WorldWideScience

Sample records for hydrocarbon chains electronic

  1. Electron Transfer Chain Catalysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Electron-transfer chain (ETC) catalysis belongs to the family of chain reactions where the electron is the catalyst. The ETC mechanism could be initiated by chemical activation, electrochemistry, or photolysis. If this pathway is applied to the preparation of organometallic complexes, it utilizes the greatly enhanced reactivity of organometallic 17e and 19e radicals. The chemical propagation is followed by the cross electron-transfer while the electron-transfer step is also followed by the chemical propagation, creating a loop in which reactants are facilely transformed into products. Interestingly the overall reaction is without any net redox change.

  2. Electron Transfer Chain Catalysis

    Institute of Scientific and Technical Information of China (English)

    LIU; LingKang

    2001-01-01

    Electron-transfer chain (ETC) catalysis belongs to the family of chain reactions where the electron is the catalyst. The ETC mechanism could be initiated by chemical activation, electrochemistry, or photolysis. If this pathway is applied to the preparation of organometallic complexes, it utilizes the greatly enhanced reactivity of organometallic 17e and 19e radicals. The chemical propagation is followed by the cross electron-transfer while the electron-transfer step is also followed by the chemical propagation, creating a loop in which reactants are facilely transformed into products. Interestingly the overall reaction is without any net redox change.  ……

  3. Synthesis of Bisphenols Carrying Long Hydrocarbon Side Chains

    Institute of Scientific and Technical Information of China (English)

    XU Jing-zhe; JIANG Nan-zhe; ZHANG Jian; JIANG Ri-shan

    2005-01-01

    Bisphenols containing long aliphatic hydrocarbon side chains were synthesized by the condensation of phenol with aldehyde or ketone in the presence of heteropolyacid. Their structures were characterized by IR, 1H NMR, 13C NMR and element analysis. The experiment results show that when heteropolyacid was used as a catalyst, these bisphenols were obtained in high selectivity and high yields.

  4. Crystalline structures of polymeric hydrocarbon with 3,4-fold helical chains.

    Science.gov (United States)

    Lian, Chao-Sheng; Li, Han-Dong; Wang, Jian-Tao

    2015-01-12

    Molecular hydrocarbons are well-known to polymerize under pressure to form covalently bonded frameworks. Here we predict by ab initio calculations two distinct three-dimensional hydrocarbon crystalline structures composed of 3-fold and 4-fold helical CH chains in rhombohedral (R3) and tetragonal (I4₁/a) symmetry, respectively. Both structures with 1:1 stoichiometry are found to be energetically more favorable than solid acetylene and cubane, and even more stable than benzene II solid at high pressure. The calculations on vibrational, electronic, and optical properties reveal that the new chiral hydrocarbons are dynamically stable with large bulk moduli around 200 GPa, and exhibit a transparent insulating behavior with indirect band gaps of 5.9 ~ 6.7 eV and anisotropic adsorption spectra. Such forms of hydrocarbon, once synthesized, would have wide applications in mechanical, optoelectronic, and biological materials.

  5. Monte Carlo properties of the hydrocarbon chains of phospholipid molecules

    Science.gov (United States)

    Zhurkin, D. V.; Rabinovich, A. L.

    2015-02-01

    Properties of 65 chain hydrocarbon molecules in the unperturbed state are investigated using the Monte Carlo method at temperatures of 293, 303, and 313 K. Chains with the general structure CH3-(CH2) a -(CH=CH-CH2) d -(CH2) b -CH3 are considered. The number of carbon atoms in a skeleton N = 16, 18, 20, and 22; the number of cis-double bonds d = 0, 1, ..., 6. Conformations are generated with continuous varying of the angles of internal rotation around simple C-C bonds in the range of 0°-360°, the interdependence of each three angles along the chain is allowed for, and essential sampling is performed. Different properties of molecules are considered: the average maximum projections of hydrocarbon chains on their main axes of inertia, average squares of the radii of inertia, and relative fluctuations in the squares of the radii of inertia. The dependence of the calculated characteristics on the structural parameters of the chains is investigated.

  6. Electronic properties of aperiodic quantum dot chains

    Science.gov (United States)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2012-04-01

    The electronic spectral and transport properties of aperiodic quantum dot chains are investigated. The systems with singular continuous energy spectrum are considered: Thue-Morse chain, double-periodic chain, Rudin-Shapiro chain. The influence of electronic energy in quantum dot on the spectral properties, band structure, density of states and spectral resistivity, is discussed. Low resistivity regions correspond to delocalized states and these states could be current states. Also we discuss the magnetic field application as the way to tune electronic energy in quantum dot and to obtain metallic or insulating conducting states of the systems.

  7. Electronic structure of heterocyclic ring chain polymers

    NARCIS (Netherlands)

    Brocks, Geert; Tol, Arie

    1999-01-01

    The band gaps, ionization potentials and electron affinities of conjugated chain polymers comprising heterocyclic aromatic rings are studied systematically as a function of atomic substitutions with N, O and S using first principles density functional calculations.

  8. The electronic properties of a Fibonacci chain

    Directory of Open Access Journals (Sweden)

    S. A. Ketabi

    2004-12-01

    Full Text Available  Using a tight-binding model and transfer-matrix technique, as well as Lanczos algorithm, we numerically investigate the nature of the electronic states and electron transmission in site, bond and mixing Fibonacci model chains. We rely on the Landauer formalism as the basis for studying the conduction properties of these systems. Calculating the Lyapunov exponent, we also study the localization properties of electronic eigenstates in the Fibonacci chains. The focus is on the significance of the relationship between the transmission spectra and the nature of the electronic states. Our results show that, in contrast to Anderson’s localization theorem, in the Fibonacci chains the electronic states are non-localized and the transparent states occurr near the Fermi level.

  9. The Electron Transport Chain: An Interactive Simulation

    Science.gov (United States)

    Romero, Chris; Choun, James

    2014-01-01

    This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…

  10. The Electron Transport Chain: An Interactive Simulation

    Science.gov (United States)

    Romero, Chris; Choun, James

    2014-01-01

    This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…

  11. Doping Scheme in Atomic Chain Electronics

    Science.gov (United States)

    Toshishige, Yamada

    1997-01-01

    Due to the dramatic reduction in MOS size, there appear many unwanted effects. In these small devices, the number of dopant atoms in the channel is not macroscopic and electrons may suffer significantly different scattering from device to device since the spatial distribution of dopant atoms is no longer regarded as continuous. This prohibits integration, while it is impossible to control such dopant positions within atomic scale. A fundamental solution is to create electronics with simple but atomically precise structures, which could be fabricated with recent atom manipulation technology. All the constituent atoms are placed as planned, and then the device characteristics are deviation-free, which is mandatory for integration. Atomic chain electronics belongs to this category. Foreign atom chains or arrays form devices, and they are placed on the atomically flat substrate surface. We can design the band structure and the resultant Fermi energy of these structures by manipulating the lattice constant. Using the tight-binding theory with universal parameters, it has been predicted that isolated Si chains and arrays are metallic, Mg chains are insulating, and Mg arrays have metallic and insulating phases [1]. The transport properties along a metallic chain have been studied, emphasizing the role of the contact to electrodes [2]. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along die chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome

  12. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic bact

  13. Electronic bistability in linear beryllium chains.

    Science.gov (United States)

    Helal, Wissam; Monari, Antonio; Evangelisti, Stefano; Leininger, Thierry

    2009-04-30

    A theoretical investigation on the mixed-valence behavior (bistability) of a series of cationic linear chains composed of beryllium atoms, Be(N)(+) (with N = 6,..., 12), is presented. The calculations were performed at CAS-SCF and MR-CI levels by using an ANO basis set containing 6s4p3d2f orbitals for each atom. Our results show a consistent gradual shift between different classes of mixed-valence compounds as the number of beryllium atoms increases, from class III strong coupling toward class II valence trapped. Indeed, in the largest cases (N > 10), the cationic chains were found to be closer to class I, where the coupling vanishes. The intramolecular electron transfer parameters V(ab), E(a), and E(opt) were calculated for each atomic chain. It is shown that the decrease of V(ab) with increasing N follows an exponential pattern.

  14. Study of electron transport in hydrocarbon gases

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H. [Tomakomai National College of Technology, Tomakomai 059-1275 (Japan); Date, H. [Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan)

    2015-04-07

    The drift velocity and the effective ionization coefficient of electrons in the organic gases, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, C{sub 2}H{sub 5}OH, C{sub 6}H{sub 6}, and C{sub 6}H{sub 5}CH{sub 3}, have been measured over relatively wide ranges of density-reduced electric fields (E/N) at room temperature (around 300 K). The drift velocity was measured, based on the arrival-time spectra of electrons by using a double-shutter drift tube over the E/N range from 300 to 2800 Td, and the effective ionization coefficient (α − η) was determined by the steady-state Townsend method from 150 to 3000 Td. Whenever possible, these parameters were compared with those available in the literature. It has been shown that the swarm parameters for these gases have specific tendencies, depending on their molecular configurations.

  15. Volatile Short-chain Chlorinated Hydrocarbons in the Groundwater of the City of Zagreb

    Directory of Open Access Journals (Sweden)

    Marijanović-Rajčić, M.

    2008-01-01

    Full Text Available The aim of the study was to assess the quality of the groundwater sampled from private wells and the public water-supply system in terms of estimating the contamination caused by short-chain chlorinated hydrocarbons, as well as to estimate the exposure of the citizens dwelling in different suburbs to these pollutants of their drinking water (Fig. 1. The aim of the study was also to determine which suburb is supplied through the public water-supply system with water originating from the Sašnak spring that is contaminated with volatile chlorinated short-chain hydrocarbons.Drinking water samples were taken from 3 private wells and 1 public water-supply system situated in 3 Zagreb suburbs - Pešćenica, Trnje, and Trešnjevka. The sampling was carried out during 2003 and was undertaken on a seasonal basis. Short-chain chlorinated hydrocarbons - 1,1,1-trichloroethane, carbon tetrachloride, 1,1,2-trichloroethene and 1,1,2,2-tetrachloroethene - were determined by gas chromatography, following "liquid-liquid extraction" in pentane. For that purpose, we applied the gas chromatograph equipped with an electron-capture detector, thermo-programmable operations, and a suitable capillary column. The technique applied was that of split-injection.The groundwater of the City of Zagreb was found to be contaminated with volatile chlorinated hydrocarbons. The concentration level of 1,1,1-trichloroethane, determined in most of the samples, was found to be low (Fig. 2. On the other hand, 1,1,2-trichloroethene was present in all samples in concentrations of about 1 µg l-1- (Fig. 3. Only the drinking water samples taken from private wells in the suburb of Trnje contained somewhat higher mass concentrations of 1,1,1-trichloroethane, with the peak value of 19.03 µg l-1, measured in the winter season. In the samples taken from private wells in Trnje, the mass concentrations of 1,1,2,2-tetrachloroethene rangedfrom 15.30 µg l-1 to 18.65 µg l-1, as measured in autumn

  16. Hydrocarbon chain conformation in an intercalated surfactant monolayer and bilayer

    Indian Academy of Sciences (India)

    N V Venkataraman; S Vasudevan

    2001-10-01

    Cetyl trimethyl ammonium (CTA) ions have been confined within galleries of layered CdPS3 at two different grafting densities. Low grafting densities are obtained on direct intercalation of CTA ions into CdPS3 to give Cd0.93PS3(CTA)0.14. Intercalation occurs with a lattice expansion of 4.8 Å with the interlamellar surfactant ion lying flat forming a monolayer. Intercalation at higher grafting densities was effected by a two-step ion-exchange process to give Cd0.83PS3(CTA)0.34, with a lattice expansion of 26.5 Å. At higher grafting densities the interlamellar surfactant ions adopt a tilted bilayer structure. 13C NMR and orientation-dependent IR vibrational spectroscopy on single crystals have been used to probe the conformation and orientation of the methylene ‘tail’ of the intercalated surfactant in the two phases. In the monolayer phase, the confined methylene chain adopts an essentially all-trans conformation with most of the trans chain aligned parallel to the gallery walls. On lowering the temperature, molecular plane aligns parallel, so that the methylene chain lies flat, rigid and aligned to the confining surface. In the bilayer phase, most bonds in the methylene chain are in trans conformation. It is possible to identify specific conformational sequences containing a gauche bond, in the interior and termini of the intercalated methylene. These high energy conformers disappear on cooling leaving all fifteen methylene units of the intercalated cetyl trimethyl ammonium ion in trans conformational registry at 40 K.

  17. Inactivation of Protein Tyrosine Phosphatases by Peracids Correlates with the Hydrocarbon Chain Length

    OpenAIRE

    Alicja Kuban-Jankowska; Magdalena Gorska; Tuszynski, Jack A; Cassandra D M Churchill; Philip Winter; Mariusz Klobukowski; Michal Wozniak

    2015-01-01

    Background/Aims: Protein tyrosine phosphatases are crucial enzymes controlling numerous physiological and pathophysiological events and can be regulated by oxidation of the catalytic domain cysteine residue. Peracids are highly oxidizing compounds, and thus may induce inactivation of PTPs. The aim of the present study was to evaluate the inhibitory effect of peracids with different length of hydrocarbon chain on the activity of selected PTPs. Methods: The enzymatic activity of human CD45, PTP...

  18. Inactivation of Protein Tyrosine Phosphatases by Peracids Correlates with the Hydrocarbon Chain Length

    Directory of Open Access Journals (Sweden)

    Alicja Kuban-Jankowska

    2015-06-01

    Full Text Available Background/Aims: Protein tyrosine phosphatases are crucial enzymes controlling numerous physiological and pathophysiological events and can be regulated by oxidation of the catalytic domain cysteine residue. Peracids are highly oxidizing compounds, and thus may induce inactivation of PTPs. The aim of the present study was to evaluate the inhibitory effect of peracids with different length of hydrocarbon chain on the activity of selected PTPs. Methods: The enzymatic activity of human CD45, PTP1B, LAR, bacterial YopH was assayed under the cell-free conditions, and activity of cellular CD45 in human Jurkat cell lysates. The molecular docking and molecular dynamics were performed to evaluate the peracids binding to the CD45 active site. Results: Here we demonstrate that peracids reduce enzymatic activity of recombinant CD45, PTP1B, LAR, YopH and cellular CD45. Our studies indicate that peracids are more potent inhibitors of CD45 than hydrogen peroxide (with an IC50 value equal to 25 nM for peroctanoic acid and 8 µM for hydrogen peroxide. The experimental data show that the inactivation caused by peracids is dependent on hydrocarbon chain length of peracids with maximum inhibitory effect of medium-chain peracids (C8-C12 acyl chain, which correlates with calculated binding affinities to the CD45 active site. Conclusion: Peracids are potent inhibitors of PTPs with the strongest inhibitory effect observed for medium-chain peracids.

  19. Synthesis of novel cationic lipids with fully or partially non-scissile linkages between the hydrocarbon chains and pseudoglyceryl backbone

    Indian Academy of Sciences (India)

    Santanu Bhattacharya; Saubhik Haldar

    2002-06-01

    Five novel cationic lipids with fully or partially non-scissile linkage regions between the pseudoglyceryl backbone and the hydrocarbon chains have been synthesized. The membrane-forming properties of these new lipids are briefly presented.

  20. Energetics and electronic structure of nanoscale rotors consisting of triptycene and hydrocarbon molecules

    Science.gov (United States)

    Akiba, Miki; Okada, Susumu

    2017-10-01

    Using the density functional theory with generalized gradient approximation, we studied the energetics and electronic structures of nanoscale rotors consisting of tryptycene and hydrocarbon molecules with respect to their mutual orientation. Energy barriers for the rotational motion of an attached hydrocarbon molecule range from 40 to 200 meV, depending on the attached molecular species and arrangements. The electronic structure of the nanoscale molecular rotors does not depend on the rotational angle of the attached hydrocarbon molecules.

  1. Electron spectroscopy of selected atmospheric molecules and hydrocarbons

    Science.gov (United States)

    Davies, Julia Ann

    The thesis presents experimental results obtained by electron impact energy-loss spectroscopy. Differential oscillator strengths (DOS) of selected atmospheric molecules and hydrocarbons and vibrational excitation cross sections of ozone are measured. A critical comparison with earlier experiments and theory (where it exists) is made. The thesis is arranged in seven chapters. The first discusses molecular structure, spectroscopy and electron-molecule scattering as is relevant to the scope of this thesis. The next two chapters describe the experimental apparatus used. A high resolution electron spectrometer produces an electron beam (˜10 nA) incident upon the molecular target. Scattered electrons of selected energy-loss and scattering angle are detected by the spectrometer providing a total apparatus resolution of ˜50 meV. The vacuum system, gas inlet system and power supplies are also discussed. Chapters 4, 5 and 6 contain the main results obtained during postgraduate studies. DOS of selected atmospheric molecules (O2, N2, N2O, CO and CO2) are presented and critically compared with previous optical and synchrotron studies. Good agreement between results validates the experimental apparatus and techniques used in this work. A detailed study of the DOS of small alkanes (CH4, C2H6, C3H8 and C4H10) and small alkenes (C2H4, C3H6 and C4H8) shows similarities and trends in these series. DOS of ozone, O3, are also measured and the vibrational excitation of ozone is investigated as a function of scattering angle (40° ≤ theta ≤ 120°) and inccident energy (3 eV

  2. Volatile Short-chain Chlorinated Hydrocarbons in the Groundwater of the City of Zagreb

    OpenAIRE

    Marijanović-Rajčić, M.; Senta, A.

    2008-01-01

    The aim of the study was to assess the quality of the groundwater sampled from private wells and the public water-supply system in terms of estimating the contamination caused by short-chain chlorinated hydrocarbons, as well as to estimate the exposure of the citizens dwelling in different suburbs to these pollutants of their drinking water (Fig. 1). The aim of the study was also to determine which suburb is supplied through the public water-supply system with water originating from the Sašna...

  3. Influence of dispersants on trophic transfer of petroleum hydrocarbons in a marine food chain

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, M.; Tjeerdema, R. [Univ. of California, Santa Cruz, CA (United States). Dept. of Chemistry and Biochemistry; Sowby, M. [California Dept. of Fish and Game, Sacramento, CA (United States)

    1995-12-31

    When crude oil is accidentally released into the ocean, it threatens many levels of marine life. Intervention, in the form of chemical dispersing agents, alters the normal behavior of petroleum hydrocarbons (PH) by increasing their functional water solubility and the extent of their exposure to sub-surface organisms. Dispersing agents may modify bioavailability as a result of altered interactions between dispersed PH droplets and organismal cell membranes.The objective of this research was to determine the impact of dispersing agents on PH bioavailability and trophic transfer in primary levels of a marine food chain. Uptake, bioaccumulation, depuration, and metabolic transformation of a model PH, {sup 14}C-naphthalene, were measured and compared for Prudhoe Bay Crude Oil (PBCO) dispersed with Corexit 9527 and undispersed preparations of the water-accommodated fractions (WAF) of PBCO at two salinities and temperatures. The model food chain consisted of Isochrysis galbana and Brachionus plicatilis. Direct aqueous exposure was compared with combined aqueous and dietary exposure. Fractionation and identification of metabolites was done by HPLC co-chromatography with analytical standards, and quantitation was done by liquid scintillation counting. GC-FID characterization of WAF and dispersed oil (DO) preparations shows higher concentrations of petroleum hydrocarbons and a greater number of individual constituents in the dispersed oil preparations.

  4. Electronic effects in the length distribution of atom chains.

    Science.gov (United States)

    Crain, J N; Stiles, M D; Stroscio, J A; Pierce, D T

    2006-04-21

    Gold deposited on Si(553) leads to self-assembly of atomic chains, which are broken into finite segments by defects. Scanning tunneling microscopy is used to investigate the distribution of chain lengths and the correlation between defects separating the chains. The length distribution reveals oscillations that indicate changes in the cohesive energy as a function of chain length. We present a possible interpretation in terms of the electronic scattering vectors at the Fermi surface of the surface states. The pairwise correlation function between defects shows long-range correlations that extend beyond nearest-neighbor defects, indicating coupling between chains.

  5. Carbamate-linked cationic lipids with different hydrocarbon chains for gene delivery.

    Science.gov (United States)

    Shi, Jia; Yu, Shijun; Zhu, Jie; Zhi, Defu; Zhao, Yinan; Cui, Shaohui; Zhang, Shubiao

    2016-05-01

    A series of carbamate-linked cationic lipids containing saturated or unsaturated hydrocarbon chains and quaternary ammonium head were designed and synthesized. After recrystallization, carbamate-linked cationic lipids with high purity (over 95%) were obtained. The structures of these lipids were proved by IR spectrum, HR-ESI-MS, HPLC, (1)H NMR and (13)C NMR. The liposomes were prepared by using these cationic lipids and neutral lipid DOPE. Particle size and zeta-potential were studied to show that they were suitable for gene transfection. The DNA-bonding ability of C12:0, C14:0 and C18:1 cationic liposomes was much better than others. The results of transfection showed that hydrophobic chains of these lipids have great effects on their transfection activity. The lipids bearing C12:0, C14:0 saturated chains or C18:1 unsaturated chain showed relatively higher transfection efficiency and lower cytotoxicity. So these cationic lipids could be used as non-viral gene carriers for further studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development of a Single-Chain Peptide Agonist of the Relaxin-3 Receptor Using Hydrocarbon Stapling.

    Science.gov (United States)

    Hojo, Keiko; Hossain, Mohammed Akhter; Tailhades, Julien; Shabanpoor, Fazel; Wong, Lilian L L; Ong-Pålsson, Emma E K; Kastman, Hanna E; Ma, Sherie; Gundlach, Andrew L; Rosengren, K Johan; Wade, John D; Bathgate, Ross A D

    2016-08-25

    Structure-activity studies of the insulin superfamily member, relaxin-3, have shown that its G protein-coupled receptor (RXFP3) binding site is contained within its central B-chain α-helix and this helical structure is essential for receptor activation. We sought to develop a single B-chain mimetic that retained agonist activity. This was achieved by use of solid phase peptide synthesis together with on-resin ruthenium-catalyzed ring closure metathesis of a pair of judiciously placed i,i+4 α-methyl, α-alkenyl amino acids. The resulting hydrocarbon stapled peptide was shown by solution NMR spectroscopy to mimic the native helical conformation of relaxin-3 and to possess potent RXFP3 receptor binding and activation. Alternative stapling procedures were unsuccessful, highlighting the critical need to carefully consider both the peptide sequence and stapling methodology for optimal outcomes. Our result is the first successful minimization of an insulin-like peptide to a single-chain α-helical peptide agonist which will facilitate study of the function of relaxin-3.

  7. Analysis of hydrocarbon chain conformation using double quantum coherence /sup 13/C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Phillippi, M.A. (Clorox Technical Center, Pleasanton, CA); Wiersema, R.J.; Brainard, J.R.; London, R.E.

    1982-12-15

    The recent development of a double quantum coherence method for the observation of /sup 13/C-/sup 13/C scalar coupling constants without the need for isotopic labeling provides an alternative approach to the hydrocarbon chain conformation problem. The method is particularly suitable for this application since one-, two-, and three-bond carbon-carbon coupling constant values in hydrocarbons are typically of significantly different magnitudes, and observation of coupling constants of selected magnitude may be enhanced by the appropriate choice of pulse intervals. Consequently, J/sub CC/ values, which are dependent on the subtended dihedral angle, can be selectively observed. In order to evaluate the potential of this approach, studies on a 90% octanol-10% benzene-d/sub 6/ solution, with the latter serving for the deuterium lock were carried out. A representative /sup 13/C double quantum coherence spectrum of the region containing the octanol C-7 resonances with pulse intervals chosen to optimize couplings with magnitude close to 4.0 Hz is illustrated.

  8. Determination of Diffusion Coefficients of Selected Long Chain Hydrocarbons using Reversed- Flow Gas Chromatographic Technique

    Directory of Open Access Journals (Sweden)

    Khalisanni Khalid

    2011-01-01

    Full Text Available The reversed-flow gas chromatography (RF-GC technique was used to study the evaporation rate and estimating the diffusion coefficient of samples. The RF-GC system comprises of six-port valve, sampling and diffusion column, detector and modified commercial gas chromatography machine. Selected long chain of hydrocarbons (99.99% purity was used as samples. The solute (stationary phase were carried out by carrier gas (mobile phase to the detector. The data obtained from the RF-GC analysis were analysed by deriving the elution curve of the sample peaks using mathematical expression to find the diffusion coefficients values of respective liquids. The values obtained were compared with theoretical values to ensure the accuracy of readings. The interesting findings of the research showed the theoretical values of equilibrium at liquid-gas interphase lead to profound an agreement with the experimental evidence, which contributes for the references of future studies.

  9. Electron correlation and bond-length alternation in polyene chains

    Energy Technology Data Exchange (ETDEWEB)

    Kuprievich, V.A.

    1986-11-01

    The PPP model is used to consider polyene chains in the ground state with allowance for the interaction of the electrons with core deformations. The stationary wave functions describing the electron correlations are derived as antisymmetrized products of two-electron functions optimized with respect to all variational parameters. The bond-length alternation can be related to the characteristics of the electron-electron potential; one can allow approximately for the effects of interaction between electrons at adjacent centers on the alternation by renormalizing the parameters in the Hubbard model.

  10. Evaluating the Role of Intermediaries in the Electronic Value Chain.

    Science.gov (United States)

    Janssen, Marijn; Sol, Henk G.

    2000-01-01

    Presents a business engineering methodology that supports the identification of electronic intermediary roles in the electronic value chain. The goal of this methodology is to give stakeholders insight into their current, and possible alternative, situations by means of visualization, to evaluate the added value of business models using…

  11. Evaluating the Role of Intermediaries in the Electronic Value Chain.

    Science.gov (United States)

    Janssen, Marijn; Sol, Henk G.

    2000-01-01

    Presents a business engineering methodology that supports the identification of electronic intermediary roles in the electronic value chain. The goal of this methodology is to give stakeholders insight into their current, and possible alternative, situations by means of visualization, to evaluate the added value of business models using…

  12. Bacterial Electron Transfer Chains Primed by Proteomics

    NARCIS (Netherlands)

    Wessels, H.; Almeida, N.M. de; Kartal, B.; Keltjens, J.T.

    2016-01-01

    Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fracti

  13. Molecular Assembly and Micellization of Molybdenum(V, IV) Thiolate and Selenolate Complexes with Long Hydrocarbon Chains

    National Research Council Canada - National Science Library

    Okamura, Taka-aki; Taniuchi, Kaku; Ueyama, Norikazu; Nakamura, Akira

    1999-01-01

    Molybdenum(IV, V) thiolate and selenolate complex with four long bundling hydrocarbon chains connected to the amide group, (Ph4P)[MoVO{S-2-CH3(CH2)10CONHC6H4}4] and (NEt4)2[MoIVO{Se-2-CH3(CH2)10CONHC6H4}4] were synthesized...

  14. Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens.

    Science.gov (United States)

    Sakthipriya, N; Doble, Mukesh; Sangwai, Jitendra S

    2016-03-01

    The use of microorganisms has been researched extensively for possible applications related to hydrocarbon degradation in the petroleum industry. However, attempts to improve the effect of microorganisms on the viscosity of hydrocarbons, which find potential use in the development of robust models for biodegradation, have been rarely documented. This study investigates the degradation of long chain hydrocarbons, such as hexadecane and eicosane using Pseudomonas fluorescens PMMD3 (P. fluorescens) and Pseudomonas aeruginosa CPCL (P. aeruginosa). P. aeruginosa used here is isolated from petroleum contaminated sediments and the P. fluorescens is from the coastal area, and both have hydrocarbon degrading genes. The degradation of hydrocarbons is studied using carbon profiling and reduction in viscosity pre- and post-degradation of hydrocarbons. The carbon profiling has been obtained using gas chromatography-mass spectroscopy (GC-MS), and Fourier transform infrared spectrometer (FTIR) results. GC-MS results have indicated an improved biodegradation of hydrocarbons by 77-93% in one day. The yield coefficients of biomass (YX/S) for P. aeruginosa and P. fluorescens using hexadecane as a carbon source are 1.35 and 0.81 g g(-1), and the corresponding values with eicosane are 0.84 and 0.88 g g(-1). The viscosity of hexadecane is reduced by the order of 53 and 47%, while that of eicosane was reduced by 53 and 65%, using P. aeruginosa and P. fluorescens, respectively. This study also presents information on the activity of enzymes responsible for the hydrocarbon degradation. Pseudomonas species have shown their use in potential applications for bioremediation, oil-spill treatment, and flow assurance. We believe that this study will also provide stringent tests for possible model development for the bioremediation of long chain paraffins suitable for oilfield applications.

  15. Electron ionization of open/closed chain isocarbonic molecules relevant in plasma processing: Theoretical cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Umang R., E-mail: umangpatel193@yahoo.ca [Gandhinagar Institute of Technology, Moti Bhoyan, Gandhinagar-382721, Gujarat (India); Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat (India); Joshipura, K. N.; Pandya, Siddharth H. [Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat (India); Kothari, Harshit N. [Universal College of Engineering and Technology, Moti Bhoyan, Gandhinagar-382721, Gujarat (India)

    2014-01-28

    In this paper, we report theoretical electron impact ionization cross sections from threshold to 2000 eV for isocarbonic open chain molecules C{sub 4}H{sub 6}, C{sub 4}H{sub 8}, C{sub 4}F{sub 6} including their isomers, and closed chain molecules c-C{sub 4}H{sub 8} and c-C{sub 4}F{sub 8}. Theoretical formalism employed presently, viz., Complex Scattering Potential-ionization contribution method has been used successfully for a variety of polyatomic molecules. The present ionization calculations are very important since results available for the studied targets are either scarce or none. Our work affords comparison of C{sub 4} containing hydrocarbon versus fluorocarbon molecules. Comparisons of the present ionization cross sections are made wherever possible, and new ionization data are also presented.

  16. Atomic and Electronic Structures of Zr Atomic Chains

    Institute of Scientific and Technical Information of China (English)

    林益寿; 李爱玉; 朱梓忠

    2004-01-01

    The atomic, binding and electronic structures of very thin Zr chains are studied by the first-principles densityfunctional method. The present calculations reveal that zirconium can form planar chains in zigzag, dimer and ladder structures. The zigzag geometry has two minima. The most stable geometry is the zigzag one with a unit cell rather close to equilateral triangles with four nearest neighbours. The other stable zigzag structure has a wide bond angle and allows for two nearest neighbours. An intermediary structure has the ladder geometry and is formed by two strands. The dimer structure is also found to be more stable than the truly linear chain. All these planar geometries are more favourable energetically than the linear chain. We also show that by going from Zr bulk to a Zr chain, the characters of bonding do not change significantly.

  17. "Super-Reducing" Photocatalysis: Consecutive Energy and Electron Transfers with Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Brasholz, Malte

    2017-08-21

    Donation welcome: Recent developments in visible-light photocatalysis allow the utilization of increasingly negative reduction potentials. Successive energy and electron transfer with polycyclic aromatic hydrocarbons enables the catalytic formation of strongly reducing arene radical anions, classical stoichiometric reagents for one-electron reduction in organic synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Gas phase adiabatic electron affinities of cyclopenta-fused polycyclic aromatic hydrocarbons

    NARCIS (Netherlands)

    Todorov, P.D.; Koper, C.; van Lenthe, J.H.; Jenneskens, L.W.

    2008-01-01

    The B3LYP/DZP++ adiabatic electron affinity (AEA) of nine (non)-alternant polycyclic aromatic hydrocarbons are reported and discussed. Calculations became feasible for molecules this size by projecting out the near-linearly dependent part of the one-electron basis. Non-alternant PAH consisting of an

  19. Engineering electronic states of periodic and quasiperiodic chains by buckling

    Science.gov (United States)

    Mukherjee, Amrita; Nandy, Atanu; Chakrabarti, Arunava

    2017-07-01

    The spectrum of spinless, non-interacting electrons on a linear chain that is buckled in a non-uniform, quasiperiodic manner is investigated within a tight binding formalism. We have addressed two specific cases, viz., a perfectly periodic chain wrinkled in a quasiperiodic Fibonacci pattern, and a quasiperiodic Fibonacci chain, where the buckling also takes place in a Fibonacci pattern. The buckling brings distant neighbors in the parent chain to close proximity, which is simulated by a tunnel hopping amplitude. It is seen that, in the perfectly ordered case, increasing the strength of the tunnel hopping (that is, bending the segments more) absolutely continuous density of states is retained towards the edges of the band, while the central portion becomes fragmented and host subbands of narrowing widths containing extended, current carrying states, and multiple isolated bound states formed as a result of the bending. A switching ;on; and ;off; of the electronic transmission can thus be engineered by buckling. On the other hand, in the second example of a quasiperiodic Fibonacci chain, imparting a quasiperiodic buckling is found to generate continuous subband(s) destroying the usual multifractality of the energy spectrum. We present exact results based on a real space renormalization group analysis, that is corroborated by explicit calculation of the two terminal electronic transport.

  20. Dynamics of interfacial reactions between O(3 P) atoms and long-chain liquid hydrocarbons

    Science.gov (United States)

    Allan, Mhairi; Bagot, Paul A. J.; Köhler, Sven P. K.; Reed, Stewart K.; Westacott, Robin E.; Costen, Matthew L.; McKendrick, Kenneth G.

    2007-09-01

    Recent progress that has been made towards understanding the dynamics of collisions at the gas-liquid interface is summarized briefly. We describe in this context a promising new approach to the experimental study of gas-liquid interfacial reactions that we have introduced. This is based on laser-photolytic production of reactive gas-phase atoms above the liquid surface and laser-spectroscopic probing of the resulting nascent products. This technique is illustrated for reaction of O(3P) atoms at the surface of the long-chain liquid hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane). Laser-induced fluorescence detection of the nascent OH has revealed mechanistically diagnostic correlations between its internal and translational energy distributions. Vibrationally excited OH molecules are able to escape the surface. At least two contributions to the product rotational distributions are identified, confirming and extending previous hypotheses of the participation of both direct and trapping-desorption mechanisms. We speculate briefly on future experimental and theoretical developments that might be necessary to address the many currently unanswered mechanistic questions for this, and other, classes of gas-liquid interfacial reaction.

  1. Genetically engineering cyanobacteria to convert CO₂, water, and light into the long-chain hydrocarbon farnesene.

    Science.gov (United States)

    Halfmann, Charles; Gu, Liping; Gibbons, William; Zhou, Ruanbao

    2014-12-01

    Genetically engineered cyanobacteria offer a shortcut to convert CO2 and H2O directly into biofuels and high value chemicals for societal benefits. Farnesene, a long-chained hydrocarbon (C15H24), has many applications in lubricants, cosmetics, fragrances, and biofuels. However, a method for the sustainable, photosynthetic production of farnesene has been lacking. Here, we report the photosynthetic production of farnesene by the filamentous cyanobacterium Anabaena sp. PCC 7120 using only CO2, mineralized water, and light. A codon-optimized farnesene synthase gene was chemically synthesized and then expressed in the cyanobacterium, enabling it to synthesize farnesene through its endogenous non-mevalonate (MEP) pathway. Farnesene excreted from the engineered cyanobacterium volatilized into the flask head space and was recovered by adsorption in a resin column. The maximum photosynthetic productivity of farnesene was 69.1 ± 1.8 μg·L(-1)·O.D.(-1)·d(-1). Compared to the wild type, the farnesene-producing cyanobacterium also exhibited a 60 % higher PSII activity under high light, suggesting increased farnesene productivity in such conditions. We envision genetically engineered cyanobacteria as a bio-solar factory for photosynthetic production of a wide range of biofuels and commodity chemicals.

  2. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  3. Interaction between SWCNTS and the mitochondriai electron transport chain

    Institute of Scientific and Technical Information of China (English)

    YanleiLiu; Yingge Zhang

    2012-01-01

    Objective: To investigate the effect of single-wall carbon nanotubes on the mitochondrial electron transport chain (METC) of tumor cells. Methods: Human hepatocarcinoma cell line HepG2 were cultured in DMEM medium (Hyclone) supplemented with 10% fetal calf serum (Gibco) in a atmosphere of 95% oxygen and 5% carbon dioxide under 37C. Cells were exposed by adding SWCNTs in the medium in concentrations of 1.5 - 12btg/ml. HepG2 cells exposed to narmal saline were used as control. The cells were collected after at 24h. The mitochondrial of HepG2 cells were obtained by density gradient centrifugation and were examined under transmis- sion electron microscope (TEM) . Four enzyme activity of the mitochondrial electron transport chain (METC) were determined by enzyme mark instrument. Results:

  4. Measurement of electron neutrino quasielastic and quasielastic-like scattering on hydrocarbon at $\\langle E_{\

    CERN Document Server

    Wolcott, J; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Carneiro, M F; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Diaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfin, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Salinas, C J Solano; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wospakrik, M; Zavala, G; Zhang, D; Ziemer, B P

    2015-01-01

    The first direct measurement of electron-neutrino quasielastic and quasielastic-like scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in electron production angle, electron energy and $Q^{2}$ are presented. The ratio of the quasielastic, flux-integrated differential cross section in $Q^{2}$ for $\

  5. Coupled motions direct electrons along human microsomal P450 Chains.

    Directory of Open Access Journals (Sweden)

    Christopher R Pudney

    2011-12-01

    Full Text Available Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR to all microsomal cytochrome P450s (CYPs. Our hypothesis is that tight coupling of motion with enzyme chemistry can signal "ready and waiting" states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals "ready and waiting" conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron

  6. Electron attachment and ion mobility in hydrocarbons and related systems

    Energy Technology Data Exchange (ETDEWEB)

    Bakale, G.

    1988-01-01

    During the last two decades, a firm base for the emerging field of liquid state electronics (LSE) has developed through studies of the transport and reaction properties of excess electrons in a variety of liquid-phase systems. Pulse-conductivity techniques were used in many of these studies to measure the mobilities of electrons and ions in pure liquids as well as the rate constants of electron attachment to a wide variety of electron-accepting solutes. Results obtained through such studies have interdisciplinary implications that are described in the discussion that follows which includes examples of the contributions of LSE to physics, chemistry and biology. 42 refs.

  7. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    KAUST Repository

    Yu, Jing-Xin

    2012-01-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green\\'s function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients. © 2012 American Institute of Physics.

  8. Compounds and methods for the production of long chain hydrocarbons from biological sources

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Cameron; Silks, Louis A; Sutton, Andrew D; Wu, Ruilian; Schlaf, Marcel; Waldie, Fraser; West, Ryan; Collias, Dimitris Ioannis

    2016-08-23

    The present invention is directed to the preparation of oxygenated, unsaturated hydrocarbon compounds, such as derivatives of furfural or hydroxymethyl furfural produced by aldol condensation with a ketone or a ketoester, as well as methods of deoxidatively reducing those compounds with hydrogen under acidic conditions to provide saturated hydrocarbons useful as fuels.

  9. Compounds and methods for the production of long chain hydrocarbons from biological sources

    Science.gov (United States)

    Gordon, John Cameron; Silks, Louis A; Sutton, Andrew D; Wu, Ruilian; Schlaf, Marcel; Waldie, Fraser; West, Ryan; Collias, Dimitris Ioannis

    2016-08-23

    The present invention is directed to the preparation of oxygenated, unsaturated hydrocarbon compounds, such as derivatives of furfural or hydroxymethyl furfural produced by aldol condensation with a ketone or a ketoester, as well as methods of deoxidatively reducing those compounds with hydrogen under acidic conditions to provide saturated hydrocarbons useful as fuels.

  10. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum's magnetosome chains.

    Science.gov (United States)

    Keutner, Christoph; von Bohlen, Alex; Berges, Ulf; Espeter, Philipp; Schneider, Claus M; Westphal, Carsten

    2014-10-01

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.

  11. Electronic spectrum and localization of electronic states in aperiodic quantum dot chains

    Science.gov (United States)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2014-02-01

    The electronic energy spectra of aperiodic Thue-Morse, Rudin-Shapiro, and double-periodic quantum dot chains are investigated in the tight-binding approximation. The dependence of the spectrum on all parameters of a "mixed" aperiodic chain model is studied: the electronic energy at quantum dots and the hopping integrals. The electronic degree of localization in the chains under consideration is determined by analyzing the inverse participation ratio. Its spectral distribution and the dependence of the band-averaged degree of localization on these model parameters have been calculated. It is shown that a transition of the system's sites to a resonant state in which the degree of electron localization decreases, while an overlap between the subbands occurs in the spectrum is possible when the parameters are varied.

  12. A novel high-performance thin layer chromatography method for quantification of long chain aliphatic hydrocarbons from Cissus quadrangularis

    Directory of Open Access Journals (Sweden)

    Vandana Jain

    2016-08-01

    Full Text Available Context: A high-performance thin layer chromatography (HPTLC is an analytical technique, which can be used for the determination of constituents or marker components in various parts of the plants. Earlier studies have estimated phytoconstituents from the stem and other aerial plant parts of Cissus quadrangularis Linn. Estimation of hydrocarbons can also be successfully done using HPTLC technique using suitable derivatization. Aims: To develop and validate a simple and rapid method for the estimation of long chain aliphatic hydrocarbons from the leaves of C. quadrangularis using HPTLC technique. Methods: Precoated silica gel 60 F254 plates were used as stationary phase. The mobile phase used was hexane (100 %. The detection of spots was carried out using berberine sulphate as detecting reagent. Results: The method was validated in terms of linearity, sensitivity, accuracy, and precision. Linearity range was found to be 2-10 µg/mL, limit of detection 0.127 µg/mL, and limit of quantification 0.384 µg/mL. Conclusions: A novel, simple, accurate, precise and sensitive HPTLC method has been developed and validated for the estimation of long chain aliphatic hydrocarbons obtained from the leaves of C. quadrangularis Linn.

  13. Electron attachment to oxygen in supercritical hydrocarbon fluids

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, M.; Holroyd, R.A.

    1983-10-15

    The rate of attachment of electrons to oxygen was studied in methane, ethane, and propane gas above the critical temperatures up to pressures of approx.200 atm. For all three gases, the rate increases with density and levels off above N = 3 x 10/sup 21/ molecules/cm/sup 3/. For ethane, there is little or no effect of temperature on the rate between 25 and 75 /sup 0/C and the rate is independent of electric field (E) up to E/N = 1.2 x 10/sup -18/ V cm/sup 2/, but increases at higher values of E/N. To explain the results, it is suggested that the energetics of the attachment reaction change with density; i.e., the energy level of the electron in the media (V/sub 0/) and the polarization energy (P/sup -/) of O/sub 2//sup -/ change with N. The rate of attachment increases with the energy term E/sub T/ = V/sub 0/-P/sup -/+E/sub k/, where E/sub k/ is the electron kinetic energy, similar to the way the attachment rate increases with electron kinetic energy in the dilute gas.

  14. Electron attachment to oxygen in supercritical hydrocarbon fluids

    Science.gov (United States)

    Nishikawa, Masaru; Holroyd, R. A.

    1983-10-01

    The rate of attachment of electrons to oxygen was studied in methane, ethane, and propane gas above the critical temperatures up to pressures of ˜200 atm. For all three gases, the rate increases with density and levels off above N=3×1021 molecules/cm3. For ethane, there is little or no effect of temperature on the rate between 25 and 75 °C and the rate is independent of electric field (E) up to E/N=1.2×10-18 V cm2, but increases at higher values of E/N. To explain the results, it is suggested that the energetics of the attachment reaction change with density; i.e., the energy level of the electron in the media (V0) and the polarization energy (P-) of O2- change with N. The rate of attachment increases with the energy term ET=V0-P-+Ek, where Ek is the electron kinetic energy, similar to the way the attachment rate increases with electron kinetic energy in the dilute gas.

  15. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

    Science.gov (United States)

    Van Calcar, Pamela; Mackay, Richard; Sammells, Anthony F.

    2002-01-01

    The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

  16. Electronic properties of Fibonacci and random Si-Ge chains

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, M S [Escola de Ciencias e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Azevedo, David L; Hadad, A [Departamento de Fisica, Universidade Federal do Maranhao 65080-040, Sao LuIs-MA (Brazil); Galvao, D S, E-mail: mvasconcelos@ect.ufrn.br [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas CP 6165, 13083-970 Campinas, SP (Brazil)

    2011-10-12

    In this paper we address a theoretical calculation of the electronic spectra of an Si-Ge atomic chain that is arranged in a Fibonacci quasi-periodic sequence, by using a semi-empirical quantum method based on the Hueckel extended model. We apply the Fibonacci substitutional sequences in the atomic building blocks A(Si) and B(Ge) through the inflation rule or a recursion relation. In our ab initio calculations we use only a single point, which is sufficient for considering all the orbitals and charge distribution across the entire system. Although the calculations presented here are more complete than the models adopted in the literature which take into account the electronic interaction only up to the second and third neighbors, an interesting property remains in their electronic spectra: the fractality (which is the main signature of this kind of system). We discuss this fractality of the spectra and we compare them with the random arrangement of the Si-Ge atomic chain, and with previous results based on the tight-binding approximation of the Schroedinger equation considering up to the nearest neighbor. (paper)

  17. Electronic properties of Fibonacci and random Si-Ge chains.

    Science.gov (United States)

    Vasconcelos, M S; Azevedo, David L; Hadad, A; Galvão, D S

    2011-10-12

    In this paper we address a theoretical calculation of the electronic spectra of an Si-Ge atomic chain that is arranged in a Fibonacci quasi-periodic sequence, by using a semi-empirical quantum method based on the Hückel extended model. We apply the Fibonacci substitutional sequences in the atomic building blocks A(Si) and B(Ge) through the inflation rule or a recursion relation. In our ab initio calculations we use only a single point, which is sufficient for considering all the orbitals and charge distribution across the entire system. Although the calculations presented here are more complete than the models adopted in the literature which take into account the electronic interaction only up to the second and third neighbors, an interesting property remains in their electronic spectra: the fractality (which is the main signature of this kind of system). We discuss this fractality of the spectra and we compare them with the random arrangement of the Si-Ge atomic chain, and with previous results based on the tight-binding approximation of the Schrödinger equation considering up to the nearest neighbor.

  18. Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreating Bio-Oil to Produce Hydrocarbon Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K.; Cai, Hao; Dunn, Jennifer B.; Hartley, Damon; Searcy, Erin; Tan, Eric; Jones, Sue; Snowden-Swan, Lesley

    2016-03-31

    This report describes the supply chain sustainability analysis (SCSA) of renewable gasoline and diesel produced via fast pyrolysis of a blended woody feedstock. The metrics considered in this analysis include supply chain greenhouse gas (GHG) emissions and water consumption.

  19. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  20. Phase behavior of fluorocarbon and hydrocarbon double-chain hydroxylated and galactosylated amphiphiles and bolaamphiphiles. Long-term shelf-stability of their liposomes.

    Science.gov (United States)

    Clary, L; Gadras, C; Greiner, J; Rolland, J P; Santaella, C; Vierling, P; Gulik, A

    1999-06-01

    This paper describes the morphological characterization, by freeze-fracture electron microscopy, and the thermotropic phase behavior, by differential scanning calorimetry and/or X-ray scattering, of aqueous dispersions of various hydroxylated and galactosylated double-chain amphiphiles and bolaamphiphiles, several of them containing one or two hydrophobic fluorocarbon chains. Colloidal systems are observed in water with the hydroxylated hydrocarbon or fluorocarbon bolaamphiphiles only when they are dispersed with a co-amphiphile such as rac-1,2-dimyristoylphosphatidylcholine (DMPC) or rac-1,2-distearoylphosphatidylcholine (DSPC). Liposomes are formed providing the relative content of bolaamphiphiles does not exceed 20% mol. Most of these liposomes can be thermally sterilized and stored at room temperature for several months without any significant modification of their size and size distribution. The hydrocarbon galactosylated bolaamphiphile HO[C24][C12]Gal forms in water a lamellar phase (the gel to liquid-crystal phase transition is complete at 45 degrees C) and a Im3m cubic phase above 47 degrees C. The fluorocarbon HO[C24][F6C5]Gal analog displays a more complex and metastable phase behavior. The fluorinated non-bolaform galactosylated [F8C7][C16]AEGal and SerGal amphiphiles form lamellar phases in water. Low amounts (10% molar ratio) of the HO[C24][F6C5]Gal or HO[C24][C12]Gal bolaamphiphiles or of the single-headed [F8C7][C16]AEGal improve substantially the shelf-stability of reference phospholipon/cholesterol 2/1 liposomes. These liposomes when co-formulated with a single-headed amphiphile from the SerGal series are by far less stable.

  1. π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon

    Science.gov (United States)

    Takabayashi, Yasuhiro; Menelaou, Melita; Tamura, Hiroyuki; Takemori, Nayuta; Koretsune, Takashi; Štefančič, Aleš; Klupp, Gyöngyi; Buurma, A. Johan C.; Nomura, Yusuke; Arita, Ryotaro; Arčon, Denis; Rosseinsky, Matthew J.; Prassides, Kosmas

    2017-07-01

    Molecular solids with cooperative electronic properties based purely on π electrons from carbon atoms offer a fertile ground in the search for exotic states of matter, including unconventional superconductivity and quantum magnetism. The field was ignited by reports of high-temperature superconductivity in materials obtained by the reaction of alkali metals with polyaromatic hydrocarbons, such as phenanthrene and picene, but the composition and structure of any compound in this family remained unknown. Here we isolate the binary caesium salts of phenanthrene, Cs(C14H10) and Cs2(C14H10), to show that they are multiorbital strongly correlated Mott insulators. Whereas Cs2(C14H10) is diamagnetic because of orbital polarization, Cs(C14H10) is a Heisenberg antiferromagnet with a gapped spin-liquid state that emerges from the coupled highly frustrated Δ-chain magnetic topology of the alternating-exchange spiral tubes of S = ½ (C14H10)•- radical anions. The absence of long-range magnetic order down to 1.8 K (T/J ≈ 0.02 J is the dominant exchange constant) renders the compound an excellent candidate for a spin-½ quantum-spin liquid (QSL) that arises purely from carbon π electrons.

  2. Additivity rule for electron scattering on hydrocarbon molecules--considering two different shielding effects

    Institute of Scientific and Technical Information of China (English)

    Sun Jin-Feng; Du Chao-Ling; Shi De-Heng; Liu Yu-Fang

    2004-01-01

    Considering the overlapping among atoms in the molecule and the not full transparency of the molecule by electron,we propose a new formulation of the additivity rule (AR). Here the new AR is employed to calculate the total cross sections (TCS) for electron scattering on hydrocarbon molecules C2H2, C2H4, C2H6, and C3H8 over an incident energy range of 10-2000eV. The results are compared with the experimental data and other available theoretical calculations.This gives good agreement.

  3. Post-mating shift towards longer-chain cuticular hydrocarbons drastically reduces female attractiveness to males in a digger wasp.

    Science.gov (United States)

    Polidori, Carlo; Giordani, Irene; Wurdack, Mareike; Tormos, José; Asís, Josep D; Schmitt, Thomas

    2017-07-01

    Females of most aculeate Hymenoptera mate only once and males are therefore under a strong competitive pressure which is expected to favour the evolution of rapid detection of virgin females. In several bee species, the cuticular hydrocarbon (CHC) profile exhibited by virgin females elicits male copulation attempts. However, it is still unknown how widespread this type of sexual communication is within Aculeata. Here, we investigated the use of CHCs as mating cues in the digger wasp Stizus continuus, which belongs to the family (Crabronidae) from within bees arose. In field experiments, unmanipulated, recently emerged virgin female dummies promptly elicit male copulation attempts, whereas 1-4days old mated females dummies were still attractive but to a much lesser extent. In contrast, old (10-15days) mated female dummies did not attract males at all. After hexane-washing, attractiveness almost disappeared but could be achieved by adding CHC extracts from virgin females even on hexane-washed old mated females. Thus, the chemical base of recognition of females as appropriate mating partner by males is coded in their CHC profile. Accordingly, differences in CHC profiles can be detected between sexes, with males having larger amounts of alkenes and exclusive long-chain alkanes, and within females specially according to their mating status. Shortly after mating, almost all of the major hydrocarbons found on the cuticle of females undergo significant changes in their abundance, with a clear shift from short-chain to long-chain linear and methyl-branched alkanes. The timely detection of virgin females by males in S. continuus could be advantageous within the narrow period of female emergence, when male-male competition is strongest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Antiresonance Effect in Electronic Tunnelling through a One-Dimensional Quantum Dot Chain

    Institute of Scientific and Technical Information of China (English)

    SUN Pu-Nan

    2006-01-01

    @@ Electronic tunnelling through a one-dimensional quantum dot chain is theoretically studied, when two leads couple to the individual component quantum dots of the chain arbitrarily. If there are some dangling quantum dots in the chain outside the leads, the electron tunnelling through the quantum dot chain is wholly forbidden while the energy of the incident electron is just equal to the molecular energy levels of the dangling quantum dots,which is known as the antiresonance effect. In addition, the influence of electron interaction on the antiresonance effect is discussed within the Hartree-Fock approximation.

  5. Plasma Modes of the Three-Chain Electron System Over Liquid Helium

    Science.gov (United States)

    Sokolov, S. S.; Syvokon, V. E.

    2016-12-01

    We simulate the surface electron system over liquid helium subjected to a confinement potential in the electron layer plane. In the solid phase, the two-dimensional system is observed to transform first into a multi-chain system and, finally, into a three chain, a zigzag structure and a single chain. Both longitudinal and transversal plasma oscillations of the three-chain electron system are determined. One of the longitudinal oscillation modes is acoustic, whereas the other two are optical. On turn, all transversal oscillations branches are optical. The theoretical results obtained can be used to identify experimentally the configurations of the low-dimensional electron system over helium under confinement potential.

  6. Structures and electronic properties of thin-films of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Natsume, Yutaka [Asahi-Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka (Japan)], E-mail: natsume.yc@om.asahi-kasei.co.jp; Minakata, Takashi; Aoyagi, Takeshi [Asahi-Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka (Japan)

    2009-03-02

    We report the fabrication and characterization of organic thin-film transistors (TFTs) using several polycyclic aromatic hydrocarbons (PAHs). Pentacene, ovalene, dibenzocoronene and hexabenzocoronene were deposited as organic semiconductors on silicon wafers with gold electrodes as the bottom-contact configuration of the TFTs. The pentacene TFT showed the highest field-effect mobility of more than 0.1 cm{sup 2}/Vs in comparison with the other PAHs. The results clarified that the high field-effect mobility of the pentacene thin film is due to large grain size and intrinsic electronic properties.

  7. The Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks

    CERN Document Server

    Yao, Kun

    2015-01-01

    We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from electron density. The output of the network is used as a non-local correction to the conventional local and semi-local kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. Numerical noise inherited from the non-linearity of the neural network is identified as the major challenge for the model. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.

  8. Modeling vibrational resonance in linear hydrocarbon chain with a mixed quantum-classical method.

    Science.gov (United States)

    Gelman, David; Schwartz, Steven D

    2009-04-07

    The quantum dynamics of a vibrational excitation in a linear hydrocarbon model system is studied with a new mixed quantum-classical method. The method is suited to treat many-body systems consisting of a low dimensional quantum primary part coupled to a classical bath. The dynamics of the primary part is governed by the quantum corrected propagator, with the corrections defined in terms of matrix elements of zeroth order propagators. The corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The ability of the method to describe dynamics of multidimensional systems has been tested. The results obtained by the method have been compared to previous quantum simulations performed with the quasiadiabatic path integral method.

  9. The spectroscopy of singlets and triplets excites electronic states, spatial and electronic structure of hydrocarbons and quantum classifications in chemmotology

    Science.gov (United States)

    Obukhov, A. E.

    2016-12-01

    In this work we demonstrate the physical foundations of the spectroscopy of the grounds states: E- and X-ray, (RR) Raman scattering the NMR 1H and 13C and IR-, EPR- absorption and the singlets and triplets electronic excited states in the multinuclear hydrocarbons in chemmotology. The parameters of UV-absorption, RR-Raman scattering of light, the fluorescence and the phosphorescence and day-lasers at the pumping laser and lamp, OLEDs and OTETs- are measurements. The spectral-energy properties are briefly studied. The quantum-chemical LCAO-MO SCF expanded-CI PPP/S and INDO/S methods in the electronic and spatial structure hidrocarbons are considered.

  10. Traceability and Risk Analysis Strategies for Addressing Counterfeit Electronics in Supply Chains for Complex Systems.

