WorldWideScience

Sample records for hydrocarbon biodegradation model

  1. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A conservative vapour intrusion screening model of oxygen-limited hydrocarbon vapour biodegradation accounting for building footprint size.

    Science.gov (United States)

    Knight, John H; Davis, Gregory B

    2013-12-01

    Petroleum hydrocarbon vapours pose a reduced risk to indoor air due to biodegradation processes where oxygen is available in the subsurface or below built structures. However, no previous assessment has been available to show the effects of a building footprint (slab size) on oxygen-limited hydrocarbon vapour biodegradation and the potential for oxygen to be present beneath the entire sub-slab region of a building. Here we provide a new, conservative and conceptually simple vapour screening model which links oxygen and hydrocarbon vapour transport and biodegradation in the vicinity and beneath an impervious slab. This defines when vapour risk is insignificant, or conversely when there is potential for vapour to contact the sub-slab of a building. The solution involves complex mathematics to determine the position of an unknown boundary interface between oxygen diffusing in from the ground surface and vapours diffusing upwards from a subsurface vapour source, but the mathematics reduces to a simple relationship between the vapour source concentration and the ratio of the half slab width and depth to the vapour source. Data from known field investigations are shown to be consistent with the model predictions. Examples of 'acceptable' slab sizes for vapour source depths and strengths are given. The predictions are conservative as an estimator of when petroleum hydrocarbon vapours might come in contact with a slab-on-ground building since additional sources of oxygen due to advective flow or diffusion through the slab are ignored. As such the model can be used for screening sites for further investigation. © 2013.

  3. Hydrocarbons biodegradation in unsaturated porous medium

    International Nuclear Information System (INIS)

    Gautier, C.

    2007-12-01

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  4. hydrocarbons biodegradation and evidence of mixed petroleum ...

    African Journals Online (AJOL)

    DJFLEX

    mode (EI) at 70Ev ionisation energy and scanned from 50 to 650 dalton. 3.0 Result and discussion. 3.1 n-alkanes and Isoprenoid Hydrocarbons. The concentrations (mgkg-1) ..... community in the Yellowish geothermal environment. Nature 434, 1000-1014. Cross River System. HYDROCARBONS BIODEGRADATION AND ...

  5. Potential for biodegradation of polycyclic aromatic hydrocarbons by ...

    African Journals Online (AJOL)

    WiTT

    2012-05-08

    May 8, 2012 ... model revealed that N. hatei was the best microorganism in the biodegradation of used motor oil with ... leakage of fuel into the motor oil as well as the ..... Afr. J. Biotechnol. 7(12): 1927-1932. Tanecredi JT (1977). Petroleum hydrocarbons from effluents: detection in marine environment. J. Water Pollut.

  6. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin.

    Science.gov (United States)

    Das, Palashpriya; Mukherjee, Soumen; Sen, Ramkrishna

    2008-07-01

    Polyaromatic hydrocarbons (PAHs) are organic pollutants mostly derived from the processing and combustion of fossil fuels and cause human health hazards. In the present study a marine biosurfactant producing strain of Bacillus circulans was used to increase the bioavailability and consequent degradation of a model polyaromatic hydrocarbon, anthracene. Although the organism could not utilize anthracene as the sole carbon source, it showed better growth and biosurfactant production in an anthracene supplemented glycerol mineral salts medium (AGlyMSM) compared to a normal glycerol mineral salts medium (GlyMSM). The biosurfactant product showed high degree of emulsification of various hydrocarbons. Analysis by gas chromatography (GC), high performance thin layer chromatography (HPTLC) and Fourier transform infrared spectroscopy (FTIR) showed that the biosurfactant could effectively entrap and solubilize PAH. Thin layer chromatographic analysis showed that anthracene was utilized as a carbon substrate for the production of biosurfactant. Thus organic pollutant anthracene was metabolized and converted to biosurfactants facilitating its own bioremediation.

  7. Predicting the Biodegradation of Polycyclic Aromatic Hydrocarbons ...

    African Journals Online (AJOL)

    ... the concentrations of the polycyclic aromatic hydrocarbons, and this was followed by a 'plateau' concentration signifying the attainment of endpoint of the degradation process. Keywords: Model, Neuron, Feed forward, Training, Input, Hidden and Output layers. Journal of the Nigerian Association of Mathematical Physics, ...

  8. Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium.

    Science.gov (United States)

    Nievas, M L; Commendatore, M G; Esteves, J L; Bucalá, V

    2008-06-15

    The biodegradation of a hazardous waste (bilge waste), a fuel oil-type complex residue from normal ship operations, was studied in a batch bioreactor using a microbial consortium in seawater medium. Experiments with initial concentrations of 0.18 and 0.53% (v/v) of bilge waste were carried out. In order to study the biodegradation kinetics, the mass of n-alkanes, resolved hydrocarbons and unresolved complex mixture (UCM) hydrocarbons were assessed by gas chromatography (GC). Emulsification was detected in both experiments, possibly linked to the n-alkanes depletion, with differences in emulsification start times and extents according to the initial hydrocarbon concentration. Both facts influenced the hydrocarbon biodegradation kinetics. A sequential biodegradation of n-alkanes and UMC was found for the higher hydrocarbon content. Being the former growth associated, while UCM biodegradation was a non-growing process showing enzymatic-type biodegradation kinetics. For the lower hydrocarbon concentration, simultaneous biodegradation of n-alkanes and UMC were found before emulsification. Nevertheless, certain UCM biodegradation was observed after the medium emulsification. According to the observed kinetics, three main types of hydrocarbons (n-alkanes, biodegradable UCM and recalcitrant UCM) were found adequate to represent the multicomponent substrate (bilge waste) for future modelling of the biodegradation process.

  9. Hydrocarbons biodegradation in unsaturated porous medium; Biodegradation des hydrocarbures en milieu poreux insature

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C

    2007-12-15

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  10. Biodegradation of Petroleum Hydrocarbon Vapors In Unsaturated Alluvial Sand

    Science.gov (United States)

    Höhener, P.; Duwig, C.; Pasteris, G.; Dakhel, N.; Kaufmann, K.; Werner, D.

    Biodegradation rates are critical parameters in models aimed at predicting the nat- ural attenuation of volatile organic compounds (VOCs) in the unsaturated zone. In this study the kinetic rate laws for the aerobic biodegradation of selected petroleum hydrocarbons and MTBE were investigated in unsaturated alluvial sand exposed to the vapors from a fuel mixture. Laboratory column and batch experiments were per- formed at room temperature under aerobic conditions. An analytical reactive transport model for VOC vapors in soil based on Monod kinetics is used for data interpretation. In the column experiment, steady-state diffusive vapor transport was reached after 23 days. Monod kinetic parameters were derived from the column profiles for toluene, m-xylene, octane and hexane. The degradation of cyclic alkanes, isooctane, and 1,2,4- trimethylbenzene was best described by first-order kinetics. MTBE, pentane and chlo- rofluorocarbons were recalcitrant. Batch experiments suggested first-order disappear- ance rate laws for all VOCs except octane, which followed zero-order kinetics. For some compounds including MTBE, disappearance rates in abiotic batch experiments were as high as in live batches. Abiotic disappearance is explained by slow intraparti- cle diffusion and sorption. It is concluded that the column approach is preferable for determining biodegradation rate parameters to be used in risk assessment models.

  11. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs.

    Science.gov (United States)

    Aitken, Carolyn M; Jones, D M; Larter, S R

    2004-09-16

    Biodegradation of crude oil in subsurface petroleum reservoirs is an important alteration process with major economic consequences. Aerobic degradation of petroleum hydrocarbons at the surface is well documented and it has long been thought that the flow of oxygen- and nutrient-bearing meteoric waters into reservoirs was necessary for in-reservoir petroleum biodegradation. The occurrence of biodegraded oils in reservoirs where aerobic conditions are unlikely, together with the identification of several anaerobic microorganisms in oil fields and the discovery of anaerobic hydrocarbon biodegradation mechanisms, suggests that anaerobic degradation processes could also be responsible. The extent of anaerobic hydrocarbon degradation processes in the world's deep petroleum reservoirs, however, remains strongly contested. Moreover, no organism has yet been isolated that has been shown to degrade hydrocarbons under the conditions found in deep petroleum reservoirs. Here we report the isolation of metabolites indicative of anaerobic hydrocarbon degradation from a large fraction of 77 degraded oil samples from both marine and lacustrine sources from around the world, including the volumetrically important Canadian tar sands. Our results therefore suggest that anaerobic hydrocarbon degradation is a common process in biodegraded subsurface oil reservoirs.

  12. Kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lotfabad, S.K.; Gray, M.R. [Alberta Univ., Edmonton (Canada). Dept. of Chemical and Materials Engineering

    2002-11-01

    The kinetics of biodegradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture were determined in a creosote-contaminated soil and in a pristine soil. A competitive-inhibition model was able to represent the kinetics of degradation of PAHs from the creosote-contaminated soil, from the lag phase through to active degradation, but not data from pristine soil with the same PAHs alone and in mixtures. The presence of phenanthrene introduced a lag phase of 4.5 days in the degradation of fluoranthene and 5 days for chrysene. Rapid degradation of pyrene followed a lag phase of circa 5 days, regardless of the presence of other PAHs. These results show that even when kinetics of PAH degradation by mixed cultures appear to follow competitive-inhibition kinetics, the underlying mechanisms may be more complex. (orig.)

  13. Petroleum-hydrocarbons biodegradation by Pseudomonas strains ...

    African Journals Online (AJOL)

    Many indigenous microorganisms in water and soil are capable of degrading hydrocarbon contaminants. In this study, two bacterial strains were isolated from a contaminated soil of a refinery of Arzew (Oran). The isolated strains were identified as Pseudomonas aeruginosa (P3) and Pseudomonas fluoresens (P4).

  14. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    International Nuclear Information System (INIS)

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.

    2009-01-01

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  15. Enhanced aerobic biodegradation of some toxic hydrocarbon pollutants

    International Nuclear Information System (INIS)

    Elshahawy, M.R.M.

    2007-01-01

    samples were collected from the same location in Suez Gulf during the period from June, 2004 to April 2006 then microbiologically and chemically analyzed . the TPH levels ranged from 55 to 86 ppm and exceeded the known permissible limits referring to a settled situation of chronic hydrocarbon pollution in the studied area. on the other hand the biodegrading bacterial counts cfu clearly reflected the great adaptation of endogenous bacteria to use hydrocarbons as a sole source of carbon . the ratio of biodegrading bacteria to heterotrophic ones ranged between 26 and 50% over the period of collection. the biodegradation potentials of suez gulf consortia were studied at different concentrations of phenanthrene as a sole carbon source. it was found that the degradation kinetics of phenanthrene either due to biotic or abiotic factors is affected with the initial concentration of PAHs. twenty PAHs degraders were isolated from Suez Gulf consortia after different adaptation periods on phenanthrene.ten isolates were selected to be promising due to their ability to tolerate high base oil concentrations, grow at wide range of temperatures and their short incubation period on MSO. the biodegradation kinetics of 200 ppm phenanthrene by the selected isolates was monitored by HPLC

  16. Modeling Biodegradation of Nonylphenol

    International Nuclear Information System (INIS)

    Jahan, Kauser; Ordonez, Raul; Ramachandran, Ravi; Balzer, Shira; Stern, Michael

    2008-01-01

    Nonylphenol is the primary breakdown product of nonylphenol ethoxylates, a certain class of nonionic surfactants. Nonylphenol has been found to be toxic to aquatic organisms and has been suspected of being harmful to humans due to its xenoestrogenic properties. Although there are known releases of nonylphenol to the environment, there is a lack of data describing the extent of biodegradation. This study thus focuses on much needed information on the biodegradation kinetics of nonylphenol. Oxygen uptake, cell growth and nonylphenol removal data were collected using batch reactors in an electrolytic respirometer. Nonylphenol removal, cell growth and substrate removal rates were modeled by the Monod, Haldane, Aiba, Webb, and Yano equations. The differential equations were solved by numerical integration to simulate cell growth, substrate removal, and oxygen uptake as a function of time. All models provided similar results with the Haldane model providing the best fit. The values of the kinetic parameters and the activation energy for nonylphenol were determined. These values can be used for predicting fate and transport of nonylphenol in the environment. The validity of applying each model to the biodegradation of nonylphenol was analyzed by computing the R 2 values of each equation

  17. Enhanced biodegradation of polyaromatic hydrocarbons in manufactured gas plant wastes

    International Nuclear Information System (INIS)

    Gauger, W.K.; Srivastava, V.J.; Hayes, T.D.; Linz, D.G.

    1990-01-01

    Scientists at the Institute of Gas Technology (IGT) have focused on enhancing destruction of polyaromatic hydrocarbons (PAHs) present as pollutants in manufactured gas plant (MGP) soils. The factor that bears the most restrictive influence on successful biological PAH degradation is low pollutant transfer from soil into an aqueous environment where biotreatment processes can take place. Physical and chemical enhancements were used in conjunction with biological processes. Physical enhancements overcame the mass transfer problem and made possible the biological destruction of aromatic hydrocarbons. One- to three-ring aromatic hydrocarbons were readily biodegraded in liquid, soil slurry, and -- to a lesser degree -- composted soil systems. Four- to six-ring PAHs remained persistent but were effectively destroyed when chemical co-treatments were used. Combined biological/chemical/physical processes are currently being tested to achieve the most extensive PAH degradation possible for MGP soils. 8 refs., 9 figs., 2 tabs

  18. Monitoring biodegradation of hydrocarbons by stable isotope fractionation

    Science.gov (United States)

    Dorer, Conrad; Fischer, Anko; Herrmann, Steffi; Richnow, Hans-Hermann; Vogt, Carsten

    2010-05-01

    In the last decade, several studies have demonstrated that stable isotope tools are highly applicable for monitoring anaerobic biodegradation processes. An important methodological approach is to characterize distinct degradation pathways with respect to the specific mechanism of C-H-bond cleavage and to quantify the extent of biodegradation by compound specific isotope analysis (CSIA). Here, enrichment factors (ɛbulk) needed for a CSIA field site approach must be determined in laboratory reference experiments. Recent research results from different laboratories have shown that single ɛbulk values for similar degradation pathways can be highly variable; thus, the use of two-dimensional compound specific isotope analysis (2D-CSIA) has been encouraged for characterizing biodegradation pathways more precisely. 2D-CSIA for hydrocarbons can be expressed by the slope of the linear regression for hydrogen versus carbon discrimination known as lambda ≈ ɛHbulk/ɛCbulk. We determined the carbon and hydrogen isotope fractionation for the biodegradation of benzene, toluene and xylenes by various reference cultures. Specific enzymatic reactions initiating different biodegradation pathways could be distinguished by 2D-CSIA. For the aerobic di- and monohydroxylation of the benzene ring, lambda values always lower than 9 were observed. Enrichment cultures degrading benzene anaerobically produced significant different values: lambda values between 8-19 were oberved for nitrate-reducing consortia, whereas sulfate-reducing and methanogenic consortia showed always lambda values greater than 20 [1,2]. The observed variations suggest that (i) aerobic benzene biodegradation can be distinguished from anaerobic biodegradation, and (ii) that more than a single mechanism seems to exist for the activation of benzene under anoxic conditions. lambda values for anaerobic toluene degradation initiated by the enzyme benzylsuccinate synthase (BSS) ranged from 4 to 41, tested with strains using

  19. Assessing Biodegradation Susceptibilities of Selected Petroleum Hydrocarbons at Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Markus Heryanto Langsa

    2010-01-01

    Full Text Available The susceptibility to biodegradation of selected saturated hydrocarbons (SHCs, polycyclic aromatichydrocarbons (PAHs and asphaltenes in a Barrow crude oil and extracts isolated from soils contaminated with theBarrow crude oil at day 0 and 39 was determined. Soil samples were contaminated with a Barrow crude oil across thesurface (5% w/w as part of a mesocosm experiment in order to mimic similar conditions in the environment. Theextent of biodegradation of the Barrow oil extracted from the contaminated soils at day 0 and day 39 was assessed byGC-MS analyses of SHCs and PAHs fractions. Changes in the relative abundances of n-alkanes (loss of low-molecularweighthydrocarbons and pristane relative to phytane (Pr/Ph and their diastereoisomers were determined. Changesin the diastereoisomer ratios of Pr and Ph relate to the decrease in abundance of the phytol-derived 6(R,10(Sisoprenoids with increasing biodegradation. The percentage change in abundances of each of selectedalkylnaphathalenes with time (day 0 to 39 was determined, enabling an order of susceptibility of their isomers tobiodegradation. It was established that the 2-methylnaphthalene isomers (2-MN is more susceptible to microbialattack than 1-MN isomer indicated by decreasing in percent abundance from day 0 to 39 for the 2-MN isomer. TheGC-MS analyses of the original Barrow oil indicated the oil had not undergone biodegradation. When this oil wasused in the soil mesocosm experiments the oil was shown to biodegrade to about a level 2 -3 based on the biodegradationsusceptibility of the various SHCs and PAHs described above

  20. Remediation of hydrocarbon contaminants in cold environments : electrokinetically enhanced bioremediation and biodegradable oil sorbents

    OpenAIRE

    Suni, Sonja

    2006-01-01

    Owing to the vast amounts of oil in the world, oil spills are common on land as well as at sea. In addition to oil products, other industrially used hydrocarbons, such as creosote, also contaminate soils. Most hydrocarbons are biodegradable. Hence, bioremediation is an attractive alternative for cleaning up hydrocarbon spills. In cold climate areas, however, biodegradation is often a slow process. The aim of this thesis was to develop efficient, cost-effective, and ecologically sound techniqu...

  1. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime

    International Nuclear Information System (INIS)

    Tejeda-Agredano, Maria-Carmen; Mayer, Philipp; Ortega-Calvo, Jose-Julio

    2014-01-01

    Binding of polycyclic aromatic hydrocarbons (PAHs) to dissolved organic matter (DOM) can reduce the freely dissolved concentration, increase apparent solubility or enhance diffusive mass transfer. To study the effects of DOM on biodegradation, we used phenanthrene and pyrene as model PAHs, soil humic acids as model DOM and a soil Mycobacterium strain as a representative degrader organism. Humic acids enhanced the biodegradation of pyrene when present as solid crystals but not when initially dissolved or provided by partitioning from a polymer. Synchronous fluorescence spectrophotometry, scintillation counting and a microscale diffusion technique were applied in order to determine the kinetics of dissolution and diffusive mass transfer of pyrene. We suggest that humic acids can enhance or inhibit biodegradation as a result of the balance of two opposite effects, namely, solubilization of the chemicals on the one hand and inhibition of cell adhesion to the pollutant source on the other. Highlights: • Humic acids can enhance the biodegradation of PAHs. • The enhancement depends on how the bacteria are exposed to PAHs. • Humic acids stimulate if PAHs are provided by dissolution form crystals. • An inhibition occurs if PAHs are provided by partitioning from a silicone. • The balance between enhanced dissolution and decreased adhesion is the cause. -- Humic acids cause opposite effects on biodegradation of PAHs depending on the exposure regime

  2. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    Energy Technology Data Exchange (ETDEWEB)

    Haritash, A.K., E-mail: akharitash@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India); Kaushik, C.P. [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India)

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H{sub 2}O, CO{sub 2} (aerobic) or CH{sub 4} (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions

  3. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    International Nuclear Information System (INIS)

    Haritash, A.K.; Kaushik, C.P.

    2009-01-01

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H 2 O, CO 2 (aerobic) or CH 4 (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can

  4. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part A-Monocyclic and Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Oberoi, Akashdeep Singh; Philip, Ligy; Bhallamudi, S Murty

    2015-08-01

    Present study focused on the screening of bacterial consortium for biodegradation of monocyclic aromatic hydrocarbon (MAH) and polycyclic aromatic hydrocarbons (PAHs). Target compounds in the present study were naphthalene, acenaphthene, phenanthrene (PAHs), and benzene (MAH). Microbial consortia enriched with the above target compounds were used in screening experiments. Naphthalene-enriched consortium was found to be the most efficient consortium, based on its substrate degradation rate and its ability to degrade other aromatic pollutants with significantly high efficiency. Substrate degradation rate with naphthalene-enriched culture followed the order benzene > naphthalene > acenaphthene > phenanthrene. Chryseobacterium and Rhodobacter were discerned as the predominant species in naphthalene-enriched culture. They are closely associated to the type strain Chryseobacterium arthrosphaerae and Rhodobacter maris, respectively. Single substrate biodegradation studies with naphthalene (PAH) and benzene (MAH) were carried out using naphthalene-enriched microbial consortium (NAPH). Phenol and 2-hydroxybenzaldehyde were identified as the predominant intermediates during benzene and naphthalene degradation, respectively. Biodegradation of toluene, ethyl benzene, xylene, phenol, and indole by NAPH was also investigated. Monod inhibition model was able to simulate biodegradation kinetics for benzene, whereas multiple substrate biodegradation model was able to simulate biodegradation kinetics for naphthalene.

  5. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons.

    Science.gov (United States)

    Abbasnezhad, Hassan; Gray, Murray; Foght, Julia M

    2011-11-01

    Biodegradation of poorly water-soluble liquid hydrocarbons is often limited by low availability of the substrate to microbes. Adhesion of microorganisms to an oil-water interface can enhance this availability, whereas detaching cells from the interface can reduce the rate of biodegradation. The capability of microbes to adhere to the interface is not limited to hydrocarbon degraders, nor is it the only mechanism to enable rapid uptake of hydrocarbons, but it represents a common strategy. This review of the literature indicates that microbial adhesion can benefit growth on and biodegradation of very poorly water-soluble hydrocarbons such as n-alkanes and large polycyclic aromatic hydrocarbons dissolved in a non-aqueous phase. Adhesion is particularly important when the hydrocarbons are not emulsified, giving limited interfacial area between the two liquid phases. When mixed communities are involved in biodegradation, the ability of cells to adhere to the interface can enable selective growth and enhance bioremediation with time. The critical challenge in understanding the relationship between growth rate and biodegradation rate for adherent bacteria is to accurately measure and observe the population that resides at the interface of the hydrocarbon phase. © Springer-Verlag 2011

  6. A simple method to predict the biodegradation of hydrocarbon in soils: application to soil treatability

    International Nuclear Information System (INIS)

    Li, X.; Feng, Y.

    1997-01-01

    Biodegradation of hydrocarbons in a soil contaminated with crude oil and brine were examined in a field-size, solid state bioreactor. The objective was to develop a tool for a quick and economical assessment of the potential long term success of bioremediation technologies. The initial relative rate of degradation and a biodegradation module were determined. Results showed that the heterogeneity of the contaminant composition and its spatial distribution in hydrocarbon contaminant domains significantly reduced the rate of biodegradation. 2 refs., 1 tab., 6 figs

  7. A model for simultaneous crystallisation and biodegradation of biodegradable polymers.

    Science.gov (United States)

    Han, Xiaoxiao; Pan, Jingzhe

    2009-01-01

    This paper completes the model of biodegradation for biodegradable polymers that was previously developed by Wang et al. (Wang Y, Pan J, Han X, Sinka, Ding L. A phenomenological model for the degradation of biodegradable polymers. Biomaterials 2008;29:3393-401). Crystallisation during biodegradation was not considered in the previous work which is the topic of the current paper. For many commonly used biodegradable polymers, there is a strong interplay between crystallisation and hydrolysis reaction during biodegradation - the chain cleavage caused by the hydrolysis reaction provides an extra mobility for the polymer chains to crystallise and the resulting crystalline phase becomes more resistant to further hydrolysis reaction. This paper presents a complete theory to describe this interplay. The fundamental equations in the Avrami's theory for crystallisation are modified and coupled to the diffusion-reaction equations that were developed in our previous work. The mathematical equations are then applied to three biodegradable polymers for which long term degradation data are available in the literature. It is shown that the model can capture the behavior of the major biodegradable polymers very well.

  8. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    Science.gov (United States)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  9. Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand

    Science.gov (United States)

    Höhener, Patrick; Duwig, Céline; Pasteris, Gabriele; Kaufmann, Karin; Dakhel, Nathalie; Harms, Hauke

    2003-10-01

    Predictions of natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone rely critically on information about microbial biodegradation kinetics. This study aims at determining kinetic rate laws for the aerobic biodegradation of a mixture of 12 volatile petroleum hydrocarbons and methyl tert-butyl ether (MTBE) in unsaturated alluvial sand. Laboratory column and batch experiments were performed at room temperature under aerobic conditions, and a reactive transport model for VOC vapors in soil gas coupled to Monod-type degradation kinetics was used for data interpretation. In the column experiment, an acclimatization of 23 days took place before steady-state diffusive vapor transport through the horizontal column was achieved. Monod kinetic parameters Ks and vmax could be derived from the concentration profiles of toluene, m-xylene, n-octane, and n-hexane, because substrate saturation was approached with these compounds under the experimental conditions. The removal of cyclic alkanes, isooctane, and 1,2,4-trimethylbenzene followed first-order kinetics over the whole concentration range applied. MTBE, n-pentane, and chlorofluorocarbons (CFCs) were not visibly degraded. Batch experiments suggested first-order disappearance rate laws for all VOCs except n-octane, which decreased following zero-order kinetics in live batch experiments. For many compounds including MTBE, disappearance rates in abiotic batch experiments were as high as in live batches indicating sorption. It was concluded that the column approach is preferable for determining biodegradation rate parameters to be used in risk assessment models.

  10. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation.

    Science.gov (United States)

    Birch, Heidi; Hammershøj, Rikke; Comber, Mike; Mayer, Philipp

    2017-10-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng-μg/L levels. Automated Headspace Solid Phase Microextraction coupled to GC-MS was applied directly to these test systems to determine substrate depletion relative to abiotic controls. Lag phases were generally less than 8 days. First order rate constants were within one order of magnitude for each hydrocarbon in four of the five waters but lower in water from a rural lake. The sequence of degradation between the 9 hydrocarbons showed similar patterns in the five waters indicating the potential for using selected hydrocarbons for benchmarking between biodegradation tests. Degradation half-times were shorter than or within one order of magnitude of BioHCwin predictions for 8 of 9 hydrocarbons. These results showed that location choice is important for biodegradation kinetics and can provide a relevant input to aquatic exposure and fate models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens.

    Science.gov (United States)

    Sakthipriya, N; Doble, Mukesh; Sangwai, Jitendra S

    2016-03-01

    The use of microorganisms has been researched extensively for possible applications related to hydrocarbon degradation in the petroleum industry. However, attempts to improve the effect of microorganisms on the viscosity of hydrocarbons, which find potential use in the development of robust models for biodegradation, have been rarely documented. This study investigates the degradation of long chain hydrocarbons, such as hexadecane and eicosane using Pseudomonas fluorescens PMMD3 (P. fluorescens) and Pseudomonas aeruginosa CPCL (P. aeruginosa). P. aeruginosa used here is isolated from petroleum contaminated sediments and the P. fluorescens is from the coastal area, and both have hydrocarbon degrading genes. The degradation of hydrocarbons is studied using carbon profiling and reduction in viscosity pre- and post-degradation of hydrocarbons. The carbon profiling has been obtained using gas chromatography-mass spectroscopy (GC-MS), and Fourier transform infrared spectrometer (FTIR) results. GC-MS results have indicated an improved biodegradation of hydrocarbons by 77-93% in one day. The yield coefficients of biomass (YX/S) for P. aeruginosa and P. fluorescens using hexadecane as a carbon source are 1.35 and 0.81 g g(-1), and the corresponding values with eicosane are 0.84 and 0.88 g g(-1). The viscosity of hexadecane is reduced by the order of 53 and 47%, while that of eicosane was reduced by 53 and 65%, using P. aeruginosa and P. fluorescens, respectively. This study also presents information on the activity of enzymes responsible for the hydrocarbon degradation. Pseudomonas species have shown their use in potential applications for bioremediation, oil-spill treatment, and flow assurance. We believe that this study will also provide stringent tests for possible model development for the bioremediation of long chain paraffins suitable for oilfield applications.

  12. Biodegradation of hydrocarbon remnants by biological activators in the presence of INIPOL EAP 22

    International Nuclear Information System (INIS)

    Bergueiro, J. R.; Luengo, M. C.; Socias, S.; Perez, F.; Laseca, D.; Perez-Navarro, A.; Morales, N.

    1997-01-01

    Degradation of highly weathered hydrocarbon mixtures resulting from an accidental spill in an oil refinery was studied, using BIOLEN IG 30 as the degradation agent microorganism, and INIPOL EAP 22 as the biodegradation accelerator. Results show that BIOLEN IG 30 is able to degrade highly weathered hydrocarbons at 20 degrees C, in the presence of INIPOL EAP 22. BIOLEN IG 30 is also able to degrade the total ionic and anionic dispersants in FINASOL OSR 51 (a dispersant), even in the absence of a biodegradation accelerator. 10 refs., 7 tabs., 3 figs

  13. Biodegradation of hydrocarbon compounds in Agbabu natural bitumen

    African Journals Online (AJOL)

    Infrared spectral changes and gravimetric analysis from the preliminary biodegradability study carried out on Agbabu Natural Bitumen showed the vulnerability of the bitumen to some bacteria: Pseudomonas putrefaciens, Pseudomonas nigrificans, Bacillus licheniformis, Pseudomonas fragi and Achromobacter aerogenes.

  14. BIODEGRADATION OF HYDROCARBON VAPORS IN THE UNSATURATED ZONE

    Science.gov (United States)

    The time-averaged concentration of hydrocarbon and oxygen vapors were measured in the unsaturated zone above the residually contaminated capillary fringe at the U.S. Coast Guard Air Station in Traverse City, Michigan. Total hydrocarbon and oxygen vapor concentrations were observe...

  15. BioDegradation of Refined Petroleum Hydrocarbons in Soil | Obire ...

    African Journals Online (AJOL)

    Carbon-dioxide production and hydrocarbon degradation of refined petroleum hydrocarbon in soils treated with 5% gasoline, kerosene and diesel oil were investigated. Soil for study was bulked from around a car park in Port Harcourt. Soil samples were collected at weekly intervals for four weeks and subsequently at ...

  16. [Biodegradability of the components of natural hydrocarbon mixtures previously submitted to landfarming].

    Science.gov (United States)

    Pucci, G N; Pucci, O H

    2003-01-01

    The complex composition of the crude oil and the hydrocarbons that integrate the waste of the different stages of the oil industry turn this product a mixture that presents different difficulties for its elimination by biological methods. The objective of this paper was to study the biodegradation potential of autochthonous bacterial communities on hydrocarbons obtained from four polluted places and subjected to landfarming biorremediation system during a decade. The results showed a marked difference in biodegradability of the three main fractions of crude oil, aliphatic, aromatic, and polar fractions, obtained by column chromatography. All fractions were used as carbon source and energy. There were variations in the production of biomass among the different fractions as well as in the kinetics of biodegradation, according to the composition of each fraction.

  17. Enhanced hydrocarbon biodegradation by a newly isolated bacillus subtilis strain

    International Nuclear Information System (INIS)

    Christova, N.; Tuleva, B.; Nikolova-Damyanova, B.

    2004-01-01

    The relation between hydrocarbon degradation and biosurfactant (rhamnolipid) production by a new bacillus subtilis 22BN strain was investigated. The strain was isolated for its capacity to utilize n-hexadecane and naphthalene and at the same time to produce surface-active compound at high concentrations (1.5 - 2.0 g l -1 ). Biosurfactant production was detected by surface tension lowering and emulsifying activity. The strain is a good degrader of both hydrocarbons used with degradability of 98.3 ± 1% and 75 ± 2% for n-hexadecane and naphthalene, respectively. Measurement of cell hydrophobicity showed that the combination of slightly soluble substrate and rhamnolipid developed higher hydrophobicity correlated with increased utilization of both hydrocarbon substrates. To our knowledge, this is the first report of bacillus subtilis strain that degrades hydrophobic compounds and at the same time produces rhamnolipid biosurfactant. (orig.)

  18. Characterization and biodegradation of polycyclic aromatic hydrocarbons in radioactive wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Tikilili, Phumza V. [Water Utilisation Division, Department of Chemical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Nkhalambayausi-Chirwa, Evans M., E-mail: Evans.Chirwa@up.ac.za [Water Utilisation Division, Department of Chemical Engineering, University of Pretoria, Pretoria 0002 (South Africa)

    2011-09-15

    Highlights: {yields} Biodegradation of recalcitrant toxic organics under radioactive conditions. {yields} Biodegradation of PAHs of varying size and complexity in mixed waste streams. {yields} Validation of radiation-tolerance and performance of the isolated organisms. - Abstract: PAH degrading Pseudomonad and Alcaligenes species were isolated from landfill soil and mine drainage in South Africa. The isolated organisms were mildly radiation tolerant and were able to degrade PAHs in simulated nuclear wastewater. The radiation in the simulated wastewater, at 0.677 Bq/{mu}L, was compatible to measured values in wastewater from a local radioisotope manufacturing facility, and was enough to inhibit metabolic activity of known PAH degraders from soil such as Pseudomonas putida GMP-1. The organic constituents in the original radioactive waste stream consisted of the full range of PAHs except fluoranthene. Among the observed PAHs in the nuclear wastewater from the radioisotope manufacturing facility, acenaphthene and chrysene predominated-measured at 25.1 and 14.2 mg/L, respectively. Up to sixteen U.S.EPA priority PAHs were detected at levels higher than allowable limits in drinking water. The biodegradation of the PAHs was limited by the solubility of the compounds. This contributed to the observed faster degradation rates in low molecular weight (LMW) compounds than in high molecular weight compounds.

  19. Resolving biodegradation patterns of persistent saturated hydrocarbons in weathered oil samples from the Deepwater Horizon disaster.

    Science.gov (United States)

    Gros, Jonas; Reddy, Christopher M; Aeppli, Christoph; Nelson, Robert K; Carmichael, Catherine A; Arey, J Samuel

    2014-01-01

    Biodegradation plays a major role in the natural attenuation of oil spills. However, limited information is available about biodegradation of different saturated hydrocarbon classes in surface environments, despite that oils are composed mostly of saturates, due to the limited ability of conventional gas chromatography (GC) to resolve this compound group. We studied eight weathered oil samples collected from four Gulf of Mexico beaches 12-19 months after the Deepwater Horizon disaster. Using comprehensive two-dimensional gas chromatography (GC × GC), we successfully separated, identified, and quantified several distinct saturates classes in these samples. We find that saturated hydrocarbons eluting after n-C22 dominate the GC-amenable fraction of these weathered samples. This compound group represented 8-10%, or 38-68 thousand metric tons, of the oil originally released from Macondo well. Saturates in the n-C22 to n-C29 elution range were found to be partly biodegraded, but to different relative extents, with ease of biodegradation decreasing in the following order: n-alkanes > methylalkanes and alkylcyclopentanes+alkylcyclohexanes > cyclic and acyclic isoprenoids. We developed a new quantitative index designed to characterize biodegradation of >n-C22 saturates. These results shed new light onto the environmental fate of these persistent, hydrophobic, and mostly overlooked compounds in the unresolved complex mixtures (UCM) of weathered oils.

  20. Biodegradation of Polycyclic Aromatic Hydrocarbons in Crude oil ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: Release of crude oil and its products into the environment has resulted in many problems that are of global concern. The objective of this study was to determine effect of Composted Market Waste (CMW) on the degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in crude oil-contaminated soil.

  1. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by white ...

    African Journals Online (AJOL)

    ... activity, and Pseudotrametes gibbosa had significant potential due to its higher laccase production and more potent degradation of PAHs. This study provides technical support for pollution amelioration using aboriginal white-rot fungus. Key words: White-rot fungus, laccase, polycyclic aromatic hydrocarbons, degradation.

  2. Biodegradation of polycyclic aromatic hydrocarbons in crude oil ...

    African Journals Online (AJOL)

    Release of crude oil and its products into the environment has resulted in many problems that are of global concern. The objective of this study was to determine effect of Composted Market Waste (CMW) on the degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in crude oil-contaminated soil. Pot experiment was ...

  3. The biodegradation of hydrocarbons by bacteria which excrete bioemulsifiers

    International Nuclear Information System (INIS)

    Pendrys, J.P.

    1990-01-01

    The molecular weights and protein concentrations of the major proteins in the supernatants of three hydrocarbon-degrading bacteria, Acinetobacter calcoaceticus RAG-1, Acinetobacter calcoaceticus NAV2, and Pseudomonas aeruginosa NAV6, were determined. The concentrations of some of the supernatant proteins varied considerably with the age of the bacterial culture. Protein denaturants affected the emulsifying capability of these supernatants. proteinase K greatly enhanced the emulsification potential of the supernatant from a late stationary phase culture of A. calcoaceticus NAV2

  4. Bioavailability of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous media.

    Science.gov (United States)

    Pęziak, Daria; Piotrowska, Aleksandra; Marecik, Roman; Lisiecki, Piotr; Woźniak, Marta; Szulc, Alicja; Ławniczak, Łukasz; Chrzanowski, Łukasz

    2013-01-01

    The aim of our study was to investigate the effect of Triton X-100 on the biodegradation efficiency of hexadecane and phenanthrene carried out by two bacterial consortia. It was established that the tested consortia were not able to directly uptake compounds closed in micelles. It was observed that in micellar systems the nonionic synthetic surfactant was preferentially degraded (the degradation efficiency of Triton X-100 after 21 days was 70% of the initial concentration - 500 mg/l), followed by a lesser decomposition of hydrocarbon released from the micelles (30% for hexadecane and 20% for phenanthrene). However, when hydrocarbons were used as the sole carbon source, 70% of hexadecane and 30% of phenanthrene were degraded. The degradation of the surfactant did not contribute to notable shifts in bacterial community dynamics, as determined by Real-Time PCR. The obtained results suggest that if surfactant-supplementation is to be used as an integral part of a bioremediation process, then possible bioavailability decrease due to entrapment of the contaminant into surfactant micelles should also be taken into consideration, as this phenomenon may have a negative impact on the biodegradation efficiency. Surfactant-induced mobilization of otherwise recalcitrant hydrocarbons may contribute to the spreading of contaminants in the environment and prevent their biodegradation.

  5. Impact of hydrocarbon biodegradation on low frequency electrical properties of unconsolidated sediments

    Science.gov (United States)

    Abdel Aal, Gamal Zidan

    The influence of biodegradation processes and subsequent physicochemical changes on the low frequency electrical properties (e.g., real and imaginary conductivity) of unconsolidated sediments was investigated in laboratory sand columns and core sediments retrieved from a hydrocarbon contaminated site. The low frequency electrical measurements were conducted using induced polarization (IP) method in the frequency range 0.1--1000 Hz. Biological, geochemical, isotopic analyses, scanning electron microscopy images and surface area measurements were conducted to help in the interpretation of the low frequency electrical measurements. In a laboratory column experiment, the biotic column (nutrient, dissolved diesel and bacteria) showed (a) temporal increase in the real, imaginary, and surface conductivity, and (b) temporal decrease in the formation factor. The abiotic columns (nutrient; and nutrient and dissolved diesel) showed no significant changes. Increase in microbial population numbers, decrease in organic carbon source, nitrate, and sulfate and increase in dissolved inorganic carbon and fluid conductivity were indicative of microbial activity in the biotic column. IP results of core sediments retrieved from the field showed that the magnitude of IP response (e.g., imaginary conductivity) for hydrocarbon contaminated sediments undergoing biodegradation was relatively higher compared to uncontaminated sediments. More specifically, samples from within the smear zone at the site and contaminated with residual hydrocarbon showed a relatively higher magnitude in the IP parameters (e.g., imaginary conductivity) compared to dissolved phase contaminated samples. Previous microbiological study at the site showed a high percentage of oil degrading microorganisms within the smear zone. Further, a laboratory column experiment was conducted to investigate the variations in the temporal changes of IP magnitudes associated with different phases of hydrocarbon contamination

  6. Biodegradation Of Polycyclic Aromatic Hydrocarbons In Petroleum Oil Contaminating The Environment

    International Nuclear Information System (INIS)

    Partila, A.M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in urban atmospheres (Chen et al., 2013). PAHs enter the environment via incomplete combustion of fossil fuels and accidental leakage of petroleum products, and as components of products such as creosote (Muckian et al., 2009). Due to PAHs carcinogenic activity, they have been included in the European Union (EU) and the Environmental Protection Agency (EPA) priority pollutant lists. Human exposure to PAHs occurs in three ways, inhalation, dermal contact and consumption of contaminated foods, which account for 88-98% of such contamination; in other words, diet is the major source of human exposure to these contaminants (Rey-Salgueiro et al., 2008). Both the World Health Organization and the UK Expert Panel on Air Quality Standards (EPAQS) have considered benzo(a)pyrene (BaP) as a marker of the carcinogenic potency of the polycyclic aromatic hydrocarbons (PAH) mixture (Delgado-Saborit et al., 2011). Polycyclic aromatic and heavier aliphatic hydrocarbons, which have a stable recalcitrant molecular structure, exhibit high hydrophobicity and low aqueous solubility, are not readily removed from soil through leaching and volatilization (Brassington et al., 2007). The hydrophobicity of PAHs limits desorption to the aqueous phase (Donlon et al., 2002). Six main ways of dissipation, i.e. disappearance, are recognized in the environment: volatilization, photooxidation, Aim of the Work chemical oxidation, sorption, leaching and biodegradation. Microbial degradation is considered to be the main process involved in the dissipation of PAH (Yuan et al., 2002). Thus, more and more research interests are turning to the biodegradation of PAHs. Some microorganisms can utilize PAHs as a source of carbon and energy so that PAHs can be degraded to carbon dioxide and water, or transformed to other nontoxic or low-toxic substances (Perelo, 2010). Compared with other physical and chemical methods such as combustion

  7. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    Science.gov (United States)

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  8. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands

    Science.gov (United States)

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1994-01-01

    Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contaminated aquifers.Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing

  9. Determining Biodegradation Kinetics of Hydrocarbons at Low Concentrations: Covering 5 and 9 Orders of Magnitude of Kow and Kaw

    DEFF Research Database (Denmark)

    Birch, Heidi; Høst Hammershøj, Rikke; Mayer, Philipp

    2018-01-01

    A partitioning-based experimental platform was developed and applied to determine primary biodegradation kinetics of 53 hydrocarbons at ng/L to μg/L concentrations covering C8-C20, 11 structural classes, and several orders of magnitude in hydrophobicity and volatility: (1) Passive dosing from...... a loaded silicone donor was used to set the concentration of each hydrocarbon in mixture stock solutions; (2) these solutions were combined with environmental water samples in gastight auto sampler vials for 1-100 days incubation, and (3) automated solid phase microextraction (SPME) coupled to GC......-MS was applied directly on these test systems for measuring primary biodegradation relative to abiotic controls. First order biodegradation kinetics were obtained for 40 hydrocarbons in activated sludge filtrate, 18 in seawater, and 21 in lake water. Water phase half-lives in seawater and lake water were poorly...

  10. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5 degrees C) and bacterial communities associated with degradation.

    Science.gov (United States)

    Brakstad, Odd G; Bonaunet, Kristin

    2006-02-01

    In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 degrees C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C(10)-C(36) n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5 degrees C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0 degree C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0 degree C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5 degrees C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures < or =5 degrees C, and psychrotrophic or psychrophilic bacteria may play an important role during oil HC biodegradation in seawater close to freezing

  11. Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia.

    Science.gov (United States)

    Shen, Tiantian; Pi, Yongrui; Bao, Mutai; Xu, Nana; Li, Yiming; Lu, Jinren

    2015-12-01

    The efficiencies of free and immobilized microbial consortia in the degradation of different types of petroleum hydrocarbons were investigated. In this study, the biodegradation rates of naphthalene, phenanthrene, pyrene and crude oil reached about 80%, 30%, 56% and 48% under the optimum environmental conditions of free microbial consortia after 7 d. We evaluated five unique co-metabolic substances with petroleum hydrocarbons, α-lactose was the best co-metabolic substance among glucose, α-lactose, soluble starch, yeast powder and urea. The orthogonal biodegradation analysis results showed that semi-coke was the best immobilized carrier followed by walnut shell and activated carbon. Meanwhile, the significance of various factors that contribute to the biodegradation of semi-coke immobilized microbial consortia followed the order of: α-lactose > semi-coke > sodium alginate > CaCl2. Moreover, the degradation rate of the immobilized microbial consortium (47%) was higher than that of a free microbial consortium (26%) under environmental conditions such as the crude oil concentration of 3 g L(-1), NaCl concentration of 20 g L(-1), pH at 7.2-7.4 and temperature of 25 °C after 5 d. SEM and FTIR analyses revealed that the structure of semi-coke became more porous and easily adhered to the microbial consortium; the functional groups (e.g., hydroxy and phosphate) were identified in the microbial consortium and were changed by immobilization. This study demonstrated that the ability of microbial adaptation to the environment can be improved by immobilization which expands the application fields of microbial remediation.

  12. Remediation of hydrocarbon contaminants in cold environments - Electrokinetically enhanced bioremediation and biodegradable oil sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Suni, S. [Helsinki Univ. (Finland). Dept. of Environmental and Ecological Sciences

    2006-07-01

    Owing to the vast amounts of oil in the world, oil spills are common on land as well as at sea. In addition to oil products, other industrially used hydrocarbons, such as creosote, also contaminate soils. Most hydrocarbons are biodegradable. Hence, bioremediation is an attractive alternative for cleaning up hydrocarbon spills. In cold climate areas, however, biodegradation is often a slow process. The aim of this thesis was to develop efficient, cost-effective, and ecologically sound techniques for cold climate areas for the treatment of both oil spills on water or solid surfaces and for subsurface contamination. For subsurface hydrocarbon spills, the approach was to use electrokinetics in order to deliver nutrients and possibly microorganisms to contaminated soils, and in order to heat the soil to increase contaminant bioavailability and microbial activity. Electroosmosis proved to be an effective method to disperse bacteria and nutrients in medium- or fine-grained soils, where uncharged particles migrated with water through the soil towards the cathode. Creosote degradation proceeded faster with electroosmotically added nutrients than in controls without additions. However, inoculation with enriched creosote-degraders was not necessary because the indigenous microbes of the soil were well adapted to the creosote contaminants. For small-scale oil spills, the usual remediation method involves absorption with oil sorbents. Most sorbents in use today are synthetic and incineration is the only method for their disposal. A biodegradable sorbent, however, could be processed, for instance, in compost-like systems. Cotton grass is a common plant in peat bogs and its water-repellent fibre is a by-product of peat excavation. Cotton grass proved to be an excellent oil sorbent especially for spills on the surface of water: It absorbed up to three times as much oil as a commercial, synthetic oil sorbent. Cotton grass performed extremely well also in conditions simulating

  13. High Magnetic Susceptibility in a Highly Saline Sulfate-Rich Aquifer Undergoing Biodegradation of Hydrocarbon Results from Sulfate Reduction.

    Science.gov (United States)

    Atekwana, E. A.; Enright, A.; Ntarlagiannis, D.; Slater, L. D.; Bernier, R.; Beaver, C. L.; Rossbach, S.

    2016-12-01

    We investigated the chemical and stable carbon isotope composition of groundwater in a highly saline aquifer contaminated with hydrocarbon. Our aim to evaluate hydrocarbon degradation and to constrain the geochemical conditions that generated high anomalous magnetic susceptibility (MS) signatures observed at the water table interface. The occurrence of high MS in the water table fluctuating zone has been attributed to microbial iron reduction, suggesting the use of MS as a proxy for iron cycling. The highly saline aquifer had total dissolved solids concentrations of 3.7 to 29.3 g/L and sulfate concentrations of 787 to 37,100 mg/L. We compared our results for groundwater locations with high hydrocarbon contamination (total petroleum hydrocarbon (TPH) >10 mg/L), at lightly contaminated (TPH TEAs) dissolved oxygen (DO), nitrate (NO3-), dissolved iron (Fe2+) , dissolved manganese (Mn2+), sulfate (SO42-) and methane (CH4) suggest a chemically heterogeneous aquifer, probably controlled by heterogeneous distribution of TEAs and contamination (type of hydrocarbon, phase and age of contamination). The concentrations of dissolved inorganic carbon (DIC) ranged from 67 to 648 mg C/L and the stable carbon isotope (δ13CDIC) ranged from -30.0‰ to 1.0 ‰ and DIC-δ13CDIC modeling indicates that the carbon in the DIC is derived primarily from hydrocarbon degradation. The concentrations of Fe2+ in the aquifer ranged from 0.1 to 55.8 mg/L, but was mostly low, averaging 2.7+10.9 mg/L. Given the low Fe2+ [AE1] in the aqueous phase and the high MS at contaminated locations, we suggest that the high MS observed does not arise from iron reduction but rather from sulfate reduction. Sulfate reduction produces H2S which reacts with Fe2+ to produce ferrous sulfide (Fe2+S) or the mixed valence greigite (Fe2+Fe3+2S4). We conclude that in highly saline aquifers with high concentrations of sulfate and contaminated with hydrocarbon, dominance of sulfate reduction as the TEA is responsible for

  14. Evaluation of the biodegradation of Alaska North Slope oil in microcosms using the biodegradation model BIOB

    Directory of Open Access Journals (Sweden)

    Jagadish eTorlapati

    2014-05-01

    Full Text Available We present the details of a numerical model, BIOB that is capable of simulating the biodegradation of oil entrapped in the sediment. The model uses Monod kinetics to simulate the growth of bacteria in the presence of nutrients and the subsequent consumption of hydrocarbons. The model was used to simulate experimental results of Exxon Valdez oil biodegradation in laboratory columns (Venosa et al. (2010. In that study, samples were collected from three different islands: Eleanor Island (EL107, Knight Island (KN114A, and Smith Island (SM006B, and placed in laboratory microcosms for a duration of 168 days to investigate oil bioremediation through natural attenuation and nutrient amendment. The kinetic parameters of the BIOB model were estimated by fitting to the experimental data using a parameter estimation tool based on Genetic Algorithms (GA. The parameter values of EL107 and KN114A were similar whereas those of SM006B were different from the two other sites; in particular biomass growth at SM006B was four times slower than at the other two islands. Grain size analysis from each site revealed that the specific surface area per unit mass of sediment was considerably lower at SM006B, which suggest that the surface area of sediments is a key control parameter for microbial growth in sediments. Comparison of the BIOB results with exponential decay curves fitted to the data indicated that BIOB provided better fit for KN114A and SM006B in nutrient amended treatments, and for EL107 and KN114A in natural attenuation. In particular, BIOB was able to capture the initial slow biodegradation due to the lag phase in microbial growth. Sensitivity analyses revealed that oil biodegradation at all three locations were sensitive to nutrient concentration whereas SM006B was sensitive to initial biomass concentration due to its slow growth rate. Analyses were also performed to compare the half-lives of individual compounds with the decay rate of the overall PAH.

  15. Functional and genetic characterization of hydrocarbon biodegrader and exopolymer-producing clones from a petroleum reservoir metagenomic library.

    Science.gov (United States)

    Vasconcellos, Suzan P; Sierra-Garcia, Isabel N; Dellagnezze, Bruna M; Vicentini, Renato; Midgley, David; Silva, Cynthia C; Santos Neto, Eugenio V; Volk, Herbert; Hendry, Philip; Oliveira, Valéria M

    2017-05-01

    Microbial degradation of petroleum is a worldwide issue, which causes physico-chemical changes in its compounds, diminishing its commercial value. Biosurfactants are chemically diverse molecules that can be produced by several microorganisms and can enable microbial access to hydrocarbons. In order to investigate both microbial activities, function-driven screening assays for biosurfactant production and hydrocarbon biodegradation were carried out from a metagenomic fosmid library. It was constructed from the total DNA extracted from aerobic and anaerobic enrichments from a Brazilian biodegraded petroleum sample. A sum of 10 clones were selected in order to evaluate their ability to produce exopolymers (EPS) with emulsifying activity, as well as to characterize the gene sequences, harbored by the fosmid clones, through 454 pyrosequencing. Functional analyses confirmed the ability of some clones to produce surfactant compounds. Regarding hydrocarbon as microbial carbon sources, n-alkane (in mixture or not) and naphthalene were preferentially consumed as substrates. Analysis of sequence data set revealed the presence of genes related to xenobiotics biodegradation and carbohydrate metabolism. These data were corroborated by the results of hydrocarbon biodegradation and biosurfactant production detected in the evaluated clones.

  16. Modeling aerobic biodegradation in the capillary fringe.

    Science.gov (United States)

    Luo, Jian; Kurt, Zohre; Hou, Deyi; Spain, Jim C

    2015-02-03

    Vapor intrusion from volatile subsurface contaminants can be mitigated by aerobic biodegradation. Laboratory column studies with contaminant sources of chlorobenzene and a mixture of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene showed that contaminants were rapidly degraded in thin reactive zones with high biomass and low substrate concentrations in the vicinity of the capillary fringe. Such behavior was well characterized by a model that includes oxygen-, substrate-, and biomass-dependent biodegradation kinetics along with diffusive transport processes. An analytical solution was derived to provide theoretical support for the simplification of reaction kinetics and the approximation of reactive zone location and mass flux relationships at steady state. Results demonstrate the potential of aerobic natural attenuation in the capillary fringe for preventing contaminant migration in the unsaturated zone. The solution indicates that increasing contaminant mass flux into the column creates a thinner reactive zone and pushes it toward the oxygen boundary, resulting in a shorter distance to the oxygen source and a larger oxygen mass flux that balances the contaminant mass flux. As a consequence, the aerobic biodegradation can reduce high contaminant concentrations to low levels within the capillary fringe and unsaturated zone. The results are consistent with the observations of thin reactive layers at the interface in unsaturated zones. The model considers biomass while including biodegradation in the capillary fringe and unsaturated zone and clearly demonstrates that microbial communities capable of using the contaminants as electron donors may lead to instantaneous degradation kinetics in the capillary fringe and unsaturated zone.

  17. Modeling ready biodegradability of fragrance materials.

    Science.gov (United States)

    Ceriani, Lidia; Papa, Ester; Kovarich, Simona; Boethling, Robert; Gramatica, Paola

    2015-06-01

    In the present study, quantitative structure activity relationships were developed for predicting ready biodegradability of approximately 200 heterogeneous fragrance materials. Two classification methods, classification and regression tree (CART) and k-nearest neighbors (kNN), were applied to perform the modeling. The models were validated with multiple external prediction sets, and the structural applicability domain was verified by the leverage approach. The best models had good sensitivity (internal ≥80%; external ≥68%), specificity (internal ≥80%; external 73%), and overall accuracy (≥75%). Results from the comparison with BIOWIN global models, based on group contribution method, show that specific models developed in the present study perform better in prediction than BIOWIN6, in particular for the correct classification of not readily biodegradable fragrance materials. © 2015 SETAC.

  18. Epigenetic toxicity of a mixture of polycyclic aromatic hydrocarbons on gap functional intercellular communication before and after biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, S. [McGill Univ., Montreal, Quebec (Canada). Dept. of Civil Engineering and Applied Mechanics; Weber, W.J. Jr. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Civil and Environmental Engineering; Rummel, A.M.; Trosko, J.E.; Upham, B.L. [Michigan State Univ., East Lansing, MI (United States)

    1999-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are known carcinogens, but most research on their toxicity in the development of human-risk assessment models has focused on genotoxicity. Many nongenotoxic PAHs, however, have been shown to be epigenetically toxic by disrupting gap junctional intercellular communication (GJIC), an effect which has been affiliated with tumor promotion. The authors therefore used GJIC as an epigenetic biomarker to assess the toxic effect of a nonaqueous phase liquid (NAPL) mixture of PAHs commonly found in coal tar and creosote products. The NAPL mixture consisted of toluene, naphthalene, 1-methylnaphthalene, 2-ethylnaphthalene, acenaphthene, fluorene, phenanthrene, fluoranthene, and pyrene. This mixture reversibly inhibited GJIC at a maximal and noncytotoxic dose of 60 {micro}M. Inhibition occurred within 5 min, indicating a post-translational modification of gap junction proteins. Biodegradation of globules of this mixture suspended in mineral media by a microorganism isolated from creosote-contaminated soils resulted in the removal of all but three heavy PAHs: acenaphthene, pyrene, and fluoranthene. A reconstituted mixture of these three compounds showed results on GJIC activity identical to the original mixture relative to dose-, rate-, and time-responses, indicating that the toxicity of the PAHs was additive. The results suggest that bioremediation techniques that leave residual components of such NAPL mixtures in contaminated media can quantitatively but not qualitatively reduce their epigenetic toxic risk. Nonetheless, such bioresistant residuals may be environmentally less mobile than the biodegraded components of the precursor NAPLs.

  19. The Oil-Spill Snorkel: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments

    Directory of Open Access Journals (Sweden)

    Carolina eCruz Viggi

    2015-09-01

    Full Text Available This study presents the proof-of-concept of the Oil-Spill Snorkel: a novel bioelectrochemical approach to stimulate the oxidative biodegradation of petroleum hydrocarbons in sediments. The Oil-Spill Snorkel consists of a single conductive material (the snorkel positioned suitably to create an electrochemical connection between the anoxic zone (the contaminated sediment and the oxic zone (the overlying O2-containing water. The segment of the electrode buried within the sediment plays a role of anode, accepting electrons deriving from the oxidation of contaminants. Electrons flow through the snorkel up to the part exposed to the aerobic environment (the cathode, where they reduce oxygen to form water. Here we report the results of lab-scale microcosms setup with marine sediments and spiked with crude oil. Microcosms containing 1 or 3 graphite snorkels and controls (snorkel-free and autoclaved were monitored for over 400 days. Collectively, the results of this study confirmed that the snorkels accelerate oxidative reactions taking place within the sediment, as documented by a significant 1.7-fold increase (p=0.023, two-tailed t-test in the cumulative oxygen uptake and 1.4-fold increase (p=0.040 in the cumulative CO2 evolution in the microcosms containing 3 snorkels compared to snorkel-free controls. Accordingly, the initial rate of total petroleum hydrocarbons (TPH degradation was also substantially enhanced. Indeed, while after 200 days of incubation a negligible degradation of TPH was noticed in snorkel-free controls, a significant reduction of 12±1% (p=0.004 and 21±1% (p=0.001 was observed in microcosms containing 1 and 3 snorkels, respectively. Although, the Oil-Spill Snorkel potentially represents a groundbreaking alternative to more expensive remediation options, further research efforts are needed to clarify factors and conditions affecting the snorkel-driven biodegradation processes and to identify suitable configurations for field

  20. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    International Nuclear Information System (INIS)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-01-01

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad ® 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils

  1. Surfactant-Enhanced Desorption and Biodegradation of Polycyclic Aromatic Hydrocarbons in Contaminated Soil

    Science.gov (United States)

    Zhu, Hongbo; Aitken, Michael D.

