydrogen-containing gases being accomplished for the purpose of practically complete removal of the oxygen by heating at ordinary or higher pressure in the presence of a catalyst containing silver and oxides of metals of group VI of the periodic system.

  5. Purifying and regenerating hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1931-11-19

    Hydrocarbons are freed from sulfur-containing compounds, colloidal asphaltic bodies and unstable unsaturated substances by treatment with a small amount of dilute sulfuric acid and a salt of a trivalent cation, such as ferric chloride or sulfate. Hydrocarbons specified are petroleum, crude benzol, low temperature tars, shale oil or vapor-phase cracked spirit. Motor spirit or lubricating oil distillates are refined and finally distilled. The acid reagent may be regenerated by filtering through sand or asbestos. Used lubricating oils may be treated similarly and after removal of refining agent, the oil is heated with an adsorbent and decolorizing material and then filtered.

  6. Hydrocarbons cocktails of the future

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This publication of the Areva Group, a world nuclear industry leader, provides information on the energy in many domains. This issue deals with the CO 2 pollution exchange, the carbon sinks to compensate the CO 2 , the green coal as an innovative solution, an outsize dam in China, the solar energy progresses in France and the french medicine academy in favor of Nuclear. A special chapter is devoted to the hydrocarbons of the future, artificial chemical combination created from constituents of hydrocarbons and derived from various sources. (A.L.B.)

  7. Electric properties of organic and mineral electronic components, design and modelling of a photovoltaic chain for a better exploitation of the solar energy

    International Nuclear Information System (INIS)

    Aziz, A.

    2006-11-01

    The research carried out in this thesis relates to the mineral, organic electronic components and the photovoltaic systems. Concerning the mineral semiconductors, we modelled the conduction properties of the structures metal/oxide/semiconductor (MOS) strongly integrated in absence and in the presence of charges. We proposed a methodology allowing characterizing the ageing of structures MOS under injection of the Fowler Nordheim (FN) current type. Then, we studied the Schottky diodes in polymers of type metal/polymer/metal. We concluded that: The mechanism of the charges transfer, through the interface metal/polymer, is allotted to the thermo-ionic effect and could be affected by the lowering of the potential barrier to the interface metal/polymer. In the area of photovoltaic energy, we conceived and modelled a photovoltaic system of average power (100 W). We showed that the adaptation of the generator to the load allows a better exploitation of solar energy. This is carried out by the means of the converters controlled by an of type MPPT control provided with a detection circuit of dysfunction and restarting of the system. (author)

  8. White spot syndrome virus isolates of tiger shrimp Penaeus monodon (Fabricious) in India are similar to exotic isolates as revealed by polymerase chain reaction and electron microscopy.

    Science.gov (United States)

    Mishra, S S; Shekhar, M S

    2005-07-01

    Microbiological analysis of samples collected from cases of white spot disease outbreaks in cultured shrimp in different farms located in three regions along East Coast of India viz. Chidambram (Tamil Nadu), Nellore (Andhra Pradesh) and Balasore (Orissa), revealed presence of Vibrio alginolyticus, Vibrio parahaemolyticus, and Aeromonas spp. but experimental infection trials in Penaeus monodon with these isolates did not induce any acute mortality or formation of white spots on carapace. Infection trials using filtered tissue extracts by oral and injection method induced mortality in healthy P. monodon with all samples and 100% mortality was noted by the end of 7 day post-inoculation. Histopathological analysis demonstrated degenerated cells characterized by hypertrophied nuclei in gills, hepatopancreas and lymphoid organ with presence of intranuclear basophilic or eosino-basophilic bodies in tubular cells and intercellular spaces. Analysis of samples using 3 different primer sets as used by other for detection of white spot syndrome virus (WSSV) generated 643, 1447 and 520bp amplified DNA products in all samples except in one instance. Variable size virions with mean size in the range of 110 x 320 +/- 20 nm were observed under electron microscope. It could be concluded that the viral isolates in India involved with white spot syndrome in cultured shrimp are similar to RV-PJ and SEMBV in Japan, WSBV in Taiwan and WSSV in Malaysia, Indonesia, Thailand, China and Japan.

  9. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses.

    Science.gov (United States)

    Zhu, Qiang; Dugardeyn, Jasper; Zhang, Chunyi; Mühlenbock, Per; Eastmond, Peter J; Valcke, Roland; De Coninck, Barbara; Oden, Sevgi; Karampelias, Michael; Cammue, Bruno P A; Prinsen, Els; Van Der Straeten, Dominique

    2014-02-01

    Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.

  10. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage.

    Science.gov (United States)

    Begović, Lidija; Mlinarić, Selma; Antunović Dunić, Jasenka; Katanić, Zorana; Lončarić, Zdenko; Lepeduš, Hrvoje; Cesar, Vera

    2016-06-01

    The effect of two concentrations of cobalt (Co(2+)) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72h after the start of the exposure. Higher concentration of cobalt (1mM) induced growth inhibition while lower concentration (0.01mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co(2+) especially at the higher concentration where decreased electron transport beyond primary quinone acceptor QA(-) and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co(2+) concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Modified Li chains as atomic switches

    KAUST Repository

    Wunderlich, Thomas; Akgenc, Berna; Eckern, Ulrich; Schuster, Cosima; Schwingenschlö gl, Udo

    2013-01-01

    We present electronic structure and transport calculations for hydrogen and lithium chains, using density functional theory and scattering theory on the Green's function level, to systematically study impurity effects on the transmission coefficient