    Science.gov (United States)

    DiMase, Daniel; Collier, Zachary A; Carlson, Jinae; Gray, Robin B; Linkov, Igor

    2016-10-01

    Within the microelectronics industry, there is a growing concern regarding the introduction of counterfeit electronic parts into the supply chain. Even though this problem is widespread, there have been limited attempts to implement risk-based approaches for testing and supply chain management. Supply chain risk management tends to focus on the highly visible disruptions of the supply chain instead of the covert entrance of counterfeits; thus counterfeit risk is difficult to mitigate. This article provides an overview of the complexities of the electronics supply chain, and highlights some gaps in risk assessment practices. In particular, this article calls for enhanced traceability capabilities to track and trace parts at risk through various stages of the supply chain. Placing the focus on risk-informed decision making through the following strategies is needed, including prioritization of high-risk parts, moving beyond certificates of conformance, incentivizing best supply chain management practices, adoption of industry standards, and design and management for supply chain resilience.

  11. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Geisler, Daniela A; Møller, Ian Max

    2008-01-01

    The electron transport chain in mitochondria of different organisms contains a mixture of common and specialised components. The specialised enzymes form branches to the universal electron path, especially at the level of ubiquinone, and allow the chain to adjust to different cellular and metabolic...

  12. Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation

    NARCIS (Netherlands)

    Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2016-01-01

    Chain elongation is an emerging mixed culture biotechnology converting acetate into valuable biochemicals by using ethanol as an external electron donor. In this study we proposed to test another potential electron donor, methanol, in chain elongation. Methanol can be produced through the thermoc

  13. Using Adobe Flash Animations of Electron Transport Chain to Teach and Learn Biochemistry

    Science.gov (United States)

    Teplá, Milada; Klímová, Helena

    2015-01-01

    Teaching the subject of the electron transport chain is one of the most challenging aspects of the chemistry curriculum at the high school level. This article presents an educational program called "Electron Transport Chain" which consists of 14 visual animations including a biochemistry quiz. The program was created in the Adobe Flash…

  14. Using Adobe Flash Animations of Electron Transport Chain to Teach and Learn Biochemistry

    Science.gov (United States)

    Teplá, Milada; Klímová, Helena

    2015-01-01

    Teaching the subject of the electron transport chain is one of the most challenging aspects of the chemistry curriculum at the high school level. This article presents an educational program called "Electron Transport Chain" which consists of 14 visual animations including a biochemistry quiz. The program was created in the Adobe Flash…

  15. Chain length estimation of hydrocarbons in fluid inclusions by Raman spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pironon, J. (Centre de Recherches sur la Geologie de l' Uranium (CREGU), 54 - Vandoeuvre-les-Nancy (France))

    1993-04-22

    The analysis by conventional Raman spectroscopy of synthetic n-alkane inclusions allows an estimation of the chain length coefficient. This coefficient varies with the dilution of the n-alkanes. The estimate was applied to both synthetic and natural inclusions, and then refined by comparing the Raman and infrared data. Therefore, the complex aliphatic mixture of natural inclusions can be assimilated to an average alkane. The objective of this pseudoization is to model the thermobarometric conditions of trapping of the organic fluids in inclusion. 17 refs., 3 figs. 1 tab.

  16. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  17. Electronic Markets Selection in Supply Chain with Uncertain Demand and Uncertain Price

    Directory of Open Access Journals (Sweden)

    Fengmei Yang

    2015-01-01

    Full Text Available In recent years, more and more companies start online operation. Electronic market becomes a key component of some companies’ strategy. Supply chain management is another key component of the strategy as being adopted by an increasing number of companies. There are many interactions between electronic market and supply chain. One of the key questions is to select one type of electronic market from the view of supply chain. This paper develops some models to explore the issue of selection between public electronic market and private electronic market in three scenarios where electronic market is used for buying, for selling, and for both selling and buying, respectively. In a public electronic market, neither the supplier nor the retailer is the owner of the electronic market. However, in a private electronic market, there is an owner that is either the supplier or the retailer. Besides demand uncertainty, we take into account the price uncertainty in electronic market. We explore the conditions under which the agent of supply chain selects one certain type of electronic market by comparing expected profits of supply chain members in different scenarios. Some sensitivity analyses are conducted to explore the impact of the customer demand, electronic market retail price, and e-market use fee on the selection of electronic market. Finally, some interesting managerial and academic insights are obtained.

  18. Calculation of electron affinities of polycyclic aromatic hydrocarbons and solvation energies of their radical anion.

    Science.gov (United States)

    Betowski, Leon D; Enlow, Mark; Riddick, Lee; Aue, Donald H

    2006-11-30

    Electron affinities (EAs) and free energies for electron attachment (DeltaGo(a,298K)) have been directly calculated for 45 polynuclear aromatic hydrocarbons (PAHs) and related molecules by a variety of theoretical methods, with standard regression errors of about 0.07 eV (mean unsigned error = 0.05 eV) at the B3LYP/6-31 + G(d,p) level and larger errors with HF or MP2 methods or using Koopmans' Theorem. Comparison of gas-phase free energies with solution-phase reduction potentials provides a measure of solvation energy differences between the radical anion and neutral PAH. A simple Born-charging model approximates the solvation effects on the radical anions, leading to a good correlation with experimental solvation energy differences. This is used to estimate unknown or questionable EAs from reduction potentials. Two independent methods are used to predict DeltaGo(a,298K) values: (1) based upon DFT methods, or (2) based upon reduction potentials and the Born model. They suggest reassignments or a resolution of conflicting experimental EAs for nearly one-half (17 of 38) of the PAH molecules for which experimental EAs have been reported. For the antiaromatic molecules, 1,3,5-tri-tert-butylpentalene and the dithia-substituted cyclobutadiene 1, the reduction potentials lead to estimated EAs close to those expected from DFT calculations and provide a basis for the prediction of the EAs and reduction potentials of pentalene and cyclobutadiene. The Born model has been used to relate the electrostatic solvation energies of PAH and hydrocarbon radical anions, and spherical halide anions, alkali metal cations, and ammonium ions to effective ionic radii from DFT electron-density envelopes. The Born model used for PAHs has been successfully extended here to quantitatively explain the solvation energy of the C60 radical anion.

  19. Electron affinities of aromatic hydrocarbons and disproportionation of their radical-anions

    Energy Technology Data Exchange (ETDEWEB)

    Szwarc, M.

    1986-09-01

    Electron affinities of aromatic hydrocarbons measured in the gas-phase and in solutions are compared. The experimental methods used for their determination are briefly reviewed. The reduction yields the respective radical-anions. Radical-anions may undergo disproportionation, a reaction described by the scheme: 2A/sup -/ . , Cat/sup =/ in equilibrium A + A/sup 2-/, 2 Cat/sup +/, K/sub dipr/. The disproportionation constant, K/sub dipr/, is greatly affected by the nature of aromatic hydrocarbon, of the cation, and of the solvent. Variation of each of these factors is illustrated. Variation of the cation and solvent results in changes of the disproportionation constant as large as factors of 10/sup 25/. The causes of these variations are rationalized and discussed in terms of the respective ..delta..H and ..delta..S. Kinetics of disproportionation was investigated by flash-photolysis techniques. The experimental approach is described. The peculiarities of Ba salts deserved some discussion to clarify the nature of those salts. The effect of disproportionation on reactions of radical-anions are described: namely on cis-trans isomerization of stilbenes, on protonation of radical-anions of anthracene an perylene, on dissociation of radical anions of aromatic derivatives ethane, etc.

  20. Channel-resolved photo- and Auger-electron spectroscopy of halogenated hydrocarbons

    Science.gov (United States)

    Ablikim, Utuq; Kaderiya, B.; Kumarapan, V.; Kushawaha, R.; Rudenko, A.; Rolles, D.; Xiong, H.; Berrah, N.; Bomme, C.; Savelyev, E.; Kilcoyne, D.

    2016-05-01

    Inner-shell photoelectron and Auger electron spectra of polyatomic molecules such as halogenated hydrocarbons are typically hard to interpret and assign due to many overlapping states that form broad bands even in high-resolution measurements. With the help of electron-ion-ion coincidence measurements performed using the velocity map imaging technique, we are able to detect high-energy (ionic fragmentation channels. Such channel-resolved measurements allow disentangling the overlapping electronic structures and help assigning individual components of the electron spectra to specific potential surfaces and final states. In this work, we present measurements on CH3 I, CH2 IBr, and CH2 ICl molecules in the gas-phase using soft x-ray light provided by the Advanced Light Source at LBNL. This project is supported by the DOE, Office of Science, BES, Division of Chemical, Geological and Biological Sciences under Award Number DE-FG02-86ER13491 (U.A., B.K., V.K., A.R., D.R.) and Award Number DE-SC0012376 (H.X., N.B.).

  1. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A. V., E-mail: ponomarev@ipc.rssi.ru [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation); Pershukov, V. A. [ROSATOM National Nuclear Corporation (Russian Federation); Smirnov, V. P. [CJSC “Nauka i Innovatsii” (Russian Federation)

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  2. Structural basis for the discrepancy of spectral behavior in C-H stretching band between steroids and long chain hydrocarbon compounds

    Institute of Scientific and Technical Information of China (English)

    徐怡庄; 陶靖; 许振华; 翁诗甫; 徐建平; 吴瑾光; 徐端夫; 徐光宪

    1999-01-01

    The discrepancies of the spectral behavior for the C-H stretching band between some long chain hydrocarbon compounds and steroids were investigated. At low temperature, the C-H stretching bands exhibit complex fine structure in steroids but remain simple in long chain hydrocarbon compounds. MM3 molecular mechanics calculation indicates that, for long chain hydrocarbon compounds, the C-H groups vibrate with large scale coupling. There exist a few bands where the C-H groups vibrate in synchronous and inphase mode. Thus the variations of dipole moment for these bands are enhanced and the intensities are obviously stronger than others and cover other band in the spectra. This is just the reason why the C-H stretching bands are simple even at low temperature environment. Nevertheless, for the steroids, the C-H stretching bands vibrate with local coupling mode. The synchronous enhancement effect does not occur, the differences of intensities for various modes are not as large as those in long chain hydrocarbo

  3. Ab initio prediction of the electronic and optical excitations in polythiophene: Isolated chains versus bulk polymer

    Science.gov (United States)

    van der Horst, J.-W.; Bobbert, P. A.; de Jong, P. H. L.; Michels, M. A. J.; Brocks, G.; Kelly, P. J.

    2000-06-01

    We calculate the electronic and optical excitations of polythiophene using the GW (G stands for one-electron Green function, W for the screened Coulomb interaction) approximation for the electronic self-energy, and include excitonic effects by solving the electron-hole Bethe-Salpeter equation. Two different situations are studied: excitations on isolated chains and excitations on chains in crystalline polythiophene. The dielectric tensor for the crystalline situation is obtained by modeling the polymer chains as polarizable line objects, with a long-wavelength polarizability tensor obtained from the ab initio polarizability function of the isolated chain. With this model dielectric tensor we construct a screened interaction for the crystalline case, including both intra- and interchain screening. In the crystalline situation both the quasiparticle band gap and the exciton binding energies are drastically reduced in comparison with the isolated chain. However, the optical gap is hardly affected. We expect this result to be relevant for conjugated polymers in general.

  4. Dynamics of interfacial reactions between O({sup 3} P) atoms and long-chain liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Mhairi [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Bagot, Paul A J [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Koehler, Sven P K [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Reed, Stewart K [Department of Physics and Astronomy, University of Edinburgh, The King' s Buildings, Edinburgh EH9 3JZ (United Kingdom); Westacott, Robin E [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Costen, Matthew L [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); McKendrick, Kenneth G [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2007-09-15

    Recent progress that has been made towards understanding the dynamics of collisions at the gas-liquid interface is summarized briefly. We describe in this context a promising new approach to the experimental study of gas-liquid interfacial reactions that we have introduced. This is based on laser-photolytic production of reactive gas-phase atoms above the liquid surface and laser-spectroscopic probing of the resulting nascent products. This technique is illustrated for reaction of O({sup 3}P) atoms at the surface of the long-chain liquid hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane). Laser-induced fluorescence detection of the nascent OH has revealed mechanistically diagnostic correlations between its internal and translational energy distributions. Vibrationally excited OH molecules are able to escape the surface. At least two contributions to the product rotational distributions are identified, confirming and extending previous hypotheses of the participation of both direct and trapping-desorption mechanisms. We speculate briefly on future experimental and theoretical developments that might be necessary to address the many currently unanswered mechanistic questions for this, and other, classes of gas-liquid interfacial reaction.

  5. Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks.

    Science.gov (United States)

    Yao, Kun; Parkhill, John

    2016-03-01

    We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from an input electron density. The output of the network is used as a nonlocal correction to conventional local and semilocal kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. The density which minimizes the total energy given by the functional is examined in detail. We identify several avenues to improve on this exploratory work, by reducing numerical noise and changing the structure of our functional. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.

  6. Electron impact total and ionization cross-sections for some hydrocarbon molecules and radicals

    Energy Technology Data Exchange (ETDEWEB)

    Vinodkumar, M. [Open Univ., Dept. of Physics and Astronomy, Milton Keynes MK (United Kingdom); Vinodkumar, M. [VP and RPTP Science College, Vallabh Vidyanagar, Gujarat (India); Joshipura, K.N.; Limbachiya, C.G. [Sardar Patel Univ., Dept. of Physics, Vallabh Vidyanagar, Gujarat (India); Limbachiya, C.G. [PS Science College, Kadi (N.G.), Gujarat (India); Antony, B.K. [Massachusetts Lowell Univ., Dept. of Environmental, Earth and Atmospheric Sciences, Lowell, MA (United States)

    2006-01-15

    Electron impact total (50 to 2000 eV) and ionization (threshold to 2000 eV) cross-sections are calculated using the SCOP (spherical complex optical potential) and CSP-ic (complex scattering potential-ionization contribution) methods for the hydrocarbon molecules (CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 4}, C{sub 3}H{sub 6} and C{sub 3}H{sub 8}) and radicals (CH{sub x} (x=1-3)). Present method has already been tested successfully to other plasma molecules and radicals. Our results exhibited in this paper show good agreement with experimental results where available. For the radical species, we have presently done a first estimate of the total cross-sections. (authors)

  7. Excitation of bond-alternating spin-1/2 Heisenberg chains by tunnelling electrons.

    Science.gov (United States)

    Gauyacq, J-P; Lorente, N

    2014-10-01

    Inelastic electron tunneling spectra (IETS) are evaluated for spin-1/2 Heisenberg chains showing different phases of their spin ordering. The spin ordering is controlled by the value of the two different Heisenberg couplings on the two sides of each of the chain's atoms (bond-alternating chains). The perfect anti-ferromagnetic phase, i.e. a unique exchange coupling, marks a topological quantum phase transition (TQPT) of the bond-alternating chain. Our calculations show that the TQPT is recognizable in the excited states of the chain and hence that IETS is in principle capable of discriminating the phases. We show that perfectly symmetric chains, such as closed rings mimicking infinite chains, yield the same spectra on both sides of the TQPT and IETS cannot reveal the nature of the spin phase. However, for finite size open chains, both sides of the TQPT are associated with different IETS spectra, especially on the edge atoms, thus outlining the transition.

  8. Electronic properties of amino acid side chains: quantum mechanics calculation of substituent effects

    Directory of Open Access Journals (Sweden)

    Dwyer Donard S

    2005-08-01

    Full Text Available Abstract Background Electronic properties of amino acid side chains such as inductive and field effects have not been characterized in any detail. Quantum mechanics (QM calculations and fundamental equations that account for substituent effects may provide insight into these important properties. PM3 analysis of electron distribution and polarizability was used to derive quantitative scales that describe steric factors, inductive effects, resonance effects, and field effects of amino acid side chains. Results These studies revealed that: (1 different semiempirical QM methods yield similar results for the electronic effects of side chain groups, (2 polarizability, which reflects molecular deformability, represents steric factors in electronic terms, and (3 inductive effects contribute to the propensity of an amino acid for α-helices. Conclusion The data provide initial characterization of the substituent effects of amino acid side chains and suggest that these properties affect electron density along the peptide backbone.

  9. Epitaxial composite layers of electron donors and acceptors from very large polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Samorí, Paolo; Severin, Nikolai; Simpson, Christopher D; Müllen, Klaus; Rabe, Jürgen P

    2002-08-14

    Large polycyclic aromatic hydrocarbons (PAHs) can be considered as nanographenes, whose electron donating or accepting properties are controlled by their size and shape as well as functionalities in their periphery. Epitaxial thin films of them are targets for optoelectronic applications; however, large PAHs are increasingly difficult to process. Here we show that epitaxial layers of very large unsubstituted PAHs (C(42)H(18) and C(132)H(34)), as well as a mixed layer of C(42)H(18) with an electron acceptor, can be obtained by self-assembly from solution. The C(132)H(34) is by far the largest nanographene that up to now has been processed into ordered thin films; due to its size it cannot be sublimed in a vacuum. Scanning tunneling microscopy (STM) studies reveal that the interaction with the substrate induces a strong perturbation of the electronic structure of the pure donor in the first epitaxial monolayer. In a second epitaxial layer with a donor acceptor stoichiometry of 2:1 the molecules are unperturbed.

  10. Energetics and Electronic Structures of Carbon Nanotubes Encapsulating Polycyclic Aromatic Hydrocarbon Molecules

    Science.gov (United States)

    Kigure, Shota; Iizumi, Yoko; Okazaki, Toshiya; Okada, Susumu

    2014-12-01

    We report total-energy electronic structure calculations that provide energetics of the encapsulation of polycyclic aromatic hydrocarbon (PAH) molecules coronene, sumanene, and corannulene into carbon nanotubes (CNTs) and electronic structures of the resulting carbon hybrid structures. Our calculations elucidate that the encapsulation of these PAHs into CNTs is an exothermic reaction for nanotubes with indexes of (16,0), (17,0), and (18,0) or thicker for coronene, sumanene, and corannulene molecules, respectively, and that the energy gain upon encapsulation is up to 1 eV per molecule. We also find that the stacking arrangement of encapsulated PAH molecules depends on the molecular species and inner spacing of the CNTs: coronene is tilted to the CNT axis in its stable conformation, sumanene is stacked normal to the CNT axis, and corannulene is randomly arranged along the CNT axis. The electron states of the PAH-CNT hybrids depend on both the space inside the CNTs and the tilting angle of the PAH molecules with respect to the CNTs, leading to substantial hybridization between π states of the PAH molecules and CNTs.

  11. Low-Dose, Low-Temperature Convergent-Beam Electron Diffraction and Multiwavelength Analysis of Hydrocarbon Films by Electron Diffraction

    Science.gov (United States)

    Wu, Jinsong; Spence, John C. H.

    2003-10-01

    Aromatic hydrocarbon (perylene, coronene) and tetracontane films are shown to produce useful convergent-beam electron diffraction (CBED) patterns under low-dose and low-temperature conditions. These were obtained using a Zeiss LEO-921 electron microscope with an omega energy filter at liquid helium and nitrogen temperatures. The usefulness of patterns showing CBED disks of constant intensity (“blank disks,” indicating kinematic scattering) for structure analysis is investigated, with the aim of avoiding film-bending artifacts. Using CBED patterns from thicker areas, sample thickness was experimentally determined using either two-beam or three-beam patterns. Koehler mode illumination (a new form of SAD pattern offering smaller areas) was also used, and the possibility of obtaining structure factor moduli using the kinematic and two-beam approximations was investigated by comparing measured diffraction intensities with experimental ones for these known structures. The commonly used approximation |F| [similar] Ig (intended to account for bending) was found to be a worse approximation than the two-beam approximation with well-defined excitation error for these microdiffraction experiments. A new multiwavelength method of retrieving structure factor moduli and thickness from microdiffraction patterns using two-beam theory is demonstrated for tetracontane.

  12. Effect of the Unsaturation of the Hydrocarbon Chain of Fatty-Amides on the CO2 Corrosion of Carbon Steel Using EIS and Real-Time Corrosion Measurement

    Directory of Open Access Journals (Sweden)

    J. Porcayo-Calderon

    2015-01-01

    Full Text Available Fatty-amide derivatives were evaluated to study the effect of the double bonds into the hydrocarbon chain (C18 on the corrosion behavior of carbon steel. Electrochemical impedance spectroscopy (EIS and real-time corrosion measurements were used to evaluate the inhibition mechanism of the fatty-amides on carbon steel in CO2-saturated (3% NaCl + 10% diesel emulsion at 50°C. EIS results demonstrated that the unsaturation present into the hydrocarbon chain contributes to the efficiency of fatty-amides, because they can be adsorbed on the metal surface by a flat-adsorption process reducing the presence of active sites and blocking the corrosion process and preventing the diffusion of corrosive species, such as H2O, H+, Cl−, and HCO3-. Real-time corrosion measurements also indicated that the effectiveness of the inhibitors is dependent on the unsaturation into the hydrocarbon chain, being also a good technique to determine the stability of the adsorption process of the inhibitors.

  13. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum’s magnetosome chains

    Energy Technology Data Exchange (ETDEWEB)

    Keutner, Christoph [Technische Univ. Dortmund, Dortmung (Germany); von Bohlen, Alex [Leibniz-Institut fur Analytische Wissenschaften, Dortmund (Germany); Berges, Ulf [Technische Univ. Dortmund, Dortmung (Germany); Espeter, Philipp [Technische Univ. Dortmund, Dortmung (Germany); Schneider, Claus M. [Peter Grunberg Institut, Julich (Germany); Westphal, Carsten [Technische Univ. Dortmund, Dortmung (Germany)

    2014-10-07

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.

  14. Methanol to olefin Conversion on HSAPO-34 zeolite from periodic density functional theory calculations: a complete cycle of side chain hydrocarbon pool mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.M.; Wang, Y.D.; Xie, Z.K.; Liu, Z.P. [SINOPEC, Shanghai (China)

    2009-03-15

    For its unique position in the coal chemical industry, the methanol to olefin (MTO) reaction has been a hot topic in zeolite catalysis. Due to the complexities of catalyst structure and reaction networks, many questions such as how the olefin chain is built from methanol remain elusive. On the basis of periodic density functional theory calculations, this work establishes the first complete catalytic cycle for MTO reaction via hexamethylbenzene (HMB) trapped in HSAPO-34 zeolite based on the so-called side chain hydrocarbon pool mechanism. The cycle starts from the methylation of HMB that leads to heptamethylbenzenium ion (heptaMB{sup +}) intermediate. This is then followed by the growth of side chain via repeated deprotonation of benzenium ions and methylation of the exocyclic double bond. Ethene and propene can finally be released from the side ethyl and isopropyl groups of benzenium ions by deprotonation and subsequent protonation steps. We demonstrate that (i) HMB/HSAPO-34 only yields propene as the primary product based on the side chain hydrocarbon pool mechanism and (ii) an indirect proton-shift step mediated by water that is always available in the system is energetically more favorable than the traditionally regarded internal hydrogen-shift step. Finally, the implications of our results toward understanding the effect of acidity of zeolite on MTO activity are also discussed.

  15. Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes.

    Science.gov (United States)

    El Khoury, Elsy; Patra, Digambara

    2016-05-01

    Using fluorescence quenching of curcumin in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes by brominated derivatives of fatty acids, the location of curcumin has been studied, which indicates length of hydrocarbon chain has an effect on the location of curcumin in liposomes. Change of fluorescence intensity of curcumin with temperature in the presence of liposomes helps to estimate the phase transition temperature of these liposomes, thus, influence of cholesterol on liposome properties has been studied using curcumin as a molecule probe. The cooperativity due to the interactions between the hydrocarbon chains during melting accelerates the phase transition of DPPC liposomes in the presence of high percentage of cholesterol whereas high percentage of cholesterol generates a rather rigid DMPC liposome over a wide range of temperatures. We used ethanol to induce interdigitation between the hydrophobic chains of the lipids and studied this effect using curcumin as fluorescence probe. As a result of interdigitation, curcumin fluorescence is quenched in liposomes. The compact arrangement of the acyl chains prevents curcumin from penetrating deep near the midplane. In the liquid crystalline phase ethanol introduces a kind of order to the more fluid liposome, and does not leave space for curcumin to be inserted away from water.

  16. Doping-dependent magnetization plateaus of a coupled spin-electron chain: exact results

    Science.gov (United States)

    Strečka, Jozef; Čisárová, Jana

    2016-10-01

    A coupled spin-electron chain composed of localized Ising spins and mobile electrons is exactly solved in an external magnetic field within the transfer-matrix method. The ground-state phase diagram involves in total seven different ground states, which differ in the number of mobile electrons per unit cell and the respective spin arrangements. A rigorous analysis of the low-temperature magnetization process reveals doping-dependent magnetization plateaus, which may be tuned through the density of mobile electrons. It is demonstrated that the fractional value of the electron density is responsible for an enhanced magnetocaloric effect due to an annealed bond disorder of the mobile electrons.

  17. Hydrocarbons depending on the chain length and head group adopt different conformations within a water-soluble nanocapsule: 1H NMR and molecular dynamics studies.

    Science.gov (United States)

    Choudhury, Rajib; Barman, Arghya; Prabhakar, Rajeev; Ramamurthy, V

    2013-01-10

    In this study we have examined the conformational preference of phenyl-substituted hydrocarbons (alkanes, alkenes, and alkynes) of different chain lengths included within a confined space provided by a molecular capsule made of two host cavitands known by the trivial name "octa acid" (OA). One- and two-dimensional (1)H NMR experiments and molecular dynamics (MD) simulations were employed to probe the location and conformation of hydrocarbons within the OA capsule. In general, small hydrocarbons adopted a linear conformation while longer ones preferred a folded conformation. In addition, the extent of folding and the location of the end groups (methyl and phenyl) were dependent on the group (H(2)C-CH(2), HC═CH, and C≡C) adjacent to the phenyl group. In addition, the rotational mobility of the hydrocarbons within the capsule varied; for example, while phenylated alkanes tumbled freely, phenylated alkenes and alkynes resisted such a motion at room temperature. Combined NMR and MD simulation studies have confirmed that molecules could adopt conformations within confined spaces different from that in solution, opening opportunities to modulate chemical behavior of guest molecules.

  18. Eco-efficient Supply Chains for Electrical and Electronic Products

    NARCIS (Netherlands)

    J. Quariguasi Frota Neto (João)

    2008-01-01

    textabstractHundreds of millions of electrical and electronic appliances are manufactured every year. Furthermore, it is expected that this number will not substantially decrease in the near future. These equipments have a significant impact on the environment, and ceteris paribus, such

  19. Eco-efficient Supply Chains for Electrical and Electronic Products

    NARCIS (Netherlands)

    J. Quariguasi Frota Neto (João)

    2008-01-01

    textabstractHundreds of millions of electrical and electronic appliances are manufactured every year. Furthermore, it is expected that this number will not substantially decrease in the near future. These equipments have a significant impact on the environment, and ceteris paribus, such environmenta

  20. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface.

    Science.gov (United States)

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-07-20

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.

  1. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains.

    Science.gov (United States)

    An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun

    2016-07-28

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.

  2. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains

    Science.gov (United States)

    An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun

    2016-07-01

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.

  3. Electronic properties and STM images of vacancy clusters and chains in functionalized silicene and germanene

    Science.gov (United States)

    Jamdagni, Pooja; Kumar, Ashok; Sharma, Munish; Thakur, Anil; Ahluwalia, P. K.

    2017-01-01

    Electronic properties and STM topographical images of X (=F, H, O) functionalized silicene and germanene have been investigated by introducing various kind of vacancy clusters and chain patterns in monolayers within density functional theory (DFT) framework. The relative ease of formation of vacancy clusters and chain patterns is found to be energetically most favorable in hydrogenated silicene and germanene. F- and H-functionalized silicene and germanene are direct bandgap semiconducting with bandgap ranging between 0.1-1.9 eV, while O-functionalized monolayers are metallic in nature. By introducing various vacancy clusters and chain patterns in both silicene and germanene, the electronic and magnetic properties get modified in significant manner e.g. F- and H-functionalized silicene and germanene with hexagonal and rectangle vacancy clusters are non-magnetic semiconductors with modified bandgap values while pentagonal and triangle vacancy clusters induce metallicity and magnetic character in monolayers; hexagonal vacancy chain patterns induce direct-to-indirect gap transition while zigzag vacancy chain patterns retain direct bandgap nature of monolayers. Calculated STM topographical images show distinctly different characteristics for various type of vacancy clusters and chain patterns which may be used as electronic fingerprints to identify various vacancy patterns in silicene and germanene created during the process of functionalization.

  4. Modulation of the electron transport properties in graphene nanoribbons doped with BN chains

    Directory of Open Access Journals (Sweden)

    Wu Liu

    2014-06-01

    Full Text Available Using density-functional theory and the non-equilibrium Green's function method, the electron transport properties of zigzag graphene nanoribbons (ZGNRs doped with BN chains are studied by systematically calculating the energy band structure, density of states and the transmission spectra for the systems. The BN chains destroyed the electronic transport properties of the ZGNRs, and an energy gap appeared for the ZGNRs, and displayed variations from a metal to a wide-gap semiconductor. With an increase in the number of BN chains, the band gap increased gradually in the band structure and the transmission coefficient decreased near the Fermi surface. Additionally, the doping position had a significant effect on the electronic properties of the ZGNRs.

  5. Local food in European supply chains: reconnection and electronic networks

    Directory of Open Access Journals (Sweden)

    Georgina Holt

    2007-04-01

    Full Text Available Après une présentation du marché des produits locaux/localisés en Grande Bretagne, ainsi qu’une définition du concept en fonction des circuits de distribution courts, de l’agriculture biologique et du commerce équitable, cet article se fonde sur des études de cas, issus de projets de recherche européens, pour identifier des différents types de réseaux concernés par les concept de produit locaux durables. Les habitudes historiques concernant l’achat des produits alimentaires jouent ici un rôle central et l’article observe l’équilibre entre les composants historiques, sociaux et environnementaux des produits locaux/localisés. A partir de ces terrains de recherche et de ces expériences il s’est avéré possible de déterminer différentes compréhensions de « produits locaux » en relation avec le concept de « distance alimentaire/ food miles ». En se référant à six cas donnés, cet article souligne l’importance des systèmes localisés en matière de durabilité alimentaire, et met en valeur le poids des qualités humaines et sociales dans la balance commerciale.After giving an overview of the market for local food in the UK, as well as a definition of the concept in relation to short supply chains, organic agriculture and fair trade, the article draws on cases encountered through EC-funded research and networking to identify different types of network concerned with the concept of sustaining local food. Historical uses of shopping habits play here a central role and the article observes the balance between historical, social and environmental components of local food. From these researches and experiences, it has been possible to demonstrate a range of understandings in relation to the concept of ‘food miles’. With reference to six cases, the article underlines the importance of local food systems within food sustainability, and highlights the weight of human and social qualities in the market balance.

  6. Rapid quantitative prediction of ionization energies and electron affinities of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Modelli, Alberto [Dipartimento di Chimica ' G. Ciamician' , Universita di Bologna, via Selmi 2, 40126 Bologna (Italy); Centro Interdipartimentale di Ricerca in Scienze Ambientali (CIRSA), Universita di Bologna, via S. Alberto 163, 48100 Ravenna (Italy)], E-mail: alberto.modelli@unibo.it; Mussoni, Laura [Centro Interdipartimentale di Ricerca in Scienze Ambientali (CIRSA), Universita di Bologna, via S. Alberto 163, 48100 Ravenna (Italy)

    2007-02-14

    Quantitative structure-activity relationship (QSAR) studies of polycyclic aromatic hydrocarbons (PAHs) often employ rapid semiempirical calculations to evaluate ionization energy (IE) and electron affinity (EA) values, assuming they are equal (but of opposite sign) to the energies of the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), respectively. However, regardless of the assumption of validity of Koopmans' theorem, the reliability of this simple theoretical approach for reproducing the experimental IE and EA trends has not been tested, except for a few linear PAHs. Here the measured IEs and EAs of 17 PAHs are plotted vs. the HOMO and LUMO energies obtained with semiempirical AM1 calculations and, for comparison, HF/6-31G calculations. Good linear relationships are obtained with both methods, with correlation coefficients r > 0.98 for the IEs and r > 0.96 for the EAs. The IEs and EAs predicted by scaling the corresponding MO energies with the appropriate empirical linear equation are compared with experimental values available in the literature for PAHs (28 IEs and 22 EAs). The average (absolute) difference between evaluated and measured IEs is found to be 0.07 eV (s.d. = 0.05 eV), while for the EAs the average difference is slightly larger. The accuracy of both AM1 and HF/6-31G methods are essentially equal, the former having the significant advantage of being 60 times faster. The present study demonstrates the ability of rapid semiempirical calculations carried out on the neutral molecules to parallel the experimental IE and EA values of PAHs, and provides simple linear equations which can be routinely employed for their quantitative prediction in this class of compounds.

  7. On the path length of an excess electron interacted with optical phonons in a molecular chain

    Energy Technology Data Exchange (ETDEWEB)

    Lakhno, V.D. [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region 142290 (Russian Federation)], E-mail: lak@impb.psn.ru

    2008-08-25

    We show that in a molecular chain with dispersionless phonons at zero temperature, a 'quasistationary' moving soliton state of an excess electron is possible. As the soliton velocity vanishes, the path length of the excess electron exponentially tends to infinity. It is demonstrated that in the presence of dispersion, when the soliton initial velocity exceeds the maximum group velocity of the chain, the soliton slows down until it reaches the maximum group velocity and then moves stationarily at this maximum group velocity. A conclusion is made of the fallacy of some works were the existence of moving polarons in a dispersionless medium is considered infeasible.

  8. A Simplified and Accurate Front-End Electronics Chain for Timing RPCs

    CERN Document Server

    Blanco, A; Fonte, Paulo J R; Ferreira-Marques, R; Gobbi, A; Policarpo, Armando

    2000-01-01

    Recent advances in electronics and construction techniques have pushed the timing resolution of Resistive Plate Chambers below 50 ps sigma with detection efficienciesclose to 99% for MIPs. In this paper we describe a new front-end electronics chain for accurate time and charge measurement in these devices, having in view a possibleapplication in ALICE's T0 counter.(Abstract only available, full text to follow).

  9. Exact many-electron ground states on diamond and triangle Hubbard chains

    OpenAIRE

    2008-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (i) a rewriting of the Hamiltonian into positive semidefinite form, (ii) the construction of a many-electron ground state of this Hamiltonian, and (iii) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fu...

  10. Using Adobe Flash animations of electron transport chain to teach and learn biochemistry.

    Science.gov (United States)

    Teplá, Milada; Klímová, Helena

    2015-01-01

    Teaching the subject of the electron transport chain is one of the most challenging aspects of the chemistry curriculum at the high school level. This article presents an educational program called "Electron Transport Chain" which consists of 14 visual animations including a biochemistry quiz. The program was created in the Adobe Flash CS3 Professional animation program and is designed for high school chemistry students. Our goal is to develop educational materials that facilitate the comprehension of this complex subject through dynamic animations which show the course of the electron transport chain and simultaneously explain its nature. We record the process of the electron transport chain, including connections with oxidative phosphorylation, in such a way as to minimize the occurrence of discrepancies in interpretation. The educational program was evaluated in high schools through the administration of a questionnaire, which contained 12 opened-ended items and which required participants to evaluate the graphics of the animations, chemical content, student preferences, and its suitability for high school biochemistry teaching.

  11. 2D Spin-Dependent Diffraction of Electrons From Periodical Chains of Nanomagnets

    Directory of Open Access Journals (Sweden)

    Teshome Senbeta

    2012-03-01

    Full Text Available The scattering of the unpolarized beams of electrons by nanomagnets in the vicinity of some scattering angles leads to complete spin polarized electrons. This result is obtained with the help of the perturbation theory. The dipole-dipole interaction between the magnetic moment of the nanomagnet and the magnetic moment of electron is treated as perturbation. This interaction is not spherically symmetric. Rather it depends on the electron spin variables. It in turn results in spinor character of the scattering amplitudes. Due to the smallness of the magnetic interactions, the scattering length of this process is very small to be proved experimentally. To enhance the relevant scattering lengths, we considered the diffraction of unpolarized beams of electrons by linear chains of nanomagnets. By tuning the distance between the scatterers it is possible to obtain the diffraction maximum of the scattered electrons at scattering angles which corresponds to complete spin polarization of electrons. It is shown that the total differential scattering length is proportional to N2 (N is a number of scatterers. Even small number of nanomagnets in the chain helps to obtain experimentally visible enhancement of spin polarization of the scattered electrons.

  12. Chlorophyll fluorescence in the evaluation of photosynthetic electron transport chain inhibitors in the pea

    Directory of Open Access Journals (Sweden)

    Marcio Espinosa Farias

    Full Text Available ABSTRACT The study aimed to evaluate the behavior of the chair of photosynthetic electron transport in the presence of DCMU and atrazine in detached leaves of pea through simultaneous measurements of the kinetics of fluorescence transient, fluorescence delayed and modulated reflection at 820 nm. The petioles of the leaves were immersed for two hours in solution of inhibitors at concentrations of 0 (control, 25, 50, 100, 250 and 500 µM. Measurements of the kinetics of fluorescence transient and fluorescence delayed and modulated reflection at 820 nm were recorded simultaneously by the M-PEA fluorometer. Simultaneous measurement of fluorescence transient, fluorescence delayed and modulated 820 nm reflection is important for assessments of the photosynthetic electron transport chain activity tool. The use of specific inhibitors of the electron transport chain allows you to collect and correlate a lot of information about the effect of different inhibitors at specific points in the photosynthetic electron transport chain. DCMU and atrazine are inhibitors of photosystem II and the concentration of 500 mM affects more strongly the flow of photosynthetic electrons.

  13. Biodegradation of Medium Chain Hydrocarbons by Acinetobacter venetianus 2AW Immobilized to Hair-Based Adsorbent Mats (Postprint)

    Science.gov (United States)

    2010-09-01

    McDonagh M. Field evaluations of marine oil spill bioremediation . Microbiol Rev. 1996;60:342–365. 12. Reisfeld A, Rosenberg E, Gutnick D. Microbial...adsorbent, for in situ degradation of hydrocarbons, has practical application in the bioremediation of oil in water emulsions. acinetobacter...the rest comes from human activ- ities.1 Oil spills that occur as a result of accidents or envi- ronmental disturbances create significant economic

  14. Disruption management in a two-period three-tier electronics supply chain

    Directory of Open Access Journals (Sweden)

    Johannes Danusantoso

    2016-12-01

    Full Text Available We study strategies to manage demand disruptions in a three-tier electronics supply chain consisting of an Electronics Manufacturing Services provider, an Original Equipment Manufacturer (OEM, and a Retailer. We model price sensitivity of consumer demand with the two functions commonly used for this purpose, linear and exponential, and introduce disruptions in the demand function. We assume each supply chain member faces an increasing marginal unit cost function. Our decentralized supply chain setting is governed by a wholesale price contract. The OEM possesses greater bargaining power and therefore is the Stackelberg leader. A penalty cost incurred by the Retailer is introduced to capture the cost of deviation from the original plan. We find exact analytical solutions of the effectiveness of managing the disruption when the consumer demand function is linear, and we provide numerical examples as an illustration when the consumer demand function is either linear or exponential. We show that the original production quantity exhibits some robustness under disruptions in both centralized and decentralized supply chains, while the original optimal pricing does not. We show that supply chain managers should not automatically react to an individual disruption, in certain cases it is best to leave the production plan unchanged.

  15. Identifying carcinogenic activity of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) through electronic and topological indices

    CERN Document Server

    Braga, R S; Barone, P M V B

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of planar molecules, abundant in urban environment, which can induce chemical carcinogenesis. Their carcinogenic power varies in a large range, from very strong carcinogens to inactive ones. In a previous study, we proposed a methodology to identify the PAHs carcinogenic activity exploring electronic and topological indices. In the present work, we show that it is possible to simplify that methodology and expand its applicability to include methylated PAHs compounds. Using very simple rules, we can predict their carcinogenic activity with high accuracy (approx 89%).

  16. Quality assurance of commercial beeswax. Part I. Gas chromatography-electron impact ionization mass spectrometry of hydrocarbons and monoesters.

    Science.gov (United States)

    Jiménez, J J; Bernal, J L; Aumente, S; del Nozal, Ma J; Martín, Ma T; Bernal, J

    2004-01-23

    The use of low-temperature capillary gas chromatography coupled to electron impact mass spectrometry for the characterization of crude beeswaxes yielded by Apis mellifera is described. The system allows the identification of a great number of compounds, some of them not reported till now in beeswax, such as a family of ethyl esters, tetracosyl oleate, and several saturated and unsaturated hydrocarbons. The information acquired makes possible the differentiation between pure beeswax and some foundation beeswax samples where mixture of pure beeswax with another substances is suspected.

  17. Self-Aggregation of Amphiphilic Dendrimer in Aqueous Solution: The Effect of Headgroup and Hydrocarbon Chain Length.

    Science.gov (United States)

    Zhang, Pei; Xu, Xiaohui; Zhang, Minghui; Wang, Jinben; Bai, Guangyue; Yan, Haike

    2015-07-28

    The self-aggregation of amphiphilic dendrimers G1QPAMCm based on poly(amidoamine) PAMAM possessing the same hydrophilic group but differing in alkyl chain length in aqueous solution was investigated. Differences in the chemical structures lead to significant specificities in the aggregate building process. A variety of physicochemical parameters presented monotonous regularity with the increase in alkyl chain length in multibranched structure, as traditional amphiphilic molecules. A significant difference, however, existed in the morphology and the microenvironment of the microdomain of the aggregates, with G1QPAMCm with an alkyl chain length of 16 intending to form vesicles. To obtain supporting information about the aggregation mechanism, the thermodynamic parameters of micellization, the free Gibbs energy ΔGmic, and the entropy ΔSmic were derived subsequently, of which the relationship between the hydrophobic chain length and the thermodynamic properties indicated that the self-assembly process was jointly driven by enthalpy and entropy. Other than traditional surfactants, the contribution of enthalpy has not increased identically to the increase in hydrophobic interactions, which depends on the ratio of the alkyl chain length to the radius in the headgroup. Continuous increases in the hydrophobic chain length from 12 to 16 lead to the intracohesion of the alkyl chain involved in the process of self-assembly, weakening the hydrophobic interactions, and the increase in -ΔHmic, which offers an explanation of the formation of vesicular structures.

  18. Bipolar tetraether lipids: chain flexibility and membrane polarity gradients from spin-label electron spin resonance.

    Science.gov (United States)

    Bartucci, R; Gambacorta, A; Gliozzi, A; Marsh, D; Sportelli, L

    2005-11-15

    Membranes of thermophilic Archaea are composed of unique tetraether lipids in which C40, saturated, methyl-branched biphytanyl chains are linked at both ends to polar groups. In this paper, membranes composed of bipolar lipids P2 extracted from the acidothermophile archaeon Sulfolobus solfataricus are studied. The biophysical basis for the membrane formation and thermal stability is investigated by using electron spin resonance (ESR) of spin-labeled lipids. Spectral anisotropy and isotropic hyperfine couplings are used to determine the chain flexibility and polarity gradients, respectively. For comparison, similar measurements have been carried out on aqueous dispersions of diacyl reference lipid dipalmitoyl phosphatidylcholine and also of diphytanoyl phosphatidylcholine, which has methyl-branched chains. At a given temperature, the bolaform lipid chains are more ordered and less flexible than in normal bilayer membranes. Only at elevated temperatures (80 degrees C) does the flexibility of the chain environment in tetraether lipid assemblies approach that of fluid bilayer membranes. The height of the hydrophobic barrier formed by a monolayer of archaebacterial lipids is similar to that in conventional fluid bilayer membranes, and the permeability barrier width is comparable to that formed by a bilayer of C16 lipid chains. At a mole ratio of 1:2, the tetraether P2 lipids mix well with dipalmitoyl phosphatidylcholine lipids and stabilize conventional bilayer membranes. The biological as well as the biotechnological relevance of the results is discussed.

  19. First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups

    KAUST Repository

    Li, Yang

    2015-04-28

    © 2015 AIP Publishing LLC. The electronic efficiency and binding energy of contacts formed between graphene electrodes and poly-aromatic hydrocarbon (PAH) anchoring groups have been investigated by the non-equilibrium Green\\'s function formalism combined with density functional theory. Our calculations show that PAH molecules always bind in the interior and at the edge of graphene in the AB stacking manner, and that the binding energy increases following the increase of the number of carbon and hydrogen atoms constituting the PAH molecule. When we move to analyzing the electronic transport properties of molecular junctions with a six-carbon alkyne chain as the central molecule, the electronic efficiency of the graphene-PAH contacts is found to depend on the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the corresponding PAH anchoring group, rather than its size. To be specific, the smaller is the HOMO-LUMO gap of the PAH anchoring group, the higher is the electronic efficiency of the graphene-PAH contact. Although the HOMO-LUMO gap of a PAH molecule depends on its specific configuration, PAH molecules with similar atomic structures show a decreasing trend for their HOMO-LUMO gap as the number of fused benzene rings increases. Therefore, graphene-conjugated molecule-graphene junctions with high-binding and high-conducting graphene-PAH contacts can be realized by choosing appropriate PAH anchor groups with a large area and a small HOMO-LUMO gap.

  20. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, Karan [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Shukla, Alok [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076 (India); Mazumdar, Sumit [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D{sub 6h} point group symmetry versus ovalene with D{sub 2h} symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D{sub 6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D{sub 2h} ovalene but not in those with D{sub 6h} symmetry.

  1. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    Science.gov (United States)

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-03-01

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D6h point group symmetry versus ovalene with D2h symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D6h group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D2h ovalene but not in those with D6h symmetry.

  2. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of); Shin, Ki Soon [Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kang, Shin Jung, E-mail: sjkang@sejong.ac.kr [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-08-09

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  3. Aqueous Processing for Printed Organic Electronics: Conjugated Polymers with Multistage Cleavable Side Chains.

    Science.gov (United States)

    Schmatz, Brian; Yuan, Zhibo; Lang, Augustus W; Hernandez, Jeff L; Reichmanis, Elsa; Reynolds, John R

    2017-09-27

    The ability to process conjugated polymers via aqueous solution is highly advantageous for reducing the costs and environmental hazards of large scale roll-to-roll processing of organic electronics. However, maintaining competitive electronic properties while achieving aqueous solubility is difficult for several reasons: (1) Materials with polar functional groups that provide aqueous solubility can be difficult to purify and characterize, (2) many traditional coupling and polymerization reactions cannot be performed in aqueous solution, and (3) ionic groups, though useful for obtaining aqueous solubility, can lead to a loss of solid-state order, as well as a screening of any applied bias. As an alternative, we report a multistage cleavable side chain method that combines desirable aqueous processing attributes without sacrificing semiconducting capabilities. Through the attachment of cleavable side chains, conjugated polymers have for the first time been synthesized, characterized, and purified in organic solvents, converted to a water-soluble form for aqueous processing, and brought through a final treatment to cleave the polymer side chains and leave behind the desired electronic material as a solvent-resistant film. Specifically, we demonstrate an organic soluble polythiophene that is converted to an aqueous soluble polyelectrolyte via hydrolysis. After blade coating from an aqueous solution, UV irradiation is used to cleave the polymer's side chains, resulting in a solvent-resistant, electroactive polymer thin film. In application, this process results in aqueous printed materials with utility for solid-state charge transport in organic field effect transistors (OFETs), along with red to colorless electrochromism in ionic media for color changing displays, demonstrating its potential as a universal method for aqueous printing in organic electronics.

  4. Unraveling the interplay of backbone rigidity and electron rich side-chains on electron transfer in peptides: the realization of tunable molecular wires.

    Science.gov (United States)

    Horsley, John R; Yu, Jingxian; Moore, Katherine E; Shapter, Joe G; Abell, Andrew D

    2014-09-03

    Electrochemical studies are reported on a series of peptides constrained into either a 310-helix (1-6) or β-strand (7-9) conformation, with variable numbers of electron rich alkene containing side chains. Peptides (1 and 2) and (7 and 8) are further constrained into these geometries with a suitable side chain tether introduced by ring closing metathesis (RCM). Peptides 1, 4 and 5, each containing a single alkene side chain reveal a direct link between backbone rigidity and electron transfer, in isolation from any effects due to the electronic properties of the electron rich side-chains. Further studies on the linear peptides 3-6 confirm the ability of the alkene to facilitate electron transfer through the peptide. A comparison of the electrochemical data for the unsaturated tethered peptides (1 and 7) and saturated tethered peptides (2 and 8) reveals an interplay between backbone rigidity and effects arising from the electron rich alkene side-chains on electron transfer. Theoretical calculations on β-strand models analogous to 7, 8 and 9 provide further insights into the relative roles of backbone rigidity and electron rich side-chains on intramolecular electron transfer. Furthermore, electron population analysis confirms the role of the alkene as a "stepping stone" for electron transfer. These findings provide a new approach for fine-tuning the electronic properties of peptides by controlling backbone rigidity, and through the inclusion of electron rich side-chains. This allows for manipulation of energy barriers and hence conductance in peptides, a crucial step in the design and fabrication of molecular-based electronic devices.

  5. Environmental Strategies for Electrical and Electronic Equipment Supply Chains: Which to Choose?

    Directory of Open Access Journals (Sweden)

    Patroklos Georgiadis

    2009-09-01

    Full Text Available Waste electrical and electronic equipment is one of the major world-wide waste streams triggering the emergence of environmental strategies. Environmental regulations, closed-loop supply chain (CLSC activities and design-for-environment (DfE practices are environmental friendly strategies being implemented by governments and industry. In this paper, we apply a System Dynamics model to a CLSC of electrical and electronic equipment in Greece. Extensive numerical investigation provides insights regarding the impact of different legislative measures, CLSC activities and DfE practices on the environmental (availability of natural resources and landfills and economic sustainability.

  6. Electronic torsional sound in linear atomic chains: chemical energy transport at 1000 km/s

    CERN Document Server

    Kurnosov, Arkady A; Maksymov, Andrii A; Burin, Alexander L

    2016-01-01

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so they can participate only in transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Molecular systems for experimental evaluation of the predictions are proposed.

  7. Structural and electronic properties of linear carbon chains encapsulated by flattened nanotubes

    Science.gov (United States)

    Freitas, A.; Azevedo, S.; Kaschny, J. R.

    2016-10-01

    In the present contribution it was investigated the structural and electronic properties of nanostructures formed by a linear carbon chain encapsulated by flattened carbon and boron nitride single-walled nanotubes, using first-principles calculations. The behavior of the atomic structure and the corresponding electronic properties of the nanostructures were systematically analyzed as a function of the tube flattening degree. For both types of nanotubes, it was detected the occurrence of a polyyne-cumulene transition, which depends on the flattening degree. Moreover, for carbon nanotubes, it was found, for strong flattening, that the carbon chain binds completely to the tube wall. However, for boron nitride nanotubes, the chain also binds to the tube wall, but it breaks into pieces. For each structure, the electronic behavior and the band structure was studied as a function of the tube deformation. For particular values of the flattening degree it was observed the occurrence of Dirac points. The calculated Fermi velocities are in good agreement with the values obtained for graphene.

  8. Assessment of hydrocarbon electron-impact ionization cross section measurements for magnetic fusion

    CERN Document Server

    Huber, Stefan E; Kendl, Alexander; Reiter, Detlev

    2011-01-01

    Partial ionization cross section experiments have been carried out recently at the University of Innsbruck for three types of hydrocarbons, i.e. acetylene, ethylene and propene. Cross section data fits are generated and compared to the compilation of earlier experimental data summarized in the online database HYDKIN [www.hydkin.de]. New data fits are brought into a suitable form to be incorporated into the database. In order to illuminate underlying dissociation mechanisms the energy dependence of branching ratios above energies of 20 - 30eV is reviewed in light of the present results. This is a pre-peer reviewed version which has been submitted to Contributions to Plasma Physics.

  9. Deficiency of the mitochondrial electron transport chain in muscle does not cause insulin resistance.

    Directory of Open Access Journals (Sweden)

    Dong-Ho Han

    Full Text Available BACKGROUND: It has been proposed that muscle insulin resistance in type 2 diabetes is due to a selective decrease in the components of the mitochondrial electron transport chain and results from accumulation of toxic products of incomplete fat oxidation. The purpose of the present study was to test this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Rats were made severely iron deficient, by means of an iron-deficient diet. Iron deficiency results in decreases of the iron containing mitochondrial respiratory chain proteins without affecting the enzymes of the fatty acid oxidation pathway. Insulin resistance was induced by feeding iron-deficient and control rats a high fat diet. Skeletal muscle insulin resistance was evaluated by measuring glucose transport activity in soleus muscle strips. Mitochondrial proteins were measured by Western blot. Iron deficiency resulted in a decrease in expression of iron containing proteins of the mitochondrial respiratory chain in muscle. Citrate synthase, a non-iron containing citrate cycle enzyme, and long chain acyl-CoA dehydrogenase (LCAD, used as a marker for the fatty acid oxidation pathway, were unaffected by the iron deficiency. Oleate oxidation by muscle homogenates was increased by high fat feeding and decreased by iron deficiency despite high fat feeding. The high fat diet caused severe insulin resistance of muscle glucose transport. Iron deficiency completely protected against the high fat diet-induced muscle insulin resistance. CONCLUSIONS/SIGNIFICANCE: The results of the study argue against the hypothesis that a deficiency of the electron transport chain (ETC, and imbalance between the ETC and β-oxidation pathways, causes muscle insulin resistance.

  10. Structure Effect of Some New Anticancer Pt(II) Complexes of Amino Acid Derivatives with Small Branched or Linear Hydrocarbon Chains on Their DNA Interaction.

    Science.gov (United States)

    Kantoury, Mahshid; Eslami Moghadam, Mahboube; Tarlani, Ali Akbar; Divsalar, Adeleh

    2016-07-01

    The aim of this study was to investigate the structure effect and identify the modes of binding of amino acid-Pt complexes to DNA molecule for cancer treatment. Hence, three novel water soluble platinum complexes, [Pt(phen)(R-gly)]NO3 (where phen is 1,10-phenanthroline, R-gly is methyl, amyl, and isopentyl-glycine), have been synthesized and characterized by spectroscopic methods, conductivity measurements, and chemical analysis. The anticancer activities of synthesized complexes were investigated against human breast cancer cell line of MDA-MB 231. The 50% cytotoxic concentration values were determined to be 42.5, 58, and 70 μm for methyl-, amyl-, and isopentyl-gly complexes, respectively. These complexes were interacted with calf thymus DNA (ct-DNA) via positive cooperative interaction. The modes of binding of the complexes to DNA were investigated by fluorescence spectroscopy and circular dichroism in combination with a molecular docking study. The result indicates that complexes with small or branched hydrocarbon chains can intercalate with DNA. This is while amyl complexes with linear chains interacted additionally via groove binding. The results of the negative value of Gibbs energy for binding of isopentyl-platinum to DNA and those of the molecular docking were coherent. Furthermore, the docking results demonstrated that hydrophobic interaction plays an important role in the complex-DNA interaction.

  11. Effects of stereochemistry, saturation, and hydrocarbon chain length on the ability of synthetic constrained azacyclic sphingolipids to trigger nutrient transporter down-regulation, vacuolation, and cell death.

    Science.gov (United States)

    Perryman, Michael S; Tessier, Jérémie; Wiher, Timothy; O'Donoghue, Heather; McCracken, Alison N; Kim, Seong M; Nguyen, Dean G; Simitian, Grigor S; Viana, Matheus; Rafelski, Susanne; Edinger, Aimee L; Hanessian, Stephen

    2016-09-15

    Constrained analogs containing a 2-hydroxymethylpyrrolidine core of the natural sphingolipids sphingosine, sphinganine, N,N-dimethylsphingosine and N-acetyl variants of sphingosine and sphinganine (C2-ceramide and dihydro-C2-ceramide) were synthesized and evaluated for their ability to down-regulate nutrient transporter proteins and trigger cytoplasmic vacuolation in mammalian cells. In cancer cells, the disruptions in intracellular trafficking produced by these sphingolipids lead to cancer cell death by starvation. Structure activity studies were conducted by varying the length of the hydrocarbon chain, the degree of unsaturation and the presence or absence of an aryl moiety on the appended chains, and stereochemistry at two stereogenic centers. In general, cytotoxicity was positively correlated with nutrient transporter down-regulation and vacuolation. This study was intended to identify structural and functional features in lead compounds that best contribute to potency, and to develop chemical biology tools that could be used to isolate the different protein targets responsible for nutrient transporter loss and cytoplasmic vacuolation. A molecule that produces maximal vacuolation and transporter loss is expected to have the maximal anti-cancer activity and would be a lead compound.