    2010-01-01

    We evaluated two nonionic surfactants, one hydrophobic (Brij 30) and one hydrophilic (C12E8), for their ability to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil after it had been treated in an aerobic bioreactor. The effects of each surfactant were evaluated at doses corresponding to equilibrium aqueous-phase concentrations well above the surfactant’s critical micelle concentration (CMC), slightly above the CMC, and below the CMC. The concentrations of all 3- and 4-ring PAHs were significantly lower in the soil amended with Brij 30 at the two lower doses compared to controls, whereas removal of only the 3-ring PAHs was significantly enhanced at the highest Brij 30 dose. In contrast, C12E8 did not enhance PAH removal at any dose. In the absence of surfactant, surfactants on PAH biodegradation could be explained by their effects on PAH bioavailability. Overall, this study demonstrates that the properties of the surfactant and its dose relative to the corresponding aqueous-phase concentration are important factors in designing systems for surfactant-enhanced bioremediation of PAH-contaminated soils in which PAH bioavailability is limited. PMID:20586488

  2. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases.

    Science.gov (United States)

    Li, Xiaojun; Li, Peijun; Lin, Xin; Zhang, Chungui; Li, Qi; Gong, Zongqiang

    2008-01-15

    Microbial consortia isolated from aged oil-contaminated soil were used to degrade 16 polycyclic aromatic hydrocarbons (15.72 mgkg(-1)) in soil and slurry phases. The three microbial consortia (bacteria, fungi and bacteria-fungi complex) could degrade polycyclic aromatic hydrocarbons (PAHs), and the highest PAH removals were found in soil and slurry inoculated with fungi (50.1% and 55.4%, respectively). PAHs biodegradation in slurry was lower than in soil for bacteria and bacteria-fungi complex inoculation treatments. Degradation of three- to five-ring PAHs treated by consortia was observed in soil and slurry, and the highest degradation of individual PAHs (anthracene, fluoranthene, and benz(a)anthracene) appeared in soil (45.9-75.5%, 62-83.7% and 64.5-84.5%, respectively) and slurry (46.0-75.8%, 50.2-86.1% and 54.3-85.7%, respectively). Therefore, inoculation of microbial consortia (bacteria, fungi and bacteria-fungi complex) isolated from in situ contaminated soil to degrade PAHs could be considered as a successful method.

  3. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    Science.gov (United States)

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation. Copyright © 2015. Published by Elsevier Ltd.

  4. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill.

    Science.gov (United States)

    Lindstrom, J E; Prince, R C; Clark, J C; Grossman, M J; Yeager, T R; Braddock, J F; Brown, E J

    1991-09-01

    The effort of clean up the T/V Exxon Valdez oil spill in Prince William Sound, Alaska, included the use of fertilizers to accelerate natural microbial degradation of stranded oil. A program to monitor various environmental parameters associated with this technique took place during the summer of 1990. Microbiological assays for numbers of heterotrophic and oil-degrading microbes and their hydrocarbon mineralization potentials were performed in support of this program. Fertilizer addition resulted in higher hexadecane and phenanthrene mineralization potentials on treated plots than on untreated reference plots. Microbial numbers in treated and reference surface sediments were not significantly different immediately after the first nutrient application in May 1990. However, subsurface sediments from treated plots had higher numbers of hydrocarbon degraders than did reference sediments shortly after treatment. The second application of fertilizer, later in summer, resulted in surface and subsurface increases in numbers of hydrocarbon degraders with respect to reference sediments at two of the three study sites. Elevated mineralization potentials, coupled with increased numbers of hydrocarbon degraders, indicated that natural hydrocarbon biodegradation was enhanced. However, these microbiological measurements alone are not sufficient to determine in situ rates of crude oil biodegradation.

  5. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Bhabananda; Sarkar, Binoy [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Mandal, Asit [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Division of Soil Biology, Indian Institute of Soil Science, Bhopal, Madhya Pradesh (India); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-11-15

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad{sup ®} 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  6. A Field Scale Investigation of Enhanced Petroleum Hydrocarbon Biodegradation in the Vadose Zone Combining Soil Venting as an Oxygen Source with Moisture and Nutrient Addition

    Science.gov (United States)

    1990-01-01

    objectives were: 1. to evaluate the potential for enhanced biodegradation of JP-4 in the vadose-zone ( Mandarin series soil) as the result of soil...relates to microbial activity and crop .production has been addressed in the literature. However, (with the exception of pesticide biodegradation...AND SUBTITLF A Field Scale Investigation of Enhanced 5. FUNDING NUMBERS Petroleum Hydrocarbon Biodegradation in the Vadose Zone Combining Soil Venting

  7. Recurrent Neural Network Identification and Adaptive Neural Control of Hydrocarbon Biodegradation Processes

    OpenAIRE

    Baruch, Ieroham; Mariaca-Gaspar, Carlos; Barrera-Cortes, Josefina

    2008-01-01

    The chapter proposes a new Kalman filter closed loop topology of recurrent neural network for identification and modeling of an unknown hydrocarbon degradation process carried out in a biopile system and a rotating drum. The proposed KF RNN contained a recurrent neural plant model, a recurrent neural output plant filter and posses global and local feedbacks. The learning algorithm is a modified version of the dynamic Backpropagation one derived using the adjoint KF RNN topology by means of th...

  8. Biodegradation of polycyclic aromatic hydrocarbons (PAH) from crude oil in sandy-beach microcosms

    International Nuclear Information System (INIS)

    Lepo, J.E.; Cripe, C.R.

    2000-01-01

    Experiments were conducted using triplicate microcosm chambers for each treatment of a simulated oil spill on a beach. The treatments were sterile control, 10 ppm of a rhamnolipid biosurfactant added to the seawater and bi-weekly inoculation of the microcosms with two marine bacteria that produce biosurfactants but degrade only n-alkanes. The results showed that raw seawater cycled through the microcosms over a 30-day period led to a substantial depletion of fluorene, phenanthrene, and other polyaromatic hydrocarbons (PAH). It was not possible to detect PAH in pooled test system effluents. The oiled-beach microcosms were run with sterile synthetic seawater to differentiate between wash out and degradation. Depletion of n-alkanes was noticed in the systems inoculated with the alkane-degrading microbes and virtually all the aromatic analytes were recoverable from the oiled sand. The other two treatments permitted the recovery of all the analytes (PAH or alkanes). Under aerobic conditions, the biodegradation by microorganisms indigenous to natural seawater supported that lower molecular weight PAH were substantially depleted, but not the n-alkanes under similar conditions. 16 refs., 4 tabs., 1 fig

  9. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Directory of Open Access Journals (Sweden)

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  10. Biodegradation of hydrocarbons vapors: Comparison of laboratory studies and field investigations in the vadose zone at the emplaced fuel source experiment, Airbase Værløse, Denmark

    Science.gov (United States)

    Höhener, Patrick; Dakhel, Nathalie; Christophersen, Mette; Broholm, Mette; Kjeldsen, Peter

    2006-12-01

    The natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone can only be predicted when information about microbial biodegradation rates and kinetics are known. This study aimed at determining first-order rate coefficients for the aerobic biodegradation of 13 volatile petroleum hydrocarbons which were artificially emplaced as a liquid mixture during a field experiment in an unsaturated sandy soil. Apparent first-order biodegradation rate coefficients were estimated by comparing the spatial evolution of the resulting vapor plumes to an analytical reactive transport model. Two independent reactive numerical model approaches have been used to simulate the diffusive migration of VOC vapors and to estimate degradation rate coefficients. Supplementary laboratory column and microcosm experiments were performed with the sandy soil at room temperature under aerobic conditions. First-order kinetics adequately matched the lab column profiles for most of the compounds. Consistent compound-specific apparent first-order rate coefficients were obtained by the three models and the lab column experiment, except for benzene. Laboratory microcosm experiments lacked of sensitivity for slowly degrading compounds and underestimated degradation rates by up to a factor of 5. Addition of NH 3 vapor was shown to increase the degradation rates for some VOCs in the laboratory microcosms. All field models suggested a significantly higher degradation rate for benzene than the rates measured in the lab, suggesting that the field microbial community was superior in developing benzene degrading activity.

  11. Biodegradation of hydrocarbons vapors: Comparison of laboratory studies and field investigations in the vadose zone at the emplaced fuel source experiment, Airbase Vaerløse, Denmark.

    Science.gov (United States)

    Höhener, Patrick; Dakhel, Nathalie; Christophersen, Mette; Broholm, Mette; Kjeldsen, Peter

    2006-12-15

    The natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone can only be predicted when information about microbial biodegradation rates and kinetics are known. This study aimed at determining first-order rate coefficients for the aerobic biodegradation of 13 volatile petroleum hydrocarbons which were artificially emplaced as a liquid mixture during a field experiment in an unsaturated sandy soil. Apparent first-order biodegradation rate coefficients were estimated by comparing the spatial evolution of the resulting vapor plumes to an analytical reactive transport model. Two independent reactive numerical model approaches have been used to simulate the diffusive migration of VOC vapors and to estimate degradation rate coefficients. Supplementary laboratory column and microcosm experiments were performed with the sandy soil at room temperature under aerobic conditions. First-order kinetics adequately matched the lab column profiles for most of the compounds. Consistent compound-specific apparent first-order rate coefficients were obtained by the three models and the lab column experiment, except for benzene. Laboratory microcosm experiments lacked of sensitivity for slowly degrading compounds and underestimated degradation rates by up to a factor of 5. Addition of NH3 vapor was shown to increase the degradation rates for some VOCs in the laboratory microcosms. All field models suggested a significantly higher degradation rate for benzene than the rates measured in the lab, suggesting that the field microbial community was superior in developing benzene degrading activity.

  12. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15.

    Science.gov (United States)

    Bautista, Luis Fernando; Morales, Gabriel; Sanz, Raquel

    2015-10-01

    A covalent immobilization method based on glutaraldehyde and amino-functionalized SBA-15 supports has been successfully applied to covalently and stably immobilize laccase from Trametes versicolor. The resultant biocatalysts displayed high incorporation yields of enzyme and led to excellent biodegradation rates of selected HPAs models, i.e. naphthalene, phenanthrene and anthracene, in water. The nature of the hydrocarbon chain accompanying the amino group has been shown as determinant for the immobilization as well as for the activity and reusability of the materials. Thus, alkyl moieties displayed higher enzyme loadings than phenyl moieties, being more adequate the larger n-butyl tethering residue likely due to its higher mobility. Using the aminobutyl-based laccase-SBA-15, 82%, 73%, and 55% conversion of naphthalene, phenanthrene and anthracene, respectively, were achieved after 48 h, very close to the values obtained with free laccase under the same reaction conditions. On the other hand, aminopropyl-based laccase-SBA-15 biocatalysts displayed the best reusability properties, retaining higher activity after four repeated uses than the corresponding aminobutyl-based materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment.

    Science.gov (United States)

    Ganesh Kumar, A; Vijayakumar, Lakshmi; Joshi, Gajendra; Magesh Peter, D; Dharani, G; Kirubagaran, R

    2014-10-01

    Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Thermo-chemical controls on diagenetic processes: impact on geologic models for geo pressure, fluid migration, biodegradation, and operational safety

    International Nuclear Information System (INIS)

    Nadeau, P.H.

    2004-01-01

    Proposed models for the effect of clay diagenesis on shale/clay-stone permeability based on precipitation of clay minerals in pore networks and exponential decreases in permeability have been confirmed by subsurface studies. These results have important implication for modelling fluid flow at the basin and field scale, including: 1. overpressure development; 2. hydrocarbon migration; 3. fluid flow through oil columns, shale top seals, and possible controls on biodegradation. This communication further develops the proposed model, and evaluates the implications for petroleum systems analysis, including models for biodegradation, as well as drilling/operational safety. (author)

  15. Integrating biodegradation and electroosmosis for the enhanced removal of polycyclic aromatic hydrocarbons from creosote-polluted soils.

    Science.gov (United States)

    Niqui-Arroyo, José-Luis; Ortega-Calvo, José-Julio

    2007-01-01

    This paper presents a hybrid technology of soil remediation based on the integration of biodegradation and electroosmosis. We employed soils with different texture (clay soil and loamy sand) containing a mixture of polycyclic aromatic hydrocarbons (PAH) present in creosote, and inoculation with a representative soil bacterium able to degrade fluorene, phenanthrene, fluoranthene, pyrene, anthracene, and benzo[a]pyrene. Two different modes of treatment were prospected: (i) inducing in soil the simultaneous occurrence of biodegradation and electroosmosis in the presence of a biodegradable surfactant, and (ii) treating the soils sequentially with electrokinetics and bioremediation. Losses of PAH due to simultaneous biodegradation and electroosmosis (induced by a continuous electric field) were significantly higher than in control cells that contained the surfactant but no biological activity or no current. The method was especially successful with loamy sand. For example, benzo[a]pyrene decreased its concentration by 50% after 7 d, whereas 22 and 17% of the compound had disappeared as a result of electrokinetic flushing and bioremediation alone, respectively. The use of periodical changes in polarity and current pulses increased by 16% in the removal of total PAH and in up to 30% of specific compounds, including benzo[a]pyrene. With the aim of reaching lower residual levels through bioremediation, an electrokinetic pretreatment was also evaluated as a way to mobilize the less bioaccessible fraction of PAH. Residual concentrations of total biodegradable PAH, remaining after bioremediation in soil slurries, were twofold lower in electrokinetically pretreated soils than in untreated soils. The results indicate that biodegradation and electroosmosis can be successfully integrated to promote the removal of PAH from soil.

  16. The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir.

    Science.gov (United States)

    Vasconcellos, S P; Dellagnezze, B M; Wieland, A; Klock, J-H; Santos Neto, E V; Marsaioli, A J; Oliveira, V M; Michaelis, W

    2011-06-01

    Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments.

  17. An entropy spring model for the Young's modulus change of biodegradable polymers during biodegradation.

    Science.gov (United States)

    Wang, Ying; Han, Xiaoxiao; Pan, Jingzhe; Sinka, Csaba

    2010-01-01

    This paper presents a model for the change in Young's modulus of biodegradable polymers due to hydrolysis cleavage of the polymer chains. The model is based on the entropy spring theory for amorphous polymers. It is assumed that isolated polymer chain cleavage and very short polymer chains do not affect the entropy change in a linear biodegradable polymer during its deformation. It is then possible to relate the Young's modulus to the average molecular weight in a computer simulated hydrolysis process of polymer chain sessions. The experimental data obtained by Tsuji [Tsuji, H., 2002. Autocatalytic hydrolysis of amorphous-made polylactides: Effects of L-lactide content, tacticity, and enantiomeric polymer blending. Polymers 43, 1789-1796] for poly(L-lactic acid) and poly(D-lactic acid) are examined using the model. It is shown that the model can provide a common thread through Tsuji's experimental data. A further numerical case study demonstrates that the Young's modulus obtained using very thin samples, such as those obtained by Tsuji, cannot be directly used to calculate the load carried by a device made of the same polymer but of various thicknesses. This is because the Young's modulus varies significantly in a biodegradable device due to the heterogeneous nature of the hydrolysis reaction. The governing equations for biodegradation and the relation between the Young's modulus and average molecular weight can be combined to calculate the load transfer from a degrading device to a healing bone.

  18. Biodegradation of gasoline in environment: from total assessment to the case of recalcitrant hydrocarbons; Biodegradabilite de l'essence dans l'environnement: de l'evaluation globale au cas des hydrocarbures recalcitrants

    Energy Technology Data Exchange (ETDEWEB)

    Solano-Serena, F.

    1999-11-26

    Because of their massive utilisation, hydrocarbons are major pollutants of soils and aquifers. Biodegradation is a key aspect of the fate of pollutants in the environment. Such knowledge, concerns in particular the intrinsic biodegradability of the products and the distribution in the environment of competent degradative microflora. In this study, a methodology has been developed to assess the aerobic biodegradability of gasoline. It is based on the direct gas chromatographic analysis of all hydrocarbons, after incubation in optimal conditions, of gasoline fractions and of model mixtures. The results demonstrated first the quasi-total biodegradability of gasoline ({>=} 94%). Concerning the distribution in the environment of degradative capacities, even microflora from non polluted sites exhibited a high performance (total degradation rates at least 85%) but were limited concerning the degradation of trimethyl-alkanes, such as 2,2,4-trimethyl-pentane (iso-octane) and 2,3,4-trimethyl-pentane, and of cyclohexane. Samples of polluted sites exhibited more extensive degradative capacities with total degradation in half of the cases studied. Cyclohexane was always degraded by mutualism and/or co-metabolism. Trimethyl-alkanes with quaternary carbons such as iso-octane and/or alkyl groups on consecutive carbons were degraded by co-metabolism but could also support growth of specialized strains. A strain of Mycobacterium austroafricanum (strain IFP 2173) growing on iso-octane was isolated from a gasoline polluted sample. This strain exhibited the capacity to co-metabolize various hydrocarbons (cyclic and branched alkanes, aromatics) and in particular cyclohexane. M austroafricanum lFP 2173 was also able to use a large spectrum of hydrocarbons (n- and iso-alkanes, aromatics) as sole carbon and energy source. (author)

  19. Comparative evaluation of anaerobic biodegradability of hydrocarbons and fatty derivatives currently used as drilling fluids.

    Science.gov (United States)

    Steber, J; Herold, C P; limia, J M

    1995-08-01

    The examination of a number of potential and currently used carrier fluids for invert emulsion drilling fluids in the ECETOC screening test revealed clear differences with respect to their easy anaerobic biodegradability. Fatty acid- and alcohol-based ester oils exhibited excellent anaerobic degradation to the gaseous final end products of the methanogenic degradation pathway, methane and carbon dioxide. Mineral oils, dialkyl ethers, alpha-olefins, polyalphaolefins, linear alkylbenzenes and an acetal-derivative were not or only slowly degraded. Although the poor degradation results obtained in the stringent ECETOC screening test may not be regarded as final proof of anaerobic recalcitrance, nevertheless, these results were found to be in line with the present understanding of the structural requirements for anaerobic biodegradability of chemicals. The validity of the conclusions drawn is corroborated by published results on the anaerobic biodegradation behaviour of ester oils, mineral oils and alkylbenzenes in marine sediments.

  20. Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium.

    Science.gov (United States)

    Pugazhendi, Arulazhagan; Abbad Wazin, Hadeel; Qari, Huda; Basahi, Jalal Mohammad Al-Badry; Godon, Jean Jacques; Dhavamani, Jeyakumar

    2017-10-01

    Clean-up of contaminated wastewater remains to be a major challenge in petroleum refinery. Here, we describe the capacity of a bacterial consortium enriched from crude oil drilling site in Al-Khobar, Saudi Arabia, to utilize polycyclic aromatic hydrocarbons (PAHs) as sole carbon source at 60°C. The consortium reduced low molecular weight (LMW; naphthalene, phenanthrene, fluorene and anthracene) and high molecular weight (HMW; pyrene, benzo(e)pyrene and benzo(k)fluoranthene) PAH loads of up to 1.5 g/L with removal efficiencies of 90% and 80% within 10 days. PAH biodegradation was verified by the presence of PAH metabolites and evolution of carbon dioxide (90 ± 3%). Biodegradation led to a reduction of the surface tension to 34 ± 1 mN/m thus suggesting biosurfactant production by the consortium. Phylogenetic analysis of the consortium revealed the presence of the thermophilic PAH degrader Pseudomonas aeruginosa strain CEES1 (KU664514) and Bacillus thermosaudia (KU664515) strain CEES2. The consortium was further found to treat petroleum wastewater in continuous stirred tank reactor with 96 ± 2% chemical oxygen demand removal and complete PAH degradation in 24 days.

  1. Electrical resistivity tomography to monitor enhanced biodegradation of hydrocarbons with Rhodococcus erythropolis T902.1 at a pilot scale

    Science.gov (United States)

    Masy, Thibaut; Caterina, David; Tromme, Olivier; Lavigne, Benoît; Thonart, Philippe; Hiligsmann, Serge; Nguyen, Frédéric

    2016-01-01

    Petroleum hydrocarbons (HC) represent the most widespread contaminants and in-situ bioremediation remains a competitive treatment in terms of cost and environmental concerns. However, the efficiency of such a technique (by biostimulation or bioaugmentation) strongly depends on the environment affected and is still difficult to predict a priori. In order to overcome these uncertainties, Electrical Resistivity Tomography (ERT) appears as a valuable non-invasive tool to detect soil heterogeneities and to monitor biodegradation. The main objective of this study was to isolate an electrical signal linked to an enhanced bacterial activity with ERT, in an aged HC-contaminated clay loam soil. To achieve this, a pilot tank was built to mimic field conditions. Compared to a first insufficient biostimulation phase, bioaugmentation with Rhodococcus erythropolis T902.1 led to a HC depletion of almost 80% (6900 to 1600 ppm) in 3 months in the center of the contaminated zone, where pollutants were less bioavailable. In the meantime, lithological heterogeneities and microbial activities (growth and biosurfactant production) were successively discriminated by ERT images. In the future, this cost-effective technique should be more and more transferred to the field in order to monitor biodegradation processes and assist in selecting the most appropriate remediation technique.

  2. Determination of Polycyclic Aromatic Hydrocarbons (PAHs in Persian Gulf and its Biodegradability Using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Parvin Nahid

    2005-11-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are the main pollutants in oil pollution. PAHs accumulation in aqueous phase causes some aquatic and human diseases Biodegradation methods of PAHs removal were studied using flasks and a reactor. Standard sampling was performed from polluted areas in Persian Gulf and samples were analyzed. COD, TOC, PAHs and heavy metals were determined. Results Showed that, Emam Hassan (EM, Deilam and Shaghab were most polluted areas (PAHs equals 9.8, 4.2, 2.7ppm respectively and samples from the dept showed more pollution than from the surface. For the biological treatment, most active species of bacteria were isolated from the soil of the polluted stations. Most of them are among Pseudomonas, gram and catalazet+. Rotating biological contactor packed (RBCp by providing high acclimation time for the microbial mass, found very suitable process for removal of PHAs. The pure bacterial culture from EM showed, 80% removal efficiency for naphthalene. As the biodegradation of PAHs take a long time, RBCp reactor was selected and the ability of mixed culture in removal of pollutants was studied. The bioreactor was run in two stages. The acclimatization stage took place in 30 days and evaluation of bioreactor in terms of effluent COD concentration and MLSS with initial COD influent of 600 mg/l was operated. COD and PAHs removal of 73 and 66 percent were found respectively while the influent COD was 1200 mg/l.

  3. Polydioxanone biodegradable stent placement in a canine urethral model: analysis of inflammatory reaction and biodegradation.

    Science.gov (United States)

    Park, Jung-Hoon; Song, Ho-Young; Shin, Ji Hoon; Kim, Jin Hyoung; Jun, Eun Jung; Cho, Young Chul; Kim, Soo Hwan; Park, Jihong

    2014-08-01

    To investigate the inflammatory reaction and perform quantitative analysis of biodegradation after placement of a polydioxanone (PDO) biodegradable stent in a canine urethral model. PDO biodegradable stents were placed in the proximal and distal urethra of nine male mongrel dogs. The dogs were euthanized 4 weeks (group A; n = 3), 8 weeks (group B; n = 3), or 12 weeks (group C; n = 3) after stent placement. The luminal diameter of the stent-implanted urethra was assessed by follow-up retrograde urethrography, and histologic findings were obtained after the dogs were killed. Stents were removed after euthanasia, and their surface morphology and molecular weight were evaluated. Hematologic examination was performed to evaluate inflammatory reaction. Stent placement was technically successful in all dogs. The average luminal diameter gradually decreased. The average number of epithelial layers (2.93 vs 4.42; P stents were completely decomposed. An experimental study in a canine urethral model has demonstrated acceptable inflammatory reaction with gradually increasing granulation tissue but no luminal obstruction within 12 weeks. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  4. Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates

    International Nuclear Information System (INIS)

    Mortazavi, Behzad; Horel, Agota; Beazley, Melanie J.; Sobecky, Patricia A.

    2013-01-01

    The rates of crude oil degradation by the extant microorganisms in intertidal sediments from a northern Gulf of Mexico beach were determined. The enhancement in crude oil degradation by amending the microbial communities with marine organic matter was also examined. Replicate mesocosm treatments consisted of: (i) controls (intertidal sand), (ii) sand contaminated with crude oil, (iii) sand plus organic matter, and (iv) sand plus crude oil and organic matter. Carbon dioxide (CO 2 ) production was measured daily for 42 days and the carbon isotopic ratio of CO 2 (δ 13 CO 2 ) was used to determine the fraction of CO 2 derived from microbial respiration of crude oil. Bacterial 16S rRNA clone library analyses indicated members of Actinobacteria, Bacteroidetes, and Chloroflexi occurred exclusively in control sediments whereas Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Firmicutes occurred in both control and oil contaminated sediments. Members of the hydrocarbon-degrading genera Hydrocarboniphaga, Pseudomonas, and Pseudoxanthomonas were found primarily in oil contaminated treatments. Hydrocarbon mineralization was 76% higher in the crude oil amended with organic matter treatment compared to the rate in the crude oil only treatment indicating that biodegradation of crude oil in the intertidal zone by an extant microbial community is enhanced by input of organic matter

  5. Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, Behzad, E-mail: bmortazavi@ua.edu [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States); Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL, 36528 (United States); Horel, Agota [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States); Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL, 36528 (United States); Beazley, Melanie J.; Sobecky, Patricia A. [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2013-01-15

    The rates of crude oil degradation by the extant microorganisms in intertidal sediments from a northern Gulf of Mexico beach were determined. The enhancement in crude oil degradation by amending the microbial communities with marine organic matter was also examined. Replicate mesocosm treatments consisted of: (i) controls (intertidal sand), (ii) sand contaminated with crude oil, (iii) sand plus organic matter, and (iv) sand plus crude oil and organic matter. Carbon dioxide (CO{sub 2}) production was measured daily for 42 days and the carbon isotopic ratio of CO{sub 2} (δ{sup 13}CO{sub 2}) was used to determine the fraction of CO{sub 2} derived from microbial respiration of crude oil. Bacterial 16S rRNA clone library analyses indicated members of Actinobacteria, Bacteroidetes, and Chloroflexi occurred exclusively in control sediments whereas Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Firmicutes occurred in both control and oil contaminated sediments. Members of the hydrocarbon-degrading genera Hydrocarboniphaga, Pseudomonas, and Pseudoxanthomonas were found primarily in oil contaminated treatments. Hydrocarbon mineralization was 76% higher in the crude oil amended with organic matter treatment compared to the rate in the crude oil only treatment indicating that biodegradation of crude oil in the intertidal zone by an extant microbial community is enhanced by input of organic matter.

  6. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Apri, M., E-mail: m.apri@math.itb.ac.id; Silmi, M. [Department of Mathematics, Institut Teknologi Bandung, Jalan Ganeca 10 Bandung, 40132 (Indonesia); Heryanto, T. E.; Moeis, M. R. [School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganeca 10 Bandung, 40132 (Indonesia)

    2016-04-06

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  7. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    Science.gov (United States)

    Apri, M.; Silmi, M.; Heryanto, T. E.; Moeis, M. R.

    2016-04-01

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  8. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    International Nuclear Information System (INIS)

    Apri, M.; Silmi, M.; Heryanto, T. E.; Moeis, M. R.

    2016-01-01

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  9. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Adelaja, Oluwaseun, E-mail: o.adelaja@my.westminster.ac.uk; Keshavarz, Tajalli, E-mail: t.keshavarz@westminster.ac.uk; Kyazze, Godfrey, E-mail: g.kyazze@westminster.ac.uk

    2015-02-11

    Highlights: • Effective degradation of petroleum hydrocarbon mixtures was achieved using MFC. • Adapted anaerobic microbial consortium was used as inoculum. • Bio-electricity generation was enhanced by 30-fold when riboflavin, was added. • Optimum MFC performance was obtained at mesophilic and moderately saline conditions. • Stable MFC performance was obtained during prolonged fed-batch MFC operation. - Abstract: Microbial fuel cells (MFCs) need to be robust if they are to be applied in the field for bioremediation. This study investigated the effect of temperature (20–50 °C), salinity (0.5–2.5% (w/v) as sodium chloride), the use of redox mediators (riboflavin and anthraquinone-2-sulphonate, AQS) and prolonged fed-batch operation (60 days) on biodegradation of a petroleum hydrocarbon mix (i.e. phenanthrene and benzene) in MFCs. The performance criteria were degradation efficiency, % COD removal and electrochemical performance. Good electrochemical and degradation performance were maintained up to a salinity of 1.5% (w/v) but deteriorated by 35-fold and 4-fold respectively as salinity was raised to 2.5%w/v. Degradation rates and maximum power density were both improved by approximately 2-fold at 40 °C compared to MFC performance at 30 °C but decreased sharply by 4-fold when operating temperature was raised to 50 °C. The optimum reactor performance obtained at 40 °C was 1.15 mW/m{sup 2} maximum power density, 89.1% COD removal and a degradation efficiency of 97.10%; at moderately saline (1% w/v) conditions the maximum power density was 1.06 mW/m{sup 2}, 79.1% COD removal and 91.6% degradation efficiency. This work suggests the possible application of MFC technology in the effective treatment of petroleum hydrocarbons contaminated site and refinery effluents.

  10. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Poulsen, Tjalfe; Mortensen, Lars

    2010-01-01

    Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused on t...

  11. Biodegradation of Phenol Adsorbed on Soil in the Presence of Polycyclic Aromatic Hydrocarbons.

    Czech Academy of Sciences Publication Activity Database

    Maléterová, Ywetta; Matějková, Martina; Demnerová, K.; Stiborová, H.; Kaštánek, František; Šolcová, Olga

    2016-01-01

    Roč. 3, č. 1 (2016), s. 87-98 ISSN 2397-2076 R&D Projects: GA TA ČR TA04020700 Institutional support: RVO:67985858 Keywords : polycyclic artomatic hydrocarbons * phenol * bioremediation * candida tropicalis * phanerochaete chrysosporium Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  12. Genetically engineered micro-organisms: Aromatic hydrocarbon biodegradation genes from Rhodococcus

    International Nuclear Information System (INIS)

    Kendall, K.

    1993-01-01

    DNA known to encode toluene biodegradation genes in Pseudomonas putida was used in Southern Blots to identify homologous DNA in the unrelated toluene degrading Actinomycete, Rhodococcus sp. ATCC 19070. Two strongly hybridizing EcoRI fragments of 2.3 kb and 2.7 kb respectively were cloned into E. coli. Sequence analysis of a 400 bp section of the 2.3 kb fragment demonstrated that it encodes proteins with similar amino acid sequences to the xylX and xylY genes of P. putida. These proteins are components of toluate oxygenase, the enzyme catalyzing the first step in the metabolism of benzoic acid

  13. Effects of lag and maximum growth in contaminant transport and biodegradation modeling

    International Nuclear Information System (INIS)

    Wood, B.D.; Dawson, C.N.

    1992-06-01

    The effects of time lag and maximum microbial growth on biodegradation in contaminant transport are discussed. A mathematical model is formulated that accounts for these effects, and a numerical case study is presented that demonstrates how lag influences biodegradation

  14. Biodegradation of BTEX and Other Petroleum Hydrocarbons by Enhanced and Controlled Sulfate Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin

    2007-07-01

    High concentrations of sulfide in the groundwater at a field site near South Lovedale, OK, were inhibiting sulfate reducing bacteria (SRB) that are known to degrade contaminants including benzene, toluene, ethylbenzene, and m+p-xylenes (BTEX). Microcosms were established in the laboratory using groundwater and sediment collected from the field site and amended with various nutrient, substrate, and inhibitor treatments. All microcosms were initially amended with FeCl{sub 2} to induce FeS precipitation and, thereby, reduce sulfide concentrations. Complete removal of BTEX was observed within 39 days in treatments with various combinations of nutrient and substrate amendments. Results indicate that elevated concentration of sulfide is a limiting factor to BTEX biodegradation at this site, and that treating the groundwater with FeCl{sub 2} is an effective remedy to facilitate and enhance BTEX degradation by the indigenous SRB population. On another site in Moore, OK, studies were conducted to investigate barium in the groundwater. BTEX biodegradation by SRB is suspected to mobilize barium from its precipitants in groundwater. Data from microcosms demonstrated instantaneous precipitation of barium when sulfate was added; however, barium was detected redissolving for a short period and precipitating eventually, when active sulfate reduction was occurring and BTEX was degraded through the process. SEM elemental spectra of the evolved show that sulfur was not present, which may exclude BaSO{sub 4} and BaS as a possible precipitates. The XRD analysis suggests that barium probably ended in BaS complexing with other amorphous species. Results from this study suggest that SRB may be able to use the sulfate from barite (BaSO{sub 4}) as an electron acceptor, resulting in the release of free barium ions (Ba{sup 2+}), and re-precipitate it in BaS, which exposes more toxicity to human and ecological health.

  15. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Poulsen, Tjalfe; Mortensen, Lars

    2010-01-01

    Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused...... on the shallow unsaturated zone. Based on a data set comprising analysis of about 100 soil samples taken in a 16-m-deep unsaturated zone polluted with volatile petroleum compounds, we statistically and geostatistically analyzed values of essential soil properties. The subsurface of the site was highly layered...

  16. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1.

    Directory of Open Access Journals (Sweden)

    Sung Ho Yun

    Full Text Available Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs. Genome sequence analysis revealed that the large plasmid pLA1 present in N. pentaromativorans US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of N. pentaromativorans US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, N. pentaromativorans US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that N. pentaromativorans US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in N. pentaromativorans US6-1.

  17. Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil.

    Science.gov (United States)

    García-Delgado, Carlos; Alfaro-Barta, Irene; Eymar, Enrique

    2015-03-21

    Soils impregnated with creosote contain high concentrations of polycyclic aromatic hydrocarbons (PAH). To bioremediate these soils and avoid PAH spread, different bioremediation strategies were tested, based on natural attenuation, biochar application, wheat straw biostimulation, Pleurotus ostreatus mycoremediation, and the novel sequential application of biochar for 21 days and P. ostreatus 21 days more. Soil was sampled after 21 and 42 days after the remediation application. The efficiency and effectiveness of each remediation treatment were assessed according to PAH degradation and immobilization, fungal and bacterial development, soil eco-toxicity and legal considerations. Natural attenuation and biochar treatments did not achieve adequate PAH removal and soil eco-toxicity reduction. Biostimulation showed the highest bacterial development but low PAH degradation rate. Mycoremediation achieved the best PAH degradation rate and the lowest bioavailable fraction and soil eco-toxicity. This bioremediation strategy achieved PAH concentrations below Spanish legislation for contaminated soils (RD 9/2005). Sequential application of biochar and P. ostreatus was the second treatment most effective for PAH biodegradation and immobilization. However, the activity of P. ostreatus was increased by previous biochar application and PAH degradation efficiency was increased. Therefore, the combined strategy for PAH degradation have high potential to increase remediation efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Biodegradation, bioaccessibility, and genotoxicity of diffuse polycyclic aromatic hydrocarbon (PAH) pollution at a motorway site

    DEFF Research Database (Denmark)

    Johnsen, A.R.; de Lipthay, J.R.; Reichenberg, F.

    2006-01-01

    Diffuse pollution of surface soil with polycyclic aromatic hydrocarbons (PAHs) is problematic in terms of the large areas and volumes of polluted soil. The levels and effects of diffuse PAH pollution at a motorway site were investigated. Surface soil was sampled with increasing distance from...... in the most polluted samples close to the pavement. Hydroxypropyl-beta-cyclodextrin extraction of soil PAHs, as a direct estimate of the bioaccessibility, indicated that only 1-5% of the PAHs were accessible to soil bacteria. This low bioaccessibility is suggested to be due to sorption to traffic soot...... the asphalt pavement and tested for total amounts of PAHs, amounts of bioaccessible PAHs, total bacterial populations, PAH degrader populations, the potential for mineralization of C-14-PAHs, and mutagenicity. Elevated PAH concentrations were found in the samples taken 1-8 m from the pavement. Soil sampled...

  19. Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil

    Energy Technology Data Exchange (ETDEWEB)

    Bogan, B.W.; Sullivan, W.R. [Inst. for Gas Technology, Des Plaines, IL (United States)

    2003-09-01

    Six soils, obtained from grasslands and wooded areas in Northeastern Illinois, were physicochemically characterized. Measured parameters included total organic carbon (TOC) content, contents of humic acid, fulvic acid and humin, pore volume and pore size distribution, and chemical makeup of soil organic matter (determined using solid-state {sup 13}C-NMR). Moistened, gamma-sterilized soils were spiked with 200 ppm of either phenanthrene or pyrene (including {sup 14}C label); following 0, 40, or 120 days of aging, the contaminant-spiked soils were then inoculated with Mycobacterium austroafricanum strain GTI-23, and evolution of (CO{sub 2})-{sup 14}C was assessed over a 28-day period. Results for both phenanthrene and pyrene indicated that increased contact time led to increased sequestration and reduced biodegradation, and that TOC content was the most important parameter governing these processes. One soil, although only tested with phenanthrene, showed significantly lower-than-expected sequestration (higher-than-expected mineralization) after 40 days of aging, despite a very high TOC value (>24%). The primary distinguishing feature of this soil was its considerably elevated fulvic acid content. Further experiments showed that addition of exogenous fulvic acid to a soil with very low endogenous humic acids/fulvic acids content greatly enhanced pyrene mineralization by M. austroafricanum. Extractabilities of 13 three- to six-ring coal tar PAHs in n-butanol from the six soils after 120 days of sequestration were strongly TOC-dependent; however, there was no discernible correlation between n-butanol extractability and mycobacterial PAH mineralization.

  20. Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil.

    Science.gov (United States)

    Bogan, Bill W; Sullivan, Wendy R

    2003-09-01

    Six soils, obtained from grasslands and wooded areas in Northeastern Illinois, were physicochemically characterized. Measured parameters included total organic carbon (TOC) content, contents of humic acid, fulvic acid and humin, pore volume and pore size distribution, and chemical makeup of soil organic matter (determined using solid-state 13C-NMR). Moistened, gamma-sterilized soils were spiked with 200 ppm of either phenanthrene or pyrene (including 14C label); following 0, 40, or 120 days of aging, the contaminant-spiked soils were then inoculated with Mycobacterium austroafricanum strain GTI-23, and evolution of 14CO2 was assessed over a 28-day period. Results for both phenanthrene and pyrene indicated that increased contact time led to increased sequestration and reduced biodegradation, and that TOC content was the most important parameter governing these processes. One soil, although only tested with phenanthrene, showed significantly lower-than-expected sequestration (higher-than-expected mineralization) after 40 days of aging, despite a very high TOC value (>24%). Because the level of sequestration in this soil was proportional to the others after 120 days of aging, this implies some difference in the temporal progression of sequestration in this soil, although not in its final result. The primary distinguishing feature of this soil was its considerably elevated fulvic acid content. Further experiments showed that addition of exogenous fulvic acid to a soil with very low endogenous humic acids/fulvic acids content greatly enhanced pyrene mineralization by M. austroafricanum. Extractabilities of 13 three- to six-ring coal tar PAHs in n-butanol from the six soils after 120 days of sequestration were strongly TOC-dependent; however, there was no discernible correlation between n-butanol extractability and mycobacterial PAH mineralization.

  1. Stable isotope analyses - an innovative technique to monitor biodegradation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, C. A.; Coffin, R. B.; Mueller, J. G.

    1998-09-01

    Results of studies to examine variations in stable isotope ratios of compounds upon degradation and transport through soil and ground water are discussed. These studies were undertaken as part of a study on the usefulness of stable carbon isotopes in bioremediation programs. The assumption was that stable isotope values can be used to fingerprint contaminant sources by measuring the stable isotope values of polycyclic aromatic hydrocarbons (PAHs) extracted from soil slurries with and without the occurrence of bacterial degradation. Creosote-contaminated soil samples were obtained from a respirometry study in Pensacola, Florida. Liquid-liquid extraction methods were used to extract PAHs from the groundwater. The PAH-containing organic phase was separated from the aqueous phase, dried with anhydrous sodium sulfate and concentrated. Concentration was determined by gas chromatography using external standard curve. Results showed that only four PAH compounds (acenapthene, fluorene, phenanthrene, and fluoranthene) had high enough concentrations to measure the {delta}{sup 1}3 C values for both the killed bacterial cell control (no degradation) and the degraded sample. Of these four, phenanthrene was the most degraded (69 per cent removed after seven days) and fluoranthene was the least degraded (25 per cent removed). The isotopic composition of the PAHs measured along the source site dilution transect remained consistent. It appears that neither dilution nor degradation significantly altered the stable isotopic composition of these compounds. 6 refs., 5 figs.

  2. Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hua [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Zhou, Hong-Wei [Department of Environmental Health Science, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Wong, Yuk-Shan [Department of Biology, The Hong Kong University of Science and Technology (Hong Kong); Tam, Nora Fung-Yee, E-mail: bhntam@cityu.edu.hk [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2009-10-15

    The vertical distribution of polycyclic aromatic hydrocarbons (PAHs) at different sediment depths, namely 0-2 cm, 2-4 cm, 4-6 cm, 6-10 cm, 10-15 cm and 15-20 cm, in one of the most contaminated mangrove swamps, Ma Wan, Hong Kong was investigated. It was the first time to study the intrinsic potential of deep sediment to biodegrade PAHs under anaerobic conditions and the abundance of electron acceptors in sediment for anaerobic degradation. Results showed that the total PAHs concentrations (summation of 16 US EPA priority PAHs) increased with sediment depth. The lowest concentration (about 1300 ng g{sup -1} freeze-dried sediment) and the highest value (around 5000 ng g{sup -1} freeze-dried sediment) were found in the surface layer (0-2 cm) and deeper layer (10-15 cm), respectively. The percentage of high molecular weight (HMW) PAHs (4 to 6 rings) to total PAHs was more than 89% at all sediment depths. The ratio of phenanthrene to anthracene was less than 10 while fluoranthene to pyrene was around 1. Negative redox potentials (Eh) were recorded in all of the sediment samples, ranging from - 170 to - 200 mv, with a sharp decrease at a depth of 6 cm then declined slowly to 20 cm. The results suggested that HMW PAHs originated from diesel-powered fishing vessels and were mainly accumulated in deep anaerobic sediments. Among the electron acceptors commonly used by anaerobic bacteria, sulfate was the most dominant, followed by iron(III), nitrate and manganese(IV) was the least. Their concentrations also decreased with sediment depth. The population size of total anaerobic heterotrophic bacteria increased with sediment depth, reaching the peak number in the middle layer (4-6 cm). In contrast, the aerobic heterotrophic bacterial count decreased with sediment depth. It was the first time to apply a modified electron transport system (ETS) method to evaluate the bacterial activities in the fresh sediment under PAH stress. The vertical drop of the ETS activity suggested that

  3. A Tucker model based approach for analysis of complex oil biodegradation data.

    Science.gov (United States)

    Tomasi, Giorgio; Christensen, Jan H

    2009-11-06

    A novel method based on gas chromatography-mass spectrometry in selected ion monitoring mode (GC-MS/SIM) and Tucker models is developed to evaluate the effects of oil type, microbial treatments and incubation time on the biodegradation of petroleum hydrocarbons. The data set consists of sections of the m/z 180, 192 and 198 GC-MS/SIM chromatograms of oil extracts from a biodegradation experiment where four oil types were exposed to four microbial treatments over a period of one year. The chosen sections, which are specific to methylfluorenes, phenanthrenes and dibenzothiophenes, were combined in a 4-way array (incubation timexoil typextreatmentxcombined chromatographic retention times) that was analyzed using both principal component analysis and the Tucker model. Several conclusions could be reached: the light fuel oil was the least degradable of those tested, 2- and 3-methyl isomers were more easily degraded compared to the 4-methyl isomers, the mixture of surfactant producers and PAC degraders provided the most effective degradation and the largest part of the degradation occurred between 54 and 132 days.

  4. Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation.

    Science.gov (United States)

    Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-09-01

    Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.

  5. Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review.

    Science.gov (United States)

    Xue, Jianliang; Yu, Yang; Bai, Yu; Wang, Liping; Wu, Yanan

    2015-08-01

    Due to the toxicity of petroleum compounds, the increasing accidents of marine oil spills/leakages have had a significant impact on our environment. Recently, different remedial techniques for the treatment of marine petroleum pollution have been proposed, such as bioremediation, controlled burning, skimming, and solidifying. (Hedlund and Staley in Int J Syst Evol Microbiol 51:61-66, 2001). This review introduces an important remedial method for marine oil pollution treatment-bioremediation technique-which is considered as a reliable, efficient, cost-effective, and eco-friendly method. First, the necessity of bioremediation for marine oil pollution was discussed. Second, this paper discussed the species of oil-degrading microorganisms, degradation pathways and mechanisms, the degradation rate and reaction model, and the factors affecting the degradation. Last, several suggestions for the further research in the field of marine oil spill bioremediation were proposed.

  6. Mathematical modelling on transport of petroleum hydrocarbons

    Indian Academy of Sciences (India)

    A brief theory has been included on the composition and transport of petroleum hydrocarbons following an onshore oil spill in order to demonstrate the level of complexity associated with the LNAPL dissolution mass transfer even in a classical porous medium. However, such studies in saturated fractured rocks are highly ...

  7. Modelling fate and effects of toxicologically relevant hydrocarbon fractions following hypothetical oil spills in a marine environment

    International Nuclear Information System (INIS)

    St-Amand, A.; Mazzocco, P.; Stephenson, M.

    2009-01-01

    Numerical oil spill models have generally focused on the transport and fate of oil following a spill through processes such as advection, evaporation, spreading dissolution, dispersion, emulsification, biodegradation and sedimentation. These models provide information regarding the trajectory, location and size of the oil slick, as well as the location where the slick will touch shorelines. The models normally treat the spilled hydrocarbon as a single product or group of representative compounds which is not very useful in evaluating toxicological risks to aquatic biota. For that reason, Stantec developed a model that simultaneously evaluates the likely fate and co-toxicity of toxicologically relevant hydrocarbon compounds and fractions in water following an oil spill in a marine environment. Compounds currently considered in the model include polycyclic aromatic hydrocarbons, volatile organic compounds, BTEX compounds, (benzene, toluene, ethylbenzene, xylenes) and the Canada-Wide Standard hydrocarbon fractions. The fate of these hydrocarbons in the marine environment was simulated using a mass-balance compartment approach in which specific states of the oil and relevant environmental media were considered. At each time step following the hydrocarbon release, the model updated physical properties such as the density and viscosity of the spilled mixtures. When predicting the fate of the mixture, environmental conditions such as wind speed and wave height were taken into account to determine whether droplets of the spilled product remained entrained in the water column or if they resurfaced and possibly emulsified. Two hypothetical spill scenarios were investigated based on assumed spill volumes, assumed product compositions representing a distilled product and crude oil, and assumed environmental and meteorological conditions. The key outputs of the model were the dissolved concentrations of toxicologically relevant hydrocarbon compounds and fractions in the water

  8. Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Henriksen, Kaj; Mortensen, Lars

    2010-01-01

    in a deep and highly layered vadose zone contaminated with petroleum hydrocarbons. Soil slurry experiments on benzene biodegradation were used for determining the relative potential for hydrocarbon biodegradation in 100 soil samples collected from 2-16 m below ground surface. Regardless of nutrient...... in the deep vadose zone. As a result, management of petroleum hydrocarbon spill sites will benefit from site-specific conceptual models in which the vadose zone is divided into geological compartments with different biophysical potential for biodegradation and bioremediation....

  9. On the efficiency of the hybrid and the exact second-order sampling formulations of the EnKF: a reality-inspired 3-D test case for estimating biodegradation rates of chlorinated hydrocarbons at the port of Rotterdam

    Directory of Open Access Journals (Sweden)

    M. E. Gharamti

    2016-11-01

    Full Text Available This study considers the assimilation problem of subsurface contaminants at the port of Rotterdam in the Netherlands. It involves the estimation of solute concentrations and biodegradation rates of four different chlorinated solvents. We focus on assessing the efficiency of an adaptive hybrid ensemble Kalman filter and optimal interpolation (EnKF-OI and the exact second-order sampling formulation (EnKFESOS for mitigating the undersampling of the estimation and observation errors covariances, respectively. A multi-dimensional and multi-species reactive transport model is coupled to simulate the migration of contaminants within a Pleistocene aquifer layer located around 25 m below mean sea level. The biodegradation chain of chlorinated hydrocarbons starting from tetrachloroethene and ending with vinyl chloride is modeled under anaerobic environmental conditions for 5 decades. Yearly pseudo-concentration data are used to condition the forecast concentration and degradation rates in the presence of model and observational errors. Assimilation results demonstrate the robustness of the hybrid EnKF-OI, for accurately calibrating the uncertain biodegradation rates. When implemented serially, the adaptive hybrid EnKF-OI scheme efficiently adjusts the weights of the involved covariances for each individual measurement. The EnKFESOS is shown to maintain the parameter ensemble spread much better leading to more robust estimates of the states and parameters. On average, a well tuned hybrid EnKF-OI and the EnKFESOS respectively suggest around 48 and 21 % improved concentration estimates, as well as around 70 and 23 % improved anaerobic degradation rates, over the standard EnKF. Incorporating large uncertainties in the flow model degrades the accuracy of the estimates of all schemes. Given that the performance of the hybrid EnKF-OI depends on the quality of the background statistics, satisfactory results were obtained only when the uncertainty imposed on

  10. On the efficiency of the hybrid and the exact second-order sampling formulations of the EnKF: a reality-inspired 3-D test case for estimating biodegradation rates of chlorinated hydrocarbons at the port of Rotterdam

    KAUST Repository

    El Gharamti, Mohamad

    2016-11-15

    This study considers the assimilation problem of subsurface contaminants at the port of Rotterdam in the Netherlands. It involves the estimation of solute concentrations and biodegradation rates of four different chlorinated solvents. We focus on assessing the efficiency of an adaptive hybrid ensemble Kalman filter and optimal interpolation (EnKF-OI) and the exact second-order sampling formulation (EnKFESOS) for mitigating the undersampling of the estimation and observation errors covariances, respectively. A multi-dimensional and multi-species reactive transport model is coupled to simulate the migration of contaminants within a Pleistocene aquifer layer located around 25 m below mean sea level. The biodegradation chain of chlorinated hydrocarbons starting from tetrachloroethene and ending with vinyl chloride is modeled under anaerobic environmental conditions for 5 decades. Yearly pseudo-concentration data are used to condition the forecast concentration and degradation rates in the presence of model and observational errors. Assimilation results demonstrate the robustness of the hybrid EnKF-OI, for accurately calibrating the uncertain biodegradation rates. When implemented serially, the adaptive hybrid EnKF-OI scheme efficiently adjusts the weights of the involved covariances for each individual measurement. The EnKFESOS is shown to maintain the parameter ensemble spread much better leading to more robust estimates of the states and parameters. On average, a well tuned hybrid EnKF-OI and the EnKFESOS respectively suggest around 48 and 21 % improved concentration estimates, as well as around 70 and 23 % improved anaerobic degradation rates, over the standard EnKF. Incorporating large uncertainties in the flow model degrades the accuracy of the estimates of all schemes. Given that the performance of the hybrid EnKF-OI depends on the quality of the background statistics, satisfactory results were obtained only when the uncertainty imposed on the background

  11. Biodegradation testing of hydrophobic chemicals in mixtures at low concentrations – covering the chemical space of petroleum hydrocarbons

    DEFF Research Database (Denmark)

    Birch, Heidi; Hammershøj, Rikke Høst; Mayer, Philipp

    Petroleum products are complex mixtures of varying composition containing thousands of hydrocarbons each with their own physicochemical properties and degradation kinetics. One approach for risk assessment of these products is therefore to group the hydrocarbons by carbon number and chemical class...

  12. Kinetic Modeling of Dye Effluent Biodegradation by Pseudomonas Stutzeri

    Directory of Open Access Journals (Sweden)

    N. Rajamohan

    2013-04-01

    Full Text Available Dye industry waste water is difficult to treat because of the presence of dyes with complex aromatic structure. In this research study, the biodegradation studies of dye effluent were performed utilizing Pseudomonas stutzeri in a controlled laboratory environment under anoxic conditions. The effects of operational parameters like initial pH of the effluent and initial Chemical Oxygen Demand (COD of the effluent on percentage COD removal were studied. A biokinetic model is established giving the dependence of percentage COD removal on biomass concentration and initial COD of the effluent. The biokinetics of the COD removal was found to be first order with respect to both the microbial concentration and initial COD of the effluent. The optimal pH for better bacterial degradation was found to be 8.The specific degradation rate was found to be 0.1417 l/g Dry Cell Mass (DCM h, at 320 C.

  13. HYDROCARBON SPILL SCREENING MODEL (HSSM) VOLUME 1: USER'S GUIDE

    Science.gov (United States)

    This users guide describes the Hydrocarbon Spill Screening Model (HSSM). The model is intended for simulation of subsurface releases of light nonaqueous phase liquids (LNAPLs). The model consists of separate modules for LNAPL flow through the vadose zone, spreading in the capil...

  14. Hydrocarbon degradation potentials of bacteria isolated from spent ...

    African Journals Online (AJOL)

    This study has shown that resident bacteria strains in lubricating oil contaminated soils have potential application in the bioremediation of oil polluted sites and enhance the possibility of developing models and strategies for removing hydrocarbon pollutants from the environment. Keywords: Biodegradation, hydrocarbon ...

  15. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.

    Science.gov (United States)

    Simsek, Halis

    2016-11-01

    Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON.

  16. Modeling of Antenna for Deep Target Hydrocarbon Exploration

    Directory of Open Access Journals (Sweden)

    Nadeem Nasir

    2017-11-01

    Full Text Available Nowadays control source electromagnetic method is used for offshore hydrocarbon exploration. Hydrocarbon detection in sea bed logging (SBL is a very challenging task for deep target hydrocarbon reservoir. Response of electromagnetic (EM field from marine environment is very low and it is very difficult to predict deep target reservoir below 2km from the sea floor. This work premise deals with modeling of new antenna for deep water deep target hydrocarbon exploration. Conventional and new EM antennas at 0.125Hz frequency are used in modeling for the detection of deep target hydrocarbon  reservoir.  The  proposed  area  of  the  seabed model   (40km ´ 40km   was   simulated   by using CST (computer simulation technology EM studio based on Finite Integration Method (FIM. Electromagnetic field components were compared at 500m target depth and it was concluded that Ex and Hz components shows better resistivity contrast. Comparison of conventional and new antenna for different target  depths  was  done in  our  proposed  model.  From  the results, it was observed that conventional antenna at 0.125Hz shows 70% ,86% resistivity contrast at target depth of 1000m where   as   new   antenna   showed   329%, 355%   resistivity contrast at the same target depth for Ex and Hz field respectively.  It  was  also  investigated  that  at  frequency of0.125Hz, new antenna gave 46% better delineation of hydrocarbon at 4000m target depth. This is due to focusing of electromagnetic waves by using new antenna. New antenna design gave 125% more extra depth than straight antenna for deep target hydrocarbon detection. Numerical modeling for straight  and  new antenna  was also done to know general equation for electromagnetic field behavior with target depth. From this numerical model it was speculated that this new antenna can detect up to 4.5 km target depth. This new EM antenna may open new frontiers for oil and gas

  17. Mathematical modelling on transport of petroleum hydrocarbons in ...

    Indian Academy of Sciences (India)

    However, such studies in saturated fractured rocks are highly complex and limited, and hence, deserve a special attention as the fate and transport of the petroleum hydrocarbons are not uncommon in saturated fractured rocks. In this context, an improved mathematical model has been proposed that will better describe the ...

  18. Characterization of oily sludge from a refinery and biodegradability assessment using various hydrocarbon degrading strains and reconstituted consortia.

    Science.gov (United States)

    Jasmine, Jublee; Mukherji, Suparna

    2015-02-01

    Oily sludge obtained from a refinery in India contained 10-11% oil associated with fine particulates. Along with Fe, Ca and Mg various toxic elements were associated with the sludge solids (Pb, Mn, Cu, Zn, As, Bi, Cd, Cr, Co, Ni and V). The oil contained 41-56% asphaltenes and the maltenes comprised of 49 ± 4%, 42 ± 2% and 4 ± 2%, aliphatic, aromatic and polar fractions, respectively. Biodegradation studies with the maltene fraction of oil provided as sole substrate revealed higher degradation by various 3-5 membered reconstituted consortia compared to pure bacterial strains and up to 42 ± 8% degradation could be achieved over 30 days. In contrast, over the same period up to 71.5 ± 2% oil degradation could be achieved using dried oily sludge (15% w/v) as sole substrate. Significant biodegradation observed in the un-inoculated controls indicated the presence of indigenous microorganisms in oily sludge. However, large variability in oil degradation was observed in the un-inoculated controls. Greater biodegradation of the maltene fraction led to significant enrichment of asphaltenes in residual oil associated with the sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Efficiency of Indigenous Filamentous Fungi for Biodegradation of Petroleum Hydrocarbons in Medium and Soil: Laboratory Study from Ecuador.

    Science.gov (United States)

    Maddela, N R; Scalvenzi, L; Pérez, M; Montero, C; Gooty, J M

    2015-09-01

    The competence of two fungal isolates for degrading petroleum hydrocarbons was evaluated. The filamentous fungi were isolated from a crude oil-contaminated soil in northeastern Ecuador, and were 99 %-100 % similar in 18S rDNA sequence to the genus Geomyces. Their efficiencies of degradation were tested in vitro for 30 days, using medium and soil microcosm. Residual hydrocarbons were tracked by gas liquid chromatography with a flame ionization detector. The maximum removal percentages of total petroleum hydrocarbons were 77.3 % and 79.9 % for experiments in the medium and soil microcosm, respectively. The percent germination of cow pea (Vigna unguiculata) seeds was increased from 20 % to 100 % upon bioremediation. Isolates sporulated optimally on minimal salts agar medium at pH 5, 25°C temperature, 1 %-1.5 % substrate (crude oil) and 4-6 g L(-1) N-P-K. These findings suggest that these fungal isolates are potential degraders for bioremediation in crude oil-contaminated areas in Ecuador.

  20. Mathematical modelling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.M.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and hence, the mobility of actinides in subsurface environments. We combined mathematical modelling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bioutilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modelling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems. (orig.)

  1. Mathematical modeling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems

  2. MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS

    International Nuclear Information System (INIS)

    Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare; Zonca, Alberto

    2013-01-01

    We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproduce the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 × 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.

  3. Monitoring the biodegradation of polycyclic aromatic hydrocarbons in a co-contaminated soil using stable isotope labeling

    Science.gov (United States)

    Wawra, Anna; Friesl-Hanl, Wolfgang; Watzinger, Andrea; Soja, Gerhard; Puschenreiter, Markus

    2016-04-01

    Conventional remediation techniques like "dig and dump" are costly and limited in scale. Plant- and microbe-based alternatives, e.g. phytoremediation options, offer a cheap and environmentally friendly approach that can be applied on larger areas. However, the application of phytoremediation techniques to co-contaminated sites may be hindered due to a potential inhibition of biodegradation processes by the presence of heavy metals in soil. Therefore, the objective of this study is to test the hypothesis that the degradation of organic pollutants can be enhanced by immobilising potentially toxic heavy metals. This study aims to identify the influence of heavy metal immobilisation on the degradation of organic pollutants, and to determine chemical, physical and biological measures further accelerating these processes. The influence of heavy metals on organic pollutant degradation dynamics is assessed using 13C-phospholipid fatty acid analysis (13C-PLFA). Application of 13C-labeled phenanthrene allows the identification of microbial groups responsible for the degradation process. For metal immobilisation and enhanced biodegradation, distinct mineral and organic soil amendments (iron oxides, gravel sludge, biochar) are deployed, partly in combination with fast-growing and pollution-tolerant woody plants (willow, black locust and alder). Results of an incubation batch experiment show a fast degradation of the phenanthrene label within the first two weeks by various microbial groups (gram negative bacteria as indicated by the cy17:0 peak) resulting in a decrease by up to 80% of the total PAH concentration (Σ 16 EPA PAHs) measured in soil. A similar trend was observed in the greenhouse pot experiment, whereby heavy metal accumulation in the woody plants growing on the co-contaminated soil significantly varied with plant species (willow > black locust, alder).