  12. Electron Tree

    DEFF Research Database (Denmark)

    Appelt, Ane L; Rønde, Heidi S

    2013-01-01

    The photo shows a close-up of a Lichtenberg figure – popularly called an “electron tree” – produced in a cylinder of polymethyl methacrylate (PMMA). Electron trees are created by irradiating a suitable insulating material, in this case PMMA, with an intense high energy electron beam. Upon discharge......, during dielectric breakdown in the material, the electrons generate branching chains of fractures on leaving the PMMA, producing the tree pattern seen. To be able to create electron trees with a clinical linear accelerator, one needs to access the primary electron beam used for photon treatments. We...... appropriated a linac that was being decommissioned in our department and dismantled the head to circumvent the target and ion chambers. This is one of 24 electron trees produced before we had to stop the fun and allow the rest of the accelerator to be disassembled....

  13. BIOREMEDIATION OF A PETROLEUM-HYDROCARBON

    African Journals Online (AJOL)

    ES OBE

    under field conditions in the bioremediation of a petroleum- hydrocarbon polluted ... an accelerated biodegradation of petroleum hydrocarbons in a polluted agricultural soil ..... 12) Jackson, M.L. Soil chemical analysis. ... biological assay. 3 rd.

  14. Total Petroleum Hydrocarbons (TPH): ToxFAQs

    Science.gov (United States)

    ... a state: This map displays locations where Total Petroleum Hydrocarbons (TPH) is known to be present. On ... I get more information? ToxFAQs TM for Total Petroleum Hydrocarbons (TPH) ( Hidrocarburos Totales de Petróleo (TPH) ) August ...

  15. Predicting the environmental fate properties of petroleum hydrocarbon mixtures

    International Nuclear Information System (INIS)

    Pisigan, R.A. Jr.; Tucker, W.A.

    1995-01-01

    The environmental fate and transport of petroleum products for risk assessment can be evaluated based on the physico-chemical properties of an indicator chemical or a surrogate compound, or the whole mixture. A study was conducted to develop a simple representation of the hydrocarbon mixture as if it contained only few constituents, each of which represents a large number of compounds. The products considered are gasoline, diesel fuel, and jet fuel (JP4). Each petroleum hydrocarbon was characterized as a mixture of six constituents: short chain alkanes, long chain alkanes, short chain cycloalkanes and alkenes, long chain cycloalkanes and alkenes, BTEX, and other aromatics. The carbon number used as a cut-off between short and long chain alkanes, alkenes, and cycloalkanes varies with the type of product. Each mixture has different average molecular weight, water solubility, vapor pressure, organic carbon partition coefficient, and air diffusivity. The properties of each constituent of gasoline were derived from the weighted average of all compounds belonging to each constituent group. For diesel fuel and JP4, the properties of each constituent were generated from the properties of the component most representative of the group. Any property that is missing or not available from common literature sources was derived from regression equations developed from the data base for gasoline. These regression equations express the property as function of the number of carbon atoms. The R 2 values of the regression equations range from 0.82--0.92. Some case studies involving petroleum product contamination in which the estimated properties were applied are presented

  16. Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: Syntheses, structures and chain length dependent physical properties

    KAUST Repository

    Shi, Xueliang

    2014-01-01

    Recent studies demonstrated that aromaticity and biradical character play important roles in determining the ground-state structures and physical properties of quinoidal polycyclic hydrocarbons and oligothiophenes, a kind of molecular materials showing promising applications for organic electronics, photonics and spintronics. In this work, we designed and synthesized a new type of hybrid system, the so-called bisindeno-[n]thienoacenes (n = 1-4), by annulation of quinoidal fused α-oligothiophenes with two indene units. The obtained molecules can be regarded as antiaromatic systems containing 4n π electrons with small singlet biradical character (y0). Their ground-state geometry and electronic structures were studied by X-ray crystallographic analysis, NMR, ESR and Raman spectroscopy, assisted by density functional theory calculations. With extension of the chain length, the molecules showed a gradual increase of the singlet biradical character accompanied by decreased antiaromaticity, finally leading to a highly reactive bisindeno[4]thienoacene (S4-TIPS) which has a singlet biradical ground state (y0= 0.202). Their optical and electronic properties in the neutral and charged states were systematically investigated by one-photon absorption, two-photon absorption, transient absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry, which could be correlated to the chain length dependent antiaromaticity and biradical character. Our detailed studies revealed a clear structure-aromaticity-biradical character-physical properties-reactivity relationship, which is of importance for tailored material design in the future. This journal is

  17. product chain collaboration and environmental innovations

    DEFF Research Database (Denmark)

    Remmen, Arne; Mosgaard, Mette

    2004-01-01

    The paper  builds upon a case study from a number of electronic companies in Denmark and describes from an organisational perspective how organisations make environmental innovations in the product chain.......The paper  builds upon a case study from a number of electronic companies in Denmark and describes from an organisational perspective how organisations make environmental innovations in the product chain....

  18. Transport properties of a ladder with two random dimer chains

    International Nuclear Information System (INIS)

    Hu Dong-Sheng; Zhu Chen-Ping; Zhang Yong-Mei

    2011-01-01

    We investigate the transport properties of a ladder with two random dimer (RD) chains. It is found that there are two extended states in the ladder with identical RD chains and a critical state regarded as an extended state in the ladder with pairing RD chains. Such a critical state is caused by the chiral symmetry. The ladder with identical RD chains can be decoupled into two isolated RD chains and the ladder with pairing RD chains can not. The analytic expressions of the extended states are presented for the ladder with identical RD chains. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Insights into hydrocarbon formation by nitrogenase cofactor homologs.