  12. Isolating the segment of the mitochondrial electron transport chain responsible for mitochondrial damage during cardiac ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qun; Yin, Guotian; Stewart, Sarah; Hu, Ying [Department of Medicine, Division of Cardiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Lesnefsky, Edward J., E-mail: edward.lesnefsky@va.gov [Department of Medicine, Division of Cardiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Medical Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106 (United States)

    2010-07-09

    Ischemia damages the mitochondrial electron transport chain (ETC), mediated in part by damage generated by the mitochondria themselves. Mitochondrial damage resulting from ischemia, in turn, leads to cardiac injury during reperfusion. The goal of the present study was to localize the segment of the ETC that produces the ischemic mitochondrial damage. We tested if blockade of the proximal ETC at complex I differed from blockade distal in the chain at cytochrome oxidase. Isolated rabbit hearts were perfused for 15 min followed by 30 min stop-flow ischemia at 37 {sup o}C. Amobarbital (2.5 mM) or azide (5 mM) was used to block proximal (complex I) or distal (cytochrome oxidase) sites in the ETC. Time control hearts were buffer-perfused for 45 min. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated. Ischemia decreased cytochrome c content in SSM but not in IFM compared to time control. Blockade of electron transport at complex I preserved the cytochrome c content in SSM. In contrast, blockade of electron transport at cytochrome oxidase with azide did not retain cytochrome c in SSM during ischemia. Since blockade of electron transport at complex III also prevented cytochrome c loss during ischemia, the specific site that elicits mitochondrial damage during ischemia is likely located in the segment between complex III and cytochrome oxidase.

  13. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: A systematic (time-dependent) density functional theory study

    Science.gov (United States)

    Malloci, G.; Cappellini, G.; Mulas, G.; Mattoni, A.

    2011-06-01

    Homologous classes of polycyclic aromatic hydrocarbons (PAHs) in their crystalline state are among the most promising materials for organic opto-electronics. Following previous works on oligoacenes we present a systematic comparative study of the electronic, optical, and transport properties of oligoacenes, phenacenes, circumacenes, and oligorylenes. Using density functional theory (DFT) and time-dependent DFT we computed: (i) electron affinities and first ionization energies; (ii) quasiparticle correction to the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap; (iii) molecular reorganization energies and (iv) electronic absorption spectra of neutral and ±1 charged systems. The excitonic effects are estimated by comparing the optical gap and the quasiparticle corrected HOMO-LUMO energy gap. For each molecular property computed, general trends as a function of molecular size and charge state are discussed. Overall, we find that circumacenes have the best transport properties, displaying a steeper decrease of the molecular reorganization energy at increasing sizes, while oligorylenes are much more efficient in absorbing low-energy photons in comparison to the other classes.

  14. Exact many-electron ground states on the diamond Hubbard chain

    Science.gov (United States)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2008-03-01

    Exact ground states of interacting electrons on the diamond Hubbard chain in a magnetic field are constructed which exhibit a wide range of properties such as flat-band ferromagnetism, correlation induced metallic, half-metallic, or insulating behavior [1]. The properties of these ground states can be tuned by changing the magnetic flux, local potentials, or electron density.The results show that the studied simple one-dimensional structure displays remarkably complex physical properties. The virtue of tuning different ground states through external parameters points to new possibilities for the design of electronic devices which can switch between insulating or conducting and nonmagnetic or (fully or partially spin polarized) ferromagnetic states, open new routes for the design of spin-valve devices and gate induced ferromagnetism. [1] Z. Gulacsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404(2007).

  15. High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics.

    Science.gov (United States)

    Lin, Yuze; Zhao, Fuwen; He, Qiao; Huo, Lijun; Wu, Yang; Parker, Timothy C; Ma, Wei; Sun, Yanming; Wang, Chunru; Zhu, Daoben; Heeger, Alan J; Marder, Seth R; Zhan, Xiaowei

    2016-04-13

    We develop an efficient fused-ring electron acceptor (ITIC-Th) based on indacenodithieno[3,2-b]thiophene core and thienyl side-chains for organic solar cells (OSCs). Relative to its counterpart with phenyl side-chains (ITIC), ITIC-Th shows lower energy levels (ITIC-Th: HOMO = -5.66 eV, LUMO = -3.93 eV; ITIC: HOMO = -5.48 eV, LUMO = -3.83 eV) due to the σ-inductive effect of thienyl side-chains, which can match with high-performance narrow-band-gap polymer donors and wide-band-gap polymer donors. ITIC-Th has higher electron mobility (6.1 × 10(-4) cm(2) V(-1) s(-1)) than ITIC (2.6 × 10(-4) cm(2) V(-1) s(-1)) due to enhanced intermolecular interaction induced by sulfur-sulfur interaction. We fabricate OSCs by blending ITIC-Th acceptor with two different low-band-gap and wide-band-gap polymer donors. In one case, a power conversion efficiency of 9.6% was observed, which rivals some of the highest efficiencies for single junction OSCs based on fullerene acceptors.

  16. Hydrocarbon pneumonia

    Science.gov (United States)

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  17. Time-dependent density functional study of the electronic excited states of polycyclic aromatic hydrocarbon radical ions

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, So; Head-Gordon, Martin P; Szczepanski, Jan; Vala, Martin

    2003-06-19

    A uniform, comprehensive theoretical interpretation of spectroscopic data is presented for 53 radical ion species of polycyclic aromatic hydrocarbons (PAHs) with the aid of (Tamm–Dancoff) time-dependent density functional theory (TDDFT). TDDFT is capable of predicting the transition energies to the low-lying excited states of PAH ions with quantitative accuracy (the standard deviation from experimental results being less than 0.3 eV) and their intensity patterns qualitatively correctly. The accuracy is hardly affected by the sizes of PAH ions (azulene through dinaphthocoronene), the types of transitions (Koopmans or satellite transitions), the types of orbi-tals involved (π* ← π, π* ← σ, or σ* ← π transitions), the types of ions (cations or anions), or other geometrical or electronic perturbations (non-planarity, sp3 carbons, or heterocyclic or non-benzenoid rings).

  18. Analysing green supply chain management practices in Brazil's electrical/electronics industry using interpretive structural modelling

    DEFF Research Database (Denmark)

    Govindan, Kannan; Kannan, Devika; Mathiyazhagan, K.

    2013-01-01

    Industries need to adopt the environmental management concepts in the traditional supply chain management. The green supply chain management (GSCM) is an established concept to ensure environment-friendly activities in industry. This paper identifies the relationship of driving and dependence...... that exists between GSCM practices with regard to their adoption within Brazilian electrical/electronic industry with the help of interpretive structural modelling (ISM). From the results, we infer that cooperation with customers for eco-design practice is driving other practices, and this practice acts...... as a vital role among other practices. Commitment to GSCM from senior managers and cooperation with customers for cleaner production occupy the highest level. © 2013 © 2013 Taylor & Francis....

  19. The electronic spectrum of a quasiperiodic potential: From the Hofstadter butterfly to the Fibonacci chain

    Energy Technology Data Exchange (ETDEWEB)

    Naumis, Gerardo G. [Departamento de Fisica-Qumica, Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 20-364, 01000 Mexico, D.F. (Mexico)], E-mail: naumis@fisica.unam.mx; Lopez-Rodriguez, F.J. [Departamento de Fisica-Qumica, Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 20-364, 01000 Mexico, D.F. (Mexico)

    2008-05-01

    We show that an electronic tight-binding Hamiltonian, defined in a quasiperiodic chain with an on-site potential given by a Fibonacci sequence, can be obtained using a superposition of Harper potentials. Since the spectrum of the Harper equation as a function of the magnetic flux is a fractal set, known as the Hofstadter butterfly, we follow the transformation of the butterfly to a new one that contains the Fibonacci potential and related approximants. As a result, the equation in reciprocal space for the Fibonacci case has the form of a chain with long range interaction between Fourier components. Then, the structure of the resulting spectrum is analyzed by calculating the components in reciprocal space of the related potentials. As an application, the correlator of each potential and some localization properties are obtained.

  20. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: A systematic (time-dependent) density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Malloci, G., E-mail: giuliano.malloci@dsf.unica.it [CNR-IOM and Dipartimento di Fisica, Universita degli Studi di Cagliari, Cittadella Universitaria, Strada Prov. le Monserrato-Sestu Km 0.700, I-09042 Monserrato (Italy); Cappellini, G. [CNR-IOM and Dipartimento di Fisica, Universita degli Studi di Cagliari, Cittadella Universitaria, Strada Prov. le Monserrato-Sestu Km 0.700, I-09042 Monserrato (Italy); INAF-Osservatorio Astronomico di Cagliari-Astrochemistry Group, Strada 54, Localita Poggio dei Pini, I-09012 Capoterra (Italy); Mulas, G. [INAF-Osservatorio Astronomico di Cagliari-Astrochemistry Group, Strada 54, Localita Poggio dei Pini, I-09012 Capoterra (Italy); Mattoni, A. [CNR-IOM and Dipartimento di Fisica, Universita degli Studi di Cagliari, Cittadella Universitaria, Strada Prov. le Monserrato-Sestu Km 0.700, I-09042 Monserrato (Italy)

    2011-06-16

    Graphical abstract: Electronic absorption spectra of the neutral molecules of the four PAH classes considered, as computed using the real-time real-space TD-DFT. Highlights: {yields}We present a systematic comparative study of families of PAHs. {yields} We computed electronic, optical, and transport properties as a function of size. {yields} We considered oligoacenes, phenacenes, circumacenes, and oligorylenes. {yields} Circumacenes have the best transport properties compared to the other classes. {yields} Oligorylenes are much more efficient in absorbing low-energy photons. - Abstract: Homologous classes of polycyclic aromatic hydrocarbons (PAHs) in their crystalline state are among the most promising materials for organic opto-electronics. Following previous works on oligoacenes we present a systematic comparative study of the electronic, optical, and transport properties of oligoacenes, phenacenes, circumacenes, and oligorylenes. Using density functional theory (DFT) and time-dependent DFT we computed: (i) electron affinities and first ionization energies; (ii) quasiparticle correction to the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap; (iii) molecular reorganization energies and (iv) electronic absorption spectra of neutral and {+-}1 charged systems. The excitonic effects are estimated by comparing the optical gap and the quasiparticle corrected HOMO-LUMO energy gap. For each molecular property computed, general trends as a function of molecular size and charge state are discussed. Overall, we find that circumacenes have the best transport properties, displaying a steeper decrease of the molecular reorganization energy at increasing sizes, while oligorylenes are much more efficient in absorbing low-energy photons in comparison to the other classes.

  1. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain.

    Science.gov (United States)

    Lapuente-Brun, Esther; Moreno-Loshuertos, Raquel; Acín-Pérez, Rebeca; Latorre-Pellicer, Ana; Colás, Carmen; Balsa, Eduardo; Perales-Clemente, Ester; Quirós, Pedro M; Calvo, Enrique; Rodríguez-Hernández, M A; Navas, Plácido; Cruz, Raquel; Carracedo, Ángel; López-Otín, Carlos; Pérez-Martos, Acisclo; Fernández-Silva, Patricio; Fernández-Vizarra, Erika; Enríquez, José Antonio

    2013-06-28

    The textbook description of mitochondrial respiratory complexes (RCs) views them as free-moving entities linked by the mobile carriers coenzyme Q (CoQ) and cytochrome c (cyt c). This model (known as the fluid model) is challenged by the proposal that all RCs except complex II can associate in supercomplexes (SCs). The proposed SCs are the respirasome (complexes I, III, and IV), complexes I and III, and complexes III and IV. The role of SCs is unclear, and their existence is debated. By genetic modulation of interactions between complexes I and III and III and IV, we show that these associations define dedicated CoQ and cyt c pools and that SC assembly is dynamic and organizes electron flux to optimize the use of available substrates.

  2. Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains

    Science.gov (United States)

    Tanveer, M.; Ruiz-Díaz, P.; Pastor, G. M.

    2016-09-01

    The electronic and magnetic properties of one-dimensional (1D) 3 d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation Δ E (q ⃗) as a function of the spin-density-wave vector q ⃗. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for Δ E (q ⃗) , the local magnetic moments μ⃗i at atom i , the magnetization-vector density m ⃗(r ⃗) , and the local electronic density of states ρi σ(ɛ ) . The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions Ji j between the local magnetic moments μ⃗i and μ⃗j are derived by fitting the ab initio Δ E (q ⃗) to a classical 1D Heisenberg model. The dominant competing interactions Ji j at the origin of the NC magnetic order are identified. The interplay between the various Ji j is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.

  3. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence

    Directory of Open Access Journals (Sweden)

    H. V. Danylovych

    2016-02-01

    Full Text Available We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM, a complex IV inhibitor, and CCCP (10 μM, a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+-dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.

  4. Targeting the mitochondrial electron transport chain in autism, a systematic review and synthesis of a novel therapeutic approach.

    Science.gov (United States)

    Ghanizadeh, Ahmad; Berk, Michael; Farrashbandi, Hassan; Alavi Shoushtari, Ali; Villagonzalo, Kristi-Ann

    2013-09-01

    Autism is a complex developmental disorder with an unknown etiology and without any curative treatment. The mitochondrial electron transfer chains play a major role in the production of ATP, and the generation and management of reactive oxidative stress (ROS). This paper is a systematic review of the role of the mitochondrial electron transport chain in autism, and a consequent hypothesis for treating autism is synthesized. An electronic search with pre-specified inclusion criteria was conducted in order to retrieve all the published articles about the mitochondrial electron transport chain in autism. The two databases of PUBMED and Google Scholar were searched. From one hundred twenty five retrieved titles, 12 (three case control study and 9 case reports) articles met inclusion criteria. All of the included studies indicated dysfunction of electron transport chain in autism. The mitochondrial electron transfer chain seems impaired in some children with autism and ROS production is additionally enhanced. It is hypothesized that interventions involving alternative electron shuttling may improve autism through lowering the production of ROS. In addition, it is expected that this alternative electron shuttling to cytochrome c might enhance the production of ATP which is impaired in the disorder.

  5. Electronic Structure of Pure Selenium and Tellurium Chains and Selenium Rings and with Impurities

    Science.gov (United States)

    Maharjan, N. B.; Cho, Hwa-Suck; Scheicher, R. H.

    2005-03-01

    We have studied the electronic structures of pure chain-structured Selenium and Tellurium and with chalcogen impurities as well as ring-structured Selenium both pure and with Tellurium impurity atoms. The Hartree-Fock Cluster Theory procedure combined with many-body perturbation theory procedure has been used. The accuracy of the calculated electronic wave functions is tested by the investigation of ^77Se and ^125Te nuclear quadrupole interaction parameters. Good agreement is found with experiment for the pure systems. For the impurity systems, the agreement is reasonable but suggests the need for inclusion of more extensive relaxation around the impurity atoms. (*) Current Address: Dept. of Physics, Uppsala University, Sweden (**) Also: Dept. of Physics, University of Central Florida, Orlando, Florida

  6. Electronic structures of one-dimensional metal-molecule hybrid chains studied using scanning tunneling microscopy and density functional theory.

    Science.gov (United States)

    Chung, Kyung-Hoon; Koo, Bon-Gil; Kim, Howon; Yoon, Jong Keon; Kim, Ji-Hoon; Kwon, Young-Kyun; Kahng, Se-Jong

    2012-05-28

    The electronic structures of self-assembled hybrid chains comprising Ag atoms and organic molecules were studied using scanning tunneling microscopy (STM) and spectroscopy (STS) in parallel with density functional theory (DFT). Hybrid chains were prepared by catalytic breaking of Br-C bonds in 4,4″-dibromo-p-terphenyl molecules, followed by spontaneous formation of Ag-C bonds on Ag(111). An atomic model was proposed for the observed hybrid chain structures. Four electronic states were resolved using STS measurements, and strong energy dependence was observed in STM images. These results were explained using first-principles calculations based on DFT.

  7. Impairment of Electron Transfer Chain Induced by Acute Carnosine Administration in Skeletal Muscle of Young Rats

    Directory of Open Access Journals (Sweden)

    José Roberto Macarini

    2014-01-01

    Full Text Available Serum carnosinase deficiency is an inherited disorder that leads to an accumulation of carnosine in the brain tissue, cerebrospinal fluid, skeletal muscle, and other tissues of affected patients. Considering that high levels of carnosine are associated with neurological dysfunction and that the pathophysiological mechanisms involved in serum carnosinase deficiency remain poorly understood, we investigated the in vivo effects of carnosine on bioenergetics parameters, namely, respiratory chain complexes (I–III, II, and II-III, malate dehydrogenase, succinate dehydrogenase, and creatine kinase activities and the expression of mitochondrial-specific transcription factors (NRF-1, PGC-1α, and TFAM in skeletal muscle of young Wistar rats. We observed a significant decrease of complexes I–III and II activities in animals receiving carnosine acutely, as compared to control group. However, no significant alterations in respiratory chain complexes, citric acid cycle enzymes, and creatine kinase activities were found between rats receiving carnosine chronically and control group animals. As compared to control group, mRNA levels of NRF-1, PGC-1α, and TFAM were unchanged. The present findings indicate that electron transfer through the respiratory chain is impaired in skeletal muscle of rats receiving carnosine acutely. In case these findings are confirmed by further studies and ATP depletion is also observed, impairment of bioenergetics could be considered a putative mechanism responsible for the muscle damage observed in serum carnosinase-deficient patients.

  8. Direct observation of dipolar chains in ferrofluids in zero field using cryogenic electron microscopy

    CERN Document Server

    Butter, K; Frederik, P M; Vroege, G J; Philipse, A P

    2003-01-01

    The particle structure of ferrofluids is studied in situ, by cryogenic electron microscopy, on vitrified films of iron and magnetite dispersions. By means of synthesis of iron colloids with controlled particle size and different types of surfactant, dipolar particle interactions can be varied over a broad range, which significantly influences the ferrofluid particle structure. Our experiments on iron dispersions (in contrast to magnetite dispersions) for the first time demonstrate, in ferrofluids in zero field, a transition with increasing particle size from separate particles to linear chains of particles (Butter K, Bomans P H, Frederik P M, Vroege G J and Philipse A P 2003 Nature Mater. 2 88). These chains, already predicted theoretically by de Gennes and Pincus (de Gennes P G and Pincus P A 1970 Phys. Kondens. Mater. 11 189), very much resemble the fluctuating chains found in simulations of dipolar fluids (Weis J J 1998 Mol. Phys. 93 361, Chantrell R W, Bradbury A, Popplewell J and Charles S W 1982 J. Appl...

  9. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    Science.gov (United States)

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  10. A taxonomy of green supply chain management capability among electronics-related manufacturing firms in Taiwan.

    Science.gov (United States)

    Shang, Kuo-Chung; Lu, Chin-Shan; Li, Shaorui

    2010-05-01

    This study investigated crucial green supply chain management (GSCM) capability dimensions and firm performance based on electronics-related manufacturing firms in Taiwan. On the basis of a factor analysis, six green supply chain management dimensions were identified: green manufacturing and packaging, environmental participation, green marketing, green suppliers, green stock, and green eco-design. According to their factor scores in the GSCM dimensions, a cluster analysis subsequently assigned responding firms into four groups, namely, the weak GSCM oriented group, the green marketing oriented group, the green supplier oriented group, and the green stock oriented group. Differences in firm performance and GSCM dimensions among groups were examined. Results indicated that the green marketing oriented group performed best. Based on the resource-based view (RBV), the capability of the green marketing oriented group was considered to be the deployment of a collection of resources that enables it to successfully compete against rivals. The importance of green marketing as a GSCM capability and strategic asset/critical resources for electronics-related manufacturing firms to obtain a competitive edge is therefore highlighted in this study. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli.

    Science.gov (United States)

    Wu, Hui; Tuli, Leepika; Bennett, George N; San, Ka-Yiu

    2015-03-01

    A novel strategy to finely control a large metabolic flux by using a "metabolic transistor" approach was established. In this approach a small change in the level or availability of an essential component for the process is controlled by adding a competitive reaction that affects a precursor or an intermediate in its biosynthetic pathway. The change of the basal level of the essential component, considered as a base current in a transistor, has a large effect on the flux through the major pathway. In this way, the fine-tuning of a large flux can be accomplished. The "metabolic transistor" strategy was applied to control electron transfer chain function by manipulation of the quinone synthesis pathway in Escherichia coli. The achievement of a theoretical yield of lactate production under aerobic conditions via this strategy upon manipulation of the biosynthetic pathway of the key participant, ubiquinone-8 (Q8), in an E. coli strain provides an in vivo, genetically tunable means to control the activity of the electron transfer chain and manipulate the production of reduced products while limiting consumption of oxygen to a defined amount.

  12. Liquid-expanded-liquid-condensed phase transition in amphiphilic monolayers: A renormalization-group approach to chiral-symmetry breaking of hydrocarbon-chain defects

    Science.gov (United States)

    Legré, J.-P.; Albinet, G.; Firpo, J.-L.; Tremblay, A.-M. S.

    1984-11-01

    This paper is concerned with the liquid-expanded (LE) -liquid-condensed (LC) transition in monolayers of amphiphilic molecules at the air-water interface. A model, which can be mapped into the Blume-Emery-Griffiths Hamiltonian, has been considered before within the (mean-field) Bragg-Williams approximation and it gave results which could be successfully compared with experiment. The LE-LC transition has been associated with a chiral-symmetry breaking of the hydrocarbon-chain defects. This model is treated here with a Migdal-Kadanoff approximate position-space renormalization group. Renormalization-group flows are consistent with those obtained by previous authors. The connection between experimental and Hamiltonian parameters is easiest for a particular choice of ensemble, which turns out to be rather subtle for this problem. As in the work of Lavis, Southern, and Bell, isotherms in the surface-pressure-molecular-area plane do not show a signature of the LE-LC transition. The better agreement between experiments (showing a compressibility jump at the LE-LC transition) and mean-field theory suggests that in these cases long-range forces depending on the nature of the polar head and on the water substrate pH are responsible for the jump.

  13. Determinations of ionosphere and plasmasphere electron content for an African chain of GPS stations

    Science.gov (United States)

    Mazzella, Andrew J., Jr.; Bosco Habarulema, John; Yizengaw, Endawoke

    2017-05-01

    The confluence of recent instrumentation deployments in Africa with developments for the determination of plasmasphere electron content using Global Positioning System (GPS) receivers has provided new opportunities for investigations in that region. This investigation, using a selected chain of GPS stations, extends the method (SCORPION) previously applied to a chain of GPS stations in North America in order to separate the ionosphere and plasmasphere contributions to the total electron content (TEC) during a day (24 July) in 2011. The results span latitudes from the southern tip of Africa, across the Equator, to the southern Arabian Peninsula, providing a continuous latitudinal profile for both the ionosphere and plasmasphere during this day.The peak diurnal vertical ionosphere electron content (IEC) increases from about 14 TEC units (1 TEC unit = 1016 electrons m-2) at the southernmost station to about 32 TEC units near the geographic equator, then decreases to about 28 TEC units at the Arabian Peninsula. The peak diurnal slant plasmasphere electron content (PEC) varies between about 4 and 7 TEC units among the stations, with a local latitudinal profile that is significantly influenced by the viewing geometry at the station location, relative to the magnetic field configuration. In contrast, the peak vertical PEC varies between about 1 and 6 TEC units among the stations, with a more uniform latitudinal variation.Comparisons to other GPS data analyses are also presented for TEC, indicating the influence of the PEC on the determination of latitudinal TEC variations and also on the absolute TEC levels, by inducing an overestimate of the receiver bias. The derived TEC latitudinal profiles, in comparison to global map profiles, tend to differ from the map results only about as much as the map results differ among themselves. A combination of ionosonde IEC and alternative GPS TEC measurements, which in principle permits a PEC determination through their difference, was

  14. CTEPP STANDARD OPERATING PROCEDURE FOR MAINTAINING AND RECORDING ELECTRONIC CHAIN-OF-CUSTODY (SOP-4.11)

    Science.gov (United States)

    The method for maintaining and recording electronic Chain-of-Custody (CoC) Records for CTEPP samples is summarized in this SOP. The CoC Records that will be logged electronically include the creation of a sample's identification code, bar code labels, and hard-copy CoC document...

  15. Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain.

    Directory of Open Access Journals (Sweden)

    Vitaly A Selivanov

    2011-03-01

    Full Text Available Reactive oxygen species (ROS produced in the mitochondrial respiratory chain (RC are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD(+ reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC.

  16. Electrochemical studies of a reconstituted photosynthetic electron-transfer chain or towards a biomimetic photoproduction of hydrogen; Etudes electrochimiques de chaines de transfert d'electrons photosynthetiques ou vers une photoproduction biomimetique d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Fourmond, V

    2007-04-15

    The aim of this work is to find an efficient process to convert solar energy into hydrogen. The electrons transfers in reconstituted photosynthetic chains have been particularly studied with the aims 1)in one hand, to better understand the interactions of the different molecules of the photosynthetic chain in order to optimize the changes of the entire organisms for hydrogen production 2)in another hand, to insert the hydrogenases in a photosynthetic chain and then to photo reduce them in order to obtain kinetic data to better understand how it works. (O.M.)

  17. Theoretical Study on Vibronic Interactions and Photophysics of Low-Lying Excited Electronic States of Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Samala, Nagaprasad Reddy; Mahapatra, S.

    2014-06-01

    Polycyclic aromatic hydrocarbons (PAHs), in particular, their radical cation (PAH^+), have long been postulated to be the important molecular species in connection with the spectroscopic observations in the interstellar medium. Motivated by numerous important observations by stellar as well as laboratory spectroscopists, we undertook detailed quantum mechanical studies of the structure and dynamics of electronically excited PAH^+ in an attempt to establish possible synergism with the recorded data In this study, we focus on the quantum chemistry and dynamics of the doublet ground (X) and low-lying excited (A, B and C) electronic states of the radical cation of tetracene (Tn), pentacene (Pn), and hexacene (Hn) molecule. This study is aimed to unravel photostability, spectroscopy, and time-dependent dynamics of their excited electronic states. In order to proceed with the theoretical investigations, we construct suitable multistate and multimode Hamiltonian for these systems with the aid of extensive ab initio calculations of their electronic energy surfaces. The diabatic coupling surfaces are derived from the calculated adiabatic electronic energies. First principles nuclear dynamics calculations are then carried out employing the constructed Hamiltonians and with the aid of time-independent and time-dependent quantum mechanical methods. We compared our theoretical results with available photoelectron spectroscopy, zero kinetic energy photoelectron (ZEKE) spectroscopy and matrix isolation spectroscopy (MIS) results. A peak at 8650 Å in the B state spectrum of Tn^+ is in good agreement with the DIB at 8648 Å observed by Salama et al. Similarly in Pn^+, a peak at 8350 Å can be correlated to the DIB at 8321 Å observed by Salama et al. J. Zhang et al., J. Chem. Phys., 128,104301 (2008).; F. Salama, Origins of Life Evol. Biosphere, 28, 349 (1998).; F. Salama et al., Planet. Space Sci., 43, 1165 (1995).; F. Salama et al., Astrophys. J., 526, 265 (1999).; J

  18. Characterization and Diagnostic Value of Amino Acid Side Chain Neutral Losses Following Electron-Transfer Dissociation

    Science.gov (United States)

    Xia, Qiangwei; Lee, M. Violet; Rose, Christopher M.; Marsh, Alyce J.; Hubler, Shane L.; Wenger, Craig D.; Coon, Joshua J.

    2011-02-01

    Using a large set of high mass accuracy and resolution ETD tandem mass spectra, we characterized ETD-induced neutral losses. From these data we deduced the chemical formula for 20 of these losses. Many of them have been previously observed in electron-capture dissociation (ECD) spectra, such as losses of the side chains of arginine, aspartic acid, glutamic acid, glutamine, asparagine, leucine, histidine, and carbamidomethylated cysteine residues. With this information, we examined the diagnostic value of these amino acid-specific losses. Among 1285 peptide-spectrum matches, 92.5% have agreement between neutral loss-derived peptide amino acid composition and the peptide sequences. Moreover, we show that peptides can be uniquely identified by using only the accurate precursor mass and amino acid composition based on neutral losses; the median number of sequence candidates from an accurate mass query is reduced from 21 to 8 by adding side chain loss information. Besides increasing confidence in peptide identification, our findings suggest the potential use of these diagnostic losses in ETD spectra to improve false discovery rate estimation and to enhance the performance of scoring functions in database search algorithms.

  19. Electron transport chain inhibitors induce microglia activation through enhancing mitochondrial reactive oxygen species production.

    Science.gov (United States)

    Ye, Junli; Jiang, Zhongxin; Chen, Xuehong; Liu, Mengyang; Li, Jing; Liu, Na

    2016-01-15

    Reactive oxygen species (ROS) are believed to be mediators of excessive microglial activation, yet the resources and mechanism are not fully understood. Here we stimulated murine microglial BV-2 cells and primary microglial cells with different inhibitors of electron transport chain (ETC), rotenone, thenoyltrifluoroacetone (TTFA), antimycin A, and NaN3 to induce mitochondrial ROS production and we observed the role of mitochondrial ROS in microglial activation. Our results showed that ETC inhibitors resulted in significant changes in cell viability, microglial morphology, cell cycle arrest and mitochondrial ROS production in a dose-dependent manner in both primary cultural microglia and BV-2 cell lines. Moreover, ETC inhibitors, especially rotenone and antimycin A stimulated secretion of interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 12 (IL-12) and tumor necrosis factor α (TNF-α) by microglia with marked activation of mitogen-activated proteinkinases (MAPKs) and nuclear factor κB (NF-κB), which could be blocked by specific inhibitors of MAPK and NF-κB and mitochondrial antioxidants, Mito-TEMPO. Taken together, our results demonstrated that inhibition of mitochondrial respiratory chain in microglia led to production of mitochondrial ROS and therefore may activate MAPK/NF-кB dependent inflammatory cytokines release in microglia, which indicated that mitochondrial-derived ROS were contributed to microglial activation.

  20. Sequence of b cytochromes relative to ubiquinone in the electron transport chain of Escherichia coli.

    Science.gov (United States)

    Downie, J A; Cox, G B

    1978-01-01

    A ubiquinone-deficient mutant, carrying mutations in two genes affecting ubiquinone biosynthesis, has been used, in comparison with a normal strain, to determine the sequence of some of the components of the electron transport chain of Escherichia coli. The amounts of cytochromes reduced during aerobic steady-state conditions were estimated by comparing low-temperature difference spectra of normal or ubiquinone-deficient membranes with either D-lactate or reduced nicotinamide adenine dinucleotide as substrate. From the amounts of cytochromes reduced it was concluded that ubiquinone functions at two sites, one site being between the dehydrogenases and cytochromes and the second site being after cytochromes b562 and b556 but before cytochromes b558, d, and o. The scheme proposed is discussed in relation to the Mitchell protonmotive ubiquinone cycle. PMID:203570

  1. Electromagnetic probes of molecular motors in the electron transport chains of mitochondria and chloroplasts

    Science.gov (United States)

    Miller, J. H., Jr.; Nawarathna, D.; Vajrala, V.; Gardner, J.; Widger, W. R.

    2005-12-01

    We report on measurements of harmonics generated by whole cells, mitochondria, and chloroplasts in response to applied sinusoidal electric fields. The frequency- and amplitude-dependence of the induced harmonics exhibit features that correlate with physiological processes. Budding yeast (S. cerevisiae) cells produce numerous harmonics, the amplitudes of which depend strongly on frequency. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by respiratory inhibitors. We observe similar peaks when measuring the harmonic response of B. indicas, a relative of the mitochondrial ancestor. In uncoupled mitochondria, in which most of the electron transport chain is active but the ATP-synthase molecular turbine is inactive, only one (lower frequency) of the two peaks is present. Finally, we find that harmonics generated by chloroplasts depend dramatically on incident light, and vanish in the absence of light.

  2. Selenium and zinc protect brain mitochondrial antioxidants and electron transport chain enzymes following postnatal protein malnutrition.

    Science.gov (United States)

    Adebayo, Olusegun L; Adenuga, Gbenga A; Sandhir, Rajat

    2016-05-01

    Selenium (Se) and zinc (Zn) are trace elements required for optimal brain functions. Thus, the role of Se and Zn against protein malnutrition induced oxidative stress on mitochondrial antioxidants and electron transport chain (ETC) enzymes from rats' brain were investigated. Normal protein (NP) and low protein (LP) rats were fed with diets containing 16% and 5% casein respectively for a period of 10weeks. Then the rats were supplemented with Se and Zn at a concentration of 0.15mgL(-1) and 227mgL(-1) in drinking water for 3weeks after which the rats were sacrificed. The results obtained from the study showed significant (pmalnutrition induced oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Electronic densities of states of semi-infinite disordered chains: Comparisons of exact and analytic calculations

    Science.gov (United States)

    Hwang, M.; Podloucky, R.; Gonis, A.; Freeman, A. J.

    1986-01-01

    Results of exact and analytic calculations of the electronic densities of states (DOS's) associated with semi-infinite substitutionally disordered chains are presented using the exact position-space renormalization-group (PSRG) method, the augmented-space (AS) formalism, and the embedded-cluster method (ECM). In addition to total DOS's, the PSRG method allows the calculation of exact partial DOS's associated with local atomic configurations in a disordered material. Comparisons with the exact results indicate that as in the case of infinite materials the ECM provides a reliable method for the calculation of single-particle properties, such as the DOS, of semi-infinite systems. Furthermore, the ECM is found to be much more accurate than the AS formalism, especially in the case of concentrated substitutionally disordered alloys.

  4. Magnetic Grüneisen parameter and magnetocaloric properties of a coupled spin–electron double-tetrahedral chain

    Energy Technology Data Exchange (ETDEWEB)

    Gálisová, Lucia, E-mail: galisova.lucia@gmail.com [Department of Applied Mathematics and Informatics, Faculty of Mechanical Engineering, Technical University, Letná 9, 042 00 Košice (Slovakia); Strečka, Jozef, E-mail: jozef.strecka@upjs.sk [Department of Theoretical Physics and Astrophysics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 040 01 Košice (Slovakia)

    2015-10-16

    Magnetocaloric effect in a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with three equivalent lattice sites available for mobile electrons, is exactly investigated by considering the one-third electron filling and the ferromagnetic Ising exchange interaction between the mobile electrons and their nearest Ising neighbours. The entropy and the magnetic Grüneisen parameter, which closely relate to the magnetocaloric effect, are exactly calculated in order to investigate the relation between the ground-state degeneracy and the cooling efficiency of the hybrid spin–electron system during the adiabatic demagnetization. - Highlights: • A double-tetrahedral chain of mobile electrons and localized Ising spins is studied. • Magnetic Grüneisen parameter for the system is exactly derived. • Macroscopically degenerate phases FRU and FM constitute the ground state. • MCE is three times higher nearby FRU–FM transition than in FRU phase at small fields.

  5. Correlation-Mediated Processes for Electron-Induced Switching between Néel States of Fe Antiferromagnetic Chains

    Science.gov (United States)

    Gauyacq, Jean-Pierre; Yaro, Simeón Moisés; Cartoixà, Xavier; Lorente, Nicolás

    2013-02-01

    The controlled switching between two quasistable Néel states in adsorbed antiferromagnetic Fe chains has recently been achieved by Loth et al. [Science 335, 196 (2012)SCIEAS0036-8075] using tunneling electrons from an STM tip. In order to rationalize their data, we evaluate the rate of tunneling electron-induced switching between the Néel states. Good agreement is found with the experiment, permitting us to identify three switching mechanisms: (i) low STM voltage direct electron-induced transitions, (ii) intermediate STM voltage switching via spin-wave-like excitation, and (iii) high STM voltage transitions mediated by domain-wall formation. Spin correlations in the antiferromagnetic chains are the switching driving force, leading to a marked chain-size dependence.

  6. Composition of the mitochondrial electron transport chain in acanthamoeba castellanii: structural and evolutionary insights.

    Science.gov (United States)

    Gawryluk, Ryan M R; Chisholm, Kenneth A; Pinto, Devanand M; Gray, Michael W

    2012-11-01

    The mitochondrion, derived in evolution from an α-proteobacterial progenitor, plays a key metabolic role in eukaryotes. Mitochondria house the electron transport chain (ETC) that couples oxidation of organic substrates and electron transfer to proton pumping and synthesis of ATP. The ETC comprises several multiprotein enzyme complexes, all of which have counterparts in bacteria. However, mitochondrial ETC assemblies from animals, plants and fungi are generally more complex than their bacterial counterparts, with a number of 'supernumerary' subunits appearing early in eukaryotic evolution. Little is known, however, about the ETC of unicellular eukaryotes (protists), which are key to understanding the evolution of mitochondria and the ETC. We present an analysis of the ETC proteome from Acanthamoeba castellanii, an ecologically, medically and evolutionarily important member of Amoebozoa (sister to Opisthokonta). Data obtained from tandem mass spectrometric (MS/MS) analyses of purified mitochondria as well as ETC complexes isolated via blue native polyacrylamide gel electrophoresis are combined with the results of bioinformatic queries of sequence databases. Our bioinformatic analyses have identified most of the ETC subunits found in other eukaryotes, confirming and extending previous observations. The assignment of proteins as ETC subunits by MS/MS provides important insights into the primary structures of ETC proteins and makes possible, through the use of sensitive profile-based similarity searches, the identification of novel constituents of the ETC along with the annotation of highly divergent but phylogenetically conserved ETC subunits.

  7. Path-integral Monte Carlo simulations for electronic dynamics on molecular chains. II. Transport across impurities

    Science.gov (United States)

    Mühlbacher, Lothar; Ankerhold, Joachim

    2005-05-01

    Electron transfer (ET) across molecular chains including an impurity is studied based on a recently improved real-time path-integral Monte Carlo (PIMC) approach [L. Mühlbacher, J. Ankerhold, and C. Escher, J. Chem. Phys. 121 12696 (2004)]. The reduced electronic dynamics is studied for various bridge lengths and defect site energies. By determining intersite hopping rates from PIMC simulations up to moderate times, the relaxation process in the extreme long-time limit is captured within a sequential transfer model. The total transfer rate is extracted and shown to be enhanced for certain defect site energies. Superexchange turns out to be relevant for extreme gap energies only and then gives rise to different dynamical signatures for high- and low-lying defects. Further, it is revealed that the entire bridge compound approaches a steady state on a much shorter time scale than that related to the total transfer. This allows for a simplified description of ET along donor-bridge-acceptor systems in the long-time range.

  8. Biphasic modulation of the mitochondrial electron transport chain in myocardial ischemia and reperfusion.

    Science.gov (United States)

    Lee, Hsin-Ling; Chen, Chwen-Lih; Yeh, Steve T; Zweier, Jay L; Chen, Yeong-Renn

    2012-04-01

    Mitochondrial electron transport chain (ETC) is the major source of reactive oxygen species during myocardial ischemia-reperfusion (I/R) injury. Ischemic defect and reperfusion-induced injury to ETC are critical in the disease pathogenesis of postischemic heart. The properties of ETC were investigated in an isolated heart model of global I/R. Rat hearts were subjected to ischemia for 30 min followed by reperfusion for 1 h. Studies of mitochondrial function indicated a biphasic modulation of electron transfer activity (ETA) and ETC protein expression during I/R. Analysis of ETAs in the isolated mitochondria indicated that complexes I, II, III, and IV activities were diminished after 30 min of ischemia but increased upon restoration of flow. Immunoblotting analysis and ultrastructural analysis with transmission electron microscopy further revealed marked downregulation of ETC in the ischemic heart and then upregulation of ETC upon reperfusion. No significant difference in the mRNA expression level of ETC was detected between ischemic and postischemic hearts. However, reperfusion-induced ETC biosynthesis in myocardium can be inhibited by cycloheximide, indicating the involvement of translational control. Immunoblotting analysis of tissue homogenates revealed a similar profile in peroxisome proliferator-activated receptor-γ coactivator-1α expression, suggesting its essential role as an upstream regulator in controlling ETC biosynthesis during I/R. Significant impairment caused by ischemic and postischemic injury was observed in the complexes I- III. Analysis of NADH ferricyanide reductase activity indicated that injury of flavoprotein subcomplex accounts for 50% decline of intact complex I activity from ischemic heart. Taken together, our findings provide a new insight into the molecular mechanism of I/R-induced mitochondrial dysfunction.

  9. BIODEGRADATION OF MONOAROMATIC HYDROCARBONS BY AQUIFER MICROORGANISMS USING OXYGEN, NITRATE, OR NITROUS OXIDE AS THE TERMINAL ELECTRON ACCEPTOR

    Science.gov (United States)

    Microcosms were prepared from aquifer material, spiked with monoaromatic hydrocarbons, and amended with oxygen, nitrate, and nitrous oxide. Benzene and alkylbenzenes were degraded to concentrations below 5 µg/liter within 7 days under aerobic conditions, whereas only the alkylbe...

  10. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    OpenAIRE

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-01-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under...

  11. Difluorenyl carbo-Benzenes: Synthesis, Electronic Structure, and Two-Photon Absorption Properties of Hydrocarbon Quadrupolar Chromophores.

    Science.gov (United States)

    Baglai, Iaroslav; de Anda-Villa, Manuel; Barba-Barba, Rodrigo M; Poidevin, Corentin; Ramos-Ortíz, Gabriel; Maraval, Valérie; Lepetit, Christine; Saffon-Merceron, Nathalie; Maldonado, José-Luis; Chauvin, Remi

    2015-09-28

    The synthesis, crystal and electronic structures, and one- and two-photon absorption properties of two quadrupolar fluorenyl-substituted tetraphenyl carbo-benzenes are described. These all-hydrocarbon chromophores, differing in the nature of the linkers between the fluorenyl substituents and the carbo-benzene core (C-C bonds for 3 a, C-C=C-C expanders for 3 b), exhibit quasi-superimposable one-photon absorption (1PA) spectra but different two-photon absorption (2PA) cross-sections σ2PA. Z-scan measurements (under NIR femtosecond excitation) indeed showed that the C≡C expansion results in an approximately twofold increase in the σ2PA value, from 336 to 656 GM (1 GM = 10(-50) cm(4) s molecule(-1) photon(-1)) at λ = 800 nm. The first excited states of Au and Ag symmetry accounting for 1PA and 2PA, respectively, were calculated at the TDDFT level of theory and used for sum-over-state estimations of σ2PA(λi), in which λi = 2 hc/Ei, h is Planck's constant, c is the speed of light, and Ei is the energy of the 2PA-allowed transition. The calculated σ2PA values of 227 GM at 687 nm for 3 a and 349 GM at 708 nm for 3 b are in agreement with the Z-scan results.

  12. Animated Powerpoint Presentations for Teaching Operations and Supply Chain Management: Perceived Value and Electronic Exchange of Files

    Science.gov (United States)

    Treleven, Mark D.; Penlesky, Richard J.; Callarman, Thomas E.; Watts, Charles A.; Bragg, Daniel J.

    2012-01-01

    This paper presents the innovation of sharing animated PowerPoint presentations used in teaching operations and supply chain management techniques and concepts through an international electronic exchange. The plan for the exchange is presented and discussed. The potential benefits to faculty and students of using PowerPoint animations in…

  13. Electron-correlation effects on the static longitudinal polarizability of polymeric chains. II. Bond-length-alternation effects

    Science.gov (United States)

    Champagne, Benoît; Mosley, David H.; Vračko, Marjan; André, Jean-Marie

    1995-08-01

    Ab initio calculations of the static longitudinal polarizability of different molecular hydrogen model chains have been carried out at different levels of approximation to investigate the effects of including electron correlation as well as the variation of these effects as a function of the bond-length alternation of the systems. First, the coupled and uncoupled Hartree-Fock schemes have been employed. To assess the electron-correlation effects, the size-consistent Mo/ller-Plesset treatments limited to second (MP2), third (MP3), and fourth (MP4) order in electron-electron interactions, as well as the coupled-cluster techniques including all double substitutions (CCD), all single and double substitutions (CCSD), and all single and double substitutions with a perturbational estimate of the connected triple excitations [CCSD(T)] have been used. Within the MP4 treatment, a decomposition of the electron-correlation corrections according to the different classes of substitutions and different order highlights the relatively greater importance of the double substitutions at second and third orders. The main findings are that (i) the coupled Hartree-Fock (CHF) technique overestimates the asymptotic static longitudinal polarizability per unit cell for the three types of H2 chains under investigation; (ii) larger basis sets have to be employed when including electron correlation effects, otherwise, the correction is overestimated; (iii) these basis-set effects on the electron-correlation correction are enhanced in the case of the less alternating chains; (iv) using a sufficiently large atomic basis set, at the Mo/ller-Plesset or CCSD(T) levels, the more conjugated the chains, the less the relative magnitude of the electron-correlation correction to the CHF value, whereas using the CCD and CCSD techniques, these relative electron-correlation corrections slightly increase in the case of the less alternating molecular hydrogen chains; and (v) the more conjugated the systems

  14. Trace elements and petroleum hydrocarbons in the aquatic bird food chain of process water evaporation ponds at the Little America Refinery, Casper, Wyoming

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This study determined the nature and extent of trace elements, metals, and petroleum hydrocarbons in evaporation ponds used for the disposal of process water from...

  15. Mitochondrial H2O2 generated from electron transport chain complex 1 stimulates muscle differentiation

    Institute of Scientific and Technical Information of China (English)

    Seonmin Lee; Eunyoung Tak; Jisun Lee; MA Rashid; Michael P Murphy; Joohun Ha; Sung Soo Kim

    2011-01-01

    Mitochondrial reactive oxygen species(mROS)have been considered detrimental to cells. However, their physiological roles as signaling mediators have not been thoroughly explored. Here, we investigated whether mROS generated from mitochondrial electron transport chain(mETC)complex I stimulated muscle differentiation. Our results showed that the quantity of mROS was increased and that manganese superoxide dismutase(MnSOD)was induced via NF-KB activation during muscle differentiation. Mitochondria-targeted antioxidants(MitoQ and MitoTEMPOL)and mitochondria-targeted catalase decreased mROS quantity and suppressed muscle differentiation without affecting the amount of ATP Mitochondrial alterations, including the induction of mitochondrial transcription factor A and an increase in the number and size of mitochondria, and functional activations were observed during muscle differentiation. In particular, increased expression levels of mETC complex I subunits and a higher activity of complex I than other complexes were observed. Rotenone, an inhibitor of mETC complex I, decreased the mitochondrial NADH/NAD+ ratio and mROS levels during muscle differentiation. The inhibition of complex I using small interfering RNAs and rotenone reduced mROS levels, suppressed muscle differentiation, and depleted ATP levels with a concomitant increase in glycolysis. From these results, we conclude that complex I-derived O2, produced through reverse electron transport due to enhanced metabolism and a high activity of complex I, was dismutated into H2O2 by MnSOD induced via NF-KB activation and that the dismutated mH202 stimulated muscle differentiation as a signaling messenger.

  16. In situ Fourier transform-infrared internal reflection spectroscopic analysis of hydrocarbon chain ordering of surfactants adsorbed at mineral oxide surfaces

    Science.gov (United States)

    Cross, William Murray

    The adsorption of surfactants at mineral oxide surfaces was investigated by in situ Fourier transform infrared internal reflection spectroscopy (FT-IR/IRS), and contact angle goniometry. FT-IR/IRS was used to determine both adsorption isotherms and the enthalpy of adsorption. Furthermore, the conformation and orientation of the hydrocarbon chain of SDS adsorbed at a sapphire internal reflection element (IRE) were determined. Contact angle goniometry was used to measure the effect of the surface phase of the surfactant on the hydrophobic character of sapphire surfaces in aqueous solutions. For SDS adsorbed by sapphire, in situ FT-IR/IRS experiments indicate that a surface phase transition occurs at an adsorption density of 2 to 3 x 10-10 mol/cm2 for both pD 2.9 and 6.9. This transition is characterized by a two to four wavenumber shift in the position of the asymmetric -CH2 stretching band. Based on solution spectroscopy studies, the surface phase was found to be similar to solution phase micelles and liquid crystals for adsorption densities less than the adsorption density of the surface phase transition. Whereas for adsorption densities in excess of the adsorption density of the surface phase transition, the surface phase resembled a solution phase coagel species. It was also found that the contact angle of an air bubble at the sapphire surface exhibited a sharp decrease at the adsorption density corresponding to the surface phase transition The effect of temperature on adsorption and phase behavior of SDS at the sapphire IRE surface was also determined. It was shown that a surface phase transition similar to that discussed occurred at approximately 298 K. The adsorption reaction was found to be exothermic, with a heat of adsorption of --1.3 kcal/mole for adsorption densities less than the adsorption density of the surface phase transition at 298 K and --4.1 kcal/mole for adsorption densities greater than the adsorption density of the surface phase transition

  17. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    Science.gov (United States)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  18. The importance of the on-site electron-electron interaction for the magnetic coupling in the zigzag spin-chain compound In2VO5

    KAUST Repository

    Wang, Hao

    2010-09-27

    We present first-principles electronic structure calculations for the zigzag spin-chain compound In2VO5 using the generalized gradient approximation both with and without inclusion of an on-site Coulomb interaction. It has been proposed that In2VO5 is characterized by itinerant V 3d electrons at high temperature and localized electrons at low temperature. Consequently, it is to be expected that electronic correlations play an important role for the magnetic transition from ferromagnetic to antiferromagnetic exchange around 120 K. In this context, we study the electronic and magnetic properties of a set of possible spin configurations. Our calculations show that inclusion of an on-site Coulomb interaction in fact changes the ground state from ferromagnetic to antiferromagnetic. © 2010 IOP Publishing Ltd.

  19. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Shane L Rea

    2007-10-01

    Full Text Available Prior studies have shown that disruption of mitochondrial electron transport chain (ETC function in the nematode Caenorhabditis elegans can result in life extension. Counter to these findings, many mutations that disrupt ETC function in humans are known to be pathologically life-shortening. In this study, we have undertaken the first formal investigation of the role of partial mitochondrial ETC inhibition and its contribution to the life-extension phenotype of C. elegans. We have developed a novel RNA interference (RNAi dilution strategy to incrementally reduce the expression level of five genes encoding mitochondrial proteins in C. elegans: atp-3, nuo-2, isp-1, cco-1, and frataxin (frh-1. We observed that each RNAi treatment led to marked alterations in multiple ETC components. Using this dilution technique, we observed a consistent, three-phase lifespan response to increasingly greater inhibition by RNAi: at low levels of inhibition, there was no response, then as inhibition increased, lifespan responded by monotonically lengthening. Finally, at the highest levels of RNAi inhibition, lifespan began to shorten. Indirect measurements of whole-animal oxidative stress showed no correlation with life extension. Instead, larval development, fertility, and adult size all became coordinately affected at the same point at which lifespan began to increase. We show that a specific signal, initiated during the L3/L4 larval stage of development, is sufficient for initiating mitochondrial dysfunction-dependent life extension in C. elegans. This stage of development is characterized by the last somatic cell divisions normally undertaken by C. elegans and also by massive mitochondrial DNA expansion. The coordinate effects of mitochondrial dysfunction on several cell cycle-dependent phenotypes, coupled with recent findings directly linking cell cycle progression with mitochondrial activity in C. elegans, lead us to propose that cell cycle checkpoint control

  20. Ischemic postconditioning influences electron transport chain protein turnover in Langendorff-perfused rat hearts

    Directory of Open Access Journals (Sweden)

    Song Cao

    2016-02-01

    Full Text Available Ischemia postconditioning (IPo is a promising strategy in reducing myocardial ischemia reperfusion (I/R injury (MIRI, but its specific molecular mechanism is incompletely understood. Langendorff-perfused isolated rat hearts were subjected to global I/R and received IPo in the absence or presence of the mitochondrial ATP-sensitive potassium channel (mitoKATP blocker 5-hydroxydecanoate (5-HD. Myocardial mitochondria were extracted and mitochondrial comparative proteomics was analyzed. IPo significantly reduces post-ischemic myocardial infarction and improved cardiac function in I/R rat hearts, while 5-HD basically cancelled IPo’s myocardial protective effect. Joint application of two-dimensional polyacrylamide gel electrophoresis (2DE and MALDI-TOF MS identified eight differentially expressed proteins between groups. Expression of cardiac succinate dehydrogenase (ubiquinone flavoprotein subunit (SDHA increased more than two-fold after I/R, while IPo led to overexpression of dihydrolipoyl dehydrogenase (DLD, NADH dehydrogenase (ubiquinone flavoprotein 1 and isoform CRA_b (NDUFV1. When the mitoKATP was blocked, MICOS complex subunit Mic60 (IMMT and Stress-70 protein (Grp75 were over expressed, while DLDH, ATPase subunit A (ATPA and rCG44606 were decreased. Seven of the differential proteins belong to electron transport chain (ETC or metabolism regulating proteins, and five of them were induced by closing mitoKATP in I/R hearts. We thus conclude that IPo’s myocardial protective effect relies on energy homeostasis regulation. DLD, SDHA, NDUFV1, Grp75, ATPA and rCG44606 may contribute to IPo’s cardial protective effect.

  1. Ischemic postconditioning influences electron transport chain protein turnover in Langendorff-perfused rat hearts.

    Science.gov (United States)

    Cao, Song; Liu, Yun; Wang, Haiying; Mao, Xiaowen; Chen, Jincong; Liu, Jiming; Xia, Zhengyuan; Zhang, Lin; Liu, Xingkui; Yu, Tian

    2016-01-01

    Ischemia postconditioning (IPo) is a promising strategy in reducing myocardial ischemia reperfusion (I/R) injury (MIRI), but its specific molecular mechanism is incompletely understood. Langendorff-perfused isolated rat hearts were subjected to global I/R and received IPo in the absence or presence of the mitochondrial ATP-sensitive potassium channel (mitoKATP) blocker 5-hydroxydecanoate (5-HD). Myocardial mitochondria were extracted and mitochondrial comparative proteomics was analyzed. IPo significantly reduces post-ischemic myocardial infarction and improved cardiac function in I/R rat hearts, while 5-HD basically cancelled IPo's myocardial protective effect. Joint application of two-dimensional polyacrylamide gel electrophoresis (2DE) and MALDI-TOF MS identified eight differentially expressed proteins between groups. Expression of cardiac succinate dehydrogenase (ubiquinone) flavoprotein subunit (SDHA) increased more than two-fold after I/R, while IPo led to overexpression of dihydrolipoyl dehydrogenase (DLD), NADH dehydrogenase (ubiquinone) flavoprotein 1 and isoform CRA_b (NDUFV1). When the mitoKATP was blocked, MICOS complex subunit Mic60 (IMMT) and Stress-70 protein (Grp75) were over expressed, while DLDH, ATPase subunit A (ATPA) and rCG44606 were decreased. Seven of the differential proteins belong to electron transport chain (ETC) or metabolism regulating proteins, and five of them were induced by closing mitoKATP in I/R hearts. We thus conclude that IPo's myocardial protective effect relies on energy homeostasis regulation. DLD, SDHA, NDUFV1, Grp75, ATPA and rCG44606 may contribute to IPo's cardial protective effect.

  2. Mitochondrial Electron Transport Chain in Heavy Metal-Induced Neurotoxicity: Effects of Cadmium, Mercury, and Copper

    Directory of Open Access Journals (Sweden)

    Elena A. Belyaeva

    2012-01-01

    Full Text Available To clarify the role of mitochondrial electron transport chain (mtETC in heavy-metal-induced neurotoxicity, we studied action of Cd2+, Hg2+, and Cu2+ on cell viability, intracellular reactive oxygen species formation, respiratory function, and mitochondrial membrane potential of rat cell line PC12. As found, the metals produced, although in a different way, dose- and time-dependent changes of all these parameters. Importantly, Cd2+ beginning from 10 [mu]M and already at short incubation time (3 h significantly inhibited the FCCP-uncoupled cell respiration; besides, practically the complete inhibition of the respiration was reached after 3 h incubation with 50 [mu]M Hg2+ or 500 [mu]M Cd2+, whereas even after 48 h exposure with 500 [mu]M Cu2+, only a 50% inhibition of the respiration occurred. Against the Cd2+-induced cell injury, not only different antioxidants and mitochondrial permeability transition pore inhibitors were protective but also such mtETC effectors as FCCP and stigmatellin (complex III inhibitor. However, all mtETC effectors used did not protect against the Hg2+- or Cu2+-induced cell damage. Notably, stigmatellin was shown to be one of the strongest protectors against the Cd2+-induced cell damage, producing a 15–20% increase in the cell viability. The mechanisms of the mtETC involvement in the heavy-metal-induced mitochondrial membrane permeabilization and cell death are discussed.