  4. Biodegradation of polycyclic aromatic hydrocarbons, selection and dynamics of bacterial populations in the rhizosphere in relation with the distance to roots; Biodegradation des Hydrocarbures Aromatiques Polycycliques, selection et dynamique des populations bacteriennes dans la rhizosphere en fonction de la distance aux racines

    Energy Technology Data Exchange (ETDEWEB)

    Corgie, St.

    2004-03-01

    The biodegradation of Polycyclic Aromatic Hydrocarbons (PAH) is mainly performed by microorganisms that can use these compounds as sole source of carbon and energy. Such capacity has been amply studied to use and optimise microbial activity for remediation of contaminated soils. The use of plants has been suggested to increase and accelerate biodegradation rate by improving microbial activity. However, biodegradation mechanisms still remain poorly described as the interactions between plant, pollutant and rhizosphere microflora are often complex. A simplified compartmented device was developed to study rhizospheric processes, especially biodegradation of PAH, as a function of distance to roots, where root exudates and/or PAH were the only carbon sources for microbial growth. The development and use of bio-molecular techniques (nucleic acid isolation, PCR, RT-PCR, TGGE, hybridization with a degradation gene specific probe) permitted to follow the structure of bacterial communities. Gradients of phenanthrene biodegradation were observed as a function of distance to roots, in parallel to spatial and temporal variations in bacterial community structure. These bacterial communities, as well as PAH biodegradation rate, also depended on the aromaticity of PAH and were modified by the symbiosis between plant and an arbuscular mycorrhizal fungus. (author)

  5. Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers

    Directory of Open Access Journals (Sweden)

    Khalil Al Handawi

    2017-09-01

    Full Text Available Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber’s modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature.

  6. Enhanced natural attenuation of heterocyclic hydrocarbons: biodegradation under anaerobic conditions and in the presence of H2O2

    International Nuclear Information System (INIS)

    Sagner, A.; Tiehm, A.

    2005-01-01

    Heterocyclic aromatic compounds containing nitrogen, sulfur, or oxygen (NSO-HET) are highly mobile due to their high water solubility and low anaerobic degradation rates. In addition some of them are highly toxic and also carcinogenic. However, this class of pollutants is not included in standard risk assessment protocols. In our study, NSO-HET were analyzed in tar oil polluted groundwater plumes originating from (i) a small landfill and (ii) an abandoned manufactured gas plant site. A similar composition of the NSO-HET benzofuran, dibenzo-furan, benzo-thiophene, dibenzo-thiophene, quinoline, and carbazole was found at the two sites. In the polluted groundwater plume, the two ring NSO-HET decreased more rapidly as compared to the three ring NSO-HET. In anaerobic microcosm studies, only benzofuran was degraded under sulfate reducing conditions. In the presence of Fe(III) or nitrate, benzo-thiophene and dibenzo-thiophene were degraded within 400 days. Under aerobic conditions, the degradation of all NSO-HET was observed. In conclusion, the addition of oxygen or hydrogen peroxide is a suitable measure to stimulate biodegradation of hetero-aromatic compounds. (authors)

  7. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation

    DEFF Research Database (Denmark)

    Birch, Heidi; Hammershøj, Rikke Høst; Comber, Mike

    2017-01-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby...

  8. Organic polyaromatic hydrocarbons as sensitizing model dyes for semiconductor nanoparticles.

    Science.gov (United States)

    Zhang, Yongyi; Galoppini, Elena

    2010-04-26

    The study of interfacial charge-transfer processes (sensitization) of a dye bound to large-bandgap nanostructured metal oxide semiconductors, including TiO(2), ZnO, and SnO(2), is continuing to attract interest in various areas of renewable energy, especially for the development of dye-sensitized solar cells (DSSCs). The scope of this Review is to describe how selected model sensitizers prepared from organic polyaromatic hydrocarbons have been used over the past 15 years to elucidate, through a variety of techniques, fundamental aspects of heterogeneous charge transfer at the surface of a semiconductor. This Review does not focus on the most recent or efficient dyes, but rather on how model dyes prepared from aromatic hydrocarbons have been used, over time, in key fundamental studies of heterogeneous charge transfer. In particular, we describe model chromophores prepared from anthracene, pyrene, perylene, and azulene. As the level of complexity of the model dye-bridge-anchor group compounds has increased, the understanding of some aspects of very complex charge transfer events has improved. The knowledge acquired from the study of the described model dyes is of importance not only for DSSC development but also to other fields of science for which electronic processes at the molecule/semiconductor interface are relevant.

  9. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan.

    Science.gov (United States)

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Bacosa, Hernando Pactao, E-mail: hernando.bacosa@utexas.edu [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373 (United States); Inoue, Chihiro [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-02-11

    Highlights: • Most bacterial consortia from tsunami sediment degraded PAH mixture and pyrene. • The consortia were dominated by known and unknown PAHs-degrading bacteria. • Dokdonella clone is a potential new species and PAH degrader from tsunami sediment. • PAH-RHDα is better than nidA gene for estimating pyrene-degraders in the consortia. • First report on the PAH degradation and PAH-degrading bacteria from tsunami sediment. - Abstract: The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.

  11. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan

    International Nuclear Information System (INIS)

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    Highlights: • Most bacterial consortia from tsunami sediment degraded PAH mixture and pyrene. • The consortia were dominated by known and unknown PAHs-degrading bacteria. • Dokdonella clone is a potential new species and PAH degrader from tsunami sediment. • PAH-RHDα is better than nidA gene for estimating pyrene-degraders in the consortia. • First report on the PAH degradation and PAH-degrading bacteria from tsunami sediment. - Abstract: The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils

  12. Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Deary, Michael E., E-mail: michael.deary@northumbria.ac.uk [Department of Geography,Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Ekumankama, Chinedu C. [Department of Geography,Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Cummings, Stephen P. [Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom)

    2016-04-15

    Highlights: • 40 week study of the biodegradation of 16 US EPA priority PAHs in a soil with high organic matter. • Effects of cadmium, lead and mercury co-contaminants studied. • Novel kinetic approach developed. • Biodegradation of lower molecular weight PAHs relatively unaffected by Cd or Pb. • Soil organic matter plays a key role in the PAH removal mechanism. - Abstract: We report on the results of a 40 week study in which the biodegradation of 16 US EPA polycyclic aromatic hydrocarbons (PAHs) was followed in microcosms containing soil of high organic carbon content (11%) in the presence and absence of lead and cadmium co-contaminants. The total spiked PAH concentration was 2166 mg/kg. Mercury amendment was also made to give an abiotic control. A novel kinetic model has been developed to explain the observed biphasic nature of PAH degradation. The model assumes that PAHs are distributed across soil phases of varying degrees of bioaccessibility. The results of the analysis suggest that overall percentage PAH loss is dependent on the respective rates at which the PAHs (a) are biodegraded by soil microorganisms in pore water and bioaccessible soil phases and (b) migrate from bioaccessible to non-bioaccessible soil phases. In addition, migration of PAHs to non-bioaccessible and non-Soxhlet-extractable soil phases associated with the humin pores gives rise to an apparent removal process. The presence of metal co-contaminants shows a concentration dependent inhibition of the biological degradation processes that results in a reduction in overall degradation. Lead appears to have a marginally greater inhibitory effect than cadmium.

  13. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  14. Prioritization of in silico models and molecular descriptors for the assessment of ready biodegradability

    International Nuclear Information System (INIS)

    Fernández, Alberto; Rallo, Robert; Giralt, Francesc

    2015-01-01

    Ready biodegradability is a key property for evaluating the long-term effects of chemicals on the environment and human health. As such, it is used as a screening test for the assessment of persistent, bioaccumulative and toxic substances. Regulators encourage the use of non-testing methods, such as in silico models, to save money and time. A dataset of 757 chemicals was collected to assess the performance of four freely available in silico models that predict ready biodegradability. They were applied to develop a new consensus method that prioritizes the use of each individual model according to its performance on chemical subsets driven by the presence or absence of different molecular descriptors. This consensus method was capable of almost eliminating unpredictable chemicals, while the performance of combined models was substantially improved with respect to that of the individual models. - Highlights: • Consensus method to predict ready biodegradability by prioritizing multiple QSARs. • Consensus reduced the amount of unpredictable chemicals to less than 2%. • Performance increased with the number of QSAR models considered. • The absence of 2D atom pairs contributed significantly to the consensus model.

  15. First principles modeling of hydrocarbons conversion in non-equilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deminsky, M.A.; Strelkova, M.I.; Durov, S.G.; Jivotov, V.K.; Rusanov, V.D.; Potapkin, B.V. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2001-07-01

    Theoretical justification of catalytic activity of non-equilibrium plasma in hydrocarbons conversion process is presented in this paper. The detailed model of highest hydrocarbons conversion includes the gas-phase reactions, chemistry of the growth of polycyclic aromatic hydrocarbons (PAHs), precursor of soot particles formation, neutral, charged clusters and soot particle formation, ion-molecular gas-phase and heterogeneous chemistry. The results of theoretical analysis are compared with experimental results. (authors)

  16. Extended activated sludge model no. 1 (ASM1 for simulating biodegradation process using bacterial technology

    Directory of Open Access Journals (Sweden)

    Ya-jing Song

    2012-09-01

    Full Text Available Phosphorus is one of the most important nutrients required to support various kinds of biodegradation processes. As this particular nutrient is not included in the activated sludge model no. 1 (ASM1, this study extended this model in order to determine the fate of phosphorus during the biodegradation processes. When some of the kinetics parameters are modified using observed data from the restoration project of the Xuxi River in Wuxi City, China, from August 25 to 31 in 2009, the extended model shows excellent results. In order to obtain optimum values of coefficients of nitrogen and phosphorus, the mass fraction method was used to ensure that the final results were reasonable and practically relevant. The temporal distribution of the data calculated with the extended ASM1 approximates that of the observed data.

  17. Modelling as a tool when interpreting biodegradation of micro pollutants in activated sludge systems

    DEFF Research Database (Denmark)

    Press-Kristensen, Kåre; Lindblom, Erik Ulfson; Henze, Mogens

    2007-01-01

    The aims of the present work were to improve the biodegradation of the endocrine disrupting micro pollutant, bisphenol A (BPA), used as model compound in an activated sludge system and to underline the importance of modelling the system. Previous results have shown that BPA mainly is degraded under...... aerobic conditions. Therefore the aerobic phase time in the BioDenitro process of the activated sludge system was increased from 50% to 70%. The hypothesis was that this would improve the biodegradation of BPA. Both the influent and the effluent concentrations of BPA in the experiment dropped...... significantly after increasing the aerobic time. From simulations with a growth-based biological/physical/chemical process model it was concluded that although the simulated effluent concentration of BPA was independent of the influent concentration at steady-state, the observed drop in effluent concentrations...

  18. Microbial Degradation of Polycyclic Aromatic Hydrocarbons and Characterization of Bacteria

    Science.gov (United States)

    Tikilili, P. V.; Chirwa, E. M. N.

    2010-01-01

    Biodegradation of polycyclic aromatic hydrocarbons was studied. Naphthalene was used as a model compound to represent these compounds. Low initial concentrations of naphthalene in a range of 30-60 mg/L were completely degraded after incubation for 15 hrs by consortia from a landfill soil while consortia from minewater took more that 29 hrs to reach complete degradation.

  19. Modeling Carbon and Hydrocarbon Molecular Structures in EZTB

    Science.gov (United States)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that models the electronic and mechanical aspects of hydrocarbon molecules and carbon molecular structures on the basis of first principles has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure, which is summarized briefly in the immediately preceding article. Of particular interest, this module can model carbon crystals and nanotubes characterized by various coordinates and containing defects, without need to adjust parameters of the physical model. The module has been used to study the changes in electronic properties of carbon nanotubes, caused by bending of the nanotubes, for potential utility as the basis of a nonvolatile, electriccharge- free memory devices. For example, in one application of the module, it was found that an initially 50-nmlong carbon, (10,10)-chirality nanotube, which is a metallic conductor when straight, becomes a semiconductor with an energy gap of .3 meV when bent to a lateral displacement of 4 nm at the middle.

  20. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.

    Science.gov (United States)

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M

    2016-08-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed. Copyright © 2016. Published by Elsevier Ltd.

  1. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system

    DEFF Research Database (Denmark)

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M.

    2016-01-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse...... experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA......), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met.Obtained degradation kinetics are in the order, BPA

  2. Assessment of models for anaerobic biodegradation of a model bioplastic: Poly(hydroxybutyrate-co-hydroxyvalerate).

    Science.gov (United States)

    Ryan, Cecily A; Billington, Sarah L; Criddle, Craig S

    2017-03-01

    Kinetic models of anaerobic digestion (AD) are widely applied to soluble and particulate substrates, but have not been systematically evaluated for bioplastics. Here, five models are evaluated to determine their suitability for modeling of anaerobic biodegradation of the bioplastic poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV): (1) first-order kinetics with and without a lag phase, (2) two-step first-order, (3) Monod (4) Contois, and (5) Gompertz. Three models that couple biomass growth with substrate hydrolysis (Monod, Contois, and Gompertz) gave the best overall fits for the data (R 2 >0.98), with reasonable estimates of ultimate CH 4 production. The particle size limits of these models were then evaluated. Below a particle size of 0.8mm, rates of hydrolysis and acetogenesis exceeded rates of methanogenesis with accumulation of intermediates leading to a temporary inhibition of CH 4 production. Based on model fit and simplicity, the Gompertz model is recommended for applications in which particle size is greater than 0.8mm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Characterization of arene di-oxygenases involved in polycyclic aromatic hydrocarbons biodegradation in Mycobacterium sp. 6PY1; Caracterisation d'arene dioxygenases impliquees dans la biodegradation des hydrocarbures aromatiques polycycliques chez Mycobacterium sp. 6PY1

    Energy Technology Data Exchange (ETDEWEB)

    Kuony, S.

    2005-06-15

    This thesis deals with the bacterial biodegradation of pollutants called polycyclic aromatic hydrocarbons (PAHs). The bacterium Mycobacterium sp. 6PY1 was isolated from a polluted soil for its ability to use pyrene, a 4-ring PAH, as sole source of carbon and energy. To learn about the pyrene metabolic pathway, the identification of the enzymes involved in this process has been undertaken using a proteomic approach. This approach revealed the occurrence of two ring-hydroxylating di-oxygenases in strain 6PY1, which could catalyze the initial attack of pyrene. The goal of this study was to clone the genes encoding the di-oxygenases identified in Mycobacterium sp. 6PY1, over-express these genes in an heterologous system in order to facilitate the purification of the corresponding enzymes, and determine the biochemical and catalytic properties of these enzymes. The pdoA1B1 genes encoding the terminal component of a di-oxygenase were cloned and over-expressed in Escherichia coli. The catalytic properties of this enzyme, called Pdo1, were determined in vivo by measuring the oxidation products of 2- to 4-ring PAHs by gas chromatography coupled to mass spectrometry (GC-MS). Analysis of the selectivity of the enzyme, as determined using GC-MS, showed that Pdo1 preferentially oxidized 3- or 4-ring PAHs, including phenanthrene and pyrene, but was inactive on di-aromatic compounds such as naphthalene and biphenyl. Pdo1 was unstable and was therefore purified in inactive form. The genes encoding a second di-oxygenase component were found in a locus containing two other catabolic genes. The pdoA2B2 genes encoded an enzyme called Pdo2 showing a narrow specificity towards 2- to 3-ring PAHs, and a high preference for phenanthrene. Pdo2 is an a3{beta}3 hexamer, containing [2Fe-2S] Rieske clusters which confer it a characteristic absorbance spectrum. A third set of genes possibly encoding another di-oxygenase was discovered in the genome of Mycobacterium sp. 6PY1. This set is closely

  4. Damage-induced hydrolyses modelling of biodegradable polymers for tendons and ligaments repair.

    Science.gov (United States)

    Vieira, André C; Guedes, Rui M; Tita, Volnei

    2015-09-18

    The use of biodegradable synthetic grafts to repair injured ligaments may overcome the disadvantages of other solutions. Apart from biological compatibility, these devices shall also be functionally compatible and temporarily displayed, during the healing process, adequate mechanical support. Laxity of these devices is an important concern. This can cause failure since it may result in joint instability. Laxity results from a progressive accumulation of plastic strain during the cyclic loading. The functional compatibility of a biodegradable synthetic graft and, therefore, the global mechanical properties of the scaffold during degradation, can be optimised using computer-aiding and numerical tools. Therefore, in this work, the ability of numerical tools to predict the mechanical behaviour of the device during its degradation is discussed. Computational approaches based on elastoplastic and viscoplastic constitutive models are also presented. These models enable to simulate the plastic strain accumulation. These computational approaches, where the material model parameters depend on the hydrolytic degradation damage, are calibrated using experimental data measured from biodegradable suture fibres at different degradation steps. Due to durability requirements the selected materials are polydioxone (PDO) and polylactic acid and poly-caprolactone blend (PLA-PCL). Computational approaches investigated are able to predict well the experimental results for both materials, in full strain range until rupture and for different degradation steps. These approaches can be further used in more complex fibrous structures, to predict its global mechanical behaviour during degradation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A model for hydrolytic degradation and erosion of biodegradable polymers.

    Science.gov (United States)

    Sevim, Kevser; Pan, Jingzhe

    2018-01-15

    For aliphatic polyesters such as PLAs and PGAs, there is a strong interplay between the hydrolytic degradation and erosion - degradation leads to a critically low molecular weight at which erosion starts. This paper considers the underlying physical and chemical processes of hydrolytic degradation and erosion. Several kinetic mechanisms are incorporated into a mathematical model in an attempt to explain different behaviours of mass loss observed in experiments. In the combined model, autocatalytic hydrolysis, oligomer production and their diffusion are considered together with surface and interior erosion using a set of differential equations and Monte Carlo technique. Oligomer and drug diffusion are modelled using Fick's law with the diffusion coefficients dependent on porosity. The porosity is due to the formation of cavities which are a result of polymer erosion. The model can follow mass loss and drug release up to 100%, which cannot be explained using a simple reaction-diffusion. The model is applied to two case studies from the literature to demonstrate its validity. The case studies show that a critical molecular weight for the onset of polymer erosion and an incubation period for the polymer dissolution are two critical factors that need to be considered when predicting mass loss and drug release. In order to design bioresorbable implants, it is important to have a mathematical model to predict polymer degradation and corresponding drug release. However, very different behaviours of polymer degradation have been observed and there is no single model that can capture all these behaviours. For the first time, the model presented in this paper is capable of capture all these observed behaviours by switching on and off different underlying mechanisms. Unlike the existing reaction-diffusion models, the model presented here can follow the degradation and drug release all the way to the full disappearance of an implant. Crown Copyright © 2017. Published by

  6. Assessment on activated sludge models for acetate biodegradation under aerobic conditions.

    Science.gov (United States)

    Hoque, M A; Aravinthan, V; Pradhan, N M

    2009-01-01

    A comparison of four different established models along with parameter estimation was carried out in order to explain the aerobic biodegradation of acetate in an activated sludge system. These models were investigated using experimental OUR data from batch experiments of three different concentration studies. Model calibration reveals that ASM1 model is not suitable to explain the observed experimental OUR during the famine phase implying storage compounds could play an important role during that stage. Besides, the model corresponds to the accumulation concept and is not well fitted for all concentrations studies though it includes the storage phenomena. Both the ASM3 model and the model for simultaneous storage and growth on substrate can well describe the acetate biodegradation process, however the OUR data alone is not sufficient to justify the suitability of those models. Simulated profiles using the model outputs demonstrate that storage is overestimated while ammonia degradation is underestimated in ASM3 compared to simultaneous growth and storage model. The current study also gives reasonable outcomes related to parameter estimation as compared with previous study which is statistically interpreted in this paper.

  7. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model

    Science.gov (United States)

    Hu, Yu-Lan; Qi, Wang; Han, Feng; Shao, Jian-Zhong; Gao, Jian-Qing

    2011-01-01

    Background Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier. Methods Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control. Results Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles. Conclusion Our results add new insights into the potential toxicity of nanoparticles produced by biodegradable materials, and may help us to understand better the nanotoxicity of drug delivery carriers. PMID:22267920

  8. Enhanced bioremediation of nutrient-amended, petroleum hydrocarbon-contaminated soils over a cold-climate winter: The rate and extent of hydrocarbon biodegradation and microbial response in a pilot-scale biopile subjected to natural seasonal freeze-thaw temperatures.

    Science.gov (United States)

    Kim, Jihun; Lee, Aslan Hwanhwi; Chang, Wonjae

    2018-01-15

    A pilot-scale biopile field experiment for nutrient-amended petroleum-contaminated fine-grained soils was performed over the winter at a cold-climate site. The rate and extent of hydrocarbon biodegradation and microbial responses were determined and corresponded to the on-site soil phase changes (from unfrozen to partially frozen, deeply frozen, and thawed) associated with natural seasonal freeze-thaw conditions. Treated and untreated biopiles were constructed (~3500kg each) on an open outdoor surface at a remediation facility in Saskatoon, Canada. The treated biopile received N-P-K-based nutrient and humate amendments before seasonal freezing. Real-time field monitoring indicated significant unfrozen water content in the treated and untreated biopiles throughout the freezing period, from the middle of November to early March. Unfrozen water was slightly more available in the treated biopile due to the aqueous nutrient supply. Soil CO 2 production and O 2 consumption in the treated biopile were generally greater than in the untreated biopile. Total removal percentages for F2 (>C10-C16), F3 (>C16-C34), and total petroleum hydrocarbons (TPH) in the treated biopile were 57, 58, and 58%, respectively, of which 26, 39, and 33% were removed during seasonal freezing and early thawing between November to early March. F3 degradation largely occurred during freezing while F2 hydrocarbons were primarily removed during thawing. Biomarker-based hydrocarbon analyses confirmed enhanced biodegradation in the treated biopile during freezing. The soil treatment increased the first-order rate constants for F2, F3, and TPH degradation by a factor of 2 to 7 compared to the untreated biopile. Shifts in bacterial community appeared in both biopiles as the biopile soils seasonally froze and thawed. Increased alkB1 gene copy numbers in the treated biopile, especially in the partially thawed phase during early thawing, suggest extended hydrocarbon biodegradation to the seasonal freeze

  9. Biodegradation of alpha-pinene in model biofilms in biofilters.

    Science.gov (United States)

    Miller, Martha J; Allen, D Grant

    2005-08-01

    Treatment of air pollutants in a biofilter requires that the compound be effectively transported from the gas phase to the organisms that reside in a biofilm that forms upon a packing material. Models of biofiltration generally treat the biofilm like water by using a Henry's law constant to predict mass transfer rates into the biofilm where degradation occurs and, hence, predict low rates for hydrophobic compounds. However, some compounds that are virtually insoluble in water are also treated unusually well. The objective of this study was to develop a fundamental understanding of the apparent enhanced degradation of hydrophobic pollutants in biofilms. Specifically, the goals of this study were to experimentally determine transport and reaction rates of hydrophobic pollutants in artificial biofilms. We studied the transport and reaction rates of alpha-pinene (as a model hydrophobic pollutant) in a headspace in contact with a well-defined biofilm made up of biomass immobilized in low melting point agarose and found that reaction rates were similar in order of magnitude to biofilter rates. The transport rates through these films once deactivated were found to be the same as through agar (diffusion coefficient between 2.6 and 3.4 x 10(-6) cm2/s). The degradation rates through model biofilms ranged from 2 to 4 x 10(-7) (g/(cm2 min)). A new explanation of high degradation rates was put forth whereby a biologically mediated transformation is taking place in which alpha-pinene is oxidized into a more soluble, less volatile compound that can then penetrate deeper into the biofilm. The formation of this more soluble byproduct was confirmed with batch kinetics experiments using filtered samples, and its proposed identity is cis-2,8-p-menthadien-1-ol, a menthadienol, a novel metabolite of alpha-pinene degradation. A simple conceptual model based on these results is also presented.

  10. Calculating in situ degradation rates of hydrocarbon compounds in deep waters of the Gulf of Mexico.

    Science.gov (United States)

    Thessen, Anne E; North, Elizabeth W

    2017-09-15

    Biodegradation is an important process for hydrocarbon weathering that influences its fate and transport, yet little is known about in situ biodegradation rates of specific hydrocarbon compounds in the deep ocean. Using data collected in the Gulf of Mexico below 700m during and after the Deepwater Horizon oil spill, we calculated first-order degradation rate constants for 49 hydrocarbons and inferred degradation rate constants for an additional 5 data-deficient hydrocarbons. Resulting calculated (not inferred) half-lives of the hydrocarbons ranged from 0.4 to 36.5days. The fastest degrading hydrocarbons were toluene (k=-1.716), methylcyclohexane (k=-1.538), benzene (k=-1.333), and C1-naphthalene (k=-1.305). The slowest degrading hydrocarbons were the large straight-chain alkanes, C-26 through C-33 (k=-0.0494 through k=-0.007). Ratios of C-18 to phytane supported the hypothesis that the primary means of degradation in the subsurface was microbial biodegradation. These degradation rate constants can be used to improve models describing the fate and transport of hydrocarbons in the event of an accidental deep ocean oil spill. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Polycyclic aromatic hydrocarbons - fate and long-range atmospheric transport studied using a global model, EMAC-SVOC

    Science.gov (United States)

    Octaviani, Mega; Tost, Holger; Lammel, Gerhard

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted by incomplete combustion from fossil fuel, vehicles, and biomass burning. They may persist in environmental compartments, pose a health hazard and may bio accumulate along food chains. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model had been used to simulate global tropospheric, stratospheric chemistry and climate. In this study, we improve the model to include simulations of the transport and fate of semi-volatile organic compounds (SVOC). The EMAC-SVOC model takes into account essential environmental processes including gas-particle partitioning, dry and wet deposition, chemical and bio-degradation, and volatilization from sea surface, soils, vegetation, and snow. The model was evaluated against observational data in the Arctic, mid-latitudes, and tropics, and further applied to study total environmental lifetime and long-range transport potential (LRTP) of PAHs. We selected four compounds for study, spanning a wide range of volatility, i.e., phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene. Several LRTP indicators were investigated, including the Arctic contamination potential, meridional spreading, and zonal and meridional fluxes to remote regions.

  12. Near omni-conductors and insulators: Alternant hydrocarbons in the SSP model of ballistic conduction

    OpenAIRE

    Fowler, P.W.; Sciriha, I.; Borg, M.; Seville, V.E.; Pickup, B.T.

    2017-01-01

    Within the source-and-sink-potential model, a complete characterisation is obtained for the conduction behaviour of alternant π-conjugated hydrocarbons (conjugated hydrocarbons without odd cycles). In this model, an omni-conductor has a molecular graph that conducts at the Fermi level irrespective of the choice of connection vertices. Likewise, an omni-insulator is a molecular graph that fails to conduct for any choice of connections. We give a comprehensive classification of possible combina...

  13. Receptor Model Source Apportionment of Nonmethane Hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    V. Mugica

    2002-01-01

    Full Text Available With the purpose of estimating the source contributions of nonmethane hydrocarbons (NMHC to the atmosphere at three different sites in the Mexico City Metropolitan Area, 92 ambient air samples were measured from February 23 to March 22 of 1997. Light- and heavy-duty vehicular profiles were determined to differentiate the NMHC contribution of diesel and gasoline to the atmosphere. Food cooking source profiles were also determined for chemical mass balance receptor model application. Initial source contribution estimates were carried out to determine the adequate combination of source profiles and fitting species. Ambient samples of NMHC were apportioned to motor vehicle exhaust, gasoline vapor, handling and distribution of liquefied petroleum gas (LP gas, asphalt operations, painting operations, landfills, and food cooking. Both gasoline and diesel motor vehicle exhaust were the major NMHC contributors for all sites and times, with a percentage of up to 75%. The average motor vehicle exhaust contributions increased during the day. In contrast, LP gas contribution was higher during the morning than in the afternoon. Apportionment for the most abundant individual NMHC showed that the vehicular source is the major contributor to acetylene, ethylene, pentanes, n-hexane, toluene, and xylenes, while handling and distribution of LP gas was the major source contributor to propane and butanes. Comparison between CMB estimates of NMHC and the emission inventory showed a good agreement for vehicles, handling and distribution of LP gas, and painting operations; nevertheless, emissions from diesel exhaust and asphalt operations showed differences, and the results suggest that these emissions could be underestimated.

  14. Biodegradation of hydrocarbons and biogeochemical sulfur cycling in the salt dome environment: Inferences from sulfur isotope and organic geochemical investigations of the Bahloul Formation at the Bou Grine Zn/Pb ore deposit, Tunisia

    Science.gov (United States)

    Bechtel, A.; Shieh, Y.-N.; Pervaz, M.; Püttmann, W.

    1996-08-01

    Combined organic geochemical and stable isotope (S) analyses of samples from the Cretaceous Bahloul Formation (Tunisia) provide insight to oil accumulation processes, biogeochemical alteration of hydrocarbons, microbial sulfate reduction, and mineral deposition at the flanks of the Triassic Jebel Lorbeus diapir, forming the Bou Grine Zn/Pb deposit. The sulfur isotopic composition of the metal sulfides correlates with the degree of biodegradation of hydrocarbons, with the base-metal content and with the proportion of aromatics in the organic extracts. The δ 34S-values are interpreted to reflect bacterial sulfate reduction in a more or less closed system rather than a thermogenic contribution. The extent of H 2S production by the activity of the sulfate-reducing bacteria probably was limited by the availability of sulfate, which in turn was governed by the permeability of the respective sedimentary sequence and by the distance to the anhydrite cap rock. Evidence is provided that biodegradation of hydrocarbons and microbial sulfate reduction contribute to the formation of the high-grade mineralization inside the Bahloul Formation at the contact with the salt dome cap rock. The metals probably were derived through leaching of deeper sedimentary sequences by hot hypersaline basinal brines, evolved by dissolution of salt at the flanks of the diapirs. These hot metalliferous brines are proposed to migrate up around the diapir, finally mixing with near-surface, sulfate-rich brines in the roof zone. When the fluids came in contact with the organic-rich sediments of the Bahloul Formation, the dissolved sulfate was reduced by the sulfate-reducing bacteria. Hydrocarbons generated or accumulated in the Bahloul Formation were utilized by sulfate reducers. The occurrence of high amounts of native sulfur in high-grade ore samples suggest that the production rate of H 2S by bacterial sulfate reduction exceeded its consumption by metal-sulfide precipitation. The supply of dissolved

  15. Mathematical modelling on transport of petroleum hydrocarbons in ...

    Indian Academy of Sciences (India)

    Petroleum hydrocarbons being one of the most prevalent groundwater contaminants pollute the saturated subsurface system at well sites, service stations, refineries and farm sites, and subsequently cause serious environmental problems due to their widespread use. With reference to the protection of groundwater quality, ...

  16. Biodegradation of petroleum oil by certain bacterial strains

    International Nuclear Information System (INIS)

    Zakaria, A.E.M.

    1998-01-01

    Balaeam base oil was chosen as a model oil in the present study through which some abiotic treatments were implemented aiming at attenuating its naphthenic and aromatic contents; such as the adsorptive technique and the gamma-irradiation technique . In an attempt to apply the biodegrading bacteria as oil pollutant bio indicators upon coastal water samples, a correlation between hydrocarbon concentration and the relative enumeration of the bacterial oil degraders was detected for some litter locations along the mediterranean Sea shore west and east Delta, Suez canal. and suez gulf. 24 petroleum utilizing bacterial isolates were isolated from El-Zayteia port (suez) and identified by morphological, physiological and environmental examination . the biodegradation capacity of the isolates towards the chosen model oil and its separate components was studied in comparison with the standard isolate pseudomonas aeruginosa. Further, the role of the bacterial plasmids taking part in the biodegradation process was investigated as well

  17. MOLECULAR BASIS OF BIODEGRADATION OF CHLOROAROMATIC COMPOUNDS

    Science.gov (United States)

    Chlorinated aromatic hydrocarbons are widely used in industry and agriculture, and comprise the bulk of environmental pollutants. Although simple aromatic compounds are biodegradable by a variety of degradative pathways, their halogenated counterparts are more resistant to bacter...

  18. Evaluation of a New Design of Antireflux-biodegradable Ureteral Stent in Animal Model.

    Science.gov (United States)

    Soria, Federico; Morcillo, Esther; Serrano, Alvaro; Budia, Alberto; Fernández, Inmaculada; Fernández-Aparicio, Tomás; Sanchez-Margallo, Francisco M

    2018-02-19

    To determine the effects in urinary tract of a new antireflux-biodegradable ureteral stent. Thirty six ureters belonging to 24 pigs were used. The study began with endoscopic, nephrosonographic, and fluoroscopic assessments. Three study groups of ureters (n = 12) were then specified. In group I, a biodegradable antireflux ureteral stent (BDG-ARS) was inserted in the right ureter of 12 pigs. Group II comprised the left ureter of the same animals, in which a double-pigtail stent was placed for 6 weeks. Group III ureters, belonging to 12 additional animals, were subjected to a ureteropelvic junction obstruction model that was then treated by endopyelotomy and stenting with BDG-ARS. Follow-ups were performed at 3-6 weeks and at 5 months. None of the ureters receiving the BDG-ARS showed any evidence of vesicoureteral reflux (VUR). BDG-ARS degradation took place in a controlled and predictable fashion from the third to the sixth weeks, and no obstructive fragments appeared. No differences were found between groups I and II regarding passive ureteral dilation, but significant differences were found regarding VUR and ureteral orifice damage. BDG-ARS always maintained distal ureteral peristalsis. BDG-ARS in group III showed a 50% positive urine culture rate and a 16.6% migration rate in both BDG-ARS groups. BDG-ARS avoided VUR and bladder trigone irritation. In addition, this polymer combination and stent-braided design achieved a consistent biodegradation rate with no obstructive fragments and with uniform degradation between the third and the sixth weeks. Consequently, morbidity associated with ureteral stents might be reduced. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model

    Directory of Open Access Journals (Sweden)

    Hu YL

    2011-12-01

    Full Text Available Yu-Lan Hu1, Wang Qi1, Feng Han2, Jian-Zhong Shao3, Jian-Qing Gao11Institute of Pharmaceutics, College of Pharmaceutical Sciences, 2Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, 3College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, People's Republic of ChinaBackground: Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier.Methods: Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control.Results: Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles.Conclusion: Our results add new insights into the potential toxicity of nanoparticles produced by

  20. [Bioremediation of oil-polluted soils: using the [13C]/[12C] ratio to characterize microbial products of oil hydrocarbon biodegradation].

    Science.gov (United States)

    Ziakun, A M; Brodskiĭ, E S; Baskunov, B P; Zakharchenko, V N; Peshenko, V P; Filonov, A E; Vetrova, A A; Ivanova, A A; Boronin, A M

    2014-01-01

    We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.

  1. Discrete fracture modeling of multiphase flow and hydrocarbon production in fractured shale or low permeability reservoirs

    Science.gov (United States)

    Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.

    2016-12-01

    It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated

  2. Fringe-controlled biodegradation under dynamic conditions: Quasi 2-D flow-through experiments and reactive-transport modeling

    Science.gov (United States)

    Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A.

    2015-01-01

    Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling.

  3. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    Science.gov (United States)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  4. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    International Nuclear Information System (INIS)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-01

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction

  5. Sorption kinetics and microbial biodegradation activity of hydrophobic chemicals in sewage sludge: Model and measurements based on free concentrations

    NARCIS (Netherlands)

    Artola-Garicano, E.; Borkent, I.; Damen, K.; Jager, T.; Vaes, W.H.J.

    2003-01-01

    In the current study, a new method is introduced with which the rate-limiting factor of biodegradation processes of hydrophobic chemicals in organic and aqueous systems can be determined. The novelty of this approach lies in the combination of a free concentration-based kinetic model with

  6. Application of Geographic Information System (GIS) to Model the Hydrocarbon Migration: Case Study from North-East Malay Basin, Malaysia

    Science.gov (United States)

    Rudini; Nasir Matori, Abd; Talib, Jasmi Ab; Balogun, Abdul-Lateef

    2018-03-01

    The purpose of this study is to model the migration of hydrocarbon using Geographic Information System (GIS). Understanding hydrocarbon migration is important since it can mean the difference between success and failure in oil and gas exploration project. The hydrocarbon migration modeling using geophysical method is still not accurate due to the limitations of available data. In recent years, GIS has emerged as a powerful tool for subsurface mapping and analysis. Recent studies have been carried out about the abilities of GIS to model hydrocarbon migration. Recent advances in GIS support the establishment and monitoring of prediction hydrocarbon migration. The concept, model, and calculation are based on the current geological situation. The spatial data of hydrocarbon reservoirs is determined by its geometry of lithology and geophysical attributes. Top of Group E horizon of north-east Malay basin was selected as the study area due to the occurrence of hydrocarbon migration. Spatial data and attributes data such as seismic data, wells log data and lithology were acquired and processed. Digital Elevation Model (DEM) was constructed from the selected horizon as a result of seismic interpretation using the Petrel software. Furthermore, DEM was processed in ArcGIS as a base map to shown hydrocarbon migration in north-east Malay Basin. Finally, all the data layers were overlaid to produce a map of hydrocarbon migration. A good data was imported to verify the model is correct.

  7. Application of Geographic Information System (GIS to Model the Hydrocarbon Migration: Case Study from North-East Malay Basin, Malaysia

    Directory of Open Access Journals (Sweden)

    Rudini

    2018-01-01

    Full Text Available The purpose of this study is to model the migration of hydrocarbon using Geographic Information System (GIS. Understanding hydrocarbon migration is important since it can mean the difference between success and failure in oil and gas exploration project. The hydrocarbon migration modeling using geophysical method is still not accurate due to the limitations of available data. In recent years, GIS has emerged as a powerful tool for subsurface mapping and analysis. Recent studies have been carried out about the abilities of GIS to model hydrocarbon migration. Recent advances in GIS support the establishment and monitoring of prediction hydrocarbon migration. The concept, model, and calculation are based on the current geological situation. The spatial data of hydrocarbon reservoirs is determined by its geometry of lithology and geophysical attributes. Top of Group E horizon of north-east Malay basin was selected as the study area due to the occurrence of hydrocarbon migration. Spatial data and attributes data such as seismic data, wells log data and lithology were acquired and processed. Digital Elevation Model (DEM was constructed from the selected horizon as a result of seismic interpretation using the Petrel software. Furthermore, DEM was processed in ArcGIS as a base map to shown hydrocarbon migration in north-east Malay Basin. Finally, all the data layers were overlaid to produce a map of hydrocarbon migration. A good data was imported to verify the model is correct.

  8. Arsenic cycling in hydrocarbon plumes: secondary effects of natural attenuation

    Science.gov (United States)

    Cozzarelli, Isabelle M.; Schreiber, Madeline E.; Erickson, Melinda L.; Ziegler, Brady A.

    2016-01-01

    Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe-hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude-oil-contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe-hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe-hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.

  9. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    Science.gov (United States)

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.

  10. A novel biodegradable pancreatic stent for human pancreatic applications: a preclinical safety study in a large animal model.

    Science.gov (United States)

    Laukkarinen, Johanna; Lämsä, Teemu; Nordback, Isto; Mikkonen, Joonas; Sand, Juhani

    2008-06-01

    Endoscopic stenting is one treatment method for pancreatic strictures or pseudocysts in patients with symptomatic chronic pancreatitis. With a biodegradable stent, the later removal of the stent could be avoided. We investigated the degradation, patency, and toxicity of a novel biodegradable, self-expanding radiopaque polylactide-barium sulfate pancreatic stent in a large animal model. Animal study. Five swine had a biodegradable pancreatic stent placed into the pancreatic duct (PD) and were followed-up for 6 months. Repeated blood tests and radiographs were studied during the follow-up. The animals were euthanized at 6 months, at which time, the PD inner diameter was measured, and histology was analyzed and graded. For comparison, histology from 5 nonstented animals was also analyzed. The stent was correctly inserted into the PD in 4 of 5 animals. All the animals remained healthy, gained weight, and showed no signs of pancreatitis. A radiograph showed that the stent was in its original place in all animals at 1 month but had disappeared in all animals by 3 months. At 6 months, the autopsied pancreatic tissue was soft, and the PD was patent in all of the animals. The PD was slightly dilated at the site of the stent in the head of the pancreas compared with the preoperative diameter (5 mm [range 3-6 mm] vs 2 mm [range 1-3 mm], P parts of the biodegradable pancreatic stent compared with the distal nonexposed parts, or to the samples from the nonstented animals. This novel biodegradable pancreatic stent, studied in these swine, appeared to be safe for use in the PD. These encouraging results warrant further clinical trials with this biodegradable pancreatic stent in pancreatic applications in human beings.

  11. Biodegradable urethral stent in the treatment of post-traumatic urethral strictures in a war wound rabbit urethral model

    International Nuclear Information System (INIS)

    Fu Weijun; Zhang Binghong; Gao Jiangping; Hong Baofa; Zhang Lei; Yang Yong; Meng Bo; Zhu Ning; Cui Fuzhai

    2007-01-01

    To prevent terrorism during anti-terror war, we developed a reproducible animal model for the induction of a urethral stricture in a war wound rabbit, and to evaluate the feasibility and effect of using a biodegradable urethral stent in the prophylaxis and treatment of urethral strictures in a war wound (or traumatic) rabbit urethral model. The urethral stricture rabbit model was successfully performed by a self-control explosion destructor. New biodegradable urethral stents were placed in the urethras of 20 war wound (traumatic) rabbits, but no stent was used in the 8 rabbits which formed the control group. Follow-up investigation included assessment of procedure success, stent changes, urethrascopy and retrograde urethrography, and histological findings were obtained after sacrifice at 4, 6, 8 and 12 weeks after stent placement. The urethral stricture model owing to a war wound (trauma) was tested by tissue reactions and urethroscopy. The length of the urethral strictures was 5-10 mm; the coarctatetion of the urethral lumen was more than 50%. Biodegradable stent placement was technically successful in 20 rabbits. Urethral specimens obtained from the 4 week stent placement group showed diminished inflammatory cell infiltration and decreased thickness of the papillary projections of the epithelium. There was a strong tendency towards regression of the papillary projections and regeneration of urethral mucosa epithelium in the 8 week group. In particular, the injured urethra has recovered completely in the biodegradable stent groups compared with the control group at 12 weeks. The biodegradable urethral stent seems feasible for treating and preventing urethral strictures owing to a war wound (or traumatic) urethra. There are distinct advantages in terms of safe, effective and less-invasive treatment for the reconstruction of post-traumatic urethral strictures

  12. Biodegradable urethral stent in the treatment of post-traumatic urethral strictures in a war wound rabbit urethral model.

    Science.gov (United States)

    Fu, Wei-Jun; Zhang, Bing-Hong; Gao, Jiang-Ping; Hong, Bao-Fa; Zhang, Lei; Yang, Yong; Meng, Bo; Zhu, Ning; Cui, Fu-Zhai

    2007-12-01

    To prevent terrorism during anti-terror war, we developed a reproducible animal model for the induction of a urethral stricture in a war wound rabbit, and to evaluate the feasibility and effect of using a biodegradable urethral stent in the prophylaxis and treatment of urethral strictures in a war wound (or traumatic) rabbit urethral model. The urethral stricture rabbit model was successfully performed by a self-control explosion destructor. New biodegradable urethral stents were placed in the urethras of 20 war wound (traumatic) rabbits, but no stent was used in the 8 rabbits which formed the control group. Follow-up investigation included assessment of procedure success, stent changes, urethrascopy and retrograde urethrography, and histological findings were obtained after sacrifice at 4, 6, 8 and 12 weeks after stent placement. The urethral stricture model owing to a war wound (trauma) was tested by tissue reactions and urethroscopy. The length of the urethral strictures was 5-10 mm; the coarctation of the urethral lumen was more than 50%. Biodegradable stent placement was technically successful in 20 rabbits. Urethral specimens obtained from the 4 week stent placement group showed diminished inflammatory cell infiltration and decreased thickness of the papillary projections of the epithelium. There was a strong tendency towards regression of the papillary projections and regeneration of urethral mucosa epithelium in the 8 week group. In particular, the injured urethra has recovered completely in the biodegradable stent groups compared with the control group at 12 weeks. The biodegradable urethral stent seems feasible for treating and preventing urethral strictures owing to a war wound (or traumatic) urethra. There are distinct advantages in terms of safe, effective and less-invasive treatment for the reconstruction of post-traumatic urethral strictures.

  13. Biodegradable urethral stent in the treatment of post-traumatic urethral strictures in a war wound rabbit urethral model

    Energy Technology Data Exchange (ETDEWEB)

    Fu Weijun [Department of Urology, Chinese People' s Liberation Army General Hospital, Military Postgraduate Medical College, No.28 Fuxing Road, Hai dian District, Beijing 100853 (China); Zhang Binghong [Department of Urology, Chinese People' s Liberation Army General Hospital, Military Postgraduate Medical College, No.28 Fuxing Road, Hai dian District, Beijing 100853 (China); Gao Jiangping [Department of Urology, Chinese People' s Liberation Army General Hospital, Military Postgraduate Medical College, No.28 Fuxing Road, Hai dian District, Beijing 100853 (China); Hong Baofa [Department of Urology, Chinese People' s Liberation Army General Hospital, Military Postgraduate Medical College, No.28 Fuxing Road, Hai dian District, Beijing 100853 (China); Zhang Lei [Department of Urology, Chinese People' s Liberation Army General Hospital, Military Postgraduate Medical College, No.28 Fuxing Road, Hai dian District, Beijing 100853 (China); Yang Yong [Department of Urology, Chinese People' s Liberation Army General Hospital, Military Postgraduate Medical College, No.28 Fuxing Road, Hai dian District, Beijing 100853 (China); Meng Bo [Biomaterials Lab, School of Materials Science and Engineering, Tsinghua University, Beijing (China); Zhu Ning [Biomaterials Lab, School of Materials Science and Engineering, Tsinghua University, Beijing (China); Cui Fuzhai [Biomaterials Lab, School of Materials Science and Engineering, Tsinghua University, Beijing (China)

    2007-12-15

    To prevent terrorism during anti-terror war, we developed a reproducible animal model for the induction of a urethral stricture in a war wound rabbit, and to evaluate the feasibility and effect of using a biodegradable urethral stent in the prophylaxis and treatment of urethral strictures in a war wound (or traumatic) rabbit urethral model. The urethral stricture rabbit model was successfully performed by a self-control explosion destructor. New biodegradable urethral stents were placed in the urethras of 20 war wound (traumatic) rabbits, but no stent was used in the 8 rabbits which formed the control group. Follow-up investigation included assessment of procedure success, stent changes, urethrascopy and retrograde urethrography, and histological findings were obtained after sacrifice at 4, 6, 8 and 12 weeks after stent placement. The urethral stricture model owing to a war wound (trauma) was tested by tissue reactions and urethroscopy. The length of the urethral strictures was 5-10 mm; the coarctatetion of the urethral lumen was more than 50%. Biodegradable stent placement was technically successful in 20 rabbits. Urethral specimens obtained from the 4 week stent placement group showed diminished inflammatory cell infiltration and decreased thickness of the papillary projections of the epithelium. There was a strong tendency towards regression of the papillary projections and regeneration of urethral mucosa epithelium in the 8 week group. In particular, the injured urethra has recovered completely in the biodegradable stent groups compared with the control group at 12 weeks. The biodegradable urethral stent seems feasible for treating and preventing urethral strictures owing to a war wound (or traumatic) urethra. There are distinct advantages in terms of safe, effective and less-invasive treatment for the reconstruction of post-traumatic urethral strictures.

  14. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  15. Kinetic modeling of aerobic biodegradation of high oil and grease rendering wastewater.

    Science.gov (United States)

    Nakhla, G; Liu, Victor; Bassi, A

    2006-01-01

    Batch scale activated sludge kinetic studies were undertaken for the treatment of pet food wastewater characterized by oil and grease concentrations of up to 21,500 mg/L, COD and BOD concentrations of 75,000 and 60,000 mg/L, respectively as well as effluent from the batch dissolved air flotation (DAF) system. The conducted kinetics studies showed that Haldane Model fit the substrates and biomass data better than Monod model in DAF-pretreated wastewater, while the modified hydrolysis Monod model better fit the raw wastewater kinetic data. For the DAF pretreated batches, Haldane Model kinetic coefficients k, K(S), Y and Ki values of 1.28-5.35 g COD/g VSS-d, 17,833-23,477 mg/L, 0.13-0.41 mg VSS/mg COD and 48,168 mg/L, respectively were obtained reflecting the slow biodegradation rate. Modified hydrolysis Monod model kinetic constants for the raw wastewater i.e., k, K(S), Y, and K(H) varied from 1-1.3 g COD/g VSS-d, 5580-5600 mg COD/l, 0.08-0.85 mg VSS/mg COD, and 0.21-0.66 d(-1), respectively.

  16. Groundwater Model Calibration for a Hydrocarbon Plume in a Sandy, Surficial Aquifer

    Science.gov (United States)

    1988-12-01

    et al., 1985). The USGS model was also applied to a creosote waste site in Conroe, Texas. On the site, there is a hydrocarbon plume contained within a...effective remedy on high contaminant concentrations. Follow on work with bioremediation should be much more effective with lower concentrations

  17. Modified kinetic-hydraulic UASB reactor model for treatment of wastewater containing biodegradable organic substrates.

    Science.gov (United States)

    El-Seddik, Mostafa M; Galal, Mona M; Radwan, A G; Abdel-Halim, Hisham S

    2016-01-01

    This paper addresses a modified kinetic-hydraulic model for up-flow anaerobic sludge blanket (UASB) reactor aimed to treat wastewater of biodegradable organic substrates as acetic acid based on Van der Meer model incorporated with biological granules inclusion. This dynamic model illustrates the biomass kinetic reaction rate for both direct and indirect growth of microorganisms coupled with the amount of biogas produced by methanogenic bacteria in bed and blanket zones of reactor. Moreover, the pH value required for substrate degradation at the peak specific growth rate of bacteria is discussed for Andrews' kinetics. The sensitivity analyses of biomass concentration with respect to fraction of volume of reactor occupied by granules and up-flow velocity are also demonstrated. Furthermore, the modified mass balance equations of reactor are applied during steady state using Newton Raphson technique to obtain a suitable degree of freedom for the modified model matching with the measured results of UASB Sanhour wastewater treatment plant in Fayoum, Egypt.

  18. Biodegradation of oil slicks in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Bartha, R.

    1970-12-01

    Liquid-liquid extraction and gas chromatographic techniques were tested and standardized for recovery and quantitative measurement of partially biodegraded crude oil and of individual hydrocarbons. A model petroleum has been formulated from a limited number of chemically defined aliphatic, alicyclic and aromatic hydrocarbons as an aid for the interpretation of biodegradative changes that occur in complex crude oils. Various methods and devices were tested for containment and recovery of small experimental oil slicks in field studies. A device consisting of large-diameter vertical glass tubes held in a partially submerged position by a styrofoam float has been developed and tested. On sea salts media with individual hydrocarbons or with crude oils as the sole added carbon sources 40 strains of oil-degrading maine microrganisms have been isolated in pure culture. The substrate range of these organisms was evaluated on two types of crude oil and on 11 aliphatic, alicyclic and aromatic hydrocarbons. Aliphatic compounds supported the growth of most of the isolated cultures, but the substrate range of several organisms included also alicyclic and aromatic compounds. In laboratory tests, several isolates were able to degrade 35 to 40% of Sweden crude added to a sea salts solution in 1% by volume concentration.

  19. Evaluation of vadose zone biodegradation of BTX vapours

    Science.gov (United States)

    Hers, Ian; Atwater, Jim; Li, Loretta; Zapf-Gilje, Reidar

    2000-12-01

    Soil vapour transport to indoor air is an important potential exposure pathway at many sites impacted by subsurface volatile organic compounds (VOCs). The inclusion of biodegradation in vadose zone transport models for benzene, toluene and xylene (BTX) and fuel hydrocarbons has been proposed; however, there is still significant uncertainty regarding biodegradation rates and the local effects of buildings or ground surface cover on fate and transport processes. The objective of this study was to evaluate biodegradation processes through comprehensive monitoring at a site contaminated with BTX and model simulation. Study methods included extensive vertical profiling of BTX vapour and light gas (oxygen and carbon dioxide) concentrations and moisture content, and semi-continuous monitoring of oxygen and pressure below a building floor slab. Significant vadose zone biodegradation over a relatively small depth interval was observed. Based on the observed soil vapour profile, first-order biodegradation rates were estimated by fitting an analytical solution for diffusion and biodecay to the data. Degradation rates were found to compare well to other reported laboratory and field data. A two-dimensional (2-D) numerical model incorporating vapour-phase diffusion, advection, sorption and biodegradation was used to simulate the effect of a building floor slab on transport processes. Model results demonstrate the sensitivity of vapour-phase BTX and oxygen transport to partial barriers to diffusion (e.g. building foundation) and highlight the importance of using a model that ties biodecay to oxygen availability. In addition, depressurization within a building and advective transport is shown to have a potentially significant effect on BTX fate, in soil below.

  20. Evaluation of a biodegradable graft substitute in rabbit bone defect model

    Directory of Open Access Journals (Sweden)

    XiaoBo Yang

    2012-01-01

    Conclusion: These findings demonstrated that the novel biodegradable copolymers can repair large areas of cancellous bone defects. With its controllable degradation rate, it suggests that CS/PAA may be a series of useful therapeutic substitute for bone defects.

  1. Therapeutic potential of biodegradable microparticles containing Punica granatum L. (pomegranate) in murine model of asthma.

    Science.gov (United States)

    de Oliveira, Jéssica F F; Garreto, Diego V; da Silva, Mayara C P; Fortes, Thiare S; de Oliveira, Rejane B; Nascimento, Flávia R F; Da Costa, Fernando B; Grisotto, Marcos A G; Nicolete, Roberto

    2013-11-01

    Among the options for treatment of diseases affecting the respiratory system, especially asthma, drug delivering systems for intranasal application represent an important therapeutic approach at the site of inflammation. The present study aimed to evaluate the therapeutic effect of biodegradable microparticles formed by poly lactic-co-glycolic acid (PLGA) containing encapsulated pomegranate extract on a murine model of asthma. The extract was acquired from the leaves of P. granatum and characterized qualitatively by HPLC. A w/o/w emulsion solvent extraction-evaporation method was chosen to prepare the microparticles containing pomegranate encapsulated extract (MP). OVA-sensitized BALB/c mice were used as asthma model and treated with dexamethasone and P. granatum extract in solution form or encapsulated into microparticles. MP were able to inhibit leukocytes' recruitment to bronchoalveolar fluid, especially, eosinophils, decreasing cytokines (IL-1β and IL-5) and protein levels in the lungs. This approach can be used as an alternative/supplementary therapy based on the biological effects of P. granatum for managing inflammatory processes, especially those with pulmonary complications.

  2. Research on the influence of anaerobic stabilization of various dairy sewage sludge on biodegradation of polycyclic aromatic hydrocarbons PAHs with the use of effective microorganisms.

    Science.gov (United States)

    Boruszko, Dariusz

    2017-05-01

    Sewage sludge was taken from a dairy WWTP belonging to Mlekovita Cooperative in Wysokie Mazowieckie. There were excess sludge, flotation sludge and a mixture of excess and flotation sludge from pre-treatment of dairy sewage. The initial content of 16 PAHs in excess sludge before fermentation was approximately 689µg·kg -1 in dry mass, whereas in post-flotation sludge (which constituted around 30% of raw sludge) it was approximately 95µg·kg -1 in dry mass. A mixture of excess and flotation sludge had the content of 497,7µg·kg -1 in dry mass. Through comparison of particular hydrocarbons content in raw sewage sludge to the total PAHs content, it was shown that tricyclic compounds, which constituted 46,3% of the PAHs sum (excess sludge), and tetracyclic compounds, which constituted 60,0% of the PAHs sum (flotation sludge), were the dominating fractions. In the sludge subjected to fermentation in reactors with mixed sludge and surplus activated sludge, the general trend of the course of changes in concentrations of PAHs was similar. Both in the sludge inoculated with EM and in that not inoculated with EM, a significant increase in the total PAHs contents was observed in the first fermentation phase (acidic fermentation) after 7 days of the process. Addition of EM into the sludge did not prevent the PAHs release, and therefore higher concentrations of PAHs sum were recorded during the hydrolysis stage than in sludge before fermentation. A decrease in the sum of PAHs was observed after 2 weeks of fermentation in relation to the quantity observed after 1 week of fermentation (except from post-flotation sludge). In the following weeks, there was further decrease in the concentration of the 16 PAHs sum in all sludge types. However, in sludge without EM inoculation, it was lower than in sludge with EM inoculation. The loss of the majority of tested hydrocarbons was reported in the final phase of fermentation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field

    Science.gov (United States)

    Barry, P. H.; Lawson, M.; Meurer, W. P.; Warr, O.; Mabry, J. C.; Byrne, D. J.; Ballentine, C. J.

    2016-12-01

    -water exchange (i.e., volumetric gas-water ratios). These data are discussed within the framework of several conceptual models: (i) total gas-stripping model, which assumes all noble gases have been stripped from the water phase, thus defining the minimum volume of water to have interacted with the hydrocarbon phase; (ii) equilibrium model, which assumes equilibration between groundwater and hydrocarbon phase at reservoir P, T and salinity; and (iii) open and closed system gas-stripping models, using concentrations and elemental ratios. By applying these models to Ne-Ar data from Sleipner, we estimate volumetric gas-water ratios (Vg/Vw) between 0.02 and 0.07, which are lower than standard geologic gas-water estimates of ∼0.24, estimated by combining gas-in-place estimates with groundwater porosity estimates. Sleipner Vest data can be best approximated by an open system model, which predicts more than an order of magnitude more groundwater interaction during migration than geologic estimates, indicating a dynamic aquifer system and/or a hydrous migration pathway. In an open system, the extent of gas loss can be estimated to be between 8 and 10 reservoir volumes, which have passed through the system and been lost (i.e., filled and spilled).

  4. Biodegradation of used motor oil in soil using organic waste amendments.

    Science.gov (United States)

    Abioye, O P; Agamuthu, P; Abdul Aziz, A R

    2012-01-01

    Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92%) was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day(-1)) in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day(-1)) in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration.

  5. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products.