    Science.gov (United States)

    Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W

    2015-04-14

    The L-cluster is an all-iron homolog of nitrogenase cofactors. Driven by europium(II) diethylenetriaminepentaacetate [Eu(II)-DTPA], the isolated L-cluster is capable of ATP-independent reduction of CO and CN(-) to C1 to C4 and C1 to C6 hydrocarbons, respectively. Compared to its cofactor homologs, the L-cluster generates considerably more CH4 from the reduction of CO and CN(-), which could be explained by the presence of a "free" Fe atom that is "unmasked" by homocitrate as an additional site for methanation. Moreover, the elevated CH4 formation is accompanied by a decrease in the amount of longer hydrocarbons and/or the lengths of the hydrocarbon products, illustrating a competition between CH4 formation/release and C-C coupling/chain extension. These observations suggest the possibility of designing simpler synthetic clusters for hydrocarbon formation while establishing the L-cluster as a platform for mechanistic investigations of CO and CN(-) reduction without complications originating from the heterometal and homocitrate components. Nitrogenase is a metalloenzyme that is highly complex in structure and uniquely versatile in function. It catalyzes two reactions that parallel two important industrial processes: the reduction of nitrogen to ammonia, which parallels the Haber-Bosch process in ammonia production, and the reduction of carbon monoxide to hydrocarbons, which parallels the Fischer-Tropsch process in fuel production. Thus, the significance of nitrogenase can be appreciated from the perspective of the useful products it generates: (i) ammonia, the "fixed" nitrogen that is essential for the existence of the entire human population; and (ii) hydrocarbons, the "recycled" carbon fuel that could be used to directly address the worldwide energy shortage. This article provides initial insights into the catalytic characteristics of various nitrogenase cofactors in hydrocarbon formation. The reported assay system provides a useful tool for mechanistic

  20. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  1. Picosecond pulse radiolysis studies on geminate ion recombination in saturated hydrocarbon

    International Nuclear Information System (INIS)

    Tagawa, S.; Washio, M.; Kobayashi, H.; Katsumura, Y.; Tabata, Y.

    1983-01-01

    The geminate recombination kinetics of the excess electron and the electron hole are discussed, based on time-resolved data on picosecond and nanosecond time scales. The recombination times of the excess electron and the electron hole are evaluated to be 3 ps for cyclohexane on the basis of the comparison between the experimental and the calculated results. The spin correlation decay of the geminate ion pairs and the triplet state formation before the spin correlation loss have also been discussed. The rapidly decaying species with very broad absorption spectra, which are similar to the absorption spectra of the cation radicals of saturated hydrocarbons, have been observed in neat saturated hydrocarbons in the sub-nanosecond and a few nanosecond time regions. The identification of the rapidly decaying species were not definitely made but those species are tentatively assigned to the excited states and/or the tail of the geminate cation radicals of saturated hydrocarbons. (author)

  2. CHAINS-PC, Decay Chain Atomic Densities

    International Nuclear Information System (INIS)

    1994-01-01

    1 - Description of program or function: CHAINS computes the atom density of members of a single radioactive decay chain. The linearity of the Bateman equations allows tracing of interconnecting chains by manually accumulating results from separate calculations of single chains. Re-entrant loops can be treated as extensions of a single chain. Losses from the chain are also tallied. 2 - Method of solution: The Bateman equations are solved analytically using double-precision arithmetic. Poles are avoided by small alterations of the loss terms. Multigroup fluxes, cross sections, and self-shielding factors entered as input are used to compute the effective specific reaction rates. The atom densities are computed at any specified times. 3 - Restrictions on the complexity of the problem: Maxima of 100 energy groups, 100 time values, 50 members in a chain

  3. Electronic Commerce

    Directory of Open Access Journals (Sweden)

    Slavko Đerić

    2016-12-01

    Full Text Available Electronic commerce can be defined in different ways. Any definition helps to understand and explain that concept as better as possible.. Electronic commerce is a set of procedures and technologies that automate the tasks of financial transactions using electronic means. Also, according to some authors, electronic commerce is defined as a new concept, which is being developed and which includes process of buying and selling or exchanging products, services or information via computer networks, including the Internet. Electronic commerce is not limited just to buying and selling, but it also includes all pre-sales and after-sales ongoing activities along the supply chain. Introducing electronic commerce, using the Internet and Web services in business, realizes the way to a completely new type of economy - internet economy.

  4. Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry

    Directory of Open Access Journals (Sweden)

    Kothari Shankar L

    2010-05-01

    Full Text Available Abstract Background Biofuels derived from algae biomass and algae lipids might reduce dependence on fossil fuels. Existing analytical techniques need to facilitate rapid characterization of algal species by phenotyping hydrocarbon-related constituents. Results In this study, we compared the hydrocarbon rich algae Botryococcus braunii against the photoautotrophic model algae Chlamydomonas reinhardtii using pyrolysis-gas chromatography quadrupole mass spectrometry (pyGC-MS. Sequences of up to 48 dried samples can be analyzed using pyGC-MS in an automated manner without any sample preparation. Chromatograms of 30-min run times are sufficient to profile pyrolysis products from C8 to C40 carbon chain length. The freely available software tools AMDIS and SpectConnect enables straightforward data processing. In Botryococcus samples, we identified fatty acids, vitamins, sterols and fatty acid esters and several long chain hydrocarbons. The algae species C. reinhardtii, B. braunii race A and B. braunii race B were readily discriminated using their hydrocarbon phenotypes. Substructure annotation and spectral clustering yielded network graphs of similar components for visual overviews of abundant and minor constituents. Conclusion Pyrolysis-GC-MS facilitates large scale screening of hydrocarbon phenotypes for comparisons of strain differences in algae or impact of altered growth and nutrient conditions.