  3. Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation

    Science.gov (United States)

    Tanaka, Shigenori

    2016-12-01

    Correlational and thermodynamic properties of homogeneous electron liquids at finite temperatures are theoretically analyzed in terms of dielectric response formalism with the hypernetted-chain (HNC) approximation and its modified version. The static structure factor and the local-field correction to describe the strong Coulomb-coupling effects beyond the random-phase approximation are self-consistently calculated through solution to integral equations in the paramagnetic (spin unpolarized) and ferromagnetic (spin polarized) states. In the ground state with the normalized temperature θ =0 , the present HNC scheme well reproduces the exchange-correlation energies obtained by quantum Monte Carlo (QMC) simulations over the whole fluid phase (the coupling constant rs≤100 ), i.e., within 1% and 2% deviations from putative best QMC values in the paramagnetic and ferromagnetic states, respectively. As compared with earlier studies based on the Singwi-Tosi-Land-Sjölander and modified convolution approximations, some improvements on the correlation energies and the correlation functions including the compressibility sum rule are found in the intermediate to strong coupling regimes. When applied to the electron fluids at intermediate Fermi degeneracies (θ ≈1 ), the static structure factors calculated in the HNC scheme show good agreements with the results obtained by the path integral Monte Carlo (PIMC) simulation, while a small negative region in the radial distribution function is observed near the origin, which may be associated with a slight overestimation for the exchange-correlation hole in the HNC approximation. The interaction energies are calculated for various combinations of density and temperature parameters ranging from strong to weak degeneracy and from weak to strong coupling, and the HNC values are then parametrized as functions of rs and θ. The HNC exchange-correlation free energies obtained through the coupling-constant integration show reasonable

  4. Tracing the Fingerprint of Chemical Bonds within the Electron Densities of Hydrocarbons: A Comparative Analysis of the Optimized and the Promolecule Densities.

    Science.gov (United States)

    Keyvani, Zahra Alimohammadi; Shahbazian, Shant; Zahedi, Mansour

    2016-10-18

    The equivalence of the molecular graphs emerging from the comparative analysis of the optimized and the promolecule electron densities in two hundred and twenty five unsubstituted hydrocarbons was recently demonstrated [Keyvani et al. Chem. Eur. J. 2016, 22, 5003]. Thus, the molecular graph of an optimized molecular electron density is not shaped by the formation of the C-H and C-C bonds. In the present study, to trace the fingerprint of the C-H and C-C bonds in the electron densities of the same set of hydrocarbons, the amount of electron density and its Laplacian at the (3, -1) critical points associated with these bonds are derived from both optimized and promolecule densities, and compared in a newly proposed comparative analysis. The analysis not only conforms to the qualitative picture of the electron density build up between two atoms upon formation of a bond in between, but also quantifies the resulting accumulation of the electron density at the (3, -1) critical points. The comparative analysis also reveals a unified mode of density accumulation in the case of 2318 studied C-H bonds, but various modes of density accumulation are observed in the case of 1509 studied C-C bonds and they are classified into four groups. The four emerging groups do not always conform to the traditional classification based on the bond orders. Furthermore, four C-C bonds described as exotic bonds in previous studies, for example the inverted C-C bond in 1,1,1-propellane, are naturally distinguished from the analysis.

  5. Green Supply Chain Collaboration for Fashionable Consumer Electronics Products under Third-Party Power Intervention—A Resource Dependence Perspective

    Directory of Open Access Journals (Sweden)

    Jiuh-Biing Sheu

    2014-05-01

    Full Text Available Under third-party power intervention (TPPI, which increases uncertainty in task environments, complex channel power interplays and restructuring are indispensable among green supply chain members as they move toward sustainable collaborative relationships for increased viability and competitive advantage. From the resource dependence perspective, this work presents a novel conceptual model to investigate the influence of political and social power on channel power restructuring and induced green supply chain collaboration in brander-retailer bidirectional green supply chains of fashionable consumer electronics products (FCEPs. An FCEP refers to the consumer electronics product (e.g., personal computers, mobile phones, computer notebooks, and game consoles with the features of a well-known brand associated, a short product lifecycle, timely and fashionable design fit for market trends, and quick responsiveness to the variations of market demands. The proposed model is tested empirically using questionnaire data obtained from retailers in the FCEP brander-retailer distribution channels. Analytical results reveal that as an extension of political and social power, TPPI positively affects the reciprocal interdependence of dyadic members and reduces power asymmetry, thereby enhancing the collaborative relationship of dyadic members and leading to improved green supply chain performance. Therein, reciprocal interdependence underlying collaborative relationship is the key to reducing the external environmental uncertainties in the TPPI context.

  6. Implementation of Outstanding Electronic Transport in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour.

    Science.gov (United States)

    Xu, Xiaodong; Li, Weiqi; Liu, Linhua; Feng, Jikang; Jiang, Yongyuan; Tian, Wei Quan

    2016-05-23

    A theoretical investigation of the unique electronic transport properties of the junctions composed of boron nitride atomic chains bridging symmetric graphene electrodes with point-contacts is executed through non-equilibrium Green's function technique in combination with density functional theory. Compared with carbon atomic chains, the boron nitride atomic chains have an alternative arrangement of polar covalent B-N bonds and different contacts coupling electrodes, showing some unusual properties in functional atomic electronic devices. Remarkably, they have an extraordinary odd-even behavior of conductivity with the length increase. The rectification character and negative differential resistance of nonlinear current-voltage characteristics can be achieved by manipulating the type of contacts between boron nitride atomic chains bridges and electrodes. The junctions with asymmetric contacts have an intrinsic rectification, caused by stronger coupling in the C-N contact than the C-B contact. On the other hand, for symmetric contact junctions, it is confirmed that the transport properties of the junctions primarily depend on the nature of contacts. The junctions with symmetric C-N contacts have higher conductivity than their C-B contacts counterparts. Furthermore, the negative differential resistances of the junctions with only C-N contacts is very conspicuous and can be achieved at lower bias.

  7. A simple and versatile electronic control system for a picosecond Nd:YLF oscillator - Nd:glass amplifier laser chain

    Science.gov (United States)

    Navathe, C. P.; Ansari, M. S.; Upadhyay, J.; Sreedhar, N.; Chandra, R.; Bundel, H. R.; Moorti, A.; Gupta, P. D.

    1997-11-01

    An electronic control system, developed for power conditioning of a picosecond Nd:YLF - Nd:glass laser oscillator - amplifier chain is described. The system generates charging and firing signals required for a commercial picosecond oscillator operated in a repetitive mode, and also carries out a charging and firing sequence of external amplifiers for single-shot operation. The system also controls a mechanical shutter to selectively pass a laser pulse from the oscillator for subsequent amplification. The laser chain includes a Faraday isolator incorporated with a safety check. A control signal is generated by this unit when conditions suitable for a sufficient level of isolation are achieved, and the same is used for gating the oscillator pulse. Good synchronization is confirmed from the measurements of amplifier gain as a function of the relative time delay in firing of different stages. The electronics developed is simple and modular, with sufficient scope for expansion of the system, and resistant to electromagnetic interference.

  8. Using the Electronic Industry Code of Conduct to Evaluate Green Supply Chain Management: An Empirical Study of Taiwan’s Computer Industry

    OpenAIRE

    Ching-Ching Liu; Yue-Hwa Yu; Wernick, Iddo K.; Ching-Yuan Chang

    2015-01-01

    Electronics companies throughout Asia recognize the benefits of Green Supply Chain Management (GSCM) for gaining competitive advantage. A large majority of electronics companies in Taiwan have recently adopted the Electronic Industry Citizenship Coalition (EICC) Code of Conduct for defining and managing their social and environmental responsibilities throughout their supply chains. We surveyed 106 Tier 1 suppliers to the Taiwanese computer industry to determine their environmental performance...

  9. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription

    Directory of Open Access Journals (Sweden)

    Antonina N. Shvetsova

    2017-08-01

    Full Text Available Mitochondria are the main consumers of molecular O2 in a cell as well as an abundant source of reactive oxygen species (ROS. Both, molecular oxygen and ROS are powerful regulators of the hypoxia-inducible factor-1α-subunit (HIF-α. While a number of mechanisms in the oxygen-dependent HIF-α regulation are quite well known, the view with respect to mitochondria is less clear. Several approaches using pharmacological or genetic tools targeting the mitochondrial electron transport chain (ETC indicated that ROS, mainly formed at the Rieske cluster of complex III of the ETC, are drivers of HIF-1α activation. However, studies investigating non-ETC located mitochondrial defects and their effects on HIF-1α regulation are scarce, if at all existing. Thus, in the present study we examined three cell lines with non-ETC mitochondrial defects and focused on HIF-1α degradation and transcription, target gene expression, as well as ROS levels. We found that cells lacking the key enzyme 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (MECR, and cells lacking manganese superoxide dismutase (MnSOD showed a reduced induction of HIF-1α under long-term (20 h hypoxia. By contrast, cells lacking the mitochondrial DNA depletion syndrome channel protein Mpv17 displayed enhanced levels of HIF-1α already under normoxic conditions. Further, we show that ROS do not exert a uniform pattern when mediating their effects on HIF-1α, although all mitochondrial defects in the used cell types increased ROS formation. Moreover, all defects caused a different HIF-1α regulation via promoting HIF-1α degradation as well as via changes in HIF-1α transcription. Thereby, MECR- and MnSOD-deficient cells showed a reduction in HIF-1α mRNA levels whereas the Mpv17 lacking cells displayed enhanced HIF-1α mRNA levels under normoxia and hypoxia. Altogether, our study shows for the first time that mitochondrial defects which are not related to the ETC and Krebs cycle

  10. Visualizing changes in electron distribution in coupled chains of cytochrome bc1 by modifying barrier for electron transfer between the FeS cluster and heme c1

    Science.gov (United States)

    Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur

    2010-01-01

    Cytochrome c1 of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc1 by modifying heme c1 redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c1 which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c1 back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c1 and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c1 without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc1 revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc1 exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites. PMID:19917265

  11. Electronic spectroscopy of transient species in solid neon: the indene-motif polycyclic hydrocarbon cation family C9Hy(+) (y = 7-9) and their neutrals.

    Science.gov (United States)

    Nagy, Adam; Garkusha, Iryna; Fulara, Jan; Maier, John P

    2013-11-28

    In this Perspective the development and application of a mass-selective matrix isolation approach, employed with success over the last two decades in the spectroscopic characterization of numerous ions and neutral reactive species, is illustrated with original data for hydrocarbon cations and neutrals with a six- and a five-membered carbon ring fused. The setup allows for the electronic and vibrational assessment of these isolated molecules and ions in the inert neon environment. The transient species of interest are chosen due to their astrophysical relevance, and the role they play in flames, plasmas, combustion, organic reactions and atmospheric chemistry. Electronic absorption and fluorescence spectra of indene-related polycyclic aromatic hydrocarbon derivatives, C9Hy(+) (y = 7-9) cations, are presented. The ions were produced in a discharge source and investigated by means of absorption and emission spectroscopies after selectively trapping them in 6 K neon matrices. Photoconversion between the two C9H8(+) indenylium isomers and, upon irradiation, H2 loss from C9H9(+) were observed. Corresponding neutral species C9Hy are identified by photobleaching the matrices containing the cations.

  12. Superlattice configurations in linear chain hydrocarbon binary mixtures - Case of -C28H58: -CH2+2 ( = 10, 12, 14, 16)

    Indian Academy of Sciences (India)

    P B V Prasad; P B Shashikanth; P Neelima

    2005-01-01

    Powder XRD data of mixtures of title compounds are interpreted in terms of superlattices (SL). It is suggested that SL configurations (orthorhombic-orthorhombic, orthorhombic-monoclinic, monoclinic-monoclinic) are realizable, because of discrete orientational changes in the alignment of molecules of -C28H58 hydrocarbon, through an angle , where = 1, 2, 3 $\\ldots$ and angle has an average value of 3.3°. Supporting literature evidence on the inclinations are discussed.

  13. Engineered electron-transfer chain in photosystem 1 based photocathodes outperforms electron-transfer rates in natural photosynthesis.

    Science.gov (United States)

    Kothe, Tim; Pöller, Sascha; Zhao, Fangyuan; Fortgang, Philippe; Rögner, Matthias; Schuhmann, Wolfgang; Plumeré, Nicolas

    2014-08-25

    Photosystem 1 (PS1) triggers the most energetic light-induced charge-separation step in nature and the in vivo electron-transfer rates approach 50 e(-)  s(-1)  PS1(-1). Photoelectrochemical devices based on this building block have to date underperformed with respect to their semiconductor counterparts or to natural photosynthesis in terms of electron-transfer rates. We present a rational design of a redox hydrogel film to contact PS1 to an electrode for photocurrent generation. We exploit the pH-dependent properties of a poly(vinyl)imidazole Os(bispyridine)2Cl polymer to tune the redox hydrogel film for maximum electron-transfer rates under optimal conditions for PS1 activity. The PS1-containing redox hydrogel film displays electron-transfer rates of up to 335±14 e(-)  s(-1)  PS1(-1), which considerably exceeds the rates observed in natural photosynthesis or in other semiartificial systems. Under O2 supersaturation, photocurrents of 322±19 μA cm(-2) were achieved. The photocurrents are only limited by mass transport of the terminal electron acceptor (O2). This implies that even higher electron-transfer rates may be achieved with PS1-based systems in general. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tetrel Bonds in Infinite Molecular Chains by Electronic Structure Theory and Their Role for Crystal Stabilization.

    Science.gov (United States)

    George, Janine; Dronskowski, Richard

    2017-02-16

    Intermolecular bonds play a crucial role in the rational design of crystal structures, dubbed crystal engineering. The relatively new term tetrel bonds (TBs) describes a long-known type of such interactions presently in the focus of quantum chemical cluster calculations. Here, we energetically explore the strengths and cooperativity of these interactions in infinite chains, a possible arrangement of such tetrel bonds in extended crystals, by periodic density functional theory. In the chains, the TBs are amplified due to cooperativity by up to 60%. Moreover, we computationally take apart crystals stabilized by infinite tetrel-bonded chains and assess the importance of the TBs for the crystal stabilization. Tetrel bonds can amount to 70% of the overall interaction energy within some crystals, and they can also be energetically decisive for the taken crystal structure; their individual strengths also compete with the collective packing within the crystal structures.

  15. Molecular dipole static polarisabilities and hyperpolarisabilities of conjugated oligomer chains calculated with the local π-electron coupled cluster theory

    Science.gov (United States)

    Ivanov, Vladimir V.; Zakharov, Anton B.; Adamowicz, Ludwik

    2013-12-01

    A new semi-empirical π-electron local coupled cluster theory has been developed to calculate static dipole polarisabilities and hyperpolarisabilities of extended π-conjugated systems. The key idea of the approach is the use of the ethylene molecular orbitals as the orbital basis set for π-conjugated compounds (the method is termed the Covalent Unbonded Molecules of Ethylene method, cue). Test calculations of some small model organic conjugated compounds demonstrate high accuracy of the version of the cue local coupled cluster theory developed in this work in comparison with the π-electron full configuration interaction (FCI) method. Calculations of different conjugated carbon-based oligomer chains (polyenes, polyynes, polyacenes, polybenzocyclobutadiene, etc.) demonstrate fast convergence (per π-electron) of the polarisability and hyperpolarisability values in the calculations when more classes of orbital excitations are included in the coupled cluster single and double (CCSD) excitation operator. The results show qualitatively correct dependence on the system size.

  16. Electronic and optical properties of functionalized carbon chains with the localized Hartree-Fock and conventional Kohn-Sham methods

    Energy Technology Data Exchange (ETDEWEB)

    Weimer, Martin; Hieringer, Wolfgang; Sala, Fabio Della; Goerling, Andreas

    2005-02-21

    The electronic and optical properties of extended functionalized carbyne chains, polyynes and cumulenes, are investigated with the localized Hartree-Fock method, with conventional Kohn-Sham methods, and with the Hartree-Fock method. It is found that even for very long polyynes the carbon-carbon bond lengths within a polyyne alternate while for long cumulenes no carbon-carbon bond length alternation occurs. Polyynes exhibit a finite HOMO-LUMO gap even if they become very long while cumulenes are found to become metallic in the limit of long chain lengths. The geometry and the electro-optical properties of polyynes cannot be influenced significantly by simple sp-{sigma}-bonded end groups. The optically active {sup 1}{sigma}{sub u}{sup +} <- X{sup 1}{sigma}{sub g}{sup +} electronic transition in polyynes is investigated by time-dependent density-functional theory (TDDFT). The known systematic underestimation of excitation energies in large chain-like systems by TDDFT methods is also found for the systems considered here. Deficiencies in the commonly used exchange-correlation kernels are identified as the main source of this shortcoming of TDDFT methods. Unphysical Coulomb self-interactions present in conventional Kohn-Sham potentials seem to not contribute significantly to the problem.

  17. First-Principles Analysis on π-bonded Chain Structure on Several Polytypes of SiC Surfaces: Importance of Stacking Sequence on Energetics and Electronic Structures

    Science.gov (United States)

    Kaneko, Tomoaki; Tajima, Nobuo; Yamasaki, Takahiro; Ohno, Takahisa

    2017-09-01

    Using first principles calculations based on a density functional theory, the energetics and electronic properties of a (2 × 1) π-bonded chain structure in several polytypes of SiC surfaces are discussed with special attention to the stacking sequence of SiC bilayers. We found that the stacking sequence of the topmost two SiC bilayers plays a decisive role for the stability and electronic structures of the π-bonded chain structure. We showed that the homo-elemental bonds in π-bonded chain structures cause alterations in the electronic structures of both the Si- and C-faces. The energetics of π-bonded chain structures on other group IV and IV-IV compound semiconductors were also investigated. We also showed that the buckling structure in the monolayer honeycomb lattice reflects the buckling of the topmost two atoms in the π-bonded chain structure observed in Si(111) and Ge(111).

  18. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans

    Science.gov (United States)

    Wojtovich, Andrew P.; Wei, Alicia Y.; Sherman, Teresa A.; Foster, Thomas H.; Nehrke, Keith

    2016-01-01

    Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the ‘singlet oxygen generator’ miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology. PMID:27440050

  19. Nonclassical properties of electronic states of aperiodic chains in a homogeneous electric field

    Science.gov (United States)

    Spisak, B. J.; Wołoszyn, M.

    2009-07-01

    The electronic energy levels of one-dimensional aperiodic systems driven by a homogeneous electric field are studied by means of a phase-space description based on the Wigner distribution function. The formulation provides physical insight into the quantum nature of the electronic states for the aperiodic systems generated by the Fibonacci and Thue-Morse sequences. The nonclassical parameter for electronic states is studied as a function of the magnitude of homogeneous electric field to achieve the main result of this work, which is to prove that the nonclassical properties of the electronic states in the aperiodic systems determine the transition probability between electronic states in the region of anticrossings. The localization properties of electronic states and the uncertainty product of momentum and position variables are also calculated as functions of the electric field.

  20. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    Science.gov (United States)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  1. Application of ultrasound and air stripping for the removal of aromatic hydrocarbons from spent sulfidic caustic for use in autotrophic denitrification as an electron donor.

    Science.gov (United States)

    Lee, Jae-Ho; Park, Jeung-Jin; Choi, Gi-Choong; Byun, Im-Gyu; Park, Tae-Joo; Lee, Tae-Ho

    2013-01-01

    Spent sulfidic caustic (SSC) produced from petroleum industry can be reused to denitrify nitrate-nitrogen via a biological nitrogen removal process as an electron donor for sulfur-based autotrophic denitrification, because it has a large amount of dissolved sulfur. However, SSC has to be refined because it also contains some aromatic hydrocarbons, typically benzene, toluene, ethylbenzene, xylene (BTEX) and phenol that are recalcitrant organic compounds. In this study, laboratory-scale ultrasound irradiation and air stripping treatment were applied in order to remove these aromatic hydrocarbons. In the ultrasound system, both BTEX and phenol were exponentially removed by ultrasound irradiation during 60 min of reaction time to give the greatest removal efficiency of about 80%. Whereas, about 95% removal efficiency of BTEX was achieved, but not any significant phenol removal, within 30 min in the air stripping system, indicating that air stripping was a more efficient method than ultrasound irradiation. However, since air stripping did not remove any significant phenol, an additional process for degrading phenol was required. Accordingly, we applied a combined ultrasound and air stripping process. In these experiments, the removal efficiencies of BTEX and phenol were improved compared to the application of ultrasound and air stripping alone. Thus, the combined ultrasound and air stripping treatment is appropriate for refining SSC.

  2. Implementation of electronic chain-of-custody, analysis requests, and data verification at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Pound, H.C.; Miglio, J.J.

    1994-09-01

    To improve the efficiency of the entire environmental data collection process from sample collection to reporting to the client, Los Alamos National Laboratory is developing an automated system to carry out as much of the process as possible. The system uses {open_quotes}off-the-shelf{close_quotes} software. Our program anticipates a drastic reduction of the amount of paper generated throughout the process. The electronic system includes spreadsheets used for field and laboratory chains-of-custody. In addition, the system is used to order analyses and to verify data for compliance.

  3. Factors affecting the adoption of supply chain management practices: Evidence from the Brazilian electro-electronic sector

    Directory of Open Access Journals (Sweden)

    Ana Beatriz Lopes de Sousa Jabbour

    2011-12-01

    Full Text Available This study on the factors affecting the adoption of supply chain management (SCM practices develops four hypotheses based on a literature review, and tests them using survey data of Brazilian electro-electronic firms. The results reveal the big picture of the SCM practices in the sector and suggest that contextual factors such as size, position and bargaining power affect the adoption of SCM practices, which are also more customer oriented. Sector characteristics are very important in analysing SCM practices. Contrary to the findings of literature, the relationship between competitive priorities and SCM practices was not supported statistically.

  4. Sub-molecular electronic structure of self-assembled metal-organic nano-chains on a noble metal surface

    Science.gov (United States)

    Schiffrin, Agustin; Capsoni, Martina; Shaw, Adam; Burke, Sarah

    2014-03-01

    Complexes composed of organic ligands coordinated with transition metal atoms exhibit broad absorption bands from the ultraviolet to the near-infrared. These are the result of the intrinsic molecular electronic properties, which include intra-ligand excitations and metal-to-ligand charge transfer. When adsorbed on a surface, these compounds are relevant for photovoltaic applications. In order to ensure a hierarchical transfer of function from the nano- to the macro-scale, electronic characterization at the single molecule level is essential. We present a low-temperature scanning tunneling spectroscopy study on the local electronic structure of one-dimensional self-assembled metal-organic nanostructures formed on a noble metal surface. The nano-chains consist of terpyridine-based ligands coordinated with iron (Fe) adatoms. We map the local density of electronic states of the system with sub-molecular spatial resolution. Energy-broadened highest-occupied molecular orbitals are dominated by metal states, whereas sharp resonances above Fermi are mainly related to the organic moiety. Coordination between the ligand and Fe induces energy shifts and a break of spatial symmetry of the unoccupied states, pointing to an electron transfer from the metal atom to the terpyridine groups.

  5. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications.

    Science.gov (United States)

    Kovacic, Peter; Pozos, Robert S

    2006-12-01

    This article deals with a novel, simple, integrated approach to cell signaling involving basic biochemical principles, and their relationship to reproductive toxicity. Initially, an overview of the biological aspects is presented. According to the hypothetical approach, cell signaling entails interaction of redox chains, involving initiation, propagation, and termination. The messengers are mainly radicals and electrons that are generated during electron transfer (ET) and hydrogen atom abstraction reactions. Termination and initiation processes in the chain occur at relay sites occupied by redox functionalities, including quinones, metal complexes, and imines, as well as redox amino acids. Conduits for the messengers, comprising species with nonbonding electrons, are omnipresent. Details are provided for the various electron transfer processes. In relation to the varying rates of cell communication, rationale is based on electrons and size of radicals. Another fit is similarly seen in inspection of endogenous precursors of reactive oxygen species (ROS); namely, proteins bearing redox moieties, lipid oxidation products, and carbohydrate radicals. A hypothesis is advanced in which electromagnetic fields associated with mobile radicals and electrons play a role. Although radicals have previously been investigated as messengers, the area occupies a minor part of the research, and it has not attracted broad consensus as an important component. For the first time, an integrated framework is presented composed of radicals, electrons, relays, conduits, and electrical fields. The approach is in keeping with the vast majority of experimental observations. Cell signaling also plays an important role in reproductive toxicity. The main classes that cause birth defects, including ROS, radiation, metal compounds, medicinals, abused drugs, and miscellaneous substances, are known to participate in the signaling process. A unifying basis exists, in that both signaling and

  6. Path-integral Monte-Carlo simulations for electronic dynamics on molecular chains: I. Sequential hopping and super exchange

    CERN Document Server

    Mühlbacher, L; Escher, C M

    2004-01-01

    An improved real-time quantum Monte Carlo procedure is presented and applied to describe the electronic transfer dynamics along molecular chains. The model consists of discrete electronic sites coupled to a thermal environment which is integrated out exactly within the path integral formulation. The approach is numerically exact and its results reduce to known analytical findings (Marcus theory, golden rule) in proper limits. Special attention is paid to the role of superexchange and sequential hopping at lower temperatures in symmetric donor-bridge-acceptor systems. In contrast to previous approximate studies, superexchange turns out to play a significant role only for extremely high lying bridges where the transfer is basically frozen or for extremely low temperatures where for weaker dissipation a description in terms of rate constants is no longer feasible. For bridges with increasing length an algebraic decrease of the yield is found for short as well as for longer bridges. The approach can be extended t...

  7. Electronic spectroscopy of medium-sized polycyclic aromatic hydrocarbons: Implications for the carriers of the 2175 {\\AA} UV bump

    CERN Document Server

    Steglich, M; Rouillé, G; Huisken, F; Mutschke, H; Henning, Th

    2010-01-01

    Mixtures of polycylic aromatic hydrocarbons (PAHs) have been produced by means of laser pyrolysis. The main fraction of the extracted PAHs were primarily medium-sized, up to a maximum size of 38 carbon atoms per molecule. The use of different extraction solvents and subsequent chromatographic fractionation provided mixtures of different size distributions. UV-VIS absorption spectra have been measured at low temperature by matrix isolation spectroscopy and at room temperature with PAHs as film-like deposits on transparent substrates. In accordance with semi-empirical calculations, our findings suggest that large PAHs with sizes around 50 to 60 carbon atoms per molecule could be responsible for the interstellar UV bump at 217.5 nm.

  8. Ring-Mesh Model of Proteoglycan Glycosaminoglycan Chains in Tendon based on Three-dimensional Reconstruction by Focused Ion Beam Scanning Electron Microscopy.

    Science.gov (United States)

    Watanabe, Takafumi; Kametani, Kiyokazu; Koyama, Yoh-Ichi; Suzuki, Daisuke; Imamura, Yasutada; Takehana, Kazushige; Hiramatsu, Kohzy

    2016-11-04

    Tendons are composed of collagen fibrils and proteoglycan predominantly consisting of decorin. Decorin is located on the d-band of collagen fibrils, and its glycosaminoglycan (GAG) chains have been observed between collagen fibrils with transmission electron microscopy. GAG chains have been proposed to interact with each other or with collagen fibrils, but its three-dimensional organization remains unclear. In this report, we used focused ion beam scanning electron microscopy to examine the three-dimensional organization of the GAG chain in the Achilles tendon of mature rats embedded in epoxy resin after staining with Cupromeronic blue, which specifically stains GAG chains. We used 250 serial back-scattered electron images of longitudinal sections with a 10-nm interval for reconstruction. Three-dimensional images revealed that GAG chains form a ring mesh-like structure with each ring surrounding a collagen fibril at the d-band and fusing with adjacent rings to form the planar network. This ring mesh model of GAG chains suggests that more than two GAG chains may interact with each other around collagen fibrils, which could provide new insights into the roles of GAG chains.

  9. Photoinduced intramolecular charge transfer in push-pull polyenes: effects of solvation, electron-donor group, and polyenic chain length.

    Science.gov (United States)

    Akemann, Walther; Laage, Damien; Plaza, Pascal; Martin, Monique M; Blanchard-Desce, Mireille

    2008-01-17

    Subpicosecond absorption spectroscopy is used to characterize the primary photoinduced processes in a class of push-pull polyenes bearing a julolidine end group as the electron donor and a diethylthiobarbituric acid end group as the electron acceptor. The excited-state decay time and relaxation pathway have been studied for four polyenes of increasing chain length (n = 2-5 double bonds) in aprotic solvents of different solvation time, polarity, and viscosity. Intramolecular charge transfer (ICT) leading to a transient state of cyanine-like structure (fully conjugated with no bond length alternation) is observed in all polar solvents at a solvent dependent rate, but the reaction is not observed in cyclohexane, a nonpolar solvent. In polar solvents, the reaction time increases with the average solvation time but remains slightly larger, except in the viscous solvent triacetin. These facts are interpreted as an indication that both solvent reorganization and internal restructuring are involved in the ICT-state formation. The observed photodynamics resemble those we previously found for another class of polyenes bearing a dibutylaniline group as the donor, including a similar charge-transfer rate in spite of the larger electron donor character of the julolidine group. This observation brings further support to the proposal that an intramolecular coordinate is involved in the charge-transfer reaction, possibly a torsional motion of the donor end group. On the other hand, relaxation of the ICT state leads to cis-trans isomerization or crossing to the triplet state, depending on the length of the polyenic chain. In dioxane, tetrahydrofuran, and triacetin, the ICT state of the shorter chains (n = 2, 3) relaxes to the isomer with a viscosity-dependent rate, while that of the longer ones (n = 4, 5) leads to the triplet state with a viscosity-independent rate, as expected. In acetonitrile, the ICT-state lifetime is generally much shorter. A change from photoisomerization to

  10. Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells.

    Science.gov (United States)

    Rhein, V; Baysang, G; Rao, S; Meier, F; Bonert, A; Müller-Spahn, F; Eckert, A

    2009-09-01

    Evidence suggests that amyloid-beta (Abeta) protein is a key factor in the pathogenesis of Alzheimer's disease (AD) and it has been recently proposed that mitochondria are involved in the biochemical pathway by which Abeta can lead to neuronal dysfunction. Here we investigated the specific effects of Abeta on mitochondrial function under physiological conditions. Mitochondrial respiratory functions and energy metabolism were analyzed in control and in human wild-type amyloid precursor protein (APP) stably transfected human neuroblastoma cells (SH-SY5Y). Mitochondrial respiratory capacity of mitochondrial electron transport chain (ETC) in vital cells was measured with a high-resolution respirometry system (Oxygraph-2k). In addition, we determined the individual activities of mitochondrial complexes I-IV that compose ETC and ATP cellular levels. While the activities of complexes I and II did not change between cell types, complex IV activity was significantly reduced in APP cells. In contrast, activity of complex III was significantly enhanced in APP cells, as compensatory response in order to balance the defect of complex IV. However, this compensatory mechanism could not prevent the strong impairment of total respiration in vital APP cells. As a result, the respiratory control ratio (state3/state4) together with ATP production decreased in the APP cells in comparison with the control cells. Chronic exposure to soluble Abeta protein may result in an impairment of energy homeostasis due to a decreased respiratory capacity of mitochondrial electron transport chain which, in turn, may accelerate neurons demise.

  11. Evolution of Electron Transport Chains During the Anaerobic to Aerobic Transition on Early Earth

    Science.gov (United States)

    Sepúlveda, R.; Ortiz, R.; Holmes, D. S.

    2015-12-01

    Sepulveda, R., Ortiz R. and Holmes DS. Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida, and Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.According to several models, life emerged on earth in an anoxic environment where oxygen was not available as a terminal electron acceptor for energy generating reactions. After the Great Oxidation Event (GOE) about 2.4 billion years ago, or perhaps even before the GOE, oxygen became the most widespread and efficient terminal electron acceptor and was accompanied by the evolution of a number of redox proteins that could deliver electrons to reduce oxygen to water. Where did these proteins come from? One hypothesis is that they evolved by the neofunctionalization of previously existing redox proteins that had been used in anaerobic conditions as terminal electron donors to reduce compounds such as perchlorate, nitric oxide or iron. We have used a number of bioinformatic tools to explore a large number of genomes looking for discernable signals of such redeployment of function. A Perl pipeline was designed to detect sequence similarity, conserved gene context, remote homology detection, identification of domains and functional evolution of electron carrier proteins from extreme acidophiles, including the small blue copper protein rusticyanin (involved in FeII oxidation), cytochrome oxidase subunit II and quinol-dependent nitric oxide reductase (qNOR). The protein folds and copper binding sites of rusticyanin are conserved in cytochrome oxidase aa3 subunit II, a protein complex that is responsible for the final passage of electrons to reduce oxygen. Therefore, we hypothesize that rusticyanin, cytochrome oxidase II and qNOR are evolutionarily related. Acknowledgments: Fondecyt 1130683.

  12. On the location of the H+-extruding steps in site 2 of the mitochondrial electron transport chain.

    Science.gov (United States)

    Alexandre, A; Galiazzo, F; Lehninger, A L

    1980-11-25

    The location of the H+-translocating reactions within energy-conserving Site 2 of the mitochondrial electron transport chain was evaluated from two sets of data. In the first, the H+/2e- ejection ratios and Ca2+/2e- uptake ratios were compared for electron flow from succinate dehydrogenase, whose active site is on the matrix side of the inner membrane and from glycerol phosphate dehydrogenase, whose active site is on the cytosolic side. In intact rat liver mitochondria both substrates yielded H+/2e- ejection ratios close to 4.0 and Ca2+/2e- uptake ratios close to 1.0 during antimycin-sensitive reduction of ferricyanide. With rat liver mitoplasts and ferricytochrome c as electron acceptor, both substrates again gave the same stoichiometric ratios. The second approach involved determination of the sidedness of H+ formation during electron flow from succinate to ferricyanide via bypass of the antimycin block of the cytochrome b.c1 complex provided by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), under conditions in which the TMPD-TMPD+ couple does not act as a membrane-penetrating protonophore. Electron flow in this system was inhibited by 2-then-oyltrifluoroacetone, indicating that TMPD probably accepts electrons from ubiquinol. The 2 H+ formed in this system were not delivered into the matrix but appeared directly in the medium in the absence of a protonophore. To accommodate the available evidence on Site 2 substrates, it is concluded that the substrate hydrogens are first transferred to ubiquinone, 2 H+ per 2e then appear in the medium by protolytic dehydrogenation of a species of ubiquinol or ubiquinol-protein having the appropriate sidedness (designated Site 2A), and the other 2 H+ are translocated from the matrix to the medium on passage of 2e- through the cytochrome b x c1 complex (designated Site 2B).

  13. Analysing green supply chain management practices in Brazil's electrical/electronics industry using interpretive structural modelling

    DEFF Research Database (Denmark)

    Govindan, Kannan; Kannan, Devika; Mathiyazhagan, K.

    2013-01-01

    that exists between GSCM practices with regard to their adoption within Brazilian electrical/electronic industry with the help of interpretive structural modelling (ISM). From the results, we infer that cooperation with customers for eco-design practice is driving other practices, and this practice acts...

  14. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Gargi; Varughese, Ashwathy; Ji, Qinqin; Lee, Icksoo; Liu, Jenney; Vaishnav, Asmita; Sinkler, Christopher; Kapralov, Alexandr A.; Moraes, Carlos T.; Sanderson, Thomas H.; Stemmler, Timothy L.; Grossman, Lawrence I.; Kagan, Valerian E.; Brunzelle, Joseph S.; Salomon, Arthur R.; Edwards, Brian F. P.; Hüttemann, Maik

    2016-10-07

    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr28, leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type unphosphorylated Cytc. Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨm), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr28 in vivo. We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via “controlled respiration,” preventing ΔΨm hyperpolarization, a known cause of ROS and trigger of apoptosis.

  15. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Univ. of Rochester, NY (United States)

    2016-01-01

    Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currently exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q2. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE

  16. High Power Amplifiers Chain nonlinearity influence on the accelerating beam stability in free electron laser (FLASH)

    CERN Document Server

    Cichalewski, w

    2010-01-01

    The high power amplifiers transfer characteristics nonlinearities can have a negative influence on the overall system performance. This is also true for the TESLA superconducting cavities accelerating field parameters control systems. This Low Level Radio Frequency control systems uses microwave high power amplifiers (like 10 MW klystrons) as actuators in the mentioned feedback loops. The amplitude compression and phase deviations phenomena introduced to the control signals can reduce the feedback performance and cause electron beam energy instabilities. The transfer characteristics deviations in the Free Electron Laser in Hamburg experiment have been investigated. The outcome of this study together with the description of the developed linearization method based on the digital predistortion approach have been described in this paper. Additionally, the results from the linearization tool performance tests in the FLASH's RF systems have been placed.

  17. Path-integral Monte Carlo simulations for electronic dynamics on molecular chains. I. Sequential hopping and super exchange

    Science.gov (United States)

    Mühlbacher, Lothar; Ankerhold, Joachim; Escher, Charlotte

    2004-12-01

    An improved real-time quantum Monte Carlo procedure is presented and applied to describe the electronic transfer dynamics along molecular chains. The model consists of discrete electronic sites coupled to a thermal environment which is integrated out exactly within the path integral formulation. The approach is numerically exact and its results reduce to known analytical findings (Marcus theory, golden rule) in proper limits. Special attention is paid to the role of superexchange and sequential hopping at lower temperatures in symmetric donor-bridge-acceptor systems. In contrast to previous approximate studies, superexchange turns out to play a significant role only for extremely high-lying bridges where the transfer is basically frozen or for extremely low temperatures where for weaker dissipation a description in terms of rate constants is no longer feasible. For bridges with increasing length an algebraic decrease of the yield is found for short as well as for long bridges. The approach can be extended to electronic systems with more complicated topologies including impurities and in presence of external time-dependent forces.

  18. Effect of Ethanol and Methyl-tert-Butyl Ether on Monoaromatic Hydrocarbon Biodegradation: Response Variability for Different Aquifer Materials Under Various Electron-Accepting Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Aguilar, G L; Fernandez-Sanchez, J M; Kane, S R; Kim, D; Alvarez, P J

    2003-10-06

    Aquifer microcosms were used to determine how ethanol and methyl-tert-butyl ether (MtBE) affect monoaromatic hydrocarbon degradation under different electron-accepting conditions commonly found in contaminated sites experiencing natural attenuation. Response variability was investigated by using aquifer material from four sites with different exposure history. The lag phase prior to BTEX (benzene, toluene, ethylbenzene, and xylenes) and ethanol degradation was typically shorter in microcosms with previously contaminated aquifer material, although previous exposure did not always result in high degradation activity. Toluene was degraded in all aquifer materials and generally under a broader range of electron-accepting conditions compared to benzene, which was degraded only under aerobic conditions. MtBE was not degraded within 100 days under any condition, and it did not affect BTEX or ethanol degradation patterns. Ethanol was often degraded before BTEX compounds, and had a variable effect on BTEX degradation as a function of electron-accepting conditions and aquifer material source. An occasional enhancement of toluene degradation by ethanol occurred in denitrifying microcosms with unlimited nitrate; this may be attributable to the fortuitous growth of toluene-degrading bacteria during ethanol degradation. Nevertheless, experiments with flow-through aquifer columns showed that this beneficial effect could be eclipsed by an ethanol-driven depletion of electron acceptors, which significantly inhibited BTEX degradation and is probably the most important mechanism by which ethanol could hinder BTEX natural attenuation. A decrease in natural attenuation could increase the likelihood that BTEX compounds reach a receptor as well as the potential duration of exposure.

  19. Sub-parts-per-billion determination of nitro-substituted polynuclear aromatic hydrocarbons in airborne particulate matter and soil by electron capture-Tandem mass spectrometry.

    Science.gov (United States)

    Vincenti, M; Minero, C; Pelizzetti, E; Fontana, M; De Maria, R

    1996-12-01

    A procedure for the determination of nitro-substiruted polynuclear aromatic hydrocarbons (nitro-PAH) on crude air-particulate and soil extracts is introduced. Elimination of purification and fractionation procedures was made possible by the use of both a selective ionization method, such as electron-capture chemical ionization, and a specific fragmentation process, in an experiment of tandem mass spectrometry (gas chromatography-electron capture tandem mass spectrometry). Different mass spectrometric procedures were compared. The best performance was observed when the nitro-PAH molecular ions [M](-) were mass-selected by the first analyzer under multiple reaction monitoring conditions and then fragmented to NO 2 (-) (m/z 46). Detection limits were on the order of hundreds of femtograms, as determined in extracts of real environmental samples. This corresponds approximately to 5-15 pg of nitro-PAH per cubic meter of air sampled. Calibration curves were linear over 3 orders of magnitude. Applications to contamination from motor vehicle combustion and the iron industry are briefly discussed.

  20. Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device.

    Science.gov (United States)

    Zhang, Yi; Li, Qian; Guo, Linjie; Huang, Qing; Shi, Jiye; Yang, Yang; Liu, Dongsheng; Fan, Chunhai

    2016-09-26

    The polymerase chain reaction (PCR) is a powerful method for exponentially amplifying very low amounts of target DNA from genetic, clinical, and forensic samples. However, the heating and cooling steps in PCR largely hamper the miniaturization of thermocyclers for on-site detection of pathogens and point-of-care tests. Herein, we devise an ion-mediated PCR (IM-PCR) strategy by exploiting ion-induced DNA denaturation/renaturation cycles. DNA duplexes are effectively denatured in alkaline solutions; whereas, the denatured single-stranded DNA strands readily reform duplexes at neutral pH. By using an integrated microchip that can programmably control the solution pH simply switching the potential in a range of several hundred millivolts, we can trigger IM-PCR at a constant temperature. Analogously to thermal cycling, 30 cycles of pH-induced denaturation/renaturation were used to amplify protein DNA fragments as confirmed by DNA sequencing. We anticipate that this portable, low-cost, and scalable IM-PCR holds great promise for widespread biological, clinical, and environmental applications.

  1. Mitochondrial electron transport chain dysfunction during development does not extend lifespan in Drosophila melanogaster.

    Science.gov (United States)

    Rera, Michael; Monnier, Véronique; Tricoire, Hervé

    2010-02-01

    Since the initial identification of reactive oxygen species (ROS) as the major factor in aging, many studies have provided evidence for the central role of mitochondria in longevity. A few years ago, an unexpected finding showed that the inactivation of the mitochondrial respiratory chain (MRC) in Caenorhabditis elegans, during the developmental stages only, extended lifespan. Activation of this mitochondrial pathway affecting aging (MIT) is associated with several phenotypic features: increased longevity, increased time of development, decreased fertility/fecundity and reduced adult size. Here, we investigated this pathway in another model organism, Drosophila melanogaster. To assess the role of mitochondrial activity in the Drosophila aging process, we partially inactivated the MRC using RNA interference (RNAi) during larval stages. Developmental perturbation of the respiratory process prolonged development, increased lethality during developmental stage, reduced both fecundity and fertility and slightly reduced individual weight. However, in contrast to the nematode, this genetic intervention either shortened or had no effect on lifespan, depending on the level of gene inactivation. Thus, the effects of MRC disruption during development on aging differ between species. We discuss the possible origins of such differences.

  2. Excited Electronic States of Atoms described by the Model of Oscillations in a Chain System

    Directory of Open Access Journals (Sweden)

    Ries A.

    2011-10-01

    Full Text Available We analyzed the numerical values of half-lifes of excited electronic states of the H, He and Li atom, as well as the Li + ion. By means of a fractal scaling model originally published by Müller in this journal, we interprete these half-lifes as proton resonance periods. On the logarithmic scale, the half-lifes were expressed by short continued fractions, where all numerators are Euler’s number. From this representation it was concluded that the half-lifes are heavily located in nodes or sub-nodes of the spectrum of proton resonance periods.

  3. Role of electron transport chain of chloroplasts in oxidative burst of interaction between Erwinia amylovora and host cells.

    Science.gov (United States)

    Abdollahi, Hamid; Ghahremani, Zahra; Erfaninia, Kobra; Mehrabi, Rahim

    2015-05-01

    Erwinia amylovora is a necrogenic bacterium, causing the fire blight disease on many rosaceous plants. Triggering oxidative burst by E. amylovora is a key response by which host plants try to restrain pathogen spread. Electron transport chain (ETC) of chloroplasts is known as an inducible source of reactive oxygen species generation in various stresses. This research was performed to assess the role of this ETC in E. amylovora-host interaction using several inhibitors of this chain in susceptible and resistant apple and pear genotypes. All ETC inhibitors delayed appearance of disease necrosis, but the effects of methyl viologen, glutaraldehyde, and DCMU were more significant. In the absence of inhibitors, resistant genotypes showed an earlier and severe H2O2 generation and early suppression of redox dependent, psbA gene. The effects of inhibitors were corresponding to the redox potential of ETC inhibitory sites. In addition, delayed necrosis appearance was associated with the decreased disease severity and delayed H2O2 generation. These results provide evidences for the involvement of this ETC in host oxidative burst and suggest that chloroplast ETC has significant role in E. amylovora-host interaction.

  4. Structure-property optimizations in donor polymers via electronics, substituents, and side chains toward high efficiency solar cells.

    Science.gov (United States)

    Uy, Rycel L; Price, Samuel C; You, Wei

    2012-07-26

    Many advances in organic photovoltaic efficiency are not yet fully understood and new insight into structure-property relationships is required to push this technology into broad commercial use. The aim of this article is not to comprehensively review recent work, but to provide commentary on recent successes and forecast where researchers should look to enhance the efficiency of photovoltaics. By lowering the LUMO level, utilizing electron-withdrawing substituents advantageously, and employing appropriate side chains on donor polymers, researchers can elucidate further aspects of polymer-PCBM interactions while ultimately developing materials that will push past 10% efficiency. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A silica-immobilized pt2+catalyst for the selective, aerobic oxidation of methane via an electron-transfer chain

    Institute of Scientific and Technical Information of China (English)

    Zengjian An; Xiulian Pan; Xiumei Liu; Xiuwen Han; Xinhe Bao

    2008-01-01

    The combination of Pt2+, benzoquinone and NaNO2 forms an electron-transfer chain, which leads to the oxidation of methane by O2 in CF3COOH aqueous solution. The overall turnover number per hour (TOF) of methane at 120 ℃ is 0.5 h-1, however, only about one fourth (23%) of methane is converted to the desired product of methanol in the formation of CF3COOCH3. The over-oxidation of methane to CO2, over the catalyst with the Pt2+ species immobilized via 2,2'-bipyridyl as a ligand on the silica substrate, is depressed distinctly. Under the same conditions, the conversion to methanol dominates, and no CO2 is observed, on account of the over-oxidation of methane, as confirmed by the isotope experiment.

  6. Aqueous reactions of chlorine dioxide with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Rav-Acha, C.; Choshen, E.

    1987-11-01

    In contrast to mechanisms proposed earlier in the literature, according to which chlorine dioxide (ClO/sub 2/) reacts with various hydrocarbons in aqueous media by abstracting allylic or benzylic hydrogens, it is shown that ClO/sub 2/ reacts with olefins through initial electron transfer. Hydrocarbons that can undergo facile oxidation, such as polycyclic aromatic hydrocarbons (PAH) and some olefins, react with ClO/sub 2/ quite rapidly, while saturated aliphatic hydrocarbons, some aromatic hydrocarbons, and olefins substituted with electron-withdrawing groups remain unreactive. This was substantiated by comparing the reactivities toward ClO/sub 2/ of a variety of hydrocarbons, including aliphatic and aromatic hydrocarbons, saturated and unsaturated acids, PAH, or cyclic and acyclic olefins. The results were supported by a detailed kinetic and product study of the reaction between ClO/sub 2/ and some model compounds.

  7. An impaired respiratory electron chain triggers down-regulation of the energy metabolism and de-ubiquitination of solute carrier amino acid transporters

    OpenAIRE

    Aretz, I.; Hardt, C.; Wittig, I.; Meierhofer, D.

    2016-01-01

    Hundreds of genes have been associated with respiratory chain disease (RCD), the most common inborn error of metabolism so far. Elimination of the respiratory electron chain by depleting the entire mitochondrial DNA (mtDNA, rho0 cells) has therefore one of the most severe impacts on the energy metabolism in eukaryotic cells. In this study, proteomic data sets including the post transcriptional modifications (PTMs) phosphorylation and ubiquitination were integrated with metabolomic data sets a...

  8. Novel non-conjugated main-chain hole-transporting polymers for organic electronics application.

    Science.gov (United States)

    Schelter, Jürgen; Mielke, Georg Felix; Köhnen, Anne; Wies, Jenna; Köber, Sebastian; Nuyken, Oskar; Meerholz, Klaus

    2010-09-01

    A new class of hole-transporting polymers for use in organic electronic devices such as organic light-emitting diodes (OLEDs) or photorefractive holographic storage devices has been synthesized. The polymers contain tetraarylbenzidines or tetraarylphenylenediamines as charge-transporting units in the polymer backbone and are connected by non-conjugating fluorene bridges. For use in OLEDs the novel polymers were functionalized with oxetane groups that can be cross-linked via a cationic ring opening polymerization to yield insoluble networks. Such insoluble films are necessary for the fabrication of multilayer devices by wet deposition techniques. The novel materials feature improved film-formation properties as demonstrated in green-emitting double-layer OLEDs.

  9. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity.

    Science.gov (United States)

    Yang, Jianguo; Xie, Xiaqing; Yang, Mingxuan; Dixon, Ray; Wang, Yi-Ping

    2017-03-21

    A large number of genes are necessary for the biosynthesis and activity of the enzyme nitrogenase to carry out the process of biological nitrogen fixation (BNF), which requires large amounts of ATP and reducing power. The multiplicity of the genes involved, the oxygen sensitivity of nitrogenase, plus the demand for energy and reducing power, are thought to be major obstacles to engineering BNF into cereal crops. Genes required for nitrogen fixation can be considered as three functional modules encoding electron-transport components (ETCs), proteins required for metal cluster biosynthesis, and the "core" nitrogenase apoenzyme, respectively. Among these modules, the ETC is important for the supply of reducing power. In this work, we have used Escherichia coli as a chassis to study the compatibility between molybdenum and the iron-only nitrogenases with ETC modules from target plant organelles, including chloroplasts, root plastids, and mitochondria. We have replaced an ETC module present in diazotrophic bacteria with genes encoding ferredoxin-NADPH oxidoreductases (FNRs) and their cognate ferredoxin counterparts from plant organelles. We observe that the FNR-ferredoxin module from chloroplasts and root plastids can support the activities of both types of nitrogenase. In contrast, an analogous ETC module from mitochondria could not function in electron transfer to nitrogenase. However, this incompatibility could be overcome with hybrid modules comprising mitochondrial NADPH-dependent adrenodoxin oxidoreductase and the Anabaena ferredoxins FdxH or FdxB. We pinpoint endogenous ETCs from plant organelles as power supplies to support nitrogenase for future engineering of diazotrophy in cereal crops.

  10. Synthesis, magnetic properties and electronic structure of the S  =  ½ uniform spin chain system InCuPO5

    Science.gov (United States)

    Koteswararao, B.; Hazra, Binoy K.; Rout, Dibyata; Srinivasarao, P. V.; Srinath, S.; Panda, S. K.

    2017-07-01

    We have studied the structural and magnetic properties and electronic structure of the compound InCuPO5 synthesized by a solid state reaction method. The structure of InCuPO5 comprises S  =  ½ uniform spin chains formed by corner-shared CuO4 units. Magnetic susceptibility (χ(T)) data show a broad maximum at about 65 K, a characteristic feature of one-dimensional (1D) magnetism. The χ(T) data are fitted to the coupled S  =  ½ Heisenberg antiferromagnetic (HAFM) uniform chain model that gives the intra-chain coupling (J/k B) between nearest-neighbor Cu2+ ions as  -100 K and the ratio of inter-chain to intra-chain coupling (J‧/J) as about 0.07. The exchange couplings estimated from the magnetic data analysis are in good agreement with the values computed from the electronic structure calculations based on the density functional theory  +  Hubbard U (DFT  +  U) approach. The combination of theoretical and experimental analysis confirms that InCuPO5 is a candidate material for weakly coupled S  = ½ uniform chains. A detailed theoretical analysis of the electronic structure further reveals that the system is insulating with a gap of 2.4 eV and a local moment of 0.70 µ B/Cu.

  11. Toward CL-20 crystalline covalent solids: On the dependence of energy and electronic properties on the effective size of CL-20 chains

    Science.gov (United States)

    Katin, Konstantin P.; Maslov, Mikhail M.

    2017-09-01

    One-dimensional CL-20 chains have been constructed using CH2 molecular bridges for the covalent bonding between isolated CL-20 fragments. The energy and electronic properties of the obtained nanostructures have been analyzed by means of density functional theory and nonorthogonal tight-binding model considering Landauer-Büttiker formalism. It has been found that such systems become more thermodynamically stable as the efficient length of the chain increases. Thus, the formation of bulk covalent CL-20 solids may be energetically favorable, and such structures may possess high kinetic stability comparing to the CL-20 molecular crystals. As for electronic properties of pure CL-20 chains, they are wide-bandgap semiconductors with energy gaps equal to several electron volts that makes their use in nanoelectronic applications problematic without any additional modification.

  12. Toward CL-20 crystalline covalent solids: On the dependence of energy and electronic properties on the effective size of CL-20 chains

    CERN Document Server

    Katin, Konstantin

    2016-01-01

    One-dimensional CL-20 chains have been constructed using CH$_2$ molecular bridges for the covalent bonding between isolated CL-20 fragments. The energy and electronic properties of the nanostructures obtained have been analyzed by means of density functional theory and nonorthogonal tight-binding model considering Landauer-B\\"uttiker formalism. It has been found that such systems become more thermodynamically stable as the efficient length of the chain increases. Thus, the formation of bulk covalent CL-20 solids may be energetically favorable, and such structures may possess high kinetic stability comparing to the CL-20 molecular crystals. As for electronic properties of pure CL-20 chains, they are wide-bandgap semiconductors with energy gaps equal to several electron volts that makes their use in nanoelectronic applications problematic without any additional modification.

  13. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    hydrocarbon polluted sediments and water .... ecosystem may result in selective increase or decrease in microbial population (Okpokwasili ... been implicated in degradation of hydrocarbons such as crude oil, polyaromatic hydrocarbons and.

  14. [F-18]Fluorodihydrorotenone: Synthesis and evaluation of a mitochondrial electron transport chain (ETC) complex I probe for PET

    Energy Technology Data Exchange (ETDEWEB)

    VanBrocklin, H.F.; Enas, J.D.; Hanrahan, S.M. [Lawrence Berkeley Lab., CA (United States)] [and others

    1994-05-01

    The mitochondrial electron transport chain (ETC) consists of five enzyme complexes (I-V) which participate in the transfer of electrons to oxygen and phosphorylation of ADP (oxidative phosphorylation). ETC dysfunction has been linked to several genetic neurological diseases as well as implicated in Parkinson`s (complex I) and Huntington`s (complex I) disease and normal aging processes. Dihydrorotenone (DHR) is a specific high affinity inhibitor of complex I. In order to develop a PET tracer for complex I, we have labeled DHR with fluorine-18. The tosylate precursor was produced in three steps from commercially available rotenone. Fluorine-18 was introduced by nucleophilic displacement of the tosylate using tetrabutyl-ammonium fluoride. Subsequent oxidation with MnO{sub 2} and HPLC purification gave the desired [{sup 18}F]fluoro-DHR. Initial biodistribution studies were carried out in {approximately}200 g male Sprague-Dawley rats. The tracer was taken up rapidly in the heart, an organ highly enriched with mitochondria, (5.5-6% injected dose (ID)/g at 30 minutes) and in the brain ({approximately}1.5% ID/g at 1 hour).

  15. [Photosynthetic activity and components of the electron transport chain in the aerobic bacteriochlorophyll A-containing bacterium Roseinatronobacter thiooxidans].

    Science.gov (United States)

    Stadnichuk, I N; Ianiushin, M F; Boĭchenko, V A; Lukashev, E P; Boldareva, E N; Solov'ev, A A; Gorlenko, V M

    2009-01-01

    Bioenergetics of the aerobic bacteriochlorophyll a-containing (BCl a) bacterium (ABC bacterium) Roseinatronobacter thiooxidans is a combination of photosynthesis, oxygen respiration, and oxidation of sulfur compounds under alkaliphilic conditions. The photosynthetic activity of Rna. thiooxidans cells was established by the photoinhibition of cell respiration and reversible photobleaching discoloration of the BCl a of reaction centers (RC), connected by the chain of electron transfer with cytochrome c551 oxidation. The species under study, like many purple bacteria and some of the known ABC bacteria, possesses a light-harvesting pigment-protein (LHI) complex with the average number of 30 molecules of antenna BCl a per one photosynthetic RC. Under microaerobic growth conditions, the cells contained bc1 complex and two terminal oxidases: cbb3-cytochrome oxidase and the alternative cytochrome oxidase of the a3 type. Besides, Rna. thiooxidans was shown to have several different soluble low- and high-potential cytochromes c, probably associated with the ability of utilizing sulfur compounds as additional electron donors.