    Science.gov (United States)

    Montagnolli, Renato Nallin; Lopes, Paulo Renato Matos; Bidoia, Ederio Dino

    2015-01-01

    Microbial pollutant removal capabilities can be determined and exploited to accomplish bioremediation of hydrocarbon-polluted environments. Thus, increasing knowledge on environmental behavior of different petroleum products can lead to better bioremediation strategies. Biodegradation can be enhanced by adding biosurfactants to hydrocarbon-degrading microorganism consortia. This work aimed to improve petroleum products biodegradation by using a biosurfactant produced by Bacillus subtilis. The produced biosurfactant was added to biodegradation assays containing crude oil, diesel, and kerosene. Biodegradation was monitored by a respirometric technique capable of evaluating CO₂ production in an aerobic simulated wastewater environment. The biosurfactant yielded optimal surface tension reduction (30.9 mN m(-1)) and emulsification results (46.90% with kerosene). Biodegradation successfully occurred and different profiles were observed for each substance. Precise mathematical modeling of biosurfactant effects on petroleum degradation profile was designed, hence allowing long-term kinetics prediction. Assays containing biosurfactant yielded a higher overall CO₂ output. Higher emulsification and an enhanced CO2 production dataset on assays containing biosurfactants was observed, especially in crude oil and kerosene.

  6. Biodegradation of Used Motor Oil in Soil Using Organic Waste Amendments

    Directory of Open Access Journals (Sweden)

    O. P. Abioye

    2012-01-01

    Full Text Available Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w used lubricating oil and amended with 10% brewery spent grain (BSG, banana skin (BS, and spent mushroom compost (SMC was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92% was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day−1 in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day−1 in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration.

  7. Formation of radical cations in a model for the metabolism of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Lehner, Andreas F.; Horn, Jamie; Flesher, James W.

    2004-01-01

    To test the hypothesis that electrophilic radical cations are the major ultimate electrophilic and carcinogenic forms of benz[a]anthracene (BA), dibenz[a,h]anthracene (DBA), and benzo[a]pyrene (BP), we have focused on a chemical model of metabolism which parallels and duplicates known or potential metabolites of some polycyclic hydrocarbons formed in cells. Studies of this model system show that radical cations are hardly formed, if at all, in the case of BA or DBA but are definitely formed in the cases of the carcinogen BP as well as the non-carcinogenic hydrocarbons, pyrene and perylene. We conclude that the carcinogenicities of BA, DBA, BP, pyrene, and perylene are independent of one-electron oxidation to radical cation intermediates

  8. Formalization of hydrocarbon conversion scheme of catalytic cracking for mathematical model development

    Science.gov (United States)

    Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Kiseleva, S.; Stebeneva, V.

    2015-11-01

    The issue of improving the energy and resource efficiency of advanced petroleum processing can be solved by the development of adequate mathematical model based on physical and chemical regularities of process reactions with a high predictive potential in the advanced petroleum refining. In this work, the development of formalized hydrocarbon conversion scheme of catalytic cracking was performed using thermodynamic parameters of reaction defined by the Density Functional Theory. The list of reaction was compiled according to the results of feedstock structural-group composition definition, which was done by the n-d-m-method, the Hazelvuda method, qualitative composition of feedstock defined by gas chromatography-mass spectrometry and individual composition of catalytic cracking gasoline fraction. Formalized hydrocarbon conversion scheme of catalytic cracking will become the basis for the development of the catalytic cracking kinetic model.

  9. Biodegradable lubricants - ''the solution for future?''

    International Nuclear Information System (INIS)

    Jahan, A.

    1997-01-01

    The environmental impact of lubricants use concern the direct effects from spills but also the indirect effects such as their lifetime and the emissions from thermal engines. The biodegradable performances and the toxicity are the environmental criteria that must be taken into account in the development and application of lubricants together with their technical performances. This paper recalls first the definition of biodegradable properties of hydrocarbons and the standardized tests, in particular the CEC and AFNOR tests. Then, the biodegradable performances of basic oils (mineral, vegetal, synthetic esters, synthetic hydrocarbons etc..), finite lubricants (hydraulic fluids..) and engine oils is analyzed according to these tests. Finally, the definition of future standards would take into account all the environmental characteristics of the lubricant: biodegradable performances, energy balance (CO 2 , NOx and Hx emissions and fuel savings), eco-toxicity and technical performances (wearing and cleanliness). (J.S.)

  10. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation.

    Science.gov (United States)

    García-Delgado, Carlos; D'Annibale, Alessandro; Pesciaroli, Lorena; Yunta, Felipe; Crognale, Silvia; Petruccioli, Maurizio; Eymar, Enrique

    2015-03-01

    Different applications of spent Agaricus bisporus substrate (SAS), a widespread agro-industrial waste, were investigated with respect to the remediation of a historically polluted soil with Polycyclic Aromatic Hydrocarbons (PAH). In one treatment, the waste was sterilized (SSAS) prior to its application in order to assess its ability to biostimulate, as an organic amendment, the resident soil microbiota and ensuing contaminant degradation. For the other treatments, two bioaugmentation approaches were investigated; the first involved the use of the waste itself and thus implied the application of A. bisporus and the inherent microbiota of the waste. In the second treatment, SAS was sterilized and inoculated again with the fungus to assess its ability to act as a fungal carrier. All these treatments were compared with natural attenuation in terms of their impact on soil heterotrophic and PAH-degrading bacteria, fungal growth, biodiversity of soil microbiota and ability to affect PAH bioavailability and ensuing degradation and detoxification. Results clearly showed that historically PAH contaminated soil was not amenable to natural attenuation. Conversely, the addition of sterilized spent A. bisporus substrate to the soil stimulated resident soil bacteria with ensuing high removals of 3-ring PAH. Both augmentation treatments were more effective in removing highly condensed PAH, some of which known to possess a significant carcinogenic activity. Regardless of the mode of application, the present results strongly support the adequacy of SAS for environmental remediation purposes and open the way to an attractive recycling option of this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Evaluation and prediction of oil biodegradation: a novel approach integrating geochemical and basin modeling techniques in offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Baudino, Roger [YPF S.A. (Argentina); Santos, Glauce Figueiredo dos; Losilla, Carlos; Cabrera, Ricardo; Loncarich, Ariel; Gavarrino, Alejandro [RepsolYPF do Brasil, Sao Paulo, SP (Brazil)

    2008-07-01

    Oil fields accounting for a large portion of the world reserves are severely affected by biological degradation. In Brazil, giant fields of the Campos Basin are producing biodegraded oils with widely variable fluid characteristics (10 to 40 deg API) and no apparent logical distribution nor predictability. Modern geochemical techniques allow defining the level of biodegradation. When original (non-degraded) oil samples and other with varying degradation level are available it might be possible to define a distribution trend and to relate it to present day geological factors such as temperature and reservoir geometry. However, other critical factors must be taken into account. But most of all, it is fundamental to have a vision in time of their evolution. This can only be achieved through 3D Basin Models coupled with modern visualization tools. The multi-disciplinary work-flow described here integrates three-dimensional numerical simulations with modern geochemical analyses. (author)

  12. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1 ×, DE3 ×, ME3 ×, NEL3 ×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P = 0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P = 0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P = 0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P = 0.09), RD of PB2 (29 vs. 62 g/kg CP, P = 0.02), RD of CB2 (251 vs. 198 g/kg DM, P = 0.06), RD of CB3 (236 vs. 261 g/kg CHO, P = 0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P = 0.06), and metabolic bioenergy (P = 0.095). As to protein molecular structure, there were differences in protein structure 1st

  13. MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS

    Energy Technology Data Exchange (ETDEWEB)

    Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare [INAF-Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, I-09012 Capoterra (Italy); Zonca, Alberto, E-mail: gmulas@oa-cagliari.inaf.it, E-mail: silvia@oa-cagliari.inaf.it, E-mail: ccp@oa-cagliari.inaf.it, E-mail: azonca@oa-cagliari.inaf.it [Dipartimento di Fisica, Universita di Cagliari, Strada Prov.le Monserrato-Sestu Km 0.700, I-09042 Monserrato (Italy)

    2013-07-01

    We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproduce the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 Multiplication-Sign 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.

  14. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A

    2014-03-01

    A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(-)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three- and two-aromatic ring products. The structurally similar four- and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(-)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry

    Science.gov (United States)

    Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A

    2014-01-01

    A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(–)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three-and two-aromatic ring products. The structurally similar four-and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(–)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. PMID:24325265

  16. Biodegradation of polycyclic aromatic hydrocarbons by soil fungi Biodegradação de hidrocarbonetos aromáticos policíclicos por fungos do solo

    Directory of Open Access Journals (Sweden)

    Andrea R. Clemente

    2001-12-01

    Full Text Available Thirteen deuteromycete ligninolytic fungal strains were grown in media containing polycyclic aromatic hydrocarbons (PAHs, for 6 and 10 days. The PAHs were added directly with the inocula or on the third day of cultivation. A selection of the best strains was carried out based on the levels of degradation of the PAHs and also on the ligninolytic activities produced by the fungi. The selected strains were cultivated for 3, 6, 9, 12 and 15 days in the PAHs-containing media. Degradation of PAHs, as measured by reversed-phase HPLC on a C18 column, varied with each strain as did the ligninolytic enzymes present in the culture supernatants. Highest degradation of naphthalene (69% was produced by the strain 984, having Mn-peroxidase activity, followed by strain 870 (17% showing lignin peroxidase and laccase activities. The greatest degradation of phenanthrene (12% was observed with strain 870 containing Mn-peroxidase and laccase activities. When anthracene was used, the strain 710 produced a good level of degradation (65%.Treze fungos deuteromicetos ligninolíticos foram cultivados em meio contendo hidrocarbonetos aromáticos policíclicos (HAPs por 6 e 10 dias. Os HAPs foram adicionados diretamente com o inóculo ou no terceiro dia de cultivo. A seleção das melhores linhagens foi baseada nos níveis de degradação dos HAPs e também nas atividades ligninolíticas produzidas pelas linhagens fúngicas. Essas melhores linhagens foram então cultivadas por 3, 6, 9, 12 e 15 dias. A degradação dos HAPs foi monitorada por cromatografia líquida de alta eficiência (CLAE em uma coluna C18, variando para cada linhagem assim como as enzimas ligninolíticas presentes nos sobrenadantes das culturas. Alta degradação de naftaleno (69% foi obtida pela linhagem 984, tendo atividade de Mn-peroxidase, seguida pela linhagem 870 (17% a qual apresentou atividades de lignina peroxidase e lacase. A melhor porcentagem de degradação de fenantreno (12% foi observada

  17. A modelling implementation of climate change on biodegradation of Low-Density Polyethylene (LDPE) by Aspergillus niger in soil

    OpenAIRE

    Farzin Shabani; Lalit Kumar; Atefeh Esmaeili

    2015-01-01

    Aim:  To model the areas becoming and remaining highly suitable for Aspergillus niger growth over the next ninety years by future climate alteration, in relation to the species’ potential enhancement of Low Density Polyethylene (LDPE) biodegradation in soil. Location:  Global scale Methods:  Projections of A. niger growth suitability for 2030, 2050, 2070 and 2100 were made using the A2 emissions scenario together with two Global Climate Models (GCMs): the CSIRO-Mk3.0 (CS) model and the ...

  18. Near omni-conductors and insulators: Alternant hydrocarbons in the SSP model of ballistic conduction

    Science.gov (United States)

    Fowler, Patrick W.; Sciriha, Irene; Borg, Martha; Seville, Victoria E.; Pickup, Barry T.

    2017-10-01

    Within the source-and-sink-potential model, a complete characterisation is obtained for the conduction behaviour of alternant π-conjugated hydrocarbons (conjugated hydrocarbons without odd cycles). In this model, an omni-conductor has a molecular graph that conducts at the Fermi level irrespective of the choice of connection vertices. Likewise, an omni-insulator is a molecular graph that fails to conduct for any choice of connections. We give a comprehensive classification of possible combinations of omni-conducting and omni-insulating behaviour for molecular graphs, ranked by nullity (number of non-bonding orbitals). Alternant hydrocarbons are those that have bipartite molecular graphs; they cannot be full omni-conductors or full omni-insulators but may conduct or insulate within well-defined subsets of vertices (unsaturated carbon centres). This leads to the definition of "near omni-conductors" and "near omni-insulators." Of 81 conceivable classes of conduction behaviour for alternants, only 14 are realisable. Of these, nine are realised by more than one chemical graph. For example, conduction of all Kekulean benzenoids (nanographenes) is described by just two classes. In particular, the catafused benzenoids (benzenoids in which no carbon atom belongs to three hexagons) conduct when connected to leads via one starred and one unstarred atom, and otherwise insulate, corresponding to conduction type CII in the near-omni classification scheme.

  19. Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism--a gas-phase ab initio study.

    Science.gov (United States)

    Bharadwaj, Vivek S; Vyas, Shubham; Villano, Stephanie M; Maupin, C Mark; Dean, Anthony M

    2015-02-14

    The fumarate addition reaction mechanism is central to the anaerobic biodegradation pathway of various hydrocarbons, both aromatic (e.g., toluene, ethyl benzene) and aliphatic (e.g., n-hexane, dodecane). Succinate synthase enzymes, which belong to the glycyl radical enzyme family, are the main facilitators of these biochemical reactions. The overall catalytic mechanism that converts hydrocarbons to a succinate molecule involves three steps: (1) initial H-abstraction from the hydrocarbon by the radical enzyme, (2) addition of the resulting hydrocarbon radical to fumarate, and (3) hydrogen abstraction by the addition product to regenerate the radical enzyme. Since the biodegradation of hydrocarbon fuels via the fumarate addition mechanism is linked to bio-corrosion, an improved understanding of this reaction is imperative to our efforts of predicting the susceptibility of proposed alternative fuels to biodegradation. An improved understanding of the fuel biodegradation process also has the potential to benefit bioremediation. In this study, we consider model aromatic (toluene) and aliphatic (butane) compounds to evaluate the impact of hydrocarbon structure on the energetics and kinetics of the fumarate addition mechanism by means of high level ab initio gas-phase calculations. We predict that the rate of toluene degradation is ∼100 times faster than butane at 298 K, and that the first abstraction step is kinetically significant for both hydrocarbons, which is consistent with deuterium isotope effect studies on toluene degradation. The detailed computations also show that the predicted stereo-chemical preference of the succinate products for both toluene and butane are due to the differences in the radical addition rate constants for the various isomers. The computational and kinetic modeling work presented here demonstrates the importance of considering pre-reaction and product complexes in order to accurately treat gas phase systems that involve intra and inter

  20. Modelling Poly-Aromatic Hydrocarbons "online" with the GEOS-Chem Europe and Asia regional models.

    Science.gov (United States)

    Ivatt, P.; Evans, M. J.

    2017-12-01

    Poly-Aromatic Hydrocarbons (PAHs) are carcinogens and so are restricted by international treaties. PAHs are mainly emitted into the atmosphere by domestic (heating and cooking), natural (forest fires burning), as well as some industrial processes (coke ovens). PAHs partition between the gas and particle phase (notably carbonaceous particles) based on their volatility. In recent years, interest has turned to the possible health effects of their oxidation products (both nitrogenated and oxygenated) as it has been suggested that these oxidation products may be even more carcinogenic than the parent PAHs. To increase our understanding of the processes controlling the regional concentrations of PAHs and their oxidation products an "online" PAH model has been developed within the GEOS-Chem framework. This provides for the representation of the coupled aerosol/gas phase chemistry of the parent PAH and its secondary oxidation products. Benzo[a]pyrene is used as an exemplar but the methodology is flexible and the approach can be used for any PAH species. Comparisons are made with observations and the sources of variability discussed.

  1. Bioavailability and biodegradation of weathered diesel fuel in aquifer material under denitrifying conditions

    International Nuclear Information System (INIS)

    Bregnard, T.P.A.; Hoehener, P.; Zeyer, J.

    1998-01-01

    During the in situ bioremediation of a diesel fuel-contaminated aquifer in Menziken, Switzerland, aquifer material containing weathered diesel fuel (WDF) and indigenous microorganisms was excavated. This material was used to identify factors limiting WDF biodegradation under denitrifying conditions. Incubations of this material for 360 to 390 d under denitrifying conditions resulted in degradation of 23% of the WDF with concomitant consumption of NO 3 - and production of inorganic carbon. The biodegradation of WDF and the rate of NO 3 - consumption was stimulated by agitation of the microcosms. Biodegradation was not stimulated by the addition of a biosurfactant (rhamnolipids) or a synthetic surfactant (Triton X-100) at concentrations above their critical micelle concentrations. The rhamnolipids were biodegraded preferentially to WDF, whereas Triton X-100 was not degraded. Both surfactants reduced the surface tension of the growth medium from 72 to <35 dynes/cm and enhanced the apparent aqueous solubility of the model hydrocarbon n-hexadecane by four orders of magnitude. Solvent-extracted WDF, added at a concentration equal to that already present in the aquifer material, was also biodegraded by the microcosms, but not at a higher rate than the WDF already present in the material. The results show that the denitrifying biodegradation of WDF is not necessarily limited by bioavailability but rather by the inherent recalcitrance of WDF

  2. Application of numerical modeling of selective NOx reduction by hydrocarbon under diesel transient conditions in consideration of hydrocarbon adsorption and desorption process

    International Nuclear Information System (INIS)

    Watanabe, Y.; Asano, A.; Banno, K.; Yokota, K.; Sugiura, M.

    2001-01-01

    A model of NO x selective reduction by hydrocarbon (HC) was developed, which takes into account the adsorption and desorption of HC. The model was applied for predicting the performance of a De-NO x catalytic reactor, working under transient conditions such as a legislative driving cycle. Diesel fuel was used as a supplemental reductant. The behavior of HC and NO x reactions and HC adsorption and desorption has been simulated successfully by our numerical approach under the transient conditions of the simulated Japanese 10-15 driving cycle. Our model is expected to optimize the design of selective diesel NO x reduction systems using a diesel fuel as a supplemental reductant

  3. Biodegradative activities of some gram- negative bacilli isolated ...

    African Journals Online (AJOL)

    Their biodegradative activities were studied and confirmed by the change in the Total Petroleum Hydrocarbon (TPH) using gravimetric method. The biodegradative abilities of the isolates were compared by measuring the optical densities, total viable count, pH and emulsification activity. The results showed that the ...

  4. Biodegradation Rates of Aromatic Contaminants in Biofilm Reactors

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1995-01-01

    compounds was typically controlled by first order kinetics. The first-order surface removal rate constants were surprisingly similar, ranging from 2 to 4 m/d. It appears that NSO-compounds inhibit the degradation of aromatic hydrocarbons, even at very low concentrations of NSO-compounds. Under nitrate......-reducing conditions, toluene was easily biodegraded. The xylenes and ethylbenzene were degraded cometabolically if toluene was used as a primary carbon source; their removal was influenced by competitive inhibition with toluene. These interaction phenomena are discussed in this paper and a kinetic model taking...

  5. ENA of heterocyclic hydrocarbons by adding hydrogen peroxide in groundwater circulation wells - a field-based study on a large physical model scale

    International Nuclear Information System (INIS)

    Sagner, A.; Tiehm, A.; Trotschler, O.; Haslwimmer, Th.; Koschitzky, H.P.

    2005-01-01

    Heterocyclic Hydrocarbons (NSO-HET) are ingredients of tar oil, commonly found down-gradient of former gasworks sites. Typical NSO-HET are benzofurans, methyl-benzofurans, methylquinoline, acridine or carbazole. During investigations of MNA (monitored natural attenuation) remediation strategies, it was found that most NSO-HET are highly mobile due to their high water solubility and low biodegradation rates. In addition, some were found to be highly toxic and carcinogenic. In particular under anaerobic conditions, NSO-HET biodegradation rates are low. However, aerobic biological degradation was found to be effective. Based on the extension and contaminant distribution of the plume (∼ 800 m long) down-gradient of a former gasworks 'Testfeld Sued' (TFS) in Southern Germany, the most applicable technology for enhancing the natural degradation of PAH, BTEX and NSO-HET was selected and tested under controlled conditions in a large physical model (Large Flume of VEGAS). The investigations focused on a technology for a homogeneous infiltration of electron acceptor solutions such as oxygen and hydrogen peroxide to provide the bacteria with molecular oxygen. An initial infiltration of oxygen (air-saturated water) during the adaptation of microorganism to aerobic biodegradation was followed by a time-limited addition of hydrogen peroxide to achieve an oxygen concentration up to 23 mg/L in the model aquifer. An almost complete degradation of NSO-HET was found. On the basis of numerical simulations and lab experiments, it was found that natural dispersion will not lead to a wide-ranging homogeneous distribution and mixing of the oxygen in the aquifer. The Groundwater Circulation Wells technology (GCW) can be applied to achieve a maximum mixing of the electron acceptor solution with the groundwater. A spherical groundwater circulation is induced by means of ex- and infiltration ports in vertical wells. Infiltration and ex-filtration ports are located in hydraulically separated

  6. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  7. Biodegradation of Jet Fuel in Vented Columns of Water-Unsaturated Sandy Soil

    Science.gov (United States)

    1990-01-01

    photodegradation , volatilization and microbial degradation; however, microbial degradation is the most significant process by which many pesticides are degraded...Biodegradation . 12 Soil Water Content and Pesticide Biodegradation ... ............. . 16 Aeration . . . . . . ................. 18 Soil Venting and... Pesticide Biodegradation While petroleum hydrocarbons and pesticides may differ considerably in chemical composition and structure, they share at least

  8. Substrate Interactions during the Biodegradation of Benzene, Toluene, Ethylbenze, and Xylene (BTEX) Hydrocarbons by the Fungus Cladophialophora sp. Strain T1

    NARCIS (Netherlands)

    Prenafeta-Boldú, F.X.; Vervoort, J.; Grotenhuis, J.T.C.; Groenestijn, van J.W.

    2002-01-01

    The soil fungus Cladophialophora sp. strain T1 (= ATCC MYA-2335) was capable of growth on a model water-soluble fraction of gasoline that contained all six BTEX components (benzene, toluene, ethylbenzene, and the xylene isomers). Benzene was not metabolized, but the alkylated benzenes (toluene,

  9. Experimental determination and thermodynamic modeling of phase equilibrium and protein partitioning in aqueous two-phase systems containing biodegradable salts

    International Nuclear Information System (INIS)

    Perez, Brenda; Malpiedi, Luciana Pellegrini; Tubío, Gisela; Nerli, Bibiana; Alcântara Pessôa Filho, Pedro de

    2013-01-01

    Highlights: ► Binodal data of systems (water + polyethyleneglycol + sodium) succinate are reported. ► Pitzer model describes the phase equilibrium of systems formed by polyethyleneglycol and biodegradable salts satisfactorily. ► This simple thermodynamic framework was able to predict the partitioning behaviour of model proteins acceptably well. - Abstract: Phase diagrams of sustainable aqueous two-phase systems (ATPSs) formed by polyethyleneglycols (PEGs) of different average molar masses (4000, 6000, and 8000) and sodium succinate are reported in this work. Partition coefficients (Kps) of seven model proteins: bovine serum albumin, catalase, beta-lactoglobulin, alpha-amylase, lysozyme, pepsin, urease and trypsin were experimentally determined in these systems and in ATPSs formed by the former PEGs and other biodegradable sodium salts: citrate and tartrate. An extension of Pitzer model comprising long and short-range term contributions to the excess Gibbs free energy was used to describe the (liquid + liquid) equilibrium. Comparison between experimental and calculated tie line data showed mean deviations always lower than 3%, thus indicating a good correlation. The partition coefficients were modeled by using the same thermodynamic approach. Predicted and experimental partition coefficients correlated quite successfully. Mean deviations were found to be lower than the experimental uncertainty for most of the assayed proteins.

  10. Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Nieman, Karl; Sorensen, Darwin L.; Miller, Charles D.; Martin, Michael C.; Borch, Thomas; McKinney, Wayne R.; Sims, Ronald C.

    2001-09-26

    The role of humic acid (HA) in the biodegradation of toxic polycyclic aromatic hydrocarbons (PAHs) has been the subject of controversy, particularly in unsaturated environments. By utilizing an infrared spectromicroscope and a very bright, nondestructive synchrotron photon source, we monitored in situ and, over time, the influence of HA on the progression of degradation of pyrene (a model PAH) by a bacterial colony on a magnetite surface. Our results indicate that HA dramatically shortens the onset time for PAH biodegradation from 168 to 2 h. In the absence of HA, it takes the bacteria about 168 h to produce sufficient glycolipids to solubilize pyrene and make it bioavailable for biodegradation. These results will have large implications for the bioremediation of contaminated soils.

  11. Biodegradation of crude oil saturated fraction supported on clays.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Jones, Martin D; Head, Ian M; Manning, David A C; Fialips, Claire I

    2014-02-01

    The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays' ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the 'vicinity' of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation.

  12. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system

    OpenAIRE

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M.

    2016-01-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected wi...

  13. Oil biodegradation

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Langenhoff, Alette A.M.; Smit, Martijn P.J.; Eenennaam, van Justine S.; Murk, Tinka; Rijnaarts, Huub H.M.

    2017-01-01

    During the Deepwater Horizon (DwH) oil spill, interactions between oil, clay particles and marine snow lead to the formation of aggregates. Interactions between these components play an important, but yet not well understood, role in biodegradation of oil in the ocean water. The aim of this study

  14. Utilization of biomass: Conversion of model compounds to hydrocarbons over zeolite H-ZSM-5

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Holm, Martin Spangsberg

    2011-01-01

    Zeolite catalyzed deoxygenation of small oxygenates present in bio-oil or selected as model compounds was performed under Methanol-to-Hydrocarbons (MTH) like reaction conditions using H-ZSM-5 as the catalyst. Co-feeding of the oxygenates with methanol generally decreases catalyst lifetime due...... to coking and results in higher selectivity towards aromatics compared to conversion of pure methanol. The reaction pattern of the different oxygenates did not simply follow the effective H/C ratio of the additives since structural isomers with identical effective H/C ratios showed significant differences...

  15. Hydrocarbon migration and accumulation in the Upper Cretaceous Qingshankou Formation, Changling Sag, southern Songliao Basin: Insights from integrated analyses of fluid inclusion, oil source correlation and basin modelling

    Science.gov (United States)

    Dong, Tian; He, Sheng; Wang, Dexi; Hou, Yuguang

    2014-08-01

    The Upper Cretaceous Qingshankou Formation acts as both the source and reservoir sequence in the Changling Sag, situated in the southern end of the Songliao Basin, northeast China. An integrated approach involving determination of hydrocarbon charging history, oil source correlation and hydrocarbon generation dynamic modeling was used to investigate hydrocarbon migration processes and further predict the favorable targets of hydrocarbon accumulations in the Qingshankou Formation. The hydrocarbon generation and charge history was investigated using fluid inclusion analysis, in combination with stratigraphic burial and thermal modeling. The source rocks began to generate hydrocarbons at around 82 Ma and the hydrocarbon charge event occurred from approximately 78 Ma to the end of Cretaceous (65.5 Ma) when a large tectonic uplift took place. Correlation of stable carbon isotopes of oils and extracts of source rocks indicates that oil was generated mainly from the first member of Qingshankou Formation (K2qn1), suggesting that hydrocarbon may have migrated vertically. Three dimensional (3D) petroleum system modeling was used to evaluate the processes of secondary hydrocarbon migration in the Qingshankou Formation since the latest Cretaceous. During the Late Cretaceous, hydrocarbon, mainly originated from the Qianan depression, migrated laterally to adjacent structural highs. Subsequent tectonic inversion, defined as the late Yanshan Orogeny, significantly changed hydrocarbon migration patterns, probably causing redistribution of primary hydrocarbon reservoirs. In the Tertiary, the Heidimiao depression was buried much deeper than the Qianan depression and became the main source kitchen. Hydrocarbon migration was primarily controlled by fluid potential and generally migrated from relatively high potential areas to low potential areas. Structural highs and lithologic transitions are potential traps for current oil and gas exploration. Finally, several preferred hydrocarbon

  16. A Geochemical Model of Fluids and Mineral Interactions for Deep Hydrocarbon Reservoirs

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-01-01

    Full Text Available A mutual solubility model for CO2-CH4-brine systems is constructed in this work as a fundamental research for applications of deep hydrocarbon exploration and production. The model is validated to be accurate for wide ranges of temperature (0–250°C, pressure (1–1500 bar, and salinity (NaCl molality from 0 to more than 6 mole/KgW. Combining this model with PHREEQC functionalities, CO2-CH4-brine-carbonate-sulfate equilibrium is calculated. From the calculations, we conclude that, for CO2-CH4-brine-carbonate systems, at deeper positions, magnesium is more likely to be dissolved in aqueous phase and calcite can be more stable than dolomite and, for CO2-CH4-brine-sulfate systems, with a presence of CH4, sulfate ions are likely to be reduced to S2− and H2S in gas phase could be released after S2− saturated in the solution. The hydrocarbon “souring” process could be reproduced from geochemical calculations in this work.

  17. Assessment of atmospheric distribution of polychlorinated biphenyls and polycyclic aromatic hydrocarbons using polyparameter model

    Directory of Open Access Journals (Sweden)

    Turk-Sekulić Maja M.

    2011-01-01

    Full Text Available Results of partial or total destruction of industrial plants, military targets, infrastructure, uncontrolled fires and explosions during the conflict period from 1991 to 1999, at the area of Western Balkans, were large amounts of hazardous organic matter that have been generated and emitted in the environment. In order to assess gas/particle partition of seven EPA polychlorinated biphenyls and sixteen EPA polycyclic aromatic hydrocarbons, twenty air samples have been collected at six urban, industrial and highly contaminated localities in Vojvodina. Hi-Vol methodology has been used for collecting ambiental air samples, that simultaneously collects gaseous and particulate phase with polyurethane foam filters (PUF and glass fiber filters (GFF. PUF and GFF filters have been analyzed, and concentration levels of gaseous PCBs and PAHs molecules in gaseous and particulate phase were obtained, converted and expressed through fraction of individual compounds sorbed onto particulate phase of the sample, in total detected quantity. Experimentally gained gas/particle partitioning values of PCBs and PAHs molecules have been compared with PP-LFER model estimated values. Significant deviation has been noticed during comparative analysis of estimated polyparameter model values for complete set of seven PCBs congeners. Much better agreement of experimental and estimated values is for polycyclic aromatic hydrocarbons, especially for molecules with four rings. These results are in a good correlation with literature data where polyparameter model has been used for predicting gas/particle partition of studied group of organic molecules.

  18. Novel extension of the trap model for electrons in liquid hydrocarbons

    International Nuclear Information System (INIS)

    Jamal, M.A.; Watt, D.E.

    1981-01-01

    A novel extension for the trap model of electron mobilities in liquid hydrocarbons is described. The new model assumes: (a) two main types of electron trap exist in liquid hydrocarbons, one is deep and the second is shallow; (b) these traps are the same in all liquid alkanes. The difference in electron mobilities in different alkanes is accounted for by the difference in the frequency of electron trapping in each state. The probability of trapping in each state has been evaluated from the known structures of the normal alkanes. Electron mobilities in normal alkanes (C 3 -C 10 ) show a very good correlation with the probability of trapping in deep traps, suggesting that the C-C bonds are the main energy sinks of the electron. A mathematical formula which expresses the electron mobility in terms of the probability of trapping in deep traps has been found from the Arrhenius relationship between electron mobilities and probability of trapping. The model has been extended for branched alkanes and the relatively high electron mobilities in globular alkanes has been explained by the fact that each branch provides some degree of screening to the skeleton structure of the molecule resulting in reduction of the probability of electron interaction with the molecular skeleton. (author)

  19. A simple one-step chemistry model for partially premixed hydrocarbon combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Sanchez, Antonio L. [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Leganes 28911 (Spain); Linan, Amable [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

    2006-10-15

    This work explores the applicability of one-step irreversible Arrhenius kinetics with unity reaction order to the numerical description of partially premixed hydrocarbon combustion. Computations of planar premixed flames are used in the selection of the three model parameters: the heat of reaction q, the activation temperature T{sub a}, and the preexponential factor B. It is seen that changes in q with equivalence ratio f need to be introduced in fuel-rich combustion to describe the effect of partial fuel oxidation on the amount of heat released, leading to a universal linear variation q(f) for f>1 for all hydrocarbons. The model also employs a variable activation temperature T{sub a}(f) to mimic changes in the underlying chemistry in rich and very lean flames. The resulting chemistry description is able to reproduce propagation velocities of diluted and undiluted flames accurately over the whole flammability limit. Furthermore, computations of methane-air counterflow diffusion flames are used to test the proposed chemistry under nonpremixed conditions. The model not only predicts the critical strain rate at extinction accurately but also gives near-extinction flames with oxygen leakage, thereby overcoming known predictive limitations of one-step Arrhenius kinetics. (author)

  20. Degradation of hydrocarbons under methanogenic conditions in different geosystems

    Science.gov (United States)

    Straaten, Nontje; Jiménez García, Núria; Richnow, Hans-Hermann; Krueger, Martin

    2014-05-01

    With increasing energy demand the search for new resources is becoming increasingly important for the future energy supply. Therefore the knowledge about fossil fuels like oil or natural gas and their extraction should be expanded. Biodegraded oil is found in many reservoirs worldwide. Consequently, it is very important to get insight in the microbial communities and metabolic processes involved in hydrocarbon degradation. Due to the lack of alternative electron acceptors in hydrocarbon-rich geosystems, degradation often takes place under methanogenic conditions. The aim of the present study is to identify the microorganisms and mechanisms involved in the degradation of complex hydrocarbons, like BTEX and polycyclic aromatic hydrocarbons, using culture dependent and independent techniques. For this purpose enrichment cultures from marine sediments, shales, coal and oil reservoirs are monitored for their capability to degrade alkanes and aromatic compounds. Moreover the environmental samples of these different geosystems analysed for evidence for the in situ occurrence of methanogenic oil degradation. The gas geochemical data provided in several cases hints for a recent biological origin of the methane present. First results of the microbial community analysis showed in environmental samples and enrichment cultures the existence of Bacteria known to degrade hydrocarbons. Also a diverse community of methanogenic Archaea could be found in the clone libraries. Additionally, in oil and coal reservoir samples the degradation of model hydrocarbons, e.g. methylnaphthalene, hexadecane and BTEX, to CH4 was confirmed by 13C-labeling. To explore the mechanisms involved in biodegradation, the enrichments as well as the original environmental samples are further analysed for the presence of respective functional genes.

  1. Mycelium-Like Networks Increase Bacterial Dispersal, Growth, and Biodegradation in a Model Ecosystem at Various Water Potentials.

    Science.gov (United States)

    Worrich, Anja; König, Sara; Miltner, Anja; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin; Harms, Hauke; Kästner, Matthias; Wick, Lukas Y

    2016-05-15

    Fungal mycelia serve as effective dispersal networks for bacteria in water-unsaturated environments, thereby allowing bacteria to maintain important functions, such as biodegradation. However, poor knowledge exists on the effects of dispersal networks at various osmotic (Ψo) and matric (Ψm) potentials, which contribute to the water potential mainly in terrestrial soil environments. Here we studied the effects of artificial mycelium-like dispersal networks on bacterial dispersal dynamics and subsequent effects on growth and benzoate biodegradation at ΔΨo and ΔΨm values between 0 and -1.5 MPa. In a multiple-microcosm approach, we used a green fluorescent protein (GFP)-tagged derivative of the soil bacterium Pseudomonas putida KT2440 as a model organism and sodium benzoate as a representative of polar aromatic contaminants. We found that decreasing ΔΨo and ΔΨm values slowed bacterial dispersal in the system, leading to decelerated growth and benzoate degradation. In contrast, dispersal networks facilitated bacterial movement at ΔΨo and ΔΨm values between 0 and -0.5 MPa and thus improved the absolute biodegradation performance by up to 52 and 119% for ΔΨo and ΔΨm, respectively. This strong functional interrelationship was further emphasized by a high positive correlation between population dispersal, population growth, and degradation. We propose that dispersal networks may sustain the functionality of microbial ecosystems at low osmotic and matric potentials. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Pollutant concentration profile reconstruction using digital soft sensors for biodegradation and exposure assessment in the presence of model uncertainty.

    Science.gov (United States)

    Kazantzis, Nikolaos; Kazantzi, Vasiliki; Christodoulou, Emmanuel G

    2014-01-01

    A new approach to the problem of environmental hazard assessment and monitoring for pollutant biodegradation reaction systems in the presence of uncertainty is proposed using soft sensor-based pollutant concentration dynamic profile reconstruction techniques. In particular, a robust reduced-order soft sensor is proposed that can be digitally implemented in the presence of inherent complexity and the inevitable model uncertainty. The proposed method explicitly incorporates all the available information associated with a process model characterized by varying degrees of uncertainty, as well as available sensor measurements of certain physicochemical quantities. Based on the above information, a reduced-order soft sensor is designed enabling the reliable reconstruction of pollutant concentration profiles in complex biodegradation systems that can not be always achieved due to physical and/or technical limitations associated with current sensor technology. The option of using the aforementioned approach to compute toxic load and persistence indexes on the basis of the reconstructed concentration profiles is also pursued. Finally, the performance of the proposed method is evaluated in two illustrative environmental hazard assessment case studies.

  3. Reaction kinetics and reactor modeling for fuel processing of liquid hydrocarbons to produce hydrogen. Isooctane reforming

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Manuel [Department of Refining and Petrochemicals, Center for Research and Development of the Venezuelan Oil Industry (PDVSA-Intevep), Sector el Tambor, P.O. Box 76343, Los Teques, Edo Miranda (Venezuela); Sira, Jorge [Department of Mechanical Engineering, Universidad de los Andes, Merida (Venezuela); Kopasz, John [US Department of Energy, Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2003-09-10

    A mathematical model was developed in the framework of the process simulator Aspen Plus in order to describe the reaction kinetics and performance of a fuel processor used for autothermal reforming of liquid hydrocarbons. Experimental results obtained in the facilities of Argonne National Laboratories (ANL) when reforming isooctane using a ceria-oxide catalyst impregnated with platinum were used in order to validate the reactor model. The reaction kinetics and reaction schemes were taken from published literature and most of the chemical reactions were modeled using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formulation to account for the effect of adsorption of reactants and products on the active sites of the catalyst. The water-gas-shift (WGS) reactor used to reduce the concentration of CO in the reformate was also modeled. Both reactor models use a simplified formulation for estimating the effectiveness factor of each chemical reaction in order to account for the effect of intraparticle mass transfer limitations on the reactor performance. Since the data in the literature on kinetics of autothermal reforming of liquid hydrocarbons using CeO{sub 2}-Pt catalyst is scarce, the proposed kinetic model for the reaction network was coupled to the sequential quadratic programming (SQP) algorithm implemented in Aspen Plus in order to regress the kinetic constants for the different reactions. The model describes the trend of the experimental data in terms of hydrogen yield and distribution of products with a relative deviation of {+-}15% for reforming temperatures between 600 and 800C and reactor space velocities between 15000 and 150000h{sup -1}.

  4. Biodegradation of hydrocarbons exploiting spent substrate from ...

    African Journals Online (AJOL)

    SAM

    2014-08-13

    Aug 13, 2014 ... Key words: Bioremediation, diesel, laccase, veratryl alcohol oxidase, Pleurotus ostreatus. ... Abbreviations: Lac, Laccases; MnP, Manganese peroxidases; VP, versatile peroxidases; VAO, veratryl alcohol oxidases; SMS, ..... Hacia un desarrollo sostenible del sistema de producción-consumo de los hongos ...

  5. Hydrocarbons biodegradation and evidence of mixed petroleum ...

    African Journals Online (AJOL)

    Chromatographic analysis of extracts from the Cross River system show evidence of variable composition of biogenic n-alkane profile with dominance of terrigenous over aquatic organic matter present (LHC/SHC-0.36-10.57) at upstream location reflecting the natural background levels and marked levels of petroleum ...

  6. Biodegradation of hydrocarbons exploiting spent substrate from ...

    African Journals Online (AJOL)

    In Acatzingo, Puebla, Mexico (east-central), oil spills have mainly affected agricultural fields. Pleurotus ostreatus is a white rot basidiomycete and produces extracellular enzymes (lacasses, manganese peroxidases, versatile peroxidases and veratryl alcohol oxidases). The production of edible mushrooms generates spent ...

  7. A model framework to describe growth-linked biodegradation of trace-level pesticides in the presence of coincidental carbon substrates and microbes

    DEFF Research Database (Denmark)

    Liu, Li; Helbling, Damian E.; Kohler, Hans-Peter E.

    2014-01-01

    , challenges remain in developing engineered remediation strategies for pesticide-contaminated environments because the fundamental processes that regulate growth-linked biodegradation of pesticides in natural environments remain poorly understood. In this research, we developed a model framework to describe......Pollutants such as pesticides and their degradation products occur ubiquitously in natural aquatic environments at trace concentrations (μg L–1 and lower). Microbial biodegradation processes have long been known to contribute to the attenuation of pesticides in contaminated environments. However...... growth-linked biodegradation of pesticides at trace concentrations. We used experimental data reported in the literature or novel simulations to explore three fundamental kinetic processes in isolation. We then combine these kinetic processes into a unified model framework. The three kinetic processes...

  8. Measurement, modeling, and analysis of nonmethane hydrocarbons and ozone in the southeast United States national parks

    Science.gov (United States)

    Kang, Daiwen

    In this research, the sources, distributions, transport, ozone formation potential, and biogenic emissions of VOCs are investigated focusing on three Southeast United States National Parks: Shenandoah National Park, Big Meadows site (SHEN), Great Smoky Mountains National Park at Cove Mountain (GRSM) and Mammoth Cave National Park (MACA). A detailed modeling analysis is conducted using the Multiscale Air Quality SImulation Platform (MAQSIP) focusing on nonmethane hydrocarbons and ozone characterized by high O3 surface concentrations. Nine emissions perturbation using the Multiscale Air Quality SImulation Platform (MAQSIP) focusing on nonmethane hydrocarbons and ozone characterized by high O 3 surface concentrations. In the observation-based analysis, source classification techniques based on correlation coefficient, chemical reactivity, and certain ratios were developed and applied to the data set. Anthropogenic VOCs from automobile exhaust dominate at Mammoth Cave National Park, and at Cove Mountain, Great Smoky Mountains National Park, while at Big Meadows, Shenandoah National Park, the source composition is complex and changed from 1995 to 1996. The dependence of isoprene concentrations on ambient temperatures is investigated, and similar regressional relationships are obtained for all three monitoring locations. Propylene-equivalent concentrations are calculated to account for differences in reaction rates between the OH and individual hydrocarbons, and to thereby estimate their relative contributions to ozone formation. Isoprene fluxes were also estimated for all these rural areas. Model predictions (base scenario) tend to give lower daily maximum O 3 concentrations than observations by 10 to 30%. Model predicted concentrations of lumped paraffin compounds are of the same order of magnitude as the observed values, while the observed concentrations for other species (isoprene, ethene, surrogate olefin, surrogate toluene, and surrogate xylene) are usually an

  9. A new HYSYS model for underground gasification of hydrocarbons under hydrothermal conditions

    KAUST Repository

    Alshammari, Y.M.

    2014-08-01

    A new subsurface process model was developed using the ASPEN HYSYS simulation environment to analyse the process energy and gasification efficiency at steady-state equilibrium conditions. Injection and production wells were simulated using the HYSYS pipe flow utilities which makes use of the Beggs and Brill flow correlation applicable for vertical pipes. The downhole reservoir hydrothermal reactions were assumed to be in equilibrium, and hence, the Gibbs reactor was used. It was found that high W/C ratios and low O/C ratios are required to maximise gasification efficiency at a constant hydrocarbon feed flowrate, while the opposite is true for the energy efficiency. This occurs due to the dependence of process energy efficiency on the gas pressure and temperature at surface, while the gasification efficiency depends on the gas composition which is determined by the reservoir reaction conditions which affects production distribution. Another effect of paramount importance is the increase in reservoir production rate which was found to directly enhance both energy and gasification efficiency showing conditions where the both efficiencies are theoretically maximised. Results open new routes for techno-economic assessment of commercial implementation of underground gasification of hydrocarbons. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  10. Peripheral white blood cells profile of biodegradable metal implant in mice animal model

    Energy Technology Data Exchange (ETDEWEB)

    Paramitha, Devi; Noviana, Deni, E-mail: deni@ipb.ac.id; Estuningsih, Sri [Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor (Indonesia); Ulum, Mokhamad Fakhrul [Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Bogor (Indonesia); Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru (Malaysia); Nasution, Ahmad Kafrawi [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru (Malaysia); Faculty of Engineering, Muhammadiyah University of Riau (UMRI), Pekanbaru (Indonesia); Hermawan, Hendra [Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University (ULaval) (Canada)

    2015-09-30

    Biocompatibility or safety of the medical device is considered important. It can be determined by blood profile examination. The aim of this study was to assess the biocompatibility of biodegradable metal implant through peripheral white blood cells (WBCs) profile approach. Forty eight male ddy mice were divided into four groups according to the materials implanted: iron wire (Fe), magnesium rod (Mg), stainless steel surgical wire (SS316L) and control with sham (K). Implants were inserted and attached onto the right femoral bone on latero-medial region. In this study, peripheral white blood cells and leukocyte differentiation were the parameters examined. The result showed that the WBCs value of all groups were decreased at the first day after implantation, increased at the 10th day and continued increasing at the 30th day of observation, except Mg group which has decreased. Neutrophil, as an inflammatory cells, was increased at the early weeks and decreased at the day-30 after surgery in all groups. Despite, these values during the observation were still within the normal range. As a conclus ion, biodegradable metal implants lead to an inflammatory reaction, with no adverse effect on WBC value found.

  11. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231.

    Science.gov (United States)

    Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin

    2016-07-15

    Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Anaerobic biodegradability of macropollutants

    DEFF Research Database (Denmark)

    Angelidaki, Irini

    2002-01-01

    A variety of test procedures for determination of anaerobic biodegradability has been reported. This paper reviews the methods developed for determination of anaerobic biodegradability of macro-pollutants. Anaerobic biodegradability of micro-pollutants is not included. Furthermore, factors...

  13. Hydrocarbon Degradation Potentials of Bacteria Isolated from Spent ...

    African Journals Online (AJOL)

    ADOWIE PERE

    bacteria strains in lubricating oil contaminated soils have potential application in the bioremediation of oil polluted sites and enhance the ... Keywords: Biodegradation, hydrocarbon, spent lubricating oil, gas chromatography. Increasing exploration and ..... microbial toxicity testing of lubricants - Some recommendations.

  14. Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment

    Czech Academy of Sciences Publication Activity Database

    Wald, J.; Hroudová, Miluše; Jansa, Jan; Vrchotová, B.; Macek, T.; Uhlík, O.

    2015-01-01

    Roč. 6, č. 1268 (2015) ISSN 1664-302X Institutional support: RVO:68378050 ; RVO:61388971 Keywords : biodegradation * polyaromatic hydrocarbons * stable isotope probing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.165, year: 2015

  15. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  16. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  17. A Mechanistic Model for Drug Release in PLGA Biodegradable Stent Coatings Coupled with Polymer Degradation and Erosion

    Science.gov (United States)

    Zhu, Xiaoxiang; Braatz, Richard D.

    2015-01-01

    Biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization (or molecular weight) is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer molecular weight change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed. PMID:25345656

  18. Toluene model for hydrocarbon risk assessment. Final report, 1 January-31 December 1989

    Energy Technology Data Exchange (ETDEWEB)

    Morre, J.

    1990-05-29

    This project was for continuation of research to investigate the molecular mode of action of a membrane-active hydrocarbon, toluene, potentially present in the Air Force environment as a flight fuel component or from other sources and to serve as a model for other membrane-active molecules in the environment. Two important target sites were identified where rapid dose-dependent but reversible changes in the membrane organization occurred at low dose levels. One of these was at the plasma membrane where the ability of the membrane to form protuberances was severely compromised. The other concerned a failure to form protuberances by membranes involved in internal trafficking between the endoplasmic reticulum and the Golgi apparatus. This step was reproduced in a cell-free system making detailed studies possible. The toluene inhibited step was identified as dependent on ATP hydrolysis. The involved ATPase activity was characterized, solubilized and partially purified.

  19. Assessing the polycyclic aromatic hydrocarbon (PAH) pollution of urban stormwater runoff: a dynamic modeling approach.

    Science.gov (United States)

    Zheng, Yi; Lin, Zhongrong; Li, Hao; Ge, Yan; Zhang, Wei; Ye, Youbin; Wang, Xuejun

    2014-05-15

    Urban stormwater runoff delivers a significant amount of polycyclic aromatic hydrocarbons (PAHs), mostly of atmospheric origin, to receiving water bodies. The PAH pollution of urban stormwater runoff poses serious risk to aquatic life and human health, but has been overlooked by environmental modeling and management. This study proposed a dynamic modeling approach for assessing the PAH pollution and its associated environmental risk. A variable time-step model was developed to simulate the continuous cycles of pollutant buildup and washoff. To reflect the complex interaction among different environmental media (i.e. atmosphere, dust and stormwater), the dependence of the pollution level on antecedent weather conditions was investigated and embodied in the model. Long-term simulations of the model can be efficiently performed, and probabilistic features of the pollution level and its risk can be easily determined. The applicability of this approach and its value to environmental management was demonstrated by a case study in Beijing, China. The results showed that Beijing's PAH pollution of road runoff is relatively severe, and its associated risk exhibits notable seasonal variation. The current sweeping practice is effective in mitigating the pollution, but the effectiveness is both weather-dependent and compound-dependent. The proposed modeling approach can help identify critical timing and major pollutants for monitoring, assessing and controlling efforts to be focused on. The approach is extendable to other urban areas, as well as to other contaminants with similar fate and transport as PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A minimal model for stabilization of biomolecules by hydrocarbon cross-linking

    Science.gov (United States)

    Hamacher, K.; Hübsch, A.; McCammon, J. A.

    2006-04-01

    Programmed cell death regulating protein motifs play an essential role in the development of an organism, its immune response, and disease-related cellular mechanisms. Among those motifs the BH3 domain of the BCL-2 family is found to be of crucial importance. Recent experiments showed how the isolated, otherwise unstructured BH3 peptide can be modified by a hydrocarbon linkage to regain function. We parametrized a reduced, dynamic model for the stability effects of such covalent cross-linking and confirmed that the model reproduces the reinforcement of the structural stability of the BH3 motif by cross-linking. We show that an analytically solvable model for thermostability around the native state is not capable of reproducing the stabilization effect. This points to the crucial importance of the peptide dynamics and the fluctuations neglected in the analytic model for the cross-linking system to function properly. This conclusion is supported by a thorough analysis of a simulated Gō model. The resulting model is suitable for rational design of generic cross-linking systems in silicio.

  1. Geochemistry of Dissolved Organic Matter in a Spatially Highly Resolved Groundwater Petroleum Hydrocarbon Plume Cross-Section.

    Science.gov (United States)

    Dvorski, Sabine E-M; Gonsior, Michael; Hertkorn, Norbert; Uhl, Jenny; Müller, Hubert; Griebler, Christian; Schmitt-Kopplin, Philippe

    2016-06-07

    At numerous groundwater sites worldwide, natural dissolved organic matter (DOM) is quantitatively complemented with petroleum hydrocarbons. To date, research has been focused almost exclusively on the contaminants, but detailed insights of the interaction of contaminant biodegradation, dominant redox processes, and interactions with natural DOM are missing. This study linked on-site high resolution spatial sampling of groundwater with high resolution molecular characterization of DOM and its relation to groundwater geochemistry across a petroleum hydrocarbon plume cross-section. Electrospray- and atmospheric pressure photoionization (ESI, APPI) ultrahigh resolution mass spectrometry (FT-ICR-MS) revealed a strong interaction between DOM and reactive sulfur species linked to microbial sulfate reduction, i.e., the key redox process involved in contaminant biodegradation. Excitation emission matrix (EEM) fluorescence spectroscopy in combination with Parallel Factor Analysis (PARAFAC) modeling attributed DOM samples to specific contamination traits. Nuclear magnetic resonance (NMR) spectroscopy evaluated the aromatic compounds and their degradation products in samples influenced by the petroleum contamination and its biodegradation. Our orthogonal high resolution analytical approach enabled a comprehensive molecular level understanding of the DOM with respect to in situ petroleum hydrocarbon biodegradation and microbial sulfate reduction. The role of natural DOM as potential cosubstrate and detoxification reactant may improve future bioremediation strategies.

  2. Use Of Biodegradation Ratios In Monitoring Trend Of Biostimulated Biodegradation In Crude Oil Polluted Soils

    Directory of Open Access Journals (Sweden)

    Okorondu

    2017-03-01

    Full Text Available This study deals with biodegradation experiment on soil contaminated with crude oil. The soil sample sets A BC D E F G were amended with inorganic fertilizer to enhance microbial growth and hydrocarbon degradation moisture content of some of the sets were as well varied. Biodegradation ratios nC17Pr nC18Ph and nC17nC18PrPh were used to monitor biodegradation of soil sets A BC D E F G for a period of 180. The soil samples were each contaminated with the same amount of crude oil and exposed to specific substrate treatment regarding the amount of nutrients and water content over the same period of time. The trend in biodegradation of the different soil sample sets shows that biodegradation ratio nC17nC18PrPh was more reflective of and explains the biodegradation trend in all the sample sets throughout the period of the experiment hence a better parameter ratio for monitoring trend of biostimulated biodegradation. The order of preference of the biodegradation ratios is expressed as nC18Ph nC17Pr nC17nC18 PrPh. This can be a relevant support tool when designing bioremediation plan on field.

  3. Modeling unburned hydrocarbon formation due to absorption/desorption processes into the wall oil film

    International Nuclear Information System (INIS)

    Shih, L.K.; Assanis, D.N.

    1992-01-01

    This paper reports that as a result of continuing air pollution problems, very stringent regulations are being enforced to control emissions of unburned hydrocarbons (HC) from premixed-charge, spark-ignition engines. A number of attempts have been reported on modeling sources of HC emissions using various analytical tools. Over the past decade, the development of multi-dimensional reacting flow codes has advanced considerably. Perhaps the most widely used multi-dimensional engine simulation code is KIVA-II, which was developed at Lost Alamos National Laboratory. The ability to deal with moving boundary conditions caused by the piston movement is built in this code. This code also includes models for turbulent fluid flow, turbulent interaction between spray drops and gas, heat transfer, chemical reaction, and fuel spray. A standard k-ε turbulence model is used for gas flow. The fuel spray model is based on the stochastic particle technique, and includes sub-models for droplet injection, breakup, collision and coalescence, and evaporation

  4. Including sorption to black carbon in modelling bioaccumulation of polycyclic aromatic hydrocarbons: Uncertainty analysis and comparison with field data

    NARCIS (Netherlands)

    Hauck, M.; Hendriks, A.J.; Huijbregts, M.J.A.; Koelmans, A.A.; Heuvel-Greve, van den M.J.; Moermond, C.T.A.; Veltman, K.; Vethaak, A.D.

    2007-01-01

    Model estimations of bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) have been higher than field or laboratory data. This has been explained by strong sorption to black carbon (BC). In this paper, eight previously published bioaccumulation datasets were reinterpreted in terms of

  5. Parsing pyrogenic polycyclic aromatic hydrocarbons: forensic chemistry, receptor models, and source control policy.

    Science.gov (United States)

    O'Reilly, Kirk T; Pietari, Jaana; Boehm, Paul D

    2014-04-01

    A realistic understanding of contaminant sources is required to set appropriate control policy. Forensic chemical methods can be powerful tools in source characterization and identification, but they require a multiple-lines-of-evidence approach. Atmospheric receptor models, such as the US Environmental Protection Agency (USEPA)'s chemical mass balance (CMB), are increasingly being used to evaluate sources of pyrogenic polycyclic aromatic hydrocarbons (PAHs) in sediments. This paper describes the assumptions underlying receptor models and discusses challenges in complying with these assumptions in practice. Given the variability within, and the similarity among, pyrogenic PAH source types, model outputs are sensitive to specific inputs, and parsing among some source types may not be possible. Although still useful for identifying potential sources, the technical specialist applying these methods must describe both the results and their inherent uncertainties in a way that is understandable to nontechnical policy makers. The authors present an example case study concerning an investigation of a class of parking-lot sealers as a significant source of PAHs in urban sediment. Principal component analysis is used to evaluate published CMB model inputs and outputs. Targeted analyses of 2 areas where bans have been implemented are included. The results do not support the claim that parking-lot sealers are a significant source of PAHs in urban sediments. © 2013 SETAC.

  6. Microbial degradation of crude oil hydrocarbons on organoclay minerals.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-11-01

    The role of organoclays in hydrocarbon removal during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The clays used for this study were Na-montmorillonite and saponite. These two clays were treated with didecyldimethylammonium bromide to produce organoclays which were used in this study. The study indicated that clays with high cation exchange capacity (CEC) such as Na-montmorillonite produced an organomontmorillonite that was inhibitory to biodegradation of the crude oil hydrocarbons. Extensive hydrophobic interaction between the organic phase of the organoclay and the crude oil hydrocarbons is suggested to render the hydrocarbons unavailable for biodegradation. However, untreated Na-montmorillonite was stimulatory to biodegradation of the hydrocarbons and is believed to have done so because of its high surface area for the accumulation of microbes and nutrients making it easy for the microbes to access the nutrients. This study indicates that unlike unmodified montmorillonites, organomontmorillonite may not serve any useful purpose in the bioremediation of crude oil spill sites where hydrocarbon removal by biodegradation is desired within a rapid time period. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7

    International Nuclear Information System (INIS)

    Lee, Kangtaek; Park, Jin-Won; Ahn, Ik-Sung

    2003-01-01

    Addition of a carbon source as a nutrient into soil is believed to enhance in situ bioremediation by stimulating the growth of microorganisms that are indigenous to the subsurface and are capable of degrading contaminants. However, it may inhibit the biodegradation of organic contaminants and result in diauxic growth. The objective of this work is to study the effect of pyruvate as another carbon source on the biodegradation of polynuclear aromatic hydrocarbons (PAHs). In this study, naphthalene was used as a model PAH, ammonium sulfate as a nitrogen source, and oxygen as an electron acceptor. Pseudomonas putida G7 was used as a model naphthalene-degrading microorganism. From a chemostat culture, the growth kinetics of P. putida G7 on pyruvate was determined. At concentrations of naphthalene and pyruvate giving similar growth rates of P. putida G7, diauxic growth of P. putida G7 was not observed. It is suggested that pyruvate does not inhibit naphthalene biodegradation and can be used as an additional carbon source to stimulate the growth of P. putida G7 that can degrade polynuclear aromatic hydrocarbons

  8. Biodegradation of direct blue 129 diazo dye by Spirodela polyrrhiza: An artificial neural networks modeling.

    Science.gov (United States)

    Movafeghi, A; Khataee, A R; Moradi, Z; Vafaei, F

    2016-01-01

    Phytoremediation potential of the aquatic plant Spirodela polyrrhiza was examined for direct blue 129 (DB129) azo dye. The dye removal efficiency was optimized under the variable conditions of the operational parameters including removal time, initial dye concentration, pH, temperature and amount of plant. The study reflected the significantly enhanced dye removal efficiency of S. polyrrhiza by increasing the temperature, initial dye concentration and amount of plant. Intriguingly, artificial neural network (ANN) predicted the removal time as the most dominant parameter on DB129 removal efficiency. Furthermore, the effect of dye treatment on some physiologic indices of S. polyrrhiza including growth rate, photosynthetic pigments content, lipid peroxidation and antioxidant enzymes were studied. The results revealed a reduction in photosynthetic pigments content and in multiplication of fronds after exposure to dye solution. In contrast, malondialdehyde content as well as catalase (CAT) and peroxidase (POD) activities significantly increased that was probably due to the ability of plant to overcome oxidative stress. As a result of DB129 biodegradation, a number of intermediate compounds were identified by gas chromatography-mass spectroscopy (GC-MS) analysis. Accordingly, the probable degradation pathway of DB129 in S. polyrrhiza was postulated.