  5. Screening of hydrocarbons as supercritical ORCs working fluids by thermal stability

    International Nuclear Information System (INIS)

    Dai, Xiaoye; Shi, Lin; An, Qingsong; Qian, Weizhong

    2016-01-01

    Highlights: • A rapid evaluation method for thermal stability of hydrocarbons for ORCs. • Methane and hydrogen are confirmed to be decomposition indicators. • The decomposition temperatures for some hydrocarbons using the rapid method. • Long carbon chain hydrocarbons are not suitable for supercritical ORCs. - Abstract: Organic Rankine Cycle (ORC) systems are widely used for industrial waste heat recovery and renewable energy utilization. The supercritical ORC is currently one of the main development directions due to its low exergy loss, high thermal efficiency and high work output. The thermal stability is the major limitation of organic working fluid selection with high temperature heat sources. This paper presents a rapid experimental method for assessing the thermal stability of hydrocarbons for ORCs. The fluids were tested in a high temperature reactor with methane and hydrogen theoretically and experimentally confirmed to be the indicators of thermal decomposition. The thermal decomposition temperatures were obtained for n-hexane, n-pentane, isopentane, cyclopentane, n-butane and isobutane using the rapid experimental method. The results show that cycloalkanes are not the good choices by thermal stability and long carbon chain hydrocarbons (longer than C6) are not suitable for supercritical ORCs due to the thermal stability limitation.

  6. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  7. Process for separating liquid hydrocarbons from waxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, F J

    1948-03-08

    A process is described for the separation of liquid hydrocarbons from waxes comprising adding to a mixture of liquid hydrocarbons and waxes a sufficient quantity of an organo-silicon compound to cause the separation of the hydrocarbon and wax. The organo-silicon compounds are selected from the class of organic silicanes and their hydrolysis products and polymers. The silicanes have the formula R/sub y/SiX/sub z/, in which R is a saturated or unsaturated hydrocarbon radical, X is a halogen or another hydrocarbon radical or an -OR group, y has a value 1, 2, or 3 and z has a value 1, 2, or 3.

  8. A chain of microphones

    International Nuclear Information System (INIS)

    1994-07-01

    In order to discover a more accurate and selective measuring method for the identification of individual flow-noise pollution sources on wind turbines blades, measuring equipment based on a chain of microphones was developed. The principle underlying the design of this equipment is that signals from a number of microphones can be interpreted. Thus the microphones can register noise from sections of the rotary blade and unwished-for noise is eliminated. The gating technique ensures that noises from individual blades can be separated and that clarity is improved. In addition to this, noise can be determined close to the source. The chain consists of 8 microphones placed in a row at adjustable distances. Measurements are registered on tapes as are the trigger signals for the blade passage. The computer processes the measurement results and unnecessary noise is depressed. The listening angles can also be changed electronically so that the doppler effect can be corrected. Results confirmed that the equipment operated satisfactorily and could also be used in relation to noise pollution in power plants as it is especially effective in depressing excess, and cutting out outside, noise and registers accurately individual sources of noise helped by its ability to ''listen '' at varying angles to the source. (AB)

  9. Tolerance of Antarctic soil fungi to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Kevin A.; Bridge, Paul; Clark, Melody S. [British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET (United Kingdom)

    2007-01-01

    Little is known about the effects of hydrocarbons and fuel oil on Antarctic filamentous fungi in the terrestrial Antarctic environment. Growth of fungi and bacteria from soils around Rothera Research Station (Adelaide Island, Antarctic Peninsula) was assessed in the presence of ten separate aromatic and aliphatic hydrocarbons [marine gas oil (MGO), dodecane, hexadecane, benzoic acid, p-hydroxybenzoic acid, toluene, phenol, biphenyl, naphthalene and m- and p-xylenes with ethylbenzene]. Aromatic hydrocarbons inhibited soil microbial growth more than aliphatic hydrocarbons. Soil microorganisms from a moss patch, where little previous impact or hydrocarbon contamination had occurred, were less tolerant of hydrocarbons than those from high impact sites. Fungal growth rates of Mollisia sp., Penicillium commune, Mortierella sp., Trichoderma koningii, Trichoderma sp. and Phoma herbarum were assessed in the presence of hydrocarbons. Generally, aromatic hydrocarbons inhibited or stopped hyphal extension, though growth rates increased with some aliphatic hydrocarbons. Hyphal dry weight measurements suggested that Mortierella sp. may be able to use dodecane as sole carbon and energy source. Hydrocarbon-degrading Antarctic fungi may have use in future hydrocarbon spill bioremediation. (author)

  10. Characteristics of Total Electron Content (TEC) observed from a chain of stations near the northern crest of the Equatorial Ionization Anomaly (EIA) along 88.5°E meridian in India

    Science.gov (United States)

    Paul, K. S.; Das, A.; Ray, S.; Paul, A.