  16. Exchange Perturbation Theory for Multiatomic Electron System and Its Application to Spin Arrangement in Manganite Chains

    Directory of Open Access Journals (Sweden)

    E. V. Orlenko

    2011-01-01

    Full Text Available A new methodology of binding energy calculation with respect to different spin arrangements for a multiatomic electron system is developed from the first principle in the frame of the exchange perturbation theory (EPT. We developed EPT formalism in the general form of the Rayleigh-Srchödinger expansion with a symmetric Hamiltonian, taking into account an exchange and nonadditive contributions of a superexchange interaction. The expressions of all corrections to the energy and wave function were reduced to the nonsymmetric Hamiltonian form. The EPT method is extended for the case of degeneracy in the total spin of a system. As an example of the application of the developed EPT formalism for the degeneracy case, spin arrangements were considered for the key ⟨Mn⟩–O–⟨Mn⟩ (⟨Mn⟩: Mn3+ or Mn4+ fragments in manganites. In ⟨Mn⟩–O–⟨Mn⟩ for La1/3Ca2/3MnO3 are in good agreement the obtained estimations of Heisenberg parameter and binding energy with the available experimental data.

  17. Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration.

    Science.gov (United States)

    Armstrong, Anna F; Badger, Murray R; Day, David A; Barthet, Michelle M; Smith, Penelope M C; Millar, A Harvey; Whelan, Jim; Atkin, Owen K

    2008-08-01

    We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 degrees C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment.

  18. Synthesis of π-conjugated polymers containing aminoquinoline-borafluorene complexes in the main-chain.

    Science.gov (United States)

    Tokoro, Yuichiro; Nagai, Atsushi; Tanaka, Kazuo; Chujo, Yoshiki

    2012-04-13

    The regulation of electron transfer between a conjugated polymer and ligands orthogonally connected to the main-chain is reported. Poly(arylene-ethynylene)s containing aminoquinoline-borafluorene complexes in the main-chain are synthesized in good yields by a Sonogashira-Hagihara coupling. Single crystal X-ray analysis of a model compound has elucidated the complex's structure in which the aminoquinolate moiety and the borafluorene ring are connected directly and orthogonally. Moreover, the optical properties of the polymers are characterized by UV-vis absorption and photoluminescence spectra. Perfluorinated alkyl chain-containing polymers show strong emission, while hydrocarbon chain-containing ones exhibit only a slight emission. DFT calculation suggests that an electron transfer from the excited main-chain to the aminoquinolate ligand is suppressed because of the lowered LUMO level by introducing the electron withdrawing groups, resulting in the significant emission.

  19. Apparatus for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  20. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    Science.gov (United States)

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  1. Valence one-electron and shake-up ionisation bands of polycyclic aromatic hydrocarbons. IV. The dibenzanthracene species

    Energy Technology Data Exchange (ETDEWEB)

    Deleuze, Michael S. [Theoretische Chemie, Departement SBG, Universiteit Hasselt, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium)], E-mail: michael.deleuze@uhasselt.be

    2006-10-26

    A comprehensive study of the He (I) ultra-violet photoelectron spectra of the 1.2,3.4; 1.2,5.6 and 1.2,7.8 isomers of dibenzanthracene up to the double ionisation threshold at {approx}18 eV is presented with the aid of one-particle Green's Function calculations performed using the outer-valence Green's Function (OVGF) approach and the third-order algebraic diagrammatic construction [ADC(3)] scheme, along with basis sets of improving quality. Suited extrapolations of the ADC(3) results for the one-electron energies characterising the {pi}-band system ({epsilon} {sub b} < 10 eV) to Dunning's correlation consistent basis set of triple zeta quality (cc-pVTZ) enable theoretical insights into HeI measurements which approach chemical accuracy (1 kcal/mol or 43.4 meV). In contrast, a confrontation of simulated spectral envelopes with high-resolution He I photoelectron spectra indicates that polycyclic aromatic molecules with sterically overcrowded bay regions are more susceptible to undergo vibronic coupling complications at the {sigma}-ionisation onset. OVGF/cc-pVDZ or OVGF/cc-pVTZ pole strengths smaller than 0.85 systematically corroborate a breakdown of the orbital (or one-electron) picture of ionisation at the ADC(3)/6-31G levels. The extent of shake-up bands is correspondingly related to topological, structural and magnetic criteria of aromaticity. Comparison is made with calculations of the lowest doublet-doublet excitation energies of the related radical cations, by means of time-dependent density functional theory (TDDFT)

  2. Business strategy: Obstacles to the consolidation of Digital TV in Brazil and its impact on electronics supply chain from the stakeholder theory view

    OpenAIRE

    Roberto Bazanini; Hewdy Lobo Ribeiro; Homero Leoni Bazanini

    2014-01-01

    With the introduction of digital TV in Brazil on December 2, 2007, the managers of the electronics industry, of course, waiting for impacts in the supply chain due to the promise of strong eating of the market. According with exploratory research, qualitative and in-depth interview with the executives of the electronics industry, the research objectivist diagnose the obstacles to consolidation of digital TV in Brazil and its possible strategic changes with the emergence of a new scenario resu...

  3. Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation

    OpenAIRE

    2003-01-01

    In Escherichia coli photolyase, excitation of the FAD cofactor in its semireduced radical state (FADH•) induces an electron transfer over ≈15 Å from tryptophan W306 to the flavin. It has been suggested that two additional tryptophans are involved in an electron transfer chain FADH• ← W382 ← W359 ← W306. To test this hypothesis, we have mutated W382 into redox inert phenylalanine. Ultrafast transient absorption studies showed that, in WT photolyase, excited FADH• de...

  4. The homeobox protein CEH-23 mediates prolonged longevity in response to impaired mitochondrial electron transport chain in C. elegans.

    Directory of Open Access Journals (Sweden)

    Ludivine Walter

    2011-06-01

    Full Text Available Recent findings indicate that perturbations of the mitochondrial electron transport chain (METC can cause extended longevity in evolutionarily diverse organisms. To uncover the molecular basis of how altered METC increases lifespan in C. elegans, we performed an RNAi screen and revealed that three predicted transcription factors are specifically required for the extended longevity of mitochondrial mutants. In particular, we demonstrated that the nuclear homeobox protein CEH-23 uniquely mediates the longevity but not the slow development, reduced brood size, or resistance to oxidative stress associated with mitochondrial mutations. Furthermore, we showed that ceh-23 expression levels are responsive to altered METC, and enforced overexpression of ceh-23 is sufficient to extend lifespan in wild-type background. Our data point to mitochondria-to-nucleus communications to be key for longevity determination and highlight CEH-23 as a novel longevity factor capable of responding to mitochondrial perturbations. These findings provide a new paradigm for how mitochondria impact aging and age-dependent diseases.

  5. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I.

    Science.gov (United States)

    Zhang, Bo; Chu, Wei; Wei, Peng; Liu, Ying; Wei, Taotao

    2015-12-01

    Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol.

  6. A Manufacturing Cost and Supply Chain Analysis of SiC Power Electronics Applicable to Medium-Voltage Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Remo, Timothy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reese, Samantha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-24

    Wide bandgap (WBG) semiconductor devices are increasingly being considered for use in certain power electronics applications, where they can improve efficiency, performance, footprint, and, potentially, total system cost compared to systems using traditional silicon (Si) devices. Silicon carbide (SiC) devices in particular -- which are currently more mature than other WBG devices -- are poised for growth in the coming years. Today, the manufacturing of SiC wafers is concentrated in the United States, and chip production is split roughly equally between the United States, Japan, and Europe. Established contract manufacturers located throughout Asia typically carry out manufacturing of WBG power modules. We seek to understand how global manufacturing of SiC components may evolve over time by illustrating the regional cost drivers along the supply chain and providing an overview of other factors that influence where manufacturing is sited. We conduct this analysis for a particular case study where SiC devices are used in a medium-voltage motor drive.

  7. Towards a Traceability System Based on RFID Technology to Check the Content of Pallets within Electronic Devices Supply Chain

    Directory of Open Access Journals (Sweden)

    Ignacio Angulo

    2013-01-01

    Full Text Available In the last few years there has been a growing interest in smart solutions capable of dealing with the traceability of products and materials to improve logistical processes. Most of the existing solutions have been designed without considering the difficulties of deploying traceability systems in the storehouses currently working, not dealing with specific needs, such as environment characteristics or time required to be handled by workers. In this paper, in order to test the viability of its application, a first prototype of a traceability system capable of checking the content of pallets loaded with electronic devices is presented. It is based on ultra-high frequency (UHF radio frequency identification (RFID technology using passive tags. A holistic approach has been adopted to design the system: it begins with a radioelectrical characterization of the environment where the check points will be implemented, continues with the integration of a set of data acquisition and wireless communication devices, and ends with a logistics information system able to provide final user services. The combination of physical layer analysis with a top layer system view can aid the planning as well as operational phase of this type of RFID system within a logistic chain.

  8. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  9. Learning how the electron transport chain works: independent and interactive effects of instructional strategies and learners' characteristics.

    Science.gov (United States)

    Darabi, Aubteen; Arrastia-Lloyd, Meagan C; Nelson, David W; Liang, Xinya; Farrell, Jennifer

    2015-12-01

    In order to develop an expert-like mental model of complex systems, causal reasoning is essential. This study examines the differences between forward and backward instructional strategies' in terms of efficiency, students' learning and progression of their mental models of the electronic transport chain in an undergraduate metabolism course (n = 151). Additionally, the participants' cognitive flexibility, prior knowledge, and mental effort in the learning process are also investigated. The data were analyzed using a series of general linear models to compare the strategies. Although the two strategies did not differ significantly in terms of mental model progression and learning outcomes, both groups' mental models progressed significantly. Mental effort and prior knowledge were identified as significant predictors of mental model progression. An interaction between instructional strategy and cognitive flexibility revealed that the backward instruction was more efficient than the conventional (forward) strategy for students with lower cognitive flexibility, whereas the conventional instruction was more efficient for students with higher cognitive flexibility. The results are discussed and suggestions for future research on the possible moderating role of cognitive flexibility in the area of health education are presented.

  10. The fungal phytotoxin alternariol 9-methyl ether and some of its synthetic analogues inhibit the photosynthetic electron transport chain.

    Science.gov (United States)

    Demuner, Antonio Jacinto; Barbosa, Luiz Cláudio Almeida; Miranda, Ana Cristina Mendes; Geraldo, Guilherme Carvalho; da Silva, Cleiton Moreira; Giberti, Samuele; Bertazzini, Michele; Forlani, Giuseppe

    2013-12-27

    Alternariol and monomethylalternariol are natural phytotoxins produced by some fungal strains, such as Nimbya and Alternaria. These substances confer virulence to phytopathogens, yet no information is available concerning their mode of action. Here we show that in the micromolar range alternariol 9-methyl ether is able to inhibit the electron transport chain (IC50 = 29.1 ± 6.5 μM) in isolated spinach chloroplasts. Since its effectiveness is limited by poor solubility in water, several alternariol analogues were synthesized using different aromatic aldehydes. The synthesized 6H-benzo[c]cromen-6-ones, 5H-chromene[4,3-b]pyridin-5-one, and 5H-chromene[4,3-c]pyridin-5-one also showed inhibitory properties, and three 6H-benzo[c]cromen-6-ones were more effective (IC50 = 12.8-22.8 μM) than the lead compound. Their addition to the culture medium of a cyanobacterial model strain was found to inhibit algal growth, with a relative effectiveness that was consistent with their activity in vitro. In contrast, the growth of a nonphotosynthetic plant cell culture was poorly affected. These compounds may represent a novel lead for the development of new active principles targeting photosynthesis.

  11. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    Energy Technology Data Exchange (ETDEWEB)

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  12. Using the Electronic Industry Code of Conduct to Evaluate Green Supply Chain Management: An Empirical Study of Taiwan’s Computer Industry

    Directory of Open Access Journals (Sweden)

    Ching-Ching Liu

    2015-03-01

    Full Text Available Electronics companies throughout Asia recognize the benefits of Green Supply Chain Management (GSCM for gaining competitive advantage. A large majority of electronics companies in Taiwan have recently adopted the Electronic Industry Citizenship Coalition (EICC Code of Conduct for defining and managing their social and environmental responsibilities throughout their supply chains. We surveyed 106 Tier 1 suppliers to the Taiwanese computer industry to determine their environmental performance using the EICC Code of Conduct (EICC Code and performed Analysis of Variance (ANOVA on the 63/106 questionnaire responses collected. We test the results to determine whether differences in product type, geographic area, and supplier size correlate with different levels of environmental performance. To our knowledge, this is the first study to analyze questionnaire data on supplier adoption to optimize the implementation of GSCM. The results suggest that characteristic classification of suppliers could be employed to enhance the efficiency of GSCM.

  13. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China.

    Science.gov (United States)

    Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam

    2009-02-01

    Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of

  14. Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells.

    Science.gov (United States)

    Sturm-Richter, Katrin; Golitsch, Frederik; Sturm, Gunnar; Kipf, Elena; Dittrich, André; Beblawy, Sebastian; Kerzenmacher, Sven; Gescher, Johannes

    2015-06-01

    Microbial electrochemical cells are an emerging technology for achieving unbalanced fermentations. However, organisms that can serve as potential biocatalysts for this application are limited by their narrow substrate spectrum. This study describes the reprogramming of Escherichia coli for the efficient use of anodes as electron acceptors. Electron transfer into the periplasm was accelerated by 183% via heterologous expression of the c-type cytochromes CymA, MtrA and STC from Shewanella oneidensis. STC was identified as a target for heterologous expression via a two-stage screening approach. First, mass spectroscopic analysis revealed natively expressed cytochromes in S. oneidensis. Thereafter, the corresponding genes were cloned and expressed in E. coli to quantify periplasmic electron transfer activity using methylene blue. This redox dye was further used to expand electron transfer to carbon electrode surfaces. The results demonstrate that E. coli can be reprogrammed from glycerol fermentation to respiration upon production of the new electron transport chain.

  15. CEP-1, the Caenorhabditis elegans p53 homolog, mediates opposing longevity outcomes in mitochondrial electron transport chain mutants.

    Directory of Open Access Journals (Sweden)

    Aiswarya Baruah

    2014-02-01

    Full Text Available Caenorhabditis elegans CEP-1 and its mammalian homolog p53 are critical for responding to diverse stress signals. In this study, we found that cep-1 inactivation suppressed the prolonged lifespan of electron transport chain (ETC mutants, such as isp-1 and nuo-6, but rescued the shortened lifespan of other ETC mutants, such as mev-1 and gas-1. We compared the CEP-1-regulated transcriptional profiles of the long-lived isp-1 and the short-lived mev-1 mutants and, to our surprise, found that CEP-1 regulated largely similar sets of target genes in the two mutants despite exerting opposing effects on their longevity. Further analyses identified a small subset of CEP-1-regulated genes that displayed distinct expression changes between the isp-1 and mev-1 mutants. Interestingly, this small group of differentially regulated genes are enriched for the "aging" Gene Ontology term, consistent with the hypothesis that they might be particularly important for mediating the distinct longevity effects of CEP-1 in isp-1 and mev-1 mutants. We further focused on one of these differentially regulated genes, ftn-1, which encodes ferritin in C. elegans, and demonstrated that it specifically contributed to the extended lifespan of isp-1 mutant worms but did not affect the mev-1 mutant lifespan. We propose that CEP-1 responds to different mitochondrial ETC stress by mounting distinct compensatory responses accordingly to modulate animal physiology and longevity. Our findings provide insights into how mammalian p53 might respond to distinct mitochondrial stressors to influence cellular and organismal responses.

  16. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  17. Synthesis and photovoltaic properties of the polymers base on thiophene derivatives with electron-deficient 3-nitro-1,2,4-triazole side chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bin, E-mail: xtuzb@163.com [College of Chemistry and Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105 (China); Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan 411105 (China); Li, Xinwei; Tang, Peng; Cao, Zhencai; Huang, Hongyan; Shen, Ping [College of Chemistry and Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105 (China); Tan, Songting [College of Chemistry and Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105 (China); Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan 411105 (China)

    2013-07-31

    Three soluble alternating conjugated copolymers PT-TZN, PF-TZN, and PBDT-TZN, composed of thiophene, fluorene, benzo[1,2-b:4,5-b′]dithiophene and thiophene derivatives with 3-nitro-1,2,4-triazole side chains, were synthesized via the palladium-catalyzed Suzuki coupling reaction and Stille coupling reaction. The effects of 3-nitro-1,2,4-triazole on the thermal, photophysical, electrochemical and photovoltaic properties were investigated. The introduction of the 3-nitro-1,2,4-triazole side chains is beneficial for lowering the bandgaps of the polymers. The bulk-heterojunction polymer solar cells were fabricated based on the blend of the as-synthesized polymers and the fullerene acceptor [6, 6]-phenyl-C{sub 61}-butyric acid methyl ester. The maximum power conversion efficiency (1.13%) was obtained with PBDT-TZN as the electron donor under the illumination of Air Mass 1.5, 100 mW/cm{sup 2}. - Highlights: • Three conjugated polymers with 3-nitro-1,2,4-triazole side chains were synthesized. • The introduction of the side chains favors lowering the bandgaps of the polymers. • The strong electron-withdrawing nitro group likely promotes excimer quenching.

  18. Effects of Side-Chain and Electron Exchange Correlation on the Band Structure of Perylene Diimide Liquid Crystals: A Density Functional Study

    Energy Technology Data Exchange (ETDEWEB)

    Arantes, J. T.; Lima, M. P.; Fazzio, A.; Xiang, H.; Wei, S. H.; Dalpian, G. M.

    2009-04-01

    The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (DFT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.

  19. Metal Induced Inhibition of Photosynthesis,Photosynthetic Electron Transport Chain and ATP Content of Anabaena doliolum and Chlorella vulgaris:Interaction with Exogenous ATP

    Institute of Scientific and Technical Information of China (English)

    NIRUPAMAMALLICK; L.C.RAI

    1992-01-01

    This study demonstrates a concentration dependent inhibition of carbon fixation,O2 evolution,photosynthetic electron transport chain and ATP content of A.doliolum and C.vulgaris by Cu,Ni and Fe.Although the mode of inhibition of photosynthetic electron transport chain of both the algae was similar.PS Ⅱdepicted greater sensitivity to the test metals used.The toxicity in both organisms was Cu>Ni>Fe.A.doliolum was,however,more sensitive to Cu and Ni,and C.vulgaris to Fe.Toxicity was generally dependent on metal uptake,which in turn was dependent on their concentrations in the external medium.A partial restoration of nutrient uptake,carbon fixation,and enzyme activities following supplementation of exogenous ATP suggests that ATP regulates toxicity through chelation.

  20. Analysis of seven stages supply chain management in electronic component inventory optimization for warehouse with economic load dispatch using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Ajay Singh Yadav

    2017-06-01

    Full Text Available The purpose of the proposed study is to give a new dimension on warehouse with Economic Load Dispatch using genetic algorithm processes in Seven Stages - 10 Member Supply Chain in Electronic component inventory optimization to describe the certain and uncertain market demand which is based on supply reliability and to develop more realistic and more flexible models. we hope that the proposed study has a great potential to solve various practical tribulations related to the warehouse using genetic algorithm processes in Seven Stages - 10 Member Supply Chain in Electronic component inventory optimization and also provide a general review for the application of soft computing techniques like genetic algorithms to use for improve the effectiveness and efficiency for various aspect of warehouse with Economic Load Dispatch using genetic algorithm.

  1. First-principles study of the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube

    Science.gov (United States)

    Ma, Liang-Cai; Ma, Ling; Zhang, Jian-Min

    2017-07-01

    By using first-principles calculations based on density-functional theory, the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube are systematically investigated. The binding energies of the hybrid structures are remarkably higher than those of corresponding freestanding TM chains, indicating the TM chains are significantly stabilized after encapsulating into copper nanotube. The formed bonds between outer Cu and inner TM atoms show some degree of covalent bonding character. The magnetic ground states of Fe@CuNW and Co@CuNW hybrid structures are ferromagnetic, and both spin and orbital magnetic moments of inner TM atoms have been calculated. The magnetocrystalline anisotropy energies (MAE) of the hybrid structures are enhanced by nearly fourfold compared to those of corresponding freestanding TM chains, indicating that the hybrid structures can be used in ultrahigh density magnetic storage. Furthermore, the easy magnetization axis switches from that along the axis in freestanding Fe chain to that perpendicular to the axis in Fe@CuNT hybrid structure. The large spin polarization at the Fermi level also makes the hybrid systems interesting as good potential materials for spintronic devices.

  2. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  3. Integrated compound profiling screens identify the mitochondrial electron transport chain as the molecular target of the natural products manassantin, sesquicillin, and arctigenin.

    Science.gov (United States)

    Lai, Kevin; Selinger, Douglas W; Solomon, Jonathan M; Wu, Hua; Schmitt, Esther; Serluca, Fabrizio C; Curtis, Daniel; Benson, John D

    2013-01-18

    Phenotypic compound screens can be used to identify novel targets in signaling pathways and disease processes, but the usefulness of these screens depends on the ability to quickly determine the target and mechanism of action of the molecules identified as hits. One fast route to discovering the mechanism of action of a compound is to profile its properties and to match this profile with those of compounds of known mechanism of action. In this work, the Novartis collection of over 12,000 pure natural products was screened for effects on early zebrafish development. The largest phenotypic class of hits, which caused developmental arrest without necrosis, contained known electron transport chain inhibitors and many compounds of unknown mechanism of action. High-throughput transcriptional profiling revealed that these compounds are mechanistically related to one another. Metabolic and biochemical assays confirmed that all of the molecules that induced developmental arrest without necrosis inhibited the electron transport chain. These experiments demonstrate that the electron transport chain is the target of the natural products manassantin, sesquicillin, and arctigenin. The overlap between the zebrafish and transcriptional profiling screens was not perfect, indicating that multiple profiling screens are necessary to fully characterize molecules of unknown function. Together, zebrafish screening and transcriptional profiling represent sensitive and scalable approaches for identifying bioactive compounds and elucidating their mechanism of action.

  4. Time-Resolved EPR Study of Electron-Hole Dissociations Influenced by Alkyl Side Chains at the Photovoltaic Polyalkylthiophene:PCBM Interface.

    Science.gov (United States)

    Miura, Taku; Aikawa, Motoko; Kobori, Yasuhiro

    2014-01-02

    Nanosecond time-resolved electron paramagnetic resonance (TREPR) spectroscopy has been utilized at T = 77 K to characterize alkyl side-chain effects on geometries and on the electronic couplings (VCR) of transient charge-separated (CS) states in the photoactive layers fabricated by the spin-coating of mixed solutions of regioregular polyalkylthiophenes (RR-P3AT) and [6,6]-C61-butyric acid methyl ester (PCBM). By increasing the alkyl side-chain number from 6 to 12 in P3AT, a highly distant and long-lived CS state has been obtained. This result is explained by a coupling of the hole dissociation to the polymer librations by the side-chains. From an exponential decay of VCR with respect to the CS distance, the attenuation factor (βe) has been determined to be βe = 0.2 Å(-1). Such a long-range tunneling feature is explained by the generations of the shallowly trapped, delocalized electron-hole pairs by the dissociation of the hole toward π-stacking directions at the organic photovoltaic interface.

  5. A practical approach to implementing CSR in the electronics industry: global supply chain management focusing on corporate social responsibility

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, S.; Rice, G. [Panasonic Mobile Communication Development of Europe (PMCDE) (United Kingdom); Hilbron, R. [Vodafone Group Plc (United Kingdom); Clift, R.; Wehrmeyer, W. [Centre for Environmental Strategy, Univ. of Surrey (United Kingdom)

    2004-07-01

    This paper covers a co-operative investigation undertaken by Vodafone Plc and Panasonic Mobile Communications (PMC); applying Corporate Social Responsibility (CSR) principles in an actual assessment of the supply chain. Together, we carried out an informal CSR assessment on a Panasonic mobile phone handset manufacturing facility in the Philippines. CSR issues vary with geographical and cultural region. By researching CSR concerns typically encountered in the region, focal points of business performance for the Philippines investigation were identified. These are detailed in the paper. A key benefit from this assessment was the increased understanding of the management of the indirect CSR issues within the supply chain. This understanding is essential when developing a system for CSR supply-chain management. This paper will describe this exercise and its findings and will suggest future steps necessary to successfully integrate CSR principles though the global supply chain. (orig.)

  6. Iron deficiency induces changes in riboflavin secretion and the mitochondrial electron transport chain in hairy roots of Hyoscyamus albus.

    Science.gov (United States)

    Higa, Ataru; Mori, Yuko; Kitamura, Yoshie

    2010-07-15

    Hyoscyamus albus hairy roots secrete riboflavin under Fe-deficient conditions. To determine whether this secretion was linked to an enhancement of respiration, both riboflavin secretion and the reduction of 2,3,5-triphenyltetrazolium chloride (TTC), as a measure of respiration activity, were determined in hairy roots cultured under Fe-deficient and Fe-replete conditions, with or without aeration. Appreciable TTC-reducing activity was detected at the root tips, at the bases of lateral roots and in internal tissues, notably the vascular system. TTC-reducing activity increased under Fe deficiency and this increase occurred in concert with riboflavin secretion and was more apparent under aeration. Riboflavin secretion was not apparent under Fe-replete conditions. In order to examine which elements of the mitochondrial electron transport chain might be involved, the effects of the respiratory inhibitors, barbiturate, dicoumarol, malonic acid, antimycin, KCN and salicylhydroxamic acid (SHAM) were investigated. Under Fe-deficient conditions, malonic acid affected neither root growth, TTC-reducing activity nor riboflavin secretion, whereas barbiturate and SHAM inhibited only root growth and TTC-reducing activity, respectively, and the other compounds variously inhibited growth and TTC-reducing activity. Riboflavin secretion was decreased, in concert with TTC-reducing activity, by dicoumarol, antimycin and KCN, but not by SHAM. In Fe-replete roots, all inhibitors which reduced riboflavin secretion in Fe-deficient roots showed somewhat different effects: notably, antimycin and KCN did not significantly inhibit TTC-reducing activity and the inhibition by dicoumarol was much weaker in Fe-replete roots. Combined treatment with KCN and SHAM also revealed that Fe-deficient and Fe-replete roots reduced TTC in different ways. A decrease in the Fe content of mitochondria in Fe-deficient roots was confirmed. Overall, the results suggest that, under conditions of Fe deficiency in H

  7. Impact of repeated stress on traumatic brain injury-induced mitochondrial electron transport chain expression and behavioral responses in rats

    Directory of Open Access Journals (Sweden)

    Guoqiang eXing

    2013-12-01

    Full Text Available A significant proportion of the military personnel returning from Iraq and Afghanistan conflicts have suffered from both mild traumatic brain injury (mTBI and post-traumatic stress disorder (PTSD. The mechanisms are unknown. We used a rat model of repeated stress and mTBI to examine brain activity and behavioral function. Adult male Sprague-Dawley rats were divided into 4 groups: Naïve; 3 days repeated tail-shock stress; lateral fluid percussion mTBI; and repeated stress followed by mTBI (S-mTBI. Open field activity, sensorimotor responses, and acoustic startle responses were measured after mTBI. The protein expression of mitochondrial electron transport chain (ETC complex subunits (CI-V and pyruvate dehydrogenase (PDHE1α1 were determined in 4 brain regions at day 7 post mTBI. Compared to Naïves, repeated stress decreased horizontal activity; repeated stress and mTBI both decreased vertical activity; and the mTBI and S-mTBI groups were impaired in sensorimotor and acoustic startle responses. Repeated stress significantly increased CI, CII, and CIII protein levels in the prefrontal cortex (PFC, but decreased PDHE1α1 protein in the PFC and cerebellum, and decreased CIV protein in the hippocampus. The mTBI treatment decreased CV protein levels in the ipsilateral hippocampus. The S-mTBI treatment resulted in increased CII, CIII, CIV, and CV protein levels in the PFC, increased CI level in the cerebellum, and increased CIII and CV levels in the cerebral cortex, but decreased CI, CII, CIV, and PDHE1α1 protein levels in the hippocampus. Thus, repeated stress or mTBI alone differentially altered ETC expression in heterogeneous brain regions. Repeated stress followed by mTBI had synergistic effects on brain ETC expression, and resulted in more severe behavioral deficits. These results suggest that repeated stress could have contributed to the high incidence of long-term neurologic and neuropsychiatric morbidity in military personnel with or without

  8. The importance of the on-site electron-electron interaction for the magnetic coupling in the zigzag spin-chain compound In{sub 2}VO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H; Schwingenschloegl, U [KAUST, PSE Division, 23955-6900 Thuwal (Saudi Arabia)

    2010-10-20

    We present first-principles electronic structure calculations for the zigzag spin-chain compound In{sub 2}VO{sub 5} using the generalized gradient approximation both with and without inclusion of an on-site Coulomb interaction. It has been proposed that In{sub 2}VO{sub 5} is characterized by itinerant V 3d electrons at high temperature and localized electrons at low temperature. Consequently, it is to be expected that electronic correlations play an important role for the magnetic transition from ferromagnetic to antiferromagnetic exchange around 120 K. In this context, we study the electronic and magnetic properties of a set of possible spin configurations. Our calculations show that inclusion of an on-site Coulomb interaction in fact changes the ground state from ferromagnetic to antiferromagnetic.

  9. The importance of the on-site electron-electron interaction for the magnetic coupling in the zigzag spin-chain compound In{sub 2}VO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Schwingenschloegl, Udo; Wang, Hao [PSE Division, KAUST, 23955-6900 Thuwal (Saudi Arabia)

    2011-07-01

    We present first-principles electronic structure calculations for the zigzag spin-chain compound In{sub 2}VO{sub 5} using the generalized gradient approximation both with and without inclusion of an on-site Coulomb interaction. It has been proposed that In{sub 2}VO{sub 5} is characterized by itinerant V 3d electrons at high temperature and localized electrons at low temperature. Consequently, it is to be expected that electronic correlations play an important role for the magnetic transition from ferromagnetic to antiferromagnetic exchange around 120 K. In this context, we study the electronic and magnetic properties of a set of possible spin configurations. Our calculations show that inclusion of an on-site Coulomb interaction in fact changes the ground state from ferromagnetic to antiferromagnetic.

  10. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  11. Quantum yield measurements of short-lived photoactivation intermediates in DNA photolyase: toward a detailed understanding of the triple tryptophan electron transfer chain.

    Science.gov (United States)

    Byrdin, Martin; Lukacs, Andras; Thiagarajan, Viruthachalam; Eker, André P M; Brettel, Klaus; Vos, Marten H

    2010-03-11

    The light-dependent DNA repair enzyme photolyase contains a unique evolutionary conserved triple tryptophan electron transfer chain (W382-W359-W306 in photolyase from E. coli) that bridges the approximately 15 A distance between the buried flavin adenine dinucleotide (FAD) cofactor and the surface of the protein. Upon excitation of the semireduced flavin (FADH(o)), electron transfer through the chain leads to formation of fully reduced flavin (FADH(-); required for DNA repair) and oxidation of the most remote tryptophan residue W306, followed by its deprotonation. The thus-formed tryptophanyl radical W306(o)(+) is reduced either by an extrinsic reductant or by reverse electron transfer from FADH(-). Altogether the kinetics of these charge transfer reactions span 10 orders of magnitude, from a few picoseconds to tens of milliseconds. We investigated electron transfer processes in the picosecond-nanosecond time window bridging the time domains covered by ultrafast pump-probe and "classical" continuous probe techniques. Using a recent dedicated setup, we directly show that virtually no absorption change between 300 ps and 10 ns occurs in wild-type photolyase, implying that no charge recombination takes place in this time window. In contrast, W306F mutant photolyase showed a partial absorption recovery with a time constant of 0.85 ns. In wild-type photolyase, the quantum yield of FADH(-) W306(o)(+) was found at 19 +/- 4%, in reference to the established quantum yield of the long-lived excited state of [Ru(bpy)(3)](2+). With this yield, the optical spectrum of the excited state of FADH(o) can be constructed from ultrafast spectroscopic data; this spectrum is dominated by excited state absorption extending from below 450 to 850 nm. The new experimental results, taken together with previous data, allow us to propose a detailed kinetic and energetic scheme of the electron transfer chain.

  12. Versatility of hydrocarbon production in cyanobacteria.

    Science.gov (United States)

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H2O, and CO2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  13. Electronic and magnetic properties of infinite 1D chains of paddlewheel carboxylates M2(COOR)4 (M = Mo, W, Ru, Rh, Ir, Cu)

    KAUST Repository

    Peskov, Maxim

    2013-03-14

    Dinuclear complexes of transition metals bridged by four carboxylate-groups are examples of stable atomic configurations serving as fundamental building blocks of catalysts and prototypical molecular electronic devices. The electronic structure and magnetic properties of many molecular tetracarboxylate complexes were meticulously studied; however, the properties of the one-dimensional (1D) polymeric chain of associated tetracarboxylates have so far evaded much attention. Using periodic density-functional theory calculations, we analyze the electronic structure of condensed tetracarboxylates Mo(II), W(II), Ru(II), Rh(II), Ir(II), and Cu(II). The relationship between crystal structure of the polymerized tetracarboxylates and the electronic properties of the metal-metal bond in the M24+ core is studied. The electronic effects emanating from the association of dinuclear transition metal tetracarboxylates are important for designing molecular electronic devices. In this study, its influence on both direct and indirect metal-metal interactions, and the electronic structure, in particular transport properties, is discussed. © 2013 American Chemical Society.

  14. The Government’s Environment Policy Index Impact on Recycler Behavior in Electronic Products Closed-Loop Supply Chain

    Directory of Open Access Journals (Sweden)

    Suchao He

    2016-01-01

    Full Text Available We establish the model of multilevel closed-loop supply chain (CLSC which included raw material supplier, manufacturer, distributor, retailer, and third-party recycler based on system dynamics (SD. Considering factors which influence recycler behavior-environmental policy index and recovery delay, we apply SD software—Vensim—to simulate CLSC model and study recycler behavior’s influence on the entire CLSC through calculating the bullwhip effect of all levels members order rate. Research shows that (1 the larger the environmental policy index, the greater the recycle proportion and the better the effect of weakening retailer’s order rate in forward supply chain, which however, increasingly, strengthen the reverse supply chain bullwhip effect, (2 the shorter the recovery delay, the better the effect of weakening the forward supply chain bullwhip effect and the longer the recovery delay, which increasingly weakens the reverse supply chain bullwhip effect, and (3 the effect of environmental policy index on the bullwhip effect of all levels members order rate is more significant than recovery delay.

  15. Research Advancement of Supply Chain Electronic Business Collaboration Management%供应链电子商务协同管理研究进展

    Institute of Scientific and Technical Information of China (English)

    孔令夷

    2013-01-01

    网络经济时代,协同电子商务成为企业发展助推器,传统供应链将转变为协同商务供应链,以提高企业长期绩效.梳理2000年以来发表的116篇国内外供应链电子商务协同管理研究论文,将其整理归纳为供应链协同管理研究、供应链与电子商务协同的融合研究、协同技术研究三个维度,并进一步将其细分为12个要素的研究,从而构建了该领域内较为系统的研究框架.以文献计量为基础,分别评述了各维度各要素的研究,发现研究系统性不强,缺乏方法论指导;研究空白点较多;理论研究滞后影响了应用研究的进展;前沿性协同技术研究尚显不足;国内协同产品劣势明显.最后,提出应用系统工程理论及方法开展相关研究的建议,为未来研究提供借鉴.%Since the arrival of network economy,collaborative electronic business becomes roll booster for enterprise development.Meanwhile traditional supply chain has been transformed into collaborative supply chain based on collaborative electronic business for improving members' long-term performance.Based on a literature review of 116 articles published since 2000,the paper depicts supply chain collaboration management research,integration research of supply chain electronic business collaboration,supply chain collaboration technology research,both domestic and abroad.In addition,it implements a structural model including three dimensions and twelve factors to analyze how the passed articles studied supply chain EB collaboration management,finds that nowaday research is incomplete,lacks methodology guidance and keeps many blanks.Meanwhile,theoretical research lag affects the application research progress.And the advanced collaborative technology research is obviously insufficient.Domestic collaborative products have obvious disadvantages.So,the paper recommends applying systems engineering theory and methodology to make relevant research and provides reference

  16. Methane Conversion to C2 Hydrocarbons Using Glow Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    HU Miao; CHEN Jierong

    2007-01-01

    The infrared emission spectra of methane, H', CH and C2 hydrocarbons in natural gas were measured. The process of methane decomposition and C2 hydrocarbons formation was investigated. The experiment showed that the time and conditions of methane decomposition and C2 hydrocarbons formation were different. Methane conversion rate increased with the increase in the current and decrease in the amount of methane. Furthermore, an examination of the reaction mechanisms revealed that free radicals played an important role in the chain reaction.

  17. 浅议电子商务环境下的供应链管理%Supply chain management under electronic commerce environment

    Institute of Scientific and Technical Information of China (English)

    刘家圳

    2015-01-01

    This paper analyzes the thought of experts and scholars at home and abroad, the theory of supply chain gradually perfecting and increasing the complete process, in studying the condition of electronic commerce, in the new network platform for the management, to the change of our country should chain management, realistic and innovative Suggestions, emphasis was on the supply chain of enterprise supply chain management has carried on the detailed the profound analysis, and put forward the constructive Suggestions.%本文首先通过梳理国内外专家学者的思想方法,了解供应链理论的逐步完善和日趋完整的过程,在深入研究电子商务的条件中,结合在新的网络平台下供管理,对我国应链管理的变化,提出具有现实意义和创新意义的建议,重点研究企业的供应链供应链管理进行了细致深刻的剖析,并提出了具有建设性的建议。

  18. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nai; TIAN ZuoJi; LENG YingYing; WANG HuiTong; SONG FuQing; MENG JianHua

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2)branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4)phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hydrocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclusions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydrocarbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram.And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion,saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  19. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  20. Hydrocarbon processing

    Energy Technology Data Exchange (ETDEWEB)

    Hill, S.G.; Seddon, D.

    1989-06-28

    A process for the catalytic conversion of synthesis-gas into a product which comprises naphtha, kerosene and distillate is characterized in that the catalyst is a Fischer-Tropsch catalyst also containing a zeolite, the naphtha fraction contains 60% or less linear paraffins and the kerosene and distillated fractions contain more linear paraffins and olefins than found in the naphtha fraction. Reduction of the relative amount of straight chain material in the naphtha fraction increases the octane number and so enhances the quality of the gasoline product, while the high quality of the kerosene and distillate fractions is maintained.

  1. Soil microbial communities: Influence of geographic location and hydrocarbon pollutants

    CSIR Research Space (South Africa)

    Maila, MP

    2006-02-01

    Full Text Available (CLPP) and Polymerase Chain Reaction–Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Hydrocarbon contaminated and uncontaminated soils from different geographical locations were used in the study. In addition, the influence or relevance...

  2. Business strategy: Obstacles to the consolidation of Digital TV in Brazil and its impact on electronics supply chain from the stakeholder theory view

    Directory of Open Access Journals (Sweden)

    Roberto Bazanini

    2014-04-01

    Full Text Available With the introduction of digital TV in Brazil on December 2, 2007, the managers of the electronics industry, of course, waiting for impacts in the supply chain due to the promise of strong eating of the market. According with exploratory research, qualitative and in-depth interview with the executives of the electronics industry, the research objectivist diagnose the obstacles to consolidation of digital TV in Brazil and its possible strategic changes with the emergence of a new scenario resulting from the expectations that were in the Brazilian market and its implications in terms of a new configuration of complex electronics in the stakeholder theory view. The survey results indicate that, in the perception of respondents, while sales of digital TV have grown sharply in the past two years, from the perspective of industry executives from electronics, the process is not yet consolidated, provided the expectations did not materialize and hence the impact on the supply chain regarding the impact that digital TV would cause this industry sat a level below that expected by technical factors and associated mainly to the lack of integration with stakeholders definitive represented by broadcasters and the federal government. The contribution of the research is to discuss the applicability of the theory stakeholder’s theory in the telecommunications sector in it’s economic, technical and political. The limitations of the work lies in the small number of subjects studied and emphasis on only one of the agents involved and analyzes the process of consolidation of Digital TV in Brazil from the perspective of the consumer electronics industry executives, so it is suggested for future research studies with other agents developers.

  3. Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation.

    Directory of Open Access Journals (Sweden)

    Amy V Pointon

    Full Text Available BACKGROUND: Doxorubicin is one of the most effective anti-cancer drugs but its use is limited by cumulative cardiotoxicity that restricts lifetime dose. Redox damage is one of the most accepted mechanisms of toxicity, but not fully substantiated. Moreover doxorubicin is not an efficient redox cycling compound due to its low redox potential. Here we used genomic and chemical systems approaches in vivo to investigate the mechanisms of doxorubicin cardiotoxicity, and specifically test the hypothesis of redox cycling mediated cardiotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: Mice were treated with an acute dose of either doxorubicin (DOX (15 mg/kg or 2,3-dimethoxy-1,4-naphthoquinone (DMNQ (25 mg/kg. DMNQ is a more efficient redox cycling agent than DOX but unlike DOX has limited ability to inhibit gene transcription and DNA replication. This allowed specific testing of the redox hypothesis for cardiotoxicity. An acute dose was used to avoid pathophysiological effects in the genomic analysis. However similar data were obtained with a chronic model, but are not specifically presented. All data are deposited in the Gene Expression Omnibus (GEO. Pathway and biochemical analysis of cardiac global gene transcription and mRNA translation data derived at time points from 5 min after an acute exposure in vivo showed a pronounced effect on electron transport chain activity. This led to loss of ATP, increased AMPK expression, mitochondrial genome amplification and activation of caspase 3. No data gathered with either compound indicated general redox damage, though site specific redox damage in mitochondria cannot be entirely discounted. CONCLUSIONS/SIGNIFICANCE: These data indicate the major mechanism of doxorubicin cardiotoxicity is via damage or inhibition of the electron transport chain and not general redox stress. There is a rapid response at transcriptional and translational level of many of the genes coding for proteins of the electron transport chain

  4. Composition of the saturated hydrocarbons from males, females, and eggs of the millipede, Graphidostreptus tumuliporus

    NARCIS (Netherlands)

    Oudejans, R.C.H.M.

    The total hydrocarbons of the millipede Graphidostreptus tumuliporus contain 10 per cent saturated components. The composition of the saturated hydrocarbons from males, females, and eggs is reported. Straight-chain alkanes (n-C15–n-C36) constitute 59 to 75 per cent of the saturated hydrocarbons

  5. Kinetic performance and energy profile in a roller coaster electron transfer chain: a study of modified tetraheme-reaction center constructs.

    Science.gov (United States)

    Alric, Jean; Lavergne, Jérôme; Rappaport, Fabrice; Verméglio, André; Matsuura, Katsumi; Shimada, Keizo; Nagashima, Kenji V P

    2006-03-29

    In many electron-transfer proteins, the arrangement of cofactors implies a succession of uphill and downhill steps. The kinetic implications of such arrangements are examined in the present work, based on a study of chimeric photosynthetic reaction centers obtained by expressing the tetraheme subunit from Blastochloris viridis in another purple bacterium, Rubrivivax gelatinosus. Site-directed mutations of the environment of heme c559, which is the immediate electron donor to the primary donor P, induced modifications of this heme's midpoint potential over a range of 400 mV. This resulted in shifts of the apparent midpoint potentials of the neighboring carriers, yielding estimates of the interactions between redox centers. At both extremities of the explored range, the energy profile of the electron-transfer chain presented an additional uphill step, either downstream or upstream from c559. These modifications caused conspicuous changes of the electron-transfer rate across the tetraheme subunit, which became approximately 100-fold slower in the mutants where the midpoint potential of c559 was lowest. A theoretical analysis of the kinetics is presented, predicting a displacement of the rate-limiting step when lowering the potential of c559. A reasonable agreement with the data was obtained when combining this treatment with the rates predicted by electron transfer theory for the individual rate constants.

  6. Role of the middle residue in the triple tryptophan electron transfer chain of DNA photolyase: ultrafast spectroscopy of a Trp-->Phe mutant.

    Science.gov (United States)

    Lukacs, Andras; Eker, André P M; Byrdin, Martin; Villette, Sandrine; Pan, Jie; Brettel, Klaus; Vos, Marten H

    2006-08-17

    Photoreduction of the semi-reduced flavin adenine dinucleotide cofactor FADH* in DNA photolyase from Escherichia coli into FADH- involves three tryptophan (W) residues that form a closely spaced electron-transfer chain FADH*-W382-W359-W306. To investigate this process, we have constructed a mutant photolyase in which W359 is replaced by phenylalanine (F). Monitoring its photoproducts by femtosecond spectroscopy, the excited-state FADH* was found to decay in approximately 30 ps, similar as in wild type (WT) photolyase. In contrast to WT, however, in W359F mutant photolyase the ground-state FADH* fully recovered virtually concomitantly with the decay of its excited state and, despite the presence of the primary electron donor W382, no measurable flavin reduction was observed at any time. Thus, W359F photolyase appears to behave like many other flavoproteins, where flavin excited states are quenched by very short-lived oxidation of aromatic residues. Our analysis indicates that both charge recombination of the primary charge separation state FADH-W382*+ and (in WT) electron transfer from W359 to W382*+ occur with time constants FADH* electron-transfer step. Our results provide a first experimental indication that electron transfer between aromatic residues can take place on the time scale of approximately 10(-12) s.

  7. In vitro evidence that phytanic acid compromises Na(+),K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats.

    Science.gov (United States)

    Busanello, Estela Natacha Brandt; Viegas, Carolina Maso; Moura, Alana Pimentel; Tonin, Anelise Miotti; Grings, Mateus; Vargas, Carmen R; Wajner, Moacir

    2010-09-17

    Phytanic acid (Phyt) tissue concentrations are increased in Refsum disease and other peroxisomal disorders characterized by neurologic damage and brain abnormalities. The present work investigated the in vitro effects of Phyt, at concentrations found in these peroxisomal disorders, on important parameters of energy metabolism in brain cortex of young rats. The parameters analyzed were CO(2) production from labeled acetate and glucose, the activities of the citric acid cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase, as well as of the respiratory chain complexes I-IV, creatine kinase and Na(+),K(+)-ATPase. Our results show that Phyt did not alter citric acid cycle enzyme activities, or CO(2) production from acetate, reflecting no impairment of the functionality of the citric acid cycle. In contrast, respiratory chain activities were reduced at complexes I, II, I-III, II-III and IV. Membrane synaptical Na(+),K(+)-ATPase activity was also reduced by Phyt, with no alteration of creatine kinase activity. Considering the importance of the electron flow through the respiratory chain for brain energy metabolism (oxidative phosphorylation) and of Na(+),K(+)-ATPase activity for maintaining membrane potential necessary for neurotransmission, the data indicate that Phyt impairs brain bioenergetics at the level of energy formation, as well as neurotransmission. It is presumed that Phyt-induced impairment of these important systems may be involved at least in part in the neurological damage found in patients affected by disorders in which brain Phyt concentrations are increased.

  8. Establishing the Recycled Supply Chain Network of Waste Electrical and Electronic Equipment%废旧电器回收再循环体系的构建

    Institute of Scientific and Technical Information of China (English)

    马辉; 郭汉丁

    2012-01-01

    Based on the study of successful experiment of some countries of Europe, this paper analyzes the status of recycled supply chain network of waste electrical and electronic equipment of China. Combining the situation of our county, it establishes the recycled supply chain network of waste electrical and electronic equipment according the situation, and advances the countermeasure to guarantee the network working effectively.%在研究发达国家废旧电器回收再生利用成功经验的基础上,分析了中国废旧电器回收处理的现状与问题,结合中国生产企业的具体情况,建立了符合中国国情的废旧电器回收再循环体系,并制定了保障回收体系健康运转的对策,旨在对中国废旧电器回收再循环工作起到一定的指导作用,促进该领域的不断健全与发展.

  9. Sensitivity of stellar electron-capture rates to parent neutron number: A case study on a continuous chain of twenty Vanadium isotopes

    CERN Document Server

    Hitt, G W; Zegers, R G T; Titus, R; Sullivan, C; Brown, B A; Cole, A L; Shams, S

    2016-01-01

    Gamow-Teller (GT) strength distributions (B(GT)) in electron-capture (EC) daughters stemming from the parent ground state are computed with the shell-model in the full pf-shell space, with quasi-particle random-phase approximation (QRPA) in the formalism of Krumlinde and M\\"oller and with an Approximate Method (AM) for assigning an effective B(GT). These are compared to data available from decay and charge-exchange (CE) experiments across titanium isotopes in the pf-shell from A=43 to A=62, the largest set available for any chain of isotopes in the pf-shell. The present study is the first to examine B(GT) and the associated EC rates across a particular chain of isotopes with the purpose of examining rate sensitivities as neutron number increases. EC rates are also computed for a wide variety of stellar electron densities and temperatures providing concise estimates of the relative size of rate sensitivities for particular astrophysical scenarios. This work underscores the astrophysical motivation for CE exper...

  10. Metabolic engineering for the production of hydrocarbon fuels.

    Science.gov (United States)

    Lee, Sang Yup; Kim, Hye Mi; Cheon, Seungwoo

    2015-06-01

    Biofuels have been attracting increasing attention to provide a solution to the problems of climate change and our dependence on limited fossil oil. During the last decade, metabolic engineering has been performed to develop superior microorganisms for the production of so called advanced biofuels. Among the advanced biofuels, hydrocarbons possess high-energy content and superior fuel properties to other biofuels, and thus have recently been attracting much research interest. Here we review the recent advances in the microbial production of hydrocarbon fuels together with the metabolic engineering strategies employed to develop their production strains. Strategies employed for the production of long-chain and short-chain hydrocarbons derived from fatty acid metabolism along with the isoprenoid-derived hydrocarbons are reviewed. Also, the current limitations and future prospects in hydrocarbon-based biofuel production are discussed.

  11. Theoretical studies on interactions between low energy electrons and protein-DNA fragments: valence anions of AT-amino acids side chain complexes.

    Science.gov (United States)

    Szyperska, Anna; Gajewicz, Agnieszka; Mazurkiewicz, Kamil; Leszczynski, Jerzy; Rak, Janusz

    2011-11-21

    Electron attachment to trimeric complexes that mimic most frequent hydrogen bonding interactions between an amino acid side chain (AASC) and the Watson-Crick (WC) 9-methyladenine-1-methylthymine (MAMT) base pair has been studied at the B3LYP/6-31++G(d,p) level of theory. Although the neutral trimers will not occur in the gas phase due to unfavorable free energy of stabilization (G(stab)) they should form a protein-DNA complex where entropy changes related to formation of such a complex will more than balance its disadvantageous G(stab). The most stable neutrals possess an identical pattern of hydrogen bonds (HBs). In addition, the proton-acceptor (N7) and proton-donor (N10) atoms of adenine involved in those HBs are located in the main groove of DNA. All neutral structures support the adiabatically stable valence anions in which the excess electron is localized on a π* orbital of thymine. The vertical detachment energies (VDEs) of anions corresponding to the most stable neutrals are substantially smaller than that of the isolated WC MAMT base pair. Hence, electron transfer from the anionic thymine to the phosphate group and as a consequence formation of a single strand break (SSB) should proceed more efficiently in a protein-dsDNA complex than in the naked dsDNA as far as electron attachment to thymine is concerned. This journal is © the Owner Societies 2011

  12. Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation.

    Science.gov (United States)

    Byrdin, Martin; Eker, André P M; Vos, Marten H; Brettel, Klaus

    2003-07-22

    In Escherichia coli photolyase, excitation of the FAD cofactor in its semireduced radical state (FADH*) induces an electron transfer over approximately 15 A from tryptophan W306 to the flavin. It has been suggested that two additional tryptophans are involved in an electron transfer chain FADH* FADH* decayed with a time constant tau approximately 26 ps to fully reduced flavin and a tryptophan cation radical. In W382F mutant photolyase, the excited flavin was much longer lived (tau approximately 80 ps), and no significant amount of product was detected. We conclude that, in WT photolyase, excited FADH* is quenched by electron transfer from W382. On a millisecond scale, a product state with extremely low yield ( approximately 0.5% of WT) was detected in W382F mutant photolyase. Its spectral and kinetic features were similar to the fully reduced flavin/neutral tryptophan radical state in WT photolyase. We suggest that, in W382F mutant photolyase, excited FADH* is reduced by W359 at a rate that competes only poorly with the intrinsic decay of excited FADH* (tau approximately 80 ps), explaining the low product yield. Subsequently, the W359 cation radical is reduced by W306. The rate constants of electron transfer from W382 to excited FADH* in WT and from W359 to excited FADH* in W382F mutant photolyase were estimated and related to the donor-acceptor distances.

  13. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  14. Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain.

    Science.gov (United States)

    Markevich, Nikolai I; Hoek, Jan B

    2015-01-01

    A computational mechanistic model of superoxide (O2•-) formation in the mitochondrial electron transport chain (ETC) was developed to facilitate the quantitative analysis of factors controlling mitochondrial O2•- production and assist in the interpretation of experimental studies. The model takes into account all individual electron transfer reactions in Complexes I and III. The model accounts for multiple, often seemingly contradictory observations on the effects of ΔΨ and ΔpH, and for the effects of multiple substrate and inhibitor conditions, including differential effects of Complex III inhibitors antimycin A, myxothiazol and stigmatellin. Simulation results confirm that, in addition to O2•- formation in Complex III and at the flavin site of Complex I, the quinone binding site of Complex I is an additional superoxide generating site that accounts for experimental observations on O2•- production during reverse electron transfer. However, our simulation results predict that, when cytochrome c oxidase is inhibited during oxidation of succinate, ROS production at this site is eliminated and almost all superoxide in Complex I is generated by reduced FMN, even when the redox pressure for reverse electron transfer from succinate is strong. In addition, the model indicates that conflicting literature data on the kinetics of electron transfer in Complex III involving the iron-sulfur protein-cytochrome bL complex can be resolved in favor of a dissociation of the protein only after electron transfer to cytochrome bH. The model predictions can be helpful in understanding factors driving mitochondrial superoxide formation in intact cells and tissues.

  15. Altered expression of mitochondrial electron transport chain proteins and improved myocardial energetic state during late ischemic preconditioning

    NARCIS (Netherlands)

    J.A. Cabrera (Jesús); E.A. Ziemba (Elizabeth); L.H. Colbert (Lisa); L.B. Anderson (Lorraine); W.J. Sluiter (Wim); D.J.G.M. Duncker (Dirk); T.A. Butterick (Tammy); J. Sikora (Joseph); H.B. Ward (Herbert B.); R.F. Kelly (Rosemary); E.O. McFalls (Edward)

    2012-01-01

    textabstractAltered expression of mitochondrial electron transport proteins has been shown in early preconditioned myocardial tissue. We wished to determine whether these alterations persist in the Second Window of Protection (SWOP) and if so, whether a favorable energetic state is facilitated durin

  16. The role of trust in the transition from traditional to electronic B2B relationships in agri-food chains

    NARCIS (Netherlands)

    Canavari, M.; Fritz, M.; Hofstede, G.J.; Matopoulos, A.; Vlachopoulou, M.

    2010-01-01

    E-business adoption rates in the agri-food sector are rather low, despite the fact that technical barriers have been mostly overcome during the last years and a large number of sophisticated offers are available. However, concerns about trust seem to impede the development of electronic relationship

  17. The involvement of the fixABCX genes and the respiratory chain in electron transport to nitrogenase in Azotobacter vinelandii.

    NARCIS (Netherlands)

    Wientjens, M.J.C.

    1993-01-01

    Introduction.The work in this thesis is mainly focused on the electron transport route to nitrogenase in the free-living, obligate aerobic, nitrogen fixing organism Azotobacter vinelandii. For many years now, this topic has been the subject of research. Several hypotheses, which would explain the me

  18. Pyrolysis-gas chromatography-mass spectrometry with electron-ionization or resonance-enhanced-multi-photon-ionization for characterization of polycyclic aromatic hydrocarbons in the Baltic Sea.

    Science.gov (United States)

    Otto, Stefan; Streibel, Thorsten; Erdmann, Sabrina; Klingbeil, Sophie; Schulz-Bull, Detlef; Zimmermann, Ralf

    2015-10-15

    Polycyclic aromatic hydrocarbons (PAH), as a part of dissolved organic matter (DOM), are environmental pollutants of the marine compartment. This study investigates the origin of PAH, which is supposed to derive mainly from anthropogenic activities, and their alteration along the salinity gradient of the Baltic Sea. Pyrolysis in combination with gas chromatography and two mass selective detectors in one measurement cycle are utilized as a tool for an efficient trace analysis of such complex samples, by which it is possible to detect degradation products of high molecular structures. Along the north-south transect of the Baltic Sea a slightly rising trend for PAH is visible. Their concentration profiles correspond to the ship traffic as a known anthropogenic source, underlined by the value of special isomer ratios such as phenanthrene and anthracene (0.31-0.45) or pyrene and fluoranthene (0.44-0.53). The detection of naphthalene and the distribution of its alkylated representatives support this statement.