  9. Biodegradation behavior of magnesium and ZK60 alloy in artificial urine and rat models

    Directory of Open Access Journals (Sweden)

    Shiying Zhang

    2017-06-01

    Full Text Available In this work, the biodegradable and histocompatibility properties of pure Mg and ZK60 alloy were investigated as new temporary implants for urinary applications. The corrosion mechanism in artificial urine was proposed using electrochemical impedance spectroscopy and potentiodynamic polarization tests. The corrosion potential of pure magnesium and ZK60 alloy were −1820 and −1561 mV, respectively, and the corrosion current densities were 59.66 ± 6.41 and 41.94 ± 0.53 μA cm−2, respectively. The in vitro degradation rates for pure Mg and ZK60 alloy in artificial urine were 0.382 and 1.023 mm/y, respectively, determined from immersion tests. The ZK60 alloy degraded faster than the pure Mg in both artificial urine and in rat bladders (the implants of both samples are ø 3 mm × 5 mm. Histocompatibility evaluations showed good histocompatibility for the pure Mg and ZK60 alloy during the 3 weeks post-implantation in rat bladders, and no harm was observed in the bladder, liver and kidney tissues. The results provide key information on the degradation properties and corrosion mechanism of pure Mg and ZK60 alloy in the urinary system.

  10. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ahuactzin-Pérez, Miriam [Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I) (Mexico); Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala (Mexico); Tlecuitl-Beristain, Saúl; García-Dávila, Jorge [Universidad Politécnica de Tlaxcala, San Pedro Xalcatzinco, Tepeyanco, Tlaxcala CP 90180 (Mexico); González-Pérez, Manuel [Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410 (Mexico); Gutiérrez-Ruíz, María Concepción [Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, D.F (Mexico); Sánchez, Carmen, E-mail: sanher6@hotmail.com [Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala CP. 90062 (Mexico)

    2016-10-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X{sub max}), biodegradation constant of DEHP (k), half-life (t{sub 1/2}) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X{sub max} occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t{sub 1/2} were 0.024 h{sup −1} and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  11. Numerical investigation of CO2 storage in hydrocarbon field using a geomechanical-fluid coupling model

    Directory of Open Access Journals (Sweden)

    Guang Li

    2016-09-01

    Full Text Available Increasing pore pressure due to CO2 injection can lead to stress and strain changes of the reservoir. One of the safely standards for long term CO2 storage is whether stress and strain changes caused by CO2 injection will lead to irreversible mechanical damages of the reservoir and impact the integrity of caprock which could lead to CO2 leakage through previously sealing structures. Leakage from storage will compromise both the storage capacity and the perceived security of the project, therefore, a successful CO2 storage project requires large volumes of CO2 to be injected into storage site in a reliable and secure manner. Yougou hydrocarbon field located in Orods basin was chosen as storage site based on it's stable geological structure and low leakage risks. In this paper, we present a fluid pressure and stress-strain variations analysis for CO2 geological storage based on a geomechanical-fluid coupling model. Using nonlinear elasticity theory to describe the geomechanical part of the model, while using the Darcy's law to describe the fluid flow. Two parts are coupled together using the poroelasticity theory. The objectives of our work were: 1 evaluation of the geomechanical response of the reservoir to different CO2 injection scenarios. 2 assessment of the potential leakage risk of the reservoir caused by CO2 injection.

  12. Hydrocarbons in the marine environment: origin, evolution and analysis

    International Nuclear Information System (INIS)

    Mille, G.; Garrigues, P.; Bertrand, J.C.

    1992-01-01

    Hydrocarbons arriving into the oceans from various sources are estimated to more than 6.10 6 tons/year. The different sources, natural and anthropogenic, are examined briefly. The influence of different factors on evaporation, oxidation, dissolution and biodegradation is reviewed. Methods for detection and analysis of hydrocarbons are summed up

  13. Acridine yellow as solar photocatalyst for enhancing biodegradability and eliminating ferulic acid as model pollutant

    Energy Technology Data Exchange (ETDEWEB)

    Amat, Ana M.; Arques, Antonio; Santos-Juanes, Lucas; Vercher, Rosa F.; Vicente, R. [Departamento de Ingenieria Textil y Papelera, EPSA-UPV, Universidad Politecnica de Valencia, Paseo Viaducto 1, E-03801 Alcoy (Spain); Galindo, Francisco [Departamento de Quimica Inorganica y Organica, Universitat Jaume I, E-12071 Castellon (Spain); Miranda, Miguel A. [Departamento de Quimica e Instituto de Tecnologia Quimica UPV-CSIC, Universidad Politecnica de Valencia, Apartado 22012, E-46071 Valencia (Spain)

    2007-05-11

    The possibility of using acridine yellow G (AYG) as solar photocatalyst for wastewater treatment has been examined in this paper. A phenolic compound, namely ferulic acid, has been employed as target pollutant. The effect of pH, concentration of the substrate and photocatalyst has been investigated. Control of pH is critical in the process, as rate constants obtained at pH 3 (k = 0.020 min{sup -1}) were one order of magnitude higher than in basic media (k = 0.002 min{sup -1} at pH 9), due to differences in the absorption spectrum in the UVA-vis region. Under acidic conditions, 80% removal of the substrate was achieved after 3 h irradiation, although TOC decrease was moderate (around 20%). Nevertheless important detoxification of the solution was measured, and the remaining organic matter showed an enhanced biodegradability. For this reason, a combination of AYG-driven solar photocatalysis with biological treatment seems a good approach to deal with these effluents. Experimental data are consistent with an electron transfer mechanism between the excited photocatalyst and the substrate: involvement of hydroxyl radicals can be ruled out, and photophysical measurements indicate a quenching of the fluorescence of AYG in the presence of ferulic acid. The rate constant for this process was obtained from the Stern-Volmer equation (k{sub q} = 4.4 x 10{sup 9} M{sup -1} s{sup -1}). Finally, based on the Rehm-Weller equation, a {delta}G = -22.8 kcal/mol was calculated, indicating that the process is thermodynamically favourable. (author)

  14. A Molecular Model for Repression of BRCA-1 Transcription by the Aryl Hydrocarbon Receptor

    National Research Council Canada - National Science Library

    Romagnolo, Donato

    2003-01-01

    ...) is mediated by the aryl hydrocarbon receptor (AhR). The scope of the project is to examine whether or not the activated AhR alters BRCA-1 transcription through binding to several xenobiotic responsive elements (XRE...

  15. Modeling the atmospheric transport and outflow of polycyclic aromatic hydrocarbons emitted from China

    Science.gov (United States)

    Zhang, Yanxu; Shen, Huizhong; Tao, Shu; Ma, Jianmin

    2011-06-01

    An Euler atmospheric transport model CanMETOP (Canadian Model for Environmental Transport of Organochlorine Pesticides) was applied to the atmospheric transport and outflow of polycyclic aromatic hydrocarbons (PAHs) in China in 2003 based on a square kilometer resolution emission inventory. The reaction with OH radical, gas/particle partition by considering the adsorption onto total aerosol surface area, and dynamic soil/ocean-air exchange of PAHs were also considered. The results show that the spatial distribution of PAH concentration levels in the atmosphere is greatly controlled by emission and meteorological conditions. Elevated concentration levels are predicted in Shanxi, Guizhou, North China Plain, Sichuan Basin and Chongqing metropolitan areas due to the high emission densities at those locations. High concentrations are also modeled in environments offshore of China and in the western Pacific Ocean. The model also predicts a slightly decreasing vertical profile in the planetary boundary layer (lower than ˜1 km), but concentration decreases ˜2 orders of magnitude in the free atmosphere. The Westerlies as well as the East Asian Monsoon and local topographical forcings are identified as key factors influencing the transport pattern of PAHs in China. In 2003, ˜3800°tons of the sixteen parent PAHs listed on USEPA priority control list were transported out of China with about 80% transported through the eastern boundary. The outflow concentrates near 30°N, signifying a slight discrepancy from the position of emission density peaks. The center of the outflow plume is located at a height of ˜1 km at 120°E, and climbs to 3.5 km and 5 km at 130°E and 140°E, respectively. A seasonal variation of 5-6 fold is also found for the outflow flux with greatly elevated transport flux in spring and winter.

  16. KINETIC DISTRIBUTION MODEL OF EVAPORATION, BIOSORPTION AND BIODEGRADATION OF POLYCHLORINATED BIPHENYLS (PCBS) IN THE SUSPENSION OF PSEUDOMONAS STUTZERI. (R826652)

    Science.gov (United States)

    AbstractKinetics of distribution of PCBs in an active bacterial suspension of Pseudomonas stutzeri was studied by monitoring the evaporated amounts and the concentration remaining in the liquid medium with the biomass. To determine the biodegradation rate const...

  17. Evidence of hydrocarbon nanodrops in highly ordered stratum corneum model membranes.

    Science.gov (United States)

    Paz Ramos, Adrian; Gooris, Gert; Bouwstra, Joke; Lafleur, Michel

    2018-01-01

    The stratum corneum (SC), the top layer of skin, dictates the rate of both water loss through the skin and absorption of exogenous molecules into the body. The crystalline organization of the lipids in the SC is believed to be a key feature associated with the very limited permeability of the skin. In this work, we characterized the organization of SC lipid models that include, as in native SC, cholesterol, a series of FFAs (saturated with C16-C24 chains), as well as a ceramide bearing an oleate chain-linked to a very long saturated acyl chain [ N -melissoyl-oleoyloxy hexacosanoyl-D- erythro -sphingosine (Cer EOS)]. The latter is reported to be essential for the native SC lipid organization. Our 2 H-NMR, infrared, and Raman spectroscopy data reveal that Cer EOS leads to the formation of highly disordered liquid domains in a solid/crystalline matrix. The lipid organization imposes steric constraint on Cer EOS oleate chains in such a way that these hydrocarbon nanodroplets remain in the liquid state down to -30°C. These findings modify the structural description of the SC substantially and propose a novel role of Cer EOS, as this lipid is a strong modulator of SC solid/liquid balance. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. Theoretical study on modeling and prediction of optical rotation for biodegradable polymers containing α-amino acids using QSAR approaches.

    Science.gov (United States)

    Mallakpour, Shadpour; Hatami, Mehdi; Golmohammadi, Hassan

    2011-07-01

    The main purpose of the present study was modeling and prediction of the optical rotation ([M](D)) of some biodegradable polymers containing α-amino acids using quantitative structure-activity relationship (QSAR) approaches. In order to attain this goal, the optical rotation of a collection of 53 polymers was selected as a data set. The data set was randomly divided into three sections, training, test and external validation sets. By using dragon software, various descriptors were calculated for all molecules in the data set. The important descriptors were selected applying genetic algorithm-partial least squares (GA-PLS) method. Then an artificial neural network (ANN) was written with MATLAB 7 and used these descriptors as inputs and its output was optical rotation of desired polymers. Then, the constructed network was used for the prediction of ([M](D)) values of validation set. The squared correlation coefficient R² values of the ANN model for the training, test and validation sets were 0.998, 0.996 and 0.996 respectively. The results showed the ability of developed ANN to predict optical rotation of various polymers.

  19. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    Directory of Open Access Journals (Sweden)

    Angela eSherry

    2014-04-01

    Full Text Available Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5-nC10, methylcyclohexane, benzene, toluene and xylenes were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12-nC34 and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 µmol CH4/g sediment/day with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12-nC34. For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 µmol CH4/g sediment/day. This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers.

  20. BIOREMEDIATION OF A PETROLEUM-HYDROCARBON

    African Journals Online (AJOL)

    ES OBE

    These results highlight the view that the availability of large amounts of oxygen in the soil profile induces an accelerated biodegradation of petroleum hydrocarbons in a polluted agricultural soil and implies that regular tillage of contaminated soils in the presence of nutrients could achieve the decontamination of such soils.

  1. Biosurfactant-enhanced remediation of hydrocarbon contaminated ...

    African Journals Online (AJOL)

    Crude biosurfactant extract produced by two microbial isolates, Pseudomonas mallei and Pseudomonas pseudomallei were used to enhance the biodegradation rates of petroleum hydrocarbon pollutants in a mangrove swamp in Nigeria. Nutrient application in combination with biosurfactants showed very significant ...

  2. How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration

    Science.gov (United States)

    Peel, Frank J.

    2014-09-01

    Existing models for the initiation of salt withdrawal minibasins focus on the role of triggers that exist within the minibasin, either stratigraphic (e.g. differential deposition) or tectonic (extension, translation or contraction). Existing studies tend to focus on complex settings, such as continental margins, which contain many different potential triggering mechanisms. It can be difficult in these settings to identify which process is responsible for minibasin initiation, or the influence of individual factors on their subsequent development. Salt withdrawal minibasins also exist in simpler settings, without any obvious intrinsic trigger; the region of the North German Basin used by Trusheim (1960) in the classic definition of salt withdrawal geometries was of this nature. There is no overall basal or surface slope, no major lateral movement, and there is no depositional heterogeneity. Previously recognized trigger processes for minibasin initiation do not apply in this benign setting, suggesting that other, potentially more fundamental, influences may be at work. A simple forward-modelling approach shows how, in the absence of any other mechanism, a new minibasin can develop as the consequence of salt movement driven by its neighbour, and families of withdrawal minibasins can propagate across a region from a single seed point. This new mechanism may explain how some minibasins appear to initiate before the sediment density has exceeded that of the underlying salt. The forward modelling also indicates that some minibasins begin to invert to form turtle anticlines before the underlying salt has been evacuated, so that the timing of turtle formation may not be diagnostic of weld formation. This mechanism may also give rise to salt-cored turtles that have a lens of salt trapped beneath their cores. These new findings have implications for hydrocarbon migration and trapping.

  3. Evaluation of the phototoxicity of unsubstituted and alkylated polycyclic aromatic hydrocarbons to mysid shrimp (Americamysis bahia): Validation of predictive models.

    Science.gov (United States)

    Finch, Bryson E; Marzooghi, Solmaz; Di Toro, Dominic M; Stubblefield, William A

    2017-08-01

    Crude oils are composed of an assortment of hydrocarbons, some of which are polycyclic aromatic hydrocarbons (PAHs). Polycyclic aromatic hydrocarbons are of particular interest due to their narcotic and potential phototoxic effects. Several studies have examined the phototoxicity of individual PAHs and fresh and weathered crude oils, and several models have been developed to predict PAH toxicity. Fingerprint analyses of oils have shown that PAHs in crude oils are predominantly alkylated. However, current models for estimating PAH phototoxicity assume toxic equivalence between unsubstituted (i.e., parent) and alkyl-substituted compounds. This approach may be incorrect if substantial differences in toxic potency exist between unsubstituted and substituted PAHs. The objective of the present study was to examine the narcotic and photo-enhanced toxicity of commercially available unsubstituted and alkylated PAHs to mysid shrimp (Americamysis bahia). Data were used to validate predictive models of phototoxicity based on the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap approach and to develop relative effect potencies. Results demonstrated that photo-enhanced toxicity increased with increasing methylation and that phototoxic PAH potencies vary significantly among unsubstituted compounds. Overall, predictive models based on the HOMO-LUMO gap were relatively accurate in predicting phototoxicity for unsubstituted PAHs but are limited to qualitative assessments. Environ Toxicol Chem 2017;36:2043-2049. © 2017 SETAC. © 2017 SETAC.

  4. Corexit 9500 Enhances Oil Biodegradation and Changes ...

    Science.gov (United States)

    While COREXIT 9500 is widely applied after oil spills for its reported dispersing activity, there is still a debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on microbial communities. To better understand the impact of COREXIT 9500 on the structure and activity levels of hydrocarbon degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at cryophilic and mesophilic conditions and using both DNA and RNA extracts as sequencing templates. Oil biodegradation patterns in both cryophilic and mesophilic enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). A slight increase in biodegradation was observed in the presence of COREXIT at both 25°C and 5°C experiments. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia was dominated by unclassified members of the Vibrio, Pseudoidiomarina, Marinobacter, Alcanivorax, and Thallassospira species, while the 5°C consortia were dominated by several genera of Flavobacteria, Alcanivorax and Oleispira. With the exception of Vibrio-like species, members of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, was also found in these enrichments. RNA-based sequencing of 25°C

  5. Best conditions for biodegradation of diesel oil by chemometric tools

    Directory of Open Access Journals (Sweden)

    Ewa Kaczorek

    2014-01-01

    Full Text Available Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences. These tools were used in the selection of the most effective systems. The best results of aliphatic fractions of diesel oil biodegradation were observed for a yeast consortia with Aeromonas hydrophila KR4. For these systems the positive effect of rhamnolipids on hydrocarbon biodegradation was observed. However, rhamnolipids addition did not always have a positive influence on the biodegradation process (e.g. in case of yeast consortia with Stenotrophomonas maltophila KR7. Moreover, particular differences in the degradation pattern were observed for lower and higher alkanes than in the case with C22. Normally, the best conditions for "lower" alkanes are Aeromonas hydrophila KR4 + emulsifier independently from yeasts and e.g. Pseudomonas stutzeri KR7 for C24 alkane.

  6. Best conditions for biodegradation of diesel oil by chemometric tools

    Science.gov (United States)

    Kaczorek, Ewa; Bielicka-Daszkiewicz, Katarzyna; Héberger, Károly; Kemény, Sándor; Olszanowski, Andrzej; Voelkel, Adam

    2014-01-01

    Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences). These tools were used in the selection of the most effective systems. The best results of aliphatic fractions of diesel oil biodegradation were observed for a yeast consortia with Aeromonas hydrophila KR4. For these systems the positive effect of rhamnolipids on hydrocarbon biodegradation was observed. However, rhamnolipids addition did not always have a positive influence on the biodegradation process (e.g. in case of yeast consortia with Stenotrophomonas maltophila KR7). Moreover, particular differences in the degradation pattern were observed for lower and higher alkanes than in the case with C22. Normally, the best conditions for “lower” alkanes are Aeromonas hydrophila KR4 + emulsifier independently from yeasts and e.g. Pseudomonas stutzeri KR7 for C24 alkane. PMID:24948922

  7. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation.

    Science.gov (United States)

    Sarkar, Poulomi; Roy, Ajoy; Pal, Siddhartha; Mohapatra, Balaram; Kazy, Sufia K; Maiti, Mrinal K; Sar, Pinaki

    2017-10-01

    Intrinsic biodegradation potential of bacteria from petroleum refinery waste was investigated through isolation of cultivable strains and their characterization. Pseudomonas and Bacillus spp. populated the normal cultivable taxa while prolonged enrichment with hydrocarbons and crude oil yielded hydrocarbonoclastic bacteria of genera Burkholderia, Enterobacter, Kocuria, Pandoraea, etc. Strains isolated through enrichment showed assemblages of superior metabolic properties: utilization of aliphatic (C6-C22) and polyaromatic compounds, anaerobic growth with multiple terminal electron acceptors and higher biosurfactant production. Biodegradation of dodecane was studied thoroughly by GC-MS along with detection of gene encoding alkane hydroxylase (alkB). Microcosms bioaugmented with Enterobacter, Pandoraea and Burkholderia strains showed efficient biodegradation (98% TPH removal) well fitted in first order kinetic model with low rate constants and decreased half-life. This study proves that catabolically efficient bacteria resides naturally in complex petroleum refinery wastes and those can be useful for bioaugmentation based bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Statistical Modeling of Occupational Exposure to Polycyclic Aromatic Hydrocarbons Using OSHA Data.

    Science.gov (United States)

    Lee, Derrick G; Lavoué, Jérôme; Spinelli, John J; Burstyn, Igor

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a group of pollutants with multiple variants classified as carcinogenic. The Occupational Safety and Health Administration (OSHA) provided access to two PAH exposure databanks of United States workplace compliance testing data collected between 1979 and 2010. Mixed-effects logistic models were used to predict the exceedance fraction (EF), i.e., the probability of exceeding OSHA's Permissible Exposure Limit (PEL = 0.2 mg/m3) for PAHs based on industry and occupation. Measurements of coal tar pitch volatiles were used as a surrogate for PAHs. Time, databank, occupation, and industry were included as fixed-effects while an identifier for the compliance inspection number was included as a random effect. Analyses involved 2,509 full-shift personal measurements. Results showed that the majority of industries had an estimated EF < 0.5, although several industries, including Standardized Industry Classification codes 1623 (Water, Sewer, Pipeline, and Communication and Powerline Construction), 1711 (Plumbing, Heating, and Air-Conditioning), 2824 (Manmade Organic Fibres), 3496 (Misc. Fabricated Wire products), and 5812 (Eating Places), and Major group's 13 (Oil and Gas Extraction) and 30 (Rubber and Miscellaneous Plastic Products), were estimated to have more than an 80% likelihood of exceeding the PEL. There was an inverse temporal trend of exceeding the PEL, with lower risk in most recent years, albeit not statistically significant. Similar results were shown when incorporating occupation, but varied depending on the occupation as the majority of industries predicted at the administrative level, e.g., managers, had an estimated EF < 0.5 while at the minimally skilled/laborer level there was a substantial increase in the estimated EF. These statistical models allow the prediction of PAH exposure risk through individual occupational histories and will be used to create a job-exposure matrix for use in a population-based case

  9. Molecular level biodegradation of phenol and its derivatives through dmp operon of Pseudomonas putida: A bio-molecular modeling and docking analysis.

    Science.gov (United States)

    Ray, Sujay; Banerjee, Arundhati

    2015-10-01

    Participation of Pseudomonas putida-derived methyl phenol (dmp) operon and DmpR protein in the biodegradation of phenol or other harmful, organic, toxic pollutants was investigated at a molecular level. Documentation documents that P. putida has DmpR protein which positively regulates dmp operon in the presence of inducers; like phenols. From the operon, phenol hydroxylase encoded by dmpN gene, participates in degrading phenols after dmp operon is expressed. For the purpose, the 3-D models of the four domains from DmpR protein and of the DNA sequences from the two Upstream Activation Sequences (UAS) present at the promoter region of the operon were demonstrated using discrete molecular modeling techniques. The best modeled structures satisfying their stereo-chemical properties were selected in each of the cases. To stabilize the individual structures, energy optimization was performed. In the presence of inducers, probable interactions among domains and then the two independent DNA structures with the fourth domain were perused by manifold molecular docking simulations. The complex structures were made to be stable by minimizing their overall energy. Responsible amino acid residues, nucleotide bases and binding patterns for the biodegradation, were examined. In the presence of the inducers, the biodegradation process is initiated by the interaction of phe50 from the first protein domain with the inducers. Only after the interaction of the last domain with the DNA sequences individually, the operon is expressed. This novel residue level study is paramount for initiating transcription in the operon; thereby leading to expression of phenol hydroxylase followed by phenol biodegradation. Copyright © 2015. Published by Elsevier B.V.

  10. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  11. Quantitative structure-activity relationship modeling of polycyclic aromatic hydrocarbon mutagenicity by classification methods based on holistic theoretical molecular descriptors.

    Science.gov (United States)

    Gramatica, Paola; Papa, Ester; Marrocchi, Assunta; Minuti, Lucio; Taticchi, Aldo

    2007-03-01

    Various polycyclic aromatic hydrocarbons (PAHs), ubiquitous environmental pollutants, are recognized mutagens and carcinogens. A homogeneous set of mutagenicity data (TA98 and TA100,+S9) for 32 benzocyclopentaphenanthrenes/chrysenes was modeled by the quantitative structure-activity relationship classification methods k-nearest neighbor and classification and regression tree, using theoretical holistic molecular descriptors. Genetic algorithm provided the selection of the best subset of variables for modeling mutagenicity. The models were validated by leave-one-out and leave-50%-out approaches and have good performance, with sensitivity and specificity ranges of 90-100%. Mutagenicity assessment for these PAHs requires only a few theoretical descriptors of their molecular structure.

  12. Activated sludge mass reduction and biodegradability of the endogenous residues by digestion under different aerobic to anaerobic conditions: Comparison and modeling.

    Science.gov (United States)

    Martínez-García, C G; Fall, C; Olguín, M T

    2016-03-01

    This study was performed to identify suitable conditions for the in-situ reduction of excess sludge production by intercalated digesters in recycle-activated sludge (RAS) flow. The objective was to compare and model biological sludge mass reduction and the biodegradation of endogenous residues (XP) by digestion under hypoxic, aerobic, anaerobic, and five intermittent-aeration conditions. A mathematical model based on the heterotrophic endogenous decay constant (bH) and including the biodegradation of XP was used to fit the long-term data from the digesters to identify and estimate the parameters. Both the bH constant (0.02-0.05 d(-1)) and the endogenous residue biodegradation constant (bP, 0.001-0.004 d(-1)) were determined across the different mediums. The digesters with intermittent aeration cycles of 12 h-12 h and 5 min-3 h (ON/OFF) were the fastest, compared to the aerobic reactor. The study provides a basis for rating RAS-digester volumes to avoid the accumulation of XP in aeration tanks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluation of a novel biodegradable thermosensitive keto-hydrogel for improving postoperative pain in a rat model.

    Directory of Open Access Journals (Sweden)

    Meng-Huang Wu

    Full Text Available This study evaluates the sustained analgesic effect of ketorolac-eluting thermosensitive biodegradable hydrogel in the plantar incisional pain model of the rat hind-paw. A ketorolac-embedded 2, 2'-Bis (2-oxazolin (BOX linking methoxy-poly(ethylene glycol and poly(lactide-co-glycolide (mPEG-PLGA diblock copolymer (BOX copolymer was synthesized as keto-hydrogel based on optimal sol-gel phase transition and in vitro drug release profile. The effect of keto-hydrogel on postoperative pain (POP was assessed using the established plantar incisional pain model in hind-paw of rats and compared to that of ketorolac solution. Pain and sensory threshold, as well as pain scoring, were evaluated with behavioral tests by means of anesthesiometer and incapacitance apparatus, respectively. Pro-inflammatory cytokine levels (TNF-α, IL-6, VEGF, and IL-1β around incisional wounds were measured by ELISA. Tissue histology was assessed using hematoxylin and eosin and Masson's trichrome staining. Ten mg/mL (25 wt% keto-hydrogel showed a sol-gel transition at 26.4°C with a 10-day sustained drug release profile in vitro. Compared to ketorolac solution group, the concentration of ketorolac in tissue fluid was higher in the keto-hydrogel group during the first 18 h of application. Keto-hydrogel elevated pain and sensory threshold, increased weight-bearing capacity, and significantly reduced the levels of TNF-α, IL-6, and IL-1β while enhanced VEGF in tissue fluid. Histologic analysis reveals greater epithelialization and collagen deposition around wound treated with keto-hydrogel. In conclusion, our study suggests that keto-hydrogel is an ideal compound to treat POP with a secondary gain of improved incisional wound healing.

  14. Theoretical modeling of infrared emission from neutral and charged polycyclic aromatic hydrocarbons. II.

    NARCIS (Netherlands)

    Bakes, ELO; Tielens, AGGM; Bauschlicher, CW; Hudgins, DM; Allamandola, LJ

    2001-01-01

    The nature of the carriers of the interstellar infrared (IR) emission features between 3.3 and 12.7 mum is complex. We must consider emission from a family of polycyclic aromatic hydrocarbons (PAHs) in a multiplicity of cationic charge states (+1, +2, +3, and so on), along with neutral and anionic

  15. Study and optimization of the biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) and Poly-chloro-biphenyls (PCBs) during the anaerobic and aerobic digestion of long-term contaminated urban sludge; Etude et optimisation de la biodegradation d'hydrocarbures aromatiques polycycliques (HAPs) et de polychlorobiphenyls (PCBs) au cours de la digestion anaerobie et aerobie de boues urbaines contaminees

    Energy Technology Data Exchange (ETDEWEB)

    Trably, E.

    2002-12-15

    This study deals with the behavior of PAHs and PCBs during anaerobic and aerobic digestion of long-term contaminated sludge. Initially, an analytical method of 13 PAHs in sludge was developed to PAH-monitoring in laboratory-scaled bioreactors. For this, the method was optimized and validated for its high accuracy and its high reproducibility. In order to estimate precisely the PAH and PCB biological removal performances of each reactor, it was also proposed a method of analysis of the results based on mass balance. Therefore, it was observed for the first time significant PAHs removal under methanogenic conditions. It was also shown that PAH and PCB removals were limited by the mass transfer kinetics and particularly by the reduction of solids. The anaerobic and aerobic processes were then optimized by improving the PAH diffusion with the enhancement of reactor temperature and with the addition of surfactants and solvent, such as methanol. It was highlighted the great fragility of the methanogenic ecosystems and, on the opposite, the strong potential of the aerobic ecosystem for PAHs biodegradation. Indeed, some aerobic processes were successful in decontaminating sludge significantly (at 45 deg. C or in the presence of methanol). Lastly, the PAH biodegradation was characterized partly by the monitoring of {sup 14}C-radiolabelled compounds and by the molecular identification of the methanogenic archaea species. It was suggested that some archaea microorganisms were implied in PAHs biodegradation under strict anaerobic methanogenic conditions. (author)

  16. Biodegradable urethral stents seeded with autologous urethral epithelial cells in the treatment of post-traumatic urethral stricture: a feasibility study in a rabbit model.

    Science.gov (United States)

    Fu, Wei-Jun; Zhang, Xu; Zhang, Bing-Hong; Zhang, Peng; Hong, Bao-Fa; Gao, Jiang-Ping; Meng, Bo; Kun, Hu; Cui, Fu-Zhai

    2009-07-01

    To evaluate the adhesion and growth of rabbit urethral epithelial cells (UECs) on a biodegradable unbraided mesh urethral stent, and to assess the feasibility and effect of the cell-seeded urethral stent for treating post-traumatic urethral stricture (PTUS) in a rabbit model. Rabbit UECs were collected by biopsy from adult rabbit urethra and seeded onto the outer layer of a mesh biodegradable urethral stent. The growth of UECs in cell-scaffolds was assessed by scanning electron microscopy, immunohistochemical and fluorescence staining. In all, 32 male New Zealand rabbits were used, with either PTUS or uninjured, as a control group. Cell-seeded stents were implanted into the rabbits strictured urethra. The histological and immunohistochemical findings were assessed after death at 1, 2, 8, 12 and 24 weeks, respectively. The reconstruction and function were evaluated by urethroscopy and retrograde urethrography. The cultured UECs adhered to the stent and grew well. Immunohistochemistry showed that the cells were stained positively for cytokeratin. At 4 weeks, vs 2 weeks, the thickness of the papillary projections of the epithelium decreased and inflammatory cell infiltration diminished. At 24 weeks the injured urethra was completely covered by integrated regeneration of three to five layers of urothelium. There was no evidence of voiding difficulty, stricture recurrence or other complications. The unbraided mesh biodegradable urethral stent with autologous UECs seemed to be feasible for treating PTUS in the rabbit urethra, and provides a hopeful avenue for clinical application allowing reconstruction of PTUS.

  17. Modelling of toluene biodegradation and biofilm growth in a fixed biofilm reactor

    DEFF Research Database (Denmark)

    Arcangeli, Jean-Pierre; Arvin, Erik

    1992-01-01

    which grow relatively fast and detach easily, leading to a biomass growth delayed with respect to substrate degradation. The non-filamentous bacteria inside the biofilm also degrade toluene but with a slower rate compared to the filamentous bacteria. Because the nonfilamentous bacteria do not detach...... with toluene degradation was successfully modelled as well as the decay phase when toluene addition was turned off. In addition to this, modelling of toluene removal and oxygen consumption versus toluene concentration in the reactor was performed. This required consideration of inhibition of substrate...

  18. Biodegradation of subsurface oil in a tidally influenced sand beach: Impact of hydraulics and interaction with pore water chemistry

    Science.gov (United States)

    Geng, Xiaolong; Boufadel, Michel C.; Lee, Kenneth; Abrams, Stewart; Suidan, Makram

    2015-05-01

    The aerobic biodegradation of oil in tidally influenced beaches was investigated numerically in this work using realistic beach and tide conditions. A numerical model BIOMARUN, coupling a multiple-Monod kinetic model BIOB to a density-dependent variably saturated groundwater flow model 2-D MARUN, was used to simulate the biodegradation of low-solubility hydrocarbon and transport processes of associated solute species (i.e., oxygen and nitrogen) in a tidally influenced beach environment. It was found that different limiting factors affect different portions of the beach. In the upper intertidal zone, where the inland incoming nutrient concentration was large (1.2 mg N/L), oil biodegradation occurred deeper in the beach (i.e., 0.3 m below the surface). In the midintertidal zone, a reversal was noted where the biodegradation was fast at shallow locations (i.e., 0.1 m below the surface), and it was due to the decrease of oxygen with depth due to consumption, which made oxygen the limiting factor for biodegradation. Oxygen concentration in the midintertidal zone exhibited two peaks as a function of time. One peak was associated with the high tide, when dissolved oxygen laden seawater filled the beach and a second oxygen peak was observed during low tides, and it was due to pore oxygen replenishment from the atmosphere. The effect of the capillary fringe (CF) height was investigated, and it was found that there is an optimal CF for the maximum biodegradation of oil in the beach. Too large a CF (i.e., very fine material) would attenuate oxygen replenishment (either from seawater or the atmosphere), while too small a CF (i.e., very coarse material) would reduce the interaction between microorganisms and oil in the upper intertidal zone due to rapid reduction in the soil moisture at low tide. This article was corrected on 22 JUN 2015. See the end of the full text for details.

  19. Receptor modeling of C2─C7 hydrocarbon sources at an urban background site in Zurich, Switzerland: changes between 1993─1994 and 2005─2006

    Directory of Open Access Journals (Sweden)

    S. Reimann

    2008-05-01

    Full Text Available Hourly measurements of 13 volatile hydrocarbons (C2–C7 were performed at an urban background site in Zurich (Switzerland in the years 1993–1994 and again in 2005–2006. For the separation of the volatile organic compounds by gas-chromatography (GC, an identical chromatographic column was used in both campaigns. Changes in hydrocarbon profiles and source strengths were recovered by positive matrix factorization (PMF. Eight and six factors could be related to hydrocarbon sources in 1993–1994 and in 2005–2006, respectively. The modeled source profiles were verified by hydrocarbon profiles reported in the literature. The source strengths were validated by independent measurements, such as inorganic trace gases (NOx, CO, SO2, methane (CH4, oxidized hydrocarbons (OVOCs and meteorological data (temperature, wind speed etc.. Our analysis suggests that the contribution of most hydrocarbon sources (i.e. road traffic, solvents use and wood burning decreased by a factor of about two to three between the early 1990s and 2005–2006. On the other hand, hydrocarbon losses from natural gas leakage remained at relatively constant levels (−20%. The estimated emission trends are in line with the results from different receptor-based approaches reported for other European cities. Their differences to national emission inventories are discussed.

  20. Preparation, characterization and in silico modeling of biodegradable nanoparticles containing cyclosporine A and coenzyme Q10

    Energy Technology Data Exchange (ETDEWEB)

    Ankola, D D; Ravi Kumar, M N V [Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR (United Kingdom); Durbin, E W [Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Buxton, G A [Department of Sciences, Robert Morris University, 6001 University Boulevard, Moon Township, PA 15108 (United States); Schaefer, J; Bakowsky, U, E-mail: mnvrkumar@strath.ac.uk [Department of Pharmaceutics and Biopharmacy, Philipps Universitt, 35037 Marburg (Germany)

    2010-02-10

    Combination therapy will soon become a reality, particularly for those patients requiring poly-therapy to treat co-existing disease states. This becomes all the more important with the increasing cost, time and complexity of the drug discovery process prompting one to look at new delivery systems to increase the efficacy, safety and patient compliance of existing drugs. Along this line, we attempted to design nano-scale systems for simultaneous encapsulation of cyclosporine A (CsA) and coenzyme Q10 (CoQ10) and model their encapsulation and release kinetics. The in vitro characterization of the co-encapsulated nanoparticles revealed that the surfactant nature, concentration, external phase volume, droplet size reduction method and drug loading concentration can all influence the overall performance of the nanoparticles. The semi-quantitative solubility study indicates the strong influence of CoQ10 on CsA entrapment which was thought to be due to an increase in the lipophilicity of the overall system. The in vitro dissolution profile indicates the influence of CoQ10 on CsA release (64%) to that of individual particles of CsA, where the release is faster and higher (86%) on 18th day. The attempts to model the encapsulation and release kinetics were successful, offering a possibility to use such models leading to high throughput screening of drugs and their nature, alone or in combination for a particular polymer, if chi-parameters are understood.

  1. Aerobic biodegradation of a mixture of chlorinated organics in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... DCM; and 0.232 – 0.588 week-1 for DCA in both water microcosms with higher degradation generally observed in New ... Key words: Bioaugmentation, biodegradation, biostimulation, chlorinated aliphatic hydrocarbons, microcosms. ... culture (OD of 1 at λ600) of the consortia was added separately to.

  2. The use of ecocores to evaluate biodegradation in marine sediments

    DEFF Research Database (Denmark)

    Jensen, Kurt; Albrechtsen, Hans-Jørgen; Nielsen, Jef

    1988-01-01

    A laboratory sediment microcosm called the ecocore is described. It has been used to test the biodegradability of substances which predominantly enter the sediment. A new method for introducing hydrophobic test substances such as hydrocarbons to the test system is also described. In a series of t...

  3. Activation of the aryl hydrocarbon receptor suppresses sensitization in a mouse peanut allergy model.

    Science.gov (United States)

    Schulz, V J; Smit, J J; Willemsen, K J; Fiechter, D; Hassing, I; Bleumink, R; Boon, L; van den Berg, M; van Duursen, M B M; Pieters, R H H

    2011-10-01

    Food allergy is an increasing health problem in Western countries. Previously, it has been shown that the intensity of food allergic reactions can be regulated by regulatory T (T(reg)) cells. In addition, it has been shown that activation of the aryl hydrocarbon receptor (AhR) regulates T-cell responses by induction of T(reg) cells. Therefore, we hypothesized that activation of the AhR pathway can suppress development of food allergic responses through the induction of T(reg) cells. This was investigated by using a mouse model for peanut allergy. C3H/HeOuJ mice (AhR(b)(-2)) were sensitized to peanut by administering peanut extract (PE) by gavage in the presence of cholera toxin and were treated with the prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0.6, 1.7, 5, and 15 μg/kg body weight) on days 3 and 11 orally. The functional role of CD4(+)CD25(+)Foxp3(+) T(reg) cells was investigated by depleting these cells with anti-CD25 mAb during sensitization to PE. TCDD treatment dose dependently suppressed sensitization to peanut (PE-specific IgE, IgG1, and IgG2a and PE-induced IL-5, IL-10, and IL-13, respectively). The percentage, but not the number, of CD4(+)CD25(+)Foxp3(+) T(reg) cells dose dependently increased by AhR activation in both spleen and mesenteric lymph nodes. Depletion of CD4(+)CD25(+)Foxp3(+) T(reg) cells markedly reversed the suppressive effect of TCDD on PE-specific antibody levels and PE-induced IL-5, IL-10, and IL-13 cytokine production. Present data demonstrate for the first time that activation of the AhR by TCDD suppressed the development of Th2-mediated food allergic responses. A functional shift within the CD4(+) cell population toward CD4(+)CD25(+)Foxp3(+) T(reg) cells appeared to underlie this effect. This suggests that the AhR pathway might provide potential therapeutic targets to treat food allergic diseases.

  4. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications

    DEFF Research Database (Denmark)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-01-01

    Polymers play a central role in the development of carriers for diagnostic and therapeutic agents. Especially the use of either degradable polymers or porous materials to encapsulate drug compounds in order to obtain steady drug release profiles has received much attention. We present here a proof...... of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(l-Lactic Acid) (PLLA) were confined within the 14nm pores of a NP with gyroid morphology...

  5. Biodegradation of diesel/biodiesel blends in saturated sand microcosms

    DEFF Research Database (Denmark)

    Lisiecki, Piotr; Chrzanowski, Łukasz; Szulc, Alicja

    2014-01-01

    is commercial biodiesel blend) augmented with a bacterial consortium of petroleum degraders. The biodegradation kinetics for blends were evaluated based on measuring the amount of emitted CO2 after 578 days. Subsequently, the residual aromatic and aliphatic fractions were separated and determined by employing......The aim of the study was to evaluate the biodegradation extent of both aromatic and aliphatic hydrocarbon fractions in saturated sandy microcosm spiked with diesel/biodiesel blends (D, B10, B20, B30, B40, B50, B60, B70, B80, B90 and B100, where D is commercial petroleum diesel fuel and B...... GC-FID and GC _ GC–TOF-MS. Additionally, the influence of biodiesel-amendment on the community dynamics was assessed based on the results of real-time PCR analyzes. Our results suggest that the biodegradation extents of both aliphatic and aromatic hydrocarbon were uninfluenced by the addition...

  6. Injected Biodegradable Polyurethane Scaffolds Support Tissue Infiltration and Delay Wound Contraction in a Porcine Excisional Model

    Science.gov (United States)

    Adolph, Elizabeth J.; Guo, Ruijing; Pollins, Alonda C.; Zienkiewicz, Katarzyna; Cardwell, Nancy; Davidson, Jeffrey M.; Guelcher, Scott A.; Nanney, Lillian B.

    2016-01-01

    The filling of wound cavities with new tissue is a challenge. We previously reported on the physical properties and wound healing kinetics of prefabricated, gas-blown polyurethane (PUR) scaffolds in rat and porcine excisional wounds. To address the capability of this material to fill complex wound cavities, this study examined the in vitro and in vivo reparative characteristics of injected PUR scaffolds employing a sucrose porogen. Using the porcine excisional wound model, we compared reparative outcomes to both preformed and injected scaffolds as well as untreated wounds at 9, 13, and 30 days after scaffold placement. Both injected and preformed scaffolds delayed wound contraction by 19% at 9 days and 12% at 13 days compared to non-treated wounds. This stenting effect proved transient since both formulations degraded by day 30. Both types of scaffolds significantly inhibited the undesirable alignment of collagen and fibroblasts through day 13. Injected scaffolds were highly compatible with sentinel cellular events of normal wound repair cell proliferation, apoptosis, and blood vessel density. The present study provides further evidence that either injected or preformed PUR scaffolds facilitate wound healing, support tissue infiltration and matrix production, delay wound contraction, and reduce scarring in a clinically relevant animal model, which underscores their potential utility as a void-filling platform for large cutaneous defects. PMID:26343927

  7. Studies on mechanisms of toxicity of polycyclic aromatic hydrocarbons using in vitro models

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jan; Machala, M.

    2005-01-01

    Roč. 149, č. 1 (2005), s. 11 ISSN 1213-8118. [10. Interdisciplinary Czech and Slovak Toxicological Conference. 14.09.2005-16.09.2005, Olomouc] R&D Projects: GA ČR(CZ) GA525/03/1527; GA AV ČR(CZ) KJB6004407 Institutional research plan: CEZ:AV0Z50040507 Keywords : polycyclic aromatic hydrocarbons * toxicity * intercellular communication Subject RIV: BO - Biophysics

  8. Biodegradation of bilge waste from Patagonia with an indigenous microbial community.

    Science.gov (United States)

    Nievas, M L; Commendatore, M G; Olivera, N L; Esteves, J L; Bucalá, V

    2006-12-01

    Oily residues that are generated in normal ship operation are considered hazardous wastes. A biodegradation assay with autochthonous microbiota of Bilge Waste Oily Phase (BWOP) was performed in a bioreactor under controlled conditions. Petroleum, diesel oil, and PAH degraders were isolated from bilge wastes. These bacteria belong to the genus Pseudomonas and are closely related to Pseudomonas stutzeri as shown by 16S rDNA phylogenetic analysis. The indigenous microbial community of the bilge waste was capable of biodegrading the BWOP (1% v/v) with biodegradation efficiencies of 70% for hexane extractable material (HEM), 68% for total hydrocarbons (TH) and 90% for total aromatics hydrocarbons (TA) in 14 days. Solid phase microextraction (SPME) was successfully applied to evaluate hydrocarbon evaporation in a control experiment and demonstrated a mass balance closure of 88%. The SPME and biodegradation results give useful information to improve and scale up the process for BWOP treatment.

  9. Adsorption and biodegradation of 2-chlorophenol by mixed culture using activated carbon as a supporting medium-reactor performance and model verification

    Science.gov (United States)

    Lin, Yen-Hui

    2017-11-01

    A non-steady-state mathematical model system for the kinetics of adsorption and biodegradation of 2-chlorophenol (2-CP) by attached and suspended biomass on activated carbon process was derived. The mechanisms in the model system included 2-CP adsorption by activated carbon, 2-CP mass transport diffusion in biofilm, and biodegradation by attached and suspended biomass. Batch kinetic tests were performed to determine surface diffusivity of 2-CP, adsorption parameters for 2-CP, and biokinetic parameters of biomass. Experiments were conducted using a biological activated carbon (BAC) reactor system with high recycled rate to approximate a completely mixed flow reactor for model verification. Concentration profiles of 2-CP by model predictions indicated that biofilm bioregenerated the activated carbon by lowering the 2-CP concentration at the biofilm-activated carbon interface as the biofilm grew thicker. The removal efficiency of 2-CP by biomass was approximately 98.5% when 2-CP concentration in the influent was around 190.5 mg L-1 at a steady-state condition. The concentration of suspended biomass reached up to about 25.3 mg L-1 while the thickness of attached biomass was estimated to be 636 μm at a steady-state condition by model prediction. The experimental results agree closely with the results of the model predictions.

  10. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model.

    Science.gov (United States)

    Grama, Charitra N; Suryanarayana, Palla; Patil, Madhoosudan A; Raghu, Ganugula; Balakrishna, Nagalla; Kumar, M N V Ravi; Reddy, Geereddy Bhanuprakash

    2013-01-01

    Curcumin, the active principle present in the yellow spice turmeric, has been shown to exhibit various pharmacological actions such as antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic activities. Previously we have reported that dietary curcumin delays diabetes-induced cataract in rats. However, low peroral bioavailability is a major limiting factor for the success of clinical utilization of curcumin. In this study, we have administered curcumin encapsulated nanoparticles in streptozotocin (STZ) induced diabetic cataract model. Oral administration of 2 mg/day nanocurcumin was significantly more effective than curcumin in delaying diabetic cataracts in rats. The significant delay in progression of diabetic cataract by nanocurcumin is attributed to its ability to intervene the biochemical pathways of disease progression such as protein insolubilization, polyol pathway, protein glycation, crystallin distribution and oxidative stress. The enhanced performance of nanocurcumin can be attributed probably to its improved oral bioavailability. Together, the results of the present study demonstrate the potential of nanocurcumin in managing diabetic cataract.

  11. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications

    DEFF Research Database (Denmark)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-01-01

    Polymers play a central role in the development of carriers for diagnostic and therapeutic agents. Especially the use of either degradable polymers or porous materials to encapsulate drug compounds in order to obtain steady drug release profiles has received much attention. We present here a proof...... of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(l-Lactic Acid) (PLLA) were confined within the 14nm pores of a NP with gyroid morphology...... the hydrolysis of PLLA. The obtained release profiles demonstrate that the degradation of PLLA in nanoporous confinement is significantly slower than the degradation of unconfined PLLA. The release of R6G encapsulated in PLLA becomes correspondingly slower, while the initial burst release virtually disappears...

  12. Biodegradable Magnesium Stent Treatment of Saccular Aneurysms in a Rat Model - Introduction of the Surgical Technique.

    Science.gov (United States)

    Nevzati, Edin; Rey, Jeannine; Coluccia, Daniel; D'Alonzo, Donato; Grüter, Basil; Remonda, Luca; Fandino, Javier; Marbacher, Serge

    2017-10-01

    The steady progess in the armamentarium of techniques available for endovascular treatment of intracranial aneurysms requires affordable and reproducable experimental animal models to test novel embolization materials such as stents and flow diverters. The aim of the present project was to design a safe, fast, and standardized surgical technique for stent assisted embolization of saccular aneurysms in a rat animal model. Saccular aneurysms were created from an arterial graft from the descending aorta.The aneurysms were microsurgically transplanted through end-to-side anastomosis to the infrarenal abdominal aorta of a syngenic male Wistar rat weighing >500 g. Following aneurysm anastomosis, aneurysm embolization was performed using balloon expandable magnesium stents (2.5 mm x 6 mm). The stent system was retrograde introduced from the lower abdominal aorta using a modified Seldinger technique. Following a pilot series of 6 animals, a total of 67 rats were operated according to established standard operating procedures. Mean surgery time, mean anastomosis time, and mean suturing time of the artery puncture site were 167 ± 22 min, 26 ± 6 min and 11 ± 5 min, respectively. The mortality rate was 6% (n=4). The morbidity rate was 7.5% (n=5), and in-stent thrombosis was found in 4 cases (n=2 early, n=2 late in stent thrombosis). The results demonstrate the feasibility of standardized stent occlusion of saccular sidewall aneurysms in rats - with low rates of morbidity and mortality. This stent embolization procedure combines the opportunity to study novel concepts of stent or flow diverter based devices as well as the molecular aspects of healing.

  13. Simple models for the continuous aerobic biodegradation of phenol in a packed bed reactor

    Directory of Open Access Journals (Sweden)

    Andrew Mark Gerrard

    2006-07-01

    Full Text Available This paper proposes the use of a preliminary, phenol removal step to reduce peak loads arriving at a conventional effluent plant. A packed bed reactor (PBR using polyurethane foam, porous glass and also cocoa fibres as the inert support material was used. Experiments have been carried out where the flow-rates, plus inlet and outlet phenol concentrations were measured. A simple, plug-flow model is proposed to represent the results. Zero, first order, Monod and inhibited kinetics rate equations were evaluated. It was found that the Monod model gave the best fit to the experimental data and allowed linear graphs to be plotted. The Monod saturation constant, K, is approximately 50 g m-3, and ka is around 900 s-1.Este artigo propõe o uso de uma etapa preliminar de remoção de fenol para redução de picos de carga na entrada de sistemas convencionais de tratamento de efluentes. Um reator de leito fixo (RLF foi usado, tendo como suportes inertes espuma de poliuretano, vidro poroso e também fibras de coco. Nos experimentos foram controladas a vazão e as concentrações de fenol de entrada e saída. Um simples modelo plug-flow é proposto para representar os resultados. Cinéticas de zero e primeira ordens, Monod e de inibição foram avaliadas. Foi verificado que o modelo de Monod foi o que melhor se ajustou aos dados experimentais, permitindo que gráficos lineares fossem traçados. A constante saturação de Monod, K, é de aproximadamente 50 g m-3 e ka em torno de 900 s-1.

  14. Biodegradation of naphthalene from nonaqueous-phase liquids

    International Nuclear Information System (INIS)

    Ghoshal, S.; Luthy, R.G.; Ramaswami, A.

    1995-01-01

    Dissolution of polycyclic aromatic hydrocarbons (PAHs) from a non-aqueous-phase liquid (NAPL) to the aqueous phase renders these compounds bioavailable to microorganisms. Subsequent biodegradation of organic phase PAH then results in a depletion of PAH from the NAPL. This study focuses on identifying the rate-controlling processes affecting naphthalene biomineralization from a complex multicomponent NAPL, coal tar, and a simple two-component NAPL. A simplified dissolution degradation model is presented to identify quantitative criteria to assess whether mass transfer or biokinetic limitations control the overall rate of biotransformation of PAH compounds. Results show that the rate of mass transfer may control the overall rate of biotransformation in certain systems. Mass transfer does not limit biodegradation in slurry systems when coal tar is distributed in the micropores of a large number of small microporous silica particles. The end points of naphthalene degradation from the NAPLs have been evaluated, and results suggest that depletion of a significant mass of naphthalene from the NAPL phase is possible

  15. Find-rate methodology and resource base estimates of the Hydrocarbon Supply Model (1990 update). Topical report

    International Nuclear Information System (INIS)

    Woods, T.

    1991-02-01

    The Hydrocarbon Supply Model is used to develop long-term trends in Lower-48 gas production and costs. The model utilizes historical find-rate patterns to predict the discovery rate and size distribution of future oil and gas field discoveries. The report documents the methodologies used to quantify historical oil and gas field find-rates and to project those discovery patterns for future drilling. It also explains the theoretical foundations for the find-rate approach. The new field and reserve growth resource base is documented and compared to other published estimates. The report has six sections. Section 1 provides background information and an overview of the model. Sections 2, 3, and 4 describe the theoretical foundations of the model, the databases, and specific techniques used. Section 5 presents the new field resource base by region and depth. Section 6 documents the reserve growth model components

  16. Electronic states of model hydrocarbon chromophores investigated by Synchrotron Radiation Linear Dichroism (SRLD) spectroscopy on aligned samples

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Hoffmann, Søren Vrønning; Jones, Nykola

    2010-01-01

    Conventional UV-VIS absorption spectroscopy provides information on transition energies and intensities. Linear dichroism (LD) spectroscopy on aligned molecular samples yields additional information on transition moment directions, thereby frequently leading to resolution of otherwise overlapping...... for four hydrocarbons which are of interest as model compounds for molecular wires and switches: 1)  Diphenylethyne (tolane, DPA) 2)  1,4-Bis(phenylethynyl)benzene (BPEB) 3)  (E)-1,2-Diphenylethene (stilbene, DPE) 4)  (E,E’)-1,4-Diphenyl-1,3-butadiene (DPB)...

  17. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications.

    Science.gov (United States)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-04-01

    Polymers play a central role in the development of carriers for diagnostic and therapeutic agents. Especially the use of either degradable polymers or porous materials to encapsulate drug compounds in order to obtain steady drug release profiles has received much attention. We present here a proof of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(L-Lactic Acid) (PLLA) were confined within the 14 nm pores of a NP with gyroid morphology derived from a diblock copolymer precursor. Glass transition, crystallization and melting of free and confined PLLA were monitored by differential scanning calorimetry. Release profiles for R6G were measured in methanol-water solvents at pH 13, which works as an accelerated release test by speeding up the hydrolysis of PLLA. The obtained release profiles demonstrate that the degradation of PLLA in nanoporous confinement is significantly slower than the degradation of unconfined PLLA. The release of R6G encapsulated in PLLA becomes correspondingly slower, while the initial burst release virtually disappears. These findings suggest that the presented proof of principle constitutes a promising basis for the development of novel implantable drug delivery systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model.

    Directory of Open Access Journals (Sweden)

    Charitra N Grama

    Full Text Available Curcumin, the active principle present in the yellow spice turmeric, has been shown to exhibit various pharmacological actions such as antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic activities. Previously we have reported that dietary curcumin delays diabetes-induced cataract in rats. However, low peroral bioavailability is a major limiting factor for the success of clinical utilization of curcumin. In this study, we have administered curcumin encapsulated nanoparticles in streptozotocin (STZ induced diabetic cataract model. Oral administration of 2 mg/day nanocurcumin was significantly more effective than curcumin in delaying diabetic cataracts in rats. The significant delay in progression of diabetic cataract by nanocurcumin is attributed to its ability to intervene the biochemical pathways of disease progression such as protein insolubilization, polyol pathway, protein glycation, crystallin distribution and oxidative stress. The enhanced performance of nanocurcumin can be attributed probably to its improved oral bioavailability. Together, the results of the present study demonstrate the potential of nanocurcumin in managing diabetic cataract.

  19. Microbial degradation of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Volkering, F.; Breure, A.M.; Andel, J.G. van

    1992-01-01

    Polycyclic aromatic hydrocarbons (PAH) are hazardous compounds originating from oil, tar, creosote, or from incomplete combustion of fossil fuels. Application of biotechnological techniques for remediation of polluted soils from PAH demonstrated that the high molecular compounds are degraded very slowly, and that the residual concentration of PAH often is too high to permit application of the treated soil. Investigations were started to establish process parameters for optimal biodegradation of PAH. The aim is to achieve a relation between the physical properties of PAH and the biodegradation kinetics in different matrices, in order to identify applicability of biotechnological cleanup methods for waste streams and polluted soil. (orig.) [de

  20. Bioremediation of severely weathered hydrocarbons: is it possible?

    International Nuclear Information System (INIS)

    Gallego, J. R.; Villa, R.; Sierra, C.; Sotres, A.; Pelaez, A. I.; Sanchez, J.

    2009-01-01

    Weathering processes of spilled hydrocarbons promote a reduced biodegradability of petroleum compounds mixtures, and consequently bioremediation techniques are often ruled out within the selection of suitable remediation approaches. This is truly relevant wherever old spills at abandoned industrial sites have to be remediated. However it is well known most of the remaining fractions and individual compounds of weathered oil are still biodegradable, although at slow rates than alkanes or no and two-ring aromatics. (Author)

  1. Using microorganisms to aid in hydrocarbon degradation

    International Nuclear Information System (INIS)

    Black, W.; Zamora, J.

    1993-01-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO 2 evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans

  2. Using microorganisms to aid in hydrocarbon degradation

    Energy Technology Data Exchange (ETDEWEB)

    Black, W.; Zamora, J. (Middle Tennessee State Univ., Murfreesboro (United States))

    1993-04-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO[sub 2] evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans.

  3. Treatment of a canine carotid artery aneurysm model with a biodegradable nanofiber-covered stent: a prospective pilot study.

    Science.gov (United States)

    Wang, Jian-Bo; Zhou, Bin; Gu, Xiu-Ling; Li, Ming-Hua; Gu, Bin-Xian; Wang, Wu; Li, Yong-Dong

    2013-01-01

    To evaluate the use of a biodegradable nanofiber-covered stent (BDNCS) in the treatment of a canine carotid artery aneurysm. Seventeen beagle dogs, each with one lateral saccular aneurysm created using a venous pouch, were selected to test the BDNCS. The BDNCS consists of three parts: A bare stent, a biodegradable nanofiber membrane, and a balloon catheter. The bare stent was sculpted by a laser from a cobalt chromium superalloy, and the biodegradable nanofiber membrane was constructed from polylactic acid (PLA) and polycaprolactone [PCL, P (LLA-CL)] by the electro-spinning method. The biodegradable nanofiber stent was premounted on a balloon catheter to form a BDNCS. Angiographic assessments were categorized as complete or incomplete occlusion. Data regarding technical success, initial and final angiographic results, mortality and morbidity were collected, and follow-up was performed at 1 and 3 months after the procedure. BDNCS placement was successful in 17 canines with 17 aneurysms. The initial angiographies showed that a complete occlusion was achieved in 13 canines (76.5%) and an incomplete occlusion in 4 (23.5%). One canine died 1 week later. The angiographies obtained at 3-month follow-up exhibited complete occlusion in 14 canines (87.5%) and an incomplete occlusion in 2 canines, with mild in-stent stenosis in 5 canines. Our results suggest that BDNCS may be a feasible approach for aneurysm occlusion, although the occurrence of mild in-stent stenosis was relatively high. Longer-term follow-up investigations are needed to validate these findings.