    2016-01-01

    The equatorial ionosphere presents some of the highest TEC values in the world coupled with observations of periodic structures. Total Electron Content (TEC) and scintillation data were analyzed from a chain of stations Calcutta (22.58°N, 88.38°E geographic; 32°N magnetic dip), Baharampore (24.09°N, 88.25°E geographic; 35°N magnetic dip) and Farakka (24.79°N, 87.89°E geographic; 36.04°N magnetic dip) situated almost same meridian (88.5°E) during September 2011 and March-April 2012 for elevation greater than 20° so that the ionosphere can be tracked from the 15.50°N south of Calcutta to 31.80°N north of Farakka. Periodic variation of TEC was noticed before TEC bite out, predominantly within a particular latitudinal swath (19°N ‒26°N) along 88.5°E meridian. No periodic structures were observed over the magnetic equator during the observation period on ionosonde records from the magnetic equator station Trivandrum and COSMIC, GRACE and C/NOFS electron density measurements. The present paper reports, perhaps for the first time from the Indian longitude sector, confinement of such periodic structures in TEC primarily within a latitude swath of 19.00-26.00 °N almost along the same longitude of 88.5 °E.

  11. Logistic chain modelling

    NARCIS (Netherlands)

    Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.

    1995-01-01

    Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to

  12. PREBIOTIC HYDROCARBON SYNTHESIS IN IMPACTING REDUCED ASTROPHYSICAL ICY MIXTURES

    International Nuclear Information System (INIS)

    Koziol, Lucas; Goldman, Nir

    2015-01-01

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials

  13. PREBIOTIC HYDROCARBON SYNTHESIS IN IMPACTING REDUCED ASTROPHYSICAL ICY MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Koziol, Lucas; Goldman, Nir, E-mail: lucas.koziol@exxonmobil.com, E-mail: ngoldman@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2015-04-20

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.

  14. Distribution and Fractional Composition of Petroleum Hydrocarbons in Roadside Soils

    Directory of Open Access Journals (Sweden)

    Larysa Mykhailova

    2013-01-01

    Full Text Available Total petroleum hydrocarbon (TPH concentrations and their fractional composition (medium fraction: n-alkane chain-length C15 to C27, heavy fraction: >C27 were determined at distances from 1 to 60 m from roads and at soil depths from 0.5 to 15 cm. The traffic intensities were up to 25000 vehicles per day. Soil TPH concentrations were highest within 15 m distance (665 and 3198 mg kg−1 at the windward and leeward sides, resp., followed by a rapid drop to background values beyond (196 and 115 mg kg−1 in 60 m distance at the windward and leeward sides, resp.. The data variability was lowest at distances of 1 m and highest within tree plantations at distances of 15 m from the road. The TPH concentrations decreased with depth but were significantly higher than the background at all depths investigated. A principal component analysis revealed a positive relation between the medium-to-heavy fraction ratio and soil depth. A fractional differentiation of hydrocarbons with distance from road was not observed. It was concluded that the assessment of the potential of hydrocarbons to translocate, accumulate, or degrade in soil necessitates their subdivision into fractions based on their physicochemical and metabolic properties.

  15. Two new ternary chalcogenides Ba{sub 2}ZnQ{sub 3} (Q = Se, Te) with chains of ZnQ{sub 4} tetrahedra. Syntheses, crystal structure, and optical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai; Beard, Jessica; Malliakas, Christos D.; Ibers, James A. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Mesbah, Adel [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Bagnols-sur-Ceze (France); Rocca, Dario; Lebegue, Sebastien [Univ. de Lorraine, Vandoeuvre-les-Nancy (France). Lab. de Cristallographie, Resonance Magnetique et Modelisations (CRM2, UMR CNRS 7036)

    2016-08-01

    Single crystals of Ba{sub 2}ZnQ{sub 3} (Q = Se, Te) were obtained by solid-state reactions at 1173 K. These isostructural compounds crystallize in the K{sub 2}AgI{sub 3} structure type. The Zn atoms in this structure are coordinated to four Q atoms (2 Q1, 1 Q2, 1 Q3) and these form a distorted tetrahedron around each Zn atom. Each ZnQ{sub 4} tetrahedron shares two corners with neighboring ZnQ{sub 4} tetrahedra resulting in the formation of infinite chains of [ZnQ{sub 4}{sup 4-}] units. The absorption spectrum of a single crystal of Ba{sub 2}ZnTe{sub 3} shows an absorption edge at 2.10(2) eV, consistent with the dark-red color of the crystals. From DFT calculations Ba{sub 2}ZnSe{sub 3} and Ba{sub 2}ZnTe{sub 3} are found to be semiconductors with electronic band gaps of 2.6 and 1.9 eV, respectively.

  16. [Determination of short-chain chlorinated paraffins in ambient air using high-volume sampling combined with high resolutimi gas chromatography-electron capture negative ion-low resolution mass spectrometry].

    Science.gov (United States)

    Shi, Loimeng; Gao, Yuan; Hou, Xiaohong; Zhang, Haijun; Zhang, Yichi; Chen, Jiping

    2016-02-01

    An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity (R2>0. 99) between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The limits of detection (S/N ≥3) and the limits of quantification (S/N ≥ 10) were 4. 2 and 12 µg, respectively. The method detection limit (MDL) for SCCPs was 0. 34 ng/m3 (n = 7). The recoveries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.