  19. Interactive Effects of Dietary Lipid and Phenotypic Feed Efficiency on the Expression of Nuclear and Mitochondrial Genes Involved in the Mitochondrial Electron Transport Chain in Rainbow Trout

    Directory of Open Access Journals (Sweden)

    Jonathan C. Eya

    2015-04-01

    Full Text Available A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on the expression of mitochondrial and nuclear genes involved in electron transport chain in all-female rainbow trout Oncorhynchus mykiss. Three practical diets with a fixed crude protein content of 40%, formulated to contain 10% (40/10, 20% (40/20 and 30% (40/30 dietary lipid, were fed to apparent satiety to triplicate groups of either low-feed efficient (F120; 217.66 ± 2.24 g initial average mass or high-feed efficient (F136; 205.47 ± 1.27 g full-sib families of fish, twice per day, for 90 days. At the end of the experiment, the results showed that there is an interactive effect of the dietary lipid levels and the phenotypic feed efficiency (growth rate and feed efficiency on the expression of the mitochondrial genes nd1 (NADH dehydrogenase subunit 1, cytb (Cytochrome b, cox1 (Cytochrome c oxidase subunits 1, cox2 (Cytochrome c oxidase subunits 2 and atp6 (ATP synthase subunit 6 and nuclear genes ucp2α (uncoupling proteins 2 alpha, ucp2β (uncoupling proteins 2 beta, pparα (peroxisome proliferator-activated receptor alpha, pparβ (peroxisome proliferatoractivated receptor beta and ppargc1α (proliferator-activated receptor gamma coactivator 1 alpha in fish liver, intestine and muscle, except on ppargc1α in the muscle which was affected by the diet and the family separately. Also, the results revealed that the expression of mitochondrial genes is associated with that of nuclear genes involved in electron transport chain in fish liver, intestine and muscle. Furthermore, this work showed that the expression of mitochondrial genes parallels with the expression of genes encoding uncoupling proteins (UCP in the liver and the intestine of rainbow trout. This study for the first time presents the molecular basis of the effects of dietary lipid level on mitochondrial and nuclear genes involved in mitochondrial electron transport chain in fish.

  20. Ground-state and magnetocaloric properties of a coupled spin-electron double-tetrahedral chain (exact study at the half filling)

    Science.gov (United States)

    Gálisová, Lucia; Jakubczyk, Dorota

    2017-01-01

    Ground-state and magnetocaloric properties of a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular clusters half filled with mobile electrons, are exactly investigated by using the transfer-matrix method in combination with the construction of the Nth tensor power of the discrete Fourier transformation. It is shown that the ground state of the model is formed by two non-chiral phases with the zero residual entropy and two chiral phases with the finite residual entropy S = NkB ln 2. Depending on the character of the exchange interaction between the localized Ising spins and mobile electrons, one or three magnetization plateaus can be observed in the magnetization process. Their heights basically depend on the values of Landé g-factors of the Ising spins and mobile electrons. It is also evidenced that the system exhibits both the conventional and inverse magnetocaloric effect depending on values of the applied magnetic field and temperature.

  1. Factors Influencing Consumers’ Intention to Return the End of Life Electronic Products through Reverse Supply Chain Management for Reuse, Repair and Recycling

    Directory of Open Access Journals (Sweden)

    Kamyar Kianpour

    2017-09-01

    Full Text Available Resource depletion, population growth and environmental problems force companies to collect their end of life (EOL products for reuse, recycle and refurbishment through reverse supply chain management (RSCM. Success in collecting the EOL products through RSCM depends on the customers’ participation intention. The objectives of this study are: (1 To examine the important factors influencing customers’ attitude to participate in RSCM; (2 To examine the important factors influencing customers’ subjective norm to participate in RSCM; (3 To examine the main factors influencing customers’ perceived behavioral control to participate in RSCM; (4 To examine the influence of attitude, subjective norms and perceived behavioral control on customers’ participation intention in RSCM. The Decomposed Theory of Planned Behaviour (DTPB has been chosen as the underpinning theory for this research. The research conducted employed the quantitative approach. Non-probability (convenience sampling method was used to determine the sample and data was collected using questionnaires. Partial Least Squares-Structural Equation Modeling (PLS-SEM technique was employed. A total of 800 questionnaires were distributed among customers of electronic products in Malaysia. Finally, the questionnaire was distributed among the customers in electronic retailer companies based on convenience sampling method. The empirical results confirm that consumers perception about the risk associated with EOL electronic products, consumers’ ecological knowledge and relative advantages associated with reuse, repair and recycling can influence the attitude of consumers to return the EOL products for reuse, repair and recycling to producer.

  2. Separation and screening of short-chain chlorinated paraffins in environmental samples using comprehensive two-dimensional gas chromatography with micro electron capture detection.

    Science.gov (United States)

    Xia, Dan; Gao, Lirong; Zhu, Shuai; Zheng, Minghui

    2014-11-01

    Short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures with thousands of isomers and numerous homologs. They are classified as priority candidate persistent organic pollutants under the Stockholm Convention for their persistence, bioaccumulation, and toxicity. Analyzing SCCPs is challenging because of the complexity of the mixtures. Chromatograms of SCCPs acquired using one-dimensional (1D) gas chromatography (GC) contain a large characteristic "peak" with a broad and unresolved profile. Comprehensive two-dimensional GC (GC×GC) shows excellent potential for separating complex mixtures. In this study, GC×GC coupled with micro electron capture detection (μECD) was used to separate and screen SCCPs. The chromatographic parameters, including the GC column types, oven temperature program, and modulation period, were systematically optimized. The SCCP congeners were separated into groups using a DM-1 column connected to a BPX-50 column. The SCCP congeners in technical mixtures were separated according to the number of chlorine substituents for a given carbon chain length and according to the number of carbon atoms plus chlorine atoms for different carbon chain lengths. A fish tissue sample was analyzed to illustrate the feasibility of the GC×GC-μECD method in analyzing biological samples. Over 1,500 compounds were identified in the fish extract, significantly more than were identified using 1D GC. The detection limits for five selected SCCP congeners were between 1 and 5 pg/L using the GC×GC method, and these were significantly lower than those achieved using 1D GC. This method is a good choice for analysis of SCCPs in environmental samples, exhibiting good separation and good sensitivity.

  3. Electron microscopic observations and DNA chain fragmentation studies on apoptosis in bone tumor cells induced by 153Sm—EDTMP

    Institute of Scientific and Technical Information of China (English)

    ZhuShou-Peng; XiaoDong; 等

    1997-01-01

    The morphological changes observed by electron microscopy indicate that after internal irradiation with 153Sm-ESTMP bone tumor cells displayed feature of apoptosis,such as margination of condensed chromatin,chromatin fragmentation.as well as the membranebouded apoptotic bodies formation.THe quantification analysis of fragmentation DNA for bone tumor cells induced by 153Sm-EDTMP shows that the DNA fragmentation is enhanced with the prolongation of internally irradiated time.These characteristics suggest that 153Sm-EDTMP internal irradiation could induce bone tumor cells to go9 to apoptosis.

  4. The Role of Morphology and Electronic Chain Aggregation on the Optical Gain Properties of Semiconducting Conjugated Polymers

    Science.gov (United States)

    Lampert, Zachary Evan

    Conjugated polymers (CPs) are a novel class of materials that exhibit the optical and electrical properties of semiconductors while still retaining the durability and processability of plastics. CPs are also intrinsically 4-level systems with high luminescence quantum efficiencies making them particularly attractive as organic gain media for solid-state laser applications. However, before CPs can emerge as a commercially available laser technology, a more comprehensive understanding of the morphological dependence of the photophysics is required. In this thesis, the morphology and chain conformation dependence of amplified spontaneous emission (ASE) and optical gain in thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) was investigated. By changing the chemical nature of the solvent from which films were cast, as well as the temperature at which films were annealed, CP films with different morphologies, and hence different degrees of interchain interactions were achieved. Contrary to the common perception that polymer morphology plays a decisive role in determining the ASE behavior of thin CP films, we found that chromophore aggregation and degree of conformational order have minimal impact on optical gain. In fact, experimental results indicated that an extremely large fraction of interchain aggregate species and/or exciton dissociating defects are required to significantly alter the optical properties and suppress stimulated emission. These results are pertinent to the fabrication and optimization of an electrically pumped laser device, as improvements in charge carrier mobility through controlled increases in chain aggregation may provide a viable means of optimizing injection efficiency without significantly degrading optical gain. To offset charge-induced absorption losses under electrical pumping, and to enable the use of more compact and economical sources under optical pumping, conjugated polymers exhibiting low lasing

  5. Biofiltration of gasoline and diesel aliphatic hydrocarbons.

    Science.gov (United States)

    Halecky, Martin; Rousova, Jana; Paca, Jan; Kozliak, Evguenii; Seames, Wayne; Jones, Kim

    2015-02-01

    The ability of a biofilm to switch between the mixtures of mostly aromatic and aliphatic hydrocarbons was investigated to assess biofiltration efficiency and potential substrate interactions. A switch from gasoline, which consisted of both aliphatic and aromatic hydrocarbons, to a mixture of volatile diesel n-alkanes resulted in a significant increase in biofiltration efficiency, despite the lack of readily biodegradable aromatic hydrocarbons in the diesel mixture. This improved biofilter performance was shown to be the result of the presence of larger size (C₉-C(12)) linear alkanes in diesel, which turned out to be more degradable than their shorter-chain (C₆-C₈) homologues in gasoline. The evidence obtained from both biofiltration-based and independent microbiological tests indicated that the rate was limited by biochemical reactions, with the inhibition of shorter chain alkane biodegradation by their larger size homologues as corroborated by a significant substrate specialization along the biofilter bed. These observations were explained by the lack of specific enzymes designed for the oxidation of short-chain alkanes as opposed to their longer carbon chain homologues.

  6. Transferable Tight-Binding Potential for Hydrocarbons

    CERN Document Server

    Wang, Y; Wang, Yang

    1994-01-01

    A transferable tight-binding potential has been constructed for heteroatomic systems containing carbon and hydrogen. The electronic degree of freedom is treated explicitly in this potential using a small set of transferable parameters which has been fitted to small hydrocarbons and radicals. Transferability to other higher hydrocarbons were tested by comparison with ab initio calculations and experimental data. The potential can correctly reproduce changes in the electronic configuration as a function of the local bonding geometry around each carbon atom. This type of potential is well suited for computer simulations of covalently bonded systems in both gas-phase and condensed-phase systems.

  7. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide?

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Juneau, Philippe

    2016-11-01

    We investigated the physiological responses of Lemna minor plants exposed to glyphosate. The deleterious effects of this herbicide on photosynthesis, respiration, and pigment concentrations were related to glyphosate-induced oxidative stress through hydrogen peroxide (H2O2) accumulation. By using photosynthetic and respiratory electron transport chain (ETC) inhibitors we located the primary site of reactive oxygen species (ROS) production in plants exposed to 500 mg glyphosate l(-1). Inhibition of mitochondrial ETC Complex I by rotenone reduced H2O2 concentrations in glyphosate-treated plants. Complex III activity was very sensitive to glyphosate which appears to act much like antimycin A (an inhibitor of mitochondrial ETC Complex III) by shunting electrons from semiquinone to oxygen, with resulting ROS formation. Confocal evaluations for ROS localization showed that ROS are initially produced outside of the chloroplasts upon initial glyphosate exposure. Our results indicate that in addition to interfering with the shikimate pathway, glyphosate can induce oxidative stress in plants through H2O2 formation by targeting the mitochondrial ETC, which would explain its observed effects on non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers

    Science.gov (United States)

    Gunner, M. R.; Madeo, Jennifer; Zhu, Zhenyu

    2009-01-01

    Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed. PMID:18979192

  9. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  10. Interaction of electron leak and proton leak in respiratory chain of mitochondria——Proton leak induced by superoxide from an electron leak pathway of univalent reduction of oxygen

    Institute of Scientific and Technical Information of China (English)

    刘树森; 焦选茂; 王孝铭; 张力

    1996-01-01

    By incubating the isolated rat myocardial mitochondria with xanthine-xanthine oxidase, anexogenous superoxide (O2) generating system, and by ischemia-reperfusion procedure of isolated rat heart as an endogenous O2 generating system, it was found that both sources of O2 showed the same injurious effects on mitochondrial function resulting in (i) increasing proton leak rate, lowering proton pumping activity and Ht/2e ratio of respiratory chain, and (ii) decreasing transmembrane potential of energized mitochondria] inner membrane by succinate oxidation. The injurious effects of O2 on these mitochondrial bioenergitical parameters mentioned above exhibited a dosage- or reaction time-dependent mode. (X has no effects on the electron transfer activity and transmembrane potential of nonenergized mitochondria. Being a superoxide scavenger, 3, 4-dihydroxylphenyl lactate showed obvious protection effects against damage of both exogenous superoxide sources from xanthine-xanthine oxidase system and endogenous Or sou

  11. Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats.

    Science.gov (United States)

    Ortiz-Avila, Omar; Gallegos-Corona, Marco Alonso; Sánchez-Briones, Luis Alberto; Calderón-Cortés, Elizabeth; Montoya-Pérez, Rocío; Rodriguez-Orozco, Alain R; Campos-García, Jesús; Saavedra-Molina, Alfredo; Mejía-Zepeda, Ricardo; Cortés-Rojo, Christian

    2015-08-01

    Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation. Streptozocin-induced diabetes elicited a noticeable increase in the content of C22:6, leading to augmented mitochondrial peroxidizability index and higher levels of lipid peroxidation. Mitochondrial respiration and complex I activity were impaired in diabetic rats with a concomitant increase in ROS generation using a complex I substrate. This was associated to a more oxidized state of glutathione, All these alterations were prevented by avocado oil except by the changes in mitochondrial fatty acid composition. Avocado oil did not prevented hyperglycemia and polyphagia although did normalized hyperlipidemia. Neither diabetes nor avocado oil induced steatosis. These results suggest that avocado oil improves mitochondrial ETC function by attenuating the deleterious effects of oxidative stress in the liver of diabetic rats independently of a hypoglycemic effect or by modifying the fatty acid composition of mitochondrial membranes. These findings might have also significant implications in the progression of NAFLD in experimental models of steatosis.

  12. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments

    Science.gov (United States)

    Abrajano, T. A., Jr.; Yan, B.; O'Malley, V.

    2003-12-01

    the extensive geochemical and analytical framework that was meticulously built by petroleum geochemists over the years (e.g., Tissot and Welte, 1984; Peters et al., 1992; Peters and Moldowan, 1993; Engel and Macko, 1993; Moldowan et al., 1995; Wang et al., 1999; Faksness et al., 2002).Hydrocarbon compounds present in petroleum or pyrolysis by-products can be classified based on their composition, molecular weight, organic structure, or some combination of these criteria. For example, a report of the Committee on Intrinsic Remediation of the US NRC classified organic contaminants into HMW hydrocarbons, low molecular weight (LMW) hydrocarbons, oxygenated hydrocarbons, halogenated aliphatics, halogenated aromatics, and nitroaromatics (NRC, 2000). Hydrocarbons are compounds comprised exclusively of carbon and hydrogen and they are by far the dominant components of crude oil, processed petroleum hydrocarbons (gasoline, diesel, kerosene, fuel oil, and lubricating oil), coal tar, creosote, dyestuff, and pyrolysis waste products. These hydrocarbons often occur as mixtures of a diverse group of compounds whose behavior in near-surface environments is governed by their chemical structure and composition, the geochemical conditions and media of their release, and biological factors, primarily microbial metabolism, controlling their transformation and degradation.Hydrocarbons comprise from 50% to 99% of compounds present in refined and unrefined oil, and compounds containing other elements such as oxygen, nitrogen, and sulfur are present in relatively smaller proportions. Hydrocarbon compounds have carbons joined together as single C - C bonds (i.e., alkanes), double or triple C=C bonds (i.e., alkenes or olefins), or via an aromatic ring system with resonating electronic structure (i.e., aromatics). Alkanes, also called paraffins, are the dominant component of crude oil, with the carbon chain forming either straight (n-alkanes), branched (iso-alkanes), or cyclic (naphthenes

  13. Microbial Hydrocarbon and ToxicPollutant Degradation Method

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Dietrich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Janabi, Mustafa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); O' Neil, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Budinger, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-08-16

    The goal of this project is to determine optimum conditions for bacterial oxidation of hydrocarbons and long-chain alkanes that are representative of petroleum contamination of the environment. Polycyclic Aromatic Hydrocarbons (PAHs) are of concern because of their toxicity, low volatility, and resistance to microbial degradation, especially under anaerobic conditions. The uniqueness of our approach is to use carbon-11 in lieu of the traditional use of carbon-14.

  14. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    OpenAIRE

    2016-01-01

    The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the sep...

  15. Oxygenated Derivatives of Hydrocarbons

    Science.gov (United States)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  16. Hydrocarbon Spectral Database

    Science.gov (United States)

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  17. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  18. Plant hydrocarbon recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  19. Effect of ageing and ischemia on enzymatic activities linked to Krebs' cycle, electron transfer chain, glutamate and aminoacids metabolism of free and intrasynaptic mitochondria of cerebral cortex.

    Science.gov (United States)

    Villa, Roberto Federico; Gorini, Antonella; Hoyer, Siegfried

    2009-12-01

    The effect of ageing and the relationships between the catalytic properties of enzymes linked to Krebs' cycle, electron transfer chain, glutamate and aminoacid metabolism of cerebral cortex, a functional area very sensitive to both age and ischemia, were studied on mitochondria of adult and aged rats, after complete ischemia of 15 minutes duration. The maximum rate (Vmax) of the following enzyme activities: citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase as total (integrated activity of Complex I-III), rotenone sensitive (Complex I) and cytochrome oxidase (Complex IV) for electron transfer chain; glutamate dehydrogenase, glutamate-oxaloacetate-and glutamate-pyruvate transaminases for glutamate metabolism were assayed in non-synaptic, perikaryal mitochondria and in two populations of intra-synaptic mitochondria, i.e., the light and heavy mitochondrial fraction. The results indicate that in normal, steady-state cerebral cortex, the value of the same enzyme activity markedly differs according (a) to the different populations of mitochondria, i.e., non-synaptic or intra-synaptic light and heavy, (b) and respect to ageing. After 15 min of complete ischemia, the enzyme activities of mitochondria located near the nucleus (perikaryal mitochondria) and in synaptic structures (intra-synaptic mitochondria) of the cerebral tissue were substantially modified by ischemia. Non-synaptic mitochondria seem to be more affected by ischemia in adult and particularly in aged animals than the intra-synaptic light and heavy mitochondria. The observed modifications in enzyme activities reflect the metabolic state of the tissue at each specific experimental condition, as shown by comparative evaluation with respect to the content of energy-linked metabolites and substrates. The derangements in enzyme activities due to ischemia is greater in aged than in adult animals and especially the non-synaptic and the intra-synaptic light

  20. Occupied and unoccupied electronic states on vicinal Si(111) surfaces decorated with monoatomic gold chains; Besetzte und unbesetzte elektronische Zustaende vizinaler Si(111)-Oberflaechen mit atomaren Goldketten

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Kerstin

    2012-07-12

    In this work, the occupied and unoccupied electronic states of vicinal Si(111)-Au surfaces were investigated. The research focused on amending the experimental electronic band structure by two-photon photoemission and laser-based photoemission and bringing it in line with theoretical band structure calculations. This work dealt with the Si(553)-Au, the Si(111)-(5x2)-Au and the Si(557)-Au surface. Angle-resolved UV-photoelectron spectroscopy gave access to the occupied part of the band structure and thus to the energetic position, the dispersion and the symmetry of the occupied states. Bichromatic two-photon photoemission, however, revealed information about the energetics and, in addition, about the dynamics of unoccupied states on a femtosecond timescale. Notably, the selective polarization of the laser pulses allowed for distinguishing and classifying many of the states with respect to their symmetry. All three surfaces exhibited both surface and bulk states in the occupied part of the band structure. They could be clearly identified and separated from surface contributions by means of tight-binding calculations of the bulk band structure of silicon and by comparison to each other. An added similarity of these surfaces are the one-dimensional Rashba-split gold states, which definitely show dispersion along the chains but not perpendicular to them. All surfaces exhibit states which can easily be assigned to the gold chains. Additional features, however, cannot be attributed clearly to the characteristics of the complex surface reconstruction in all cases. An assignment to surface states was only successfully accomplished for Si(553)-Au. The primary emphasis of this photoemission study was on the Si(553)-Au surface, which shows the smallest defect density in comparison to the other surfaces and hence exhibits the sharpest peaks in the experimental spectra. In accordance with ab-initio band structure calculations this surface also displays, in addition to one

  1. Hydrocarbon-released nestmate aggression in the Argentine ant, Linepithema humile, following encounters with insect prey.

    Science.gov (United States)

    Liang, D; Blomquist, G J; Silverman, J

    2001-07-01

    Argentine ants, Linepithema humile, were attacked by their nestmates following contact with a particular prey item, the brown-banded cockroach, Supella longipalpa. Contact with prey, as brief as 2 min, provoked nestmate aggression. Argentine ants contaminated with hydrocarbons extracted from S. longipalpa also released nestmate aggression behavior similar to that released by the whole prey item, confirming the involvement of hydrocarbons. In contrast to S. longipalpa, little or no nestmate aggression was induced by other ant prey from diverse taxa. A comparison of prey hydrocarbon profiles revealed that all hydrocarbons of S. longipalpa were very long chain components with 33 or more carbons, while other prey had either less, or none, of the very long chain hydrocarbons of 33 carbons or greater. We identified the hydrocarbons of S. longipalpa and some new groups of long chain hydrocarbons of L. humile. The majority of S. longipalpa hydrocarbons were 35 and 37 carbons in length with one to three methyl branches, and closely resembled two previously unidentified groups of compounds from L. humile of similar chain length. The hydrocarbons of S. longipalpa and L. humile were compared and their role in the Argentine ant nestmate recognition is discussed.

  2. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction.

    Science.gov (United States)

    Costa, Rafael M; Filgueira, Fernando P; Tostes, Rita C; Carvalho, Maria Helena C; Akamine, Eliana H; Lobato, Nubia S

    2016-09-01

    The perivascular adipose tissue (PVAT) releases a variety of factors that affect vascular function. PVAT in the thoracic aorta shares characteristics with the brown adipose tissue, including a large amount of mitochondria. PVAT-derived factors influence both endothelial and smooth muscle function via several signaling mechanisms including the release/generation of reactive nitrogen and oxygen species. Considering the importance of reactive oxygen species (ROS) on vascular function and that mitochondria are an important source of ROS, we hypothesized that mitochondria-derived ROS in the PVAT modulates vascular reactivity. Vascular reactivity to norephinephrine (NE) was evaluated in thoracic aortic rings, with or without endothelium and/or PVAT, from male Wistar rats. Mitochondrial uncoupling, as well as hydrogen peroxide (H2O2) removal, increased the contraction in vessels surrounded by PVAT. PVAT stimulated with NE exhibited increased protein expression, determined by Western blot analysis, of manganese superoxide dismutase (Mn-SOD) and decreased protein expression of catalase. Ultimately, NE increased superoxide anion (O2(-)) generation in PVAT via increases in intracellular calcium. These results clearly demonstrate that mitochondrial electron transport chain (mETC) in PVAT contributes to modulation of aortic muscle contraction by generating higher amounts of O2(-) that is, in turn, dismutated to hydrogen peroxide, which then acts as a pivotal signaling molecule regulating vascular smooth muscle contraction.

  3. In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours

    Directory of Open Access Journals (Sweden)

    Thomas N Seyfried

    2009-05-01

    Full Text Available The mitochondrial lipidome influences ETC (electron transport chain and cellular bioenergetic efficiency. Brain tumours are largely dependent on glycolysis for energy due to defects in mitochondria and oxidative phosphorylation. In the present study, we used shotgun lipidomics to compare the lipidome in highly purified mitochondria isolated from normal brain, from brain tumour tissue, from cultured tumour cells and from non-tumorigenic astrocytes. The tumours included the CT-2A astrocytoma and an EPEN (ependymoblastoma, both syngeneic with the C57BL/6J (B6 mouse strain. The mitochondrial lipidome in cultured CT-2A and EPEN tumour cells were compared with those in cultured astrocytes and in solid tumours grown in vivo. Major differences were found between normal tissue and tumour tissue and between in vivo and in vitro growth environments for the content or composition of ethanolamine glycerophospholipids, phosphatidylglycerol and cardiolipin. The mitochondrial lipid abnormalities in solid tumours and in cultured cells were associated with reductions in multiple ETC activities, especially Complex I. The in vitro growth environment produced lipid and ETC abnormalities in cultured non-tumorigenic astrocytes that were similar to those associated with tumorigenicity. It appears that the culture environment obscures the boundaries of the Crabtree and the Warburg effects. These results indicate that in vitro growth environments can produce abnormalities in mitochondrial lipids and ETC activities, thus contributing to a dependency on glycolysis for ATP production.

  4. Developmental and hormone-induced changes of mitochondrial electron transport chain enzyme activities during the last instar larval development of maize stem borer, Chilo partellus (Lepidoptera: Crambidae).

    Science.gov (United States)

    VenkatRao, V; Chaitanya, R K; Naresh Kumar, D; Bramhaiah, M; Dutta-Gupta, A

    2016-12-01

    The energy demand for structural remodelling in holometabolous insects is met by cellular mitochondria. Developmental and hormone-induced changes in the mitochondrial respiratory activity during insect metamorphosis are not well documented. The present study investigates activities of enzymes of mitochondrial electron transport chain (ETC) namely, NADH:ubiquinone oxidoreductase or complex I, Succinate: ubiquinone oxidoreductase or complex II, Ubiquinol:ferricytochrome c oxidoreductase or complex III, cytochrome c oxidase or complex IV and F1F0ATPase (ATPase), during Chilo partellus development. Further, the effect of juvenile hormone (JH) analog, methoprene, and brain and corpora-allata-corpora-cardiaca (CC-CA) homogenates that represent neurohormones, on the ETC enzyme activities was monitored. The enzymatic activities increased from penultimate to last larval stage and thereafter declined during pupal development with an exception of ATPase which showed high enzyme activity during last larval and pupal stages compared to the penultimate stage. JH analog, methoprene differentially modulated ETC enzyme activities. It stimulated complex I and IV enzyme activities, but did not alter the activities of complex II, III and ATPase. On the other hand, brain homogenate declined the ATPase activity while the injected CC-CA homogenate stimulated complex I and IV enzyme activities. Cumulatively, the present study is the first to show that mitochondrial ETC enzyme system is under hormone control, particularly of JH and neurohormones during insect development.

  5. A computational investigation of the photochemical oxaziridine and amide conversion process of open-chain conjugated nitrone with electron-withdrawing trifluoromethyl group on nitrogen

    Indian Academy of Sciences (India)

    Praveen Saini; Anjan Chattopadhyay

    2015-10-01

    This computational study investigates the photo-excitation process and subsequent photoproduct formation steps through non-radiative deactivation channels in open-chain conjugated N-substituted nitrone systems (model compounds of corresponding retinylnitrones) having electron-withdrawing groups on nitrogen. Calculations mostly based on CASSCF/6-31G* and CASMP2/6-31G* level of theories on a representative system with N-trifluoromethyl substituent have predicted initial photo-excitation to a planar singlet state. This photochemical path is subsequently followed by a barrierless non-radiative channel towards the lowest-energy conical intersection (CI) geometry having a terminal CNO kink, and situated at 30 kcal/mol below the planar excited state. Following the direction of its gradient difference (GD) vectors, an oxaziridine-type species (RC−O = 1.38 Å, RN−O = 1.53 Å, < CNO= 55.8°) appears at 3–6 kcal mol−1 below the ground state nitrone system through a transition state (along its reverse direction of minimum-energy path), situated on the reaction pathway. This species with an elongated N-O bond seems to be heading towards an amide geometry. On the other hand, in the opposite GD vector direction a proper oxaziridine geometry has been obtained with a much shorter N-O bond distance (RN−O = 1.42 Å).

  6. Doping of Semiconducting Atomic Chains

    Science.gov (United States)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  7. Learning and perceptual similarity among cuticular hydrocarbons in ants.

    Science.gov (United States)

    Bos, Nick; Dreier, Stephanie; Jørgensen, Charlotte G; Nielsen, John; Guerrieri, Fernando J; d'Ettorre, Patrizia

    2012-01-01

    Nestmate recognition in ants is based on perceived differences in a multi-component blend of hydrocarbons that are present on the insect cuticle. Although supplementation experiments have shown that some classes of hydrocarbons, such as methyl branched alkanes and alkenes, have a salient role in nestmate recognition, there was basically no information available on how ants detect and perceive these molecules. We used a new conditioning procedure to investigate whether individual carpenter ants could associate a given hydrocarbon (linear or methyl-branched alkane) to sugar reward. We then studied perceptual similarity between a hydrocarbon previously associated with sugar and a novel hydrocarbon. Ants learnt all hydrocarbon-reward associations rapidly and with the same efficiency, regardless of the structure of the molecules. Ants could discriminate among a large number of pairs of hydrocarbons, but also generalised. Generalisation depended both on the structure of the molecule and the animal's experience. For linear alkanes, generalisation was observed when the novel molecule was smaller than the conditioned one. Generalisation between pairs of methyl-alkanes was high, while generalisation between hydrocarbons that differed in the presence or absence of a methyl group was low, suggesting that chain length and functional group might be coded independently by the ant olfactory system. Understanding variations in perception of recognition cues in ants is necessary for the general understanding of the mechanisms involved in social recognition processes based on chemical cues.

  8. Health and Environmental Hazards of Electronic Waste in India.

    Science.gov (United States)

    Borthakur, Anwesha

    2016-04-01

    Technological waste in the form of electronic waste (e-waste) is a threat to all countries. E-waste impacts health and the environment by entering the food chain in the form of chemical toxicants and exposing the population to deleterious chemicals, mainly in the form of polycyclic aromatic hydrocarbons and persistent organic pollutants. This special report tries to trace the environmental and health implications of e-waste in India. The author concludes that detrimental health and environmental consequences are associated with e-waste and the challenge lies in producing affordable electronics with minimum chemical toxicants.

  9. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  10. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    Although thraustochytrid protists are known to be of widespread occurrence in the sea, their hydrocarbon-degrading abilities have never been investigated. We isolated thraustochytrids from coastal waters and sediments of Goa coast by enriching MPN...

  11. Falling chains

    Science.gov (United States)

    Wong, Chun Wa; Yasui, Kosuke

    2006-06-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.

  12. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    Directory of Open Access Journals (Sweden)

    Angela eSherry

    2014-04-01

    Full Text Available Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5-nC10, methylcyclohexane, benzene, toluene and xylenes were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12-nC34 and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 µmol CH4/g sediment/day with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12-nC34. For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 µmol CH4/g sediment/day. This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers.

  13. Repositioning of Verrucosidin, a purported inhibitor of chaperone protein GRP78, as an inhibitor of mitochondrial electron transport chain complex I.

    Directory of Open Access Journals (Sweden)

    Simmy Thomas

    Full Text Available Verrucosidin (VCD belongs to a group of fungal metabolites that were identified in screening programs to detect molecules that preferentially kill cancer cells under glucose-deprived conditions. Its mode of action was proposed to involve inhibition of increased GRP78 (glucose regulated protein 78 expression during hypoglycemia. Because GRP78 plays an important role in tumorigenesis, inhibitors such as VCD might harbor cancer therapeutic potential. We therefore sought to characterize VCD's anticancer activity in vitro. Triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with VCD under different conditions known to trigger increased expression of GRP78, and a variety of cellular processes were analyzed. We show that VCD was highly cytotoxic only under hypoglycemic conditions, but not in the presence of normal glucose levels, and VCD blocked GRP78 expression only when glycolysis was impaired (due to hypoglycemia or the presence of the glycolysis inhibitor 2-deoxyglucose, but not when GRP78 was induced by other means (hypoxia, thapsigargin, tunicamycin. However, VCD's strictly hypoglycemia-specific toxicity was not due to the inhibition of GRP78. Rather, VCD blocked mitochondrial energy production via inhibition of complex I of the electron transport chain. As a result, cellular ATP levels were quickly depleted under hypoglycemic conditions, and common cellular functions, including general protein synthesis, deteriorated and resulted in cell death. Altogether, our study identifies mitochondria as the primary target of VCD. The possibility that other purported GRP78 inhibitors (arctigenin, biguanides, deoxyverrucosidin, efrapeptin, JBIR, piericidin, prunustatin, pyrvinium, rottlerin, valinomycin, versipelostatin might act in a similar GRP78-independent fashion will be discussed.

  14. Repositioning of Verrucosidin, a Purported Inhibitor of Chaperone Protein GRP78, as an Inhibitor of Mitochondrial Electron Transport Chain Complex I

    Science.gov (United States)

    Gonzalez, Reyna; Pao, Peng-Wen; Hofman, Florence M.; Chen, Thomas C.; Louie, Stan G.; Pirrung, Michael C.; Schönthal, Axel H.

    2013-01-01

    Verrucosidin (VCD) belongs to a group of fungal metabolites that were identified in screening programs to detect molecules that preferentially kill cancer cells under glucose-deprived conditions. Its mode of action was proposed to involve inhibition of increased GRP78 (glucose regulated protein 78) expression during hypoglycemia. Because GRP78 plays an important role in tumorigenesis, inhibitors such as VCD might harbor cancer therapeutic potential. We therefore sought to characterize VCD’s anticancer activity in vitro. Triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with VCD under different conditions known to trigger increased expression of GRP78, and a variety of cellular processes were analyzed. We show that VCD was highly cytotoxic only under hypoglycemic conditions, but not in the presence of normal glucose levels, and VCD blocked GRP78 expression only when glycolysis was impaired (due to hypoglycemia or the presence of the glycolysis inhibitor 2-deoxyglucose), but not when GRP78 was induced by other means (hypoxia, thapsigargin, tunicamycin). However, VCD’s strictly hypoglycemia-specific toxicity was not due to the inhibition of GRP78. Rather, VCD blocked mitochondrial energy production via inhibition of complex I of the electron transport chain. As a result, cellular ATP levels were quickly depleted under hypoglycemic conditions, and common cellular functions, including general protein synthesis, deteriorated and resulted in cell death. Altogether, our study identifies mitochondria as the primary target of VCD. The possibility that other purported GRP78 inhibitors (arctigenin, biguanides, deoxyverrucosidin, efrapeptin, JBIR, piericidin, prunustatin, pyrvinium, rottlerin, valinomycin, versipelostatin) might act in a similar GRP78-independent fashion will be discussed. PMID:23755268

  15. Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria.

    Science.gov (United States)

    Ortiz-Avila, Omar; Sámano-García, Carlos Alberto; Calderón-Cortés, Elizabeth; Pérez-Hernández, Ismael H; Mejía-Zepeda, Ricardo; Rodríguez-Orozco, Alain R; Saavedra-Molina, Alfredo; Cortés-Rojo, Christian

    2013-06-01

    Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c + c1 loss. During Fe(2+)-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe(2+). Avocado oil also decreased ROS generation in Fe(2+)-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.

  16. Study of Implementation of Green Supply Chain management in Electronics Industry Based on System Dynamics%电子行业绿色供应链管理实施的系统动力学研究

    Institute of Scientific and Technical Information of China (English)

    陈小青

    2012-01-01

    指出了电子行业资源消耗、环境污染与经济发展的矛盾日益凸显,实施绿色供应链管理是电子企业寻求可持续发展的出路。应用系统动力学对电子企业实施绿色供应链进行了建模,从企业外部环境约束及企业自身内部环境两方面对电子行业绿色供应链管理的实施提供了理论依据和具体措施。%The conflict between resource consumption, environmental pollution and economic development in the electronics industry is increasingly prominent, therefore, the implementation of green supply chain management is the way out of the electronics companies to seek sustainable development. This article uses the system dynamics to establish a model for the electronics companies to implement green supply chain strategy, and provides theoretical basis and specific measures for the implementation of green supply chain management in the electronics industry from the aspects of both outside of the enterorise envlronment constraints and the corporate internal environments.

  17. Observation of the widetilde{A} - widetilde{X} Electronic Transition of C_6-C_{10} Peroxy Radicals

    Science.gov (United States)

    Kline, Neal D.; Miller, Terry A.

    2013-06-01

    The widetilde{A} - widetilde{X} electronic transition of straight chain C_6-C_{10} peroxy radicals and of the isooctyl peroxy radical have been observed and analyzed. These larger hydrocarbons are significant constituents of gasoline with heptane (octane rating of 0) and isooctane (2,2,4 trimethylpentane; octane rating of 100) being the two standards on which the octane rating scale is based. Spectra were obtained by abstraction of hydrogen atoms from the hydrocarbons using chlorine atoms. The origin and -OO stretch regions of the straight chain peroxy radicals are easily identifiable. It is relatively easy to uniquely identify hexyl peroxy, but differentiation among the spectra of the larger straight chain peroxy radicals has proven difficult. However, isooctyl peroxy is easily distinguished and the observation of the tertiary peroxy radical along with the primary and/or secondary peroxy radical(s) is discussed.

  18. Effects of B-N Chain Doping on Electronic Structure of Zigzag Graphene Nanoribbons%B-N链对锯齿型石墨烯纳米带电子结构的影响

    Institute of Scientific and Technical Information of China (English)

    王辉; 徐慧

    2012-01-01

    采用基于密度泛函理论的第一性原理计算方法,研究了边缘对称和反对称的锯齿型石墨烯纳米带的电子结构,考察了BN链掺在不同位置时的影响.研究结果表明:B-N原子链有向边缘迁移的现象,并且其掺杂在石墨烯纳米带中央时对体系电子结构的改变很小,而掺杂在边缘时会使体系在费米能级附近的能带结构发生显著的变化.边缘被B-N链取代的石墨烯纳米带的能隙被打开,并产生了明显的自旋非简并现象.这些现象的出现归因于掺杂体系中边缘电子态的重新分布.%Using first-principles based on density functional theory, the electronic structures of B-N chain doped zigzag graphene nanoribbons (ZGNRs) were studied. The symmetry of ZGNRs and the position of B-N chain were considered. The results show that the B-N chain is apt to be doped at the edge of ZGNRs. There are remarkable effects on the electronic structure for the systems with the doped B-N chain at the edge of ZGNRs. Moreover, the opened band gap and spin nondegenerate phenomenon can be observed on the ZGNRs with B-N chain doped at the edge rather than other positions. This may be attributed to the redistribution of edge electronic states on doped ZGNRs.

  19. Falling chains

    CERN Document Server

    Wong, C W; Wong, Chun Wa; Yasui, Kosuke

    2006-01-01

    The one-dimensional falling motion of a bungee chain suspended from a rigid support and of a chain falling from a resting heap on a table is studied. Their Lagrangians are found to contain no explicit time dependence. As a result, these falling chains are conservative systems. Each of their Lagrange's equations of motion is shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show in particular that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when the transferred link is emitted by the emitting subchain. The maximum chain tension measured by Calkin and March for the falling bungee chain is given a simple if rough interpretation. In the simplified one-dimensional treatment, the kinetic energy of the center of mass of the falling bungee chain is found to be converted by the chain tension at the rigid support into the internal kinetic energy of the chain. However, as t...

  20. DOS cones along atomic chains

    Science.gov (United States)

    Kwapiński, Tomasz

    2017-03-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin–orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.

  1. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  2. Pyrroloquinoline Quinone Resists Denervation-Induced Skeletal Muscle Atrophy by Activating PGC-1α and Integrating Mitochondrial Electron Transport Chain Complexes.

    Directory of Open Access Journals (Sweden)

    Yung-Ting Kuo

    Full Text Available Denervation-mediated skeletal muscle atrophy results from the loss of electric stimulation and leads to protein degradation, which is critically regulated by the well-confirmed transcriptional co-activator peroxisome proliferator co-activator 1 alpha (PGC-1α. No adequate treatments of muscle wasting are available. Pyrroloquinoline quinone (PQQ, a naturally occurring antioxidant component with multiple functions including mitochondrial modulation, demonstrates the ability to protect against muscle dysfunction. However, it remains unclear whether PQQ enhances PGC-1α activation and resists skeletal muscle atrophy in mice subjected to a denervation operation. This work investigates the expression of PGC-1α and mitochondrial function in the skeletal muscle of denervated mice administered PQQ. The C57BL6/J mouse was subjected to a hindlimb sciatic axotomy. A PQQ-containing ALZET® osmotic pump (equivalent to 4.5 mg/day/kg b.w. was implanted subcutaneously into the right lower abdomen of the mouse. In the time course study, the mouse was sacrificed and the gastrocnemius muscle was prepared for further myopathological staining, energy metabolism analysis, western blotting, and real-time quantitative PCR studies. We observed that PQQ administration abolished the denervation-induced decrease in muscle mass and reduced mitochondrial activities, as evidenced by the reduced fiber size and the decreased expression of cytochrome c oxidase and NADH-tetrazolium reductase. Bioenergetic analysis demonstrated that PQQ reprogrammed the denervation-induced increase in the mitochondrial oxygen consumption rate (OCR and led to an increase in the extracellular acidification rate (ECAR, a measurement of the glycolytic metabolism. The protein levels of PGC-1α and the electron transport chain (ETC complexes were also increased by treatment with PQQ. Furthermore, PQQ administration highly enhanced the expression of oxidative fibers and maintained the type II glycolytic

  3. Quantitative Hydrocarbon Surface Analysis

    Science.gov (United States)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  4. Miscellaneous hydrocarbon solvents.

    Science.gov (United States)

    Bebarta, Vikhyat; DeWitt, Christopher

    2004-08-01

    The solvents discussed in this article are common solvents not categorized as halogenated, aromatic, or botanical. The solvents discussed are categorized into two groups: hydrocarbon mixtures and single agents. The hydrocarbon mixtures discussed are Stoddard solvent, naphtha, and kerosene. The remaining solvents described are n-hexane, methyl n-butyl ketone, dimethylformamide, dimethyl sulfoxide, and butyl mercaptans. Effects common to this group of agents and their unique effects are characterized. Treatment of exposures and toxic effects of these solvents is described, and physiochemical properties and occupational exposure levels are listed.

  5. Apparatus and methods for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2016-04-26

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  6. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.

    1987-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  7. Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices

    Science.gov (United States)

    Hand, K. P.; Carlson, R. W.

    2012-03-01

    We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at ˜10-8 Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (1-butene and cis/trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains.

  8. Aromatic C-H Bond Functionalization Induced by Electrochemically in Situ Generated Tris(p-bromophenyl)aminium Radical Cation: Cationic Chain Reactions of Electron-Rich Aromatics with Enamides.

    Science.gov (United States)

    Li, Long-Ji; Jiang, Yang-Ye; Lam, Chiu Marco; Zeng, Cheng-Chu; Hu, Li-Ming; Little, R Daniel

    2015-11-01

    An effective Friedel-Crafts alkylation reaction of electron-rich aromatics with N-vinylamides, induced by electrochemically in situ-generated TBPA radical cation, has been developed; the resulting adducts are produced in good to excellent yields. In the "ex-cell" type electrolysis, TBPA is transformed to its oxidized form in situ and subsequently employed as an electron transfer reagent to initiate a cationic chain reaction. An easily recoverable and reusable polymeric ionic liquid-carbon black (PIL-CB) composite was also utilized as a supporting electrolyte for the electrochemical generation of TBPA cation radical, without sacrificing efficiency or stability after four electrolyses. Cyclic voltammetry analysis and the results of control experiments demonstrate that the reaction of electron-rich aromatics and N-vinylamides occurs via a cationic chain reaction, which takes place though an oxidative activation of a C-H bond of electron-rich aromatics instead of oxidation of the N-vinylamide as previously assumed.

  9. In vitro mutagenicity and genotoxicity study of a number of short-chain chlorinated hydrocarbons using the micronucleus test and the alkaline single cell gel electrophoresis technique (Comet assay) in human lymphocytes: a structure-activity relationship (QSAR) analysis of the genotoxic and cytotoxic potential.

    Science.gov (United States)

    Tafazoli, M; Baeten, A; Geerlings, P; Kirsch-Volders, M

    1998-03-01

    Using the micronucleus (MN) test and the alkaline single cell gel electrophoresis (Comet) assay, potential mutagenicity (MN formation), genotoxicity (DNA breakage capacity) and cytotoxicity (cell proliferation reduction) of five chlorinated hydrocarbons (carbon tetrachloride, hexachloroethane, 1,2-dichloroethane, 1-chlorohexane and 2,3-dichlorobutane) have been evaluated in isolated human lymphocytes. With the MN test a low but statistically significant mutagenic activity was detected for all tested substances (except 2,3-dichlorobutane) with one out of the two donors and in the presence or absence of an exogenous metabolic activation system (S9 mix). However, at the concentration ranges tested none of the positive compounds induced a clear dose-dependent mutagenic effect. The Comet assay detected a strong DNA damaging effect for 1-chlorohexane, 2,3-dichlorobutane and 1,2-dichloroethane, but not for carbon tetrachloride and hexachloroethane. The influence of metabolism on the genotoxic activity of the chemicals was more clear in the Comet assay than in the MN test. The experimental genotoxicity and cytotoxicity data obtained in this study, together with data on five more related chemicals previously investigated, and their physico-chemical descriptors or electronic parameters have been used for QSAR analysis. The QSAR analysis high-lighted that the toxicity of the tested compounds was influenced by different parameters, like lipophilicity (logP), electron donor ability (charge) and longest carbon-chlorine (LBC-Cl) bond length. In addition, steric parameters, like molar refractivity (MR) and LBC-Cl, and electronic parameters, like ELUMO (energy of the lowest unoccupied molecular orbital, indicating electrophilicity), were predominant factors discriminating genotoxins from non-genotoxins in the presence but not in the absence of S9 mix. Although a limited number of compounds have been examined and cytotoxicity and genotoxicity were identified in two different

  10. Markov chains

    CERN Document Server

    Revuz, D

    1984-01-01

    This is the revised and augmented edition of a now classic book which is an introduction to sub-Markovian kernels on general measurable spaces and their associated homogeneous Markov chains. The first part, an expository text on the foundations of the subject, is intended for post-graduate students. A study of potential theory, the basic classification of chains according to their asymptotic behaviour and the celebrated Chacon-Ornstein theorem are examined in detail. The second part of the book is at a more advanced level and includes a treatment of random walks on general locally compact abelian groups. Further chapters develop renewal theory, an introduction to Martin boundary and the study of chains recurrent in the Harris sense. Finally, the last chapter deals with the construction of chains starting from a kernel satisfying some kind of maximum principle.

  11. Nodal-chain metals

    Science.gov (United States)

    Bzdušek, Tomáš; Wu, Quansheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A.

    2016-10-01

    The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain—a chain of connected loops in momentum space—along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF4), as well as in other compounds of this class of materials. Using IrF4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

  12. Mantle hydrocarbons: abiotic or biotic?

    Science.gov (United States)

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10.

  13. Energy additivity in branched and cyclic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gao, H.; Bader, R.F.W. [McMaster Univ., Hamilton, ON (Canada). Dept. of Chemistry; Cortes-Guzman, F. [Univ. Nacional Autonoma de Mexico, (Mexico). Dept. de Fisicoquimica

    2009-11-15

    This paper reported on a study of the energetic relationships between hydrocarbon molecules and the heats of formation. The quantum theory of atoms in molecules (QTAIM) was used to investigate the degree to which branched hydrocarbons obey a group additivity scheme for energy and populations. The QTAIM defined the properties of the chemical groups. The experimental and theoretical transferability of the methyl and methylene groups of the linear hydrocarbons was also explored. The calculations were performed using a large basis set at the restricted Hartree-Fock and MP2(full) levels of theory. The study also investigated the deviations from additivity, noted for small ring hydrocarbons leading to the definition of strain energy. The QTAIM energies recovered the experimental values. The paper included details regarding the delocalization of the electron density over the surface of the cyclopropane ring, responsible for its homoaromatic properties. The calculations presented in this study satisfied the virial theorem for the atomic definition of energy. The paper discussed the problems associated with the use of the density functional theory (DFT) resulting from its failure to satisfy the virial theorem. 44 refs., 9 tabs., 2 figs.

  14. 考虑供应链中断风险下的B2B电子市场采购策略研究%Optimal Procurement Strategies for B2B Electronic Markets under Supply Chain Disruption Risk

    Institute of Scientific and Technical Information of China (English)

    陈明明; 桂寿平

    2013-01-01

    We construct a two -level dual - sourcing supply chain model in traditional supply chains and B2B electronic markets, where traditional supply chains are susceptible to disruption risks. The different procurement models are compared and the analytical conditions of optimal procurement strategies are obtained. We also analyze the effects of disruption probability and market liquidity on procurement strategies. The results of our analysis show that significant profit improvement can be achieved in B2B electronic markets and the third - party B2B markets procurement model is the best.%针对传统供应链渠道可能存在的不稳定性及中断风险,构建基于传统供应链渠道和电子市场双源渠道的二级供应链模型.并分析和比较不同的采购模式,得出零售商不同采购模式下最优采购策略的解析条件,探讨市场流动性及供应链中断概率对最优采购策略的影响.研究发现B2B电子市场能显著提高供应链的期望利润,并且第三方电子交易市场下的采购策略为最优.

  15. Bacterial sources for phenylalkane hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, L.; Winans, R.E. [Argonne National Lab., IL (United States); Langworthy, T. [Univ. of South Dakota, Vermillion, SD (United States)

    1996-10-01

    The presence of phenylalkane hydrocarbons in geochemical samples has been the source of much controversy. Although an anthropogenic input from detergent sources always appears likely, the distribution of phenylalkane hydrocarbons in some cases far exceeding that attributed to detergent input has led to a reappraisal of this view. Indeed, recent work involving analysis of the lipid hydrocarbon extracts from extant Thermoplasma bacteria has revealed the presence of phenylalkane hydrocarbons. The presence of phenylalkane hydrocarbons in sedimentary organic matter may therefore represent potential biological markers for thermophilic bacteria.

  16. Microbial degradation of petroleum hydrocarbons.

    Science.gov (United States)

    Varjani, Sunita J

    2017-01-01

    Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C.K.

    2000-07-07

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

  18. New acceptor-bridge-donor strategy for enhancing NLO response with long-range excess electron transfer from the NH2...M/M3O donor (M = Li, Na, K) to inside the electron hole cage C20F19 acceptor through the unusual σ chain bridge (CH2)4.

    Science.gov (United States)

    Bai, Yang; Zhou, Zhong-Jun; Wang, Jia-Jun; Li, Ying; Wu, Di; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung

    2013-04-01

    Using the strong electron hole cage C20F19 acceptor, the NH2...M/M3O (M = Li, Na, and K) complicated donors with excess electron, and the unusual σ chain (CH2)4 bridge, we construct a new kind of electride molecular salt e(-)@C20F19-(CH2)4-NH2...M(+)/M3O(+) (M = Li, Na, and K) with excess electron anion inside the hole cage (to be encapsulated excess electron-hole pair) serving as a new A-B-D strategy for enhancing nonlinear optical (NLO) response. An interesting push-pull mechanism of excess electron generation and its long-range transfer is exhibited. The excess electron is pushed out from the (super)alkali atom M/M3O by the lone pair of NH2 in the donor and further pulled inside the hole cage C20F19 acceptor through the efficient long σ chain (CH2)4 bridge. Owing to the long-range electron transfer, the new designed electride molecular salts with the excess electron-hole pair exhibit large NLO response. For the e(-)@C20F19-(CH2)4-NH2...Na(+), its large first hyperpolarizability (β0) reaches up to 9.5 × 10(6) au, which is about 2.4 × 10(4) times the 400 au for the relative e(-)@C20F20...Na(+) without the extended chain (CH2)4-NH2. It is shown that the new strategy is considerably efficient in enhancing the NLO response for the salts. In addition, the effects of different bridges and alkali atomic number on β0 are also exhibited. Further, three modulating factors are found for enhancing NLO response. They are the σ chain bridge, bridge-end group with lone pair, and (super)alkali atom. The new knowledge may be significant for designing new NLO materials and electronic devices with electrons inside the cages. They may also be the basis of establishing potential organic chemistry with electron-hole pair.

  19. Light color, low softening point hydrocarbon resins

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.L.; Hentges, S.G.

    1990-06-12

    This patent describes a hydrocarbon resin having a softening point of from 0{degrees} C to about 40{degrees} C, a Gardner color of about 7 or less, a number average molecular weight (Mn) of from about 100 to about 600, and a M{sub {ital w}}/M{sub {ital n}} ratio of from about 1.1 to about 2.7, prepared by Friedel Crafts polymerization of a hydrocarbon feed. It comprises: from about 5% to about 75% by weight of a C{sub 8} to C{sub 10} vinyl aromatic hydrocarbon stream; up to about 35% by weight of a piperylene stream; and from about 25% to about 70% by weight of a stream containing C{sub 4} to C{sub 8} monoolefin chain transfer agent of the formula RR{prime}C {double bond} CR{double prime}R triple{prime} where R and R{prime} are C{sub 1} to C{sub 5} alkyl, R{double prime} and R triple{prime} are independently selected from H and a C{sub 1} to C{sub 4} alkyl group.

  20. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Moura Leila

    2016-03-01

    Full Text Available The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the separation of gaseous hydrocarbons – either by improving the capacity of the ionic liquid to absorb a given gas or by increasing the selectivity towards a particular hydrocarbon. Original results concerning the usage of olefin-complexing metal salts of lithium (I, nickel (II and copper (II dissolved in ionic liquids for selectively absorbing light olefins are presented. It is observed that the absorption capacity of an imidazolium-based ionic liquid is doubled by the addition of a copper (II salt. This result is compared with the effect of the functionalization of the ionic liquid and the advantages and difficulties of the two approaches are analyzed.

  1. The Antimalarial Activities of Methylene Blue and the 1,4-Naphthoquinone 3-[4-(Trifluoromethyl)Benzyl]-Menadione Are Not Due to Inhibition of the Mitochondrial Electron Transport Chain

    Science.gov (United States)

    Ehrhardt, Katharina; Ke, Hangjun; Vaidya, Akhil B.; Lanzer, Michael

    2013-01-01

    Methylene blue and a series of recently developed 1,4-naphthoquinones, including 3-[4-(substituted)benzyl]-menadiones, are potent antimalarial agents in vitro and in vivo. The activity of these structurally diverse compounds against the human malaria parasite Plasmodium falciparum might involve their peculiar redox properties. According to the current theory, redox-active methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione are “subversive substrates.” These agents are thought to shuttle electrons from reduced flavoproteins to acceptors such as hemoglobin-associated or free Fe(III)-protoporphyrin IX. The reduction of Fe(III)-protoporphyrin IX could subsequently prevent essential hemoglobin digestion and heme detoxification in the parasite. Alternatively, owing to their structures and redox properties, methylene blue and 1,4-naphthoquinones might also affect the mitochondrial electron transport chain. Here, we tested the latter hypothesis using an established system of transgenic P. falciparum cell lines and the antimalarial agents atovaquone and chloroquine as controls. In contrast to atovaquone, methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione do not inhibit the mitochondrial electron transport chain. A systematic comparison of the morphologies of drug-treated parasites furthermore suggests that the three drugs do not share a mechanism of action. Our findings support the idea that methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione exert their antimalarial activity as redox-active subversive substrates. PMID:23439633

  2. Membrane separation of hydrocarbons

    Science.gov (United States)

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  3. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  4. Hydrocarbon-utilizing microorganisms naturally associated with sawdust.