  4. Reactivity of hydrocarbons in response to injection of a CO2/O2 mixture under depleted reservoir conditions: experimental and numerical modeling

    International Nuclear Information System (INIS)

    Pacini-Petitjean, Claire

    2015-01-01

    The geological storage of CO 2 (CO 2 Capture-Storage - CCS) and the Enhanced Oil Recovery (EOR) by CO 2 injection into petroleum reservoirs could limit CO 2 atmospheric accumulation. However, CO 2 can be associated with oxygen. To predict the hydrocarbon evolution under these conditions involves the study of oxidation mechanisms. Oxidation experiment and kinetic detailed modeling were carried out with pure compounds. The comparison between experimental and modeling results led to the construction of a hydrocarbon oxidation kinetic model and emphasized the parameters leading to auto ignition. The good agreement between our experiments and modeling are promising for the development of a tool predicting the critical temperature leading to auto-ignition and the evolution of hydrocarbon composition, to estimate the stability of a petroleum system in CO 2 injection context. (author) [fr

  5. Characterization and aerobic biodegradation of selected monoterpenes

    Energy Technology Data Exchange (ETDEWEB)

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M. [Georgia Institute of Technology, Atlanta, GA (United States)

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  6. Biogeochemistry of anaerobic crude oil biodegradation

    Science.gov (United States)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.

  7. Activity coefficients at infinite dilution of hydrocarbons in glycols: Experimental data and thermodynamic modeling with the GCA-EoS

    International Nuclear Information System (INIS)

    González Prieto, Mariana; Williams-Wynn, Mark D.; Bahadur, Indra; Sánchez, Francisco A.; Mohammadi, Amir H.

    2017-01-01

    Highlights: • Experimental infinite dilution activity coefficients of hydrocarbons in glycols. • Inverse gas-liquid chromatography technique. • Solutes investigated include n-alkanes, 1-alkenes, and cycloalkanes. • Highly non-ideal systems are modeled with the GCA-EoS. - Abstract: The infinite dilution activity coefficients for 12 non-polar hydrocarbon solutes in the solvents, monoethylene and diethylene glycol, were measured using the gas-liquid chromatography technique. Pre-saturation of the carrier gas was required to avoid solvent loss from the chromatographic column during the measurements that were carried out at T = (303.15, 313.15 and 323.15) K for monoethylene glycol and at T = (304.15, 313.15 and 323.15) K for diethylene glycol. The solutes investigated include n-alkanes, 1-alkenes, and cycloalkanes. The new data are compared with the highly scattered data that is available in the open literature. Finally, these highly non-ideal systems are modeled with the GCA-EoS.

  8. Revised models for hydrocarbon generation, migration and accumulation in Jurassic coal measures of the Turpan basin, NW China

    Energy Technology Data Exchange (ETDEWEB)

    Li Maowen; Stasiuk, L.D. [Geological Survey of Canada, Calgary, Alberta (Canada); Bao Jianping [Jianghan Petroleum University, Hubei (China); Lin, R. [Petroleum University (Beijing), Changping (China); Yuan Mingsheng [PetroChina Tu-Ha Oilfield Company, Xingjiang (China)

    2001-07-01

    Whether or not the Lower-Middle Jurassic coal measures in the Turpan basin of NW China have generated commercial quantities of liquid petroleums is a problem of considerable importance that remains contentious as it has not yet been resolved unequivocally. This study provides evidence against the Jurassic humic coals as the only major source for the oils discovered in the Taibei depression of this basin and suggests additional significant contributions from the Upper Permian and Middle-Lower Jurassic lacustrine source rocks. The Carboniferous-Permian marine source rocks may have been important also in limited locations along the major basement faults. Molecular and petrographic data indicate that the majority of the Middle Jurassic strata are currently immature or marginally mature with respect to hydrocarbon generation. Within the major depocenters, the Middle-Lower Jurassic coal-bearing strata of the Baodaowan and Xishanyao formations has reached the conventional oil window (i.e. with vitrinite reflectance >0.7 per cent Ro). Pre-Jurassic (Upper Permian in particular) derived hydrocarbons appear to be widespread in extracts of fractured Jurassic coal and fine-grained rocks. Large differences have been observed in the absolute concentrations of biomarker compounds in rock extracts of various source intervals. Thus, 'coaly' biomarker signatures of the oils most likely resulted from mixing and migration contamination when hydrocarbons derived from mature source rocks migrated up through highly fractured coal seams along deep-seated faults. In addition to conventional exploration targets, revised petroleum generation and accumulation models predict that the focus in the Turpan basin should also include deep structures within the Carboniferous-Permian strata and subtle, low magnitude anticlines and stratigraphic traps within thr Triassic-Jurassic sections. (author)

  9. The INCOTUR model : estimation of losses in the tourism sector in Alcudia due to a hydrocarbon spill

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J.R.; Moreno, S.; Guijarro, S.; Santos, A.; Serr, F. [Iles Balears Univ., Palma de Mallorca, Balearic Islands (Spain). Dept. of Chemistry

    2006-07-01

    This paper presented a computer model that calculates the economic losses incurred by a hydrocarbon spill on a coastal area. In particular, it focused on the Balearic Islands in the Bay of Alcudia where the economy depends mainly on tourism. A large number of oil tankers carrying crude oil and petroleum products pass through the Balearic Sea. Any pollution resulting from a fuel spill can have a significant economic impact on both the tourism sector and the Balearic society in general. This study focused on the simulation of 18 spills of Jet A1 fuel oil, unleaded gasoline and Bunker C fuel oil. Simulations of the study area were produced with OILMAP, MIKE21, GNOME and ADIOS models which estimated the trajectories of various spills and the amount of oil washed ashore. The change in physical and chemical properties of the spilled hydrocarbons was also determined. The simulation models considered the trajectory followed by spills according to the type and amount of spill, weather conditions prevailing during the spill and the period immediately following the spill. The INCOTUR model was then used to calculate the economic losses resulting from an oil spill by considering the number of tonnes of oil washed ashore; number of days needed to organize cleanup; the percentage of tourism that will be maintained despite the effects of the spill; number of hotel beds; percentage of hotel occupancy by month; cost of package holidays; petty cash expenses; and, cost of advertising campaign for the affected area. With this data, the model can determine the number of days needed to clean and restore the coastline; monthly rate of recovery in tourism levels; and, losses in tourism sector. According to the INCOTUR model, the total losses incurred by a spill of 40,000 tonnes of Bunker C fuel, was estimated at 472 million Euros. 9 refs., 2 tabs., 12 figs.

  10. The INCOTUR model : estimation of losses in the tourism sector in Alcudia due to a hydrocarbon spill

    International Nuclear Information System (INIS)

    Bergueiro, J.R.; Moreno, S.; Guijarro, S.; Santos, A.; Serr, F.

    2006-01-01

    This paper presented a computer model that calculates the economic losses incurred by a hydrocarbon spill on a coastal area. In particular, it focused on the Balearic Islands in the Bay of Alcudia where the economy depends mainly on tourism. A large number of oil tankers carrying crude oil and petroleum products pass through the Balearic Sea. Any pollution resulting from a fuel spill can have a significant economic impact on both the tourism sector and the Balearic society in general. This study focused on the simulation of 18 spills of Jet A1 fuel oil, unleaded gasoline and Bunker C fuel oil. Simulations of the study area were produced with OILMAP, MIKE21, GNOME and ADIOS models which estimated the trajectories of various spills and the amount of oil washed ashore. The change in physical and chemical properties of the spilled hydrocarbons was also determined. The simulation models considered the trajectory followed by spills according to the type and amount of spill, weather conditions prevailing during the spill and the period immediately following the spill. The INCOTUR model was then used to calculate the economic losses resulting from an oil spill by considering the number of tonnes of oil washed ashore; number of days needed to organize cleanup; the percentage of tourism that will be maintained despite the effects of the spill; number of hotel beds; percentage of hotel occupancy by month; cost of package holidays; petty cash expenses; and, cost of advertising campaign for the affected area. With this data, the model can determine the number of days needed to clean and restore the coastline; monthly rate of recovery in tourism levels; and, losses in tourism sector. According to the INCOTUR model, the total losses incurred by a spill of 40,000 tonnes of Bunker C fuel, was estimated at 472 million Euros. 9 refs., 2 tabs., 12 figs

  11. Coliform Bacteria for Bioremediation of Waste Hydrocarbons

    Science.gov (United States)

    2017-01-01

    Raw, domestic sewage of Kuwait City contained about 106 ml−1 colony forming units of Enterobacter hormaechei subsp. oharae (56.6%), Klebsiella spp. (36%), and Escherichia coli (7.4%), as characterized by their 16S rRNA-gene sequences. The isolated coliforms grew successfully on a mineral medium with crude oil vapor as a sole source of carbon and energy. Those strains also grew, albeit to different degrees, on individual n-alkanes with carbon chains between C9 and C36 and on the individual aromatic hydrocarbons, toluene, naphthalene, phenanthrene, and biphenyl as sole sources of carbon and energy. These results imply that coliforms, like other hydrocarbonoclastic microorganisms, oxidize hydrocarbons to the corresponding alcohols and then to aldehydes and fatty acids which are biodegraded by β-oxidation to acetyl CoA. The latter is a well-known key intermediate in cell material and energy production. E. coli cells grown in the presence of n-hexadecane (but not in its absence) exhibited typical intracellular hydrocarbon inclusions, as revealed by transmission electron microscopy. Raw sewage samples amended with crude oil, n-hexadecane, or phenanthrene lost these hydrocarbons gradually with time. Meanwhile, the numbers of total and individual coliforms, particularly Enterobacter, increased. It was concluded that coliform bacteria in domestic sewage, probably in other environmental materials too, are effective hydrocarbon-biodegrading microorganisms. PMID:29082238

  12. 3D modelling of a dolomitized syn-sedimentary structure: an exhumed potential analogue of hydrocarbon reservoir.

    Science.gov (United States)

    Martinelli, Mattia; Franceschi, Marco; Massironi, Matteo; Bistacchi, Andrea; Di Cuia, Raffaele; Rizzi, Alessandro

    2016-04-01

    further increase the potential creation of potential hydrocarbon traps. These complex conditions are visible in a syn-sedimentary structure spectacularly exposed on the Monte Testo (Trentino, Italy). In this contribution, we present a 3D geo-model of this structure, obtained with SKUA-gOcad, based on 3D photogrammetric modelling, detailed geological mapping and structural analysis, porosity analysis carried out on representative sections, and geostatistical simulation of porosity on dolomitized bodies. Thanks to the 3D model we obtained: i) a thickness map of the Rotzo Formation that allow us to understand which faults were active during the deposition of the formation and which areas could have been more suitable for hydrocarbon accumulation; ii) a geometric and volumetric model of the structure that permitted us to study the porosity distribution and to define the potential volume of hydrocarbons that could be hosted by a similar structure. These results were eventually extrapolated to the entire platform, providing clues on the hydrocarbon potential of similar buried geologic bodies.

  13. Functional genes reveal the intrinsic PAH biodegradation potential in creosote-contaminated groundwater following in situ biostimulation.

    Science.gov (United States)

    Nyyssönen, Mari; Kapanen, Anu; Piskonen, Reetta; Lukkari, Tuomas; Itävaara, Merja

    2009-08-01

    A small-scale functional gene array containing 15 functional gene probes targeting aliphatic and aromatic hydrocarbon biodegradation pathways was used to investigate the effect of a pilot-scale air sparging and nutrient infiltration treatment on hydrocarbon biodegradation in creosote-contaminated groundwater. Genes involved in the different phases of polycyclic aromatic hydrocarbon (PAH) biodegradation were detected with the functional gene array in the contaminant plume, thus indicating the presence of intrinsic biodegradation potential. However, the low aerobic fluorescein diacetate hydrolysis, the polymerase chain reaction (PCR) amplification of 16S rRNA genes closely similar to sulphate-reducing and denitrifying bacteria and the negligible decrease in contaminant concentrations showed that aerobic PAH biodegradation was limited in the anoxic groundwater. Increased abundance of PAH biodegradation genes was detected by functional gene array in the monitoring well located at the rear end of the biostimulated area, which indicated that air sparging and nutrient infiltration enhanced the intrinsic, aerobic PAH biodegradation. Furthermore, ten times higher naphthalene dioxygenase gene copy numbers were detected by real-time PCR in the biostimulated area, which was in good agreement with the functional gene array data. As a result, functional gene array analysis was demonstrated to provide a potential tool for evaluating the efficiency of the bioremediation treatment for enhancing hydrocarbon biodegradation in field-scale applications.

  14. Optimal Thermolysis Conditions for Soil Carbon Storage on Plant Residue Burning: Modeling the Trade-Off between Thermal Decomposition and Subsequent Biodegradation.

    Science.gov (United States)

    Kajiura, Masako; Wagai, Rota; Hayashi, Kentaro

    2015-01-01

    Field burning of plant biomass is a widespread practice that provides charred materials to soils. Its impact on soil C sequestration remains unclear due to the heterogeneity of burning products and difficulty in monitoring the material's biodegradation in fields. Basic information is needed on the relationship between burning conditions and the resulting quantity/quality of residue-derived C altered by thermal decomposition and biodegradation. In this study, we thermolyzed residues (rice straw and husk) at different temperatures (200-600°C) under two oxygen availability conditions and measured thermal mass loss, C compositional change by solid-state C NMR spectroscopy, and biodegradability of the thermally altered residues by laboratory aerobic incubation. A trade-off existed between thermal and microbial decomposition: when burned at higher temperatures, residues experience a greater mass loss but become more recalcitrant via carbonization. When an empirical model accounting for the observed trade-off was projected over 10 to 10 yr, we identified the threshold temperature range (330-400°C) above and below which remaining residue C is strongly reduced. This temperature range corresponded to the major loss of O-alkyl C and increase in aromatic C. The O/C molar ratios of the resultant residues decreased to 0.2 to 0.4, comparable to those of chars in fire-prone field soils reported previously. Although the negative impacts of biomass burning need to be accounted for, the observed relationship may help to assess the long-term fate of burning-derived C and to enhance soil C sequestration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Treatment of petroleum hydrocarbon polluted environment through bioremediation: a review.

    Science.gov (United States)

    Singh, Kriti; Chandra, Subhash

    2014-01-01

    Bioremediation play key role in the treatment of petroleum hydrocarbon contaminated environment. Exposure of petroleum hydrocarbon into the environment occurs either due to human activities or accidentally and cause environmental pollution. Petroleum hydrocarbon cause many toxic compounds which are potent immunotoxicants and carcinogenic to human being. Remedial methods for the treatment of petroleum contaminated environment include various physiochemical and biological methods. Due to the negative consequences caused by the physiochemical methods, the bioremediation technology is widely adapted and considered as one of the best technology for the treatment of petroleum contaminated environment. Bioremediation utilizes the natural ability of microorganism to degrade the hazardous compound into simpler and non hazardous form. This paper provides a review on the role of bioremediation in the treatment of petroleum contaminated environment, discuss various hazardous effects of petroleum hydrocarbon, various factors influencing biodegradation, role of various enzymes in biodegradation and genetic engineering in bioremediation.

  16. Application of Simplified Anaerobic Digestion Models (SADM’s for Studying the Biodegradability and Kinetics of Cow Manure at Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Yusuf O.L. MOMOH

    2014-02-01

    Full Text Available The application of a set of simplified anaerobic digestion models (SADM’s to describe the anaerobic biodegradability and kinetics of cow manure at ambient temperature was conducted in this study. It was observed that the Hill’s based biogas yield rate model was the most appropriate in describing biogas yield rate from cow manure. Parameter estimation revealed that the half saturation constant expressed as acidified substrate and volatile solids (VS equivalent were 0.163g/l and 21.9g VS/l respectively while the maximum biogas yield rate was estimated to be 1.957ml/g VS/day. The coefficient of acidogenic bacteria adaptation (n and coefficient of acetogenic/methanogenic bacterial cooperativity (m were estimated to be 1.28 and 0.65 respectively. The poor cooperativity amongst the acetogenic/methanogenic bacterial species can be attributed to poor adaptation, possibly due to interaction between ammonia and volatile fatty acids. In addition, the biodegradability and recalcitrance was estimated to be 0.42 and 0.433 respectively, while hydrolysis/acidogenesis was identified as the rate limiting step.

  17. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model

    Science.gov (United States)

    Song, Linjiang; Li, Ling; He, Tao; Wang, Ning; Yang, Suleixin; Yang, Xi; Zeng, Yan; Zhang, Wenli; Yang, Li; Wu, Qinjie; Gong, Changyang

    2016-11-01

    Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate.

  18. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  19. Assessing adsorption of polycyclic aromatic hydrocarbons on Rhizopus oryzae cell wall components with water-methanol cosolvent model.

    Science.gov (United States)

    Ma, Bin; Lv, Xiaofei; He, Yan; Xu, Jianming

    2016-03-01

    The contribution of different fungal cell wall components in adsorption of polycyclic aromatic hydrocarbons (PAHs) is still unclear. We isolated Rhizopus oryzae cell walls components with sequential extraction, characterized functional groups with NEXAFS spectra, and determined partition coefficients of PAHs on cell walls and cell wall components with cosolvent model. Spectra of NEXAFS indicated that isolated cell walls components were featured with peaks at ~532.7 and ~534.5eV energy. The lipid cosolvent partition coefficients were approximately one order of magnitude higher than the corresponding carbohydrate cosolvent partition coefficients. The partition coefficients for four tested carbohydrates varied at approximate 0.5 logarithmic units. Partition coefficients between biosorbents and water calculated based cosolvent models ranged from 0.8 to 4.2. The present study proved the importance of fungal cell wall components in adsorption of PAHs, and consequently the role of fungi in PAHs bioremediation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Normal alkanes and the unresolved complex mixture as diagnostic indicators of hydrocarbon source contributions to marine sediments of the Northern Gulf of Alaska

    International Nuclear Information System (INIS)

    Short, J.W.; Heintz, R.A.

    2003-01-01

    Coal beds, hydrocarbon source rocks, and natural oil seeps represent potentially significant sources of hydrocarbons contamination of marine sediments in the northern Gulf of Alaska. Intensive studies of several supposedly diagnostic polycyclic aromatic (PAH) and aliphatic hydrocarbon compounds have been conducted to solve the controversy of whether the hydrocarbons come from natural or anthropogenic sources. These hydrocarbons could be associated with a refractory matrix not biologically available, as strongly suggested by the n-alkane profile characteristic of the marine sediments. There are similarities between the unresolved complex mixture (UCM) profile of the marine sediments and those of eroding coals and source rocks. However, there were differences with the UCM of seep oils entering the Gulf of Alaska. The seep-oils possess low concentrations of n-alkanes due to biodegradation before entering the Gulf of Alaska, and have large UCM and PAH concentrations. Additional strong constraints are placed on hydrocarbon contributions from natural sources to the marine sediments of the northern portion of the Gulf of Alaska as a result of inclusion of n-alkane and UCM results into hydrocarbon source allocation models. The authors indicated that seep-oils are unlikely to be significant contributors. 19 refs., 1 tab., 6 figs

  1. Methanogenic Paraffin Biodegradation: Alkylsuccinate Synthase Gene Quantification and Dicarboxylic Acid Production.

    Science.gov (United States)

    Oberding, Lisa K; Gieg, Lisa M

    2018-01-01

    Paraffinic n -alkanes (>C 17 ) that are solid at ambient temperature comprise a large fraction of many crude oils. The comparatively low water solubility and reactivity of these long-chain alkanes can lead to their persistence in the environment following fuel spills and pose serious problems for crude oil recovery operations by clogging oil production wells. However, the degradation of waxy paraffins under the anoxic conditions characterizing contaminated groundwater environments and deep subsurface energy reservoirs is poorly understood. Here, we assessed the ability of a methanogenic culture enriched from freshwater fuel-contaminated aquifer sediments to biodegrade the model paraffin n -octacosane (C 28 H 58 ). Compared with that in controls, the consumption of n -octacosane was coupled to methane production, demonstrating its biodegradation under these conditions. Smithella was postulated to be an important C 28 H 58 degrader in the culture on the basis of its high relative abundance as determined by 16S rRNA gene sequencing. An identified assA gene (known to encode the α subunit of alkylsuccinate synthase) aligned most closely with those from other Smithella organisms. Quantitative PCR (qPCR) and reverse transcription qPCR assays for assA demonstrated significant increases in the abundance and expression of this gene in C 28 H 58 -degrading cultures compared with that in controls, suggesting n -octacosane activation by fumarate addition. A metabolite analysis revealed the presence of several long-chain α,ω-dicarboxylic acids only in the C 28 H 58 -degrading cultures, a novel observation providing clues as to how methanogenic consortia access waxy hydrocarbons. The results of this study broaden our understanding of how waxy paraffins can be biodegraded in anoxic environments with an application toward bioremediation and improved oil recovery. IMPORTANCE Understanding the methanogenic biodegradation of different classes of hydrocarbons has important

  2. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D. [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M. [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1993-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  3. Model studies in hydrocarbon oxidation. Progress report, April 1--November 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, G.

    1993-12-31

    The research performed during the period 1 April--31 November 1993 has centered on an investigation of the chemistry of molecular terminal oxo complexes. In the long term, it is hoped that this research will provide results that are relevant to systems concerned with hydrocarbon oxidation. The authors have also carried studies of transition metal complexes that contain terminal sulfido, selenido and tellurido ligands, since a knowledge of the chemistry of the heavier congeners of this group will help provide a more complete understanding of the chemistry of transition metal oxo complexes. Furthermore, the chemistry of the metal sulfido derivatives will be directly related to hydrodesulfurization, an extremely important industrial process, for which transition metal-sulfido derivatives, e.g. MoS{sub 2}, are active catalysts.

  4. Uranium metallogenic model related to CO2 and hydrocarbon in granite type uranium deposits

    International Nuclear Information System (INIS)

    Ou Guangxi; Chen Anfu; Cui Jianyong; Xu Yinhuan; Wang Chunhua; Xu Yan

    2001-01-01

    The report is concerned with the inseparable connections between the uranium migration, enrichment rule and the geochemical characteristics of CO 2 and hydrocarbon gas, as well as the relations between the deposit locations and the gas abnormal distribution in rocky body, which are based on the analysis of some data and phenomena in 11 typical deposits in 2 granite type uranium ore fields, including the observations of 250 rocky fluid inclusion sections and the analyzed data of which 2470 are in gas composition, 200 in uranium content, 50 in thermometry. All the conclusions are drawn from different angles for the first time and this new exploration and advancement fills up the blank of gas geochemistry study in uranium deposits or other metal deposits

  5. The quasi-ballistic model of electron mobility in liquid hydrocarbons

    International Nuclear Information System (INIS)

    Mozumder, A.

    1996-01-01

    A phenomenological theory of low-mobility liquid hydrocarbons is developed which includes electron ballistic motion in the quasi-free state, in competition with diffusion and trapping. For most low-mobility liquids the theory predicts consistently the effective mobility and activation energy, in agreement with experiments, using quasi-free mobility and trap density respectively as ∼ 100 cm 2 v -1 s -1 and ∼ 10 19 cm -3 . Field dependence of mobility if theoretically of quadratic type for relatively small fields, agreeing approximately with experimental data for n-hexane. Electron scavenging with ''good'' scavengers occurs via the quasi-free state at nearly diffusion-controlled rate; however the effect of large mean free path is seen clearly. (author)

  6. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment.

    Science.gov (United States)

    Bastida, F; Jehmlich, N; Lima, K; Morris, B E L; Richnow, H H; Hernández, T; von Bergen, M; García, C

    2016-03-01

    The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A chemical and thermodynamic model of oil generation in hydrocarbon source rocks

    Science.gov (United States)

    Helgeson, Harold C.; Richard, Laurent; McKenzie, William F.; Norton, Denis L.; Schmitt, Alexandra

    2009-02-01

    Thermodynamic calculations and Gibbs free energy minimization computer experiments strongly support the hypothesis that kerogen maturation and oil generation are inevitable consequences of oxidation/reduction disproportionation reactions caused by prograde metamorphism of hydrocarbon source rocks with increasing depth of burial.These experiments indicate that oxygen and hydrogen are conserved in the process.Accordingly, if water is stable and present in the source rock at temperatures ≳25 but ≲100 °C along a typical US Gulf Coast geotherm, immature (reduced) kerogen with a given atomic hydrogen to carbon ratio (H/C) melts incongruently with increasing temperature and depth of burial to produce a metastable equilibrium phase assemblage consisting of naphthenic/biomarker-rich crude oil, a type-II/III kerogen with an atomic hydrogen/carbon ratio (H/C) of ˜1, and water. Hence, this incongruent melting process promotes diagenetic reaction of detritus in the source rock to form authigenic mineral assemblages.However, in the water-absent region of the system CHO (which is extensive), any water initially present or subsequently entering the source rock is consumed by reaction with the most mature kerogen with the lowest H/C it encounters to form CO 2 gas and a new kerogen with higher H/C and O/C, both of which are in metastable equilibrium with one another.This hydrolytic disproportionation process progressively increases both the concentration of the solute in the aqueous phase, and the oil generation potential of the source rock; i.e., the new kerogen can then produce more crude oil.Petroleum is generated with increasing temperature and depth of burial of hydrocarbon source rocks in which water is not stable in the system CHO by a series of irreversible disproportionation reactions in which kerogens with higher (H/C)s melt incongruently to produce metastable equilibrium assemblages consisting of crude oil, CO 2 gas, and a more mature (oxidized) kerogen with a lower

  8. Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics.

    Science.gov (United States)

    Westbrook, Charles K; Pitz, William J; Mehl, Marco; Glaude, Pierre-Alexandre; Herbinet, Olivier; Bax, Sarah; Battin-Leclerc, Frederique; Mathieu, Olivier; Petersen, Eric L; Bugler, John; Curran, Henry J

    2015-07-16

    Two experimental studies have been carried out on the oxidation of 2-methyl-2-butene, one measuring ignition delay times behind reflected shock waves in a stainless steel shock tube, and the other measuring fuel, intermediate, and product species mole fractions in a jet-stirred reactor (JSR). The shock tube ignition experiments were carried out at three different pressures, approximately 1.7, 11.2, and 31 atm, and at each pressure, fuel-lean (ϕ = 0.5), stoichiometric (ϕ = 1.0), and fuel-rich (ϕ = 2.0) mixtures were examined, with each fuel/oxygen mixture diluted in 99% Ar, for initial postshock temperatures between 1330 and 1730 K. The JSR experiments were performed at nearly atmospheric pressure (800 Torr), with stoichiometric fuel/oxygen mixtures with 0.01 mole fraction of 2M2B fuel, a residence time in the reactor of 1.5 s, and mole fractions of 36 different chemical species were measured over a temperature range from 600 to 1150 K. These JSR experiments represent the first such study reporting detailed species measurements for an unsaturated, branched hydrocarbon fuel larger than iso-butene. A detailed chemical kinetic reaction mechanism was developed to study the important reaction pathways in these experiments, with particular attention on the role played by allylic C-H bonds and allylic pentenyl radicals. The results show that, at high temperatures, this olefinic fuel reacts rapidly, similar to related alkane fuels, but the pronounced thermal stability of the allylic pentenyl species inhibits low temperature reactivity, so 2M2B does not produce "cool flames" or negative temperature coefficient behavior. The connections between olefin hydrocarbon fuels, resulting allylic fuel radicals, the resulting lack of low-temperature reactivity, and the gasoline engine concept of octane sensitivity are discussed.

  9. Stimulation of Diesel Fuel Biodegradation by Indigenous Nitrogen Fixing Bacterial Consortia.

    Science.gov (United States)

    Piehler; Swistak; Pinckney; Paerl

    1999-07-01

    > Abstract Successful stimulation of N2 fixation and petroleum hydrocarbon degradation in indigenous microbial consortia may decrease exogenous N requirements and reduce environmental impacts of bioremediation following petroleum pollution. This study explored the biodegradation of petroleum pollution by indigenous N2 fixing marine microbial consortia. Particulate organic carbon (POC) in the form of ground, sterile corn-slash (post-harvest leaves and stems) was added to diesel fuel amended coastal water samples to stimulate biodegradation of petroleum hydrocarbons by native microorganisms capable of supplying a portion of their own N. It was hypothesized that addition of POC to petroleum amended water samples from N-limited coastal waters would promote the growth of N2 fixing consortia and enhance biodegradation of petroleum. Manipulative experiments were conducted using samples from coastal waters (marinas and less polluted control site) to determine the effects of POC amendment on biodegradation of petroleum pollution by native microbial consortia. Structure and function of the microbial consortia were determined by measurement of N2 fixation (acetylene reduction), hydrocarbon biodegradation (14C hexadecane mineralization), bacterial biomass (AODC), number of hydrocarbon degrading bacteria (MPN), and bacterial productivity (3H-thymidine incorporation). Throughout this study there was a consistent enhancement of petroleum hydrocarbon degradation in response to the addition of POC. Stimulation of diesel fuel biodegradation following the addition of POC was likely attributable to increases in bacterial N2 fixation, diesel fuel bioavailability, bacterial biomass, and metabolic activity. Toxicity of the bulk phase water did not appear to be a factor affecting biodegradation of diesel fuel following POC addition. These results indicate that the addition of POC to diesel-fuel-polluted systems stimulated indigenous N2 fixing microbial consortia to degrade petroleum

  10. A modelling implementation of climate change on biodegradation of Low-Density Polyethylene (LDPE by Aspergillus niger in soil

    Directory of Open Access Journals (Sweden)

    Farzin Shabani

    2015-07-01

    Main conclusions:  Accurately evaluating the impact of landfilling on land use and predicting future climate are vital components for effective long-term planning of waste management. From a social and economic perspective, utilization of our mapped projections to detect suitable regions for establishing landfills in areas highly sustainable for microorganisms like A. niger growth will allow a significant cost reduction and improve the performance of biodegradation of LDPE over a long period of time, through making use of natural climatic and environmental factors.

  11. Burial history, thermal history and hydrocarbon generation modelling of the Jurassic source rocks in the basement of the Polish Carpathian Foredeep and Outer Carpathians (SE Poland)

    Science.gov (United States)

    Kosakowski, Paweł; Wróbel, Magdalena

    2012-08-01

    Burial history, thermal maturity, and timing of hydrocarbon generation were modelled for the Jurassic source rocks in the basement of the Carpathian Foredeep and marginal part of the Outer Carpathians. The area of investigation was bounded to the west by Kraków, to the east by Rzeszów. The modelling was carried out in profiles of wells: Będzienica 2, Dębica 10K, Góra Ropczycka 1K, Goleszów 5, Nawsie 1, Pławowice E1 and Pilzno 40. The organic matter, containing gas-prone Type III kerogen with an admixture of Type II kerogen, is immature or at most, early mature to 0.7 % in the vitrinite reflectance scale. The highest thermal maturity is recorded in the south-eastern part of the study area, where the Jurassic strata are buried deeper. The thermal modelling showed that the obtained organic matter maturity in the initial phase of the "oil window" is connected with the stage of the Carpathian overthrusting. The numerical modelling indicated that the onset of hydrocarbon generation from the Middle Jurassic source rocks was also connected with the Carpathian thrust belt. The peak of hydrocarbon generation took place in the orogenic stage of the overthrusting. The amount of generated hydrocarbons is generally small, which is a consequence of the low maturity and low transformation degree of kerogen. The generated hydrocarbons were not expelled from their source rock. An analysis of maturity distribution and transformation degree of the Jurassic organic matter shows that the best conditions for hydrocarbon generation occurred most probably in areas deeply buried under the Outer Carpathians. It is most probable that the "generation kitchen" should be searched for there.

  12. Parameter optimization of ferro-sonication pre-treatment process for degradation of bisphenol A and biodegradation from wastewater sludge using response surface model.

    Science.gov (United States)

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2011-05-15

    In this study, the application of response surface model in predicting and optimizing the ferro-sonication pre-treatment for degradation of bisphenol A (BPA), an endocrine disrupter compound from wastewater sludge (WWS) was investigated. The ferro-sonication pre-treatment process was carried out according to central composite design (CCD) with four independent variables such as wastewater sludge solids concentration, pH, ultrasonication time and FeSO(4) concentration. The effect of ferro-sonication pre-treatment was assessed in terms of increase in sludge solids (suspended solids (SS) and volatile solids (VS)) and organic matter (chemical oxygen demand (COD) and soluble organic carbon (SOC)) solubilization and simultaneous BPA degradation from WWS. It was observed that among all the variables studied, ultrasonication time had more significantly affected the efficiency of the ferro-sonication pre-treatment process followed by FeSO(4) and solids concentration. Through this optimization process, it was found that maximum BPA degradation of 88% could be obtained with 163 min ultrasonication time, 2.71 mg/L FeSO(4) concentration, pH 2.81 with 22 g/L SS. Further, the effect of ferro-sonication pre-treatment on biodegradation of WWS was also studied. It was observed that ultrasonication time had significant effect and the higher biodegradation (32.48%) was observed at 180 min ultrasonication time. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Controlled Release of Granulocyte Colony-Stimulating Factor Enhances Osteoconductive and Biodegradable Properties of Beta-Tricalcium Phosphate in a Rat Calvarial Defect Model

    Directory of Open Access Journals (Sweden)

    Tomohiro Minagawa

    2014-01-01

    Full Text Available Autologous bone grafts remain the gold standard for the treatment of congenital craniofacial disorders; however, there are potential problems including donor site morbidity and limitations to the amount of bone that can be harvested. Recent studies suggest that granulocyte colony-stimulating factor (G-CSF promotes fracture healing or osteogenesis. The purpose of the present study was to investigate whether topically applied G-CSF can stimulate the osteoconductive properties of beta-tricalcium phosphate (β-TCP in a rat calvarial defect model. A total of 27 calvarial defects 5 mm in diameter were randomly divided into nine groups, which were treated with various combinations of a β-TCP disc and G-CSF in solution form or controlled release system using gelatin hydrogel. Histologic and histomorphometric analyses were performed at eight weeks postoperatively. The controlled release of low-dose (1 μg and 5 μg G-CSF significantly enhanced new bone formation when combined with a β-TCP disc. Moreover, administration of 5 μg G-CSF using a controlled release system significantly promoted the biodegradable properties of β-TCP. In conclusion, the controlled release of 5 μg G-CSF significantly enhanced the osteoconductive and biodegradable properties of β-TCP. The combination of G-CSF slow-release and β-TCP is a novel and promising approach for treating pediatric craniofacial bone defects.

  14. Risk assessment of industrial hydrocarbon release and transport in the vadose zone as it travels to groundwater table: A case study

    Directory of Open Access Journals (Sweden)

    Jalal Shayegan

    2015-07-01

    Full Text Available In this paper, a modeling tool for risk assessment analysis of the movement of hydrocarbon contaminants in the vadose zone and mass flux of contamination release into the groundwater table was developed. Also, advection-diffusion-reaction equations in combination with a three-phase equilibrium state between trapped air, soil humidity, and solid particles of unsaturated soil matrix were numerically solved to obtain a one dimensional concentration change in respect to depth of soil and total mass loading rate of hydrocarbons into the groundwater table. The developed model calibrations by means of sensitivity analysis and model validation via data from a site contaminated with BTEX were performed. Subsequently, the introduced model was applied on the collected hydrocarbon concentration data from a contaminated region of a gas refinery plant in Booshehr, Iran. Four different scenarios representing the role of different risk management policies and natural bio-degradation effects were defined to predict the future contaminant profile as well as the risk of the mass flux of contaminant components seeping into the groundwater table. The comparison between different scenarios showed that bio-degradation plays an important role in the contaminant attenuation rate; where in the scenarios including bio-degradation, the contaminant flux into the ground water table lasted for 50 years with the maximum release rate of around 20 gr per year while in the scenarios without including bio-degradation, 300 years of contaminant release into groundwater table with the maximum rate of 100 gr per year is obtained. Risk assessment analysis strongly suggests a need for bioremediation enhancement in the contaminated zones to reduce the contaminant influx to groundwater.

  15. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films.

    Science.gov (United States)

    Belibel, R; Avramoglou, T; Garcia, A; Barbaud, C; Mora, L

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid-base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie-Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    Energy Technology Data Exchange (ETDEWEB)

    Belibel, R.; Avramoglou, T. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Garcia, A. [CNRS UPR 3407, Laboratoire des Sciences des Procédés et des Matériau, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Barbaud, C. [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France); Mora, L., E-mail: Laurence.mora@univ-paris13.fr [INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, Villetaneuse F-93430 (France)

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  17. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films

    International Nuclear Information System (INIS)

    Belibel, R.; Avramoglou, T.; Garcia, A.; Barbaud, C.; Mora, L.

    2016-01-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid–base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie–Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles. - Highlights: • We develop different polymers with various chemical compositions. • Wettability properties were calculated using Cassie corrected contact angles. • Percentage of acid groups in polymers is directly correlated to acid part of SFE. • Cassie corrections are necessary for heterogeneous polymers.

  18. Grey water biodegradability.

    Science.gov (United States)

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  19. Quantitative risk model for polycyclic aromatic hydrocarbon photoinduced toxicity in Pacific herring following the Exxon Valdez oil spill.

    Science.gov (United States)

    Sellin Jeffries, Marlo K; Claytor, Carrie; Stubblefield, William; Pearson, Walter H; Oris, James T

    2013-05-21

    Phototoxicity occurs when exposure to ultraviolet radiation increases the toxicity of certain contaminants, including polycyclic aromatic hydrocarbons (PAHs). This study aimed to (1) develop a quantitative model to predict the risk of PAH phototoxicity to fish, (2) assess the predictive value of the model, and (3) estimate the risk of PAH phototoxicity to larval and young of year Pacific herring (Clupea pallasi) following the Exxon Valdez oil spill (EVOS) in Prince William Sound, Alaska. The model, in which median lethal times (LT50 values) are estimated from whole-body phototoxic PAH concentrations and ultraviolet A (UVA) exposure, was constructed from previously reported PAH phototoxicity data. The predictive value of this model was confirmed by the overlap of model-predicted and experimentally derived LT50 values. The model, along with UVA characterization data, was used to generate estimates for depths of de minimiz risk for PAH phototoxicity in young herring in 2003/2004 and immediately following the 1989 EVOS, assuming average and worst case conditions. Depths of de minimiz risk were estimated to be between 0 and 2 m deep when worst case UVA and PAH conditions were considered. A post hoc assessment determined that <1% of the young herring population would have been present at depths associated with significant risk of PAH phototoxicity in 2003/2004 and 1989.

  20. Factors limiting sulfolane biodegradation in contaminated subarctic aquifer substrate.

    Directory of Open Access Journals (Sweden)

    Christopher P Kasanke

    Full Text Available Sulfolane, a water-soluble organosulfur compound, is used industrially worldwide and is associated with one of the largest contaminated groundwater plumes in the state of Alaska. Despite being widely used, little is understood about the degradation of sulfolane in the environment, especially in cold regions. We conducted aerobic and anaerobic microcosm studies to assess the biological and abiotic sulfolane degradation potential of contaminated subarctic aquifer groundwater and sediment from Interior Alaska. We also investigated the impacts of nutrient limitations and hydrocarbon co-contamination on sulfolane degradation. We found that sulfolane underwent biodegradation aerobically but not anaerobically under nitrate, sulfate, or iron-reducing conditions. No abiotic degradation activity was detectable under either oxic or anoxic conditions. Nutrient addition stimulated sulfolane biodegradation in sediment slurries at high sulfolane concentrations (100 mg L-1, but not at low sulfolane concentrations (500 μg L-1, and nutrient amendments were necessary to stimulate sulfolane biodegradation in incubations containing groundwater only. Hydrocarbon co-contamination retarded aerobic sulfolane biodegradation rates by ~30%. Our study is the first to investigate the sulfolane biodegradation potential of subarctic aquifer substrate and identifies several important factors limiting biodegradation rates. We concluded that oxygen is an important factor limiting natural attenuation of this sulfolane plume, and that nutrient amendments are unlikely to accelerate biodegradation within in the plume, although they may biostimulate degradation in ex situ groundwater treatment applications. Future work should be directed at elucidating the identity of indigenous sulfolane-degrading microorganisms and determining their distribution and potential activity in the environment.

  1. A bootstrapped neural network model applied to prediction of the biodegradation rate of reactive Black 5 dye - doi: 10.4025/actascitechnol.v35i3.16210

    Directory of Open Access Journals (Sweden)

    Kleber Rogério Moreira Prado

    2013-06-01

    Full Text Available Current essay forwards a biodegradation model of a dye, used in the textile industry, based on a neural network propped by bootstrap remodeling. Bootstrapped neural network is set to generate estimates that are close to results obtained in an intrinsic experience in which a chemical process is applied. Pseudomonas oleovorans was used in the biodegradation of reactive Black 5. Results show a brief comparison between the information estimated by the proposed approach and the experimental data, with a coefficient of correlation between real and predicted values for a more than 0.99 biodegradation rate. Dye concentration and the solution’s pH failed to interfere in biodegradation index rates. A value above 90% of dye biodegradation was achieved between 1.000 and 1.841 mL 10 mL-1 of microorganism concentration and between 1.000 and 2.000 g 100 mL-1 of glucose concentration within the experimental conditions under analysis.   

  2. The adsorption of Pb2+ and Cu2+ onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models.

    Science.gov (United States)

    Mittal, Hemant; Maity, Arjun; Sinha Ray, Suprakas

    2015-02-05

    A biodegradable hydrogel polymer of gum ghatti (Gg) with a copolymer mixture of acrylamide (AAm) and acrylonitrile (AN) was synthesized using the free-radical graft copolymerization technique. The effect of graft copolymerization on the surface area of Gg was studied using BET analyses. The graft copolymerization of Gg with poly(AAm-co-AN) was characterized using Fourier transform infrared spectroscopy, CHN analysis, thermogravimetric analysis, atomic force microscopy, and scanning electron microscopy. The adsorption of Pb(2+) and Cu(2+) from aqueous solution using the Gg-cl-P(AAm-co-AN) hydrogel polymer was studied in batch mode. The adsorption process was found to be highly pH dependent, and the maximum adsorption efficiency was observed at pH 5.0 for both metal ions. The adsorption isotherm data were analyzed by applying five different isotherm models, namely, the Langmuir, Freundlich, Temkin, Flory-Huggins, and Dubinin-Kaganer-Radushkevich isothermal models. The Langmuir model was found to fit well with the experimental isotherm data, with a maximum adsorption capacity of 384.6 and 203.7 mg/g for Pb(2+) and Cu(2+), respectively. The metal ion-adsorption process was found to be controlled by the pseudo-second-order rate model. The Gg-cl-P(AAm-co-AN) hydrogel polymer retained its original adsorption capacity for three successive cycles of adsorption-desorption. In summary, the potential for remediating industrial wastewater polluted by metal ions using the biodegradable Gg-cl-P(AAm-co-AN) hydrogel polymer has been demonstrated.

  3. Large-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in multimedia over China

    Science.gov (United States)

    Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.

    2017-12-01

    In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at

  4. Permian-Triassic maturation and multistage migration of hydrocarbons in the Assistência Formation (Irati Subgroup, Paraná Basin, Brazil: implications for the exploration model

    Directory of Open Access Journals (Sweden)

    António Mateus

    Full Text Available New lines of geological evidence strongly suggest that the main period of hydrocarbon maturation within Assistência Formation should be Permian-Triassic, stimulated by a high geothermal gradient that also sustained various manifestations of hydrothermal activity. Three main stages of fluid/hydrocarbon migration can also be inferred on the basis of multiscale observations: confined flow in late Permian to Triassic times, depending on the local build-up of fluid pressures; heterogeneous flow in Lower Cretaceous, triggered by a rejuvenated temperature gradient assisted by the early developed permeability conditions; and a late flow possibly driven by local pressure gradients, after complete cooling of dolerite dykes/sills. The early maturation and multistage migration of hydrocarbons have significant consequences in the design of exploration models to be applied in Paraná Basin.

  5. Simulating the dynamics of polycyclic aromatic hydrocarbon (PAH) in contaminated soil through composting by COP-Compost model.

    Science.gov (United States)

    Zhang, Yuan; Guan, Yidong; Shi, Qi

    2015-02-01

    Organic pollutants (OPs) are potentially present in composts, and the assessment of their content and bioaccessibility in these composts is of paramount importance to minimize the risk of soil contamination and improve soil fertility. In this work, integration of the dynamics of organic carbon (OC) and OPs in an overall experimental framework is first proposed and adopted to validate the applicability of the COP-Compost model and to calibrate the model parameters on the basis of what has been achieved with the COP-Compost model. The COP-Compost model was evaluated via composting experiments containing 16 US Environmental Protection Agency (USEPA) polycyclic aromatic hydrocarbons (PAHs) and the sorption coefficient (Kd) values of two types of OP: fluorenthene (FLT) and pyrene (PHE). In our study, these compounds are used to characterize the sequential extraction and are quantified as soluble, sorbed, and non-extractable fractions. The model was calibrated, and coupling the OC and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. The results show good agreement between the simulated and experimental results describing the evolution of different organic pollutants using the OP module, as well as the coupling module. However, no clear relationship is found between the Kd and the property of organic fractions. Further estimation of parameters is still necessary to modify the insufficiency of this present research.

  6. Mathematical modeling of biotransformations of oil hydrocarbons in the marine environment of Karkinitskii Bay in the Black Sea

    International Nuclear Information System (INIS)

    Leonov, A.V.; Chicherina, O.V.; Fashchuk, D.Y.

    2008-01-01

    Mathematical modelling is routinely used to study the behaviour of oil hydrocarbons (OHCs) during spills. In this study, mathematical modelling was used to examine the conditions of marine environmental pollution by OHCs and its self-purification as a result of transport by water flows and biochemical decomposition. The waters of Karkinitskii Bay in the Black Sea was chosen as the study site the because the exploitation of gas deposits since the 1980s has resulted in higher OHC concentrations. The conditions of marine environmental pollution by OHCs and water self-purification were reproduced based on available data and estimates of long-term mean monthly values of temperature, transparency, total light intensity, atmospheric precipitation, photo-period, water regime, and data on concentrations of biogenic substances and OHCs in the Danube water. OHC biotransformations in the marine environment were simulated by reproducing the biochemical activity of microflora and effecting substrate consumption processes, metabolic product excretions and biomass decay. The model provided estimates of the rates of decomposition of OHCs and oxygen consumption. The model results were in good agreement with experimental data. The model estimated the time needed for OHC concentrations to reach the maximum admissible concentration after pollution of the marine environment. 41 refs., 2 tabs., 6 figs

  7. Triple domain in situ sorption modeling of organochlorine pesticides, polychlorobiphenyls, polyaromatic hydrocarbons, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans in aquatic sediments

    NARCIS (Netherlands)

    Koelmans, A.A.; Kaag, N.H.B.M.; Sneekes, A.C.; Peeters, E.T.H.M.

    2009-01-01

    Here we analyze the potential of black carbon (BC) and oil-inclusive models to explain in situ sorption of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), organochlorine pesticides (OCP), polychlorobiphenyls (PCB), polyaromatic hydrocarbons

  8. Model studies for evaluating the neurobehavioral effects of complex hydrocarbon solvents. II. Neurobehavioral effects of white spirit in rat and human

    NARCIS (Netherlands)

    Lammers, J.H.C.M.; Emmen, H.H.; Muijser, H.; Hoogendijk, E.M.G.; McKee, R.H.; Owen, D.E.; Kulig, B.M.

    2007-01-01

    To evaluate the neurobehavioral effects of hydrocarbon solvents and to establish a working model for extrapolating animal test data to humans, studies were conducted which involved inhalation exposure of rats and humans to white spirit (WS). The specific objectives of these studies were to evaluate

  9. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  10. Growth of fungi on volatile aromatic hydrocarbons: environmental technology perspectives

    NARCIS (Netherlands)

    Prenafeta Boldú, F.X.

    2002-01-01

    The present study aimed the better understanding of the catabolism of monoaromatic hydrocarbons by fungi. This knowledge can be used to enhance the biodegradation of BTEX pollutants. Fungi with the capacity of using toluene as the sole source of carbon and energy were isolated by enriching

  11. Hydrocarbon Degradation In Poultry Droppings And Cassava Peels ...

    African Journals Online (AJOL)

    This greenhouse study was aimed at determining the potentials of poultry droppings (PD) and cassava peels (CP) for nutrient-enhanced biodegradation of petroleum hydrocarbon (THC) in a well drained Typic Paleustults using the THC levels and degradation duration as remediation indices. The performance of the organic ...

  12. 24 hydrocarbon degradation in poultry droppings and cassava peels

    African Journals Online (AJOL)

    OLUWOLE AKINNAGBE

    2009-01-01

    Jan 1, 2009 ... ABSTRACT. This greenhouse study was aimed at determining the potentials of poultry droppings (PD) and cassava peels. (CP) for nutrient-enhanced biodegradation of petroleum hydrocarbon (THC) in a well drained Typic. Paleustults using the THC levels and degradation duration as remediation indices.

  13. Effect of organic nutrient on microbial utilization of hydrocarbons on ...

    African Journals Online (AJOL)

    Administrator

    2006-05-16

    May 16, 2006 ... hydrocarbons on crude oil contaminated soil. Ibekwe, V. I.1, Ubochi, K. C.2 and ... The effect of organic nutrient (poultry manure) on biodegradation of soil (5 kg) contaminated with crude oil (50 g) was investigated for ... incident of oil spills occur in the mangrove swamp zones and near offshore areas of the ...

  14. Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Alam, Mohammed S., E-mail: m.s.alam@bham.ac.uk [Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Yin, Jianxin; Stark, Christopher; Jang, Eunhwa [Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Harrison, Roy M., E-mail: r.m.harrison@bham.ac.uk [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Shamy, Magdy; Khoder, Mamdouh I.; Shabbaj, Ibrahim I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia)

    2015-02-15

    Measurements of 14 polycyclic aromatic hydrocarbons (PAH) have been made in Jeddah, Saudi Arabia, with a view to establishing the concentrations in this major city, and quantifying the contributions of major sources. Particulate and vapour forms have been sampled and analysed separately. The concentrations are compared to measurements from other sites in the Middle Eastern region and are towards the lower end of the range, being far lower than concentrations reported from Riyadh (Saudi Arabia), Assiut (Egypt) and Tehran (Iran) but broadly similar to those measured in Damascus (Syria) and higher than those measured in Kuwait. The partitioning between vapour and particle phases is similar to that in data from Egypt and China, but with many compounds showing a higher particle-associated percentage than in Birmingham (UK) possibly reflecting a higher concentration of airborne particulate matter in the former countries. Concentrations in Jeddah were significantly higher at a site close to the oil refinery and a site close to a major ring road than at a suburban site to the north of the city. Application of positive matrix factorisation to the pooled data elicited three factors accounting respectively for 17%, 33% and 50% of the measured sum of PAH and these are interpreted as arising from gasoline vehicles, industrial sources, particularly the oil refinery, and to diesel/fuel oil combustion. - Highlights: • Measurements of 14 PAH compounds in vapour and particulate phases at three sites. • Comparison of concentrations across Jeddah and Middle Eastern regions. • Application of positive matrix factorisation to identify possible sources.

  15. Modeling the exposure functions of atmospheric polycyclic aromatic hydrocarbon mixtures in occupational environments.

    Science.gov (United States)

    Petit, Pascal; Maître, Anne; Persoons, Renaud; Bicout, Dominique J

    2017-04-15

    The health risk assessment associated with polycyclic aromatic hydrocarbon (PAH) mixtures faces three main issues: the lack of knowledge regarding occupational exposure mixtures, the accurate chemical characterization and the estimation of cancer risks. To describe industries in which PAH exposures are encountered and construct working context-exposure function matrices, to enable the estimation of both the PAH expected exposure level and chemical characteristic profile of workers based on their occupational sector and activity. Overall, 1729 PAH samplings from the Exporisq-HAP database (E-HAP) were used. An approach was developed to (i) organize E-HAP in terms of the most detailed unit of description of a job and (ii) structure and subdivide the organized E-HAP into groups of detailed industry units, with each group described by the distribution of concentrations of gaseous and particulate PAHs, which would result in working context-exposure function matrices. PAH exposures were described using two scales: phase (total particulate and gaseous PAH distribution concentrations) and congener (16 congener PAH distribution concentrations). Nine industrial sectors were organized according to the exposure durations, short-term, mid-term and long-term into 5, 36 and 47 detailed industry units, which were structured, respectively, into 2, 4, and 7 groups for the phase scale and 2, 3, and 6 groups for the congener scale, corresponding to as much distinct distribution of concentrations of several PAHs. For the congener scale, which included groups that used products derived from coal, the correlations between the PAHs were strong; for groups that used products derived from petroleum, all PAHs in the mixtures were poorly correlated with each other. The current findings provide insights into both the PAH emissions generated by various industrial processes and their associated occupational exposures and may be further used to develop risk assessment analyses of cancers

  16. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site

    International Nuclear Information System (INIS)

    Akbari, Ali; Ghoshal, Subhasis

    2014-01-01

    Highlights: • Aeration and moisture addition alone caused extensive hydrocarbon biodegradation. • 30-day slurry reactor remediation endpoints attained in 385 days in biopiles. • High nitrogen concentrations inhibited hydrocarbon degradation. • Inhibition of biodegradation linked to lack of shifts in soil microbial community. - Abstract: Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16–C34) in a pilot-scale biopile experiment conducted at 15 °C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16–C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day −1 in biopile tank compared to 0.11 day −1 in slurry bioreactors for C16–C34 hydrocarbons, the biodegradation extents for this fraction were

  17. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Ali; Ghoshal, Subhasis, E-mail: subhasis.ghoshal@mcgill.ca

    2014-09-15

    Highlights: • Aeration and moisture addition alone caused extensive hydrocarbon biodegradation. • 30-day slurry reactor remediation endpoints attained in 385 days in biopiles. • High nitrogen concentrations inhibited hydrocarbon degradation. • Inhibition of biodegradation linked to lack of shifts in soil microbial community. - Abstract: Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16–C34) in a pilot-scale biopile experiment conducted at 15 °C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16–C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day{sup −1} in biopile tank compared to 0.11 day{sup −1} in slurry bioreactors for C16–C34 hydrocarbons, the biodegradation extents for this fraction

  18. The toxicity of oil-contaminated muskeg following biodegradation

    International Nuclear Information System (INIS)

    Farwell, A.; Kelly-Hooper, F.; McAlear, J.; Sinnesael, K.; Dixon, D.

    2009-01-01

    The current environmental criteria for the maximum allowable levels of hydrocarbons resulting from an oil spill assume that all detectable hydrocarbons are petroleum hydrocarbons (PHC) and do not account for naturally-occurring biogenic hydrocarbons (BHC). As such, some soils may be wrongfully assessed as being PHC contaminated. A false identification could lead to unnecessary and costly bioremediation that is potentially disruptive to functioning ecosystems. This study is part of a larger project to differentiate between natural and petroleum F3 hydrocarbons in muskeg material that has been impacted by an oil spill. The toxicity of oil-contaminated muskeg was examined following biodegradation in laboratory microcosms. Preliminary acute toxicity tests using locally purchased Sphagnum peat moss contaminated with Federated Crude oil had no effect on the survival of earthworms (Eisenia andrei), but springtails (Orthonychiurus folsomi) were more sensitive. Earthworm and springtail reproduction bioassays and a Northern wheatgrass (Elymus lanceolatus) growth bioassay was used to test the crude-oil-contaminated peat. All 3 test species will be used to test for reduced toxicity following biodegradation of Federated Crude oil-contaminated muskeg from northern Alberta under simulated conditions.

  19. The toxicity of oil-contaminated muskeg following biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Farwell, A.; Kelly-Hooper, F.; McAlear, J.; Sinnesael, K.; Dixon, D. [Waterloo Univ., Waterloo, ON (Canada)

    2009-07-01

    The current environmental criteria for the maximum allowable levels of hydrocarbons resulting from an oil spill assume that all detectable hydrocarbons are petroleum hydrocarbons (PHC) and do not account for naturally-occurring biogenic hydrocarbons (BHC). As such, some soils may be wrongfully assessed as being PHC contaminated. A false identification could lead to unnecessary and costly bioremediation that is potentially disruptive to functioning ecosystems. This study is part of a larger project to differentiate between natural and petroleum F3 hydrocarbons in muskeg material that has been impacted by an oil spill. The toxicity of oil-contaminated muskeg was examined following biodegradation in laboratory microcosms. Preliminary acute toxicity tests using locally purchased Sphagnum peat moss contaminated with Federated Crude oil had no effect on the survival of earthworms (Eisenia andrei), but springtails (Orthonychiurus folsomi) were more sensitive. Earthworm and springtail reproduction bioassays and a Northern wheatgrass (Elymus lanceolatus) growth bioassay was used to test the crude-oil-contaminated peat. All 3 test species will be used to test for reduced toxicity following biodegradation of Federated Crude oil-contaminated muskeg from northern Alberta under simulated conditions.

  20. Selectivity of solid-phase extraction phases in the determination of biodegradation products.

    Science.gov (United States)

    Bielicka, K; Voelkel, A

    2001-05-18

    The extraction techniques connected with gas chromatography were used to describe quantitatively and qualitatively the biodegradation process. We investigated the biodegradation of hydrocarbons and non-ionic surfactants. Solid-phase extraction (SPE) and liquid-liquid extraction were used for the isolation of the non-degraded compounds and their degradation products. The selectivity of SPE has a significant influence on the isolation and preconcentration of organic compounds from water.

  1. Measuring biodegradation of oil products by means of environmental forensic methods

    International Nuclear Information System (INIS)

    Gallego, J. R.; Garcia-Mtnez, M. J.; Ortiz, J. E.; Ortega, M.; Torres, T. de; Llamas, J. F.

    2009-01-01

    Bioremediation technologies are focused to the biodegradation of organic pollutants. This approach is particularly helpful when soils and/or groundwater are affected by oil products spills, given the satisfactory biodegradability of most hydrocarbons. However, during a bio-treatment the decreasing in pollutants concentration may be due to both biotic and biotic processes, whose distinction is very important, albeit difficult, in order to evaluate if bioremediation is being properly applied. (Author)

  2. Biodegradation of ion-exchange media

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-08-01

    Ion-exchange media, both bead resins and powdered filter media, are used in nuclear power plants to remove radioactivity from process water prior to reuse or environmental discharge. Since the ion- exchange media are made from synthetic hydrocarbon-based polymers, they may be susceptible to damage from biological activity. The purpose of this study was to investigate some of the more basic aspects of biodegradation of ion-exchange media, specifically to evaluate the ability of microorganisms to utilize the ion-exchange media or materials sorbed on them as a food source. The ASTM-G22 test, alone and combined with the Bartha Pramer respirometric method, failed to indicate the biodegradability of the ion-exchange media. The limitation of these methods was that they used a single test organism. In later phases of this study, a mixed microbial culture was grown from resin waste samples obtained from the BNL High Flux Beam Reactor. These microorganisms were used to evaluate the susceptibility of different types of ion-exchange media to biological attack. Qualitative assessments of biodegradability were based on visual observations of culture growths. Greater susceptibility was associated with increased turbidity in solution indicative of bacterial growth, and more luxuriant fungal mycelial growth in solution or directly on the ion-exchange resin beads. 21 refs., 9 figs., 18 tabs

  3. Application of compound specific 13C isotope investigations of chlorinated hydrocarbons in contaminated groundwaters

    International Nuclear Information System (INIS)

    Osenbrueck, K.; Heidinger, M.; Voropaev, A.; Ertl, S.; Eichinger, L.