  17. X-ray structure determination of new monomers to establish their polymerizability: copolymerization of two tetrasubstituted electrophilic olefins with electron-rich styrenes giving polymers with an average 1.25 functional groups per chain carbon atom

    International Nuclear Information System (INIS)

    Hall, H.K. Jr.; Reineke, K.E.; Ried, J.H.; Sentman, R.C.; Miller, D.

    1982-01-01

    X-ray crystal structure determination for two tetrasubstituted electrophilic olefins, tetramethyl ethylenetetracarboxylate TMET and dimethyl dicyanofumarate DDCF, revealed two fundamentally different molecular structures. TMET is a nonplanar molecule that possesses two opposite ester groups planar and the others above and below the molecular plane. In contrast, DDCF is a molecule for which both ester groups lie in the plane of the double bond and nitrile groups. DDCF underwent thermal spontaneous copolymerization with electron-rich styrenes to give 1:1 alternating copolymers in moderate yields and molecular weights. These copolymers, which result from the first copolymerization of a tetrasubstituted olefin, possess an average functionality of 1.25 per chain carbon atom. Polymerization is made possible by low steric hindrance and the high delocalization in the propagating radical. The yields were limited by competing cycloaddition reaction. The corresponding diethyl ester also copolymerized, but not so well. Neither electrophilic olefin homopolymerized under γ-irradiation. TMET did not copolymerize at all when treated under identical conditions

  18. Crystallisation and chain conformation of long chain n-alkanes

    International Nuclear Information System (INIS)

    Gorce, J.

    2000-06-01

    Hydrocarbon chains are a basic component in a number of systems as diverse as biological membranes, phospholipids and polymers. A better understanding of the physical properties of n-alkane chains should provide a better understanding of these more complex systems. With this aim, vibrational spectroscopy has been extensively used. This technique, sensitive to molecular details, is the only one able to both identify and quantify conformational disorder present in paraffinic systems. To achieve this, methyl deformations have been widely used as ''internal standards'' for the normalisation of peak areas. However, in the case of n-alkanes with short chain length, such as n-C 44 H 90 for example, the infrared spectra recorded at liquid nitrogen temperature and reported here show the sensitivity of these latter peaks to the various crystal structures formed. Indeed, the main frequencies of the symmetric methyl bending mode were found between 1384 cm -1 and 1368 cm -1 as a function of the crystal form. Changes in the frequency of the first order of the L.A.M. present in the Raman spectra were also observed. At higher temperatures, non all-trans conformers, inferred from different infrared bands present in the wagging mode region, were found to be essentially placed at the end of the n-alkane chains. At the monoclinic phase transition, the concentration of end-gauche conformers, proportional to the area of the infrared band at 1342 cm -1 , increases abruptly. On the contrary, in the spectra recorded at liquid nitrogen temperature no such band is observed. We also studied the degree of disorder in two purely monodisperse long chain n-alkanes, namely n-C 198 H 398 and n-C 246 H 494 . The chain conformation as well as the tilt angle of the chains from the crystal surfaces were determined by means of low frequency Raman spectroscopy and S.A.X.S. measurements on solution-crystallised samples. The increase in the number of end-gauche conformers which was expected to occur with

  19. Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age.

    Science.gov (United States)

    Zhu, G H; Ye, G Y; Hu, C; Xu, X H; Li, K

    2006-12-01

    Age determination is the basis of determining the postmortem interval using necrophagous fly larvae. To explore the potential of using cuticular hydrocarbons for determining the ages of fly larvae, changes of cuticular hydrocarbons in developing larvae of Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) were investigated using gas chromatography with flame-ionization detection and gas chromatography-mass spectrometry. This study showed that the larvae produced cuticular hydrocarbons typical of insects. Most of the hydrocarbons identified were alkanes with the carbon chain length of 21-31, plus six kinds of alkenes. The hydrocarbon composition of the larvae correlated with age. The statistical results showed that simple peak ratios of n-C29 divided by another eight selected peaks increased significantly with age; their relationships with age could be modelled using exponential or power functions with R(2) close to or > 0.80. These results suggest that cuticular hydrocarbon composition is a useful indicator for determining the age of larval C. rufifacies, especially for post-feeding larvae, which are difficult to differentiate by morphology.

  20. Electron transport through monovalent atomic wires

    DEFF Research Database (Denmark)

    Lee, Y. J.; Brandbyge, Mads; Puska, M. J.

    2004-01-01

    at the chain determine the conductance. As a result, the conductance for noble-metal chains is close to one quantum of conductance, and it oscillates moderately so that an even number of chain atoms yields a higher value than an odd number. The conductance oscillations are large for alkali-metal chains......Using a first-principles density-functional method we model electron transport through linear chains of monovalent atoms between two bulk electrodes. For noble-metal chains the transport resembles that for free electrons over a potential barrier whereas for alkali-metal chains resonance states...... and their phase is opposite to that of noble-metal chains....

  1. Risk assessment of metals and organic pollutants for herbivorous and carnivorous small mammal food chains in a polluted floodplain (Biesbosch, The Netherlands)

    NARCIS (Netherlands)

    Hamers, T.H.M.; Berg, van den J.H.J.; Gestel, van C.A.M.; Schooten, van F.J.; Murk, A.J.