    Science.gov (United States)

    Ali, N; Eliyas, M; Al-Sarawi, H; Radwan, S S

    2011-05-01

    Sawdust, one of the materials used as sorbent for removing spilled oil from polluted environments was naturally colonized by hydrocarbon-utilizing fungi, 1×10(5)-2×10(5) colony forming units (CFU) g(-1), depending on the hydrocarbon substrate. This sorbent was initially free of hydrocarbon-utilizing bacteria. Incubating wet sawdust at 30°C resulted in gradually increasing the fungal counts to reach after 6months between 5×10(6) and 7×10(6)CFUg(-1), and the appearance of hydrocarbon-utilizing bacteria in numbers between 8×10(4) and 3×10(5)cellsg(-1). The fungi belonged to the genera Candida (32% of the total), Penicillium (21%), Aspergillus (15%), Rhizopus (12%), Cladosporium (9%), Mucor (7%) and Fusarium (4%). Based on their 16S rRNA gene sequences the bacteria were affiliated to Actinobacterium sp. (38%), Micrococcus luteus (30%), Rhodococcus erythropolis, (19%) and Rhodococcus opacus (13%). Individual pure fungal and bacterial isolates grew on a wide range of individual pure aliphatic (n-alkanes with chain lengths between C(9) and C(40)) and aromatic (benzene, biphenyl, anthracene, naphthalene and phenanthrene) hydrocarbons as sole sources of carbon and energy. Quantitative determinations revealed that all fungal and bacterial isolates could consume considerable proportions of crude oil, phenanthrene (an aromatic hydrocarbon) and n-hexadecane (an aliphatic hydrocarbon) in batch cultures. It was concluded that when sawdust is used as a sorbent, the associated microorganisms probably contribute to the bioremediation of oil and hydrocarbon pollutants in the environment.

  5. Chain Gang

    Science.gov (United States)

    2006-01-01

    6 August 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a chain of clustered and battered craters. These were formed by secondary impact. That is, somewhere to the south (beyond the bottom of this image), a large impact crater formed. When this occurred, material ejected from the crater was thrown tens to hundreds of kilometers away. This material then impacted the martian surface, forming clusters and chains of smaller craters. Location near: 15.8oN, 35.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Spring

  6. Complete Chloroplast and Mitochondrial Genome Sequences of the Hydrocarbon Oil-Producing Green Microalga Botryococcus braunii Race B (Showa).

    Science.gov (United States)

    Blifernez-Klassen, Olga; Wibberg, Daniel; Winkler, Anika; Blom, Jochen; Goesmann, Alexander; Kalinowski, Jörn; Kruse, Olaf

    2016-06-09

    The green alga Botryococcus braunii is capable of the production and excretion of high quantities of long-chain hydrocarbons and exopolysaccharides. In this study, we present the complete plastid and mitochondrial genomes of the hydrocarbon-producing microalga Botryococcus braunii race B (Showa), with a total length of 156,498 and 129,356 bp, respectively.

  7. Negative quantum interference between the electronic Raman scattering processes of CuO chains and CuO2 planes of heavily overdoped (Y, Ca)Ba2Cu3O(7-delta).

    Science.gov (United States)

    Masui, T; Limonov, M; Uchiyama, H; Tajima, S; Yamanaka, A

    2005-11-11

    We found a strong X-Y anisotropy of the pair-breaking peak in the Raman scattering of heavily overdoped (Y, Ca)Ba2Cu3O(7-delta) (T(c) = 65 K). The pair-breaking peak is radically suppressed in the YY-polarized spectrum. We ascribe this anomaly to the effect of quantum interference between the Raman processes of the CuO-chain and the CuO2-plane electronic excitations that might take place as a result of the increase in the transfer matrix due to overdoping.

  8. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Boutheina Gargouri

    2015-01-01

    Full Text Available Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  9. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  10. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater.

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  11. Observation of an intermediate tryptophanyl radical in W306F mutant DNA photolyase from Escherichia coli supports electron hopping along the triple tryptophan chain.

    Science.gov (United States)

    Byrdin, Martin; Villette, Sandrine; Eker, Andre P M; Brettel, Klaus

    2007-09-04

    DNA photolyases repair UV-induced cyclobutane pyrimidine dimers in DNA by photoinduced electron transfer. The redox-active cofactor is FAD in its doubly reduced state FADH-. Typically, during enzyme purification, the flavin is oxidized to its singly reduced semiquinone state FADH degrees . The catalytically potent state FADH- can be reestablished by so-called photoactivation. Upon photoexcitation, the FADH degrees is reduced by an intrinsic amino acid, the tryptophan W306 in Escherichia coli photolyase, which is 15 A distant. Initially, it has been believed that the electron passes directly from W306 to excited FADH degrees , in line with a report that replacement of W306 with redox-inactive phenylalanine (W306F mutant) suppressed the electron transfer to the flavin [Li, Y. F., et al. (1991) Biochemistry 30, 6322-6329]. Later it was realized that two more tryptophans (W382 and W359) are located between the flavin and W306; they may mediate the electron transfer from W306 to the flavin either by the superexchange mechanism (where they would enhance the electronic coupling between the flavin and W306 without being oxidized at any time) or as real redox intermediates in a three-step electron hopping process (FADH degrees * FADH degrees and leads to the formation of FADH- and a deprotonated tryptophanyl radical, most likely W359 degrees. These photoproducts are formed in less than 10 ns and recombine to the dark state in approximately 1 micros. These results support the electron hopping mechanism.

  12. A polymorphic variant in the human electron transfer flavoprotein alpha-chain (alpha-T171) displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with mild childhood presentation

    DEFF Research Database (Denmark)

    Bross, P; Pedersen, P; Nyholm, M;

    1999-01-01

    The consequences of two amino acid polymorphisms of human electron transfer flavoprotein (alpha-T/I171 in the alpha-subunit and beta-M/T154 in the beta-subunit) on the thermal stability of the enzyme are described. The alpha-T171 variant displayed a significantly decreased thermal stability...... thermal stability) was significantly overrepresented. Subgrouping of the VLCAD patients into three phenotypic classes (severe childhood, mild childhood, and adult presentation) revealed that the overrepresentation of the alpha-T171 variant was significant only in patients with mild childhood presentation...

  13. Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors.

    Science.gov (United States)

    Dilonardo, Elena; Penza, Michele; Alvisi, Marco; Cassano, Gennaro; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa; Cioffi, Nicola

    2017-01-01

    Pristine and electrochemically Pd-modified ZnO nanorods (ZnO NRs) were proposed as active sensing layers in chemiresistive gas sensors for hydrocarbon (HC) gas detection (e.g., CH4, C3H8, C4H10). The presence of Pd nanoparticles (NPs) on the surface of ZnO NRs, obtained after the thermal treatment at 550 °C, was revealed by morphological and surface chemical analyses, using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The effect of the Pd catalyst on the performance of the ZnO-based gas sensor was evaluated by comparing the sensing results with those of pristine ZnO NRs, at an operating temperature of 300 °C and for various HC gas concentrations in the range of 30-1000 ppm. The Pd-modified ZnO NRs showed a higher selectivity and sensitivity compared to pristine ZnO NRs. The mean sensitivity of Pd-modified ZnO NRs towards the analyzed HCs gases increased with the length of the hydrocarbon chain of the target gas molecule. Finally, the evaluation of the selectivity revealed that the presence or the absence of metal nanoparticles on ZnO NRs improves the selectivity in the detection of specific HCs gaseous molecules.

  14. Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors

    Science.gov (United States)

    Alvisi, Marco; Cassano, Gennaro; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa

    2017-01-01

    Summary Pristine and electrochemically Pd-modified ZnO nanorods (ZnO NRs) were proposed as active sensing layers in chemiresistive gas sensors for hydrocarbon (HC) gas detection (e.g., CH4, C3H8, C4H10). The presence of Pd nanoparticles (NPs) on the surface of ZnO NRs, obtained after the thermal treatment at 550 °C, was revealed by morphological and surface chemical analyses, using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The effect of the Pd catalyst on the performance of the ZnO-based gas sensor was evaluated by comparing the sensing results with those of pristine ZnO NRs, at an operating temperature of 300 °C and for various HC gas concentrations in the range of 30–1000 ppm. The Pd-modified ZnO NRs showed a higher selectivity and sensitivity compared to pristine ZnO NRs. The mean sensitivity of Pd-modified ZnO NRs towards the analyzed HCs gases increased with the length of the hydrocarbon chain of the target gas molecule. Finally, the evaluation of the selectivity revealed that the presence or the absence of metal nanoparticles on ZnO NRs improves the selectivity in the detection of specific HCs gaseous molecules. PMID:28144567

  15. Towards Carbon-Neutral CO2 Conversion to Hydrocarbons.

    Science.gov (United States)

    Mattia, Davide; Jones, Matthew D; O'Byrne, Justin P; Griffiths, Owen G; Owen, Rhodri E; Sackville, Emma; McManus, Marcelle; Plucinski, Pawel

    2015-12-07

    With fossil fuels still predicted to contribute close to 80 % of the primary energy consumption by 2040, methods to limit further CO2 emissions in the atmosphere are urgently needed to avoid the catastrophic scenarios associated with global warming. In parallel with improvements in energy efficiency and CO2 storage, the conversion of CO2 has emerged as a complementary route with significant potential. In this work we present the direct thermo-catalytic conversion of CO2 to hydrocarbons using a novel iron nanoparticle-carbon nanotube (Fe@CNT) catalyst. We adopted a holistic and systematic approach to CO2 conversion by integrating process optimization-identifying reaction conditions to maximize conversion and selectivity towards long chain hydrocarbons and/or short olefins-with catalyst optimization through the addition of promoters. The result is the production of valuable hydrocarbons in a manner that can approach carbon neutrality under realistic industrial process conditions.

  16. First principles study of the electronic structure and magnetic properties of spin chain compounds: Ca3ZnMnO6 and Ca3ZnCoO6

    Science.gov (United States)

    Chakraborty, Jayita; Samanta, Subhasis; Nanda, B. R. K.; Dasgupta, I.

    2016-09-01

    We have studied the electronic structure and magnetism of the spin chain compounds Ca3ZnMnO6 and Ca3ZnCoO6 using density functional theory with generalised gradient approximation (GGA). In agreement with experiment our calculations reveal that high spin (HS) state for Mn4+ ion and low spin (LS) state for Co4+ ion stabilize the magnetic structure of the respective compounds. The magnetic exchange paths, calculated using Nth order muffin-tin orbital downfolding method, shows dominant intra-chain exchange interaction between the magnetic ions (Mn, Co) is antiferromagnetic for Ca3ZnMnO6 and ferromagnetic for Ca3ZnCoO6. The magnetic order of both the compounds is in accordance with the Goodenough-Kanamori-Anderson rules and is consistent with the experimental results. Finally we have investigated the importance of spin-orbit coupling (SOC) in these compounds. While SOC practically has no effect for the Mn system, it is strong enough to favor the spin quantization along the chain direction for the Co system in the LS state.

  17. Organization of the electron transfer chain to oxygen in the obligate human pathogen Neisseria gonorrhoeae: roles for cytochromes c4 and c5, but not cytochrome c2, in oxygen reduction.

    Science.gov (United States)

    Li, Ying; Hopper, Amanda; Overton, Tim; Squire, Derrick J P; Cole, Jeffrey; Tovell, Nicholas

    2010-05-01

    Although Neisseria gonorrhoeae is a prolific source of eight c-type cytochromes, little is known about how its electron transfer pathways to oxygen are organized. In this study, the roles in the respiratory chain to oxygen of cytochromes c(2), c(4), and c(5), encoded by the genes cccA, cycA, and cycB, respectively, have been investigated. Single mutations in genes for either cytochrome c(4) or c(5) resulted in an increased sensitivity to growth inhibition by excess oxygen and small decreases in the respiratory capacity of the parent, which were complemented by the chromosomal integration of an ectopic, isopropyl-beta-d-thiogalactopyranoside (IPTG)-inducible copy of the cycA or cycB gene. In contrast, a cccA mutant reduced oxygen slightly more rapidly than the parent, suggesting that cccA is expressed but cytochrome c(2) is not involved in electron transfer to cytochrome oxidase. The deletion of cccA increased the sensitivity of the cycB mutant to excess oxygen but decreased the sensitivity of the cycA mutant. Despite many attempts, a double mutant defective in both cytochromes c(4) and c(5) could not be isolated. However, a strain with the ectopically encoded, IPTG-inducible cycB gene with deletions in both cycA and cycB was constructed: the growth and survival of this strain were dependent upon the addition of IPTG, so gonococcal survival is dependent upon the synthesis of either cytochrome c(4) or c(5). These results define the gonococcal electron transfer chain to oxygen in which cytochromes c(4) and c(5), but not cytochrome c(2), provide alternative pathways for electron transfer from the cytochrome bc(1) complex to the terminal oxidase cytochrome cbb(3).

  18. Research on Synergy Mechanism of Prices of Industry Chain on Recycling the Waste Electrical and Electronic Equipment%废旧电器回收再生利用产业链价格协同机理研究

    Institute of Scientific and Technical Information of China (English)

    郭汉丁; 张印贤; 郭伟; 马辉

    2013-01-01

    Industry of recycling the waste electrical and electronic equipment exist many problems, such as development block, inferiority given priority, condition by the behind, and fixed low technique. That reflects the bottleneck of the industry development lying in price coordination of the industry chain. The study on the question is short in domestic and abroad. The nature of form process of the industry chain on recycling the waste electrical and electronic equipment is the course of the value circulation. Based on the value circulation, the prices of industry chain are taken shape. And the prices are affected by macroscopic factors, environment support elements, business growing factors, and characteristic factors of the industry chain, but key factors are government subsidy, adjusting taxes and dues, and capital of nature resources. The capital of nature resources is the order parameter. It will promote movement in coordination with industry chain prices and the industry development by efficient policies and scientific capital of nature resources.%废旧电器回收再生利用产业发展受阻、“劣币驱逐良币”、下游纵向制约、技术低端锁定等问题,集中反映了产业发展的瓶颈在于产业链价格协同.国内外废旧电器回收再生利用产业链价格协同机理研究尚属鲜见.废旧电器产业链形成过程的本质是价值循环的过程,基于价值循环内在地构成了产业链各环节的价格,这些价格受到宏观因素、环境支撑因素、企业成长因素及产业特征因素的综合影响,政府补贴与税费调节、自然资源资本是影响产业链价格的关键因素,废旧电器回收再生利用产业链价格协同运行的序参量是自然资源资本,有效的政策调控和科学的自然资源资本度量,将促进其产业链价格协同运行和产业健康发展.

  19. Selective NO trapping in the pores of chain-type complex assemblies based on electronically activated paddlewheel-type [Ru2(II,II)]/[Rh2(II,II)] dimers.

    Science.gov (United States)

    Kosaka, Wataru; Yamagishi, Kayo; Hori, Akihiro; Sato, Hiroshi; Matsuda, Ryotaro; Kitagawa, Susumu; Takata, Masaki; Miyasaka, Hitoshi

    2013-12-11

    The design of porous materials that undergo selective adsorption of a specific molecule is a critical issue in research on porous coordination polymers or metal-organic frameworks. For the purpose of the selective capture of molecules possessing an electron-acceptor character such as nitric oxide (NO), one-dimensional chain compounds possessing a high donor character have been synthesized using 4-chloroanisate-bridged paddlewheel-type dimetal(II, II) complexes with M = Ru and Rh and phenazine (phz) as the chain linker: [M2(4-Cl-2-OMePhCO2)4(phz)]·n(CH2Cl2) (M = Ru, 1; Rh, 2). These compounds are isostructural and are composed of chains with a [-{M2}-phz-] repeating unit and CH2Cl2 occupying the void space between the chains. Compounds 1 and 2 change to a new phase (1-dry and 2-dry) upon evacuating the crystallization solvent (CH2Cl2) and almost lose their pores in the drying process: no void space in 1-dry and 31.8 Å(3), corresponding to 2.9% of the cell volume, in 2-dry. Nevertheless, the compounds show a unique gas accommodation ability. Accompanied by a structural transformation (i.e., the first gate-opening) at low pressures of molecules per [M2] unit. In addition, the adsorption isotherm for NO (121 K) involves the first gate-opening followed by a second gate-opening anomaly at NO pressures of ≈52 kPa for 1-dry and ≈21 kPa for 2-dry. At the first gate-opening, the absorbed amount of NO is ca. 4 molecules per [M2] unit, and then it reaches 8.4 and 6.3 for 1-dry and 2-dry, respectively, at 95 kPa. Only the isotherm for NO exhibits hysteresis in the desorption process, and some of the NO molecules are trapped in pores even after evacuating at 121 K, although it recovers to the original dried sample on heating to room temperature. The adsorbed NO molecules accrue a significant electron donation from the host framework even in the [Rh2] derivative, indicating that such simple porous compounds with electron-donor characteristics are useful for the selective

  20. Oxidative stress in entomopathogenic fungi grown on insect-like hydrocarbons.

    Science.gov (United States)

    Huarte-Bonnet, Carla; Juárez, M Patricia; Pedrini, Nicolás

    2015-08-01

    Entomopathogenic fungi mostly attack their insect hosts by penetration through the cuticle. The outermost insect surface is covered by a lipid-rich layer, usually composed of very long chain hydrocarbons. These fungi are apt to grow on straight chain hydrocarbons (alkanes) as the sole carbon source. Insect-like hydrocarbons are first hydroxylated by a microsomal P450 monooxygenase system, and then fully catabolized by peroxisomal β-oxidation reactions in Beauveria bassiana. In this review, we will discuss lipid metabolism adaptations in alkane-grown fungi, and how an oxidative stress scenario is established under these conditions. Fungi have to pay a high cost for hydrocarbon utilization; high levels of reactive oxygen species are produced and a concomitant antioxidant response is triggered in fungal cells to cope with this drawback.

  1. Hydrocarbon conversion catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, A.; Huizinga, T.; Maxwell, I.E.

    1989-08-15

    This patent describes a process for hydrocracking hydrocarbon oils into products of lower average molecular weight and lower average boiling point. It comprises contacting a hydrocarbon oil at a temperature between 250{sup 0}C and 500{sup 0}C and a pressure up to 300 bar in the presence of hydrogen with a catalyst consisting essentially of a Y zeolite modified to have a unit cell size below 24.35A, a water absorption capacity (at 25{sup 0}C and a rho/rho/sub o/ value of 0.2) of at least 8% by weight of the zeolite and a pore volume of at least 0.25 ml/g wherein between 10% and 60% of the total pore volume is made up of pores having a diameter of at least 8 nm; an alumina binder and at least one hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal and mixtures thereof.

  2. Absence of aryl hydrocarbon hydroxylase (AHH) in three marine bivalves

    Energy Technology Data Exchange (ETDEWEB)

    Vandermeulen, J.H. (Bedford Inst. of Oceanography, Dartmouth, Nova Scotia); Penrose, W.R.

    1978-05-01

    Bivalves exposed to short-term (4 d) and long-term (6 yr) oil pollution were assayed for aryl hydrocarbon hydroxylase (AHH) and N-demethylase activity. Short-term induction studies were carried out on Mya arenaria, Mytilus edulis, and Ostrea edulis incubated in aqueous extracts of Kuwait crude oil or Bunker C (fuel) oil. For the chronic-induction studies Mya arenaria and Mytilus edulis were collected from oiled clam beds (Arrow Bunker C) in Chedabucto Bay, Nova Scotia. None of the bivalves showed any basal or petroleum-hydrocarbon-induced aryl hydrocarbon hydroxylase or N-demethylase activity, as shown by their inability to metabolize benzopyrene or imipramine. In contrast, oil-free control trout and trout taken from a polluted lake readily metabolized both these compounds. The inability of these bivalves to degrade petroleum aromatic hydrocarbons and the tendency of these compounds to accumulate in their tissues present an opportunity for transfer of unaltered hydrocarbons into the food chain.

  3. Protein electron transfer (mechanism and reproductive toxicity): iminium, hydrogen bonding, homoconjugation, amino acid side chains (redox and charged), and cell signaling.

    Science.gov (United States)

    Kovacic, Peter

    2007-03-01

    This contribution presents novel biochemical perspectives of protein electron transfer (ET) with focus on the iminium nature of the peptide link, along with relationships to reproductive toxicity. The favorable influence of hydrogen bonding on protein ET has been widely documented. Hydrogen bonding of the zwitterionic peptide enhances iminium character. A wide array of such bonding agents is available in vivo, with many reports on the peptide link itself. ET proceeds along the backbone, due in part, to homoconjugation. Redox amino acids (AAs), mainly tyrosine (Tyr), tryptophan (Typ), histidine (His), cysteine (Cys), disulfide, and methionine (Met), are involved in the competing processes for radical formation: direct hydrogen atom abstraction versus electron and proton loss. It appears that the radical or radical cation generated during the redox process is capable of interacting with n-electrons of the backbone. Beneficial effects of cationic AAs impact the conduction process. A relationship apparently exists involving cell signaling, protein conduction, and radicals or electrons. In addition, the link between protein ET and reproductive toxicity is examined. A key element is the role of reactive oxygen species (ROS) generated by protein ET. There is extensive evidence for involvement of ROS in generation of birth defects. The radical species arise in protein mainly by ET transformations by enzymes, as illustrated in the case of alcoholism. (c) 2007 Wiley-Liss, Inc.

  4. Thermophysical Properties of Hydrocarbon Mixtures

    Science.gov (United States)

    SRD 4 NIST Thermophysical Properties of Hydrocarbon Mixtures (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  5. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting protein

  6. Hydrocarbon Receptor Pathway in Dogs

    NARCIS (Netherlands)

    Steenbeek, F.G. van; Spee, B.; Penning, L.C.; Kummeling, A.; Gils, I.H.M.; Grinwis, G.C.M.; Leenen, D. van; Holstege, F.C.P.; Vos-Loohuis, M.; Rothuizen, J.; Leegwater, P.A.J.

    The aryl hydrocarbon receptor (AHR) mediates biological responses to toxic chemicals. An unexpected role for AHR in vascularization was suggested when mice lacking AHR displayed impaired closure of the ductus venosus after birth, as did knockout mice for aryl hydrocarbon receptor interacting

  7. The Role of Saturated Hydrocarbon in Enrichment of Cu, Pb, Znin Kupferschiefer, Southwestern Poland

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to clarify the role of organic matter in the enrichment of base metal, 10 samples of the PermianKupferschiefer from southwestern Poland were analyzed by using microscopic and geochemical methods. The re-suts indicate that the solvent extracts have been depleted in the samples with high Cu, Pb, Zn contents. This de-pletion occurred preferably in saturated hydrocarbons. Saturated hydrocarbons served as hydrogen donor for ther-mochemical sulfate reduction (TSR). The GC traces of saturated hydrocarbon show that the depletion occurredmainly in long-chain n-alkanes.

  8. Metabolic pathways for degradation of aromatic hydrocarbons by bacteria

    NARCIS (Netherlands)

    Ladino-Orjuela, G.; Gomes, E.; da Silva, R.; Salt, C.; Parsons, J.R.; de Voogt, W.P.

    2016-01-01

    The aim of this revision was to build an updated collection of information focused on the mechanisms and elements involved in metabolic pathways of aromatic hydrocarbons by bacteria. Enzymes as an expression of the genetic load and the type of electron acceptor available, as an environmental factor,

  9. Cuticular Hydrocarbons as Potential Close Range Recognition Cues in Orchid Bees.

    Science.gov (United States)

    Pokorny, Tamara; Ramírez, Santiago R; Weber, Marjorie Gail; Eltz, Thomas

    2015-12-01

    Male Neotropical orchid bees collect volatile chemicals from their environment and compose species-specific volatile signals, which are subsequently exposed during courtship display. These perfumes are hypothesized to serve as attractants and may play a role in female mate choice. Here, we investigated the potential of cuticular hydrocarbons as additional recognition cues. The cuticular hydrocarbons of males of 35 species belonging to four of the five extant euglossine bee genera consisted of aliphatic hydrocarbons ranging in chain lengths between 21 and 37 C-atoms in distinct compositions, especially between sympatric species of similar coloring and size, for all but one case. Cleptoparasitic Exaerete spp. had divergent profiles, with major compounds predominantly constituted by longer hydrocarbon chains (>30 C-atoms), which may represent an adaptation to the parasitic life history ("chemical insignificance"). Phylogenetic comparative analyses imply that the chemical profiles exhibited by Exaerete spp. are evolutionarily divergent from the rest of the group. Female hydrocarbon profiles were not identical to male profiles in the investigated species, with either partial or complete separation between sexes in multivariate analyses. Sexually dimorphic hydrocarbon profiles are assumed to be the basis for sex recognition in a number of insects, and thus may supplement the acquired perfume phenotypes in chemical information transfer. Overall, cuticular hydrocarbons meet the requirements to function as intraspecific and intersexual close range recognition signals; behavioral experiments are needed to determine their potential involvement in mate recognition.

  10. A multiconfigurational time-dependent Hartree-Fock method for excited electronic states. II. Coulomb interaction effects in single conjugated polymer chains

    Science.gov (United States)

    Miranda, R. P.; Fisher, A. J.; Stella, L.; Horsfield, A. P.

    2011-06-01

    Conjugated polymers have attracted considerable attention in the last few decades due to their potential for optoelectronic applications. A key step that needs optimisation is charge carrier separation following photoexcitation. To understand better the dynamics of the exciton prior to charge separation, we have performed simulations of the formation and dynamics of localised excitations in single conjugated polymer strands. We use a nonadiabatic molecular dynamics method which allows for the coupled evolution of the nuclear degrees of freedom and of multiconfigurational electronic wavefunctions. We show the relaxation of electron-hole pairs to form excitons and oppositely charged polaron pairs and discuss the modifications to the relaxation process predicted by the inclusion of the Coulomb interaction between the carriers. The issue of charge photogeneration in conjugated polymers in dilute solution is also addressed.

  11. Formation of hydrocarbons by micro-organisms. [Review with 152 references

    Energy Technology Data Exchange (ETDEWEB)

    Bird, C.W. (Queen Elizabeth Coll., London); Lynch, J.M.

    1974-01-01

    A review covers the formation of methane, e.g., by Methanobacterium ruminantium on hydrogen and carbon dioxide substrate in swamps, sewage plants, etc.; ethylene, e.g., from plant pathogens such as Penicillium digitatum in citrus fruits; other short-chain hydrocarbons, e.g., hexa-1,3,5-triyne, formed by the fungus Fomes annosus; longer-chain hydrocarbons, e.g., C/sub 16/-C/sub 33/ alkanes formed by algae and fungi, with the chain lengths dependent upon the carbon source used for growth; isoprenoid hydrocarbons, e.g., squalene, formed by yeasts and fungi; and geochemical aspects, such as the microbial contributions to petroleum formation. 152 references.

  12. Study on Waste Electronic Product Reverse Logistics Based on Closed-loop Supply Chain%基于闭环供应链的废旧电子产品逆向物流研究

    Institute of Scientific and Technical Information of China (English)

    程华亮; 杨西龙

    2015-01-01

    阐述了废旧电子产品的内涵及特点,分析了我国废旧电子产品回收现状和存在的问题,为提高废旧电子产品回收利用率,减少对环境的污染,以供应链管理思想为基础,构建了废旧电子产品供应链逆向物流模式,并为实施废旧电子产品供应链逆向物流模式给出了相应对策,对我国废旧电子产品逆向物流建设有一定指导意义.%In this paper, we elaborated on the connotation and characteristics of the waste electronic product, analyzed the current status and existing problems of the waste electronic produce recycling business in China, established the corresponding waste electronic product supply chain reverse logistics mode, and at the end, provided the countermeasures for the implementation of the mode.

  13. Ultradispersed Hydrocarbon Synthesis Catalyst from CO and H[2] Based on Electroexplosion of Iron Powder

    OpenAIRE

    Popok, Evgeniy Vladimirovich; Levashova, Albina Ivanovna; Chekantsev, Nikita Vitalievich; Kirgina, Mariya Vladimirovna; Rafegerst, K. V.

    2014-01-01

    The structure and properties of disperse particles of electroexplosive iron-based powder are studied with a laser diffraction method, transmission electron microscopy analysis and X-ray photography. The catalytic activity of ultradispersed iron powders in the synthesis of hydrocarbons from CO and H[2] by Fischer - Tropsch method is measured by concentration of the paramagnetic particles with electron paramagnetic resonance. In the laboratory of catalytic plant, hydrocarbons are synthesized at...

  14. Tight-binding chains with off-diagonal disorder: Bands of extended electronic states induced by minimal quasi-one-dimensionality

    Science.gov (United States)

    Nandy, Atanu; Pal, Biplab; Chakrabarti, Arunava

    2016-08-01

    It is shown that an entire class of off-diagonally disordered linear lattices composed of two basic building blocks and described within a tight-binding model can be tailored to generate absolutely continuous energy bands. It can be achieved if linear atomic clusters of an appropriate size are side-coupled to a suitable subset of sites in the backbone, and if the nearest-neighbor hopping integrals, in the backbone and in the side-coupled cluster, bear a certain ratio. We work out the precise relationship between the number of atoms in one of the building blocks in the backbone and that in the side attachment. In addition, we also evaluate the definite correlation between the numerical values of the hopping integrals at different subsections of the chain, that can convert an otherwise point spectrum (or a singular continuous one for deterministically disordered lattices) with exponentially (or power law) localized eigenfunctions to an absolutely continuous spectrum comprising one or more bands (subbands) populated by extended, totally transparent eigenstates. The results, which are analytically exact, put forward a non-trivial variation of the Anderson localization (Anderson P. W., Phys. Rev., 109 (1958) 1492), pointing towards its unusual sensitivity to the numerical values of the system parameters and, go well beyond the other related models such as the Random Dimer Model (RDM) (Dunlap D. H. et al., Phys. Rev. Lett., 65 (1990) 88).

  15. Unsaturated hydrocarbons with fruity and floral odors.

    Science.gov (United States)

    Anselmi, C; Centini, M; Fedeli, P; Paoli, M L; Sega, A; Scesa, C; Pelosi, P

    2000-04-01

    Hydrocarbons usually do not exhibit odors of interest or well-defined character. However, certain cyclic alkenes have been associated with typical and pleasant notes, such as fruity, green, and floral. One of the best known examples is represented by the isomeric megastigmatrienes, endowed with a pleasant smell of tropical fruits. From the structures of these odorants, 24 analogues and homologues, most of them cyclic alkenes, but including also some open-chain alkenes, have been synthesized to define structural parameters related to the characteristic odors of these compounds. The number and position of double bonds, the substitution on the ring, and the size of the ring are the variables taken into account. Most of the new compounds present a mainly fruity character, associated in several cases with floral and green notes, producing an overall sensation described as "tropical fruit".

  16. 皮革中短链氯化石蜡的GC—ECD测定方法探讨%Determination of Short Chain Chlorinated Paraffins in Leather by Gas Chromatography Combined Electron Capture Detector

    Institute of Scientific and Technical Information of China (English)

    马贺伟

    2012-01-01

    Analysis of short - chain chlorinated paraffins (SCCPs) in leather was studied using gas chromatography combined electron capture detector (GC -ECD). The results show the wide co -eluting chromatogram of SCCPs, and the response factors are dependent on the degree of chlorination. Significant interference problems from medium - chain chlorinated paraffins ( MC- CPs) are expected due to the difficult chromatographic separation. GC - ECD could not provide satisfactory results for scanning SCCPs in leather because of the low selectivity and the complex matrix influences.%采用气相色谱-电子捕获检测器(GC—ECD)对皮革中的短链氯化石蜡(SCCPs)进行测定。结果表明:SCCPs的GC—ECD共流出色谱峰保留时间跨度大,仪器响应值表现出对氯含量的依赖;中链氯化石蜡(MCCPs)的存在对SCCPs的分析过程干扰严重;实际皮革基质非常复杂,导致样品中SCCPs的定性困难。

  17. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Begović, Lidija, E-mail: lbegovic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Mlinarić, Selma, E-mail: smlinaric@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Antunović Dunić, Jasenka, E-mail: jantunovic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Katanić, Zorana, E-mail: zkatanic@biologija.unios.hr [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia); Lončarić, Zdenko, E-mail: zdenko.loncaric@pfos.hr [Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Ulica kralja Petra Svačića 1d, H R -31000 Osijek (Croatia); Lepeduš, Hrvoje, E-mail: hlepedus@yahoo.com [Faculty of Humanities and Social Sciences, Josip Juraj Strossmayer University of Osijek, Lorenza Jägera 9, HR-31000 Osijek (Croatia); Cesar, Vera, E-mail: vcesarus@yahoo.com [Josip Juraj Strossmayer University of Osijek, Department of Biology, Ulica cara Hadrijana 8/A, H R -31000 Osijek (Croatia)

    2016-06-15

    Highlights: • Cobalt (Co{sup 2+}) impaired the function of oxygen evolving complex (OEC) in L. minor L. • Electron transport through PSII components varied depending on Co{sup 2+} concentration. • K-band was proven to be suitable parameter for investigation of Co{sup 2+} toxicity. • Increased lipid peroxidation level showed early oxidative damage induced by Co{sup 2+}. - Abstract: The effect of two concentrations of cobalt (Co{sup 2+}) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72 h after the start of the exposure. Higher concentration of cobalt (1 mM) induced growth inhibition while lower concentration (0.01 mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co{sup 2+} especially at the higher concentration where decreased electron transport beyond primary quinone acceptor Q{sub A}{sup −} and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co{sup 2+} concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals.

  18. Evaluation of synthetic hydrocarbons for mark-recapture studies on the red milkweed beetle.

    Science.gov (United States)

    Ginzel, Matthew D; Hanks, Lawrence M

    2002-05-01

    This study evaluates the potential for using blends of synthetic hydrocarbons in mark-recapture studies of insects. To test the durability of hydrocarbons, we applied a blend of five straight-chain hydrocarbons (C24, C21, C26. C28, C30) to detached elytra of the red milkweed beetle, Tetraopes tetrophthalmus (Forster) (Coleoptera: Cerambycidae), mounted the elytra on pins, and placed them in an exposed location outdoors. The amount of hydrocarbons on the elytra did not change over time, even after two months of exposure to sun and rain. Synthetic hydrocarbons applied to the elytra of living beetles did not significantly influence their longevity or mating success in a laboratory study. and the amounts of hydrocarbons did not change with age. The invariability of hydrocarbon ratios over time suggests that blends could provide a nearly infinite variety of ratios to mark individual insects uniquely and indelibly with a hydrocarbon "fingerprint." This technique offers a convenient, safe, and durable means of individually marking insects and may find application in field studies of larger bodied insects that are long-lived and sedentary.

  19. Supply chain strategies, issues and models

    CERN Document Server

    Ramanathan, Ramakrishnan

    2014-01-01

    In the 21st century, supply chain operations and relationships among supply chain partners have become highly challenging, necessitating new approaches, e.g., the development of new models. Supply Chain Strategies, Issues and Models discusses supply chain issues and models with examples from actual industrial cases. Expert authors with a wide spectrum of knowledge working in various areas of supply chain management from various geographical locations offer refreshing, novel and insightful ideas and address possible solutions using established theories and models. Supply Chain Strategies, Issues and Models features studies that have used mathematical modeling, statistical analyses and also descriptive qualitative studies. The chapters cover many relevant themes related to supply chains and logistics including supply chain complexity, information sharing, quality (six sigma), electronic Kanbans, inventory models, scheduling, purchasing and contracts. To facilitate easy reading, the chapters that deal with suppl...

  20. Distance measurements between paramagnetic centers and a planar object by matrix Mims electron nuclear double resonance

    Science.gov (United States)

    Zänker, Paul-Philipp; Jeschke, Gunnar; Goldfarb, Daniella

    2005-01-01

    Frequency-domain electron nuclear double resonance (ENDOR), two time-domain electron nuclear double resonance techniques, and electron spin echo envelope modulation spectroscopy are compared with respect to their merit in measurements of small hyperfine couplings to nuclei with intermediate gyromagnetic ratio such as 31P. The frequency-domain Mims ENDOR experiment is found to provide the most faithful line shapes. In the limit of long electron-nuclear distances of more than 0.5 nm, sensitivity of this experiment is optimized by matching the first interpulse delay to the transverse relaxation time of the electron spins. In the same limit, Mims ENDOR efficiency scales inversely with the sixth power of distance. Hyperfine splittings as small as 33 kHz can be detected, corresponding to an electron-31P distance of 1 nm. In systems, where a certain kind of nuclei is distributed in a plane, measurements of intermolecular hyperfine couplings can be analyzed in terms of a distance of closest approach of a paramagnetic center to that plane. By applying this technique to spin-labeled lipids in a fully hydrated lipid bilayer it is found that for a fraction of lipids, chain tilt angles can be 25° larger than the mean tilt angle of the lipid chains. This model of all-trans hydrocarbon chains with a broad distribution of tilt angles is also consistent with orientation selection effects in high-field ENDOR spectra.

  1. A Two-component NADPH Oxidase (NOX)-like System in Bacteria Is Involved in the Electron Transfer Chain to the Methionine Sulfoxide Reductase MsrP.

    Science.gov (United States)

    Juillan-Binard, Céline; Picciocchi, Antoine; Andrieu, Jean-Pierre; Dupuy, Jerome; Petit-Hartlein, Isabelle; Caux-Thang, Christelle; Vivès, Corinne; Nivière, Vincent; Fieschi, Franck

    2017-02-10

    MsrPQ is a newly identified methionine sulfoxide reductase system found in bacteria, which appears to be specifically involved in the repair of periplasmic proteins oxidized by hypochlorous acid. It involves two proteins: a periplasmic one, MsrP, previously named YedY, carrying out the Msr activity, and MsrQ, an integral b-type heme membrane-spanning protein, which acts as the specific electron donor to MsrP. MsrQ, previously named YedZ, was mainly characterized by bioinformatics as a member of the FRD superfamily of heme-containing membrane proteins, which include the NADPH oxidase proteins (NOX/DUOX). Here we report a detailed biochemical characterization of the MsrQ protein from Escherichia coli We optimized conditions for the overexpression and membrane solubilization of an MsrQ-GFP fusion and set up a purification scheme allowing the production of pure MsrQ. Combining UV-visible spectroscopy, heme quantification, and site-directed mutagenesis of histidine residues, we demonstrated that MsrQ is able to bind two b-type hemes through the histidine residues conserved between the MsrQ and NOX protein families. In addition, we identify the E. coli flavin reductase Fre, which is related to the dehydrogenase domain of eukaryotic NOX enzymes, as an efficient cytosolic electron donor to the MsrQ heme moieties. Cross-linking experiments as well as surface Plasmon resonance showed that Fre interacts with MsrQ to form a specific complex. Taken together, these data support the identification of the first prokaryotic two-component protein system related to the eukaryotic NOX family and involved in the reduction of periplasmic oxidized proteins.

  2. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways.

    Directory of Open Access Journals (Sweden)

    R Cameron Coates

    Full Text Available Cyanobacteria possess the unique capacity to naturally produce hydrocarbons from fatty acids. Hydrocarbon compositions of thirty-two strains of cyanobacteria were characterized to reveal novel structural features and insights into hydrocarbon biosynthesis in cyanobacteria. This investigation revealed new double bond (2- and 3-heptadecene and methyl group positions (3-, 4- and 5-methylheptadecane for a variety of strains. Additionally, results from this study and literature reports indicate that hydrocarbon production is a universal phenomenon in cyanobacteria. All cyanobacteria possess the capacity to produce hydrocarbons from fatty acids yet not all accomplish this through the same metabolic pathway. One pathway comprises a two-step conversion of fatty acids first to fatty aldehydes and then alkanes that involves a fatty acyl ACP reductase (FAAR and aldehyde deformylating oxygenase (ADO. The second involves a polyketide synthase (PKS pathway that first elongates the acyl chain followed by decarboxylation to produce a terminal alkene (olefin synthase, OLS. Sixty-one strains possessing the FAAR/ADO pathway and twelve strains possessing the OLS pathway were newly identified through bioinformatic analyses. Strains possessing the OLS pathway formed a cohesive phylogenetic clade with the exception of three Moorea strains and Leptolyngbya sp. PCC 6406 which may have acquired the OLS pathway via horizontal gene transfer. Hydrocarbon pathways were identified in one-hundred-forty-two strains of cyanobacteria over a broad phylogenetic range and there were no instances where both the FAAR/ADO and the OLS pathways were found together in the same genome, suggesting an unknown selective pressure maintains one or the other pathway, but not both.

  3. Hydrocarbon Leak Detection Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT is proposing the development of a sensor to detect the presence of hydrocarbons in turbopump Inter-Propellant Seals (IPS). The purpose of the IPS is to prevent...

  4. Growth of hydrocarbon utilizing microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Mavinkurve, S.

    Two isolates from marine mud having broad spectrum hydrocarbon utilizing profile were identified as Arthrobacter simplex and Candida tropicalis.Both the organisms grew exponentially on crude oil. The cell yield of the organisms was influenced...

  5. Electron Tree

    DEFF Research Database (Denmark)

    Appelt, Ane L; Rønde, Heidi S

    2013-01-01

    The photo shows a close-up of a Lichtenberg figure – popularly called an “electron tree” – produced in a cylinder of polymethyl methacrylate (PMMA). Electron trees are created by irradiating a suitable insulating material, in this case PMMA, with an intense high energy electron beam. Upon discharge......, during dielectric breakdown in the material, the electrons generate branching chains of fractures on leaving the PMMA, producing the tree pattern seen. To be able to create electron trees with a clinical linear accelerator, one needs to access the primary electron beam used for photon treatments. We...... appropriated a linac that was being decommissioned in our department and dismantled the head to circumvent the target and ion chambers. This is one of 24 electron trees produced before we had to stop the fun and allow the rest of the accelerator to be disassembled....

  6. Electron Tree

    DEFF Research Database (Denmark)

    Appelt, Ane L; Rønde, Heidi S

    2013-01-01

    The photo shows a close-up of a Lichtenberg figure – popularly called an “electron tree” – produced in a cylinder of polymethyl methacrylate (PMMA). Electron trees are created by irradiating a suitable insulating material, in this case PMMA, with an intense high energy electron beam. Upon discharge......, during dielectric breakdown in the material, the electrons generate branching chains of fractures on leaving the PMMA, producing the tree pattern seen. To be able to create electron trees with a clinical linear accelerator, one needs to access the primary electron beam used for photon treatments. We...... appropriated a linac that was being decommissioned in our department and dismantled the head to circumvent the target and ion chambers. This is one of 24 electron trees produced before we had to stop the fun and allow the rest of the accelerator to be disassembled....

  7. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  8. Electrochemical decomposition of chlorinated hydrocarbons

    OpenAIRE

    McGee, Gerard Anthony

    1993-01-01

    This work involves the characterisation of the electrochemical decomposition of chlorinated hydrocarbons. A variety of methods were employed involving the use of catalytic reagents to enhance the rate at which chlorinated organic compounds are reduced. The first reagent used was oxygen which was electrochemically reduced to superoxide in nonaqueous solvents. Superoxide is a reactive intermediate and decomposes chlorinated hydrocarbons. However it was found that since the rate of reaction betw...

  9. Aliphatic hydrocarbons of the fungi.

    Science.gov (United States)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  10. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  11. Arsenic cycling in hydrocarbon plumes: secondary effects of natural attenuation

    Science.gov (United States)

    Cozzarelli, Isabelle M.; Schreiber, Madeline E.; Erickson, Melinda L.; Ziegler, Brady A.

    2016-01-01

    Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe-hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude-oil-contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe-hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe-hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.

  12. HYDROCARBONS RESERVES IN VENEZUELA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Cruz, D.J.

    2007-07-01

    Venezuela is an important player in the energy world, because of its hydrocarbons reserves. The process for calculating oil and associated gas reserves is described bearing in mind that 90% of the gas reserves of Venezuela are associated to oil. Likewise, an analysis is made of the oil reserves figures from 1975 to 2003. Reference is also made to inconsistencies found by international experts and the explanations offered in this respect by the Ministry of Energy and Petroleum (MENPET) and Petroleos de Venezuela (PDVSA) regarding the changes that took place in the 1980s. In turn, Hubbert's Law is explained to determine peak production of conventional oil that a reservoir or field will reach, as well as its relationship with remaining reserves. Emphasis is placed on the interest of the United Nations on this topic. The reserves of associated gas are presented along with their relationship with the different crude oils that are produced and with injected gas, as well as with respect to the possible changes that would take place in the latter if oil reserves are revised. Some recommendations are submitted so that the MENPET starts preparing the pertinent policies ruling reserves. (auth)

  13. Evaluation of hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Cashman, P.H.; Trexler, J.H. Jr. [Univ. of Nevada, Reno, NV (United States)

    1992-09-30

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the {open_quotes}Eleana Formation{close_quotes} are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock.

  14. White spot syndrome virus isolates of tiger shrimp Penaeus monodon (Fabricious) in India are similar to exotic isolates as revealed by polymerase chain reaction and electron microscopy.

    Science.gov (United States)

    Mishra, S S; Shekhar, M S

    2005-07-01

    Microbiological analysis of samples collected from cases of white spot disease outbreaks in cultured shrimp in different farms located in three regions along East Coast of India viz. Chidambram (Tamil Nadu), Nellore (Andhra Pradesh) and Balasore (Orissa), revealed presence of Vibrio alginolyticus, Vibrio parahaemolyticus, and Aeromonas spp. but experimental infection trials in Penaeus monodon with these isolates did not induce any acute mortality or formation of white spots on carapace. Infection trials using filtered tissue extracts by oral and injection method induced mortality in healthy P. monodon with all samples and 100% mortality was noted by the end of 7 day post-inoculation. Histopathological analysis demonstrated degenerated cells characterized by hypertrophied nuclei in gills, hepatopancreas and lymphoid organ with presence of intranuclear basophilic or eosino-basophilic bodies in tubular cells and intercellular spaces. Analysis of samples using 3 different primer sets as used by other for detection of white spot syndrome virus (WSSV) generated 643, 1447 and 520bp amplified DNA products in all samples except in one instance. Variable size virions with mean size in the range of 110 x 320 +/- 20 nm were observed under electron microscope. It could be concluded that the viral isolates in India involved with white spot syndrome in cultured shrimp are similar to RV-PJ and SEMBV in Japan, WSBV in Taiwan and WSSV in Malaysia, Indonesia, Thailand, China and Japan.

  15. Scanning electron microscopy of human and murine melanoma cells exposed to medium chain-length (C6-C12) dicarboxylic acids in tissue culture.

    Science.gov (United States)

    Breathnach, A S; Robins, E J; Bhasin, Y; Ethridge, L; Nazzaro-Porro, M; Passi, S; Picardo, M

    1987-07-01

    Human and murine (Harding-Passey and Cloudman) melanoma cells were exposed to various concentrations (1 x 10(-3) M-1 x 10(-1) M) of adipic (C6), azelaic (C9), and dodecanedioic (C12) acids for 1-6 hours in tissue culture, and the effects on shape and surface topography were examined by scanning electron microscopy. Effects, i.e., rounding up, concentration of microvilli, blebbing, and prominence of retraction fibrils were time and dose dependent, and for the same concentrations and exposure times, C12 had a greater effect than C9, and both a significantly greater effect than C6. These differential reactions to the three diacids parallel previously reported effects on cell kinetics and viability. The changes could be due to a prime effect on the cell membrane, or they might reflect phases of the cell cycle directed by action of the diacids on the nucleus; this latter seems unlikely. An effect on the cytoskeleton is possibly involved.

  16. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage.

    Science.gov (United States)

    Begović, Lidija; Mlinarić, Selma; Antunović Dunić, Jasenka; Katanić, Zorana; Lončarić, Zdenko; Lepeduš, Hrvoje; Cesar, Vera

    2016-06-01

    The effect of two concentrations of cobalt (Co(2+)) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72h after the start of the exposure. Higher concentration of cobalt (1mM) induced growth inhibition while lower concentration (0.01mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co(2+) especially at the higher concentration where decreased electron transport beyond primary quinone acceptor QA(-) and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co(2+) concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals.

  17. Fabrication of Rubrene Thin Film Transistor on Polystyrene Irradiated by Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Joon; Park, Jiwon; Cho, Sung Oh [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Hyeok Moo [LG Chem Research Park Battery Tech Center, Daejeon (Korea, Republic of); Lee, Junghwi; Cho, Sung Oh [Hanbat National Univ., Daejeon (Korea, Republic of)

    2014-05-15

    We present an unprecedented method to fabricate high-crystalline rubrene TFTs by combining of the abrupt heating technique and the polystyrene buffer layer irradiated by electron beam. For this PS buffer layer, we irradiated electron beam of optimized fluences. By electron beam irradiation, the hydrocarbon chains of PS were cross-linked without any initiators or agents, and chain segmental motions of PS were appeared at the irradiated area. Subsequently, abrupt heating of samples changed the crystalline phase of rubrene from as-deposited amorphous to orthorhombic phase only at irradiated samples without giving any damage to semiconductor. In summary, we have presented an unconventional approach to fabricate crystalline rubrene active layers and high quality rubrene thin film transistors. By using electron beam irradiation of PS and subsequent crystallization induced by abrupt heating, orthorhombic phase rubrene with high crystalline quality was fabricated successfully. We believe that this unprecedented technique using crosslinking of dielectric layer can be applied to not only PS but also many polymeric materials which can be cross-linked by electron beam. Furthermore, we could expect that by patterning of electron beam, in other words selective irradiation of electron beam, patterned rubrene with high resolution can be realized by adopting direct electron beam lithography techniques.

  18. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    Science.gov (United States)

    Bose, Arpita; Rogers, Daniel R; Adams, Melissa M; Joye, Samantha B; Girguis, Peter R

    2013-01-01

    Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5) and longer alkanes. C2-C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ(13)C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ(13)C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  19. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    Directory of Open Access Journals (Sweden)

    Arpita eBose

    2013-12-01

    Full Text Available Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5 and longer alkanes. C2-C4 alkanes such as ethane, propane and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4 then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist. Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4‰ and 4.5‰ respectively. The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively. Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  20. Adsorption of small hydrocarbons on rutile TiO2(110)

    Science.gov (United States)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnálek, Zdenek

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find that the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~ 1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  1. Adsorption of small hydrocarbons on rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes with 1 - 4 carbon atoms of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of an additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  2. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  3. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    Directory of Open Access Journals (Sweden)

    R. E. Dunmore

    2015-09-01

    Full Text Available Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London, which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20–30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  4. Electronic Commerce

    Directory of Open Access Journals (Sweden)

    Slavko Đerić

    2016-12-01

    Full Text Available Electronic commerce can be defined in different ways. Any definition helps to understand and explain that concept as better as possible.. Electronic commerce is a set of procedures and technologies that automate the tasks of financial transactions using electronic means. Also, according to some authors, electronic commerce is defined as a new concept, which is being developed and which includes process of buying and selling or exchanging products, services or information via computer networks, including the Internet. Electronic commerce is not limited just to buying and selling, but it also includes all pre-sales and after-sales ongoing activities along the supply chain. Introducing electronic commerce, using the Internet and Web services in business, realizes the way to a completely new type of economy - internet economy.

  5. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    Science.gov (United States)

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems.

  6. Research on the Modularity of Logistics Industrial Chain of the Recovery of Waste Electronic Products Based on EPR%EPR下电子废旧品回收物流产业链模块化研究

    Institute of Scientific and Technical Information of China (English)

    杨传明

    2011-01-01

    Based on the present situation and characteristics of the logistics of the recovery of waste electronic products, the paper discusses the applicability of modular theory in the logistics industrial chain. According to the differences subjects taking part in the recovery process, we construct four modular modes based on a general equilibrium analysis model. They are: manufacturers' coordination mode, manufacturers' alliance and management mode, manufacturer' s outsourcing mode and mannfacturers' clustering mode. Proved by a general equilibrium mathematical model and theory analysis, the introduction of modular theory can help this logistics industrial chain to reduce operating costs and market and financial risks, strengthen industrial cooperation, enhance the information exchange and thus to better protect the environment and create both economic and social benefits.%基于电子废旧品回收物流现状和特点,结合模块化原理,分析在该产业链应用模块化理论的适用性.依据参与回收过程主体的不同,构建生产商协调下的模块化回收模式、生产商联合主导模块化回收模式、外包模块化回收模式和集群模块化回收模式.经数学模型和理论证明,引入模块化理论有利于电子废旧品回收物流产业链健康发展,从而更好的保护环境,创造经济效益,产生社会效益.

  7. The Future of Resilient Supply Chains

    DEFF Research Database (Denmark)

    Donadoni, Mattia; Roden, Sinéad; Scholten, Kirstin

    This research aims to advance theoretical understanding around the management of supply chain disruptions through a multi-stage Delphi study on supply chain resilience. Stage one focused on polling academic experts followed by a second stage with practitioners from automotive, electronics and foo...

  8. product chain collaboration and environmental innovations

    DEFF Research Database (Denmark)

    Remmen, Arne; Mosgaard, Mette

    2004-01-01

    The paper  builds upon a case study from a number of electronic companies in Denmark and describes from an organisational perspective how organisations make environmental innovations in the product chain....

  9. Graphs: Associated Markov Chains

    OpenAIRE

    2012-01-01

    In this research paper, weighted / unweighted, directed / undirected graphs are associated with interesting Discrete Time Markov Chains (DTMCs) as well as Continuous Time Markov Chains (CTMCs). The equilibrium / transient behaviour of such Markov chains is studied. Also entropy dynamics (Shannon entropy) of certain structured Markov chains is investigated. Finally certain structured graphs and the associated Markov chains are studied.

  10. Evaluation of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in pure mineral hydrocarbon-based cosmetics and cosmetic raw materials using 1H NMR spectroscopy

    Science.gov (United States)

    Lachenmeier, Dirk W.; Mildau, Gerd; Rullmann, Anke; Marx, Gerhard; Walch, Stephan G.; Hartwig, Andrea; Kuballa, Thomas

    2017-01-01

    Mineral hydrocarbons consist of two fractions, mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH). MOAH is a potential public health hazard because it may include carcinogenic polycyclic compounds. In the present study, 400 MHz nuclear magnetic resonance (NMR) spectroscopy was introduced, in the context of official controls, to measure MOSH and MOAH in raw materials or pure mineral hydrocarbon final products (cosmetics and medicinal products). Quantitative determination (qNMR) has been established using the ERETIC methodology (electronic reference to access in vivo concentrations) based on the PULCON principle (pulse length based concentration determination). Various mineral hydrocarbons (e.g., white oils, paraffins or petroleum jelly) were dissolved in deuterated chloroform. The ERETIC factor was established using a quantification reference sample containing ethylbenzene and tetrachloronitrobenzene. The following spectral regions were integrated: MOSH δ 3.0 – 0.2 ppm and MOAH δ 9.2 - 6.5, excluding solvent signals. Validation showed a sufficient precision of the method with a coefficient of variation cosmetic products. For mineral hydrocarbon raw materials or pure mineral hydrocarbon-based cosmetic products, NMR delivers higher specificity without any sample preparation besides dilution. Our sample survey shows that previous methods may have overestimated the MOAH amount in mineral oil products and opens new paths to characterize this fraction. Therefore, the developed method can be applied for routine monitoring of consumer products aiming to minimize public health risks. PMID:28721203

  11. Evaluation of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in pure mineral hydrocarbon-based cosmetics and cosmetic raw materials using (1)H NMR spectroscopy.

    Science.gov (United States)

    Lachenmeier, Dirk W; Mildau, Gerd; Rullmann, Anke; Marx, Gerhard; Walch, Stephan G; Hartwig, Andrea; Kuballa, Thomas

    2017-01-01

    Mineral hydrocarbons consist of two fractions, mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH). MOAH is a potential public health hazard because it may include carcinogenic polycyclic compounds. In the present study, 400 MHz nuclear magnetic resonance (NMR) spectroscopy was introduced, in the context of official controls, to measure MOSH and MOAH in raw materials or pure mineral hydrocarbon final products (cosmetics and medicinal products). Quantitative determination (qNMR) has been established using the ERETIC methodology (electronic reference to access in vivo concentrations) based on the PULCON principle (pulse length based concentration determination). Various mineral hydrocarbons (e.g., white oils, paraffins or petroleum jelly) were dissolved in deuterated chloroform. The ERETIC factor was established using a quantification reference sample containing ethylbenzene and tetrachloronitrobenzene. The following spectral regions were integrated: MOSH δ 3.0 - 0.2 ppm and MOAH δ 9.2 - 6.5, excluding solvent signals. Validation showed a sufficient precision of the method with a coefficient of variation cosmetic products. For mineral hydrocarbon raw materials or pure mineral hydrocarbon-based cosmetic products, NMR delivers higher specificity without any sample preparation besides dilution. Our sample survey shows that previous methods may have overestimated the MOAH amount in mineral oil products and opens new paths to characterize this fraction. Therefore, the developed method can be applied for routine monitoring of consumer products aiming to minimize public health risks.

  12. Electron-deficient N-heteroaromatic linkers for the elaboration of large, soluble polycyclic aromatic hydrocarbons and their use in the synthesis of some very large transition metal complexes.