    2002-01-01

    the stable carbon isotopes. The isotope ratios may be used to assess and quantify the degradation of the organic compounds at the field sites. This application has gained great interest for remediation strategies including monitored natural attenuation of contaminations. In contrast to the laboratory studies, many of the field investigation show no evidence for isotope fractionation although biodegradation of the chlorinated hydrocarbons in the groundwater is significant. Here, we present the results of 21 field studies, where compound specific 13 C isotope ratios have been applied. Only in some cases isotope fractionation processes of chlorinated hydrocarbons due to biodegradation have been observed. The measured δ 13 C values agree reasonably with a Rayleigh type isotope fractionation model, where the fractionation factors are used as fitting parameters. The occurrence and the degree of significant isotope fractionation of chlorinated hydrocarbons is still an open question. Major factors that control the extend of measurable 13 C isotope fractionation of chlorinated hydrocarbons in groundwater most likely include parameters as activity and type of the microbiological species, availability of cosubstrates as well as hydrochemical and hydrogeological conditions. (author)

  4. Application of fuzzy neural networks for modeling of biodegradation and biogas production in a full-scale internal circulation anaerobic reactor.

    Science.gov (United States)

    Ruan, Jujun; Chen, Xiaohong; Huang, Mingzhi; Zhang, Tao

    2017-01-02

    This paper presents the development and evaluation of three fuzzy neural network (FNN) models for a full-scale anaerobic digestion system treating paper-mill wastewater. The aim was the investigation of feasibility of the approach-based control system for the prediction of effluent quality and biogas production from an internal circulation (IC) anaerobic reactor system. To improve FNN performance, fuzzy subtractive clustering was used to identify model's architecture and optimize fuzzy rule, and a total of 5 rules were extracted in the IF-THEN format. Findings of this study clearly indicated that, compared to NN models, FNN models had smaller RMSE and MAPE as well as bigger R for the testing datasets than NN models. The proposed FNN model produced smaller deviations and exhibited a superior predictive performance on forecasting of both effluent quality and biogas (methane) production rates with satisfactory determination coefficients greater than 0.90. From the results, it was concluded that FNN modeling could be applied in IC anaerobic reactor for predicting the biodegradation and biogas production using paper-mill wastewater.

  5. Why heavy oilfields exist? The dynamic interplay of oil charge, basin dynamics, caprock leakage and gas generating biodegradation that produces heavy oilfields

    Science.gov (United States)

    Adams, J. J.; Larter, S. R.; Huang, H.; Bennett, B.

    2008-12-01

    Heavy oil and bitumen resources develop by extensive in-reservoir oil biodegradation resulting in a wide range of oil compositional gradients that reflect the complex interplay of oil charge rate and composition, biodegradation in oil-water transition zones at the base of oil columns and geologically controlled in-reservoir diffusive mixing over geological time. Worldwide, observed compositional gradients are maintained by unaltered oil charge near the top of reservoirs and concomitant degradation at the base of the reservoirs at rates comparable to the charge rates of oil fields. Across the Alberta oil sands, elevated CO2, high CH4 and low C2+ gas contents, steep oil compositional gradients, high aqueous bicarbonate concentrations and isotopic values in equilibrium with enriched d13CCO2 gas signatures are indicative of active persistence of active biodegradation to the present. Numerical models of carbon isotope systematics identify the dominant reaction pathway of subsurface hydrocarbon biodegradation as methanogenic alkane degradation by CO2 reduction, which produces large volumes of isotopically light methane and heavy CO2 in solution gas. Simple charge-degrade numerical models predict generation of 3 to 6 times reservoir volumes of biogenic gas in the genesis of heavy oil over geological time, which would have displaced oils from the traps. Gas caps in shallow reservoirs are small at best, suggesting seal leakage is pervasive and this is confirmed by degraded oil in many heavy oil caprocks. Also much less CO2 is measured in biodegraded oil field gases than is predicted based on reaction stoichiometry. The paucity of large gas caps, evidence of methane-rich and sometimes oil charged cap rocks, anomalously high formation water alkalinity and enriched aqueous d13Ccarbonate values in shallow Alberta biodegraded oil reservoirs point to leaky reservoir top seals and dissolution of biogenic gas into the water and oil phases. Indeed we consider top seal leakage of

  6. Effect of Gamma Irradiation on the Biodegradation Process of some Organic Pollutants

    International Nuclear Information System (INIS)

    El-Shahawy, M.R.

    2014-01-01

    Water samples were collected from Ras Gemsa on western coast of Suez Gulf, then microbiologically and chemically analyzed. The total petroleum hydrocarbons (TPH) was at concentration of 357 ppm and exceeded the known permissible limits ranged from 5 to 100 ppm according to the receiving water bulk. On the other hand the biodegrading bacterial counts ( CFU ) clearly reflected the great adaptation of endogenous bacteria to use hydrocarbons as a sole source of carbon. The ratio of biodegrading bacteria to heterotrophic ones was about 3.3%. Five hydrocarbon degrading bacteria were isolated from Suez Gulf Consortia. One isolate HD1 were selected to be promising due to its capacity of hydrocarbon degradation, this promising isolate was characterized and identified by API system as Bacillus subtilis. The biodegradation kinetics of radiated polluted water samples by B. subtilis and the Suez Gulf consortium was monitored gravimetrically. The results showed that The Suez Gulf consortium had more biodegradation capacity than the single isolate B. subtilis overall radiation doses applied and non-radiated polluted water sample. The data showed a significant increase of the biodegradability with increase of radiation doses used

  7. The freshwater biodegradation potential of nine Alaskan oils

    International Nuclear Information System (INIS)

    Blenkinsopp, S.; Segy, G.

    1997-01-01

    Nine Alaskan representative crude oils and oil products with freshwater spill potential were collected, aged, and incubated in the presence of the standard freshwater inoculum for 28 days at 10 degrees C. Detailed analytical chemistry was performed on all samples to quantify compositional changes. All of the samples tested exhibited measurable hydrocarbon loss as a result of incubation with the freshwater inoculum. Total saturate and total n-alkane biodegradation were greatly enhanced when nutrients were present. The oil products Jet B Fuel and Diesel No. 2 appear to be more biodegradable than the Alaska North Slope and Cook Inlet crude oils tested, while the Bunker C/Diesel mixture appears to be less biodegradable than these crude oils. These results suggest that the screening procedures described here can provide useful information when applying bioremediation technology to the cleanup of selected oiled freshwater environments. 10 refs., 5 tabs., 13 figs

  8. Solo Mycoremediation Impacted by Waste Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Franklin Santos Freire

    2015-06-01

    Full Text Available Oil and its derivatives are the principal means of energy generation for vehicles that transport raw materials and goods produced in developed and developing regions accentuating the risk of accidents by spills in stockpiling, transport, use or discarding. The contamination by total hydrocarbons suggests the elevated propension to mutations and to the formation of carcinogenic tumors, as a consequence of the exposure to human contamination by these products. This work had as aims: a To investigate, in a laboratorial scale, the degrading capacity of autochthonous microbiota in the presence of differing concentrations of hydrocarbons (0%, 2,5%, 5% e 7,5%; b To isolate fungi tolerant to the contaminant; c To quantify and analyze the biodegradation capacity of soil through the microbial biomass and metabolic quotient; and d To set, in laboratory, ideal conditions of biodegradation of the xenobiotic compound. Some parameters of microbial activity have been evaluated, such as: biological (Carbon of microbial biomass, CO2 , qCO2 emission, and fungi growth, chemical (pH, electrical conductivity –EC –, analysis of fertility and total hydrocarbons and physical (physical composition of the soil for analysis and comparisons. The obtained results suggest that the adding of 5% of waste oil in the ground provided ideal condition for the biodegradation of he   contaminant in the environment. From the evaluated parameters, the emission of CO2 and microbial C were considered more indicative of changes in soil microbial activity subject to the addition of hydrocarbons, confirming the possibility of microremediation use.

  9. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China.

    Science.gov (United States)

    Tao, Shu; Li, Xinrong; Yang, Yu; Coveney, Raymond M; Lu, Xiaoxia; Chen, Haitao; Shen, Weiran

    2006-08-01

    A USEPA, procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo[a]pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from approximately 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from approximately 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 +/- 2.87 ng/m3 on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m3, 41% of the entire population lives within this area.

  10. Fate of polycyclic aromatic hydrocarbons from the North Pacific to the Arctic: Field measurements and fugacity model simulation.

    Science.gov (United States)

    Ke, Hongwei; Chen, Mian; Liu, Mengyang; Chen, Meng; Duan, Mengshan; Huang, Peng; Hong, Jiajun; Lin, Yan; Cheng, Shayen; Wang, Xuran; Huang, Mengxue; Cai, Minggang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) have accumulated ubiquitously inArctic environments, where re-volatilization of certain organic pollutants as a result of climate change has been observed. To investigate the fate of semivolatile organic compounds in the Arctic, dissolved PAHs in the surface seawaters from the temperate Pacific Ocean to the Arctic Ocean, as well as a water column in the Arctic Ocean, were collected during the 4th Chinese National Arctic Research Expedition in summer 2010. The total concentrations of seven dissolved PAHs in surface water ranged from 1.0 to 5.1 ng L -1 , decreasing with increasing latitude. The vertical profile of PAHs in the Arctic Ocean was generally characteristic of surface enrichment and depth depletion, which emphasized the role of vertical water stratification and particle settling processes. A level III fugacity model was developed in the Bering Sea under steady state assumption. Model results quantitatively simulated the transfer processes and fate of PAHs in the air and water compartments, and highlighted a summer air-to-sea flux of PAHs in the Bering Sea, which meant that the ocean served as a sink for PAHs, at least in summer. Acenaphthylene and acenaphthene reached equilibrium in air-water diffusive exchange, and any perturbation, such as a rise in temperature, might lead to disequilibrium and remobilize these compounds from their Arctic reservoirs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Model simulations

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. In a membrane reactor process, the thermal energy needed for the endothermic hydrocarbon reforming may be provided by combustion of the membrane reject gas. The energy efficiency of the overall hydrogen generation is maximized by controlling the hydrogen product yield such that the heat value of the membrane reject gas is sufficient to provide all of the heat necessary for the integrated process. Optimization of the system temperature, pressure and operating parameters such as net hydrogen recovery is necessary to realize an efficient integrated membrane reformer suitable for compact portable hydrogen generation. This paper presents results of theoretical model simulations of the integrated membrane reformer concept elucidating the effect of operating parameters on the extent of fuel conversion to hydrogen and hydrogen product yield. Model simulations indicate that the net possible hydrogen product yield is strongly influenced by the efficiency of heat recovery from the combustion of membrane reject gas and from the hot exhaust gases. When butane is used as a fuel, a net hydrogen recovery of 68% of that stoichiometrically possible may be achieved with membrane reformer operation at 600 °C (873 K) temperature and 100 psig (0.791 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered. Operation at a greater pressure or temperature provides a marginal improvement in the performance whereas operation at a significantly lower temperature or pressure will not be able to achieve the optimal hydrogen yield. Slightly higher, up to 76%, net hydrogen recovery is possible when methanol is used as a fuel due to the lower heat

  12. Optimizing BTEX biodegradation under denitrifying conditions

    International Nuclear Information System (INIS)

    Hutchins, S.R.

    1991-01-01

    Leaking underground storage tanks are a major source of ground water contamination by petroleum hydrocarbons. Gasoline and other fuels contain benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX), which are hazardous compounds, regulated by the U.S. Environmental Protection Agency (EPA). Laboratory tests were conducted to determine optimum conditions for benzene, toluene, ethylbenzene, and xylene (collectively known as BTEX) biodegradation by aquifer microorganisms under denitrifying conditions. Microcosms, constructed with aquifer samples from Traverse City, Michigan, were amended with selected concentrations of nutrients and one or more hydrocarbons. Toluene, ethylbenzene, m-xylene, and p-xylene, were degraded to below 5 micrograms/L when present as sole source substrates; stoichiometric calculations indicated that nitrate removal was sufficient to account for 70 to 80% of the compounds being mineralized. o-Xylene was recalcitrant when present as a sole source substrate, but was slowly degraded in the presence of the other hydrocarbons. Benzene was not degraded within one year, regardless of whether it was available as a sole source substrate or in combination with toluene, phenol, or catechol. Pre-exposure to low levels of BTEX and nutrients had variable effects, as did the addition of different concentrations of ammonia and phosphate. Nitrate concentrations as high as 500 mg/L NO3-N were slightly inhibitory. These data indicate that nitrate-mediated biodegradation of BTEX at Traverse City can occur under a variety of environmental conditions with rates relatively independent of nutrient concentrations. However, the data reaffirm that benzene is recalcitrant under strictly anaerobic conditions in these samples

  13. Biodegradation of plastics: current scenario and future prospects for environmental safety.

    Science.gov (United States)

    Ahmed, Temoor; Shahid, Muhammad; Azeem, Farrukh; Rasul, Ijaz; Shah, Asad Ali; Noman, Muhammad; Hameed, Amir; Manzoor, Natasha; Manzoor, Irfan; Muhammad, Sher

    2018-03-01

    Plastic is a general term used for a wide range of high molecular weight organic polymers obtained mostly from the various hydrocarbon and petroleum derivatives. There is an ever-increasing trend towards the production and consumption of plastics due to their extensive industrial and domestic applications. However, a wide spectrum of these polymers is non-biodegradable with few exceptions. The extensive use of plastics, lack of waste management, and casual community behavior towards their proper disposal pose a significant threat to the environment. This has raised growing concerns among various stakeholders to devise policies and innovative strategies for plastic waste management, use of biodegradable polymers especially in packaging, and educating people for their proper disposal. Current polymer degradation strategies rely on chemical, thermal, photo, and biological procedures. In the presence of proper waste management strategies coupled with industrially controlled biodegradation facilities, the use of biodegradable plastics for some applications such as packaging or health industry is a promising and attractive option for economic, environmental, and health benefits. This review highlights the classification of plastics with special emphasis on biodegradable plastics and their rational use, the identified mechanisms of plastic biodegradation, the microorganisms involved in biodegradation, and the current insights into the research on biodegradable plastics. The review has also identified the research gaps in plastic biodegradation followed by future research directions.

  14. Source characterization and exposure modeling of gas-phase polycyclic aromatic hydrocarbon (PAH) concentrations in Southern California

    Science.gov (United States)

    Masri, Shahir; Li, Lianfa; Dang, Andy; Chung, Judith H.; Chen, Jiu-Chiuan; Fan, Zhi-Hua (Tina); Wu, Jun

    2018-03-01

    Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.

  15. THE HYDROCARBON SPILL SCREENING MODEL (HSSM), VOLUME 2: THEORETICAL BACKGROUND AND SOURCE CODES

    Science.gov (United States)

    A screening model for subsurface release of a nonaqueous phase liquid which is less dense than water (LNAPL) is presented. The model conceptualizes the release as consisting of 1) vertical transport from near the surface to the capillary fringe, 2) radial spreading of an LNAPL l...

  16. Hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. (South Carolina Univ., Columbia, SC (United States). Dept. of Geological Sciences)

    1993-01-01

    This special issue of the journal examines various aspects of the on-going search for hydrocarbons, ranging from frontier basins where little data are available, to more mature areas where considerable data are available. The incentives underlying the search for oil are roughly: the social, economic and industrial needs of a nation; the incentive of a corporation to be profitable; and the personal incentives of individuals in the oil industry and governments, which range from financial wealth to power and which are as diverse as the individuals who are involved. From a geopolitical perspective, the needs, requirements, goals, strategies, and philosophies of nations, and groups of nations, also impact on the oil exploration game. Strategies that have been employed have ranged from boycott to austerity and rationing, to physical intervention, to global ''flooding'' with oil by over-production. (author)

  17. Recent Advances in Detailed Chemical Kinetic Models for Large Hydrocarbon and Biodiesel Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Curran, H J; Herbinet, O; Mehl, M

    2009-03-30

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.

  18. Mixing-controlled biodegradation in a toluene plume — Results from two-dimensional laboratory experiments

    Science.gov (United States)

    Bauer, Robert D.; Maloszewski, Piotr; Zhang, Yanchun; Meckenstock, Rainer U.; Griebler, Christian

    2008-02-01

    Various abiotic and biotic processes such as sorption, dilution, and degradation are known to affect the fate of organic contaminants, such as petroleum hydrocarbons in saturated porous media. Reactive transport modeling of such plumes indicates that the biodegradation of organic pollutants is, in many cases, controlled by mixing and therefore occurs locally at the plume's fringes, where electron donors and electron-acceptors mix. Herein, we aim to test whether this hypothesis can be verified by experimental results obtained from aerobic and anaerobic degradation experiments in two-dimensional sediment microcosms. Toluene was selected as a model compound for oxidizable contaminants. The two-dimensional microcosm was filled with quartz sand and operated under controlled flow conditions simulating a contaminant plume in otherwise uncontaminated groundwater. Aerobic degradation of toluene by Pseudomonas putida mt-2 reduced a continuous 8.7 mg L - 1 toluene concentration by 35% over a transport distance of 78 cm in 15.5 h. In comparison, under similar conditions Aromatoleum aromaticum strain EbN1 degraded 98% of the toluene infiltrated using nitrate (68.5 ± 6.2 mg L - 1 ) as electron acceptor. A major part of the biodegradation activity was located at the plume fringes and the slope of the electron-acceptor gradient was steeper during periods of active biodegradation. The distribution of toluene and the significant overlap of nitrate at the plume's fringe indicate that biokinetic and/or microscale transport processes may constitute additional limiting factors. Experimental data is corroborated with results from a reactive transport model using double Monod kinetics. The outcome of the study shows that in order to simulate degradation in contaminant plumes, detailed data sets are required to test the applicability of models. These will have to deal with the incorporation of existing parameters coding for substrate conversion kinetics and microbial growth.

  19. Numerical modelling on fate and transport of petroleum hydrocarbons in an unsaturated subsurface system for varying source scenario

    Science.gov (United States)

    Berlin, M.; Vasudevan, M.; Kumar, G. Suresh; Nambi, Indumathi M.

    2015-04-01

    The vertical transport of petroleum hydrocarbons from a surface spill through an unsaturated subsurface system is of major concern in assessing the vulnerability of groundwater contamination. A realistic representation on fate and transport of volatile organic compounds at different periods after spill is quite challenging due to the variation in the source behaviour at the surface of spill as well as the variation in the hydrodynamic parameters and the associated inter-phase partitioning coefficients within the subsurface. In the present study, a one dimensional numerical model is developed to simulate the transport of benzene in an unsaturated subsurface system considering the effect of volatilization, dissolution, adsorption and microbial degradation of benzene for (i) constant continuous source, (ii) continuous decaying source, and (iii) residual source. The numerical results suggest that volatilization is the important sink for contaminant removal considering the soil air migration within the unsaturated zone. It is also observed that the coupled effect of dissolution and volatilization is important for the decaying source at the surface immediately after the spill, whereas rate-limited dissolution from residually entrapped source is responsible for the extended contamination towards later period.

  20. Application of radiocarbon analysis and receptor modeling to the source apportionment of PAHs (polycyclic aromatic hydrocarbons) in the atmosphere

    International Nuclear Information System (INIS)

    Sheffield, A.E.

    1988-01-01

    The radiocarbon tracer technique was used to demonstrate that polycyclic aromatic hydrocarbons (PAHs) can be used for quantitative receptor modeling of air pollution. Fine-particle samples were collected during December, 1985, in Albuquerque, NM. Motor vehicles (fossil) and residential wood combustion (RWC, modern) were the major PAH-sources. For each sample, the PAH-fraction was solvent-extracted, isolated by liquid chromatography, and analyzed by GC-FID and GC-MS. The PAH-fractions from sixteen samples were analyzed for 14 C by Accelerator Mass Spectrometry. Radiocarbon data were used to calculate the relative RWC contribution (f RWC ) for samples analyzed for 14 C. Normalized concentrations of a prospective motor vehicle tracer, benzo(ghi)perylene (BGP) had a strong, negative correlation with f RWC . Normalized BGP concentrations were used to apportion sources for samples not analyzed for 14 C. Multiple Linear Regression (MLR) vs. ADCS and BGP was used to estimate source profiles for use in Target Factor Analysis (TFA). Profiles predicted by TFA were used in Chemical Mass Balances (CMBs). For non-volatile, stable PAHs, agreement between observed and predicted concentrations was excellent. The worst fits were observed for the most volatile PAHs and for coronene. The total RWC contributions predicted by CMBs correlated well with the radiocarbon data

  1. Modeling solubility of CO2/hydrocarbon gas in ionic liquid ([emim][FAP]) using Aspen Plus simulations.

    Science.gov (United States)

    Bagchi, Bishwadeep; Sati, Sushmita; Shilapuram, Vidyasagar

    2017-08-01

    The Peng-Robinson equation of state with quadratic van der Waals (vdW) mixing rule model was chosen to perform the thermodynamic calculations in Flash3 column of Aspen Plus to predict the solubility of CO 2 or any one of the hydrocarbons (HCs) among methane, ethane, propane, and butane in an ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]). Bubble point pressure, solubility, bubble point temperature, fugacity, and partial molar volume at infinite dilution were obtained from the simulations, and enthalpy of absorption, Gibbs free energy of solvation, and entropy change of absorption were estimated by thermodynamic relations. Results show that carbon chain length has a significant effect on the bubble point pressure. Methane has the highest bubble point pressure among all the considered HCs and CO 2 . The bubble point pressure and fugacity variation with temperature is different for CO 2 as compared to HCs for mole fractions above 0.2. Two different profiles are noticed for enthalpy of absorption when plotted as a function of mole fraction of gas soluble in IL. Partial molar volume of CO 2 decreases with increase in temperature in [emim][FAP], while it is increased for HCs. Bubble point temperature decreases with increase in the mole fraction of the solute. Entropy of solvation increases with temperature till a particular value followed by a decrease with further increase in temperature. Gibbs free energy change of solvation showed that the process of solubility was spontaneous.

  2. Editorial: Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2014-11-01

    Full Text Available This Special Issue “Biodegradable Materials” features research and review papers concerning recent advances on the development, synthesis, testing and characterisation of biomaterials. These biomaterials, derived from natural and renewable sources, offer a potential alternative to existing non-biodegradable materials with application to the food and biomedical industries amongst many others. In this Special Issue, the work is expanded to include the combined use of fillers that can enhance the properties of biomaterials prepared as films. The future application of these biomaterials could have an impact not only at the economic level, but also for the improvement of the environment.

  3. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    International Nuclear Information System (INIS)

    Ligaray, Mayzonee; Baek, Sang Soo; Kwon, Hye-Ok; Choi, Sung-Deuk; Cho, Kyung Hwa

    2016-01-01

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  4. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    Energy Technology Data Exchange (ETDEWEB)

    Ligaray, Mayzonee; Baek, Sang Soo [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Kwon, Hye-Ok [Disaster Scientific Investigation Division, National Disaster Management Research Institute, 365 Jongga-ro Jung-gu, Ulsan 44538 (Korea, Republic of); Choi, Sung-Deuk, E-mail: sdchoi@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Cho, Kyung Hwa, E-mail: khcho@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of)

    2016-12-15

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  5. Response surface analysis to improve dispersed crude oil biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Zahed, Mohammad A.; Aziz, Hamidi A.; Mohajeri, Leila [School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang (Malaysia); Isa, Mohamed H. [Civil Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia)

    2012-03-15

    In this research, the bioremediation of dispersed crude oil, based on the amount of nitrogen and phosphorus supplementation in the closed system, was optimized by the application of response surface methodology and central composite design. Correlation analysis of the mathematical-regression model demonstrated that a quadratic polynomial model could be used to optimize the hydrocarbon bioremediation (R{sup 2} = 0.9256). Statistical significance was checked by analysis of variance and residual analysis. Natural attenuation was removed by 22.1% of crude oil in 28 days. The highest removal on un-optimized condition of 68.1% were observed by using nitrogen of 20.00 mg/L and phosphorus of 2.00 mg/L in 28 days while optimization process exhibited a crude oil removal of 69.5% via nitrogen of 16.05 mg/L and phosphorus 1.34 mg/L in 27 days therefore optimization can improve biodegradation in shorter time with less nutrient consumption. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Evaluation of novel biodegradable three-armed- and hyper-branched tissue adhesives in a meniscus explant model.

    Science.gov (United States)

    Bochyńska, A I; Hannink, G; Verhoeven, R; Grijpma, D W; Buma, P

    2017-05-01

    Current treatment methods to repair meniscal tears do not bring fully satisfactory results. Tissue adhesives are considered promising alternatives, since they are easy to apply and cause minimal tissue trauma. The first aim of this study was to analyze the adhesive properties of and tissue response to two recently developed biodegradable block copolymeric three-armed- and hyper-branched tissue adhesives. The second aim was to investigate if tissue surface modification with collagenase improves the attachment of the adhesives and increases the healing potential of the tissue. Cylindrical explants were harvested from bovine menisci. The central core of the explants was removed and glued back into the defect, with or without incubation in collagenase solution prior to gluing, using one of the novel glues, Dermabond® or fibrin glue. The repair constructs were cultured in vitro for 1 and 28 days. Adhesion tests and histology were performed to analyze the effects of the glue in combination with the additional treatment. The adhesive strength of the novel glues was 40-50 kPa, which was significantly higher than that of fibrin glue (15 kPa). Cells were present in direct contact with the glues, and the tissue remained vital during the whole culture period. Increased cellularity around the tear in the collagenase treated explants was observed after 1 day. The two newly developed tissue adhesives are attractive materials to be used for repair of meniscal tears. The beneficial influence of collagenase treatment in treating meniscal tears with glues still needs to be confirmed in more clinical relevant studies. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1405-1411, 2017. © 2017 Wiley Periodicals, Inc.

  7. Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Rocha, F.J.; Olmos-Soto, J. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, San Diego, CA (United States). Departamento de Biotecnologia Marina; Rosano-Hernandez, M.A.; Muriel-Garcia, M. [Instituto Mexicano del Petroleo, CD Carmen Camp (Mexico). Zona Marina/Tecnologia Ambiental

    2005-01-01

    Of more than 20 bacteria isolated from a tropical soil using minimal medium supplemented with hydrocarbons, 11 grew well on diesel as sole carbon source, and another 11 grew in the presence of polynuclear aromatic hydrocarbons (PAHs). Ten isolates were identified phenotypically as Pseudomonas sp. and eight as Bacillus sp. Gene sequences representing the catabolic genes (alkM, todM, ndoM, and xylM) and 16S rRNA gene sequences characteristic for Pseudomona and Bacillus were amplified by PCR, using DNA recovered from the supernatant of hydrocarbon-contaminated soil suspensions. Based on their rapid growth characteristics in the presence of hydrocarbons and the formation of PCR products for the catabolic genes alkM and ndoM six isolates were selected for biodegradation assays. After 30 days a mixed culture of two isolates achieved close to 70% hydrocarbon removal and apparent mineralization of 16% of the hydrocarbons present in the soil. Biodegradation rates varied from 275 to 387 mg hydrocarbon kg{sup -1} day{sup -1}. Several bacterial isolates obtained in this study have catabolic capabilities for the biodegradation of alkanes and aromatic hydrocarbons including PAHs. (author)

  8. Solution Approach for a Mathematical Model Developed for Membrane Separation of a Gas Hydrocarbon Mixture

    Science.gov (United States)

    Boroujeni, Mahdi K.; Goodarzi, F.

    2011-09-01

    In present study, a special mathematical model for membrane separation processes was studied. Mathematical model was developed for propylene/propane system and was solved using finite difference solution approach. In this study, membrane length is shared into a number of nodes and required equations are written for each node, separately. Also, golden section method was used for suitable step size selection. It is prescience that the results accuracy and calculation time, depend on number of meshes. Therefore 20 meshes were obtained as an optimum number. The effect of pressure drop equation on solution procedure of the model was also investigated and it was found that the pressure drop equation has a negligible effect on it.

  9. Generation of Comprehensive Surrogate Kinetic Models and Validation Databases for Simulating Large Molecular Weight Hydrocarbon Fuels

    Science.gov (United States)

    2012-10-25

    counterflow burner, a vaporization system, flow controllers, an online Fourier transform infrared ( FTIR ) spectrometer, and a laser induced fluorescence...plane Laser sheet for LIF Air Heater Heater N2 Fuel Atomization & evaporation Temperature measurements 59 vaporizing temperature, an FTIR ...amounts of indene being formed. The model simulates the fuel decay and formation of most of the intermediates accurately for all the experimental data

  10. Modelling Chemical Patterns of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in the Iberian Peninsula

    Science.gov (United States)

    Ratola, Nuno; Jiménez-Guerrero, Pedro

    2013-04-01

    Semi-volatile organic compounds (SVOCs) such as PBDEs, PCBs, organochlorine pesticides (OCPs) or PAHs, are widespread and generated in a multitude of anthropogenic (and natural for PAHs) processes and although they are found in the environment at low concentrations, possess an extraordinary carcinogenic capacity (Baussant et al., 2001) and high ecotoxicity due to their persistence in different matrices (air, soil, water, living organisms). In particular, PAHs are originated by combustion processes or release from fossil fuels and can be transported in the atmosphere over long distances in gaseous or particulate matter (Baek et al., 1991). The establishment of strategies for sampling and chemical transport modelling of SVOCs in the atmosphere aiming the definition and validation of the spatial, temporal and chemical transport patterns of contaminants can be achieved by an integrated system of third-generation models that represent the current state of knowledge in air quality modelling and experimental data collected in field campaigns. This has implications in the fields of meteorology, atmospheric chemistry and even climate change. In this case, an extensive database already obtained on levels of atmospheric PAHs from biomonitoring schemes in the Iberian Peninsula fuelled the establishment of the first models of behaviour for PAHs. The modelling system WRF+CHIMERE was implemented with high spatial and temporal resolution to the Iberian Peninsula in this first task (9 km for the Iberian Peninsula, 3 km to Portugal, 1 hour), using PAHs atmospheric levels collected over a year-long sampling scheme comprising 4 campaigns (one per season) in over 30 sites. Daily information on meteorological parameters such as air temperature, humidity, rainfall or wind speed and direction was collected from the weather stations closest to the sampling sites. Diagnosis and forecasts of these meteorological variables using MM5 or WRF were used to feed a chemistry transport model

  11. Biodegradation of Textile Waste with 16 Orange Reactive Colour Model in Aerobic and Anaerobic Fixed Bed Reactor Continuous

    International Nuclear Information System (INIS)

    Soewondo, Prayatni; Mirdasanti-Dyah

    2000-01-01

    The problem of textile wastewater is actually not only the colour, which is aesthetically unappealing. The breakdown of the combination of two Nitrogen atoms which are tied in two layers(-N=N-) in decolorisation process will caused the formation of metabolite which in general consisting of hydrocarbon and possibly causing carcinogen and mutagen. The goal of this research project is to know the capability of reactor in the process of decolorisation and decreasing metabolite content. This research used the two stage fixed bed reactor which operated continuously. On the first stage the reactor is set in an anaerobic condition which allowed the decolorisation process and on the second reactor is set in an aerobic condition for the purpose of degradating the formed metabolite. With the concentration of colouring agent 100 mg/L and concentration of co substrate 1000 mg/L it delivered to conclusion that the optimum detention time in decolorisation process is 8 hours with efficiency of removal colour 87% and efficiency of removal COD 50%. (author)

  12. Predicting Alkylate Yield and its Hydrocarbon Composition for Sulfuric Acid Catalyzed Isobutane Alkylation with Olefins Using the Method of Mathematical Modeling

    OpenAIRE

    Nurmakanova, А. Е.; Ivashkina, Elena Nikolaevna; Ivanchina, Emilia Dmitrievna; Dolganov, I. A.; Boychenko, S. S.

    2015-01-01

    The article provides the results of applied mathematical model of isobutane alkylation with olefins catalyzed by sulfuric acid to predict yield and hydrocarbon composition of alkylate caused by the changes in the feedstock composition and process parameters. It is shown that the alkylate produced from feedstock with less mass fraction of isobutane has lower octane value. Wherein the difference in composition of the feedstock contributes to antiknock index by the amount of 1.0-2.0 points.

  13. The adsorption of Pb(sup2+) and Cu(sup2+) onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models

    CSIR Research Space (South Africa)

    Mittal, H

    2015-01-01

    Full Text Available A biodegradable hydrogel polymer of gum ghatti (Gg) with a copolymer mixture of acrylamide (AAm) and acrylonitrile (AN) was synthesized using the free-radical graft copolymerization technique. The effect of graft copolymerization on the surface area...

  14. Assessment of climate change impact on the fates of polycyclic aromatic hydrocarbons in the multimedia environment based on model prediction.

    Science.gov (United States)

    Cai, Juan Juan; Song, Jee Hey; Lee, Yunah; Lee, Dong Soo

    2014-02-01

    The objective was to quantitatively understand the impacts of climate change (CC) under the A1B scenario on the contamination levels of 11 polycyclic aromatic hydrocarbons (PAHs) from pyrogenic sources in the environmental media based on model prediction. To predict the impacts of CC in South Korea, a revised version of KoEFT-PBTs, a dynamic multimedia model for persistent organic pollutants in South Korea, was used. Simulations were conducted for the period from 2000 to 2049 under the A1B scenario with the emission data for 2009 and the results for Seoul and Kangwon were compared to those under no climate change (NCC) scenario. Due to CC, the average of annual or monthly average concentration changes within a factor of two for the PAHs in air, soil and water. Time dependent comparison indicates that the maximum increase induced by CC in the monthly average concentration ranges from 10 to 10(2) in air and water. Change in advective flux due to wind speed difference between A1B and NCC dictates the change of the atmospheric PAHs levels while wet particle deposition due to rain rate difference contributes to some extent to the change of 5 and 6 ring PAHs. Whether the concentration change is positive or not depends primarily on the emission strength of internal sources relative to those in surrounding areas. The CC induced changes in atmospheric depositions and degradation rate in soil play a leading role in the change of soil concentration. In water, runoff and degradation are the key processes to the CC induced concentration change. Both in soil and water, the relative importance of individual key processes varies with PAHs. The difference between the two scenarios in wind speed and in rain rate shows stronger correlations with the concentration change than the temperature change. © 2013 Elsevier B.V. All rights reserved.

  15. Modeling personal particle-bound polycyclic aromatic hydrocarbon (pb-pah) exposure in human subjects in Southern California.

    Science.gov (United States)

    Wu, Jun; Tjoa, Thomas; Li, Lianfa; Jaimes, Guillermo; Delfino, Ralph J

    2012-07-11

    Exposure to polycyclic aromatic hydrocarbon (PAH) has been linked to various adverse health outcomes. Personal PAH exposures are usually measured by personal monitoring or biomarkers, which are costly and impractical for a large population. Modeling is a cost-effective alternative to characterize personal PAH exposure although challenges exist because the PAH exposure can be highly variable between locations and individuals in non-occupational settings. In this study we developed models to estimate personal inhalation exposures to particle-bound PAH (PB-PAH) using data from global positioning system (GPS) time-activity tracking data, traffic activity, and questionnaire information. We conducted real-time (1-min interval) personal PB-PAH exposure sampling coupled with GPS tracking in 28 non-smoking women for one to three sessions and one to nine days each session from August 2009 to November 2010 in Los Angeles and Orange Counties, California. Each subject filled out a baseline questionnaire and environmental and behavior questionnaires on their typical activities in the previous three months. A validated model was used to classify major time-activity patterns (indoor, in-vehicle, and other) based on the raw GPS data. Multiple-linear regression and mixed effect models were developed to estimate averaged daily and subject-level PB-PAH exposures. The covariates we examined included day of week and time of day, GPS-based time-activity and GPS speed, traffic- and roadway-related parameters, meteorological variables (i.e. temperature, wind speed, relative humidity), and socio-demographic variables and occupational exposures from the questionnaire. We measured personal PB-PAH exposures for 180 days with more than 6 h of valid data on each day. The adjusted R2 of the model was 0.58 for personal daily exposures, 0.61 for subject-level personal exposures, and 0.75 for subject-level micro-environmental exposures. The amount of time in vehicle (averaging 4.5% of total

  16. Nonmethane hydrocarbons and ozone in three rural southeast United States national parks: A model sensitivity analysis and comparison to measurements

    Science.gov (United States)

    Kang, Daiwen; Aneja, Viney P.; Mathur, Rohit; Ray, John D.

    2003-10-01

    A detailed modeling analysis is conducted focusing on nonmethane hydrocarbons and ozone in three southeast United States national parks for a 15-day time period (14-29 July 1995) characterized by high O3 surface concentrations. The three national parks are Smoky Mountains National Park (GRSM), Mammoth Cave National Park (MACA), and Shenandoah National Park (SHEN), Big Meadows. A base emission scenario and eight variant predictions are analyzed, and predictions are compared with data observed at the three locations for the same time period. Model-predicted concentrations are higher than observed values for O3 (with a cutoff of 40 ppbv) by 3.0% at GRSM, 19.1% at MACA, and 9.0% at SHEN (mean normalized bias error). They are very similar to observations for overall mean ozone concentrations at GRSM and SHEN. They generally agree (the same order of magnitude) with observed values for lumped paraffin compounds but are an order of magnitude lower for other species (isoprene, ethene, surrogate olefin, surrogate toluene, and surrogate xylene). Model sensitivity analyses here indicate that each location differs in terms of volatile organic compound (VOC) capacity to produce O3, but a maximum VOC capacity point (MVCP) exists at all locations that changes the influence of VOCs on O3 from net production to production suppression. Analysis of individual model processes shows that more than 50% of daytime O3 concentrations at the high-elevation rural locations (GRSM and SHEN) are transported from other areas; local chemistry is the second largest O3 contributor. At the low-elevation location (MACA), about 80% of daytime O3 is produced by local chemistry and 20% is transported from other areas. Local emissions (67-95%) are predominantly responsible for VOCs at all locations, the rest coming from transport. Chemistry processes are responsible for about 50% removal of VOCs for all locations; less than 10% are lost to surface deposition and the rest are exported to other areas

  17. Biodegradable Sonobuoy Decelerators

    Science.gov (United States)

    2015-06-01

    agent. Samples were also analyzed for heavy metals which found concentrations below the toxicity threshold, ruling out metals contamination during...unlimited” 13. SUPPLEMENTARY NOTES 14. ABSTRACT In response to environmental concerns regarding nylon decelerators from sonobuoys polluting the oceans...readiness point for technology transition. 15. SUBJECT TERMS biodegrade, decelerator, sonobuoy, polyvinyl alcohol, polyhydroxyalkanoate, marine

  18. Biodegradable Materials for Nonwovens

    Science.gov (United States)

    Demand for nonwovens is increasing globally, particularly in the disposable products area. As the consumption of nonwoven products with short life increases, the burden on waste disposal also rises. In this context, biodegradable nonwovens become more important today and for the future. Several new ...

  19. Hydrocarbon pyrolysis reactor experimentation and modeling for the production of solar absorbing carbon nanoparticles

    Science.gov (United States)

    Frederickson, Lee Thomas

    Much of combustion research focuses on reducing soot particulates in emissions. However, current research at San Diego State University (SDSU) Combustion and Solar Energy Laboratory (CSEL) is underway to develop a high temperature solar receiver which will utilize carbon nanoparticles as a solar absorption medium. To produce carbon nanoparticles for the small particle heat exchange receiver (SPHER), a lab-scale carbon particle generator (CPG) has been built and tested. The CPG is a heated ceramic tube reactor with a set point wall temperature of 1100-1300°C operating at 5-6 bar pressure. Natural gas and nitrogen are fed to the CPG where natural gas undergoes pyrolysis resulting in carbon particles. The gas-particle mixture is met downstream with dilution air and sent to the lab scale solar receiver. To predict soot yield and general trends in CPG performance, a model has been setup in Reaction Design CHEMKIN-PRO software. One of the primary goals of this research is to accurately measure particle properties. Mean particle diameter, size distribution, and index of refraction are calculated using Scanning Electron Microscopy (SEM) and a Diesel Particulate Scatterometer (DPS). Filter samples taken during experimentation are analyzed to obtain a particle size distribution with SEM images processed in ImageJ software. These results are compared with the DPS, which calculates the particle size distribution and the index of refraction from light scattering using Mie theory. For testing with the lab scale receiver, a particle diameter range of 200-500 nm is desired. Test conditions are varied to understand effects of operating parameters on particle size and the ability to obtain the size range. Analysis of particle loading is the other important metric for this research. Particle loading is measured downstream of the CPG outlet and dilution air mixing point. The air-particle mixture flows through an extinction tube where opacity of the mixture is measured with a 532 nm

  20. Comparison of Vascular Responses Following New-Generation Biodegradable and Durable Polymer-Based Drug-Eluting Stent Implantation in an Atherosclerotic Rabbit Iliac Artery Model.

    Science.gov (United States)

    Nakazawa, Gaku; Torii, Sho; Ijichi, Takeshi; Nagamatsu, Hirofumi; Ohno, Yohei; Kurata, Fumi; Yoshikawa, Ayako; Nakano, Masataka; Shinozaki, Norihiko; Yoshimachi, Fuminobu; Ikari, Yuji

    2016-10-19

    Incomplete endothelialization is the primary substrate of late stent thrombosis; however, recent reports have revealed that abnormal vascular responses are also responsible for the occurrence of late stent failure. The aim of the current study was to assess vascular response following deployment of biodegradable polymer-based Synergy (Boston Scientific) and Nobori (Terumo) drug-eluting stents and the durable polymer-based Resolute Integrity stent (Medtronic) in an atherosclerotic rabbit iliac artery model. A total of 24 rabbits were fed an atherogenic diet, and then a balloon injury was used to induce atheroma formation. Synergy, Nobori, and Resolute Integrity stents were randomly implanted in iliac arteries. Animals were euthanized at 28 days for scanning electron microscopic evaluation and at 90 days for histological analysis. The percentage of uncovered strut area at 28 days was lowest with Synergy, followed by Resolute Integrity, and was significantly higher with Nobori stents (Synergy 1.1±2.2%, Resolute Integrity 2.0±3.9%, Nobori 4.6±3.0%; Pfastest stent strut neointimal coverage and the lowest incidence of neoatherosclerosis in the current animal model. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2008-05-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2–12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for

  2. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways

    Science.gov (United States)

    Henze, D. K.; Seinfeld, J. H.; Ng, N. L.; Kroll, J. H.; Fu, T.-M.; Jacob, D. J.; Heald, C. L.

    2008-05-01

    Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO) or hydroperoxy radical (HO2) to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2-12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for production of anthropogenic SOA still exist beyond those accounted

  3. Biodegradability of tannin-containing wastewater from leather industry.

    Science.gov (United States)

    He, Qiang; Yao, Kai; Sun, Danhong; Shi, Bi

    2007-08-01

    Tannins occur commonly in the wastewaters from forestry, plant medicine, paper and leather industries. The treatment of this kind of wastewaters, including settling and biodegradation, is usually difficult because tannins are highly soluble in water and would inhibit the growth of microorganisms in activated sludge. The objective of this study is to investigate biodegradability of tannin-containing wastewaters, so as to characterize the pollution properties of such wastewaters and provide a reference for their biological treatment in wastewater treatment plants. The research was typified by using the wastewater collected from vegetable tanning process in leather industry. A model was developed to describe the activated sludge process, and the biodegradation kinetics of vegetable tanning wastewater (VET wastewater) was studied. It was found that the biodegradability of tannin-containing wastewater varies heavily with the content of tannins in wastewater. The biodegradation of VET wastewater with tannin content around 4,900 mg/l occurred inefficiently due to the inhibition of tannins to the activated sludge process, and only 34.7% of biodegradation extent was reached in 14 days of incubation. The optimal biodegradability of VET wastewater was observed when its tannin content was diluted to 490 mg/l, where the COD and tannin removals reached 51.3% and 45.1% respectively in 6 days. Hence, it is suggested that a proper control of tannin content is necessary to achieve an effective biodegradation of tannin-containing wastewaters in wastewater treatment plants.

  4. Prediction of polycyclic aromatic hydrocarbons toxicity using equilibrium partitioning approach and narcosis model.

    Science.gov (United States)

    Ololade, I A

    2010-09-01

    The study underscores the use of equilibrium partitioning (EqP) to determine bioavailability and the narcosis theory to estimate toxicity of PAHs to benthic invertebrates. Eight PAHs (anthracene, azuleno(2,1-b)thiophene, benz(a)anthracene, carbazole, dibenzothiophene, benz(a)azulene, dibenzo(a,h)anthracene and phenanthrene) were identified with phenanthrene and carbazole recording the highest (6.29 microg/g) and least (0.06 microg/g) concentrations at both seasons. Based on EqP and Narcosis model, the sum of PAHs toxic unit (SigmaTU), at both sites is <1, suggesting no likelihood of PAHs toxicity to benthic invertebrates. The study suggests continuous PAH monitoring especially with aquatic species due to their transfer to human via food chain.

  5. Modeling Parameters of Reliability of Technological Processes of Hydrocarbon Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Shalay Viktor

    2016-01-01

    Full Text Available On the basis of methods of system analysis and parametric reliability theory, the mathematical modeling of processes of oil and gas equipment operation in reliability monitoring was conducted according to dispatching data. To check the quality of empiric distribution coordination , an algorithm and mathematical methods of analysis are worked out in the on-line mode in a changing operating conditions. An analysis of physical cause-and-effect relations mechanism between the key factors and changing parameters of technical systems of oil and gas facilities is made, the basic types of technical distribution parameters are defined. Evaluation of the adequacy the analyzed parameters of the type of distribution is provided by using a criterion A.Kolmogorov, as the most universal, accurate and adequate to verify the distribution of continuous processes of complex multiple-technical systems. Methods of calculation are provided for supervising by independent bodies for risk assessment and safety facilities.

  6. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in spent ...

    African Journals Online (AJOL)

    The potential of Pleurotus pulmonarius and Pleurotus ostreatus on the degradation of PAHs in spent and fresh cutting fluids (SCF and FCF) contaminated soils was investigated. Different weights of soil samples were contaminated with varying composition (10, 20 or 30%) of spent and fresh cutting fluids separately then ...

  7. Biodegradation of hydrocarbon compounds in Agbabu natural bitumen

    African Journals Online (AJOL)

    SAM

    2014-03-12

    Mar 12, 2014 ... one third of the total PAHs contained in undegraded PFB was found in them. This implies that the three bacteria were able to degrade more than 60% of the total PAHs contained in undegraded ANB. The extent of degradation of PAHs achieved in this work is very close to the results of Gokcen et al. (2008) ...

  8. Petroleum hydrocarbon biodegradation under mixed denitrifying/microaerophilic conditions

    International Nuclear Information System (INIS)

    Miller, D.E.; Hutchins, S.R.

    1995-01-01

    Data are presented for aqueous-flow, soil-column microcosms in which removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) is observed for two operating conditions: (1) nitrate, 25 to 26 mg(N)/L, as the single electron acceptor and (2) nitrate, 27 to 28 mg(N)/L combined with low levels of oxygen, 0.8 to 1.2 mg O 2 /L. Soils used in this study include aquifer material from Traverse City, Michigan; Park City, Kansas; and Eglin Air Force Base (AFB), Florida. BTEX compounds are introduced at concentrations ranging from 2.5 to 5 mg/L, with total BTEX loading from 20 to 22 mg/L Complete removal of toluene and partial removal of ethylbenzene, m-xylene, and o-xylene were observed for all soils during trials in which nitrate was the only electron acceptor. Combining low levels of oxygen with nitrate produced varying effects on BTEX removal, nitrate utilization, and nitrite production. Benzene proved recalcitrant throughout all operating trials

  9. Biodegradation of chlorinated hydrocarbons in a vapor phase reactor

    International Nuclear Information System (INIS)

    Ensley, B.D.

    1992-01-01

    A bench scale gas lift loop reactor was constructed to evaluate the feasibility of trichloroethylene (TCE) degradative microorganisms being used to treat TCE contaminated air. Two different microorganisms were used as biocatalysts in this reactor. After proper operating conditions were established for use of this reactor/biocatalyst combination, both microorganisms could degrade 95% of inlet TCE at air flow rates of up to 3% of the total reactor volume per minute. TCE concentrations of between 300 μg/L (60ppmv) and 3000 μg/L (600 ppmv) were degraded with 95% or better efficiency. Preliminary economic evaluations suggest that bioremediation may be the low cost alternative for treating certain TCE contaminated air streams and field trials of a scaled-up reactor system based on this technology are currently underway

  10. Modeling and Observing the Role of Wind-Waves in Titan's Hydrocarbon Seas

    Science.gov (United States)

    Hayes, A. G., Jr.; Soderblom, J. M.; Donelan, M. A.; Barnes, J. W.; Lorenz, R. D.

    2016-12-01

    Oceanography is no longer just an Earth Science. Standing bodies of liquid that interact with both atmospheric and surface reservoirs are known to exist on Titan and are thought to have existed on early Mars. The exchange of heat, moisture, and momentum between lakes/seas and the atmosphere are of fundamental importance to the hydrologic systems of all three bodies. On Earth, surface liquids are almost always disturbed by some form of wave activity. On Titan, however, Cassini observations through the end of the Equinox Mission (12/2010) showed no indication of surface waves. This was intriguing given the predominance of aeolian features at equatorial latitudes and has been attributed to the light winds predicted during the Titan winter. More recently, the previous series of upper limits and non-detections have given way to indications that the expected freshening of winds in northern summer is causing sporadic ruffling of sea surfaces. Specifically, apparent sunglints offset from the geometric specular point have become a common observation by VIMS and transient radar signatures have been observed over the surfaces of both Ligeia Mare and Kraken Mare. SAR images also reveal morphologies consistent with secondary coastlines, most notably Ontario Lacus and Ligeia Mare. This presentation will review Cassini observations of transient surface activity on Titan's Mare and quantitatively describe the implied constraints on sea surface roughness. Assuming that the transient activity is due to wind waves, we can turn the Cassini spacecraft into an anemometer by coupling roughness constraints to a physics-based model of wave generation and propagation in the Titan environment. By determining the fraction of the lake surface that is oriented in a specific geometry, which can be obtained from either nadir RADAR backscatter or VIMS specular reflection measurements, we can determine the driving wind speeds that best match the observations by matching the fraction of the

  11. Distribution of MEG and methanol in well-defined hydrocarbon and water systems: Experimental measurement and modeling using the CPA EoS

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Yussuf, Mustafe A.; Kontogeorgis, Georgios

    2013-01-01

    Liquid-liquid equilibria data for two binary and two ternary systems are reported in the temperature range of 303.15-323.15. K at atmospheric pressure. The binary systems measured are n-nonane + MEG and ethylbenzene + MEG and the ternary systems are n-nonane + MEG + water and ethylbenzene + MEG...... + water. These data are satisfactorily correlated (binaries) and predicted (ternaries) using Cubic Plus Association (CPA) equation of state (EoS). CPA is also applied to binary LLE of aromatic hydrocarbon + water and VLE of methane + methanol. Finally the distribution of water and inhibitors (methanol...... and MEG) in various phases is modeled using CPA. The hydrocarbon phase consists of mixture-1 (methane, ethane, n-butane) or mixture-2 (methane, ethane, propane, n-butane, n-heptane, toluene and n-decane). CPA can satisfactorily predict the water content in the gas phase of the multicomponent systems...

  12. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil

    International Nuclear Information System (INIS)

    Bengtsson, Goeran; Toerneman, Niklas; Yang Xiuhong

    2010-01-01

    Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13 C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass. - Hotspots of PAH biodegradation in a creosote contaminated soil do not coincide with hotspots of PAH concentration, microbial biomass and respiration.

  13. Rational redesign of the biodegradative enzyme cytochrome P450 cam:

    International Nuclear Information System (INIS)

    Ornstein, R.; Paulsen, M.; Bass, M.; Arnold, G.

    1991-03-01

    Cytochromes P450, a superfamily of monooxygenase enzymes present in all kingdoms of living organisms, are very versatile with respect to substrate range and catalytic functionality. Many recalcitrant halogenated hydrocarbons, on DOE sites and throughout the nation, result in serious environmental impact. Cytochromes P450 have been shown to be catalytically capable of, at least partial, dehalogenation of some such compounds. Clearly, however, their active site stereochemistry and related functional components are not well suited for this role because the rates of dehalogenation are generally rather modest. The evolution of modified active site and access channel structures may proceed very slowly if multiple genetic changes are simultaneously required for enzyme adaptation. Since each mutational event is by itself a rare event, a basic premise of our research is that designing multiple changes into an enzyme may be more timely than waiting for them to occur biologically either via natural selection or under laboratory-controlled conditions. Starting with available high-resolution x-ray crystal structures, molecular modeling and molecular dynamics simulations have been used to probe the basic structure/function principles and conformational fluctuations of the biodegradative enzyme, cytochrome P450cam (camphor hydroxylase from Pseudomonas putida) and active site mutants, to provide the fundamental understanding necessary for rational engineering of the enzyme for modified substrate specificity. In the present paper, we review our progress to data, in the area of molecular dynamics simulations and active site redesign of P450cam. 36 refs., 2 figs

  14. Random forests for feature selection in QSPR Models - an application for predicting standard enthalpy of formation of hydrocarbons

    Science.gov (United States)

    2013-01-01

    Background One of the main topics in the development of quantitative structure-property relationship (QSPR) predictive models is the identification of the subset of variables that represent the structure of a molecule and which are predictors for a given property. There are several automated feature selection methods, ranging from backward, forward or stepwise procedures, to further elaborated methodologies such as evolutionary programming. The problem lies in selecting the minimum subset of descriptors that can predict a certain property with a good performance, computationally efficient and in a more robust way, since the presence of irrelevant or redundant features can cause poor generalization capacity. In this paper an alternative selection method, based on Random Forests to determine the variable importance is proposed in the context of QSPR regression problems, with an application to a manually curated dataset for predicting standard enthalpy of formation. The subsequent predictive models are trained with support vector machines introducing the variables sequentially from a ranked list based on the variable importance. Results The model generalizes well even with a high dimensional dataset and in the presence of highly correlated variables. The feature selection step was shown to yield lower prediction errors with RMSE values 23% lower than without feature selection, albeit using only 6% of the total number of variables (89 from the original 1485). The proposed approach further compared favourably with other feature selection methods and dimension reduction of the feature space. The predictive model was selected using a 10-fold cross validation procedure and, after selection, it was validated with an independent set to assess its performance when applied to new data and the results were similar to the ones obtained for the training set, supporting the robustness of the proposed approach. Conclusions The proposed methodology seemingly improves the prediction

  15. Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model

    Science.gov (United States)

    Parajulee, Abha; Wania, Frank

    2014-01-01

    Emissions of organic substances with potential toxicity to humans and the environment are a major concern surrounding the rapid industrial development in the Athabasca oil sands region (AOSR). Although concentrations of polycyclic aromatic hydrocarbons (PAHs) in some environmental samples have been reported, a comprehensive picture of organic contaminant sources, pathways, and sinks within the AOSR has yet to be elucidated. We sought to use a dynamic multimedia environmental fate model to reconcile the emissions and residue levels reported for three representative PAHs in the AOSR. Data describing emissions to air compiled from two official sources result in simulated concentrations in air, soil, water, and foliage that tend to fall close to or below the minimum measured concentrations of phenanthrene, pyrene, and benzo(a)pyrene in the environment. Accounting for evaporative emissions (e.g., from tailings pond disposal) provides a more realistic representation of PAH distribution in the AOSR. Such indirect emissions to air were found to be a greater contributor of PAHs to the AOSR atmosphere relative to reported direct emissions to air. The indirect pathway transporting uncontrolled releases of PAHs to aquatic systems via the atmosphere may be as significant a contributor of PAHs to aquatic systems as other supply pathways. Emission density estimates for the three PAHs that account for tailings pond disposal are much closer to estimated global averages than estimates based on the available emissions datasets, which fall close to the global minima. Our results highlight the need for improved accounting of PAH emissions from oil sands operations, especially in light of continued expansion of these operations. PMID:24596429

  16. Biodegradation of Toluene under seasonal and diurnal fluctuations of soil-water temperature

    NARCIS (Netherlands)

    Yadav, B.K.; Shrestha, S.R.; Hassanizadeh, S.M.

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of

  17. Enhanced biodegradation of TPH and PAHs in diesel contaminated soils through bioventing

    International Nuclear Information System (INIS)

    Nickerson, D.A.; Baker, J.N.

    1995-01-01

    A bioventing system was designed and installed to enhance the natural biodegradation of diesel fuel residuals in soils at an underground storage tank (UST) facility in Pittsburgh, Pennsylvania. This system was designed to operate in conjunction with a groundwater pump and treatment system which exposes the more heavily contaminated soils at the capillary fringe to ambient air supplied to the subsurface at a low flow rate from a single vertical injection point. Results of a pilot study conducted at the facility indicated that an initial average biodegradation rate of 2,100 milligrams of total petroleum hydrocarbons (TPH) per kilogram of soil per year could be achieved, making enhanced in situ biodegradation a feasible and cost-effective remedial alternative for soil cleanup. Oxygen (O 2 ), carbon dioxide (CO 2 ), and hydrocarbon vapor concentrations and pressure responses were measured in vapor monitoring points constructed at various depth intervals and varying distances from the central air injection point. Results indicate that the system is capable of providing sufficient oxygen to maintain microbial biodegradation of residual petroleum hydrocarbons within a radius of 70 feet of the injection point. Soil samples were collected during the installation of the vapor monitoring points and analyzed for TPH and PAH (Polynuclear Aromatic Hydrocarbon) concentrations to provide baseline analytical data from the areas of highest known contamination. A soil sampling program will be implemented to independently confirm the amount of TPH and PAH reduction that has occurred after the initial six-months of full-scale bioventing operation

  18. Biodegradation of used lubricating and diesel oils by a new yeast ...

    African Journals Online (AJOL)

    A new yeast strain, identified by 18S-rRNA gene sequencing as Candida viswanathii KA-201l, was isolated from used lubricating oil, showed high biodegradation efficiency for different used lubricating oils. Capability of this isolate to degrade different high and low molecular weight hydrocarbons, castor oil, diesel oil and ...