    2006-01-01

    A risk assessment was made for a carnivorous and a herbivorous food chain in a heavily polluted natural estuary (Biesbosch), by determining the most critical pollutants and the food chain most at risk. Exposure of food chains to metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated

  2. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  3. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  4. Scottish hydrocarbons: Borders and bounty

    International Nuclear Information System (INIS)

    Roberts, John

    1999-01-01

    On 6 May, the people of Scotland will vote for the country's first parliament in almost three centuries. One issue is expected to arouse particularly strong views: the question of North Sea oil and gas, and who benefits from its production and taxation. Most of these hydrocarbons lie in the northern half of the British Isles, but drawing boundaries to settle contentious issues such as oil and gas fields is not an easy task. And, if boundaries were to be drawn, then a scarcely less contentious subject arises: just how much cash might an independent Scotland expect to receive? Reading between the lines it's clear that in hard cash terms, were Scotland to be independent whilst still retaining the vast bulk of North Sea oilfields, depressed prices would ensure that hydrocarbon tax revenues would be unlikely to constitute a particularly impressive addition to the Scottish Treasury. (UK)

  5. Treatment of hydrocarbon oil vapours

    Energy Technology Data Exchange (ETDEWEB)

    Lamplough, F

    1923-03-01

    An apparatus for treating hydrocarbon vapors for the purpose of preventing dehydrogenation is disclosed which comprises in combination a cooling tower having a vapor inlet at the bottom and a vapor outlet at the top, means to direct the entering vapors laterally in a plurality of jets against an interior side wall or walls of the tower and means to constrain the condensate to gravitate down the tower in the interior wall or walls against which the encountering vapor is forced to impinge.

  6. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  7. Source rock hydrocarbons. Present status

    International Nuclear Information System (INIS)

    Vially, R.; Maisonnier, G.; Rouaud, T.

    2013-01-01

    This report first presents the characteristics of conventional oil and gas system, and the classification of liquid and gaseous non conventional hydrocarbons, with the peculiar case of coal-bed methane. The authors then describe how source rock hydrocarbons are produced: production of shale oils and gases (horizontal drilling, hydraulic fracturing, exploitation) and of coal-bed methane and coal mine methane. In the next part, they address and discuss the environmental impact of source rock hydrocarbon production: installation footprint, water resource management, drilling fluids, fracturing fluids composition, toxicity and recycling, air pollution, induced seismicity, pollutions from other exploitation and production activities. They propose an overview of the exploitation and production of source rock gas, coal-bed gas and other non conventional gases in the world. They describe the current development and discuss their economic impacts: world oil context and trends in the USA, in Canada and other countries, impacts on the North American market, on the world oil industry, on refining industries, on the world oil balance. They analyse the economic impacts of non conventional gases: development potential, stakes for the world gas trade, consequence for gas prices, development opportunities for oil companies and for the transport sector, impact on CO 2 emissions, macro-economic impact in the case of the USA

  8. Hydrocarbons on Phoebe, Iapetus, and Hyperion: Quantitative Analysis

    Science.gov (United States)

    Cruikshank, Dale P.; MoreauDalleOre, Cristina; Pendleton, Yvonne J.; Clark, Roger Nelson

    2012-01-01

    We present a quantitative analysis of the hydrocarbon spectral bands measured on three of Saturn's satellites, Phoebe, Iaperus, and Hyperion. These bands, measured with the Cassini Visible-Infrared Mapping Spectrometer on close fly-by's of these satellites, are the C-H stretching modes of aromatic hydrocarbons at approximately 3.28 micrometers (approximately 3050 per centimeter), and the are four blended bands of aliphatic -CH2- and -CH3 in the range approximately 3.36-3.52 micrometers (approximately 2980- 2840 per centimeter) bably indicating the presence of polycyclic aromatic hydrocarbons (PAH), is unusually strong in comparison to the aliphatic bands, resulting in a unique signarure among Solar System bodies measured so far, and as such offers a means of comparison among the three satellites. The ratio of the C-H bands in aromatic molecules to those in aliphatic molecules in the surface materials of Phoebe, NAro:NAliph approximately 24; for Hyperion the value is approximately 12, while laperus shows an intermediate value. In view of the trend of the evolution (dehydrogenation by heat and radiation) of aliphatic complexes toward more compact molecules and eventually to aromatics, the relative abundances of aliphatic -CH2- and -CH3- is an indication of the lengths of the molecular chain structures, hence the degree of modification of the original material. We derive CH2:CH3 approximately 2.2 in the spectrum of low-albedo material on laperus; this value is the same within measurement errors to the ratio in the diffuse interstellar medium. The similarity in the spectral signatures of the three satellites, plus the apparent weak trend of aromatic/aliphatic abundance from Phoebe to Hyperion, is consistent with, and effectively confirms that the source of the hydrocarbon-bearing material is Phoebe, and that the appearance of that material on the other two satellites arises from the deposition of the inward-spiraling dust that populates the Phoebe ring.

  9. The influence of cyclic structure on the radiolysis of hydrocarbons

    International Nuclear Information System (INIS)

    Foeldiak, G.; Cserep, Gy.; Horvath, Zs.; Wojnarovits, L.