    Science.gov (United States)

    Fogel, Yulia; Kastler, Marcel; Wang, Zhaohui; Andrienko, Denis; Bodwell, Graham J; Müllen, Klaus

    2007-09-26

    The selective oxidation of the perimeter of an extended polycyclic aromatic hydrocarbon (PAH), namely a six-fold tert-butylated tetrabenzo[bc,ef,hi,uv]ovalene, led to the formation of an alpha-diketone. The newly installed carbonyl centers allowed this building block to be converted into the largest known heteroatom-containing PAHs (up to 224 atoms in the aromatic core) by way of the quinoxaline ring condensation reaction. The tert-butyl substituents caused a distortion of the usually planar aromatic frameworks, which hampered the aggregation tendency of the extended aromatic pi-systems and led to extraordinarily high solubilities. All of the systems described here, even the giant phthalocyanine, could thus be purified using standard chromatographic techniques and characterized using typical spectroscopic methods. For the first time, fully resolved 1H NMR spectra of soluble, diamagnetic, 98- and 104-atom-containing aromatic systems are presented. The computed and experimental UV/vis spectra emphasize the dependence of the characteristic alpha-, p-, and beta-bands upon the size of the PAHs. It was also possible to obtain the largest known ligand to yet be complexed around a ruthenium center. A quadrupolar solvatochromic effect was observed when two donating PAH moieties were fused to an accepting quinoxaline center, in which case the photoluminescence spanned a range of about 80 nm. Electrochemical properties of the new nanographenes were investigated using cyclic voltammetry, and this showed quasi-reversible reductions.

  13. Transmission through metallic chains: Role of distortions and contact geometry

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Thomas; Akgenc, Berna; Schuster, Cosima; Eckern, Ulrich [Institut fuer Physik, Universitaet Augsburg, 86135 (Germany)

    2010-07-01

    We present results of electronic structure and transport calculations for metallic chains, based on density functional theory and scattering theory combined with the the non-equilibrium Green's function technique. Starting from a simple model system of monovalent metallic chains we investigate the influence of distortions on the electronic structure and the transport properties of H and Li chains. Furthermore we calculate the electronic structure of Au chains which are contacted to leads via different geometries, and study the influence of the contact geometry on the transmission coefficient. In particular, we compare chains, pyramides and planes in the contact region. A comparison with analytical results is given.

  14. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  15. On bacterial role in hydrocarbon generation mechanism,Banqiao Sag

    Institute of Scientific and Technical Information of China (English)

    王铁冠; 钟宁宁; 侯读杰; 黄光辉; 于志海; 杨池银; 廖前进

    1995-01-01

    Terrestrial organic matter is a main primary source material for oil and gas generation in theEogene Shahejie Formation in Banqiao Sag,bacterial degradation and reworking of sedimentary organic matterwould be conducive to the enhancement of its sapropelification level and to the early generation of immatureoil.Bacteria-derived short-chain alkanes are a major material base for the light hydrocarbon formation ofcondensate and crude oil in Banqiao Sag,certain thermal maturation,formation temperature and pressure areexternal conditions for the condemate formation.The establishment of hydrocarbon generation model shouldbe favorable to the resource prediction of deep-lying high-mature and shallow-lying immature oils and gases.

  16. ENVIROMENTAL HYDROCARBON CONTAMINATION IN RICOTTA AND MOZZARELLA DI BUFALA CHEESE

    Directory of Open Access Journals (Sweden)

    R Mercogliano

    2010-06-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs, mainly formed by anthropogenic activities, are ubiquitous environmental contaminants. Due to environmental contamination and their chemical properties they migrate through the human food chain. Aim of this study was the evaluation of PAHs in ricotta and mozzarella di bufala cheese, produced by milk of buffalo collected in three farms, located in a high contaminated area in Campania because of a waste treatment plant and illegal waste incineration. 11 PAHs were identified both in milk and dairy products. Carcinogenic hydrocarbon benzo(apyrene were found in a range including 0.42- 12.96 μg/kg and dibenzo(ahanthracene 0.21-10.08 μg/kg. Anthracene showed higher concentrations than the other PAHs (45.23-436.85 μg/kg.

  17. Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: Syntheses, structures and chain length dependent physical properties

    KAUST Repository

    Shi, Xueliang

    2014-01-01

    Recent studies demonstrated that aromaticity and biradical character play important roles in determining the ground-state structures and physical properties of quinoidal polycyclic hydrocarbons and oligothiophenes, a kind of molecular materials showing promising applications for organic electronics, photonics and spintronics. In this work, we designed and synthesized a new type of hybrid system, the so-called bisindeno-[n]thienoacenes (n = 1-4), by annulation of quinoidal fused α-oligothiophenes with two indene units. The obtained molecules can be regarded as antiaromatic systems containing 4n π electrons with small singlet biradical character (y0). Their ground-state geometry and electronic structures were studied by X-ray crystallographic analysis, NMR, ESR and Raman spectroscopy, assisted by density functional theory calculations. With extension of the chain length, the molecules showed a gradual increase of the singlet biradical character accompanied by decreased antiaromaticity, finally leading to a highly reactive bisindeno[4]thienoacene (S4-TIPS) which has a singlet biradical ground state (y0= 0.202). Their optical and electronic properties in the neutral and charged states were systematically investigated by one-photon absorption, two-photon absorption, transient absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry, which could be correlated to the chain length dependent antiaromaticity and biradical character. Our detailed studies revealed a clear structure-aromaticity-biradical character-physical properties-reactivity relationship, which is of importance for tailored material design in the future. This journal is

  18. Insect Adhesion Secretions: Similarities and Dissimilarities in Hydrocarbon Profiles of Tarsi and Corresponding Tibiae.

    Science.gov (United States)

    Gerhardt, Heike; Betz, Oliver; Albert, Klaus; Lämmerhofer, Michael

    2016-08-01

    Spatially controlled in vivo sampling by contact solid phase microextraction with a non-coated silica fiber combined with gas chromatography-mass spectrometry (GC-MS) was utilized for hydrocarbon profiling in tarsal adhesion secretions of four insect species (Nicrophorus vespilloides, Nicrophorus nepalensis, Sagra femorata, and Gromphadorhina portentosa) by using distinct adhesion systems, viz. hairy or smooth tarsi. For comparison, corresponding samples from tibiae, representing the general cuticular hydrocarbon profile, were analyzed to enable the statistical inference of active molecular adhesion principles in tarsal secretions possibly contributed by specific hydrocarbons. n-Alkanes, monomethyl and dimethyl alkanes, alkenes, alkadienes, and one aldehyde were detected. Multivariate statistical analysis (principal component and orthogonal partial least square discriminant analyses) gave insights into distinctive molecular features among the various insect species and between tarsus and tibia samples. In general, corresponding hydrocarbon profiles in tarsus and tibia samples largely resembled each other, both qualitatively and in relative abundances as well. However, several specific hydrocarbons showed significantly different relative abundances between corresponding tarsus and tibia samples, thus indicating that such differences of specific hydrocarbons in the complex mixtures might constitute a delicate mechanism for fine-tuning the reversible attachment performances in tarsal adhesive fluids that are composed of substances originating from the same pool as cuticular hydrocarbons. Caused by melting point depression, the multicomponent tarsal adhesion secretion, made up of straight chain alkanes, methyl alkanes, and alkenes will have a semi-solid, grease-like consistency, which might provide the basis for a good reversible attachment performance.

  19. 75 FR 29307 - Web Based Supply Chain Management Commodity Offer Form, Paperwork Collection Notice

    Science.gov (United States)

    2010-05-25

    ... Agricultural Marketing Service Web Based Supply Chain Management Commodity Offer Form, Paperwork Collection... Based Supply Chain Management (WBSCM) that will allow respondents to submit information electronically... CONTACT: David Tuckwiller, Project Manager, Web Based Supply Chain Management System, phone (202)...

  20. Reconstruction of Northern Hemisphere 1950-2010 atmospheric non-methane hydrocarbons

    NARCIS (Netherlands)

    Helmig, D.; Petrenko, V.; Martinerie, P.; Witrant, E.; Rockmann, T.; Zuiderweg, A.; Holzinger, R.; Hueber, J.; Thompson, C.; White, J. W. C.; Sturges, W.; Baker, A.; Blunier, T.; Etheridge, D.; Rubino, M.; Tans, P.

    2014-01-01

    The short-chain non-methane hydrocarbons (NMHC) are mostly emitted into the atmosphere by anthropogenic processes. Recent studies have pointed out a tight linkage between the atmospheric mole fractions of the NMHC ethane and the atmospheric growth rate of methane. Consequently, atmospheric NMHC are

  1. Reconstruction of Northern Hemisphere 1950-2010 atmospheric non-methane hydrocarbons

    NARCIS (Netherlands)

    Helmig, D.; Petrenko, V.; Martinerie, P.; Witrant, E.; Rockmann, T.; Zuiderweg, A.; Holzinger, R.; Hueber, J.; Thompson, C.; White, J. W. C.; Sturges, W.; Baker, A.; Blunier, T.; Etheridge, D.; Rubino, M.; Tans, P.

    2014-01-01

    The short-chain non-methane hydrocarbons (NMHC) are mostly emitted into the atmosphere by anthropogenic processes. Recent studies have pointed out a tight linkage between the atmospheric mole fractions of the NMHC ethane and the atmospheric growth rate of methane. Consequently, atmospheric NMHC are

  2. [Characterization of a thermophilic Geobacillus strain DM-2 degrading hydrocarbons].

    Science.gov (United States)

    Liu, Qing-kun; Wang, Jun; Li, Guo-qiang; Ma, Ting; Liang, Feng-lai; Liu, Ru-lin

    2008-12-01

    A thermophilic Geobacillus strain DM-2 from a deep-subsurface oil reservoir was investigated on its capability of degrading crude oil under various conditions as well as its characters on degrading hydrocarbons in optimal conditions. The results showed that Geobacillus strain DM-2 was able to degrade crude oil under anoxic wide-range conditions with pH ranging from 4.0 to 10.0, high temperature in the range of 45-70 degrees C and saline concentration ranging from 0.2% to 3.0%. Furthermore, the optimal temperature and pH value for utilizing hydrocarbons by the strain were 60 degrees C and 7.0, respectively. Under such optimal conditions, the strain utilized liquid paraffine emulsified by itself as its carbon source for growth; further analysis by gas chromatography (GC) and infrared absorption spectroscopy demonstrated that it was able to degrade n-alkanes (C14-C30), branched-chain alkanes and aromatic hydrocarbons in crude oil and could also utilize long-chain n-alkanes from C16 to C36, among of which the degradation efficiency of C28 was the highest, up to 88.95%. One metabolite of the strain oxidizing alkanes is fatty acid.While utilizing C16 as carbon source for 5 d, only one fatty acid-acetic acid was detected by HPLC and MS as the product, with the amount of 0.312 g/L, which indicated that it degraded n-alkanes with pathway of inferior terminal oxidation,and then followed by a beta-oxidation pathway. Due to its characters of efficient emulsification, high-performance degradation of hydrocarbons and fatty-acid production under high temperature and anoxic condition, the strain DM-2 may be potentially applied to oil-waste treatment and microbial enhanced heavy oil recovery in extreme conditions.

  3. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang; Dali; Devlin, David; Barbero, Robert S.; Carrera, Martin E.; Colling, Craig W.

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  4. Solid hydrocarbon: a migration-of-fines problem in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Lomando, A.J.

    1986-05-01

    The most familiar example of a migration-of-fines problem is authigenic kaolinite, which can detach, migrate through a pore system, and bridge pore throats, thus reducing permeability. under certain conditions, a similar problem is caused by solid hydrocarbon, independent of a mode of origin, which has precipitated in carbonate pore systems. Cores from several reservoirs in the Lower Cretaceous of east Texas were used as the data base in this study. Three morphotypes of solid hydrocarbon have been identified from thin-section and scanning electron microscope observations: droplets, peanut brittle, and carpets. Droplets are small, individual, rounded particles scattered on pore walls. Peanut brittle ranges from a continuous to discontinuous thin coating with random rounded lumps that probably have droplet precursors. Carpets are thick, continuous coatings and, at the extreme, can effectively occlude whole pores. Initially, solid hydrocarbon reduces permeability without necessarily decreasing porosity significantly. Likewise, solid hydrocarbon cannot be detected directly from wireline logs. Acidizing to enhance communication to the well bore is a common completion procedure in limestone and calcareous sandstone reservoirs. In reservoirs containing solid hydrocarbon, acid etches the substrate and releases solid hydrocarbon, which migrates in the pore system and bridges pore throats. Differential well-bore pressure also may cause solid hydrocarbon to migrate. Therefore, wettability, which controls hydrocarbon adhesion to the pore walls, and the dominant morphotype are important factors in the extent of reservoir damage.

  5. Detection of Phakopsora pachyrhizi fungus by Polymerase Chain Reaction technique (PCR) after soy grains treatment by electron beams; Deteccao da Phakopsora Pachyrhizi por reacao em cadeia pela polimerase (PCR) depois do tratamento dos graos de soja por feixes de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Fanaro, G.B.; Aquino, S.; Guedes, R.L.; Crede, R.G.; Sabundjian, I.T.; Ruiz, M.O.; Villavicencio, A.L.C.H. [Instituto de Pesquisas Energeticas e Nucleares(IPEN), Sao Paulo (Brazil). Centro de Tecnologia das Radiacoes]. E-mail: villavic@ipen.br

    2005-07-01

    Today Brazil, as the largest soy exporter in the world, has undergone the consequences of the contamination of these crops by the Asian dust fungus, being harmed since the plantation up to the harvest, with losses in its productivity ranging 10-80%. As it is a new disease in the Americas, there are not any resistant species to this fungus attack. The grains contamination harms the exportation for countries which do not want to have their crops contaminated, affecting therefore the international commerce and agro-business relationship with those countries Brazil has trade with. The Asian dust is caused by the fungus Phakopsora pachyrhizi and its dissemination is of difficult control, since occurs through the wind dispersion. The P. pachyrhizi is an Asian fungus and was recently found in South Africa, Paraguay, Argentina and Brazil. As an alternative process to minimize these losses is the process to preserve the grains by radiation, the use of the electron accelerator was indicated, since its advantage for the grains exportation industry is fundamental. Besides the possibility of being disconnected when not in use, this source does not need to be recharged, is easily available and has high dose rate, streamlining the process and reducing logistics costs. The present work aims to identify, by the Polymerase Chain Reaction technique (PCR), the P. pachyrhizi fungus presence in the irradiated soy grains, at doses 1 and 2 kGy, at the IPEN-CNEN electron Accelerator, a Dynamitron Machine (Radiation Dynamics Co. model JOB, New York, USA), with 1.5 MeV power and 2.5 mA electrical current. (author)

  6. Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants.

    Science.gov (United States)

    Oukarroum, Abdallah; Strasser, Reto J; Schansker, Gert

    2012-03-01

    Thalli of the foliose lichen species Parmelina tiliacea were studied to determine responses of the photosynthetic apparatus to high temperatures in the dry and wet state. The speed with which dry thalli were activated by water following a 24 h exposure at different temperatures decreased as the temperature was increased. But even following a 24 h exposure to 50 °C the fluorescence induction kinetics OJIP reflecting the reduction kinetics of the photosynthetic electron transport chain had completely recovered within 128 min. Exposure of dry thalli to 50 °C for 24 h did not induce a K-peak in the fluorescence rise suggesting that the oxygen evolving complex had remained intact. This contrasted strongly with wet thalli were submergence for 40 s in water of 45 °C inactivated most of the photosystem II reaction centres. In wet thalli, following the destruction of the Mn-cluster, the donation rate to photosystem II by alternative donors (e.g. ascorbate) was lower than in higher plants. This is associated with the near absence of a secondary rise peak (~1 s) normally observed in higher plants. Analysing the 820 nm and prompt fluorescence transients suggested that the M-peak (occurs around 2-5 s) in heat-treated wet lichen thalli is related to cyclic electron transport around photosystem I. Normally, heat stress in lichen thalli leads to desiccation and as consequence lichens may lack the heat-stress-tolerance-increasing mechanisms observed in higher plants. Wet lichen thalli may, therefore, represent an attractive reference system for the evaluation of processes related with heat stress in higher plants. © Springer Science+Business Media B.V. 2012

  7. Glomerular basement membrane injuries in IgA nephropathy evaluated by double immunostaining for α5(IV) and α2(IV) chains of type IV collagen and low-vacuum scanning electron microscopy.

    Science.gov (United States)

    Masuda, Yukinari; Yamanaka, Nobuaki; Ishikawa, Arimi; Kataoka, Mitue; Arai, Takashi; Wakamatsu, Kyoko; Kuwahara, Naomi; Nagahama, Kiyotaka; Ichikawa, Kaori; Shimizu, Akira

    2015-06-01

    The glomerulus contains well-developed capillaries, which are at risk of injury due to high hydrostatic pressure, hyperfiltration, hypertension and inflammation. However, the pathological alterations of the injured glomerular basement membrane (GBM), the main component of the glomerular filtration barrier, are still uncertain in cases of glomerulonephritis. We examined the alterations of the GBM in 50 renal biopsy cases with IgA nephropathy (31.8 ± 17.6 years old) using double immunostaining for the α2(IV) and α5(IV) chains of type IV collagen, and examining the ultrastructural alterations by transmission electron microscopy (TEM) and low-vacuum scanning electron microscopy (LV-SEM). The GBM of IgA nephropathy cases showed various morphological and qualitative alterations. In the TEM findings, thinning, gaps, rupture, thickening with a lamellar and reticular structure and double contours were detected in the GBM. Double immunostaining for α5(IV) and α2(IV) showed thickening of the GBM with reduced α5(IV) and increased α2(IV), or mosaic images of α5(IV) and α2(IV), and holes, fractures, spiny projections and rupture of α5(IV) in the GBM. In addition, LV-SEM showed an etched image and multiple holes in a widening and wavy GBM. These findings might be associated with the development of a brittle GBM in IgA nephropathy. Glomerular basement membrane alterations were frequently noted in IgA nephropathy, and were easily evaluated by double immunostaining for α2(IV) and α5(IV) of type IV collagen and LV-SEM. The application of these analyses to human renal biopsy specimens may enhance our understanding of the alterations of the GBM that occur in human glomerular diseases.

  8. Degradation of hydrocarbons under methanogenic conditions in different geosystems

    Science.gov (United States)

    Straaten, Nontje; Jiménez García, Núria; Richnow, Hans-Hermann; Krueger, Martin

    2014-05-01

    With increasing energy demand the search for new resources is becoming increasingly important for the future energy supply. Therefore the knowledge about fossil fuels like oil or natural gas and their extraction should be expanded. Biodegraded oil is found in many reservoirs worldwide. Consequently, it is very important to get insight in the microbial communities and metabolic processes involved in hydrocarbon degradation. Due to the lack of alternative electron acceptors in hydrocarbon-rich geosystems, degradation often takes place under methanogenic conditions. The aim of the present study is to identify the microorganisms and mechanisms involved in the degradation of complex hydrocarbons, like BTEX and polycyclic aromatic hydrocarbons, using culture dependent and independent techniques. For this purpose enrichment cultures from marine sediments, shales, coal and oil reservoirs are monitored for their capability to degrade alkanes and aromatic compounds. Moreover the environmental samples of these different geosystems analysed for evidence for the in situ occurrence of methanogenic oil degradation. The gas geochemical data provided in several cases hints for a recent biological origin of the methane present. First results of the microbial community analysis showed in environmental samples and enrichment cultures the existence of Bacteria known to degrade hydrocarbons. Also a diverse community of methanogenic Archaea could be found in the clone libraries. Additionally, in oil and coal reservoir samples the degradation of model hydrocarbons, e.g. methylnaphthalene, hexadecane and BTEX, to CH4 was confirmed by 13C-labeling. To explore the mechanisms involved in biodegradation, the enrichments as well as the original environmental samples are further analysed for the presence of respective functional genes.

  9. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    Science.gov (United States)

    2007-11-02

    and hydrocarbon blends in our various combustion systems, with emphasis on the effects of elevated pressure using our pressurized flow reactor ( PFR ...facility. Detailed experimental data were generated from the PFR for use in associated kinetic modeling work. We continued to develop and extend both

  10. Total Petroleum Hydrocarbons (TPH): ToxFAQs

    Science.gov (United States)

    ... a state: This map displays locations where Total Petroleum Hydrocarbons (TPH) is known to be present. On ... I get more information? ToxFAQs TM for Total Petroleum Hydrocarbons (TPH) ( Hidrocarburos Totales de Petróleo (TPH) ) August ...

  11. Detection of polyaromatic hydrocarbons using DNA intercalation

    Energy Technology Data Exchange (ETDEWEB)

    Weetall, H.H.; Pandey, P.; Horuath, J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1995-12-01

    Polyaromatic hydrocarbons (PAH`S) have be monitored using intercalation of double stranded DNA. Three approaches have been examined. The first, an electrochemical method uses an electroactive intercalating agent. When intercalated into DNA it cannot transfer electrons to an electrode. When displaced by a PAH, it can be detected electrochemically. The second method utilizes fluorescence polarization. A fluorescent intercalating agent, when intercalated into DNA will show increased polarization. When displaced by a competing PAH, a decrease in polarization is observed. The third technique involves evanescent wave technology. Double stranded DNA in close proximity to the wave guide will show a decreased fluorescence when a fluorescent intercalator is displaced by a PAH. Each of these techniques will be described and examples of results presented.

  12. Salicylic acid binding of mitochondrial alpha-ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against tobacco mosaic virus in tomato.

    Science.gov (United States)

    Liao, Yangwenke; Tian, Miaoying; Zhang, Huan; Li, Xin; Wang, Yu; Xia, Xiaojian; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Shi, Kai; Klessig, Daniel F

    2015-02-01

    Salicylic acid (SA) plays a critical role in plant defense against pathogen invasion. SA-induced viral defense in plants is distinct from the pathways mediating bacterial and fungal defense and involves a specific pathway mediated by mitochondria; however, the underlying mechanisms remain largely unknown. The SA-binding activity of the recombinant tomato (Solanum lycopersicum) alpha-ketoglutarate dehydrogenase (Slα-kGDH) E2 subunit of the tricarboxylic acid (TCA) cycle was characterized. The biological role of this binding in plant defenses against tobacco mosaic virus (TMV) was further investigated via Slα-kGDH E2 silencing and transient overexpression in plants. Slα-kGDH E2 was found to bind SA in two independent assays. SA treatment, as well as Slα-kGDH E2 silencing, increased resistance to TMV. SA did not further enhance TMV defense in Slα-kGDH E2-silenced tomato plants but did reduce TMV susceptibility in Nicotiana benthamiana plants transiently overexpressing Slα-kGDH E2. Furthermore, Slα-kGDH E2-silencing-induced TMV resistance was fully blocked by bongkrekic acid application and alternative oxidase 1a silencing. These results indicated that binding by Slα-kGDH E2 of SA acts upstream of and affects the mitochondrial electron transport chain, which plays an important role in basal defense against TMV. The findings of this study help to elucidate the mechanisms of SA-induced viral defense.

  13. Two new ternary chalcogenides Ba{sub 2}ZnQ{sub 3} (Q = Se, Te) with chains of ZnQ{sub 4} tetrahedra. Syntheses, crystal structure, and optical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai; Beard, Jessica; Malliakas, Christos D.; Ibers, James A. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Mesbah, Adel [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Bagnols-sur-Ceze (France); Rocca, Dario; Lebegue, Sebastien [Univ. de Lorraine, Vandoeuvre-les-Nancy (France). Lab. de Cristallographie, Resonance Magnetique et Modelisations (CRM2, UMR CNRS 7036)

    2016-08-01

    Single crystals of Ba{sub 2}ZnQ{sub 3} (Q = Se, Te) were obtained by solid-state reactions at 1173 K. These isostructural compounds crystallize in the K{sub 2}AgI{sub 3} structure type. The Zn atoms in this structure are coordinated to four Q atoms (2 Q1, 1 Q2, 1 Q3) and these form a distorted tetrahedron around each Zn atom. Each ZnQ{sub 4} tetrahedron shares two corners with neighboring ZnQ{sub 4} tetrahedra resulting in the formation of infinite chains of [ZnQ{sub 4}{sup 4-}] units. The absorption spectrum of a single crystal of Ba{sub 2}ZnTe{sub 3} shows an absorption edge at 2.10(2) eV, consistent with the dark-red color of the crystals. From DFT calculations Ba{sub 2}ZnSe{sub 3} and Ba{sub 2}ZnTe{sub 3} are found to be semiconductors with electronic band gaps of 2.6 and 1.9 eV, respectively.

  14. [Determination of short-chain chlorinated paraffins in ambient air using high-volume sampling combined with high resolutimi gas chromatography-electron capture negative ion-low resolution mass spectrometry].

    Science.gov (United States)

    Shi, Loimeng; Gao, Yuan; Hou, Xiaohong; Zhang, Haijun; Zhang, Yichi; Chen, Jiping

    2016-02-01

    An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity (R2>0. 99) between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The limits of detection (S/N ≥3) and the limits of quantification (S/N ≥ 10) were 4. 2 and 12 µg, respectively. The method detection limit (MDL) for SCCPs was 0. 34 ng/m3 (n = 7). The recoveries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.

  15. Stability of sp carbon (carbyne) chains

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yunyang, E-mail: yunhangh@mtu.ed [Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295 (United States)

    2009-09-21

    An sp carbon chain, which contains only one carbon atom in its cross section, is generally considered unstable. In this Letter, however, the DFT calculations showed that an isolated sp carbon chain is more stable than the smallest armchair (3,0) and zigzag (2,2) single-walled carbon nanotubes (SWCNT). This is consistent with the fact that an isolated sp carbon chain was observed by high-resolution transmission electron microscopy, but isolated (3,0) and (2,2) SWCNTs were never produced. Nevertheless, the sp chain is less stable than lager SWCNTs.

  16. Chain-like molecules confined in nanopores

    Science.gov (United States)

    Huber, Patrick; Soprunyuk, Viktor; Hofmann, Tommy; Knorr, Klaus

    2004-03-01

    We present an x-ray diffraction study on chain-like molecules, i.e. a selection of n-alkane molecules, embedded in the pores of nanoporous silica matrices. The lengths of the hydrocarbon chains are comparable to the mean diameter ( 7nm) of the tubular like nanopores which leads to drastic geometric restrictions. Diffraction patterns, recorded on heating and cooling between 200 K and 310 K, elucidate how the structure and phase behavior of the molecules is affected by the random substrate disorder and the confinement. The confined n-alkanes form close-packed structures by aligning parallel to the pore axis. In the case of the medium-length hydrocarbon chains one basic ordering principle known from the bulk crystalline state, i.e. the lamellar ordering of the molecules, is quenched[1], whereas for shorter n-alkanes this ordering principle survives[2]. The confined solids mimic the orientational order-disorder transitions known from the 3D unconfined crystals albeit in a modified fashion. 1. P. Huber, D. Wallacher, J. Albers, K. Knorr, Europhysics Letters, in press; 2. P. Huber, D. Wallacher, J. Albers, K. Knorr, Journal of Physics: Condensed Matter 15, 309 (2003).

  17. Topological superconductivity induced by ferromagnetic metal chains

    Science.gov (United States)

    Li, Jian; Chen, Hua; Drozdov, Ilya K.; Yazdani, A.; Bernevig, B. Andrei; MacDonald, A. H.

    2014-12-01

    Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition-metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of system by using a Slater-Koster tight-binding model to account for important features of the electronic structure of the transition-metal chains on the superconducting substrate. We predict that topological superconductivity is nearly universal when ferromagnetic transition-metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. When the chain is weakly coupled to the substrate and is longer than superconducting coherence lengths, its proximity-induced superconducting gap is ˜Δ ESO/J where Δ is the s -wave pair potential on the chain, ESO is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and J is the exchange splitting of the ferromagnetic chain d bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with the experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the p -wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong s -wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder, a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple

  18. Nephrotoxicity of Hydrocarbon Propellants to Male, Fischer-344 Rats

    Science.gov (United States)

    1983-08-01

    following both short and long-term exposure to hydrocarbon propel- lants , 42) outline agents which have produced renal disease in rats, ýnd/3) discuss... renal specimens were examined histologically, even at subgross magnifications, dilated, cystic tubules were noted near the corticomedullary junction and...I’ _** -£ electron microscopic study of key renal structures was undertaken to search for ultrastructural lesions which might explain the origins of

  19. 33 CFR 157.166 - Hydrocarbon emissions.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hydrocarbon emissions. 157.166... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the... ballasted in that port the hydrocarbon vapors in each tank are contained by a means under § 157.132....

  20. Compositions and methods for hydrocarbon functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Gunnoe, Thomas Brent; Fortman, George; Boaz, Nicholas C.; Groves, John T.

    2017-03-28

    Embodiments of the present disclosure provide for methods of hydrocarbon functionalization, methods and systems for converting a hydrocarbon into a compound including at least one group ((e.g., hydroxyl group) (e.g., methane to methanol)), functionalized hydrocarbons, and the like.

  1. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  2. Fire-safe hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fodor, G.E.; Weatherford, W.D. Jr.; Wright, B.R.

    1979-11-06

    A stabilized, fire-safe, aqueous hydrocarbon fuel emulsion prepared by mixing: a diesel fuel; an emulsifier (consisting of oleyl diethanolamide, diethanolamine, and diethanolamine soap of oleic acid) which has been treated with about 0 to 7 1/2 of oleic acid. A modified version of this fuel also contains 0 to 0.5% of an antimisting agent, and water.

  3. Hydrophobic encapsulation of hydrocarbon gases.

    Science.gov (United States)

    Leontiev, Alexander V; Saleh, Anas W; Rudkevich, Dmitry M

    2007-04-26

    [reaction: see text] Encapsulation data for hydrophobic hydrocarbon gases within a water-soluble hemicarcerand in aqueous solution are reported. It is concluded that hydrophobic interactions serve as the primary driving force for the encapsulation, which can be used for the design of gas-separating polymers with intrinsic inner cavities.

  4. Odd-even chain packing, molecular and thermal models for some long chain sodium(I) n-alkanoates

    Science.gov (United States)

    Nelson, Peter N.; Ellis, Henry A.

    2014-10-01

    A homologous series of sodium(I) n-alkanoates, NaCnH2n-1O2, with chain lengths n = 8-18, inclusive, have been synthesized and their structural and thermal properties investigated via Fourier Transform Infrared and Solid State 13C NMR spectroscopies, X-ray powder diffraction, Thermogravimetry, Differential Scanning Calorimetry, Polarizing light microscopy and variable temperature Infrared spectroscopy. The measurements show that metal-carboxylate coordination is via asymmetric chelating bidentate bonding with extensive carboxyl group inter-molecular interactions in which four oxygen atoms are bonded tetrahedrally to a sodium atom. Furthermore, the compounds crystallize in a monoclinic crystal system with the hydrocarbon chains in the fully extended all-trans conformation, advancing along the c-axis. Moreover, the chains are packed as tilted (θ ∼ 63°), non-overlapping, tail-to-tail lamellar bilayers that are not in the same plane, within a lamellar. Though these compounds are nearly isostructural, there are subtle differences in the packing of the hydrocarbon chains in the crystal lattice, resulting in odd-even alternation in the terminal methyl group asymmetric stretching vibration and chemical shift. These differences arise from the relative vertical distances between hydrocarbon planes within the lamellar; such that, for odd-chain compounds, larger inter-planar distances result in less efficient packing in the crystal lattice and hence, lower inter-planar van der Waals interactions between hydrocarbon chains. Thermal traces, for all compounds, show several partially reversible solid-solid pre-melting transitions associated with different degrees of gauche conformers in the alkyl chains. The reversible gauche-trans isomerism, of the methylene groups, is kinetically controlled; hence, super-cooling of the melt and other transitions, are observed for all compounds. The kinetics of chain reversion follow the exponential law of nucleation, though complicated by

  5. Logistic chain modelling

    NARCIS (Netherlands)

    Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.

    1995-01-01

    Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to n

  6. Health supply chain management.

    Science.gov (United States)

    Zimmerman, Rolf; Gallagher, Pat

    2010-01-01

    This chapter gives an educational overview of: * The actual application of supply chain practice and disciplines required for service delivery improvement within the current health environment. * A rationale for the application of Supply Chain Management (SCM) approaches to the Health sector. * The tools and methods available for supply chain analysis and benchmarking. * Key supply chain success factors.

  7. Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry

    Directory of Open Access Journals (Sweden)

    Kothari Shankar L

    2010-05-01

    Full Text Available Abstract Background Biofuels derived from algae biomass and algae lipids might reduce dependence on fossil fuels. Existing analytical techniques need to facilitate rapid characterization of algal species by phenotyping hydrocarbon-related constituents. Results In this study, we compared the hydrocarbon rich algae Botryococcus braunii against the photoautotrophic model algae Chlamydomonas reinhardtii using pyrolysis-gas chromatography quadrupole mass spectrometry (pyGC-MS. Sequences of up to 48 dried samples can be analyzed using pyGC-MS in an automated manner without any sample preparation. Chromatograms of 30-min run times are sufficient to profile pyrolysis products from C8 to C40 carbon chain length. The freely available software tools AMDIS and SpectConnect enables straightforward data processing. In Botryococcus samples, we identified fatty acids, vitamins, sterols and fatty acid esters and several long chain hydrocarbons. The algae species C. reinhardtii, B. braunii race A and B. braunii race B were readily discriminated using their hydrocarbon phenotypes. Substructure annotation and spectral clustering yielded network graphs of similar components for visual overviews of abundant and minor constituents. Conclusion Pyrolysis-GC-MS facilitates large scale screening of hydrocarbon phenotypes for comparisons of strain differences in algae or impact of altered growth and nutrient conditions.

  8. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  9. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  10. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Science.gov (United States)

    Martins, Luiz Fernando; Peixoto, Raquel Silva

    2012-01-01

    Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review. PMID:24031900

  11. Structure and Stability of Monatomic Metallic Chains

    Science.gov (United States)

    Batra, Inder P.; Sen, Prasenjit; Ciraci, S.

    2001-03-01

    We have investigated atomic and electronic structure of Au and Al monatomic chains by using first-principle plane wave method within density-functional theory. Despite their different valencies, Au and Al form planar zigzag chains with each atom having four nearest neighbors. The zigzag structure is stable against linearization and non-planar deformations. We performed an extensive charge density analysis and finite temperature calculations to reveal the origin of the unusual atomic structure in these one dimensional metallic systems. The implications of the zigzag structure on the electronic properties and the balistic electron conduction have been examined.

  12. Risk assessment of metals and organic pollutants for herbivorous and carnivorous small mammal food chains in a polluted floodplain (Biesbosch, The Netherlands)

    NARCIS (Netherlands)

    Hamers, T.H.M.; Berg, van den J.H.J.; Gestel, van C.A.M.; Schooten, van F.J.; Murk, A.J.

    2006-01-01

    A risk assessment was made for a carnivorous and a herbivorous food chain in a heavily polluted natural estuary (Biesbosch), by determining the most critical pollutants and the food chain most at risk. Exposure of food chains to metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated

  13. PREBIOTIC HYDROCARBON SYNTHESIS IN IMPACTING REDUCED ASTROPHYSICAL ICY MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Koziol, Lucas; Goldman, Nir, E-mail: lucas.koziol@exxonmobil.com, E-mail: ngoldman@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2015-04-20

    We present results of prebiotic organic synthesis in shock-compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium timescales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impacts on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon- and nitrogen-bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding of hydrocarbon impact synthesis on the early Earth and its role in producing life-building molecules from simple starting materials.

  14. Prebiotic hydrocarbon synthesis in impacting reduced astrophysical icy mixtures

    Science.gov (United States)

    Goldman, Nir; Koziol, Lucas

    2015-06-01

    We present results of prebiotic organic synthesis in shock compressed reducing mixtures of simple ices from quantum molecular dynamics simulations extended to close to chemical equilibrium time-scales. Given the relative abundance of carbon in reduced forms in astrophysical ices as well as the tendency of these mixtures to form complex hydrocarbons under the presence of external stimuli, it is possible that cometary impact on a planetary surface could have yielded a larger array of prebiotic organic compounds than previously investigated. We find that the high pressures and temperatures due to shock compression yield a large assortment of carbon and nitrogen bonded extended structures that are highly reactive with short molecular lifetimes. Expansion and cooling causes these materials to break apart and form a wide variety of stable, potentially life-building compounds, including long-chain linear and branched hydrocarbons, large heterocyclic compounds, and a variety of different amines and exotic amino acids. Our results help provide a bottom-up understanding for hydrocarbon impact synthesis on early Earth and its role in producing life building molecules from simple starting materials. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Synthesis and Solution Properties of Adamantane Containing Quaternary Ammonium Salt-type Cationic Surfactants: Hydrocarbon-based, Fluorocarbonbased and Bola-type.

    Science.gov (United States)

    Yoshimura, Tomokazu; Okada, Mari; Matsuoka, Keisuke

    2016-10-01

    Quaternary ammonium salt-type cationic surfactants with an adamantyl group (hydrocarbon-type; CnAdAB, fluorocarbon-type; Cm(F)C3AdAB, bola-type; Ad-s-Ad, where n, m and s represent hydrocarbon chain lengths of 8-16, fluorocarbon chain lengths of 4-8, and spacer chain length of 10-12) were synthesized via quaternization of N, N-dimethylaminoadamantane and n-alkyl bromide or 1, n-dibromoalkane. Conductivity and surface tension were measured to characterize the solution properties of the synthesized adamantyl group-containing cationic surfactants. In addition, the effects of hydrocarbon and fluorocarbon chain lengths and spacer chain length between headgroups on the measured properties were evaluated by comparison with those of conventional cationic surfactants. The critical micelle concentration (CMC) of CnAdAB and Ad-s-Ad was 2/5 of that for the corresponding conventional surfactants CnTAB and bola-type surfactants with similar number of carbons in the alkyl or alkylene chain; this was because of the increased hydrophobicity due to the adamantyl group. A linear relationship between the logarithm of CMC and the hydrocarbon chain length for CnAdAB was observed, as well as for CnTAB. The slope of the linear correlation for both surfactants was almost the same, indicating that the adamantyl group does not affect the CMC with variations in the hydrocarbon chain length. Similar to conventional surfactants CnTAB, the hydrocarbon-type CnAdAB is highly efficient in reducing the surface tension of water, despite the large occupied area per molecule resulting from the relatively bulky structure of the adamantane skeleton. On the other hand, the bola-type Ad-s-Ad resulted in increased surface tension compared to CnAdAB, indicating that the curved chain between adamantyl groups leads to poor adsorption and orientation at the air-water interface.

  16. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells.

    Science.gov (United States)

    Shrotriya, Sangeeta; Deep, Gagan; Lopert, Pamela; Patel, Manisha; Agarwal, Rajesh; Agarwal, Chapla

    2015-12-01

    Head and neck squamous cell carcinoma (HNSCC) is a major killer worldwide and innovative measures are urgently warranted to lower the morbidity and mortality caused by this malignancy. Aberrant redox and metabolic status in HNSCC cells offer a unique opportunity to specifically target cancer cells. Therefore, we investigated the efficacy of grape seed extract (GSE) to target the redox and bioenergetic alterations in HNSCC cells. GSE treatment decreased the mitochondrial electron transport chain complex III activity, increased the mitochondrial superoxide levels and depleted the levels of cellular antioxidant (glutathione), thus resulting in the loss of mitochondrial membrane potential in human HNSCC Detroit 562 and FaDu cells. Polyethylene glycol-SOD addition reversed the GSE-mediated apoptosis without restoring complex III activity. Along with redox changes, GSE inhibited the extracellular acidification rate (representing glycolysis) and oxygen consumption rate (indicating oxidative phosphorylation) leading to metabolic stress in HNSCC cells. Molecular studies revealed that GSE activated AMP-activated protein kinase (AMPK), and suppressed Akt/mTOR/4E-BP1/S6K signaling in both Detroit 562 and FaDu cells. Interestingly, GSE increased the autophagic load specifically in FaDu cells, and autophagy inhibition significantly augmented the apoptosis in these cells. Consistent with in vitro results, in vivo analyses also showed that GSE feeding in nude mice activated AMPK and induced-autophagy in FaDu xenograft tumor tissues. Overall, these findings are innovative as we for the first time showed that GSE targets ETC complex III and induces oxidative and metabolic stress, thereby, causing autophagy and apoptotic death in HNSCC cells. © 2014 Wiley Periodicals, Inc.

  17. 电子信息制造产业闭环供应链生态网络均衡模型%Ecological Network Equilibrium Model of Closed-loop Supply Chain of Electronic Information Manufacturing Industry

    Institute of Scientific and Technical Information of China (English)

    吴长莉; 魏子秋; 李明芳

    2015-01-01

    Through variational inequality theory,we propose a model of closed -loop supply chain network equilibrium with ecological indicators of the electronic information manufacturing industry,consisting of raw material suppliers of the e-lectronic information manufacturing industry,manufacturers with recovery operation function,retailers and demand mar-kets.The system model is built to construct effective use of raw materials and low emission control condition.We describe the equilibrium profit optimization of decision-making bodies in view of the complex network structure of the ecological in-dustry,and make clear of the importance of ecological indicator.Finally,we investigate the nature of the variational ine-quality problem and construct an example to verify the validity and rationality of the model.%以变分不等式理论为基本工具,建立带有生态指示因子且由电子信息制造产业原材料供应商、具有回收运作功能的制造商、零售商及需求市场所构成的电子信息制造产业闭环供应链生态网络均衡模型。通过该系统模型的构建过程,探讨原材料的有效使用及废弃物的低排放治理条件,针对该生态产业多层次的复杂网络结构,描述其各层决策主体的利润最优化均衡条件,明确生态指示因子的重要作用,探讨变分不等式问题解的性质,并构造算例对模型的正确性和合理性进行验证。

  18. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  19. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  20. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  1. Elucidating the effects of cholesterol on the molecular packing of double-chained cationic lipid langmuir monolayers by infrared reflection-absorption spectroscopy.

    Science.gov (United States)

    Kuo, An-Tsung; Chang, Chien-Hsiang

    2015-01-01

    Cholesterol has been suggested to play a role in stable vesicle formation by adjusting the molecular packing of the vesicular bilayer. To explore the mechanisms involved in adjusting the bilayer structure by cholesterol, the molecular packing behavior in a mimic outer layer of cationic dialkyldimethylammonium bromide (DXDAB)/cholesterol vesicular bilayer was investigated by the Langmuir monolayer approach with infrared reflection-absorption spectroscopy (IRRAS). The results indicated that the addition of cholesterol in the DXDAB Langmuir monolayers not only restrained the desorption of the DXDAB with short hydrocarbon chains, such as ditetradecyldimethylammonium bromide or dihexadecyldimethylammonium bromide, into the aqueous phase but also induced a condensing effect on the DXDAB monolayers. At a liquid-expanded (LE) state, the ordering effect of cholesterol accompanying the condensing effect occurred in the mixed DXDAB/cholesterol monolayers due to the tendency of maximizing hydrocarbon chain contact between cholesterol and the neighboring hydrocarbon chains. However, for the mixed monolayers containing the DXDAB with long hydrocarbon chains, such as dioctadecyldimethylammonium bromide (DODAB), the disordering effect of cholesterol took place at a liquid-condensed (LC) state. This was related to the molecular structure of cholesterol and hydrocarbon chain length of DODAB. The rigid sterol ring of cholesterol hindered the portion of neighboring hydrocarbon chains from motion. However, the flexible alkyl side-chain of cholesterol along with the corresponding portion of neighboring hydrocarbon chains formed a fluidic region, counteracting the enhanced conformational order induced by the sterol ring of cholesterol. Furthermore, the long hydrocarbon chains of DODAB possessed a more pronounced motion freedom, resulting in a more disordered packing of the monolayers.

  2. Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically.

    OpenAIRE

    Matsushita, K.; Yamada, M.; Shinagawa, E; Adachi, O; Ameyama, M

    1980-01-01

    The electron transport chain of the gram-negative bacterium Pseudomonas aeruginosa, grown aerobically, contained a number of primary dehydrogenases and respiratory components (soluble flavin, bound flavin, coenzyme Q9, heme b, heme c, and cytochrome o) in membrane particles of the organism. Cytochrome o, about 50% of the b-type cytochrome, seemed to function as a terminal oxidase in the respiratory chain. The electron transport chain of P. aeruginosa grown aerobically was suggested to be line...

  3. Newton's cradle and entanglement transport in a flexible Rydberg chain

    CERN Document Server

    Wüster, S; Eisfeld, A; Rost, J -M

    2010-01-01

    In a regular, flexible chain of Rydberg atoms, a single electronic excitation localizes on two atoms that are in closer mutual proximity than all others. We show how the interplay between excitonic and atomic motion causes electronic excitation and diatomic proximity to propagate through the Rydberg chain as a combined pulse. In this manner entanglement is transferred adiabatically along the chain, reminiscent of momentum transfer in Newton's cradle.

  4. Hydrocarbon prospectivity in Western Greece

    Energy Technology Data Exchange (ETDEWEB)

    Maravelis, Angelos; Makrodimitras, George; Zelilidis, Avraam [Patras Univ. (Greece). Lab. of Sedimentology

    2012-06-15

    The geology of Western Greece is dominated by the most external zones of the Hellenide fold-and-thrust belt, namely the Pre-Apulian (or Paxoi) and Ionian zones. With Western Greece and Albania having undergone, in broad terms, similar geological histories, also the hydrocarbon potentials of both areas may be compared. Likewise, the hydrocarbon potential of Italy's Apulian Platform, adjoining in the westerly offshore, may serve as an analogue. Three basin types within Western Greece that deserve hydrocarbon exploration have been examined and are grouped, correlated to major tectonic features, namely foreland (Ionian thrusts' foreland basin), piggy-back (Ionian thrusts' back-arc basin) and strike-slip basins. Additionally, strike-slip basins are further subdivided into the basin north of the Borsh-Khardhiqit strike-slip fault and the Preveza basin, north of Cephalonia transfer fault. Their filling histories suggest the occurrence of Mesozoic carbonate plays and Oligocene/Miocene sandstone plays both for oil and gas.

  5. Abnormal pressure in hydrocarbon environments

    Science.gov (United States)

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  6. Thermodiffusion of polycyclic aromatic hydrocarbons in binary mixtures

    Science.gov (United States)

    Hashmi, Sara M.; Senthilnathan, Sid; Firoozabadi, Abbas

    2016-11-01

    Thermodiffusion in liquid mixtures may explain some counter-intuitive but naturally occurring phenomena such as hydrocarbon reservoirs with heavier component(s) stratified on top of lighter ones. However, beyond benchmark systems, systematic measurements of thermodiffusion in binary organic mixtures are lacking. We use an optical beam deflection apparatus to simultaneously probe Fickian and thermal diffusion in binary solution mixtures of polycyclic aromatic hydrocarbons dissolved in alkanes, and measure both Fickian diffusion D and the Soret coefficient ST, and then obtain the thermodiffusion coefficient DT. In a series of nine binary mixtures, we vary both the size of the aromatic compound from two to four rings, as well as the length of the alkane chain from 6 to 16 carbons. To probe the effect of increasing ring size, we include a 6-ringed aromatic compound, coronene, and toluene as a solvent, due to the insolubility of coronene in alkanes. Our results suggest that Fickian diffusion increases with the inverse of solvent viscosity and also with decreasing molecular weight of the solute. While both of these trends match our intuition, the behavior of ST and DT is more complicated. We find that ST and DT increase with the solute molecular weight when the solvent is held fixed and that the impact of solute ring size is higher in shorter chain alkane solvents.

  7. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine.

    Science.gov (United States)

    Zhu, Linli; Xu, Hui

    2014-09-01

    Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons.

  8. Hydrocarbons on Phoebe, Iapetus, and Hyperion: Quantitative Analysis

    Science.gov (United States)

    Cruikshank, Dale P.; MoreauDalleOre, Cristina; Pendleton, Yvonne J.; Clark, Roger Nelson

    2012-01-01

    We present a quantitative analysis of the hydrocarbon spectral bands measured on three of Saturn's satellites, Phoebe, Iaperus, and Hyperion. These bands, measured with the Cassini Visible-Infrared Mapping Spectrometer on close fly-by's of these satellites, are the C-H stretching modes of aromatic hydrocarbons at approximately 3.28 micrometers (approximately 3050 per centimeter), and the are four blended bands of aliphatic -CH2- and -CH3 in the range approximately 3.36-3.52 micrometers (approximately 2980- 2840 per centimeter) bably indicating the presence of polycyclic aromatic hydrocarbons (PAH), is unusually strong in comparison to the aliphatic bands, resulting in a unique signarure among Solar System bodies measured so far, and as such offers a means of comparison among the three satellites. The ratio of the C-H bands in aromatic molecules to those in aliphatic molecules in the surface materials of Phoebe, NAro:NAliph approximately 24; for Hyperion the value is approximately 12, while laperus shows an intermediate value. In view of the trend of the evolution (dehydrogenation by heat and radiation) of aliphatic complexes toward more compact molecules and eventually to aromatics, the relative abundances of aliphatic -CH2- and -CH3- is an indication of the lengths of the molecular chain structures, hence the degree of modification of the original material. We derive CH2:CH3 approximately 2.2 in the spectrum of low-albedo material on laperus; this value is the same within measurement errors to the ratio in the diffuse interstellar medium. The similarity in the spectral signatures of the three satellites, plus the apparent weak trend of aromatic/aliphatic abundance from Phoebe to Hyperion, is consistent with, and effectively confirms that the source of the hydrocarbon-bearing material is Phoebe, and that the appearance of that material on the other two satellites arises from the deposition of the inward-spiraling dust that populates the Phoebe ring.

  9. In situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters

    Science.gov (United States)

    Acton, D. W.; Barker, J. F.

    1992-04-01

    Three types of experiments were conducted to assess the potential for enhancing the in situ biodegradation of nine aromatic hydrocarbons in anaerobic, leachate-impacted aquifers at North Bay, Ontario, and at Canada Forces Base Borden. Laboratory micrososms containing authentic aquifer material and groundwater from the North Bay site were amended with nitrate and glucose. No significant losses of aromatic hydrocarbons were observed compared to unamended controls, over a period of 187 days. A total of eight in situ biodegradation columns were installed in the North Bay and Borden aquifers. Remedial additions included electron acceptors (nitrate and sulphate) and primary substrates (acetate, lactate and yeast extract). Six aromatic hydrocarbons [toluene, ethylbenzene, m-xylene, o-xylene, cumene and 1,2,4-trimethylbenzene ( 1,2,4-TMB)] were completely degraded in at least one in situ column at the North Bay site. Only toluene was degraded in the Borden aquifer. In all cases, aromatic hydrocarbon attenuation was attributed to biodegradation by methanogenic and fermentative bacteria. No evidence of aromatic hydrocarbon degradation was observed in columns remediated with nitrate or primary substrates. A continuous forced gradient injection experiment with sulphate addition was conducted at the North Bay site over a period of 51 days. The concentration of six aromatic hydrocarbons was monitored over time in the injection wells and at piezometer fences located 2, 5 and 10 m downgradient. All compounds except toluene reached injection concentration between 14 and 26 days after pumping began, and showed some evidence of selective retardation. Toluene broke through at a subdued concentration (˜ 50% of injection levels), and eventually declined to undetectable levels on day 43. This attenuation was attributed to adaptation and biodegradation by anaerobic bacteria. The results from these experiments indicate that considerable anaerobic biodegradation of aromatic hydrocarbons in

  10. Restructuring and destruction of hydrocarbon dust in the interstellar medium

    CERN Document Server

    Murga, M S; Wiebe, D S

    2016-01-01

    A model of key processes influencing the evolution of a hydrocarbon grain of an arbitrary size under astrophysical conditions corresponding to ionized hydrogen regions (HII regions) and supernova remnants is presented. The considered processes include aromatization and photodestruction, sputtering by electrons and ions, and shattering due to collisions between grains. The model can be used to simulate the grain size distribution and the aromatization degree during the evolution of HII regions and supernova remnants for a specified radiation field, relative velocity of gas and dust, etc. The contribution of various processes to the evolution of hydrocarbon dust grains for parameters typical for the interstellar medium of our Galaxy is presented. Small grains (less than 50 carbon atoms) should be fully aromatized in the general interstellar medium. If larger grains initially have an aliphatic structure, it is preserved to a substantial extent. Variations in the size distribution of the grains due to their mutua...

  11. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may

  12. Failures of chain systems

    CSIR Research Space (South Africa)

    James, A

    1997-03-01

    Full Text Available . In general, there are three basic types of system: hoisting and securing chains conveying and elevating chains power transmission chains The materials used can vary significantly and are specifically tailored for the application...-uniform or if the system is subjected to dynamic loading. In addition, adequate lubrication of such chain systems is very important to ensure that friction (and surface corrosion) is reduced as much as possible. Abnormal loading, directly...

  13. The Global Value Chain

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull

    The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool......The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool...

  14. The Global Value Chain

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull

    The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool......The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool...

  15. Electron transport through monovalent atomic wires

    DEFF Research Database (Denmark)

    Lee, Y. J.; Brandbyge, Mads; Puska, M. J.

    2004-01-01

    Using a first-principles density-functional method we model electron transport through linear chains of monovalent atoms between two bulk electrodes. For noble-metal chains the transport resembles that for free electrons over a potential barrier whereas for alkali-metal chains resonance states...... at the chain determine the conductance. As a result, the conductance for noble-metal chains is close to one quantum of conductance, and it oscillates moderately so that an even number of chain atoms yields a higher value than an odd number. The conductance oscillations are large for alkali-metal chains...

  16. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed.

  17. Interactions between odorant functional group and hydrocarbon structure influence activity in glomerular response modules in the rat olfactory bulb.

    Science.gov (United States)

    Johnson, Brett A; Farahbod, Haleh; Leon, Michael

    2005-03-07

    To investigate the effect of odorant hydrocarbon structure on spatial representations in the olfactory bulb systematically, we exposed rats to odorant chemicals possessing one of four different oxygen-containing functional groups on one of five different hydrocarbon backbones. We also used several hydrocarbon odorants lacking other functional groups. Hydrocarbon structural categories included straight-chained, branched, double-bonded, alicyclic, and aromatic features. Activity throughout the entire glomerular layer was measured as uptake of [(14)C]2-deoxyglucose and was mapped into anatomically standardized data matrices for statistical comparisons across different animals. Patterns evoked by straight-chained aliphatic odorants confirmed an association of activity in particular glomerular response modules with particular functional groups. However, the amount of activity in these same modules also was affected significantly by differences in hydrocarbon structure. Thus, the molecular features recognized by receptors projecting to these response modules appear to involve both functional group and hydrocarbon structural elements. In addition, particular benzyl and cyclohexyl odorants evoked activity in dorsal modules previously associated with the ketone functional group, which represents an exception to the rule of one feature per response module that had emerged from our previous studies. These dorsal modules also responded to nitrogen-containing aromatic compounds involving pyridine and pyrazine rings. The unexpected overlap in modular responses to ketones and odorants seemingly unrelated to ketones may reflect some covert shared molecular feature, the existence of odorant sensory neurons with multiple specificities, or a mosaic of sensory neuron projections to these particular modules.

  18. Synthesis and Structure of 1D Na6 Cluster Chain with Short Na-Na Distance: Organic like Aromaticity in Inorganic Metal Cluster

    CERN Document Server

    Khatua, S; Chattaraj, P K; Roy, D R; Bhattacharjee*, Manish; Chattaraj*, Pratim K.; Khatua, Snehadrinarayan; Roy, Debesh R.

    2006-01-01

    A unique 1D chain of sodium cluster containing (Na6) rings stabilized by a molybdenum containing metalloligand has been synthesized and characterized. DFT calculations show striking resemblance in their aromatic behaviour with the corresponding hydrocarbon analogues

  19. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols.

    Science.gov (United States)

    Harvey, Patricia J; Campanella, Bruno F; Castro, Paula M L; Harms, Hans; Lichtfouse, Eric; Schäffner, Anton R; Smrcek, Stanislav; Werck-Reichhart, Daniele

    2002-01-01

    Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an

  20. Handbook on electronic commerce

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M. [Illinois Univ., Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology; Blanning, R. [Vanderbilt Univ., Nashville, TN (United States). Owen Graduate School of Management; Strader, T. [Iowa State Univ., Ames, IA (United States). Management Information Systems; Whinston, A. [eds.] [Texas Univ., Austin, TX (United States). Dept. of Management Science and Information Systems

    2000-07-01

    The world is undergoing a revolution to a digital economy, with pronounced implications for corporate strategy, marketing, operations, information systems, customer services, global supply-chain management, and product distribution. This handbook examines the aspects of electronic commerce, including electronic storefront, on-line business, consumer interface, business-to-business networking, digital payment, legal issues, information product development, and electronic business models. Indispensable for academics, students and professionals who are interested in Electronic Commerce and Internet Business. (orig.)