  19. Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate

    Science.gov (United States)

    Iyer, Karthik; Schmid, Daniel W.; Planke, Sverre; Millett, John

    2017-06-01

    Vent structures are intimately associated with sill intrusions in sedimentary basins globally and are thought to have been formed contemporaneously due to overpressure generated by gas generation during thermogenic breakdown of kerogen or boiling of water. Methane and other gases generated during this process may have driven catastrophic climate change in the geological past. In this study, we present a 2D FEM/FVM model that accounts for 'explosive' vent formation by fracturing of the host rock based on a case study in the Harstad Basin, offshore Norway. Overpressure generated by gas release during kerogen breakdown in the sill thermal aureole causes fracture formation. Fluid focusing and overpressure migration towards the sill tips results in vent formation after only few tens of years. The size of the vent depends on the region of overpressure accessed by the sill tip. Overpressure migration occurs in self-propagating waves before dissipating at the surface. The amount of methane generated in the system depends on TOC content and also on the type of kerogen present in the host rock. Generated methane moves with the fluids and vents at the surface through a single, large vent structure at the main sill tip matching first-order observations. Violent degassing takes place within the first couple of hundred years and occurs in bursts corresponding to the timing of overpressure waves. The amount of methane vented through a single vent is only a fraction (between 5 and 16%) of the methane generated at depth. Upscaling to the Vøring and Møre Basins, which are a part of the North Atlantic Igneous Province, and using realistic host rock carbon content and kerogen values results in a smaller amount of methane vented than previously estimated for the PETM. Our study, therefore, suggests that the negative carbon isotope excursion (CIE) observed in the fossil record could not have been caused by intrusions within the Vøring and Møre Basins alone and that a contribution

  20. Intracranial Biodegradable Silica-Based Nimodipine Drug Release Implant for Treating Vasospasm in Subarachnoid Hemorrhage in an Experimental Healthy Pig and Dog Model

    Directory of Open Access Journals (Sweden)

    Janne Koskimäki

    2015-01-01

    Full Text Available Nimodipine is a widely used medication for treating delayed cerebral ischemia (DCI after subarachnoid hemorrhage. When administrated orally or intravenously, systemic hypotension is an undesirable side effect. Intracranial subarachnoid delivery of nimodipine during aneurysm clipping may be more efficient way of preventing vasospasm and DCI due to higher concentration of nimodipine in cerebrospinal fluid (CSF. The risk of systemic hypotension may also be decreased with intracranial delivery. We used animal models to evaluate the feasibility of surgically implanting a silica-based nimodipine releasing implant into the subarachnoid space through a frontotemporal craniotomy. Concentrations of released nimodipine were measured from plasma samples and CSF samples. Implant degradation was followed using CT imaging. After completing the recovery period, full histological examination was performed on the brain and meninges. The in vitro characteristics of the implant were determined. Our results show that the biodegradable silica-based implant can be used for an intracranial drug delivery system and no major histopathological foreign body reactions were observed. CT imaging is a feasible method for determining the degradation of silica implants in vivo. The sustained release profiles of nimodipine in CSF were achieved. Compared to a traditional treatment, higher nimodipine CSF/plasma ratios can be obtained with the implant.

  1. Biodegradation of oil- and creosote-related aromatic compounds under nitrate-reducing conditions

    International Nuclear Information System (INIS)

    Flyvbjerg, J.; Arvin, E.; Jensen, B.K.; Olsen, S.K.

    1991-01-01

    Oil- and creosote-contaminated groundwater typically contains a complex mixture of phenolic compounds, aromatic hydrocarbons with one to three rings, and nitrogen, sulphur, and oxygen-containing heterocyclic compounds. It is well established that most of these chemicals are easily biodegraded in the presence of oxygen, but comparatively little is known about their biodegradability under anaerobic conditions. However, the past 10 years have seen an increasing interest in the potential of nitrate- reducing bacteria for pollutant destruction. This is because nitrate-reducing redox conditions often exist between the aerobic and strictly anaerobic zones in polluted aquifers, and because the addition of nitrate to contaminated sites would be a feasibly in situ technique due to the low cost and high solubility of this electron acceptor. The purpose of this paper is to investigate the potential for biodegradation of phenols and aromatic hydrocarbons in creosote-contaminated groundwater during nitrate-reducing conditions

  2. From axiomatics of quantum probability to modelling geological uncertainty and management of intelligent hydrocarbon reservoirs with the theory of open quantum systems.

    Science.gov (United States)

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia

    2018-04-28

    As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper , we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E ; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. 'explore or not?'; 'open new well or not?'; 'contaminated by water or not?'; 'double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism).This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  3. Biodegradation of Cyanuric Acid

    Science.gov (United States)

    Saldick, Jerome

    1974-01-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO2 and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand. PMID:4451360

  4. Petroleum systems and hydrocarbon accumulation models in the Santos Basin, SP, Brazil; Sistemas petroliferos e modelos de acumulacao de hidrocarbonetos na Bacia de Santos

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hung Kiang; Assine, Mario Luis; Correa, Fernando Santos; Tinen, Julio Setsuo [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil). Lab. de Estudos de Bacias]. E-mails: chang@rc.unesp.br; assine@rc.unesp.br; fscorrea@rc.unesp.br; jstinen@rc.unesp.br; Vidal, Alexandre Campane; Koike, Luzia [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro de Estudos de Petroleo]. E-mails: vidal@ige.unicamp.br; luzia@iqm.unicamp.br

    2008-07-01

    The Santos Basin was formed by rifting process during Mesozoic Afro-American separation. Sediment accumulation initiated with fluvial-lacustrine deposits, passing to evaporitic stage until reaching marginal basin stages. The analysis of hydrocarbon potential of Santos Basin identified two petroleum systems: Guaratiba-Guaruja and Itajai-Acu-Ilhabela. The Guaratiba Formation is less known in the Santos Basin because of small number of wells that have penetrated the rift section. By comparison with Campos Basin, hydrocarbons are of saline lacustrine origin deposited in Aptian age. Analogous to Campos Basin the major source rock is of saline-lacustrine origin, which has been confirmed from geochemical analyses of oil samples recovered from the various fields. These analyses also identified marine source rock contribution, indicating the Itajai-Acu source rock went through oil-window, particularly in structural lows generated by halokynesis. Models of hydrocarbon accumulation consider Guaratiba Formacao as the major source rock for shallow carbonate reservoirs of Guaruja Formacao and for late Albian to Miocene turbidites, as well as siliciclastic and carbonate reservoirs of the rift phase. Migration occurs along salt window and through carrier-beds. The seal rock is composed of shales and limestones intercalated with reservoir facies of the post-rift section and by thick evaporites overlying rift section, especially in the deeper water. In the shallow portion, shale inter-tongued with reservoir rocks is the main seal rock. The hydrocarbon generation and expulsion in the central-north portion of the basin is caused by overburden of a thick Senonian section. Traps can be structural (rollovers and turtle), stratigraphic (pinch-outs) and mixed origins (pinch-outs of turbidites against salt domes). (author)

  5. Molecular processes in the biodegradation of crude oils and crude oil products in the natural reservoir and in laboratory experiments

    International Nuclear Information System (INIS)

    Schalenbach, S.S.

    1993-10-01

    Two ains were pursued in the present study; first, to find positive indicators of the onset of biodegradation of reservoir oil wherever other parameters fail to give a clear picture; second, to establish a basic understanding of the molecular processes underlying the biodegradation of hydrocarbons and thus create a starting point for finding better criteria for valuating biological restoration methods for crude oil contaminated soils. (orig./HS) [de

  6. The multichannel n-propyl + O2 reaction surface: Definitive theory on a model hydrocarbon oxidation mechanism

    Science.gov (United States)

    Bartlett, Marcus A.; Liang, Tao; Pu, Liang; Schaefer, Henry F.; Allen, Wesley D.

    2018-03-01

    The n-propyl + O2 reaction is an important model of chain branching reactions in larger combustion systems. In this work, focal point analyses (FPAs) extrapolating to the ab initio limit were performed on the n-propyl + O2 system based on explicit quantum chemical computations with electron correlation treatments through coupled cluster single, double, triple, and perturbative quadruple excitations [CCSDT(Q)] and basis sets up to cc-pV5Z. All reaction species and transition states were fully optimized at the rigorous CCSD(T)/cc-pVTZ level of theory, revealing some substantial differences in comparison to the density functional theory geometries existing in the literature. A mixed Hessian methodology was implemented and benchmarked that essentially makes the computations of CCSD(T)/cc-pVTZ vibrational frequencies feasible and thus provides critical improvements to zero-point vibrational energies for the n-propyl + O2 system. Two key stationary points, n-propylperoxy radical (MIN1) and its concerted elimination transition state (TS1), were located 32.7 kcal mol-1 and 2.4 kcal mol-1 below the reactants, respectively. Two competitive β-hydrogen transfer transition states (TS2 and TS2') were found separated by only 0.16 kcal mol-1, a fact unrecognized in the current combustion literature. Incorporating TS2' in master equation (ME) kinetic models might reduce the large discrepancy of 2.5 kcal mol-1 between FPA and ME barrier heights for TS2. TS2 exhibits an anomalously large diagonal Born-Oppenheimer correction (ΔDBOC = 1.71 kcal mol-1), which is indicative of a nearby surface crossing and possible nonadiabatic reaction dynamics. The first systematic conformational search of three hydroperoxypropyl (QOOH) intermediates was completed, uncovering a total of 32 rotamers lying within 1.6 kcal mol-1 of their respective lowest-energy minima. Our definitive energetics for stationary points on the n-propyl + O2 potential energy surface provide key benchmarks for future studies

  7. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  8. Modeling and Multi-Objective Optimization of Engine Performance and Hydrocarbon Emissions via the Use of a Computer Aided Engineering Code and the NSGA-II Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Richard Fiifi Turkson

    2016-01-01

    Full Text Available It is feared that the increasing population of vehicles in the world and the depletion of fossil-based fuel reserves could render transportation and other activities that rely on fossil fuels unsustainable in the long term. Concerns over environmental pollution issues, the high cost of fossil-based fuels and the increasing demand for fossil fuels has led to the search for environmentally friendly, cheaper and efficient fuels. In the search for these alternatives, liquefied petroleum gas (LPG has been identified as one of the viable alternatives that could be used in place of gasoline in spark-ignition engines. The objective of the study was to present the modeling and multi-objective optimization of brake mean effective pressure and hydrocarbon emissions for a spark-ignition engine retrofitted to run on LPG. The use of a one-dimensional (1D GT-Power™ model, together with Group Method of Data Handling (GMDH neural networks, has been presented. The multi-objective optimization was implemented in MATLAB® using the non-dominated sorting genetic algorithm (NSGA-II. The modeling process generally achieved low mean squared errors (0.0000032 in the case of the hydrocarbon emissions model for the models developed and was attributed to the collection of a larger training sample data using the 1D engine model. The multi-objective optimization and subsequent decisions for optimal performance have also been presented.

  9. Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?

    Science.gov (United States)

    da Cruz, Georgiana F; de Vasconcellos, Suzan P; Angolini, Célio Ff; Dellagnezze, Bruna M; Garcia, Isabel Ns; de Oliveira, Valéria M; Dos Santos Neto, Eugenio V; Marsaioli, Anita J

    2011-12-23

    Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses.

  10. Modelagem empírica do processo de biodegradação de efluentes protéicos por enzimas de Carica papaya sp. Empirical modeling of biodegradation process of proteic effluents by enzymes of Carica papaya sp.

    Directory of Open Access Journals (Sweden)

    Joana P. M. Biazus

    2006-06-01

    Full Text Available O objetivo deste trabalho foi modelar empiricamente a biodegradação de efluentes protéicos por enzimas papaínas do látex de Carica papaya sp. num biorreator agitado, para facilitar a otimização do processo por metodologia de análise de superfície de resposta (RSM e aplicar em tratamento de efluentes provenientes de indústrias de processamento de carne. As análises das curvas de biodegradação mostraram que o tempo de residência para os biorreatores está entre 28 e 30 h. O modelo empírico que mais se ajustou aos dados de biodegradação sob influência dos fatores (pH e temperatura foi o de um hiperplano e a região de operação otimizada para a degradação de proteínas pelas papaínas foi aquela que apresentou os maiores valores de temperatura e menores valores de pH.The objective of this research was to model empirically the proteic effluent biodegradation by papains enzymes from Carica papaya sp. in an agitated bioreactor, to facilitate the optimization process by response surface methodology (RSM and to apply in treatment of effluents from meat processing industries. The analysis of biodegradation curves showed that bioreactors residence time is between 28 and 30 h. Hiper plane empirical model was the one that best fitted to biodegradation data under the influence factors (pH and temperature and the optimized operation zone for the protein biodegradation by papains was the one that presented the high temperature and low pH values.

  11. Soil bioremediation approaches for petroleum hydrocarbon polluted environments

    Directory of Open Access Journals (Sweden)

    Eman Koshlaf

    2017-01-01

    Full Text Available Increasing industrialisation, continued population growth and heavy demand and reliance on petrochemical products have led to unprecedented economic growth and development. However, inevitably this dependence on fossil fuels has resulted in serious environmental issues over recent decades. The eco-toxicity and the potential health implications that petroleum hydrocarbons pose for both environmental and human health have led to increased interest in developing environmental biotechnology-based methodologies to detoxify environments impacted by petrogenic compounds. Different approaches have been applied for remediating polluted sites with petroleum derivatives. Bioremediation represents an environmentally sustainable and economical emerging technology for maximizing the metabolism of organic pollutants and minimizing the ecological effects of oil spills. Bioremediation relies on microbial metabolic activities in the presence of optimal ecological factors and necessary nutrients to transform organic pollutants such as petrogenic hydrocarbons. Although, biodegradation often takes longer than traditional remediation methods, the complete degradation of the contaminant is often accomplished. Hydrocarbon biodegradation in soil is determined by a number of environmental and biological factors varying from site to site such as the pH of the soil, temperature, oxygen availability and nutrient content, the growth and survival of hydrocarbon-degrading microbes and bioavailability of pollutants to microbial attack. In this review we have attempted to broaden the perspectives of scientists working in bioremediation. We focus on the most common bioremediation technologies currently used for soil remediation and the mechanisms underlying the degradation of petrogenic hydrocarbons by microorganisms.

  12. Biodegradable packaging materials : case: PLA

    OpenAIRE

    Jama, Mohamed

    2017-01-01

    The main aim of this bachelor thesis was to investigate the possibility of biodegradable packaging materials. Plastics and other non-degradable packaging materials have been used for many years and they have a negative impact on the environment since they do not degrade. Different research methods are used to get authentic results, which simplifies using biodegradable packaging materials. There were two biodegradability testing methods, which has been applied to this task:-, testing biode...

  13. BIOREMEDIATION - TECHNOLOGY FOR DECONTAMINATION OF SOILS POLLUTED WITH PETROLEUM HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Irina-Ramona PECINGINĂ

    2013-05-01

    Full Text Available The pollution of soil with petroleum hydrocarbons prevents unfolding processes ofwater infiltration in soil, its circulation and the exchanges of the gaseous substances with theatmosphere. The biodegradation speed of the pollutants by the microorganisms is influenced ofsome factors: nutrients, soil type, humidity, temperature, pH, the type and the metabolism of themicroorganisms. The spill of the crude oil in the soil results in numerical growth of bacteriapopulations, with a concomitant reduction in their diversity, respectively with the predominantspecies that degrade hydrocarbons to simpler compounds, determining their gradualdisappearance.

  14. Biodegradation of crude oil in Arctic subsurface water from the Disko Bay (Greenland) is limited

    DEFF Research Database (Denmark)

    Scheibye, Katrine; Christensen, Jan H.; Johnsen, Anders R.

    2017-01-01

    Biological degradation is the main process for oil degradation in a subsurface oil plume. There is, however, little information on the biodegradation potential of Arctic, marine subsurface environments. We therefore investigated oil biodegradation in microcosms at 2 °C containing Arctic subsurface...... seawater from the Disko Bay (Greenland) and crude oil at three concentrations of 2.5-10 mg/L. Within 71 days, the total petroleum hydrocarbon concentration decreased only by 18 ± 18% for an initial concentration of 5 mg/L. The saturated alkanes nC13-nC30 and the isoprenoids iC18-iC21 were biodegraded...... for the C1-naphthalenes. To conclude, the marine subsurface microorganisms from the Disko Bay had the potential for biodegradation of n-alkanes and isoprenoids while the metabolically complex and toxic PACs and their alkylated homologs remained almost unchanged....

  15. Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures

    International Nuclear Information System (INIS)

    Foght, J.M.; Westlake, D.W.S.; Gutnick, D.L.

    1989-01-01

    Crude oil was treated with purified emulsan, the heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1. A mixed bacterial population as well as nine different pure cultures isolated from various sources was tested for biodegradation of emulsan-treated and untreated crude oil. Biodegradation was measured both quantitatively and qualitatively. Recovery of 14 CO 2 from mineralized 14 C-labeled substrates yielded quantitative data on degradation of specific compounds, and capillary gas chromatography of residual unlabeled oil yielded qualitative data on a broad spectrum of crude oil components. Biodegradation of linear alkanes and other saturated hydrocarbons, both by pure cultures and by the mixed population, was reduced some 50 to 90% after emulsan pretreatment. In addition, degradation of aromatic compounds by the mixed population was reduced some 90% in emulsan-treated oil. In sharp contrast, aromatic biodegradation by pure cultures was either unaffected or slightly stimulated by emulsification of the oil

  16. Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures

    Energy Technology Data Exchange (ETDEWEB)

    Foght, J.M.; Westlake, D.W.S. (Univ. of Alberta, Edmonton (Canada)); Gutnick, D.L. (Tel Aviv Univ., Ramat Aviv (Israel))

    1989-01-01

    Crude oil was treated with purified emulsan, the heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1. A mixed bacterial population as well as nine different pure cultures isolated from various sources was tested for biodegradation of emulsan-treated and untreated crude oil. Biodegradation was measured both quantitatively and qualitatively. Recovery of {sup 14}CO{sub 2} from mineralized {sup 14}C-labeled substrates yielded quantitative data on degradation of specific compounds, and capillary gas chromatography of residual unlabeled oil yielded qualitative data on a broad spectrum of crude oil components. Biodegradation of linear alkanes and other saturated hydrocarbons, both by pure cultures and by the mixed population, was reduced some 50 to 90% after emulsan pretreatment. In addition, degradation of aromatic compounds by the mixed population was reduced some 90% in emulsan-treated oil. In sharp contrast, aromatic biodegradation by pure cultures was either unaffected or slightly stimulated by emulsification of the oil.

  17. Modeling land subsidence due to shallow-water hydrocarbon production: A case study in the northern Adriatic Sea

    Science.gov (United States)

    Gambolati, G.; Castelletto, N.; Ferronato, M.; Janna, C.; Teatini, P.

    2012-12-01

    One major environmental concern of subsurface fluid withdrawal is land subsidence. The issue of a reliable estimate and prediction of the expected anthropogenic land subsidence is particularly important whenever the production of hydrocarbon (oil and gas) occurs from large reservoirs located close to deltaic zones (e.g., Mississippi, Po, Nile, Niger, Yellow rivers) or shallow-water with low-lying coastlands (e.g., Northern Caspian sea, Dutch Wadden Sea). In such cases even a small reduction of the ground elevation relative to the mean sea level may impact seriously on human settlements and natural environment. The monitoring of the ongoing land subsidence has been significantly improved over the last decade by SAR-based interferometry. These measurements can be quite effectively used to map the process and calibrate geomechanical models for predicting the future event. However, this powerful methodology cannot be implemented off-shore. Although permanent GPS stations can be established to monitor the movement of the production facilities usually installed above the gravity center of a reservoir, an accurate characterization of the settlement bowl affecting the sea bottom, with a possible migration toward the shore, is a challenge still today. In the present communication the case study of the Riccione gas reservoir is discussed. The field is located in the near-shore northern Adriatic Sea, approximately 15 km far from the coastline, where the seawater height is about 20 m. The gas-bearing strata are 1100 m deep and are hydraulically connected to a relatively weak aquifer. Production of 70% of the cumulative reserves as of 2006 yielded a pore pressure decrease of 60 bars. Reliable geometry and geomechanical properties of the depleted formations were detected with the aid of a 3D seismic survey and a borehole equipped with radioactive markers, respectively. The latter pointed out that the Riccione formations are characterized by an unusually high oedometer

  18. A novel kinetic modeling method for the stabilization phase of the composting process for biodegradation of solid wastes.

    Science.gov (United States)

    Ebrahimzadeh, Reza; Ghazanfari Moghaddam, Ahmad; Sarcheshmehpour, Mehdi; Mortezapour, Hamid

    2017-12-01

    Biomass degradation kinetics of the composting process for kitchen waste, pruned elm tree branches and sheep manure were studied to model changes in volatile solids (VS) over time. Three experimental reactors containing raw mixtures with a carbon to nitrogen (C/N) ratio of 27:1 and a moisture content of 65% were prepared. During the composting process two of the reactors used forced air and the third used natural aeration. The composting stabilization phases in all reactors were completed in 30 days. During this period, composting indexes such as temperature, moisture content and VS changes were recorded. Elementary reactions were used for kinetics modeling of the degradation process. Results showed that the numerical values of rate constant ( k) for zero-order ranged from 0.86 to 1.03 VS×day -1 , for first-order models it ranged from 0.01 to 0.02 day -1 , for second-order the range was from 1.36×10 -5 to 1.78×10 -5 VS -1 ×day -1 and for n-order the rate constant ranged from 0.031 to 0.095 VS (1-n) ×day -1 . The resulting models were validated by comparing statistical parameters. Evaluation of the models showed that, in the aerated reactors, the n-order models (less than 1) successfully estimated the VS changes. In the non-aeration reactor, for the second-order model good agreement was achieved between the simulated and actual quantities of VS. Also, half-life time provided a useful criterion for the estimation of expected time for completion of different phases of composting.

  19. Progress Toward Quality Assurance Standards for Advanced Hydrocarbon Fuels Based on Thermal Performance Testing and Chemometric Modeling

    Science.gov (United States)

    2015-12-15

    hydrocarbon-fueled liquid rocket engines , combustion enthalpy is transferred at high rates to thrust chamber surfaces, which are maintained at acceptably...thermal management of engine and vehicle structures , and more precisely the fuel’s ability to absorb heat without detrimentally affecting cooling...Specifically, reliable and predictable thermal management of engine and vehicle structures , and more precisely the fuel’s ability to absorb heat without

  20. Artificial Hydrocarbon Networks Fuzzy Inference System

    OpenAIRE

    Ponce, Hiram; Ponce, Pedro; Molina, Arturo

    2013-01-01

    This paper presents a novel fuzzy inference model based on artificial hydrocarbon networks, a computational algorithm for modeling problems based on chemical hydrocarbon compounds. In particular, the proposed fuzzy-molecular inference model (FIM-model) uses molecular units of information to partition the output space in the defuzzification step. Moreover, these molecules are linguistic units that can be partially understandable due to the organized structure of the topology and metadata param...

  1. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size.

    Science.gov (United States)

    Ma, Bin; Chen, Huaihai; Xu, Minmin; Hayat, Tahir; He, Yan; Xu, Jianming

    2010-08-01

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil.

    Science.gov (United States)

    Kulik, Niina; Goi, Anna; Trapido, Marina; Tuhkanen, Tuula

    2006-03-01

    The ability of pre-oxidation to overcome polycyclic aromatic hydrocarbons (PAH) recalcitrance to biodegradation was investigated in creosote contaminated soil. Sand and peat artificially spiked with creosote (quality WEI C) were used as model systems. Ozonation and Fenton-like treatment were proved to be feasible technologies for PAH degradation in soil. The efficiency of ozonation was strongly dependent on the water content of treated soil samples. The removal of PAH by Fenton-like treatment depended on the applied H2O2/soil weight ratio and ferrous ions addition. It was determined that the application of chemical oxidation in sand resulted in a higher PAH removal and required lower oxidant (ozone, hydrogen peroxide) doses. The enhancement of PAH biodegradability by different pre-treatment technologies also depended on the soil matrix. It was ascertained that combined chemical and biological treatment was more efficient in PAH elimination in creosote contaminated soil than either one alone. Thus, the combination of Fenton-like and the subsequent biological treatment resulted in the highest removal of PAH in creosote contaminated sand, and biodegradation with pre-ozonation was found to be the most effective technology for PAH elimination in peat.

  3. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Niina Kulik; Anna Goi; Marina Trapido; Tuula Tuhkanen [Tallinn University of Technology, Tallinn (Estonia). Department of Chemical Engineering

    2006-03-15

    The ability of pre-oxidation to overcome polycyclic aromatic hydrocarbons (PAH) recalcitrance to biodegradation was investigated in creosote contaminated soil. Sand and peat artificially spiked with creosote (quality WEI C) were used as model systems. Ozonation and Fenton-like treatment were proved to be feasible technologies for PAH degradation in soil. The efficiency of ozonation was strongly dependent on the water content of treated soil samples. The removal of PAH by Fenton-like treatment depended on the applied H{sub 2}O{sub 2}/soil weight ratio and ferrous ions addition. It was determined that the application of chemical oxidation in sand resulted in a higher PAH removal and required lower oxidant (ozone, hydrogen peroxide) doses. The enhancement of PAH biodegradability by different pre-treatment technologies also depended on the soil matrix. It was ascertained that combined chemical and biological treatment was more efficient in PAH elimination in creosote contaminated soil than either one alone. Thus, the combination of Fenton-like and the subsequent biological treatment resulted in the highest removal of PAH in creosote contaminated sand, and biodegradation with pre-ozonation was found to be the most effective technology for PAH elimination in peat.

  4. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil.

    Science.gov (United States)

    Bengtsson, Göran; Törneman, Niklas; Yang, Xiuhong

    2010-09-01

    Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Microbial consortia involved in the anaerobic degradation of hydrocarbons.

    Science.gov (United States)

    Zwolinski; Harris, R F; Hickey, W J

    2000-01-01

    In this review, we examine the energetics of well-characterized biodegradation pathways and explore the possibilities for these to support growth of multiple organisms interacting in consortia. The relevant phenotypic and/or phylogenetic characteristics of isolates and consortia mediating hydrocarbon degradation coupled with different terminal electron-accepting processes (TEAP) are also reviewed. While the information on metabolic pathways has been gained from the analysis of individual isolates, the energetic framework presented here demonstrates that microbial consortia could be readily postulated for hydrocarbon degradation coupled to any TEAP. Several specialized reactions occur within these pathways, and the organisms mediating these are likely to play a key role in defining the hydrocarbon degradation characteristics of the community under a given TEAP. Comparing these processes within and between TEAPs reveals biological unity in that divergent phylotypes display similar degradation mechanisms and biological diversity in that hydrocarbon-degraders closely related as phylotypes differ in the type and variety of hydrocarbon degradation pathways they possess. Analysis of microcosms and of field samples suggests that we have only begun to reveal the diversity of organisms mediating anaerobic hydrocarbon degradation. Advancements in the understanding of how hydrocarbon-degrading communities function will be significantly affected by the extent to which organisms mediating specialized reactions can be identified, and tools developed to allow their study in situ.

  6. Frozen Hydrocarbon Particles of Cometary Halos as Carriers of ...

    Indian Academy of Sciences (India)

    The possible nature of unidentified cometary emissions is under discussion. We propose a new model of the ice particles in cometary halos as a mixture of frozen polycyclic aromatic hydrocarbons and acyclic hydrocarbons.We describe principal properties of frozen hydrocarbon particles (FHPs) and suggest interpreting ...

  7. Pharmacokinetics analysis of sustained release hGH biodegradable implantable tablets using a mouse model of human ovarian cancer.

    Science.gov (United States)

    Santoveña, Ana; Fariña, José B; Llabrés, Matías; Zhu, Yonglian; Dannies, Priscilla

    2010-03-30

    This paper presents the pharmacokinetic of human growth hormone (hGH) implantable tablets tested on a human ovarian cancer mouse model. In order to obtain a sustained release device which permits to administer a high dose of the hormone that keeps its integrity and stability, three different formulations of hGH-poly (d,l-lactic-co-glycolic acid) (PLGA) were elaborated by direct compression method varying hormone load, PLGA content and compactation time. In vitro studies showed that drug release was mainly controlled by hormone load. Pharmacokinetic studies were conducted by using immunodeficient female mice. Four days before the insertion of hGH implantable tablets in the peritoneal cavity, every mouse received 5x10(6) human ovarian cancer cells (SKOV3.ip1). Hormone serum levels were monitored through bleeding from eye orbital vessels. The population pharmacokinetic model used was based on the in series tank model and model parameters were estimated using the maximum likelihood method. The null hypothesis test about differences between formulations leads us to the conclusion that the three formulations showed the same kinetic behavior except for the hGH load. The hormone release was extended all over 2 weeks but no increase or decrease in survival time was observed. These results suggest that hGH serum levels do not facilitate tumoral cells proliferation, an expected effect of hGH and this could explain why survival times of mice treated with implantable tablets are not shorter than those treated with the control ones. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  8. Biodegradable polymersomes as carriers and release systems for paclitaxel using Oregon Green® 488 labeled paclitaxel as a model compound

    NARCIS (Netherlands)

    Lee, Jung Seok; Feijen, Jan

    2012-01-01

    Oregon Green® 488 labeled paclitaxel (Flutax) loaded biodegradable polymersomes (Flutax-Ps) based on methoxy poly(ethylene glycol)-b-poly(d,l-lactide) (mPEG-PDLLA), methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) or a mixture of the block copolymers (50:50, w/w) were prepared

  9. Biodegradable Piezoelectric Force Sensor.

    Science.gov (United States)

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D

    2018-01-30

    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  10. Kinetics of petroleum oil biodegradation by a consortium of three protozoan isolates (Aspidisca sp., Trachelophyllum sp. and Peranema sp.

    Directory of Open Access Journals (Sweden)

    L. Kachieng’a

    2017-09-01

    Full Text Available Petroleum oil is a complex mixture of substances, the majority of which are hydrocarbons; the latter represent an extremely important and heterogeneous group of compounds that find their way into water resources by anthropogenic or natural ways. The majority of toxic hydrocarbon components of petroleum are biodegradable, where bioremediation using microbial species has become an integral process for the restoration of oil-polluted areas. In this study, three bioremediation processes, namely natural attenuation, nutrient supplementation by adding glucose and biostimulation by adding Tween® 80, were carried out in various petroleum hydrocarbon concentrations in polluted water media using a consortium of three protozoan isolates (Aspidisca sp., Trachelophyllum sp. and Peranema sp.. A first-order kinetics model was fitted to the biodegradation data to evaluate the biodegradation rate and to determine the corresponding half-life time. First-order kinetics satisfactorily described the biodegradation of the petroleum-based contaminants under abiotic conditions. The results showed an increase in the percentage removal of petroleum oil at the lower petroleum concentrations and a gradual percentage decrease in removing petroleum oil residues occurred when there was an increase in the initial concentrations of the petroleum oil: 39%, 27%, 22%, 12%, 10% for various petroleum oil concentrations of 50, 100, 150, 200, 250 mg/L, respectively. A similar trend was also observed in the glucose-supplemented culture media where the reduction was 45% and 78% for petroleum concentrations of 250 mg/L and 50 mg/L, respectively. Biodegradation of between 33 and 90% was achieved at a Tween® 80 concentration of between 50 mg/L and 250 mg/L. The degradation rate constants for the natural attenuation process ranged between ≥0 to ≤0.50, ≥0 to ≤0.35, ≥0 to ≤0.25, ≥0 to ≤ 0.14 and ≥ 0 to ≤0.11 for petroleum oil concentrations varying from 50, 100, 150

  11. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil

    International Nuclear Information System (INIS)

    Elazhari-Ali, Abdulmagid; Singh, Arvind K.; Davenport, Russell J.; Head, Ian M.; Werner, David

    2013-01-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. Highlights: ► The effect of 10% ethanol or 20% biodiesel on the biodegradability of volatile petroleum hydrocarbons in soil was investigated. ► Competition for scarce inorganic nutrients between biofuel and VPH degraders slowed monoaromatic hydrocarbon degradation. ► Biofuel effects were transitional. ► Each fuel selected for a distinct predominant bacterial community. ► All bacterial communities were dominated by Pseudomonas spp. - Blending of petroleum with ethanol or biodiesel changes the fuel degrading soil bacterial community structure, but the long-term effects on fuel biodegradability are minor.

  12. Optimising the bio-piling of weathered hydrocarbons within a risk management framework

    International Nuclear Information System (INIS)

    Hough, R.; Brassington, K.; Sinke, A.; Crossley, J.; Paton, G.; Semple, K.; Risdon, G.; Jacobson, Ch.; Daly, P.; Jackman, S.; Lethbridge, G.; Pollard, S.

    2005-01-01

    Thirty years of research into petroleum microbiology and bio-remediation have bypassed an important observation - that many hydrocarbon contaminated sites posing potential risks to human health harbour weathered, 'mid-distillate' or heavy oils rather than 'fresh product'. Ex-situ bio-piling is an important technology for treating soils contaminated with weathered hydrocarbons. However, its performance continues to be represented by reference to reductions in the hydrocarbon 'load' in the soils being treated, rather than reductions in the risks posed by the hydrocarbon contamination. The absence of 'risk' from the vocabulary of many operators and remediation projects reduces stakeholder (regulatory, investor, landowner, and public) confidence in remediation technologies, and subsequently limits the market potential of these technologies. Stakeholder confidence in the bio-piling of weathered hydrocarbons may be improved by demonstrating process optimisation within a validated risk management framework. To address these issues, a consortium led by Cranfield University's Integrated Waste Management Centre has secured funding from the UK Government's Bio-remediation LINK programme. Project PROMISE (involving BP, SecondSite Regeneration Ltd., Dew Remediation Ltd., TES Bretby (Mowlem Group), technology translators PERA, and academics from Aberdeen, Cranfield and Lancaster Universities) aims to improve market confidence in bio-piling by demonstrating how this treatment may be applied within a risk management context. For weathered hydrocarbons in particular, the underpinning scientific components of process control, waste diagnostics, environmental fate modelling, and risk assessment have yet to be fully integrated to allow bio-piling projects to be verified with improved confidence. The Joint Research Council Review of Bio-remediation recognised this in calling explicitly for the positioning of bio-remediation within a risk management framework. The PERF report (Thermo

  13. Complex resistivity signatures of ethanol biodegradation in porous media

    Science.gov (United States)

    Personna, Yves Robert; Slater, Lee; Ntarlagiannis, Dimitrios; Werkema, Dale D.; Szabo, Zoltan

    2013-01-01

    Numerous adverse effects are associated with the accidental release of ethanol (EtOH) and its persistence in the subsurface. Geophysical techniques may permit non-invasive, real time monitoring of microbial degradation of hydrocarbon. We performed complex resistivity (CR) measurements in conjunction with geochemical data analysis on three microbial-stimulated and two control columns to investigate changes in electrical properties during EtOH biodegradation processes in porous media. A Debye Decomposition approach was applied to determine the chargeability (m), normalized chargeability (mn) and time constant (τ) of the polarization magnitude and relaxation length scale as a function of time. The CR responses showed a clear distinction between the bioaugmented and control columns in terms of real (σ′) and imaginary (σ″) conductivity, phase (ϕ) and apparent formation factor (Fapp). Unlike the control columns, a substantial decrease in σ′ and increase in Fapp occurred at an early time (within 4 days) of the experiment for all three bioaugmented columns. The observed decrease in σ′ is opposite to previous studies on hydrocarbon biodegradation. These columns also exhibited increases in ϕ (up to ~ 9 mrad) and σ″ (up to two order of magnitude higher) 5 weeks after microbial inoculation. Variations in m and mn were consistent with temporal changes in ϕ and σ″ responses, respectively. Temporal geochemical changes and high resolution scanning electron microscopy imaging corroborated the CR findings, thus indicating the sensitivity of CR measurements to EtOH biodegradation processes. Our results offer insight into the potential application of CR measurements for long-term monitoring of biogeochemical and mineralogical changes during intrinsic and induced EtOH biodegradation in the subsurface.

  14. PREPARATION AND CHARACTERIZATION OF BIODEGRADABLE ...

    African Journals Online (AJOL)

    Dr Abdusalam

    Keywords: Starch, Acetylation, Biodegradation, Poly(vinyl alcohol), Polymer blend. INTRODUCTION. Non-biodegradable polymers, such as polyethene, polypropane, poly(vinylchloride) etc have excellent mechanical properties such as tensile strength, tensile strain, bursting strength and tear strength (Hay and. Sharma.

  15. Thermodynamic Analysis of Biodegradation Pathways

    Science.gov (United States)

    Finley, Stacey D.; Broadbelt, Linda J.

    2014-01-01

    Microorganisms provide a wealth of biodegradative potential in the reduction and elimination of xenobiotic compounds in the environment. One useful metric to evaluate potential biodegradation pathways is thermodynamic feasibility. However, experimental data for the thermodynamic properties of xenobiotics is scarce. The present work uses a group contribution method to study the thermodynamic properties of the University of Minnesota Biocatalysis/Biodegradation Database. The Gibbs free energies of formation and reaction are estimated for 914 compounds (81%) and 902 reactions (75%), respectively, in the database. The reactions are classified based on the minimum and maximum Gibbs free energy values, which accounts for uncertainty in the free energy estimates and a feasible concentration range relevant to biodegradation. Using the free energy estimates, the cumulative free energy change of 89 biodegradation pathways (51%) in the database could be estimated. A comparison of the likelihood of the biotransformation rules in the Pathway Prediction System and their thermodynamic feasibility was then carried out. This analysis revealed that when evaluating the feasibility of biodegradation pathways, it is important to consider the thermodynamic topology of the reactions in the context of the complete pathway. Group contribution is shown to be a viable tool for estimating, a priori, the thermodynamic feasibility and the relative likelihood of alternative biodegradation reactions. This work offers a useful tool to a broad range of researchers interested in estimating the feasibility of the reactions in existing or novel biodegradation pathways. PMID:19288443

  16. Comparison of two association models (Elliott-Suresh-Donohue and simplified PC-SAFT) for complex phase equilibria of hydrocarbon-water and amine-containing mixtures

    DEFF Research Database (Denmark)

    Grenner, Andreas; Schmelzer, Jürgen; von Solms, Nicolas

    2006-01-01

    , and water. Furthermore, the predictive capabilities of the models are investigated for four ternary systems composed of these components, which exhibit complex liquid-liquid(-liquid) equilibria (LLLE). Various aspects of association models which have an influence in the results are studied for the PC......, both models perform overall similarly for the binary systems, although ESD shows a remarkably good behavior despite its simplicity and the use of only the two-site scheme for all associating compounds. The prediction of the LLE in the ternary systems water + octane + aniline and water + CHA + aniline......Two Wertheim-based association models, the simplified PC-SAFT and the Elliott-Suresh-Donohue (ESD) equation of state, are compared in this work for the description of vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) in binary systems of aniline, cyclohexylamine (CHA), hydrocarbons...

  17. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Boutheina Gargouri

    2015-01-01

    Full Text Available Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  18. Green copper pigments biodegradation in cultural heritage: from malachite to moolooite, thermodynamic modeling, X-ray fluorescence, and Raman evidence.

    Science.gov (United States)

    Castro, Kepa; Sarmiento, Alfredo; Martínez-Arkarazo, Irantzu; Madariaga, Juan Manuel; Fernández, Luis Angel

    2008-06-01

    Moolooite (copper oxalate), a very rare compound, was found as a degradation product from the decay of malachite in several specimens of Cultural Heritage studied. Computer simulations, based on heterogeneous chemical equilibria, support the transformation of malachite to moolooite through the intermediate copper basic sulfates or copper basic chlorides, depending on the presence of available free sulfate or chloride anions in the chemical system. Raman and X-ray fluorescence spectral evidence found during the analysis of the three case studies investigated supported the model predictions. According to the study, the presence of lichens and other microorganisms might be responsible for the decay phenomena. This work tries to highlight the importance of biological attack on specimens belonging to Cultural Heritage and to demonstrate the consequences of oxalic acid, excreted by some of these microorganisms, on the conservation and preservation of artwork.

  19. Hydrocarbons: source of energy

    International Nuclear Information System (INIS)

    Imarisio, G.; Frias, M.; Bemtgen, J.M.

    1989-01-01

    Hydrocarbons are at present the single most important source of energy, since they are the most versatile and widely used. It is expected that their importance will extend well into the next century and therefore it is essential to provide for all those improvements which will extend their availability and usefulness. The sub-programme ''Optimization of the production and utilization of hydrocarbons'' (within the Non-Nuclear Energy R and D Programme of the European Communities) is pursuing a number of R and D topics aimed at the above-mentioned results. It is implemented by means of shared-cost R and D contracts. At this first Seminar held in Lyon (France) from 21-23 September, 1988, all contractors of the sub-programme presented the state of progress of their R and D projects. These proceedings comprise all the papers presented at the Seminar. The section on oilfield exploration includes a report of work on the interpretation of nuclear logs by means of mathematical models. (author)

  20. Interaction between Carbon Nanotubes and Aromatic Hydrocarbon-degrading Microbes and its Effect on Carbon Nanotubes Transformation

    Science.gov (United States)

    You, Y.; Wang, L.; Poulson, S.; Wang, X.; Xing, B.; Yang, Y.

    2015-12-01

    Due to their unique electrical, optical and mechanical properties, carbon nanotubes (CNTs) have been substantially produced and widely applied during the past decades, leading to their increased probability of entering the environment. Some estimation suggests that CNTs are accumulated in agricultural systems with their soil concentration increasing by 0.4-157 ng/kg/year. This has raised concerns about environmental impacts of these emerging contaminants including their ecotoxicity. Meanwhile, transformation of CNTs in the environment can significantly affect their transport, bioavailability and thereby ecotoxicity. So far, environmental biodegradation of CNTs remains obscure. Given the high diversity of soil microorganisms and their metabolic potentials, it is important to investigate microbial biodegradation of CNTs under various environmental conditions. This study focuses on an aromatic hydrocarbon-degrading bacterium, Mycobacterium vanbaalenii PYR-1, as a model microorganism capable of ring cleavage. We hypothesize that bacterial activities could transform CNTs to more hydrophilic forms, increasing their aqueous stability and environmental reactivity. We incubated M. vanbaalenii PYR-1 with 13C-labeded multiwall carbon nanotubes (MWCNTs) for 30 days, monitored δ13C in the system, characterized MWCNTs before and after the reaction, and compared the results with culture-negative controls. To investigate effects of various environmental conditions, including the presence of extracellular oxidative enzymes from white-rot fungi, additional experiments will be conducted and results compared will be compared among different setups. Moreover, we will measure adverse impacts of CNTs on the metabolic activities of M. vanbaalenii PYR-1, particularly its biodegradation of polycyclic aromatic hydrocarbons.

  1. Biodegradation of Mustard

    Science.gov (United States)

    1994-07-01

    1985). (58) Foght, JM., Fedorak , PM. and Westlake, WS. Microbial desulfurization of crude oil. Proc. Fourth Int. Conf. Heavy Crude and Tar Sands. 5:365...polycyclic hydrocarbons and aromatic heterocycles by a Pjdinas species. Can. J. Microbiol. 34:1135-1141 (1988). (83) Foght, FM, Fedorak , PM, Gray, MR. and...1990, 379-407. (84) Fedorak , PM., Payzant, JD., Montgomery, DS. and Westlake, DWS. Microbial degradation of n-alkyl tetrahydrothiophenes found in

  2. The bacterial community structure of hydrocarbon-polluted marine environments as the basis for the definition of an ecological index of hydrocarbon exposure.

    Science.gov (United States)

    Lozada, Mariana; Marcos, Magalí S; Commendatore, Marta G; Gil, Mónica N; Dionisi, Hebe M

    2014-09-17

    The aim of this study was to design a molecular biological tool, using information provided by amplicon pyrosequencing of 16S rRNA genes, that could be suitable for environmental assessment and bioremediation in marine ecosystems. We selected 63 bacterial genera that were previously linked to hydrocarbon biodegradation, representing a minimum sample of the bacterial guild associated with this process. We defined an ecological indicator (ecological index of hydrocarbon exposure, EIHE) using the relative abundance values of these genera obtained by pyrotag analysis. This index reflects the proportion of the bacterial community that is potentially capable of biodegrading hydrocarbons. When the bacterial community structures of intertidal sediments from two sites with different pollution histories were analyzed, 16 of the selected genera (25%) were significantly overrepresented with respect to the pristine site, in at least one of the samples from the polluted site. Although the relative abundances of individual genera associated with hydrocarbon biodegradation were generally low in samples from the polluted site, EIHE values were 4 times higher than those in the pristine sample, with at least 5% of the bacterial community in the sediments being represented by the selected genera. EIHE values were also calculated in other oil-exposed marine sediments as well as in seawater using public datasets from experimental systems and field studies. In all cases, the EIHE was significantly higher in oiled than in unpolluted samples, suggesting that this tool could be used as an estimator of the hydrocarbon-degrading potential of microbial communities.

  3. BIODEGRADATION OF PETROLEUM-WASTE BY BIOSURFACTANT-PRODUCING BACTERIA

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Grazyna A. Plaza, G; Kamlesh Jangid, K; Krystyna Lukasik, K; Grzegorz Nalecz-Jawecki, G; Topher Berry, T

    2007-05-16

    The degradation of petroleum waste by mixed bacterial cultures which produce biosurfactants: Ralstonia pickettii SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (1'- 1a), Bacillus sp. (T-1) and Bacillus sp. (T'-1) was investigated. The total petroleum hydrocarbons were degraded substantially (91 %) by the mixed bacterial culture in 30 days (reaching up to 29 % in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3 times after 30 days as compared to raw petroleum waste. Thus, the mixed bacterial strains effectively clean-up the petroleum waste and they can be used in other bioremediation processes.

  4. Maximum Topological Distances Based Indices as Molecular Descriptors for QSPR. 4. Modeling the Enthalpy of Formation of Hydrocarbons from Elements

    Directory of Open Access Journals (Sweden)

    Andrey A. Toropov

    2001-06-01

    Full Text Available The enthalpy of formation of a set of 60 hydroarbons is calculated on the basis of topological descriptors defined from the distance and detour matrices within the realm of the QSAR/QSPR theory. Linear and non-linear polynomials fittings are made and results show the need to resort to higher-order regression equations in order to get better concordances between theoretical results and experimental available data. Besides, topological indices computed from maximum order distances seems to yield rather satisfactory predictions of heats of formation for hydrocarbons.

  5. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil.

    Science.gov (United States)

    Palanisamy, Nandhini; Ramya, Jayaprakash; Kumar, Srilakshman; Vasanthi, Ns; Chandran, Preethy; Khan, Sudheer

    2014-01-01

    Petroleum based products are the major source of energy for industries and daily life. Leaks and accidental spills occur regularly during the exploration, production, refining, transport, and storage of petroleum and petroleum products. In the present study we isolated the bacteria from diesel contaminated soil and screened them for diesel biodegradation capacity. One monoculture isolate identified by 16S rRNA gene sequence analysis to be Acinetobacter baumannii was further studied for diesel oil biodegradation. The effects of various culture parameters (pH, temperature, NaCl concentrations, initial hydrocarbon concentration, initial inoculum size, role of chemical surfactant, and role of carbon and nitrogen sources) on biodegradation of diesel oil were evaluated. Optimal diesel oil biodegradation by A. baumanii occurred at initial pH 7, 35°C and initial hydrocarbon concentration at 4%. The biodegradation products under optimal cultural conditions were analyzed by GC-MS. The present study suggests that A. baumannii can be used for effective degradation of diesel oil from industrial effluents contaminated with diesel oil.

  6. Large zeolite H-ZSM-5 crystals as models for the methanol-to-hydrocarbons process: bridging the gap between single-particle examination and bulk catalyst analysis.

    Science.gov (United States)

    Hofmann, Jan P; Mores, Davide; Aramburo, Luis R; Teketel, Shewangizaw; Rohnke, Marcus; Janek, Jürgen; Olsbye, Unni; Weckhuysen, Bert M

    2013-06-24

    The catalytic, deactivation, and regeneration characteristics of large coffin-shaped H-ZSM-5 crystals were investigated during the methanol-to-hydrocarbons (MTH) reaction at 350 and 500 °C. Online gas-phase effluent analysis and examination of retained material thereof were used to explore the bulk properties of large coffin-shaped zeolite H-ZSM-5 crystals in a fixed-bed reactor to introduce them as model catalysts for the MTH reaction. These findings were related to observations made at the individual particle level by using polarization-dependent UV-visible microspectroscopy and mass spectrometric techniques after reaction in an in situ microspectroscopy reaction cell. Excellent agreement between the spectroscopic measurements and the analysis of hydrocarbon deposits by means of retained hydrocarbon analysis and time-of-flight secondary-ion mass spectrometry of spent catalyst materials was observed. The obtained data reveal a shift towards more condensed coke deposits on the outer zeolite surface at higher reaction temperatures. Zeolites in the fixed-bed reactor setup underwent more coke deposition than those reacted in the in situ microspectroscopy reaction cell. Regeneration studies of the large zeolite crystals were performed by oxidation in O2 /inert gas mixtures at 550 °C. UV-visible microspectroscopic measurements using the oligomerization of styrene derivatives as probe reaction indicated that the fraction of strong acid sites decreased during regeneration. This change was accompanied by a slight decrease in the initial conversion obtained after regeneration. H-ZSM-5 deactivated more rapidly at higher reaction temperature. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bioavailability of Polycyclic Aromatic Hydrocarbons in aquatic ecosystems : influence of natural and anthropic organic matter; Biodisponibilite des hydrocarbures aromatiques polycycliques dans les ecosystemes aquatiques: influence de la matiere organique naturelle et anthropique

    Energy Technology Data Exchange (ETDEWEB)

    Gourlay, C.

    2004-11-01

    Aquatic ecosystems receive micro-pollutants. They also contain organic matter (OM) of natural and anthropogenic origins. The contaminant bioavailability in aquatic media is determined by the interactions between contaminants and OM. This work deals with the influence of organic matter from anthropogenic media on the bioavailability of hydrophobic organic pollutants. Polycyclic Aromatic Hydrocarbons (PAHs) have been used as model contaminants, since they are widely spread in urban media. In anthropogenic media, some OM may be bio-degraded. Up to now, most researches focused on the interactions between contaminants and humic OM that are mostly non-degradable, using physico-chemical characterizations of OM. On the contrary, in this work, the biodegradability of OM was deliberately taken into account. Indeed, we assume that the contaminant affinity for OM evolves during OM biodegradation, so that pollutants may be released in a bio-available form and then may be bond again by biodegradation sub-products. In laboratory evaluation, PAH bioavailability was assessed through the measurements of the bioaccumulation in Daphnia magna. The influence of organic matter on the bioavailability of PAHs and the evolution of this influence along OM bacterial mineralization were proved, as well as the strong binding efficiency of degradation by-products. A model of observed phenomena was elaborated. These observations about urban and natural OM effect were compared to in situ PAH bioavailability measurements in the river Seine basin. In this case, the bioavailability was estimated using Semi-Permeable Membrane Device (SPMD) sampling technique. (author)

  8. Impact of bioremediation treatments on the biodegradation of buried oil and predominant bacterial populations

    International Nuclear Information System (INIS)

    Swannell, R.P.J.; Mitchell, D.J.; Waterhouse, J.C.; Miskin, I.P.; Head, I.M.; Petch, S.; Jones, D.M.; Willis, A.; Lee, K.; Lepo, J.E.

    2000-01-01

    The feasibility of using mineral fertilizers as a bioremediation treatment for oil buried in fine sediments was tested in field trials at a site in the south-west of England. The plots were divided into three blocks of four treatments including untreated, fertilized, oiled unfertilized and oiled fertilized plots. The changes in residual hydrocarbons were monitored to study the biodegradation of Arabian Light Crude Oil which is known to have a high portion of biodegradable components. Samples were extracted at random points at intervals of 0, 42 and 101 days. The analysis process identified a range of aliphatic and aromatic hydrocarbons, as well as a range of geochemical biomarkers. The final results suggested that the oil in the fertilized plots was more degraded than in the oiled, unfertilized control plots. Three way, factorial analysis of variance was used to analyse the data from the oiled fertilized and oiled unfertilized plots. No significant effect of treatment on the degradation of aromatic hydrocarbons was observed. The results also showed that oil treatment and treatment with oil and fertilizer increased the abundance of hydrocarbon-degrading bacterial population. One significant observation was that different bacterial populations were stimulated in response to oil alone and a bioremediation treatment. It was concluded that the addition of inorganic fertilizers to the oiled oxic fine sediment substantially enhanced the level of biodegradation compared to untreated oiled sediment. Bioremediation is a feasible treatment for oil spills where the oil is buried in fine sediment. 14 refs., 1 tab., 4 figs

  9. Model bimetallic Pd-Ni automotive exhaust catalysts. Influence of thermal aging and hydrocarbon self-poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Hungria, A.B.; Martinez-Arias, A. [Instituto de Catalisis y Petroleoquimica, CSIC, C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Calvino, J.J. [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain); Anderson, J.A. [Surface Chemistry and Catalysis Group, Department of Chemistry, University of Aberdeen, AB24 3UE Scotland (United Kingdom)

    2006-02-22

    Bimetallic Pd-Ni catalysts supported on Al{sub 2}O{sub 3} and (Ce,Zr)O{sub x}/Al{sub 2}O{sub 3} were examined with respect to their catalytic performance for the elimination of CO, NO and C{sub 3}H{sub 6} under stoichiometric conditions. The effects of a thermal aging treatment at 1273K, reactant competition in the presence of the hydrocarbon and the influence of the presence of nickel in the catalyst have been analysed by XRD, HREM, catalytic activity measurements and in situ DRIFTS spectroscopy. Self-poisoning effects, induced by the presence of the hydrocarbon in the reactant mixture, were identified as the main factor affecting the light-off activity. While a Ni-induced preferential interaction between Pd and the Ce-Zr mixed oxide component appears, in general terms, to be beneficial for the catalytic performance of the fresh (Ce,Zr)O{sub x}/Al{sub 2}O{sub 3}-supported bimetallic catalyst, it is shown to be detrimental for the aged system as a consequence of a facilitated degradation of the (Ce,Zr)O{sub x} component and encapsulation of the active palladium particles. (author)

  10. Sewage Sludge Polycyclic Aromatic Hydrocarbon (PAH) Decontamination Technique Based on the Utilization of a Lipopeptide Biosurfactant Extracted from Corn Steep Liquor.

    Science.gov (United States)

    Vecino, Xanel; Rodríguez-López, Lorena; Cruz, Jose M; Moldes, Ana B

    2015-08-19

    A decontamination technique based on the utilization of a lipopeptide biosurfactant extracted from corn steep liquor has been developed to eliminate polycyclic aromatic hydrocarbons (PAHs) from sewage sludge. High concentrations of PAHs were used during experiments observing that 408.3 mg/kg of naphthalene was almost completely mobilized and biodegraded, only 1.7% of naphthalene remained in the sewage sludge, whereas anthracene and pyrene were reduced up to 51.7 and 69.4%, respectively. The biodegradation of PAHs was fitted to several kinetic models (zero- and first-order kinetic models), observing good correlation coefficient values when biodegradation was described by the first-order kinetic model. Experimental results suggest that biosurfactant extracted from corn steep liquor may have great potential, as an ecofriendly washing agent, for the treatment of sewage sludge contaminated with PAHs. Therefore, in situ application of natural biosurfactants may be considered to be a good remediation alternative as they are not hazardous for water and soil organisms.

  11. Biodegradation of Polypropylene Nonwovens

    Science.gov (United States)

    Keene, Brandi Nechelle

    The primary aim of the current research is to document the biodegradation of polypropylene nonwovens and filament under composting environments. To accelerate the biodegradat ion, pre-treatments and additives were incorporated into polypropylene filaments and nonwovens. The initial phase (Chapter 2) of the project studied the biodegradation of untreated polypropylene with/without pro-oxidants in two types of composting systems. Normal composting, which involved incubation of samples in food waste, had little effect on the mechanical properties of additive-free spunbond nonwovens in to comparison prooxidant containing spunbond nonwovens which were affected significantly. Modified composting which includes the burial of samples with food and compressed air, the polypropylene spunbond nonwovens with/without pro-oxidants displayed an extreme loss in mechanical properties and cracking on the surface cracking. Because the untreated spunbond nonwovens did not completely decompose, the next phase of the project examined the pre-treatment of gamma-irradiation or thermal aging prior to composting. After exposure to gamma-irradiation and thermal aging, polypropylene is subjected to oxidative degradation in the presence of air and during storage after irradiat ion. Similar to photo-oxidation, the mechanism of gamma radiation and thermal oxidative degradation is fundamentally free radical in nature. In Chapter 3, the compostability of thermal aged spunbond polypropylene nonwovens with/without pro-oxidant additives. The FTIR spectrum confirmed oxidat ion of the polypropylene nonwovens with/without additives. Cracking on both the pro-oxidant and control spunbond nonwovens was showed by SEM imaging. Spunbond polypropylene nonwovens with/without pro-oxidants were also preirradiated by gamma rays followed by composting. Nonwovens with/without pro-oxidants were severely degraded by gamma-irradiation after up to 20 kGy exposure as explained in Chapter 4. Furthermore (Chapter 5), gamma

  12. Analyzing geophysical signature of a hydrocarbon-contaminated soil using geoelectrical surveys

    Czech Academy of Sciences Publication Activity Database

    Koroma, Sylvester; Arrato, A.; Godio, A.

    2015-01-01

    Roč. 74, č. 4 (2015), s. 2937-2948 ISSN 1866-6280 Institutional support: RVO:68145535 Keywords : electrical conductivity * induced polarization * hydrocarbon -contaminated site * biodegradation Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.765, year: 2014 http://link.springer.com/article/10.1007/s12665-015-4326-6

  13. Analyzing geophysical signature of a hydrocarbon-contaminated soil using geoelectrical surveys

    Czech Academy of Sciences Publication Activity Database

    Koroma, Sylvester; Arrato, A.; Godio, A.

    2015-01-01

    Roč. 74, č. 4 (2015), s. 2937-2948 ISSN 1866-6280 Institutional support: RVO:68145535 Keywords : electrical conductivity * induced polarization * hydrocarbon-contaminated site * biodegradation Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.765, year: 2014 http://link.springer.com/article/10.1007/s12665-015-4326-6

  14. Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-05-01

    Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Uptake of Hydrocarbon by Pseudomonas fluorescens (P1) and Pseudomonas putida (K1) Strains in the Presence of Surfactants: A Cell Surface Modification

    OpenAIRE

    Kaczorek, Ewa; Olszanowski, Andrzej

    2010-01-01

    The objective of this research was the evaluation of the effects of exogenous added surfactants on hydrocarbon biodegradation and on cell surface properties. Crude oil hydrocarbons are often difficult to remove from the environment because of their insolubility in water. The addition of surfactants enhances the removal of hydrocarbons by raising the solubility of these compounds. These surfactants cause them to become more vulnerable to degradation, thereby facilitating transportation across ...

  16. Hydrocarbons as food contaminants:

    OpenAIRE

    Lommatzsch, Martin

    2018-01-01

    The contamination of foods with hydrocarbon mixtures migrating from food contact materials (FCM) was first observed for jute and sisal bags treated with batching oil in the 1990s. Since the millennium, the focus has shifted to printing inks and recycled cardboard packaging as most recognized sources for hydrocarbon contamination from FCM. Mineral oil containing printing inks can either release hydrocarbons directly from the printing of folding boxes into food or indirectly entering the recycl...

  17. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  18. A biodegradable, sustained-released, prednisolone acetate microfilm drug delivery