    1975-01-01

    Aliphatic and cyclic C 3 -C 12 alkanes and alkenes have been irradiated in liquid phase by a 60 Co-γ-source with the nominal activity of 80 000 Ci. The dose rate was 1-2 Mrad/hr, the doses were between 0 and 10 Mrad. The following conclusions can be drawn from the experiments: 1., While no significant difference can be observed between radiolytic decomposition of n-hydrocarbon homologues, that of cyclic hydrocarbons is the function of the size of the ring. 2., Reactivity of cyclic hydrocarbons is influenced not only by their surplus enthalpy of formation (strain energy) but also by the individual components of this surplus enthalpy, e.g. bond deformation or repulsion between hydrogen atoms. 3., The overall yield of decomposition of higher than C 4 straightchain and cyclic alkanes activated by radiation and reacting via either C-C or C-H fission is approximately constant, with a G value of 6.5+-0.5. The structure of the molecules affects mainly the ratio of C-C and C-H bond rupture, i.e. these two processes are in competition. 4., Hydrogen yields from alkenes are affected mainly by the order and number of allylic C-H bonds, and by the possibility of the formation of allyl-type radicals. This latter is facilitated by ''free'' rotation in the case of open-chain hydrocarbons whereas it is hindered in the case of small and medium size cycles. (K.A.)

  10. Structural transformations of carbon chains inside nanotubes

    International Nuclear Information System (INIS)

    Warner, Jamie H.; Ruemmeli, Mark H.; Bachmatiuk, Alicja; Buechner, Bernd

    2010-01-01

    In situ aberration-corrected high-resolution transmission electron microscopy is used to examine the structural transformations of carbon chains that occur in the interior region of carbon nanotubes. We find electron-beam irradiation leads to the formation of two-dimensional carbon structures that are freely mobile inside the nanotube. The inner diameter of the nanotube influences the structural transformations of the carbon chains. As the diameter of the nanotube increases, electron-beam irradiation leads to curling of the chains and eventually the formation of closed looped structures. The closed looped structures evolve into spherical fullerenelike structures that exhibit translational motion inside the nanotubes and also coalesce to form larger nanotube structures. These results demonstrate the use of carbon nanotubes as test tubes for growing small carbon nanotubes within the interior by using only electron-beam irradiation at 80 kV.

  11. Sustainable Supply Chain Design

    DEFF Research Database (Denmark)

    Bals, Lydia; Tate, Wendy

    A significant conceptual and practical challenge is how to integrate triple bottom line (TBL; including economic, social and environmental) sustainability into global supply chains. Although this integration is necessary to slow down global resource depletion, understanding is limited of how...... to implement TBL goals across the supply chain. In supply chain design, the classic economic perspective still dominates, although the idea of the TBL is more widely disseminated. The purpose of this research is to add to the sustainable supply chain management literature (SSCM) research agenda...... by incorporating the physical chain, and the (information and financial) support chains into supply chain design. This manuscript tackles issues of what the chains are designed for and how they are designed structurally. Four sustainable businesses are used as illustrative case examples of innovative supply chain...

  12. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  13. Hydrocarbon Reserves: Abundance or Scarcity

    International Nuclear Information System (INIS)

    2005-01-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  14. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may

  15. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine.

    Science.gov (United States)

    Zhu, Linli; Xu, Hui

    2014-09-01

    Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols.

    Science.gov (United States)

    Harvey, Patricia J; Campanella, Bruno F; Castro, Paula M L; Harms, Hans; Lichtfouse, Eric; Schäffner, Anton R; Smrcek, Stanislav; Werck-Reichhart, Daniele

    2002-01-01

    Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an

  17. Newton's Cradle and Entanglement Transport in a Flexible Rydberg Chain

    International Nuclear Information System (INIS)

    Wuester, S.; Ates, C.; Eisfeld, A.; Rost, J. M.

    2010-01-01

    In a regular, flexible chain of Rydberg atoms, a single electronic excitation localizes on two atoms that are in closer mutual proximity than all others. We show how the interplay between excitonic and atomic motion causes electronic excitation and diatomic proximity to propagate through the Rydberg chain as a combined pulse. In this manner entanglement is transferred adiabatically along the chain, reminiscent of momentum transfer in Newton's cradle.

  18. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato.

    Science.gov (United States)

    Liao, Yangwenke; Tian, Miaoying; Zhang, Huan; Li, Xin; Wang, Yu; Xia, Xiaojian; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Shi, Kai; Klessig, Daniel F

    2015-02-01

    Salicylic acid (SA) plays a critical role in plant defense against pathogen invasion. SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense and involves a specific pathway mediated by mitochondria; however, the underlying mechanisms remain largely unknown. The SA-binding activity of the recombinant tomato (Solanum lycopersicum) alpha-ketoglutarate dehydrogenase (Slα-kGDH) E2 subunit of the tricarboxylic acid (TCA) cycle was characterized. The biological role of this binding in plant defenses against tobacco mosaic virus (TMV) was further investigated via Slα-kGDH E2 silencing and transient overexpression in plants. Slα-kGDH E2 was found to bind SA in two independent assays. SA treatment, as well as Slα-kGDH E2 silencing, increased resistance to TMV. SA did not further enhance TMV defense in Slα-kGDH E2-silenced tomato plants but did reduce TMV susceptibility in Nicotiana benthamiana plants transiently overexpressing Slα-kGDH E2. Furthermore, Slα-kGDH E2-silencing-induced TMV resistance was fully blocked by bongkrekic acid application and alternative oxidase 1a silencing. These results indicated that binding by Slα-kGDH E2 of SA acts upstream of and affects the mitochondrial electron transport chain, which plays an important role in basal defense against TMV. The findings of this study help to elucidate the mechanisms of SA-induced viral defense. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Detection of hydrocarbons in irradiated foods

    International Nuclear Information System (INIS)

    Miyahara, Makoto; Maitani, Tamio; Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko; Kobayashi, Yasuo; Ito, Hitoshi

    2003-01-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)